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Abstract

In modern collider experiments such as the LHC or DESY, reaction channels from quantum chromodynamics

(QCD) dominate particle production. In the high energy limit, the number of gluons produced is so large,

that these gluons dominate the initial conditions of heavy ion collisions and influence subsequent transitions

of the produced hot dense matter into a quark gluon plasma (QGP). These initial gluon dominated configu-

rations are called the color glass condensate (CGC). The energy dependence of observables in this situation

is described by a renormalization group equation, the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–

Kovner (JIMWLK) equation.

The theoretical foundation of the CGC treatment are factorization theorems that allow one to separate hard

and soft contributions. In particular, the interaction between a hard projectile with the CGC occurs via the

exchange of soft gluons. Such an interaction is said to be eikonal and is described by path-ordered exponentials

in the gauge group SU(N) called Wilson lines. By virtue of these Wilson lines being group elements, they

impart additional structure on the interaction: Since confinement requires the individual partons in the

projectile and target to assemble into color neutral configurations before and after the interaction, the group

structure requires these color neutral configurations to be in a singlet representation of SU(N) over the

appropriate Fock space.

Surprisingly little is known about the representation theory of SU(N) over a mixed space V ⊗m ⊗ (V ∗)⊗n.

While the standard methods are well suited for classification purposes, even computer implementations be-

come inefficient in practice beyond the most elementary examples. In this thesis, we explore the representation

theory of SU(N) with a focus on applications in the QCD context. In doing so, we develop computational

tools for the birdtrack formalism, which allow a new, computationally efficient construction of Hermitian

Young projection and transition operators based on the measure of lexical disorder of Young tableaux. These

operators allow for a computationally efficient algorithm to construct the singlet projection operators (and

thus singlet states) of SU(N) over the Fock space encoding quarks, antiquarks and gluons, V ⊗m ⊗ (V ∗)⊗n.

These singlet projectors are immediately applicable to QCD as they facilitate the construction of Wilson line

correlators.

Many additional results with regards to the representation theory of SU(N) over V ⊗m ⊗ (V ∗)⊗n were found

along the way. Most notable is a counting argument giving the number of irreducible representations of

SU(N) over any mixed space V ⊗m ⊗ (V ∗)⊗n. These additional results are also given in this thesis.
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Prologue

ymmetries govern the laws of nature. Understanding such symmetries leads to a deeper

understanding of nature. This was already intuitively clear to early researchers: In the

6th century BC, the Greek philosopher Anaximander conceived a model of the solar system

in which each of the planets and the sun itself moved in perfect circles — the epitome of

symmetry — around the earth [5].

As this model could not account for certain observed phenomena (such as the retrograde motion or the varying

brightness of certain planets in the night sky), Ptolomy in ca. 140 AD refined this model by adding epicycles,

which are smaller (perfect) circles along the circular orbit along which the planets and the sun supposedly

travel around the earth [6]. The major flaw with this model of course was that it was geocentric, i.e. the

earth was placed in the centre of the solar system. In 1543, Copernicus [7] revised this model and placed

the sun at the centre of the solar system — a heliocentric model —, with the earth and all other planets

orbiting it in perfect circles. Today we know that the planet’s orbits are not perfectly circular but in fact

slightly elliptic [6]. Copernicus’ model, despite being obsessively insistent upon symmetry, was nonetheless

surprisingly accurate.

However, the important role of symmetry in physics is not just wishful thinking imposed by the human mind,

but was quantified by Emmy Noether in 1918 [8, 9] when she formulated a theorem (now referred to as

Noether’s Theorem) that states that every continuous symmetry obeyed by a physics theory gives rise to a

conservation law. This theorem was made possible by the formulation of group theory, which is a branch of

abstract algebra that goes back to the 19th century, c.f., for example, [10]. The term “group” (coined by

Camille Jordan [10]) refers to an algebraic construct that gives precise mathematical meaning to what is in

physics referred to as symmetry.

Thus began a journey of the developement of group theory and physics, the two ever crossing paths, influencing

each other. There are far too many instances in which physics research has had a breakthrough due to

symmetry considerations to be all listed here. However, the following milestone is worth mentioning:

In the early 1960’s, Murray Gell-Mann [11] and Georg Zweig [12, 13] proposed a theory of “wee particles” (a

term coined by Feynman [14], now known as quarks), which make up many of the then known particles, such

as protons and neutrons. Purely from symmetry considerations governing the laws of these new fundamental

particles, Gell-Mann and Yuval Ne’emam [15] independently predicted the existence of a new particle Ω−,

which had not yet been discovered. Shortly after its theoretical prediction, the existence of the Ω− was

experimentally confirmed in 1964 [16, 17].
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Today, the important role of symmetries in physics has found axiomatic acceptance. And while the idea to

study the underlying symmetry of a theory in order to advance the theory itself is by no means new, there

are still a lot of questions pertaining to such symmetries that have yet to be answered. In this thesis we will

focus on the symmetry aspects in the context of high energy quantum chromodynamics (QCD). In particular,

we find that the objects that most naturally describe interactions in a particular kinematic limit of interest

here are Wilson lines, which themselves are elements of the special unitary group SU(N). Therefore, keeping

in mind that we ultimately strive to apply our results in a QCD context, this thesis focuses on the study of

the symmetry-group SU(N).
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Chapter 1

High Energy Physics and Wilson Line

Correlators

This chapter sets the background for this thesis. The most important aspects of high energy quantum chro-

modynamics (QCD) in the small-xBj limit are discussed. We begin with an overview of QCD interactions

at high energies, working towards the kinematic limit in which Bjorken-x (xBj) is small. In this limit, one

may perform the eikonal approximation, giving rise to Wilson lines. Thereafter, we briefly describe the

color glass condensate, which is a highly dense gluonic matter that appears in the small-xBj limit of QCD.

The McLerran–Venugopalan model attempts to describe the gluon distribution function in the CGC, but it

was found that the peculiar dynamics within the CGC require a renormalization group (RG) formulation of

the gluon distribution instead. The relevant RG equation is the Jalilian-Marian–Iancu–McLerran–Weigert–

Leonidov–Kovner (JIMWLK) equation.We give a derivation of this equation at leading order, making use

of modern diagrammatic notation. For practical purposes, a parametrization of the JIMWLK equation is

required. This parametrization, however, presupposes knowledge about a subclass of projection operators of

the special unitary group, which are not as well understood as the literature might lead us to believe. This

motivates the research presented in the remainder of this thesis.

1.1 QCD interactions at high energies — in a nutshell

1.1.1 Scattering at high energies

In a typical scattering experiment, one spatial direction is singled out, namely the direction along which the

collision takes place (i.e. the beam axis); we will take the beam direction to be the x3-axis. It is convenient

in such a setting to work in light cone coordinates,

x± :=
1√
2

(x0 ± x3) and x := (x1, x2)t , (1.1)

where x± lie on the light cone (one of these can be interpreted as “time”), and the vector x lies in the plane

transverse to the beam axis (c.f. Figure 1.1). The two objects involved in the collision are referred to as the

projectile and the target. If the energies involved in such a collision are very large, their worldlines approach

3



Section 1.1. QCD interactions at high energies — in a nutshell

the x−- and x+-axes respectively. Thus, the target and the projectile experience a large rapidity separation,

as is illustrated in Figure 1.1.

lig
htl

ike
+
(x
+ )lightlike − (

x − )

beam axis
(
x3)

Ti
m

e
(x

0 )

tar
ge

t

projectile

rap
idi

ty

Figure 1.1: The rapidity separation between the projectile and the target is measured as the hyperbolic angle

between the respective worldlines in the centre-of-mass frame. As the participants of the collision approach

the light cone, their rapidity separation increases. The x3-direction is normal to the transverse plane mapped

by x. [18]

As an example, consider the projectile to be a dilute object (for example an electron) travelling in the direction

x−. The target is taken to be a more dense object, which, here, is drawn as a superposition of color1 charged

partons2 travelling along the x+-direction:

x−

x+ (1.2)

Consider now the rest frame of the projectile. As the rapidity separation between target and projectile

increases, the target becomes more and more Lorentz contracted until it has nearly δ function support in

the x−-direction. On the other hand, time dilation almost purges the x+-dependence of the color field,

making it essentially constant in x+. Naively speaking, the target b is an infinitely flat disc with very large

diameter in which the individual color charges are frozen in place, approaching the projectile face-on. These

considerations inspire the following component-wise definition of b:

bi = b− = 0, b+ = β(x)δ(x−) , (1.3)

where β(x) is a distribution of the color charges in the target in the transverse plane [18]. Thus, a more

1The spelling of this charge of partons (color) follows that used by Fritzsch and Gell-Mann [19].
2An example of such a target could be a large nucleus, but it can be argued that in certain kinematic limits even a hadron

can be viewed as a dense gluonic target [20].
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accurate picture of this scattering experiment is

x−

x+ . (1.4)

The exact form of the distribution function β(x) depends on the kinematics of the particular collision. In the

small-xBj regime at fixed resolution (this is also referred to as the Regge-Gribov limit, see, for example, [21]),

the projectile will perceive the target as a superposition of color charges of fixed size. Due to the high energy

in the collision, the target will be saturated with gluons, causing it to be modelled as a coherent color field

in the color glass condensate framework [21–23]; this is discussed in more detail in section 1.3.

Due to the δ-function-like support of the target in the projectile’s rest frame, the interaction will be instanta-

neous and eikonal of nature. In other words, the interaction occurs solely via a rotation in color space and is

mathematically described by Wilson lines. Such an interaction typically takes place by the projectile emitting

a photon, which splits into a globally color neutral configuration — a global color singlet — of color carrying

objects, for example a qq̄-dipole. This singlet interacts with the target via the exchange of gluons, where

diagrams in which n gluon exchanges take place are of the order
(
αsln

1
xBj

)n
[21]. In the Regge-Gribov limit,

where we take xBj to be small, contributions with a large number of gluon exchanges cannot be neglected,

and a resummation of diagrams has to be carried out,

x−

q
q

q̄

x+

p

sum over multiple gluon exchanges−−−−−−−−−−−−−−−−−−−−−−→

x−

q
q

q̄

x+

p

; (1.5)

this resummation of diagrams gives rise to Wilson lines (c.f. section 1.2.3).

The Wilson lines describing the eikonal interaction are elements of the gauge group SU(N) of QCD (c.f.

section 1.2.4), where N is taken to be Nc (the number of colors), and thus impart additional (group) structure

on the interaction that would otherwise not be present. It is this added structure that warrants the study

of the gauge group SU(N). In particular, the structures entering a cross section have to be globally singlet

with respect to the gauge group SU(N) to adhere to color confinement. The main part of this thesis is

dedicated to the study of SU(N) with a focus on projection operators corresponding to the irreducible

representations of SU(N) over a product space V ⊗m ⊗ (V ∗)⊗n. One of our main results is an algorithm

giving a construction principle for all projection operators corresponding to the singlet representations of

SU(N) over V ⊗m ⊗ (V ∗)⊗n.
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Section 1.1. QCD interactions at high energies — in a nutshell

1.1.2 Interactions in different kinematic limits

In this section, we use deep inelastic scattering (DIS) as a case study to discuss the kinematics we are

ultimately interested in. Our review summarizes the arguments given in [18, 21].

In a DIS experiment, a dilute projectile (for example, an electron) probes a dense target at very high energies.

The “deep inelasticity” property refers to the fact that (to overwhelming probability) the target is shattered

after the collision. This nomenclature parallels that of classical mechanics where inelastic collisions allow for

energy loss that may manifest in one of the participants breaking after the collision.

Suppose the interaction between the projectile and the target occurs via the exchange of a photon in the

t-channel. The relevant kinematic variables are summarized in Figure 1.2 and eqns. (1.6).

k

p

k′

x1

x2
...

xn

e−
e−

γ (q)

P

X

time

s = (k + p)2

Q2 = −q2

xBj = Q2

2p·q

y = 2p·q
s

Figure 1.2: In this DIS event (time is read from right to left), an incoming electron e− with momentum k emits

a photon γ (projectile, probe) with momentum q; after this emission, the electron has momentum k′. The

photon γ then interacts with an incoming proton P (target), which carries a momentum p; this interaction

is indicated by the yellow blob. The nature of this interaction depends on the particular kinematic regime.

The target is then shattered into particles with individual momenta xi, which have a total momentum X.

We choose to draw the time axis in this way for the different parts of the Feynman diagram to be in 1-to-1

correspondence with the terms in the associated equation. The quantities listed on the right hand side are

the Lorentz invariants of this interaction. [18, 21]

The relevant kinematic variables are [21] the total energy of the interaction

s := (p+ k)
2
, where p and k are the 4-momenta of the target and projectile respectively , (1.6a)

the virtuality of the photon

Q2 := −q2 > 0 , where q is the spacelike momentum of the photon , (1.6b)

the momentum fraction Bjorken-x (xBj)

xBj :=
Q2

2p · q , (1.6c)
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and the inelasticity of the collision

y :=
2p · q
s

. (1.6d)

Since energy-momentum is conserved at each vertex, we find that the outgoing momentum of the electron

k′ and the total momentum X of the shattered fragments of the former proton can be expressed in terms of

the measurable quantities k, q and p,

k′ = k − q (1.7a)

X = k + p− k′ = p+ q . (1.7b)

From now on, we will focus on the sub-diagram

p

x1

x2
...

xn

γ (q)

P

X

time

(1.8)

of Figure 1.2. An analysis of the momentum X in various limits determines the nature of the interaction

(indicated by the yellow blob in (1.8)) between the photon and the target. Let us expand X2 as

X2 = (p+ q)
2

= p2 + 2p · q + q2 . (1.9)

Since the proton must be on-shell, its 4-momentum squared will give the mass of the proton, p2 = m2
p.

Factoring the quantity 2p · q out of each term in (1.9) and using the definition of xBj as given in Figure 1.2,

we can rewrite X2 as

X2 = 2p · q
(

m2
p

2p · q + 1− xBj

)
. (1.10)

Different limiting cases determine which term in (1.10) gives the dominant contribution to X2. The various

scenarios populate different regions in the phase space depicted in Figure 1.3. We discuss the different kine-

matic limits in sections 1.1.2.1 to 1.1.2.3. For this thesis, the Regge-Gribov limit discussed in section 1.1.2.3

will be of most interest, which is why this section goes into more detail than the previous sections, 1.1.2.1

and 1.1.2.2.

1.1.2.1 Proton mass dominates: energies below ΛQCD

If the bulk of the contribution to X2 comes from the term
m2
p

2p·q , then we must have that

xBj =
Q2

2p · q �
m2
p

2p · q =⇒ Q2 � m2
p . (1.11)

7



Section 1.1. QCD interactions at high energies — in a nutshell
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Figure 1.3: A schematic depiction of the phase space as a function of the transverse resolution Q2 and the
rapidity Y = ln 1

xBj
. As the total energy increases (via increasing either Q2 or Y ), more and more particles

are produced. Since the number of particles grows linearly with Y but only logarithmically with Q2, the
system remains dilute for large enough values of Q2 (even for large Y ), but becomes a saturated medium
— the color glass condensate (CGC) — for large Y at fixed Q2. In this graphic, we marked the boundary
between the parton gas and the CGC (the curve lnQ2

s(Y ), where Qs is the saturation scale) by a straight line
for the sake of simplicity, but actually it should be a parabola with ever increasing slope. In particular, there
will be a value of Q2 beyond which the CGC cannot be produced, irrespective of the value of Y . [18, 21]

Since the proton mass mp is approximately 938 MeV/c2 [24], eq. (1.11) implies that Q2 must be of the order

101 MeV to be negligible compared to mp. However, this corresponds to the region Q2 < Λ2
QCD since ΛQCD is

of order of 200 MeV ([25] quotes ΛQCD ≈ 200 MeV, while [26] evaluates ΛQCD ≈ 250 MeV in the ms-scheme).

In this region the coupling constant αs becomes large (O(αs) ≈ 1), which moves us outside the region of

applicability of perturbation theory [27].

1.1.2.2 Photon energy dominates: the Bjorken limit

In the Bjorken limit, we consider a high energy event in which we assume that Q2 is the most dominant

contribution to X2, in other words

Q2, s → ∞ , while xBj remains fixed . (1.12)

Since the photon momentum q is spacelike (q2 < 0), the quantity Q2 := −q2 > 0 sets the transverse resolution

of the target [18].3 Hence, the limit (1.12) describes a situation in which the probe perceives the target as a

3Intuitively, this can be understood as follows: If the photon probing the target has low momentum, it is likely to be scattered
off the target. Thus, to the photon, the nucleus appears to be made of “large” constituents. On the other hand, if the photon
momentum is large, it will pierce through the target as if there was no spacial obstacle at all. In this case, the target appears

8



Chapter 1. High Energy Physics and Wilson Line Correlators

dilute collection of color charges; even as the total energy of the collision is increased and thus more and more

partons (gluons) are produced, the system remains dilute due to the concurrent increase in resolution. Thus,

the photon is able to resolve the individual components of the target and hence experiences a hard interaction

with an individual parton. It should be noted that the interaction between the constituents within the target

(during the time of the interaction with the probe) is suppressed due to time-dilation [21]. Schematically,

therefore, the yellow blob of eq. (1.8) (resp. Figure 1.2) becomes

γ

q1
q2
q3

x

q2
q3

p
X

time

, (1.13)

where, here, the interaction occurs between the photon and the parton q1; the remaining partons act as

spectators in the interaction.

1.1.2.3 Momentum transfer dominates: the Regge-Gribov limit

Lastly, we consider the case where p · q is the dominant contribution to X2 in (1.10). For this to be the case,

we in particular require that Bjorken-x is small, xBj � 1. This is achieved in a limit in which

xBj → 0 , s → ∞ , while Q2 remains fixed , (1.14)

which is referred to as the Regge-Gribov limit [21]. In this limit X2 ≈ 2p · q since p · q � Q2,m2
p, which

allows us to write

xBj ≈
Q2

X2
. (1.15)

Thus, for small Bjorken-x, we may interpret xBj as the fractional momentum transfer from the probe to the

target in the collision.

As xBj decreases (and s increases), the target becomes more and more populated with color charges. However,

since the transverse resolution Q2 remains fixed, and since we know that the total size of the target remains

essentially unchanged even if the energy increases,4 these color charges appear to overlap in the view of

the probe. Once this happens, recombination effects start occurring, until eventually the recombination of

charges balances the production of new gluons, causing the medium to saturate; this saturation phenomenon

was confirmed by HERA data [29, 30]. Thus, the Regge-Gribov limit moves us into the top left corner of the

phase space diagram in Figure 1.3 — the region of the color glass condensate (CGC) [18, 21].

In this region of phase space, the probe encounters not a dilute system of partons, but a dense color field.

The probe therefore does not interact with individual color charges within the nucleons, but rather couples to

to the photon as a dilute system of “small” constituents through which a path could easily be found. Readers should be careful
to not take this picture too literally: whilst the apparent size of the partons in the target nucleus does indeed change, these
partons are actually point-like particles irrespective of the value of Q2.

4This follows from the fact that the total (inelastic) cross section of, for example, a pp-collision hardly changes as the energy
is increased [28, Figure 3].
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Section 1.2. Wilson lines at high energies

the entire color field [18, 21] — we move from individual degrees of freedom to collective degrees of freedom.

In addition, due to the high Lorentz contraction of the target, the only effect that the probe can experience

from the interaction is a rotation in color space. That is to say that the interaction is eikonal and thus

described via Wilson lines (section 1.2). Since the photon itself is color neutral, it first has to split into a

color neutral combination of color carrying partons (a color singlet) before the interaction can take place [27].

For example, if the photon splits into a qq̄-pair, the yellow blob in diagram (1.8) (resp. Figure 1.2) looks like

x1
x2
x3...

xn−1
xn

p

γ

g

q

q̄

∼ 1/xBj

time

. (1.16)

We remind the reader that even though the interaction here is indicated by the exchange of one gluon between

the qq̄-dipole and the target (mainly in order not to clutter the graphic), the eikonal interaction is actually

a sum of contributions where multiple soft gluons are exchanged (c.f. eq. (1.5)).

A remark with regards to the dependence of picture (1.16) on the reference frame is in order: So far, we

have assumed that the target has a δ function support, thus localizing the interaction. While this is indeed

the case in the rest frame of the projectile, or in the infinite momentum frame, the target certainly extends

along x− in the target’s rest frame. However, as is pointed out in [18], the ratio between the thickness of

the target,5 and the distance between the photon splitting into a color singlet and the interaction, is of the

order 1
xBj

(which is huge in the limit xBj → 0) irrespective of the reference frame. Furthermore, due to the

high longitudinal momentum of the probe, it does not experience a deflection in the transverse direction as

a result of the interaction. What becomes clear in the target rest frame, however, is that the probe interacts

with a multitude of scattering centres, which causes several gluons to be exchanged in the interaction [18]

(c.f. eq. (1.5)).

1.2 Wilson lines at high energies

Up to this point, we have casually claimed that interactions whose sole effect is a rotation in color space are

described by Wilson lines. We now wish to make this more precise. We first give a brief summary of the

origin of Wilson lines in non-abelian gauge theories.

Thereafter, we wish to give an interpretation of the concept of Wilson lines. We first approach the topic

from a geometric standpoint and briefly summarize the derivation of Wilson lines from the parallel transport

equation (section 1.2.2).

We then shift our focus to a physics interpretation, which will give validity to our original claim that Wilson

lines describe the interaction between a projectile and a target in the Regge-Gribov limit. We first give an

5If we consider the target to be a nucleus, then its x−-support goes as A1/3, where A is its nuclear number [18].
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Chapter 1. High Energy Physics and Wilson Line Correlators

outline of the derivation of the the Feynman rules of Wilson lines in section 1.2.3.1. This will allow one to

view a Wilson line as a quark emitting/absorbing a multitude of gluons, where the gluons are summed over.

We then present the “reverse argument” where we start from a Feynman diagram describing a quark emitting

a number of gluons. Through the eikonal approxation (which essentially says that the emitted gluons are

soft), a resummation of diagrams with a varying number of gluon exchanges once again yields a Wilson line,

as shown in section 1.2.3.2.

Lastly, we describe several properties of Wilson lines in section 1.2.4. This will allow us to conclude that

Wilson lines are elements of the special unitary group SU(N). Even though we keep this section brief,

the conclusion is key for the main body of this thesis, which analyzes Wilson line correlators from a group

theoretic viewpoint.

1.2.1 Gauge theories

1.2.1.1 A brief overview of gauge theories

Nature obeys a multitude of symmetries, be it rotational, translational or a symmetry of a more abstract kind.

These symmetries are mathematically expressed as groups, that is, in order for a field theory to faithfully

capture a particular natural phenomenon, it has to be constrained by the group describing the associated

symmetry. Such theories are called gauge theories and the corresponding groups are referred to as gauge

groups [31–34].

Consider the Dirac-Lagrangian for a particular fermion field ψ living in the Fock space V [25]

LDirac = −iψ̄(x)�∂ψ(x) +mψ̄(x)ψ(x) , (1.17)

where we used Feynman slash notation,

�∂ := γµ∂µ (1.18)

and γµ are the Dirac matrices [35]. Suppose that the theory described by LDirac obeys a symmetry encapsu-

lated by a group G, that is LDirac stays invariant under the transformation

ψ(x) −→ gψ(x) and ψ̄(x) −→ ψ̄(x)g−1 (1.19)

for every group element g ∈ G. The central idea of gauge symmetry is to make the symmetry local, thus

promoting the group parameters to functions of spacetime, g→ g(x). Hence, for G to be the gauge group of a

certain theory described by LDirac (for field theories corresponding to a physical observable G is a semi-simple

Lie group [36]), a transformation with the group element g(x) ∈ G,

ψ(x) −→ g(x)ψ(x) and ψ̄(x) −→ ψ̄(x)[g(x)]−1 , (1.20)

has to leave the Lagrangian (1.17) unchanged. This statement is certainly always true for the second term of

LDirac,

mψ̄(x)ψ(x) −→ mψ̄(x) [g(x)]−1g(x)︸ ︷︷ ︸
=1

ψ(x) = mψ̄(x)ψ(x) , (1.21a)

11



Section 1.2. Wilson lines at high energies

but with the first term we run into trouble since

iψ̄(x)�∂ψ(x) −→ iψ̄(x)[g(x)]−1�∂ (g(x)ψ(x)) 6= iψ̄(x)�∂ψ(x) ; (1.21b)

the physical symmetry of the theory is no longer captured by the Lagrangian LDirac. To resolve this problem

we must replace the partial derivative ∂µ with a covariant derivative Dµ [31–34],

Dµ := ∂µ − igAµ(x) , Aµ(x) := Aaµ(x)ta is called the gauge field , (1.22)

the ta are the generators of the gauge group, and g is the coupling constant. If we act this derivative on a

vector ψ(x) undergoing the gauge transformation (1.20),

Dµψ(x)
gauge transformation (1.20)−−−−−−−−−−−−−−−−−−→ Dµ (g(x)ψ(x)) , (1.23)

we find (after simple algebraic manipulations) that Dµψ(x) transforms as

Dµψ(x) −→ Dµ (g(x)ψ(x)) = g(x)Dµψ(x) . (1.24)

This transformation law of the covariant derivative indeed renders the term −iψ̄(x)��Dψ(x) invariant under a

gauge transformation,

−iψ̄(x)��Dψ(x)
gauge transformation (1.20)−−−−−−−−−−−−−−−−−−→ −iψ̄(x) [g(x)]−1g(x)︸ ︷︷ ︸

=1

��Dψ(x) = −iψ̄(x)��Dψ(x) . (1.25)

In order to be fully prepared for the exposition of section 1.2.2, we will tie all the quantities discussed in the

present section into the language of differential geometry [37] (for a comprehensive introduction to differential

geometry, see [38] and other textbooks): The Minkowski space M4 describing 4-dimensional spacetime (one

time direction x0 and three spatial directions x1, x2, x3) acts as a base manifold for the vector bundle V M4,

which itself is a manifold. Since for each x ∈ M4 the vector ψ(x) lies in the vector space VxM4, which is a

fibre in the bundle V M4, the fermion field ψ is a section through this bundle. The gauge field Aµ(x) takes

value in the Lie algebra of the gauge group and allows us to define the connection Dµ on the vector bundle

V M4.

1.2.1.2 Non-abelian gauge theories

In order to incorporate the interaction of the gauge field Aµ(x) into the Lagrangian, one adds a term
1
4F

µνFµν [31–34],

Lgauge = −iψ̄(x)��Dψ(x) +mψ̄(x)ψ(x) +
1

2
tr (FµνFµν) , (1.26)

where Fµν is referred to as the field strength tensor. The exact form of this tensor will depend on the

particular field theory. Most quantum field theories (for example, quantum chromodynamics (QCD) or

quantum electrodynamics (QED)) fall into the class of Yang-Mills theories [39], which describe Fµν as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] . (1.27)

12



Chapter 1. High Energy Physics and Wilson Line Correlators

If the gauge group (and hence the Lie algebra) is abelian, the last term in (1.27) vanishes, reducing Fµν to

Fµν = ∂µAν − ∂νAµ . (1.28)

An example of an abelian gauge theory is QED, which has gauge group U(1). On the other hand, for a non-

abelian gauge group, all terms in (1.27) are nonzero, and the Lagrangian will include a term proportional to

A2. This term gives rise to vertices where the gauge field couples to itself. In other words, non-abelian gauge

theories allow for vertices of the type

or , (1.29)

where represents a gauge boson, while abelian gauge theories do not (see, e.g., [27] for a textbook

exposition). The gauge group of QCD is SU(3), making it a non-abelian gauge theory. Thus, the gauge

bosons of QCD (the gluons) can self-interact through vertices such as (1.29).

This potential of gauge bosons to self-interact in a non-abelian gauge theory brings forth various challenges:

In the context of JIMWLK, we wish to determine the energy dependence of an observable interacting eikonally

with a gluon field A. Since gluons require very little energy to be produced, by virtue of their vanishing mass,

space is filled with gluons — we call this the background field b (this is the same b as given in eq. (1.3)

to describe the target of the interaction). In a general calculation, one has to take an average over various

configurations of the background field b since the exact configuration of color charges cannot be known. If

there is no additional energy added to the system, then A = b. If, however, we increase the energy deposited

in the interaction (equivalently we increase the rapidity Y = ln 1
xBj

), one necessarily generates fluctuations α

to the background field in the form of creating additional gluons,

A = b
increase energy−−−−−−−−−−→ A = b+ α . (1.30)

The nonlinearity in such an interaction comes from the fact that the additional gluons α can themselves

interact with the background field.

1.2.2 Geometric interpretation of a Wilson line: parallel transport

Consider once again the mass term in the Lagrangian (1.26),

mψ̄(x)ψ(x) . (1.31)

For each x ∈ M4, the object ψ̄(x) is an element of the dual vector space V ∗x M4 acting on ψ(x) ∈ VxM4, where

VxM4 is a particular fibre in the bundle V M4 at the point x. Suppose there exists a path γ between two

points y and x (x, y ∈ M4), which lies entirely on the manifold M4. One could conceivably move the vector

ψ(y) ∈ VyM4 along this path by means of some transportation device U[γ,x,y] to obtain the vector ψ(x),

ψ(x) = U[γ,x,y]ψ(y) . (1.32)
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Section 1.2. Wilson lines at high energies

However, for U[γ,x,y]ψ(y) to yield the vector ψ(x) and not some other element of the tangent space VxM4,

U[x,y] has to satisfy the parallel transport equation [36, 37, 40]

d

dτ
U[γ,x,y] = −ig

(
dγµ

dτ
Aµ(γ)

)
U[γ,x,y] , (1.33)

where τ parametrizes the path γ. One may solve eq. (1.33) for U[γ,x,y] to obtain the following path-ordered

exponential:

U[γ,x,y] = Pexp

{
−ig

∫ x

y

dγµAµ(γ)

}
; (1.34)

the object U[γ,x,y] defined in eq. (1.34) is referred to as a Wilson line. Thus, a Wilson line describes an

operator that transforms (transports) a particular field component ψ(x) (equivalently, U†[γ,x,y] transports the

dual ψ̄(x)) along the manifold M into ψ(y) (resp. ψ̄(y)).

1.2.3 Physics interpretation of a Wilson line

1.2.3.1 Feynman rules of Wilson lines

Let us now establish a physical picture for Wilson lines by discussing their Feynman rules. These may be

derived by pursuing the steps laid out below, which are summarized from [37].

For simplicity, we consider γ to be a straight line path parametrized by τ , γµ = ηµτ , where ηµ gives the

direction of the straight line, and τ ∈ (−∞,∞),

U[γ,x,y] −→ U[η,∞,−∞] = Pexp

{
(−ig)

∫ ∞

−∞
dτ η ·A(γ(τ))

}
. (1.35)

As will become clear in section 1.4.2.6 in the derivation of the JIMWLK equation, a Wilson line following a

straight path is sufficient for the purposes of this thesis.

• Taylor expand the path-ordered exponential and thus write it as a sum. The mth term of this sum will

consist of an ordered product of integrals,

(−ig)
m
∫ ∞

−∞
dτm . . .

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

(
η ·A(γ(τm))

)
. . .
(
η ·A(γ(τ2))

)(
η ·A(γ(τ1))

)
. (1.36)

• Fourier transform the gauge field in each term:

Aµ(ηµτ) −→
∫

d4k

(4π)2
e−iτ(η·k)Aµ(k) . (1.37)

• Exchange the order of integration
∫

dk ↔
∫

dτ in each term of the sum. For the mth term, this means

(−igη)m
∫

d4k1d4k2 . . . d
4km

(4π)2m
A(km)A(km−1) . . . A(k1)×

×
∫ ∞

−∞
dτm . . .

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1 e

−iη·∑m
j=1 τjkj ; (1.38)
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Chapter 1. High Energy Physics and Wilson Line Correlators

we have suppressed the Lorentz indices on the gauge fields A and on the directional vector η, but we

understand that each η is contracted with exactly one A.

• The integrals over the variables τi are essentially Fourier transforms of Heaviside step functions, for

example,

∫ τ2

−∞
dτ1 e

−iτ1η·k1 =

∫ ∞

−∞
dτ1 θ(τ2 − τ1) e−iτ1η·k1 =

i

−η · k1 + iε
e−iτ2η·k1 , (1.39a)

where ε is a small parameter. For the mth term (1.38) in the series expansion of the Wilson line, we

thus have

∫ ∞

−∞
dτm . . .

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1 e

−iη·∑m
j=1 τjkj =

m∏

f=1

(
i

−η ·∑f
j=1 kj + iε

e−iτmη·kf

)
. (1.39b)

After these steps are performed, the Wilson line (1.35) takes the form

U[η,∞,−∞] =

∞∑

m=1

(−igη)
m
∫

d4k1 . . . d
4km

(4π)2m
A(km) . . . A(k1)

m∏

f=1

(
i

−η ·∑f
j=1 kj + iε

e−iτmη·kf

)
. (1.40)

The sum of momenta
(
−∑f

j=1 kj

)
in the denominator physically arises from multiple gluon emissions: by

conservation of energy-momentum at a vertex, a quark with momentum p radiating a gluon with momentum

k1 has momentum p − k1 after the emission. If it radiates a further gluon with momentum k2, the quark’s

momentum will be reduced to p− (k1 + k2), and so forth.

Recall that we used the short-hand notation A = Aata (c.f. eq. (1.22)). Making the generators ta explicit

and identifying the Wilson line propagator and the gluon vertex as

Wilson line propagator:
i

−η · kj + iε
(1.41a)

Gluon vertex: − igηµta , (1.41b)

the Wilson line U[η,∞,−∞] may be thought of as a sum of all Feynman diagrams where a particle moving

along the straight line path γµ = ηµτ radiates/absorbs multiple gluons along the way.

1.2.3.2 Eikonal approximation

Let us now tackle the subject from the opposite direction and see how a particular (sum of) Feynman

diagram(s) gives rise to Wilson lines. The exposition of this section closely follows [37].

Consider a quark radiating a gluon. It will be shown that if we sum over multiple gluon exchanges and

the radiated gluons are soft, then the Dirac propagator and the gluon vertex of the corresponding Feynman

diagrams turn into the Wilson line propagator and gluon vertex of eqns. (1.41).
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Section 1.2. Wilson lines at high energies

Suppose a quark with momentum p emits a gluon with momentum k,

k

µ ,a

p− k p

F
, (1.42)

where time flows from right to left, and the grey blob F incorporates all possible diagrams containing the

depicted vertex. Suppose that the gluon that is emitted by the quark is soft (this is also referred to as the

eikonal limit),

k � p , (1.43)

such that the straight line trajectory of the quark is not (significantly) altered by the emmission of the gluon.

Using standard Feynman rules [25, 31, 37], the diagram (1.42) becomes

F
i(�p− �k)−m

(p− k)2 −m2 + iε
(−igtaγµ) u(p)

Dirac propagator
gluon vertex

(Dirac)remainder quark

(1.44)

where F depends of the particularities of the blob F in the diagram, m is the total mass of the quark and

the gluon, ε is a small parameter, and u(p) encodes all information about the quark. We once again used

Feynman slash notation (c.f. eq. (1.18)). We emphasize that, for the purpose of this thesis, the emitted

gluon in the diagram (1.42) attaches to the background field, such that an additional factor Aµa appears in

eq. (1.44). For now, we will suppress Aµa, but we will make this factor explicit at the end of our calculation.

In the eikonal limit (1.43), the momentum of the radiated gluon is negligible in comparison to the quark

momentum, implying that �p− �k ≈ �p. Furthermore, since the gluon is massless, the total mass m of the quark

and the gluon reduces to the quark mass m = mq. Therefore, when expanding the term (p − k)2 −m2, we

obtain

(p− k)2 −m2 = p2

︸︷︷︸
=m2

q

−2p · k + k2
︸︷︷︸
�p2

− m2
︸︷︷︸
=m2

q

≈ −2p · q . (1.45)

Since we are in the high energy regime of QCD, the contribution from the quark momentum dominates over

that of its rest mass, p� mq = m. Taking all these approximations into account, the Feynman diagram (1.44)

reduces to

F
ipνγ

ν

−2p · k + iε
(−igtaγµ)u(p) , (1.46)

where we have resolved �p into pνγ
ν according to eq. (1.18). Let us rearrange terms in eq. (1.46): Firstly,

notice that (−igta) commutes with both γµ and u(p), such that we can write

F
ipνγ

νγµ

−2p · k + iε
u(p)(−igta) . (1.47)
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Secondly, by the Dirac equation [41], we have that

0 = �pu(p) = pνγ
νu(p). (1.48)

Thus, we may add a term γµpνγ
νu(p) to the numerator of eq. (1.47),

F
ipν (γνγµ + γµγν)

−2p · q + iε
u(p)(−igta) , (1.49)

where we used the fact that γµ and pν commute (notice the different indices on p and γ implying that no

contraction between the two quantities occurs). The term in the round brackets in the numerator of eq. (1.49)

is merely the anti-commutator of two γ-matrices, which is given by [25]

{γµγν} = 2gµν , gµν is the metric . (1.50)

Expressing pν as |p|ην , where ην is a normalized direction vector, eq. (1.49) becomes

F
i2|p|ηνgµν

−2|p|η · k + 2|p| iε2|p|
(−igta)u(p) . (1.51)

It remains to define iε′ := iε
2|p| < iε and cancel a common factor 2|p| in the fraction to obtain (c.f. eqns. (1.41))

F
i

−η · k + iε′
(−igηµta) u(p)

Wilson propagator

gluon vertex
(Wilson)remainder

quark

. (1.52)

Eq. (1.52) describes a Wilson line propagator along the path of the quark emitting a gluon on the way.

Instead of emitting one gluon (such that one gluon is in the out state), the quark also may emit a multitude

of soft gluons. However, here the calculation becomes more involved, as one has to consider several Feynman

diagrams. For example, Figure 1.4 depicts some diagrams that produce two gluons in the out state.

k1

ν1,a1

k2

ν2,a2

pp− k1p− (k1 + k2)

F

k1

ν2,a2

k2

ν1,a1

pp− k1p− (k1 + k2)

F

k = k1 + k2

ν1,a1

k1

ν1,a1

k2

ν2,a2

pp− (k1 + k2)

F

Figure 1.4: This graphic contains several diagrams in which a quark radiates two gluons (top row) or one

gluon (bottom row), such that there are two gluons in the out state. All these diagrams need to be taken

into account when considering the sub-process interaction q → ggq.
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Section 1.2. Wilson lines at high energies

Amazingly, when all diagrams of a given order are added up, one obtains an ordered product — this was

proven to all orders in [42]. Thus, resumming the contributions of all Feynamn diagrams where a quark

radiates a soft gluon to all orders yields a Wilson line,

F

( ∞∑

m=0

iηνmAνmam(km)

η ·∑m
i=1 ki + iε

. . .
iην2Aν2a2(k2)

η ·∑2
i=1 ki + iε

iην1Aν1a1(k1)

η · k1 + iε
(−ig)mtam . . . ta2ta1

)
u(p)

= F U[η,∞,−∞] u(p) , (1.53)

where we have made the external/background gluons A explicit again, as discussed previously.

1.2.3.3 Summary

In the previous sections, 1.2.3.1 and 1.2.3.2, we showed that a Wilson line describes a parton radiat-

ing/absorbing several low-energy (soft) gluons, where a sum over the number of gluons is implied. Since

the path of the particle will not be altered significantly when radiating a soft gluon, one may approximate

this path by a straight line. This physical picture justifies the following schematic of a Wilson line,

U[η,∞,−∞] =
∑

gluons
· · · , (1.54)

where the red dots at the end of the gluon coils indicate that the gluon attaches to the background field. In

other words, in the eikonal approximation, Wilson lines allow us to re-sum all Feynman diagrams describing

a quark emitting any number of soft (external/background) gluons to all orders.

1.2.4 Wilson lines as elements of SU(N)

In this section, we will establish various properties of Wilson lines, which will allow us to conclude that

Wilson lines are indeed elements of the special unitary group SU(N).

1. Identity: The Wilson line can become the identity matrix in two ways: either the path γ along which

the Wilson line is taken has zero length,

U[γ,x,x] = Pexp

{
−ig

∫ x

x

dγµAaµ(γ)ta
}

= Pexp {0} = 1 , (1.55a)

or the gauge field Aµ vanishes along the path of the Wilson line,

U[γ,x,y] = Pexp

{
−ig

∫ x

y

dγµ 0

}
= Pexp {0} = 1 . (1.55b)

2. Unitarity [37, 43]: The inverse of a Wilson line is obtained by “reversing the effects” of the differential

equation (1.33). In other words, one needs to employ anti-path-ordering, and flip the sign of the integral

to “traverse the path in the opposite direction” [44],

(U[γ,x,y])
−1 =

(
Pexp

{
−ig

∫ x

y

dγµAµ(γ)

})−1

= P̄exp

{
+ig

∫ x

y

dγµAµ(γ)

}
. (1.56a)
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Chapter 1. High Energy Physics and Wilson Line Correlators

In doing so, one reverses the order in the product and exchanges −i → +i, which is exactly the same

procedure one employs when forming the Hermitian conjugate. Hence we conclude that Wilson lines

are unitary, U−1
[γ,x,y] = U†[γ,x,y], implying that

U†[γ,x,y]U[γ,x,y] = U[γ,x,y]U
†
[γ,x,y] = 1 . (1.56b)

3. Closure under multiplication: Consider a Wilson line along a path γ from y to x containing a point p.

We may split γ into two segments, γ1 and γ2, where γ1 runs from y to p along γ, and γ2 follows γ from

p to x,

x

p

y

γ split γ−−−−→

x

p

y

γ1

γ2

, (1.57)

such that

U[γ,x,x] = Pexp

{
−ig

∫ x

y

dγµAaµ(γ)ta
}

= Pexp

{(
−ig

∫ p

y

dγµ1A
a
µ(γ1)ta

)
+

(
−ig

∫ x

p

dγµ2A
a
µ(γ2)ta

)}
. (1.58)

The path-ordering will ensure that all integrals over points on the curve γ1 come to stand to the right

of all integrals over points in γ2 such that the Wilson line U[γ,x,y] can be expressed as a product of two

Wilson lines along the paths γ1 and γ2 respectively,

U[γ,x,y] = U[γ2,x,p]U[γ1,p,y] , γ1 ∪ γ2 = γ . (1.59)

This result however was to be expected [44]: We started our discussion on Wilson lines by defin-

ing the object U[γ,x,y], the device that parallel transports the vector ψ(y) to the point x, such that

U[γ,x,y]ψ(y) = ψ(x) (c.f. eq. (1.32)). Thus, for the paths γ, γ1 and γ2, as defined in (1.57), we must

have

ψ(x) = U[γ2,x,p]ψ(p) = U[γ2,x,p]

(
U[γ1,p,y]ψ(y)

)
= U[γ2,x,p]U[γ1,p,y]ψ(y) , (1.60)

and also

ψ(x) = U[γ,x,y]ψ(y) , (1.61)

which again implies that

U[γ2,x,p]U[γ1,p,y] = U[γ,x,y] . (1.62)

More generally, the path of a Wilson line may be broken up consecutively into smaller segments, allowing
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Section 1.2. Wilson lines at high energies

us to write a particular Wilson line as a product of shorter Wilson lines,

U[γ,x,y] = U[γn,x,pn]U[γn−1,pn,pn−1] . . . U[γ1,p2,p1]U[γ0,p1,y] , γ0 ∪ γ1 ∪ · · · ∪ γn−1 ∪ γn = γ . (1.63)

4. Determinant: We present a proof given in [44] to show that the determinant of SU(N) is 1: One can

write the determinant of U[γ,x,y] as

det(U[γ,x,y]) = etr(lnU[γ,x,y]) . (1.64)

Taking the derivative with respect to x yields Jacobi’s formula for the derivative of determinants [45]

∂

∂x
det(U[γ,x,y]) = etr(lnU[γ,x,y])tr

(
∂

∂x
lnU[γ,x,y]

)
= det(U[γ,x,y])tr

(
U−1

[γ,x,y]

∂

∂x
U[γ,x,y]

)
. (1.65)

From the explicit form (1.34) of U[γ,x,y], the derivative ∂
∂xU[γ,x,y] is calculated to be

∂

∂x
U[γ,x,y] = (−ig)U[γ,x,y]A

a
µ(γ)ta , (1.66)

such that eq. (1.65) reduces to

∂

∂x
det(U[γ,x,y]) = (−ig)det(U[γ,x,y])tr

(
Aaµ(γ)ta

)
. (1.67)

Adding in all previously suppressed matrix indices, ta = [ta]ij , tr
(
Aaµ(γ)ta

)
is understood to be

tr
(
Aaµ(γ)ta

)
−→ tr

(
Aaµ(γ)[ta]ij

)
= Aaµ(γ)tr ([ta]ij) . (1.68)

Since the generators [ta]ij of SU(N) are traceless, it follows that

∂

∂x
det(U[γ,x,y]) = 0 ; (1.69)

the determinant of U[γ,x,y] is constant with respect to x. Using the initial condition U[γ,y,y] = 1 (see

eq. (1.55a)), we must have

det(U[γ,x,y]) = det(U[γ,y,y]) = det(1) = 1 , (1.70)

as required.

In summary, the properties discussed in this section verify that Wilson lines are elements of the special

unitary group SU(N). Intuitively, this was to be expected since, by its very definition

U[γ,x,y] = Pexp

{
−ig

∫ x

y

dγµAaµ(γ)ta
}

γ

, (1.71)

a Wilson line is a (path-ordered) exponential of the group generators ta.
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Chapter 1. High Energy Physics and Wilson Line Correlators

1.3 The color glass condensate

The color glass condensate (CGC) [21, 46, 47] is a state of matter that is densely populated by gluons. The

high gluon density gives rise to screening effects within the medium. Thus, the correlation length between

particles becomes short, which in turn limits interactions between individual partons in the CGC to short

distances — short enough for the coupling to be weak. In such a situation, one may model the conglomerate

of partons (quarks and gluons) as a classical field of color charges.

The CGC owes its name to its properties:

• color : as already mentioned, the CGC describes a state of matter comprised of a multitude of particles

(quarks and gluons) that carry color charge.

• glass: Due to the time-dilation of the highly boosted system, the individual color charges seem frozen

in the transverse plane in time, making the CGC behave like a solid on short time scales. In particular,

during the time of the interaction one only observes a snapshot of a fixed parton configuration.

• condensate: Due to the limited resolution of the color charges in the CGC by the probe, recombination

effects of gluons become more and more prominent as the gluon population increases. Eventually, gluon

production and recombination will balance out, causing the system to reach saturation — a feature it

shares with condensates.

Besides being the name given to a particular state of matter, the CGC is an effective field theory which allows

one to describe a system that is highly populated by gluons. Due to the weak coupling arising from the high

population density, such a system is not accessible to standard perturbation theory.

1.3.1 McLerran–Venugopalan model

Attempts to find the gluon distribution functions for very small values of xBj have been made since the

1970’s. All of these attempts use techniques that are strictly only applicable in the low density situation:

One usually models the interaction probing the gluon field by an exchange of multiple reggeized gluons in a

vacuum. Using these methods, one may derive the BFKL-equation [48, 49], which captures the evolution of

the gluon distribution function (at low density) with xBj (c.f. Figure 1.3).

A paradigm shift in the approach to calculating these gluon distribution functions came about in the 1990’s

when McLerran and Venugopalan (MV) [22, 23] proposed a model in which the gluon background field is

not viewed as a dilute system,6 but rather as a dense collection of gluons with finite apparent sizes. One

essentially moves from a vacuum background, as in [48], to a background field consisting of a very large

number of gluons. These gluons are produced by color sources representing the valence partons. Since then,

the so-called MV-model has been generalized in a multitude of directions and one may find it applied to

descriptions of varying sophistication, for example in [20, 50].

Physically speaking, a collection of highly energetic valence quarks radiate a (large) number of typically soft

gluons. These gluons constitute a background field b7 whose distribution one wishes to calculate. Since

6Unlike the Bjorken limit in which the partons constitute a dilute system (see section 1.1.2.2).
7We use the same letter as for the target of a high energy collision, c.f. eq. (1.3), since we will eventually model the target

as a CGC-medium.
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Section 1.3. The color glass condensate

these radiated gluons are soft, the momentum of the valence partons is hardly altered, allowing us to model

the valence partons as no-recoil sources confined to the lightcone (i.e. moving in the x+-direction, see

Figure 1.1). Due to the non-abelian nature of QCD (c.f. section 1.2.1.2) the gluons making up b may radiate

further gluons, generating cascading gluon chains. These fluctuations α of b may be calculated using weak

coupling methods [22, 23].

This picture motivates a cut-off Λ+
0 for the x+-momentum of the color charges (using the notation of [21]),

separating them into the background field b and fluctuations α. According to an argument of [22], one may

model b as a classical field and treat α as quantum corrections to b. Thus, the cut-off Λ+
0 essentially separates

particle and field degrees of freedom [20]. We repeat the argument of [22] here:

In order to justify the high density of gluons prerequisite for this description in a physical situation, [22]

considers a high energy collision in the infinite momentum frame. In this reference frame, Lorentz contraction

in the x−-direction confines the valence partons to the lightcone. Adopting a path integral formalism, the

valence partons are modelled by sources J , which have a δ-function-like support due to the boost factor e−Y

(Y is the rapidity),

Jµa = δµ+δ(x−)δ2(x)ρa(x) , (1.72)

where ρa(x) gives the color charge density of the source Jµa, and δ(x−)δ2(x) tells us that such a source is a

point-particle whose worldline is localized in x− and in x.8

It is argued in [22] that the regions of space occupied by the target may be broken up into a grid such that

each piece of size da2 contains a large number of valence partons (the grid size sets the resolution at which

this approximation holds). Due to the large number of partons in a particular transverse region da2, the

sources J may be treated as classical : The ground state of the field configuration about which perturbation

theory is performed is the ground state obtained from the Yang-Mills equation [39]

[Dµ, F
µν ] = Jν , where Jν := Jνata , (1.73)

and ta are the generators of the gauge group SU(N). In other words, eq. (1.73) defines the saddle point

(about which we perturb) of the path integral.

Recall that we are working in the infinite momentum frame in which the gluon field is enhanced in the x+-

direction by a factor eY and suppressed in the x−-direction by a factor e−Y due to a Lorentz boost in x3 (i.e.

the field experiences spatial contraction and time dilation in x± respectively). Hence, internal interactions

between the sources during the time of interaction with the projectile are extremely unlikely. Therefore, one

may model the valence partons as a collection of static charges in the transverse plane. Concluding that the

J ’s are a statistically large sample of static, classical sources, [22] argues that they must distribute themselves

in the transverse plane with a Gaußian weight.

Furthermore, since the valence quarks comprising the target must combine into a color neutral configuration

due to confinement, the average color charge of the sources must be zero. This is encapsulated by the fact

that the 1-point correlator 〈ρa〉 vanishes [22]. Hence, the average color of the background field b must be

zero. The only net color charge that can be generated, therefore, stems from the fluctuations. This tells us

that the Gaußian describing the transverse distribution of the source charges for the gluon field must peak

8In [22] the function ρa is denoted by Qa, but in the later paper [23, eq. (14)] Qa(x+,x) is identified as ρa(x).
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Chapter 1. High Energy Physics and Wilson Line Correlators

at zero net color. In summary, [22] proposes the model

MMV[ρ] = exp

{
−
∫

d2x
1

2µ2
tr
(
ρ2(x)

)}
, (1.74)

where µ2 is proportional to the average charge density per unit transverse area. The follow-on paper [23]

of [22] addresses some of the issues that arise from a low transverse resolution Q2. In this case, rather

than modelling the sources J as point particles in the transverse plane, the J ’s are taken to be uniformly

distributed in x,

Jµa(x−,x) = δµ+δ(x−)ρa(x) . (1.75)

The weight MMV[ρ] in the generating functional (1.77) is however still Gaußian,

MMV[ρ] = exp

{
−
∫

d2x
1

2µ2
tr
(
ρ2(x)

)}
. (1.76)

The gluon distribution function (within the target) is then calculated by finding the two point correlator of

the field A = b+ α from the path integral formalism with the generating functional

Z =

∫
[dρ][dA][dψ†dψ] eiS+ig

∫
d4x tr(A+(x)ρ(x))δ(x−) MMV[ρ] , (1.77)

where S is the gluon action in the presence of the sources J [22]. We’d like to draw attention to the integral∫
[dρ], which describes an averaging procedure over the source configurations ρ.

One may now set out to find a solution for the gauge field Aµ in order to eventually obtain the gluon

distribution 〈AνAµ〉: Recall that J+a(x−,x) is a classical source satisfying the Yang-Mills equation (1.73).

The fact that the target is highly boosted along the x+-direction (which allowed us to arrive at the particular

form (1.75) of the source Jµa) introduces a hierarchy of the various components of the tensor Fµν [20, 51]:

The plus-components F i+ and F+i are enhanced by a factor e+η (where η is the boost factor), the spacial

components F ij are unaffected by the boost, and the minus-components F i− and F−i are suppressed by a

factor e−η, such that

F i+, F+i eη� F ij , F+−, F−+ eη� F i−, F−i . (1.78)

Therefore, the most dominant component of the Yang-Mills eq. (1.73) is

[
Di, F

i+
]

= J+ = δ(x−)ρ(x) , where ρ(x) := ρa(x)ta . (1.79)

Since the gauge field Aµ satisfies the analogous hierarchy of the field strength tensor,

A+ eη� Ai
eη� A− , (1.80)

it is tempting to check whether eq. (1.79) has a solution in which only the A+-component does not vanish,

[Di, F
i+] =

[
∂i + igAi︸︷︷︸

=0

, ∂iA+ − ∂+Ai − ig[Ai, A+]︸ ︷︷ ︸
=0

]
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Section 1.3. The color glass condensate

= ∂i∂
iA+ = δ(x−)ρ(x) . (1.81)

This equation can indeed be solved for A+. As is often done, one may want to choose the lightcone gauge in

which the plus-component of the gauge field A vanishes,9 even though the hierarchy (1.80) suggests this to

be an “unnatural” gauge. This can be accomplished by means of a gauge transformation U ,

Ã+ := U

(
A+ − 1

ig
∂+

)
U−1 !

= 0 . (1.82)

Then one finds that Ãi is of the form [20, 51]

Ãi(x) = θ(x−)ai(x) , (1.83)

where ai(x) depends on the gauge transformation U in a complicated way. With this form of Ãi, it can

eventually be shown [22] that the gluon distribution in the small-xBj system is of the Weiszacker-Williams

form. This is physically justified [20]: Since the color sources are confined to a thin sheet on the lightcone, the

free equations of motion must govern the kinematics of the field everywhere except on the sheet. Furthermore,

the charge density on the sheet must be given by the discontinuity across the sheet.

Substituting the solution (1.83) of Ãi into the Yang-Mills equation (1.73), the commutator term

[
Ãi, ∂

µÃi
]

(1.84)

has the interesting singular structure δ(x−)θ(x−) [20]. In order to properly understand this structure, one

must consider the distribution of valence partons (modelled by the sources J) to extend in the longitudinal

direction.10 To do so, [20] introduce the rapidity Y ,

Y := Y0 + ln

(
x−0
x−

)
, (1.85)

where Y0 is the rapidity of the target and x−0 is the Lorentz contracted size of the target,

x−0 ∼
R

γ
, γ is the Lorentz factor , (1.86)

and R is the uncontracted target size. Furthermore, [20] realized that gluons (emitted from the valence par-

tons) that have longitudinal momenta larger than Λ+
0 themselves contribute to the sources. Thus, the charge

per unit spacetime µ must be considered as rapidity dependent, µ→ µ(Y ). Similarly, the source strength ρ

becomes rapidity dependent, ρ(x)→ ρ(Y,x), such that one must consider the functional distribution

MMV[ρ] = exp

{
−
∫ ∞

0

dY

∫
d2x

tr
(
ρ2(Y,x)

)

2µ2(Y,Q2)

}
(1.87)

rather than (1.76); as explained in [18], this weight is gauge invariant. We once again stress that (1.87) is a

9This was done in the original paper [23] already at the level of the Young-Mills equation, such that the latter reduces to

−∂i∂+Ai + ig
[
Ai, ∂

+Ai
]

= δ(x−)ρ(x) .

However, the discussion is much simpler if we start with a gauge in which A+ 6= 0.
10In other words, the gluon distribution has δ function support δ(x−) in the infinite momentum frame, but not, e.g., in the

rest frame of the target.
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model, which is to say that it has not been derived from QCD.11

Ref. [20] suggests that renormalization group (RG) techniques should be used to systematically integrate

out the fluctuations (gluons) contributing to the color sources (adjusting the momentum cut-off Λ+
0 with

the rapidity Y ) in order to include them in the background field. In other words, one seeks to perform the

integral over the gauge field
∫

[dA] for all rapidities higher than some cut-off rapidity Y∗, such that the result

of this integration can be completely encoded into the functional weight MMV as

Z =

∫ Y∗

0

[dA]

∫
[dρ] · · ·MMV[ρ] +

∫ ∞

Y∗

[dA]

∫
[dρ] · · ·MMV[ρ]

︸ ︷︷ ︸
perform integration over A

?
=======
RG step

∫ Y∗

0

[dA]

∫
[dρ] · · · M̃MV[ρ, Y∗] =: Z̃ , (1.88)

such that

d

dY∗
Z̃ = 0 ; (1.89)

the dots · · · in eq. (1.88) stand for

∫
[dψ†dψ] eiS+ig

∫
d4x tr(A+(x)ρ(x))δ(x−) (1.90)

(c.f. eq. (1.77)). While the functional form (1.87) makes physical sense, it is a model (an Ansatz) that was

not derived from QCD. Therefore, it in not clear whether it is a good starting point for a renormalization

group argument such as (1.88). In fact, it will turn out that the relevant RG equation does not have the

MV-model as its starting point, c.f. section 1.4.

In the following section, 1.3.2, we give an intuitive sketch of the main idea behind an RG approach. In

section 1.4.1 we make this approach more concrete in the context of the JIMWLK 12 framework: JIMWLK

is an RG equation determining the rapidity dependence of the gluon distribution functions at small xBj. We

will give a derivation of the JIMWLK equation in section 1.4.2.

1.3.2 Evolution with high energy

One important feature of the color glass condensate is the separation between hard and soft gluons, i.e.

the separation of gluons into the background field b and fluctuations α. As the energy s (equivalently, the

rapidity separation Y between the projectile and the target) is increased, fluctuations in the background field

(target) become more and more prominent. Thus, the separation of gluons into b and α, and consequently

the averaging procedure introduced by the MV-model, has to be adjusted with Y . This is schematically

depicted in Figure 1.5.

11The JIMWLK equation, however, is derived from QCD principles, which will become clear in section 1.4.
12The name is an acronym of the authors who first derived it (see section 1.3.2).
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∼ δ (x−)

background b

fluctuation α

increase energy s
(Lorentz contract further)

∼ δ (x−)

redefine background b
(RG equation)

∼ δ (x−)

Figure 1.5: As the energy s deposited in the collision area increases, fluctuations α in the background color

field b become more and more relevant. In the Bjorken limit (Q2 increases, Y fixed), b is modelled as a dilute

system of partons, while the Regge-Gribov limit (Y increases, Q2 fixed) requires b to be viewed as a dense,

coherent color field. The relevant renormalization group equation for each limit prescribes how the cut-off

dividing the color charges into background field and fluctuations is to be adjusted with increasing s. (The

image used for the background field b is taken from [52].)

This is done by means of a renormalization group (RG) equation.13 In the Bjorken limit, the relevant RG equa-

tions are the DGLAP (Dokshitzer–Gribov–Lipatov–Alterelli–Parisi, pronounced “dee-glap”) equations [53–

55]. On the other hand, in the Regge-Gribov limit, the JIMWLK (Jalilian-Marian–Iancu–McLerran–Weigert–

Leonidov–Kovner, pronounced “gym-walk”) equation [20, 56–59] or the equivalent Balitsky hierarchies [60]

achieve the desired result. In the large-Nc limit, the JIMWLK equation reduces to the BK (Balitsky–

Kovchegov) [60–62] equation. On the other hand, if one considers the case where the system is dilute, the

JIMWLK equation reduces to the BFKL (Balitsky–Fadin–Kuraev–Lipatov) equation [48, 49] (see e.g. [46]).

The regions of phase space where the various equations are applicable are indicated in Figure 1.3.

In this thesis, we are mainly interested in the Regge-Gribov limit. In the following section 1.4, we give an

overview of the JIMWLK equation, including a derivation at leading order in section 1.4.2. Thereafter, we

discuss symmetries of the JIMWLK equation and SU(N) gauge theories as a whole (section 1.6), preparing

us for the main matter of this thesis.

1.4 The JIMWLK equation

In its essence, the JIMWLK framework tracks the rapidity evolution of an observable when interacting

eikonally with a target. In particular, it is a renormalization group equation that adjusts the averaging

procedure over the color field with which the probe interacts as the rapidity increases: As in the MV-model,

one separates the color degrees of freedom of the target into those belonging to the background field b (a

Lorentz contracted, time-dilated color field), and those of the fluctuations α. However, as pointed out in [20],

the cut-off scale separating the degrees of freedom has to be adjusted with the energy of the collision. Thus,

renormalization group arguments are needed to faithfully accomplish this separation of degrees of freedom.

Depending on the viewpoint one takes, these field fluctuations generated in the interaction are modelled as

13For a textbook introduction to the renormalization group see, for example, [25, chpt. 12], [33, chpt. 18], [31, chpt. 12.1],
or [32, chpt. 2.5].
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either part of the target or the projectile [18]: One either considers these fluctuations as gluons produced by

the field b, which then interact with the probe, or one may view α as gluons radiated by the probe to interact

with b — we adopt the second viewpoint to derive the JIMWLK equation in section 1.4.2.

Before going through the derivation of JIMWLK at leading order, we wish to briefly discuss the structure of

the equation in section 1.4.1.

1.4.1 What does JIMWLK do? — a summary

As already mentioned, the ultimate goal of JIMWLK is to find the gluon distribution function of observables

in the Regge-Gribov limit; such an observable is located in the top-left corner of the phase space diagram

Figure 1.3 (the saturation region). It soon became clear that such a distribution function cannot be derived

directly from QCD, but what can be calculated is the evolution of the gluon distribution with increasing

energy [20]. In particular, since we are interested in the Regge-Gribov limit, an increase in energy is achieved

via an increase in rapidity Y (equivalently, a decrease in xBj, since Y = ln 1
xBj

) while keeping the transverse

resolution Q2 fixed (c.f. eq. (1.14)).

The JIMWLK evolution for the gluon distribution function is derived somewhat indirectly (the outline of the

derivation described here follows the treatment of [18], and will be used in the following section 1.4.2): At

small xBj, an interaction between a projectile and a target is (to a good approximation) eikonal. Thus, the

projectile is best described by a Wilson line correlator A.14 A must undergo an averaging procedure over all

background fields b (representing the target) with which the eikonal interaction occurs,

〈A〉b , (1.91)

since there is no way of knowing, a priori, the exact field configuration of b. The averaging procedure is

determined through QCD and is given by

〈· · · 〉b =

∫
D[b] · · ·Z[b]

Haar measure
background field

distribution function

observable

(1.92)

where Z[b] is intimately linked with the gluon distribution function Z[ρ], as b and ρ are related via a differential

equation: In the absence of fluctuations α, the gauge field A is entirely comprised of the background field b,

A = b. From eq. (1.81) it then follows that ∂i∂
ib+ = ρδ(x−) [18]. Since, furthermore, the only variables in

the correlator A that depend on b are the Wilson lines U via15

U[x,+∞,−∞] = Pexp

{
− ig

∫ +∞

−∞
dx− A+a

x︸︷︷︸
=b+ax

tax

}

=⇒ b+x = b+ax tax =
i

g
U−1

[x,+∞,x−]

(
∂

∂x−
U[x,+∞,−∞]

)
U−1

[x,x−,−∞] , (1.93)

14For more complicated projectiles, A becomes a matrix of Wilson line correlators, see section 1.6 and section 5.3 in chapter 5.
15Often, it is written that b+ = i

g
U−1(∂x−U) or b+ = i

g
(∂x−U)U−1. These are special cases of eq. (1.93), in which either

x− < 0 such that U[x,x−,−∞] = 1, or x− > 0 such that U[x,∞,x−] = 1, c.f. eqns. (1.159).
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Section 1.4. The JIMWLK equation

one may perform a change of variables [18]

{D[b], Z[b]} −→ {D[U ], Z[U ]} . (1.94)

In this change of variables, the Haar measure [63] D[b] (which is just a flat, Euclidean measure) becomes16

D[b] −→ D[U ] = δ(UU† − 1) δ(det(U)− 1) dU , (1.95)

where dU is the flat measure over U , [18].

As the rapidity Y is increased, more and more gluon fluctuations feature in the interaction. In particular,

after a sufficiently large interval (of Y ), the interaction between A and the gluon fluctuations α can no longer

be ignored — one must give α the same treatment as the background field b, causing the average to become

〈A〉b −→ 〈A〉α,b . (1.96)

At this point, it is wiser to incorporate the fluctuation α into the background field b rather than performing

two averaging procedures. This requires us to adjust 〈· · · 〉b on the fly as we increase Y . In doing so, we make

the average 〈· · · 〉b rapidity-dependent,

〈· · · 〉b −→ 〈· · · 〉b (Y ) . (1.97)

To see how this adjustment is done correctly, one considers the average 〈· · · 〉b at a particular rapidity Y0.

We then increase the rapidity to Y (Y > Y0), at which point the fluctuations α become non-negligible.

Comparing the two averages of A yields a finite difference equation,

〈A〉b (Y0)− 〈A〉α,b (Y ) = K , (1.98)

where K is a quantity to be determined. One can continue increasing the rapidity even further to obtain more

finite difference equations — this is the essence of a renormalization group argument. However, since the

procedure will not alter as the rapidity becomes larger,17 one step (for example from Y0 to Y ) is sufficient.

Taking the limit as Y − Y0 → 0 allows one to reformulate equation (1.98) as18

d

dY
〈A〉b (Y ) = −〈HJIMWLKA〉b (Y ) , (1.99)

where HJIMWLK is called the JIMWLK Hamiltonian. All steps of the derivation outlined up to this point

will be discussed in more detail in section 1.4.2.

To obtain an evolution equation for the gluon distribution function Z[U ] from (1.99), a little bit more work

needs to be done. The details of the calculations involved in this reformulation will not be discussed in this

16That this measure is left- and right-invariant under the multiplication with a group element U ∈ SU(N) (see the definition
of a Haar measure [63–65]) can be verified via direct calculation.

17This is due to the fact that Wilson lines will be mapped into Wilson lines by the conservation of color at each vertex of a
Feynman diagram.

18This will be explained in detail in section 1.4.2.
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Chapter 1. High Energy Physics and Wilson Line Correlators

thesis but can be found in [18, 66]: Due to the form of the averaging procedure,

〈· · · 〉b (Y ) =

∫
D[U ] · · ·Z[U ]

Haar measure
rapidity

distribution function

observable

(1.100)

one may rewrite the JIMWLK equation (1.99) for an observable A as

d

dY

∫
D[U ] Z[U ]A =

∫
D[U ] Z[U ]HJIMWLKA

d

dY
〈Z[U ]|A〉 = 〈Z[U ]|HJIMWLK|A〉 , (1.101)

where we suggestively defined a scalar product 〈·|·〉 through
∫
D[U ] (this is not to be confused with the averag-

ing procedure 〈· · ·〉 (Y ), which involves the functional distribution Z[U ]). Treating U and U† as independent

variables,19 it can be shown that HJIMWLK is Hermitian [18],

〈Z[U ]|HJIMWLK|A〉 =
〈
Z[U ]

∣∣∣H†JIMWLK

∣∣∣A
〉
, (1.102)

allowing us to view HJIMWLK to be acting on the distribution Z[U ] rather than on A. Then, A acts as a test

function in the evolution equation, allowing us to conclude that

d

dY
Z[U ] = −HJIMWLKZ[U ] . (1.103)

Thus, the JIMWLK equation gives the rapidity-evolution of a gluon distribution function Z[U ]. If it could

be solved,20 it would in fact give the gluon distribution function itself.

The JIMWLK Hamiltonian is currently known up to next-to-leading order (NLO) [68], but research to fully

understand the NNLO contributions is ongoing. In the following section, we give a derivation of HJIMWLK

up to leading order using the strategy described in this section.

1.4.2 A derivation of the JIMWLK equation at leading order

In this section, we give a brief derivation of the JIMWLK equation at leading order (LO) for observables

consisting of quarks, antiquarks and, at most, 1 gluon in the final state. While there is a multitude of sources

giving a derivation of JIMWLK at LO (c.f. [18, 21, 69, 70], just to name a few) the derivation presented

here combines the treatments given in [18, 71]: we begin in the spirit of [18], but then switch over to the

diagrammatic notation of [71], as we feel that this notation makes the latter part of the derivation more

accessible.

19This does not break the group constraints (such as UU† = 1), since these constraints are additionally imposed by the Haar
measure D[U ] (see eq (1.95)).

20The JIMWLK equation cannot be solved analytically, but a numerical solution via a Langevin description exists for the
leading order [18, 67]. For an analytic treatment, one usually parametrizes the evolution equation — this will be discussed in
section 1.5.
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Section 1.4. The JIMWLK equation

1.4.2.1 Diagrammatic notation for Wilson lines

An interaction between the projectile and the target takes place via the exchange of a Wilson line U (†), which

itself is an element of the gauge group SU(N). This Wilson line represents the path of a particle (U for a

quark and U† for an antiquark) as it radiates (an infinite number of) gluons through its interaction with the

target (c.f. section 1.2.3). Due to the δ function support of the target (caused by the Lorentz contraction in

the rest frame of the projectile), c.f. eq. (1.3), the Wilson lines will be gauge equivalent to unity, except at

the point on the particle worldline where it pierces through the x− = 0 plane.

Diagrammatically, we will denote a Wilson line by a line with a pink arrowhead pointing to the left for U in

the fundamental representation, and to the right for U† in the antifundamental representation,

[Ux]ij → i j and [U†y]ji → i j , (1.104)

where x resp. y is the transverse coordinate at which the Wilson line pierces the plane of interaction x− = 0.

In eq. (1.104), it is understood that U acts solely on fundamental factors of the correlator, and U† on

antifundamental ones. We pay particular attention to the placement of the indices on the two Wilson lines:

U acts from the left while U† acts from the right (c.f. eq. (1.106)). The convention introduced in eq. (1.104)

was chosen such that graphical representation of a color singlet interacting eikonally with a target resembles

the associated Feynman diagram. As an example, consider once again a photon splitting into a qq̄-pair that

interacts eikonally with a target (c.f. eq. (1.5)). The associated Feynman diagram (with time flowing from

right to left) is

, (1.105)

where we already used notation (1.104) for the eikonal interaction, and represents the photon. Inspired

by (1.105), we represent a tensor product of Wilson lines by a tower of pink arrows (c.f. later eq. (1.114)).

Mathematically, the diagram (1.105) corresponds to the product of Wilson lines

[Ux]il[U
†
y]lj = [Ux]ikδkl[U

†
y]lj , (1.106)

where a sum over repeated indices is implied. We chose to make the index contraction in (1.106) explicit

with a Kronecker δ so that the Wilson lines are in the same form as eq. (1.104). Introducing the following

diagrammatic notation for the Kronecker δ [72]

δij → i j , (1.107)

we may write the product (1.106) as

[Ux]ikδkl[U
†
y]lj =

i

j

k

l

suppressing indices−−−−−−−−−−−−→ ; (1.108)

such a diagram with the index labels suppressed is referred to as a birdtrack [72] (we will discuss the birdtrack

notation in detail in the following chapters). In this thesis, we are mainly interested in the color structure of

the particle configuration and thus often suppress the photon line (by virtue of the photon being color

neutral) in birdtracks, as was already done in (1.108). While the birdtrack in (1.108) very strongly resembles

the Feynman diagram amplitude of eq. (1.105), as desired, suppressing the indices comes at a price: The
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Chapter 1. High Energy Physics and Wilson Line Correlators

conjugate amplitude of (1.105) is given by

→
(
[Ux]ikδkl[U

†
y]lj
)†

= [Uy]jlδlk[U†x]ki . (1.109)

Since

[U†x]ik =
(
[U†x]ki

)t 6= [U†x]ki and [Uy]lj = ([Uy]jl)
t 6= [Uy]jl , (1.110)

the graphical notation (1.104) is not able to express the conjugate amplitude (1.109) due to the different

placement of the indices on the Wilson lines. We therefore introduce more notation to accommodate this:

[U†x]ij → i j and [Uy]ji → i j . (1.111)

Using this notation, together with convention (1.107) for the Kronecker δ, we can write the product (1.109)

as

[Uy]jlδlk[U†x]ki =
k

l

i

j

suppressing indices−−−−−−−−−−−−→ , (1.112)

where we understand that the bar acts on the entire tensor product of Wilson lines. (This notation will be

revisited in chapter 5, section 5.1.4.1.) Thus, the conjugate amplitude is also mirrored by the birdtrack,

( )†
=

birdtracks−−−−−−→ . (1.113)

In the present chapter, we want to make the target with which the eikonal interaction occurs explicit. We

will denote the target by a grey box . Thus, a particular tensor product of Wilson lines U (†) together

with the target is depicted as

Ux1 ⊗ · · · ⊗ Uxm ⊗ U†y1
⊗ · · · ⊗ U†yn

⊗ target −→

...

...

...

...

Uxxx111

Uxxxmmm

U†
yyy111

U†
yyynnn

target

. (1.114)

The product (1.114) acts on the component of the quark–antiquark Fock space F ,

F := 0⊕
∞⊕

i = 1
j = 1

{
(
V ⊗i

)
⊕
(

(V ∗)⊗j
)
⊕
(
V ⊗i ⊗ (V ∗)⊗j

)}
; (1.115)

consisting of m fundamental and n antifundamental, namely V ⊗m ⊗ (V ∗)⊗n ⊗ target.

Lastly, a Wilson line in the adjoint representation Ũabz (corresponding to a gluon) will be denoted as21

Ũabz → a b and (Ũabz )† → b a = b a = b a , (1.116)

21In later sections we will change this notation slightly to better suit our purposes, but for now we strive for consistency
between [71] and the material presented here.
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where the last two equalities hold, since Ũabz is real,

(
Ũabz

)∗
:=
(
2tr
(
taUzt

bU†z
))∗

= 2
(
tr
(
taUzt

bU†z
))†

= 2tr
(
Uzt

bU†zt
a
)

= Ũabz . (1.117)

This relation also clearly exhibits that an adjoint Wilson line can be decomposed into a fundamental and an

antifundamental Wilson line, and is therefore contained in a Fock space component of the form (1.114).

It should be noted that, since U (†) is a group element of SU(N), it may take the value of the identity 1

even at the time of interaction between the particle worldline and the target. Physically, this corresponds to

the situation where no interaction between the affected parton and the target took place. We would like to

explicitly distinguish situations where all Wilson lines in (1.114) are gauge equivalent to unity (no interaction)

with situations in which at least one Wilson line in the correlator is non-trivial (interaction) — ultimately,

we are interested in the T -matrix element, not the S-matrix element, which necessitates this distinction.

Diagrammatically, we will tell these cases apart by [71]

• laying a blue rectangle behind the tower of U (†)’s if we want to indicate an interaction

• drawing a dashed line behind the U (†)’s to indicate that each U (†) is gauge equivalent to 1 and thus no

interaction took place,

...

...

...

...

︸ ︷︷ ︸
general tensor product

of Wilson lines

−→

...

...

...

...

︸ ︷︷ ︸
not all Wilson lines = 1

interaction

or

...

...

...

...

︸ ︷︷ ︸
all Wilson lines = 1
no interaction

(1.118)

1.4.2.2 Generating functionals and k-point Wilson line correlators

Creating n-point correlators via functional differentiation of the generating functional corresponding to the

theory at hand is a textbook topic (see for example [25, sec. 9.2]). In this method, one defines an object Z̄[J ]

called the generating functional as a functional integral over an exponential of the appropriate Lagrangian

density L including a source term. For example, if we are interested in a theory of a scalar field φ(x), then

the appropriate generating functional is

Z̄[J ] :=

∫
D[φ] exp

{∫
d4x (L[φ] + J(x)φ(x))

}
, (1.119)

where J(x) is called the source and the integration
∫
D[φ] may be interpreted as an averaging procedure

over the field configurations φ. It is readily seen that n functional derivatives with respect to the source J at

points x1 . . . xn gives rise to an n-point correlator of the field,

δ

δJ(xn)
. . .

δ

δJ(x2)

δ

δJ(x1)
Z̄[J ]

∣∣∣∣∣
J≡0

= 〈φ(xn) . . . φ(x2)φ(x1)〉 . (1.120)

It will be mathematically convenient to adopt this language of generating functionals here. In particular, we

will consider the generating functional Z̄[J†, J, J̃ ], which depends on three sources J†, J and J̃ ,

Z̄[J†, J, J̃ ] :=
〈
eS

qq̄g
ext [b,J†,J,J̃]

〉
b,α

, (1.121a)
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where 〈· · · 〉b,α denotes an averaging procedure over the background field b and the fluctuation α, and the

action Sqq̄gext describes the coupling of quarks, antiquarks and gluons to the external sources J†, J and J̃

respectively,22

Sqq̄gext [b, J†, J, J̃ ] :=

∫
d2x

{
tr
(
(J†x)tUx[A+

x ]
)

+ tr
(
(Jx)tU†x[A+

x ]
)

+ tr
(

(J̃µx)tαµx

)}
. (1.121b)

The generating functional Z̄[J†, J, J̃ ] is not to be confused with Z[U ] describing the distribution of the gluons

in the background field (c.f. eq. (1.100)), but the two are related: in particular, Z̄[J†, J, J̃ ] is the functional

Fourier transform of Z[U ] up to group theory constraints.

It should be noted that [18] omits the term proportional to the fluctuation α, as it is anticipated that all

correlators obtained from this term will eventually cancel due to the largest time Theorem [73, 74]. In this

thesis, however, we prefer to keep the term tr
(

(J̃x)tα+
x

)
in Sqq̄gext and explicitly show that all contributions

originating from it cancel, following the arguments made in [71].

In eq. (1.121b) we used the abreviated notation

A+
x := A+a

x tax , αµx := αµax tax , where tax is a group generator , (1.122a)

and

tr
(
(J†x)tUx[A+

x ]
)

=
[(
J†x
)
ij

]t (
Ux[A+

x ]
)
ji

=
(
J†x
)
ij

(
Ux[A+

x ]
)
ij
. (1.122b)

The mathematical benefit of the generating functional as defined in eqns. (1.121) is that it allows us to easily

extract arbitrary n-point Wilson line correlators by means of functional differentiation with respect to the

sources J
(†)
x and J̃z: Introducing the shorthand notation {J} ≡ 0 to mean J

!
= J†

!
= J̃

!
= 0, we, for example,

have that

δ

δJx
Z̄[J†, J, J̃ ]

∣∣∣∣
{J}≡0

=

〈
δ

δJx
eS

qq̄g
ext [b,J†,J,J̃]

〉

α,b

∣∣∣∣
{J}≡0

=
〈
U†xe

Sqq̄gext [b,J†,J,J̃]
〉
α,b

∣∣∣∣
{J}≡0

=
〈
U†x
〉
b
. (1.123)

In the last step all α-dependence was removed by setting J̃ = 0 such that 〈· · · 〉α,b → 〈· · · 〉b. For a k-point

Wilson line correlator, one merely has to take k derivatives, for example

δ

δJ†x1

· · · δ

δJ†xm

δ

δJy1

· · · δ

δJyn

Z̄[J†, J, J̃ ]

∣∣∣∣
{J}≡0

=
〈
Ux1 ⊗ · · · ⊗ Uxm ⊗ U†y1

⊗ · · · ⊗ U†yn

〉
b
. (1.124)

Similarly, one may perform a differentiation with respect to the source J̃ to obtain a gluon in the final state,

δ

δJ̃z
Z̄[J†, J, J̃ ]

∣∣∣∣
{J}≡0

= 〈αµz〉α,b . (1.125)

The observant reader will have noticed that this 1-point correlator vanishes identically [18]. While this

22Note that the sources here are matrices. The transpose of (J(†))t in Sqq̄gext is needed such that differentiation with respect to

J(†) yields the Wilson lines U(†) and not their transpose (U(†))t,

∂

∂J†x
tr
(

(J†y)tUy

)
= Ux , but

∂

∂J†x
tr
(
J†yUy

)
= (Ux)t .
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certainly will come in handy at a later stage in our derivation of JIMWLK, we choose to keep the term

〈α+
z 〉α,b around for the time being for reasons that will become apparent in sections 1.4.2.5 and 1.4.2.7.

It will be convenient to introduce the shorthand notation

δm,n

δJx,y
:=

δ

δJ†x1

· · · δ

δJ†xm

δ

δJy1

· · · δ

δJyn

(1.126a)

Um,n
x,y := Ux1 ⊗ · · · ⊗ Uxm ⊗ U†y1

⊗ · · · ⊗ U†yn
(1.126b)

such that eq. (1.124) becomes

δm,n

δJx,y
Z̄[J†, J, J̃ ]

∣∣∣∣
{J}≡0

=
〈
Um,n

x,y

〉
b
. (1.127)

As we stated in the beginning of this section, we derive the JIMWLK equation at LO with at most one gluon

in the final states. Thus, we are interested in generating Wilson lines from Z by differentiating at most once

with respect to J̃ . The most general such form is

(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
Z̄[J†, J, J̃ ]

∣∣∣∣
{J}≡0

=
〈
Um,n

x,y

〉
b

+
〈
Um,n

x,y ⊗ 〈αµz〉α
〉
b
, (1.128)

where again the second term in the sum (1.128) vanishes by virtue of the 1-point correlator being zero, but

we will keep both terms of (1.128) for the time being.

1.4.2.3 Diagrammatic notation for singlet states and the target average

For the Wilson line correlators discussed in the previous section to describe a physical quantity, the index

legs corresponding to individual Wilson lines have to combine into color neutral configurations before as well

as after the interaction — this is a consequence of confinement. This was discussed in section 1.1.2.3, where

the color neutral photon was said to split into a globally color neutral configuration of color charged objects.

Mathematically, it is the representation of SU(N), in which the states |i〉, |j〉 ∈ V ⊗m ⊗ (V ∗)⊗n are given,

that provides information about the mq+nq̄-configuration interacting with the target (i.e. the configuration

that is acted upon by the product of Wilson lines Um,n
x,y ). For example, if the state |i〉 is in the adjoint

representation, it is interpreted as a gluon. |i〉 is said to be color neutral if in the limit where all coordinate

dependence of the Wilson lines coincide, a coincidence limit, it satisfies

Um,n
x,y |i〉 −−−−−−−−−−−−−−−−→

x1=...=xm=y1=...=yn

Um,n|i〉 = |i〉 (1.129a)

〈i|
(
Um,n

x,y

)† −−−−−−−−−−−−−−−−→
x1=...=xm=y1=...=yn

〈i| (Um,n)
†

= 〈i| , (1.129b)

and similarly for |j〉. Such states are also referred to as global color singlet states of SU(N).

Consider the Wilson line correlator
〈
Um,n

x,y

〉
b

and insert a full set of states on either side of Um,n
x,y as

〈
Um,n

x,y

〉
b

=

〈(∑

j

|j〉〈j|
)
Um,n

x,y

(∑

i

|i〉〈i|
)〉

b

=
∑

j,i

|j〉
〈
〈j|Um,n

x,y |i〉
〉
b
〈i| ; (1.130)
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we were able to take |j〉 and 〈i| out of the average, as these states do not depend on the background field

b. Due to confinement, all non-singlet states are irrelevant in a physical correlator, thus causing (1.130) to

reduce to

∑

j,i

|j〉
〈
〈j|Um,n

x,y |i〉
〉
b
〈i| −→

∑

j,i singlets

|j〉
〈
〈j|Um,n

x,y |i〉
〉
b
〈i| (1.131)

when requiring it to correspond to a physically meaningful object. Thus, the relevant object to consider

when working with Wilson line correlators is
〈
〈j|Um,n

x,y |i〉
〉
b
, where |i〉, |j〉 are globally color singlet. Finding

an algorithm to construct such states for an arbitrary combination of fundamental and antifundamental lines

will be one of the main tasks fulfilled in this thesis, c.f. chapter 5.

Diagrammatically, we denote a color neutral state |i〉 as

...

...

i color-neutral
state

target

; (1.132)

this notation is inspired by Clebsch-Gordan operators, which have no index line exiting on the right if the

representation corresponding to such an index line would be 1-dimensional (i.e. a singlet representation) [72],

c.f. later chapter 5. The arrows on the index legs in (1.132) indicate whether the particle is in the fundamental

or the antifundamental representation,

fundamental rep.: antifundamental rep.: . (1.133)

The arrows may be suppressed if the representation of the affected leg is clear: Since the Wilson lines acting

on these legs will always point in the same direction as the representational arrows (1.133), we will often

neglect the representation arrow and only retain the Wilson line arrow. For the remainder of this section, we

assume that the singlet states |i〉 are orthonormal. That an orthonormal basis of singlet states can always

be found is made clear in chapter 5, where we also provide a construction algorithm.

Lastly, following [71], we represent the average over the color configuration in the target 〈· · · 〉b,α (c.f. our

discussion in section 1.3.1) as

〈· · · 〉b,α −→ · · · ; (1.134)

the goal of the JIMWLK equation is to make this target Y -dependent to adjust for the increasingly important

gluon fluctuations at higher energies.

The graphic notation introduced so far is summarized in Figure 1.6.
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i

...

...

...

...

Interaction at x− = 0 x− =−∞x− =+∞
Uxxx111

U†
yyynnn

target target average

color
singlet

rapidity
separation Y

i

...

...

...

...

x− = 0 x− =−∞x− =+∞
Uxxx111 gauge equivalent to 1

U†
yyynnn gauge equivalent to 1

target target average

color
singlet

rapidity
separation Y

Figure 1.6: These figures summarize the diagrammatic notation that is used in this section. The left graphic

depicts a singlet |i〉 consisting of m quarks and n antiquarks interacting eikonally (all gluon interactions sum

into Wilson lines U (†)) with the target. The interaction is marked by the blue slab at the interaction time

x− = 0. In the right graphic, all Wilson lines are gauge equivalent to unity, which is to say that these Wilson

lines are independent of the transverse coordinates x,y. Since |i〉 is a singlet state satisfying eqns. (1.129),

|i〉 is unaffected by such a configuration of Wilson lines, implying that no interaction has taken place. This

is denoted by the dashed line (rather than a blue slab) at the “interaction time” x− = 0. Note that a large

rapidity separation between projectile and target is required for the interaction to assemble into Wilson lines

(c.f. eq. (1.5) and section 1.2). [71]

1.4.2.4 Cross section without fluctuations in the color field

We are now in a position to calculate the cross section describing the eikonal interaction between a k-point

correlator and a target. At this point, we consider the k-point correlator to consist of fundamental and

antifundamental Wilson lines only, setting fluctuations in the color field (i.e. adjoint lines in the correlator)

to zero; this will give us a basis with which we may compare the cross section of a Wilson line correlator with

a 1-gluon fluctuation.

Using the language of generating functionals introduced in section 1.4.2.2, we set J̃ to zero to eliminate the

fluctuations in the background field,

〈(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b,α

∣∣∣∣∣
{J}≡0

J̃=0−−−→
〈
δm,n

δJx,y
eS

qq̄g
ext [b,J†,J]

〉

b

∣∣∣∣∣
{J}≡0

, (1.135)

where we used notation (1.126a) for the collective source derivative δm,n

δJx,y
. Incidentally, this result is exactly

what we would have obtained even if we had kept J̃ , by virtue of the 1-point correlator 〈αµz〉α being zero [18],

(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
Z̄[J†, J, J̃ ]

∣∣∣∣∣
{J}≡0

=
〈
Um,n

x,y

〉
b

+
〈
Um,n

x,y ⊗ 〈αµz〉α︸ ︷︷ ︸
=0

〉
b

=
〈
Um,n

x,y

〉
b
. (1.136)

To calculate the total cross section diagrammatically, we adopt the convention of [18, 71] and refer to the case

where all Wilson lines are gauge equivalent to unity as the in-state, and the situation where not all Wilson
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lines are gauge equivalent to 1 as the out-state,

|in〉 =

...

...

...

...

i and |out〉 =

...

...

...

...

i . (1.137)

The T -matrix contribution |out〉 − |in〉,

|out〉 − |in〉 =

...

...

...

...

i −
...

...

...

...

i , (1.138)

then determines the total cross section

σtot =
∣∣|out〉 − |in〉

∣∣2 = 〈out|out〉 − 〈out|in〉 − 〈in|out〉+ 〈in|in〉 (1.139)

due to the optical Theorem [25]. The states 〈in| := |in〉† and 〈out| := |out〉† are graphically obtained

by flipping the diagram about its vertical axis and reversing the arrows [72] (this will be made precise in

section 3.3.1 of chapter 3), and then adding a bar over the tensor product of Wilson lines according to

eq. (1.111),




...

...

...

...

i




†

= i

...

...

...

...
and




...

...

...

...

i




†

= i

...

...

...

...
, (1.140)

such that the cross section becomes

〈
〈j|
∣∣∣∣
δm,n

δJx,y
eS

qq̄g
ext [b,J†,J,J̃]

∣∣∣∣
2

|i〉
〉

b,α

∣∣∣∣∣
{J}≡0

=




j

...

...

...

...
− j

...

...

...

...







...

...

...

...

i −
...

...

...

...

i


 . (1.141)

Note that we projected onto the singlet states |i〉, 〈j| to remind the reader that a physical observable cor-

responds to a singlet Wilson line correlator, but the general calculation does not require this projection

(c.f. [18]). Furthermore, by keeping |i〉 and |j〉 distinct, we allow for the fact that the Wilson lines after

the interaction may re-combine into different singlet states than before the interaction. This is possible if

the algebra of singlets is large enough to admit more than one singlet state (c.f. Theorems 5.2 and 5.4 in

chapter 5). However, all cross-terms in which all Wilson lines are gauge equivalent to 1 will vanish unless

|i〉 = |j〉, since the singlet states |i〉 are assumed to be orthonormal.

Let us now look at each term in (1.141) in more detail: When multiplying out the brackets, we connect the
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Wilson lines of the various states. “Time” x− thus runs as (c.f. Figure 1.6)

j

...

...

...

...

...

...

...

...

i

“time” x−−∞ +∞ −∞0 0

. (1.142)

In connecting the Wilson lines graphically, we actually perform an integration over the transverse momenta.

This produces a δ function in the transverse variables which, in turn, identifies the transverse coordinates

of the Wilson lines on either side of the the cut x− = +∞ [71]. Thus, each product of Wilson lines U†yUx

appearing in the 〈out|out〉-term23 becomes U†xUx = 1 such that

j

...

...

...

...

...

...

...

...

i =
j

...

...

...

...

...

...

...

...

i = 〈j|i〉 = δijtr (1) , (1.143)

where the last step follows from the orthonormality of the singlet states |i〉. The cross section (1.141) therefore

reduces to

∣∣∣∣∣∣∣∣

...

...

...

...

i −
...

...

...

...

i

∣∣∣∣∣∣∣∣

2

=
j

...

...

...

...

...

...

...

...

i

︸ ︷︷ ︸
=δijtr(1)

− j

...

...

...

...

...

...

...

...

i − j

...

...

...

...

...

...

...

...

i +
j

...

...

...

...

...

...

...

...

i

︸ ︷︷ ︸
=δijtr(1)

= 2 · j

...

...

...

...

...

...

...

...

i −




j

...

...

...

...

...

...

...

...

i




†

− j

...

...

...

...

...

...

...

...

i . (1.144)

To confirm this, consider the familiar example of a photon splitting into a qq̄-dipole, which then interacts

eikonally with a dense gluonic target. Diagrammatically, the cross section of such an interaction is given

by [71] (c.f. Figure 1.7)

∣∣∣∣∣∣∣∣ ︸ ︷︷ ︸
interaction

−
︸ ︷︷ ︸

no interaction

∣∣∣∣∣∣∣∣

2

=


 −


 ·


 −


 , (1.145)

where we chose to explicitly represent the photon as . Due to the transverse momentum integration

23Notice that the Wilson lines appearing in the |in〉-state do not carry a coordinate dependence by virtue of their being gauge
equivalent to unity (see Figure 1.6). Thus, no simplification from the integration over the transverse momenta takes place in
the 〈in|in〉, 〈in|out〉 and 〈out|in〉 terms.
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Interaction at x− = 0 x− =−∞x− =+∞

Uxxx

U†
yyy

target target average

photon γ
rapidity

separation Y

x− = 0 x− =−∞x− =+∞

Uxxx gauge equivalent to 1

U†
yyy gauge equivalent to 1

target target average

photon γ
rapidity

separation Y

Figure 1.7: These diagrams depict an eikonal interaction between a projectile and a target with a rapidity
separation Y . In our case, the projectile is a photon which splits into a qq̄-pair. This dipole interacts eikonally
with a target at x− = 0. The Wilson lines emanating from the interaction are marked by the pink arrowheads.
The blue slab in the left diagram indicates that not all Wilson lines are gauge equivalent to unity, and hence
an interaction has taken place. In the right diagram, the dashed line at x− = 0 indicates that all Wilson
lines are gauge equivalent to 1, and thus no interaction with the target has taken place. In both diagrams,
the target undergoes an averaging procedure over the gluon field. [71]

that is implicit to the graphical procedure of connecting index lines, one obtains

∣∣∣∣∣ −
∣∣∣∣∣

2

=

︸ ︷︷ ︸
tr(U†yUyU

†
xUx)=tr(1)

−
︸ ︷︷ ︸

tr(UyU
†
x)=(tr(U†yUx))

†

−
︸ ︷︷ ︸

tr(U†yUx)

+

︸ ︷︷ ︸
tr(1)

= 2 · −





( )†
+



 . (1.146)

Let us denote the size of the dipole as r := x− y, and the dipole amplitude by

Nxy :=

〈
tr
(
1− U†yUx

)〉
b

N
, (1.147)

where N is taken to be Nc (the number of colors). Then, the total cross section is [71]

σtotal = 2

∫
d2r

∫ 1

0

dχ
∣∣Ψ(χ, r2, Q2)

∣∣2
∫

d2w Nxy , (1.148)

where w = 1
2 (x + y), and

∣∣Ψ(χ, r2, Q2)
∣∣2 describes the probability of finding a qq̄-dipole with size r and

longitudinal momentum fraction χ at a fixed resolution Q2 within the photon.

1.4.2.5 Fluctuations in the color field

As the energy (equivalently the rapidity Y ) increases, fluctuations in the background field become non-

negligible. That is, we have to replace the background field b by a field A that includes corrections (fluctua-

tions) α,

b −→ A = b+ α , (1.149)

as was already discussed in eq. (1.30). At leading order, we consider the correction to be a single gluon. There

are three ways in which such a gluon can enter the Wilson line correlator: It can connect two parton-lines

(the two partons interact by means of a gluon), it can start and end on the same parton-line (self-energy),
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or it may start on a parton-line and enter into the final state.24 These considerations determine which terms

we keep and which we neglect at leading order when expanding the generating functional

〈
eS

qq̄g
ext [b+α,J†,J,J̃]

〉
b,α

(1.150)

about the background field b.

We begin by splitting the exponential into a product of terms containing the fluctuation α indirectly via U (†),

and terms with direct dependence on α,

〈
eS

qq̄g
ext [b+α,J†,J,J̃]

〉
b,α

=
〈
e
∫

d2x{tr((J†x)tUx[A+
x ])+tr((Jx)tU†x[A+

x ])} · e
∫

d2x{tr((J̃µx )tαµx)}〉
b,α

. (1.151)

We then perform a Taylor expansion of A about b on each exponential separately, recalling that the Taylor

expansion of a product is the product of Taylor expansions,

〈
eS

qq̄g
ext [b+α,J†,J,J̃]

〉
b,α

=

〈(
1 +

∫

u

α+a
u

δ

δb+au
+

1

2

∫

uv

α+a
u

δ

δb+au
α+b
v

δ

δb+bv
+O(A3)

)
×

×
(

1 +

∫

w

α+c
w

δ

δα+c
w

+O(α2)

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b,α

, (1.152a)

where we used the shorthand notation

∫

u

:=

∫
d4u and

∫

uv

:=

∫
d4u

∫
d4v . (1.152b)

Note that we truncated the second expansion already at order O(α2). This was done because we would like

to consider correlators with at most 1 gluon in the final state, while terms with two derivatives δ
δα+a
u

δ

δα+b
v

would give rise to two gluons in the final state.

Recall that the average over the fields is linear (it is merely an integral over field configurations as given in

eq. (1.100)), so we may distribute 〈· · · 〉b,α over the sum. Additionally, we multiply out the brackets in (1.152a)

and rearrange terms,

〈
eS

qq̄g
ext [b+α,J†,J,J̃]

〉
b,α

=
〈
eS

qq̄g
ext [b,J†,J,J̃]

〉
b

+

∫

u

〈〈
α+a
u

〉
α

[b]

(
δ

δb+au
+

δ

δα+a
u

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

+
1

2

∫

uv

〈〈
α+a
u α+b

v

〉
α

[b]

(
δ

δb+au

δ

δb+bv
+

δ

δb+au

δ

δα+b
v

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

+O(A3) . (1.153)

The first term in this expansion simply gives the cross section with no gluon fluctuations (eq. (1.144)) once

differentiation with respect to the sources J (†) and J̃ has been performed. The term proportional to the

1-point correlator 〈α+a
u 〉α is

∫

u

〈〈
α+a
u

〉
α

[b]

(
δ

δb+au
Sqq̄gext [b, J†, J, J̃ ] +

δ

δα+a
u
Sqq̄gext [b, J†, J, J̃ ]

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

. (1.154a)

24We will see that all terms arising from the last of the three contributions cancel amongst themselves due to the largest time
Theorem [71] (see section 1.4.2.10).
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It should be noted that, even though the 1-point correlator itself is zero, differentiation of (1.154a) remedies

this dilemma by bringing down an additional factor of α, turning the 1-point correlator into a 2-point

correlator, as will be explained in section 1.4.2.7.

Expanding the brackets in the term proportional to the 2-point correlator
〈
α+a
u α+b

v

〉
α

in (1.153) gives

1

2

∫

uv

〈〈
α+a
u α+b

v

〉
α

[b]×

×
{(

δ

δb+au
Sqq̄gext [b, J†, J, J̃ ]

)(
δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

)
+

(
δ

δb+au

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

)

+ 2

(
δ

δb+au
Sqq̄gext [b, J†, J, J̃ ]

)(
δ

δα+b
v

Sqq̄gext [b, J†, J, J̃ ]

)
+ 2

(
δ

δb+au

δ

δα+b
v

Sqq̄gext [b, J†, J, J̃ ]

)}
×

× eSqq̄gext [b,J†,J,J̃]

〉

b

. (1.154b)

We notice that the last term in (1.154b),

δ

δb+au

δ

δα+b
v

Sqq̄gext [b, J†, J, J̃ ] , (1.155)

vanishes identically since δ

δα+b
v
Sqq̄gext [b, J†, J, J̃ ] is independent of the background field b. We may thus drop

this term in eq. (1.154b).

To facilitate a discussion of the remaining terms of eqns. (1.154), we need to calculate the derivative of

Sqq̄gext [b, J†, J, J̃ ] with respect to the fluctuation α,

δ

δα+b
v

Sqq̄gext [b, J†, J, J̃ ] =
δ

δα+b
v

∫
d2x

{
tr
(
(J†x)tUx[A+

x ]
)

+ tr
(
(Jx)tU†x[A+

x ]
)

+ tr
(

(J̃µx)tαµx

)}

=

∫
d2x

{
tr

(
(J̃µx)t

δ

δα+b
v

αµax tax

)}

=

∫
d2x

{
tr
(

(J̃µx)tδ+µδv−x−δ0v+δ2
xvδ

abtax

)}

= δv−x−δ0v+tr
(

(J̃+
v )ttbv

)
, (1.156a)

as well as the derivative with respect to the background field b,

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ] =

δ

δb+bv

∫
d2x

{
tr
(
(J†x)tUx[A+

x ]
)

+ tr
(
(Jx)tU†x[A+

x ]
)

+ tr
(

(J̃µx)tαµx

)}

=

∫
d2x

{
tr

(
(J†x)t

δ

δb+bv
Ux[A+

x ]

)
+ tr

(
(Jx)t

δ

δb+bv
U†x[A+

x ]

)}
. (1.156b)

Eq. (1.156b) introduces functional derivatives of the Wilson lines, which will be discussed in the following

section.

1.4.2.6 Functional differentiation of a Wilson line

The Lorentz contraction of the target localizes the interaction between projectile and target to x− = 0.

Thus, as explained in section 1.4.2.1, the only point at which Ux is non-trivial is when the particle worldline

pierces the x− = 0 plane at the transverse coordinate x. Therefore, instead of taking Ux to run along the
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curved path that is the particle worldline, we may consider it a straight line from −∞ to +∞ parallel to the

x−-direction, piercing the x− = 0 plane at the particular transverse coordinate x. We modify our notation

to make this path explicit:

Ux = U[x,+∞,−∞] . (1.157)

In appendix 1.A, we show that the functional derivative of U[x,+∞,−∞] with respect to the background field

b+bv is given by (c.f. eq. (1.270))

δ

δb+bv
U[x,+∞,−∞] = (−ig)δ2

xvδv+0U[x,+∞,v−]t
b
vU[x,v−,−∞] . (1.158)

Since the Wilson lines at hand are all trivial except at x− = 0, a Wilson line over a finite path piercing the

x− = 0 plane may be extended to infinity, while any Wilson line over a path not piercing the x− = 0 plane

is gauge equivalent to unity. We therefore have:

if v− > 0: U[x,+∞,v−] = 1 and U[x,v−,−∞] = U[x,+∞,−∞] = Ux (1.159a)

if v− < 0: U[x,+∞,v−] = U[x,+∞,−∞] = Ux and U[x,v−,−∞] = 1 . (1.159b)

Using eqns. (1.159), we can write the derivative δ

δb+bv
U[x,+∞,−∞] given in (1.158) as

δ

δb+bv
Ux = (−ig)δ2

xvδv+0

(
θ(v−)tbvUx + θ(−v−)Uxt

b
v

)
. (1.160a)

Similarly, the derivative of the antifundamental Wilson line is

δ

δb+bv
U†x = (+ig)δ2

xvδv+0

(
θ(v−)U†xt

b
v + θ(−v−)tbvU

†
x

)
. (1.160b)

Substituting this back into eq. (1.156b) yields

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ] = (−ig)δv+0

{
θ(v−)

[
tr
(
(J†v)ttbvUv

)
− tr

(
(Jv)tU†vt

b
v

)]

+θ(−v−)
[
tr
(
(J†v)tUvt

b
v

)
− tr

(
(Jv)ttbvU

†
v

)] }
, (1.161)

where we were able to perform the integration over x due to the presence of δ2
xv. Squaring this term gives

the contribution

(
δ

δb+au
Sqq̄gext [b, J†, J, J̃ ]

)
·
(

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

)
= (−ig)2δu+0δv+0

×
{
θ(u−)

[
tr
(
(J†u)ttauUu

)
− tr

(
(Ju)tU†ut

a
u

)]
+ θ(−u−)

[
tr
(
(J†u)tUut

a
u

)
− tr

(
(Ju)ttauU

†
u

)] }

×
{
θ(v−)

[
tr
(
(J†v)ttbvUv

)
− tr

(
(Jv)tU†vt

b
v

)]
+ θ(−v−)

[
tr
(
(J†v)tUvt

b
v

)
− tr

(
(Jv)ttbvU

†
v

)] }
. (1.162)

The calculation of the second derivative δ
δb+au

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ] involves steps similar to those performed to

arrive at eq. (1.161). We obtain

δ

δb+au

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ] = (−ig)2δ2

uvδu+0δv+0

{
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θ(u−)θ(v−) tr
(
θ(u− − v−)

(
(J†u)ttaut

b
vUu + (Ju)tU†ut

b
vt
a
u

)

+ θ(v− − u−)
(
(J†u)ttbvt

a
uUu + (Ju)tU†ut

a
ut
b
v

) )

+ θ(u−)θ(−v−) tr
(

(J†u)ttauUut
b
v + (Ju)ttbvU

†
ut
a
u

)

+ θ(−u−)θ(v−) tr
(

(J†u)ttbvUut
a
u + (Ju)ttauU

†
ut
b
v

)

θ(−u−)θ(−v−) tr
(
θ(u− − v−)

(
(J†u)tUut

a
ut
b
v + (Ju)ttbvt

a
uU
†
u

)

+ θ(v− − u−)
(
(J†u)tUut

b
vt
a
u + (Ju)ttaut

b
vU
†
u

) )}
, (1.163)

where the functions θ(u− − v−) and θ(v− − u−) keep track of the order of the vertex insertions tau and tbv,

depending on which of the two coordinates u− or v− corresponds to the earlier/later “time”.

1.4.2.7 Wilson line correlators from differentiation with respect to the source

In order calculate the cross section from the series expansion (1.153), we must take the derivative

(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

) ∣∣∣∣
{J}≡0

(1.164)

of each term, as discussed in eq. (1.128). The following observations, however, invoke simplification when

taking this derivative:

• Each term in (1.153) containing an α-derivative δ

δα+b
v
Sqq̄gext is directly proportional to the source J̃ , c.f.

eq. (1.156a). This is still true after we perform the differentiation δm,n

δJx,y
. Thus, setting all sources to

zero ({J} ≡ 0) will cause these terms to vanish,

δm,n

δJx,y

(
δ

δα+b
v

Sqq̄gext [b, J†, J, J̃ ]

) ∣∣∣∣
{J}≡0

= 0 . (1.165a)

Additionally, the term

〈
α+a
u α+b

v

〉
α

δm,n

δJx,y

δ

δJ̃z

(
δ

δb+au
Sqq̄gext [b, J†, J, J̃ ]

)(
δ

δα+b
v

Sqq̄gext [b, J†, J, J̃ ]

) ∣∣∣∣
{J}≡0

(1.165b)

will be proportional to the 3-point correlator
〈
α+a
u α+b

v α+c
z

〉
α

since the derivative with respect to J̃

induces an additional term α+c
z (c.f. eq. (1.125)). As the 3-point correlator of α is a next-to-leading-

order (NLO) contribution, (1.165b) does not contribute to the total cross section at LO.

• For each term not containing an α-derivative of Sqq̄gext , differentiation with respect to J̃ will give rise to

a p-point correlator of α where p = 1 or p = 3, as we have observed in eq. (1.128). Since the 1-point

correlator of α vanishes, and the 3-point correlator is a NLO contribution, the terms

δm,n

δJx,y

δ

δJ̃z

(
δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

) ∣∣∣∣
{J}≡0

(1.165c)

43



Section 1.4. The JIMWLK equation

do not contribute to the total cross section at leading order. That being said,

〈
α+a
u

〉
α

δm,n

δJx,y

(
δ

δb+au
Sqq̄gext [b, J†, J, J̃ ]

) ∣∣∣∣
{J}≡0

∝
〈
α+a
u

〉
α
. (1.165d)

Since the 1-point correlator 〈α+a
u 〉α vanishes, the contribution of (1.165d) to the total cross section will

be zero.

• Lastly, the product rule yields terms where the source-derivatives act on the exponential only, for

example,

(
δ

δ{α, b}+bv
Sqq̄gext [b, J†, J, J̃ ]

)
·
{(

δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
eS

qq̄g
ext [b+α,J†,J,J̃]

} ∣∣∣∣∣
{J}≡0

. (1.165e)

Since the prefactor δ

δ{α,b}+bv
Sqq̄gext is proportional to the sources J, J†, J̃ (c.f. eqns. (1.156)), setting the

sources to zero according to {J} ≡ 0 will cause terms such as (1.165e) to vanish.

With these considerations, the surviving terms of (1.153), when acted upon by the source-derivatives to

obtain the cross section

〈(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
eS

qq̄g
ext [b+α,J†,J,J̃]

〉

b,α

∣∣∣∣∣
{J}≡0

, (1.166)

are

〈(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
eS

qq̄g
ext [b+α,J†,J,J̃]

〉

b,α

∣∣∣∣∣
{J}≡0

=

=

〈(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

∣∣∣∣∣
{J}≡0

(1.167a)

+

∫

u

〈〈
α+a
u

〉
α

[b]

{
δm,n

δJx,y

δ

δJ̃z

(
δ

δα+a
u
Sqq̄gext [b, J†, J, J̃ ]

)}
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

∣∣∣∣∣
{J}≡0

(1.167b)

+
1

2

∫

uv

〈〈
α+a
u α+b

v

〉
α

[b]

{
δm,n

δJx,y

(
δ

δb+au
Sqq̄gext [b, J†, J, J̃ ]

)(
δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

)
(1.167c)

+
δm,n

δJx,y

(
δ

δb+au

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

)}
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

∣∣∣∣∣
{J}≡0

; (1.167d)

notice that the terms (1.167b) would be missing from the cross section if we had eliminated all terms including

the 1-point correlator 〈α+a
u 〉α already in eqns. (1.125) resp. (1.136).

1.4.2.8 Diagrammatic notation for fluctuations in the color field

Eq. (1.167) has become quite unwieldy, so we abandon the traditional notation used so far in favour of the

diagrammatic notation of [71]. We will interpret each term of (1.167) separately, establishing a connection

to Feynman diagrams (analogously to what was done in [18]), in order to motivate a suitable diagrammatic

notation.
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The first term (1.167a) merely gives the cross section without any gluon fluctuations (c.f. eq. (1.136)). Thus,

we may recycle the diagrams used in section 1.4.2.4.

The second term (1.167b) containing an α-derivative of Sqq̄gext ,

δm,n

δJx,y

δ

δJ̃z

∫

u

〈〈
α+a
u

〉
α

(
δ

δα+b
v

Sqq̄gext [b, J†, J, J̃ ]

)〉

b

, (1.168)

will give rise to a sum of Wilson line correlators of the form

∑

positions of ta

〈
α+a
u α+b

z

〉
α
Ux1 ⊗ · · · ⊗ taUxj

⊗ · · · ⊗ Uxm ⊗ U†y1
⊗ · · · ⊗ U†yn

⊗ tb , (1.169)

where we sum over all positions at which the generator ta can attach to a Wilson line U (†). (We neglected

prefactors and many indices on purpose in eq. (1.169), in order to direct the eye of the reader to the most

important features of this equation, namely the positions of ta and tb. Furthermore, we recall that the J̃-

derivative turned the 1-point correlator 〈α+a
u 〉α into a 2-point correlator.) The terms in (1.169) correspond

to Feynman diagrams consisting of (m+ n) Wilson lines U (†) and a gluon propagator
〈
α+a
u α+b

z

〉
α

. One end

of the gluon propagator is connected to a Wilson line via a vertex insertion ta (in our case, this is taUxj
),

the other end enters the final state due to the term tb in this tensor product. All other Wilson lines not

connected to the additional gluon interact solely with the background field b. Whether the gluon interacts

with the background field as well depends on whether it is produced (radiated from the Wilson line) before

or after x− = 0; this is reflected in the position of ta relative to the Wilson line, and in the Heaviside step

function of the longitudinal coordinate (c.f. eq. (1.161)). The appropriate Feynman diagrams for (1.168)

(where we suppress all Wilson lines not affected by the gluon fluctuation
〈
α+a
u α+b

z

〉
α

) are

q

b
=

q

b
Uxt

a ⊗ tb

+

q

b
taUx ⊗ tb

(1.170a)

and similarly for the q̄-contributions,

q̄

b
=

q̄

b
taU†x ⊗ tb

+

q̄

b
U†xt

a ⊗ tb

, (1.170b)

where time runs from bottom to top to mirror the depiction of spacetime in Figure 1.1 (the diagrams (1.170)

are inspired by [18]). We will see that contributions from the diagrams (1.170) largely cancel due to the

largest time Theorem [71], c.f. section 1.4.2.10.
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Our calculation of the derivative of Sqq̄gext in eq. (1.162) shows that

δm,n

δJx,y

∫

u,v

〈〈
α+a
u α+b

v

〉
α

(
δ

δb+au
Sqq̄gext [b, J†, J, J̃ ]

)(
δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

∣∣∣∣
{J}≡0

(1.171)

gives a sum of the form (again suppressing additional prefactors)

∑

positions of ta, tb

〈
α+a
u α+b

v

〉
α
Ux1 ⊗ · · · ⊗ taUxi

⊗ · · · ⊗ Uxm ⊗ U†y1
⊗ · · · ⊗ U†yj

tb ⊗ · · · ⊗ U†yn
, (1.172)

where we sum over all possible positions at which the generators ta, tb can attach to two distinct Wilson lines.

Each term in eq. (1.172) corresponds to Feynman diagrams in which two Wilson lines of the correlator are

connected with a gluon propagator
〈
α+a
u α+b

v

〉
α

by means of the vertex insertions ta and tb (in the case (1.172),

these are the Wilson lines Uxi
and U†yj

). The Heaviside step functions of the longitudinal coordinates (c.f.

eq. (1.162)) determine whether the gluon attaches to the (anti-) quark Wilson lines in a way that allows an

interaction between α and b, or not. All remaining Wilson lines in the correlator (that are not connected to

the gluon) interact with the target only. Suppressing such Wilson lines for the purpose of brevity, we obtain

the following diagrams [18]:

q

q̄

b =
q

q̄

b
Uxt

a ⊗ tbU†y

+
q

q̄

b
Uxt

a ⊗ U†ytb

+
q

q̄

b
taUx ⊗ tbU†y

+
q

q̄

b
taUx ⊗ U†ytb

, (1.173)

and similarly if the gluon propagator connects qq, q̄q or q̄q̄-pairs.

Lastly, from eq. (1.163) we see that the correlator

δm,n

δJx,y

∫

u,v

〈〈
α+a
u α+b

v

〉
α

(
δ

δb+au

δ

δb+bv
Sqq̄gext [b, J†, J, J̃ ]

)
eS

qq̄g
ext [b,J†,J,J̃]

〉

b

∣∣∣∣
{J}≡0

(1.174)

will give a sum of terms of the form (suppressing additional prefactors)

∑

positions of ta, tb

〈
α+a
u α+b

v

〉
α
Ux1 ⊗ · · · ⊗ taUxj

tb ⊗ · · · ⊗ Uxm ⊗ U†y1
⊗ · · · ⊗ U†yn

, (1.175)

where we sum over all possible positions at which the generators ta, tb can attach to the same Wilson line

U (†). Eq. (1.175) describes Feynman diagrams in which an individual (anti-) quark line (in our case Uxj
)

is dressed by a gluon (the gluon propagator
〈
α+a
u α+b

v

〉
α

attaches to the Wilson line via vertex insertions,

taUxj
tb), all other Wilson lines in the correlator are unaffected by this gluon and interact with the target

background field b only. Furthermore, whether the gluon represented by
〈
α+a
u α+b

v

〉
α

itself interacts with the

background field depends on the Heaviside step functions of the longitudinal coordinates (in (1.163)), and

on the positions at which the gluon attaches to the Wilson line U (†). Thus, the term (1.174) gives rise to
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diagrams such as [18]

q

b
=

q

b
tatbUx

+

q

b
taUxt

b

+

q

b
Uxt

atb

, (1.176a)

where we suppress Wilson lines unaffected by the fluctuation α. Similar diagrams arise when a q̄-line is

dressed with the gluon, except that the order of the gluon insertions is reversed,

q̄

b
=

q̄

b
tbtaU†y

+

q̄

b
tbU†yt

a

+

q̄

b
U†yt

bta

. (1.176b)

The Feynman diagrams corresponding to the various contributions of the cross section (1.167) inspires a

diagrammatic notation: Following [71], we introduce a graphical notation for the sum of vertex insertions ta,

...

...

...

...
:=

...

...

...

...
+ . . . +

...

...

...

...
−

...

...

...

...
− . . . −

...

...

...

...
; (1.177a)

notice that the gluon couples with a prefactor (−ig) to a Wilson line U in the fundamental representation,

but with a prefactor (+ig) to a Wilson line U† in the antifundamental representation (c.f. eqns. (1.160)),

causing the different signs in eq. (1.177a). In this notation, the diagrams in eqns. (1.170), (1.173) and (1.176)

are re-grouped, for example

...

...

...

...
−→

q

q̄

b

+ qq, q̄q, q̄q̄-contributions +

q

b

+ q̄-contribution . (1.177b)

This diagrammatic notation is summarized in Figure 1.8.
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i

...

...

...

...

Interaction at x− = 0 x− =−∞x− =+∞
sum over vertex

insertions ta

gluon (fluctuation)

target target average

color
singlet

rapidity
separation Y

Figure 1.8: This figure compliments the graphical notation introduced in Figure 1.6. Here, we introduce a

notation for the sum over vertex insertions ta (c.f. eq. (1.177a)) that describes the coupling of the projectile

to the fluctuation α of the background field.

1.4.2.9 Cross section with fluctuations in the color field

As we have already done for the cross section without gluon fluctuations in section 1.4.2.4, we would now

like to use the graphical notation (1.177) to define the |in〉- and |out〉-states analogous to eqns. (1.137). The

analysis of the previous section fully justifies these to be given by the following sum of diagrams,

|in〉 =

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i (1.178a)

|out〉 =

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i +

...

...

...

...

i . (1.178b)

The T -matrix element (|out〉 − |in〉) gives rise to the following expression for the cross section,

...

...

j

∣∣∣∣∣∣∣∣∣∣




...

...

...

...
+

gluon re-absorbed︷ ︸︸ ︷
...

...

...

...
+

...

...

...

...
+

...

...

...

...
+

gluon in final state︷ ︸︸ ︷
...

...

...

...
+

...

...

...

...



−




...

...

...

...
+

...

...

...

...
+

...

...

...

...
+

...

...

...

...

︸ ︷︷ ︸
gluon re-absorbed

+

...

...

...

...
+

...

...

...

...

︸ ︷︷ ︸
gluon in final state




∣∣∣∣∣∣∣∣∣∣

2

...

...

i . (1.179)

Multiplying out the terms in (1.179) involves connecting the index lines of two diagrams in the product at

x− = +∞. We remind the reader that this graphical procedure corresponds to performing an integral over

the transverse momenta, as explained in section 1.4.2.4 (c.f. eq. (1.143)); we will discuss the consequences

of this integration in section 1.4.2.10. In total, we obtain 122 = 144 terms, which can be grouped into the

following categories:
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1. 4 terms without gluon fluctuations,

j

...

...

...

...

...

...

...

...

i − j

...

...

...

...

...

...

...

...

i − j

...

...

...

...

...

...

...

...

i +
j

...

...

...

...

...

...

...

...

i ; (1.180a)

these terms merely describe the cross section without gluon fluctuations given in eq. (1.144).

2. 64 terms where we have a gluon entering the final state from either 〈in, out| or |in, out〉 but not both,

for example,

j

...

...

...

...

...

...

...

...

i ; (1.180b)

these contributions vanish identically since the mq+nq̄ Fock space component has no overlap with the

mq + nq̄ + g Fock space component.

3. 16 terms where the gluon enters the final state in both 〈in, out| and |in, out〉 to obtain 1-loop diagrams,

for example,

j

...

...

...

...

...

...

...

...

i . (1.180c)

4. 24 1-loop diagrams where the gluon does not enter the final state, such as

j

...

...

...

...

...

...

...

...

i . (1.180d)

5. 36 terms with two loops, for example

j

...

...

...

...

...

...

...

...

i ; (1.180e)

since these are next-to-leading order terms, we ignore these at LO calculation.

Thus, at leading order, we obtain 4 + 16 + 24 terms of the type (1.180a), (1.180c) and (1.180d) respectively.

Figures 1.9, 1.10 and 1.11 organize these terms according to 〈in|in〉, 〈out|out〉 and 〈in|out〉 (equivalently

〈out|in〉) contributions. (Figures 1.9 to 1.11 were inspired by [71, Figure 3].)

1.4.2.10 Cancellations and the largest time Theorem

It turns out that the terms arising from eqns. (1.180c) and (1.180d) largely cancel amongst themselves. This

happens through a combination of two phenomena: transverse coordinate identification of adjacent Wilson
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lines (c.f. eq. (1.143)) and largest time cancellations [71].

We have already encountered the first of the two phenomena in our discussion on the cross section without

gluon fluctuations in section 1.4.2.4. There, we found that connecting Wilson lines graphically through the

multiplication of the diagrams corresponds to an integration over the transverse momenta, which consequently

identifies the transverse coordinates of neighbouring Wilson lines. This, together with the unitarity of Wilson

lines, leads to simplifications of the terms originating from the 〈out|out〉-overlap (c.f. eq. (1.143)),

UxU
†
y

identify transverse coordinates−−−−−−−−−−−−−−−−−−−→
x=y

UxU
†
x = 1 . (1.181)

For example

j

...

...

...

...

...

...

...

...

i =
j

...

...

...

...

...

...

...

...

i . (1.182)

In this section, we leave a gap between the amplitude and the complex conjugate amplitude in the graphical

representation of the product in order to highlight the largest time x− = +∞ (c.f. eq. (1.142)) — nonetheless,

all lines are understood to be connected such that an integration over the transverse momenta takes place.

The second ingredient needed to effect the cancellation of many terms in the cross section (1.179) is the

largest time Theorem [73, 74]: Two diagrams, which differ only by a vertex insertion (in that one diagram

has a particular vertex inserted to the left of the largest time and the other has the same vertex inserted to

the right of the largest time), sum up to zero. In particular, this implies

...

...

...

...

...

...

...

...
+

...

...

...

...

...

...

...

...
= 0 (1.183a)

and

...

...

...

...

...

...

...

...
+

...

...

...

...

...

...

...

...
+

...

...

...

...

...

...

...

...
= 0 ; (1.183b)

similar cancellations hold for all other products of diagrams that differ only by a sum of generator insertions

on either side of the largest time x− = +∞.

These identities (integration over transverse momenta and eqns. (1.183)) give rise to cancellations between

a large number of diagrams. This is summarized in Figures 1.9 to 1.11 [71], where we depict all diagrams

summing to zero in the same row (outlined by a solid box). In fact, only the three diagrams in the last row

(no outline) of Figure 1.11 remain.

Alternatively, the diagrams in Figures 1.9 and 1.11 may be re-grouped column-wise (shaded boxes with

dashed outlines), merely to see that the diagrams within the new groups still cancel among themselves [71].
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This is due to the identity

...

...

...

...
+

...

...

...

...
+

...

...

...

...
= 0 , (1.184a)

describing the fact that there cannot be any JIMWLK evolution (i.e. radiation and re-absorption of a gluon)

if there is no interaction with the target, and

...

...

...

...
+

...

...

...

...
= 0 and

...

...

...

...
+

...

...

...

...
= 0 , (1.184b)

which tells us that no gluon can be emitted into the final state without an interaction taking place. Both

identities (1.184) are given in [71] and can be verified through explicit calculation.

In this viewpoint, one is again left with only three diagrams which do not cancel; these are depicted in the

last column (shaded box with no outline) in Figure 1.11.

+ +

+ +

+ +

+ + +

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

j

...

...

...

...

...

...

...

...

i

Figure 1.9: 〈in|in〉-states: The largest time Theorem (eqns. (1.183)) causes the cancellation of terms in the

same row (boxes with solid outlines), where the largest time x− = +∞ occurs in the centre of the diagrams

(c.f. eq. (1.142)). On the other hand, identities (1.184) effect the cancellation of all terms in the same column

(shaded boxes with dashed outline).
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Figure 1.10: 〈out|out〉-states: Each row of diagrams in this figure cancels due to final state cancellations.

For the first three rows this cancellation is trivially seen when considering the largest time x− = +∞ in the

centre of each diagram (c.f. eq. (1.142)). The diagrams in the last row first require a simplification that

stems from the integral over the transverse momenta (c.f. eq. (1.182)) before the largest time Theorem is

applicable.
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Figure 1.11: 〈in|out〉-states (the 〈out|in〉-states are obtained from the diagrams in this figure via Hermitian

conjugation): The cancellation of terms can be viewed in two ways — column-wise or row-wise. The largest

time Theorem (eqns. (1.183)) causes cancellations amongst the diagrams within the first three rows (boxes

with solid outlines) respectively; we remain with the terms appearing in the bottom row (no outline). Al-

ternatively, identities (1.184) give rise to column-wise (shaded boxes with dashed outline) cancellations: the

terms in the first column cancel due to identity (1.184a), and the terms in the second column cancel pair-wise

according to (1.184b). Thus we are left with the terms in the last column (shaded box, no outline). In both

cases, the remaining diagrams give the JIMWLK evolution at leading order, but with different interpretations.

(Notice that there is an overall minus sign for the sum in this figure.)
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In summary, all terms in Figures 1.9 and 1.10 cancel among themselves, and only three terms in Figure 1.11

survive. These three terms are either

− j
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i − j
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i − j
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...

i (1.185a)

or

− j

...

...
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...
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i − j
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i − j

...
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...
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...

...

...

i , (1.185b)

depending on whether one considers the terms to cancel across rows or across columns in the figure. Notice

however that the sums (1.185a) and (1.185b) are equal, as the final result cannot depend on which cancellation

method we choose. Even more strikingly, it can be shown [71] that the diagrams in eqns. (1.185) are equal

term by term,

j
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i j
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i j
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= = = (1.186)
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i ,

although, they receive different physical interpretations [71]: eq. (1.185a) contains only terms in which

particular (anti-) fundamental lines are dressed with gluon corrections, while eq. (1.185b) includes a term in

which the gluon enters the final state — we conclude that JIMWLK evolution cannot differentiate between

these two physically distinct situations.

Since eqns. (1.185) are completely equivalent, we are free to choose representation (1.185a) for the sum of

non-vanishing terms in the cross section. We may suppress the tower of Wilson lines that is gauge-equivalent

to 1 (using identity (1.129b) for the singlet state 〈j|) and simply write

− j

...

...

...

...

i − j

...

...

...

...

i − j

...

...

...

...

i . (1.187)

The same analysis given for the diagrams in Figure 1.11 also applies to the cross-terms arising from the

〈out|in〉-overlap, as the latter can be obtained from the former by simply mirroring diagrams about the

vertical axis. Thus, 〈out|in〉 will produce another copy of the sum (1.187).
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1.4.2.11 Finite difference equation leading to JIMWLK

Due to the cancellations described in section 1.4.2.10, the cross section (1.179) simplifies dramatically, leaving

only six (out of 144) non-vanishing terms in the cross section,25

〈
〈j|
∣∣∣∣
(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)
eS

qq̄g
ext [b+α,J†,J,J̃]

∣∣∣∣
2

|i〉
〉

b,α

∣∣∣∣∣
{J}≡0

=

2 ·

=δijtr(1)︷ ︸︸ ︷

j

...

...

...

...

i −




j
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...

...

i




†

− j

...

...

...

...

i

︸ ︷︷ ︸
=

〈
〈j|
∣∣∣( δm,nδJx,y

+ δm,n

δJx,y
δ
δJ̃z

)
exp{Sqq̄gext [b,J†,J,J̃]}

∣∣∣2|i〉〉
b,α

∣∣∣
{J}≡0

− 2·




j

...

...

...

...

i +
j

...

...

...

...

i +
j

...

...

...

...

i


 ,

(1.188)
where we suppressed the tensor product of Wilson lines in which all Wilson lines are gauge-equivalent to 1

due to identities (1.129). Furthermore, we were able to identify the first three diagrams as the cross section

without gluon fluctuations (c.f. eq. (1.144) in section 1.4.2.4).

Notice that each term in the second bracket on the RHS of eq. (1.188) includes an integral over the field

fluctuation α in the form of the two-point correlator
〈
α+a
u α+b

v

〉
α

. We know from section 1.3.1 that the

longitudinal momentum of the fluctuation has a cut-off Λ+
0 . As we increase the rapidity from Y0 to Y

(according to the RG argument explained in section 1.4.1), the momentum cut-off is adjusted to Λ+. Hence,

performing the α-integral over a finite momentum interval Λ+−Λ+
0 induces a factor ln 1

xBj
− ln 1

xBj0
= ln

xBj0

xBj
,

where xBj0 is the momentum fraction of the previous iteration in the RG argument; the details of this

calculation are given in in [57]. Let us perform the integration (thus making the factor ln
xBj0

xBj
explicit) and

rearrange terms of eq. (1.188) to obtain the following finite difference equation,

〈
〈j|
∣∣∣∣
(
δm,n

δJx,y
+

δm,n

δJx,y

δ

δJ̃z

)(
eS

qq̄g
ext [b+α,J†,J,J̃] − eSqq̄gext [b,J†,J,J̃]

)∣∣∣∣
2

|i〉
〉

b,α

∣∣∣∣∣
{J}≡0

=

...

...

j




ln

(
xBj0

xBj

) ...

...

...

...
+

...

...

...

...
+

...

...

...

...

︸ ︷︷ ︸
=:−HJIMWLKUm,n

x,y




...

...

i , (1.189)

where we suppressed the factor 2 on the right-hand side (one may always absorb this constant into another

constant appearing on the right). The difference on the left-hand side of this equation represents the com-

parison of two stages in the renormalization group argument as explained in section 1.4.1, eq. (1.98). Let us

take a limit such that the energy difference between the previous and current iterations of the RG argument

goes to zero. In this limit, the fluctuation α → 0 such that b + α → b and Sqq̄gext [b, J†, J, J̃ ] → Sqq̄gext [b, J†, J ].

25We again projected onto the singlet states |i〉, 〈j| to remind the reader that we are ultimately interested in cross sections
involving physical observables, which are represented by singlet correlators. The calculations however would still hold without
projecting onto singlet states.
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Simultaneously, this limit induces xBj → xBj0. Bringing the term ln
(
xBj0

xBj

)
to the left hand of the equation

then yields

d

d ln(1/xBj)

〈
δm,n

δJx,y
eS

qq̄g
ext [b,J†,J]

〉
(Y )

∣∣∣∣∣
{J}≡0

=

...

...

j




...

...

...

...
+

...

...

...

...
+

...

...

...

...

︸ ︷︷ ︸
−HJIMWLKUm,n

x,y




...

...

i , (1.190)

where we have suppressed the integration variable b in the average, 〈· · · 〉b → 〈· · · 〉. Recalling that the rapidity

Y and Bjorken-x are related via Y = ln
(

1
xBj

)
, we finally obtain the JIMWLK equation (1.99) at leading

order,

d

dY
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...

j
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−

...
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...

...

i




︸ ︷︷ ︸
〈A〉(Y )

=

...

...

j




−HJIMWLKUm,n
x,y︷ ︸︸ ︷

...

...

...

...
+

...

...

...

...
+

...

...

...

...




...

...

i

︸ ︷︷ ︸
−〈HJIMWLKA〉(Y )

, (1.191)

where we have identified the Wilson lines projected onto singlet states 〈j|Um,n
x,y |i〉 as our observable Aji (c.f.

eq. (1.192)).

1.5 Parametrization of JIMWLK

It turns out that no exact analytical solution to the JIMWLK equation can be found, although at leading

order it can be solved numerically via a Langevin description [18, 67]. Thus, in order to perform analytic

calculations in practice, one approximates the averaging procedure 〈· · ·〉 (Y ) using a parametrization. In our

context, the most common approximation (after a large-Nc approximation, which violates gauge invariance)

is the Gaußian truncation [18, 71, 75]; the name can be attributed to the fact that, if the approximation

is truncated at leading order, the average 〈· · ·〉 (Y ) has a Gaußian weight. Let us go through the steps at

arriving at the Gaußian truncation and its generalizations (i.e. truncations at higher order).

Consider a matrix of Wilson line correlators 〈A〉 (Y ) describing the eikonal interaction of a projectile (for

〈A〉 (Y ) to be a physical observable it needs to be a Wilson line correlator projected onto a color singlet state

in V ⊗m ⊗ (V ∗)⊗n) and a target. Clearly, 〈A〉 (Y ) is a k × k matrix with matrix elements

Aji =
j

...

...

...

...

i , (1.192)

where k is the number of singlet representations of SU(N) over V ⊗m⊗(V ∗)⊗n (c.f. the later chapter 5). While

we explicitly depict Aji with Wilson lines that are not all gauge equivalent to unity (c.f. eq. (1.118)), we will

later consider various coincidence limits of the Wilson lines within Aji (see section 1.6.2). The evolution of

55



Section 1.5. Parametrization of JIMWLK

〈A〉 (Y ) with rapidity is governed by the JIMWLK equation

d

dY
〈A〉 (Y ) = −〈HJIMWLKA〉 (Y ) . (1.193a)

Since eq. (1.193a) cannot be solved analytically in general, we aim to parametrize the evolution described

by the JIMWLK Hamiltonian. The calculation at leading order in eq. (1.191) shows that the singlet states

|i〉, |j〉 are not affected by the JIMWLK evolution, but remain intact as Y changes. In particular, evolving a

Wilson line correlator (which is projected onto the singlet states |i〉, |j〉) will return a (sum of) Wilson line

correlator(s) projected onto singlet states living in the same algebra as |i〉, |j〉. Hence, d
dY 〈A〉 (Y ) is expected

to be of the form

d

dY
〈A〉 (Y ) = −M(Y ) 〈A〉 (Y ) , (1.193b)

where also M(Y ) is understood to be a k × k matrix. In particular, M(Y ) must inherit the block-structure

of A, in the sense that all matrix elements that vanish in A must also vanish in M(Y ). This behaviour

of JIMWLK evolution can intuitively be understood by noticing that the explicit form of HJIMWLK at LO

in eq. (1.191) determines the evolution of Wilson line correlators to occur through the exchange of exactly

two gluons — one “carries color away”, the other “brings color back” such that the overall color exchange is

zero [51].

There are two major benefits of eq. (1.193b) over the full JIMWLK equation: The first is that it can easily

be integrated to yield an expression for 〈A〉 (Y ),

〈A〉 (Y ) = PY exp

{
−
∫ Y

Y0

dỸM(Ỹ )

}
〈A〉 (Y0) . (1.194)

Secondly, since M(Y ) is linear (as it is a k × k matrix), we can hope to parametrize the operator

PY exp
{
−
∫ Y
Y0

dỸM(Ỹ )
}

— unlike the JIMWLK Hamiltonian, which lives in a curved manifold.

However, there are two issues that need to be addressed:

1. So far, we have given an intuitive reason for the existence of a parametrization of the form (1.193b) for

the JIMWLK Hamiltonian. It still remains to be verified that our expectation did not betray us. This

will be accomplished in section 1.5.1, where we also give the criteria stating when the parametriza-

tion (1.193b) will be valid.

2. Secondly, for (1.193b) to be a matrix equation, the operator PY exp
{
−
∫ Y
Y0

dY ′M(Y ′)
}

must have a

specific form. This will be discussed in section 1.5.2.

1.5.1 Validity of the parametrization

In short, the parametrization (1.193b) is valid as long as the Wilson line correlator 〈A〉 (Y ) is invertible [51].

If the inverse (〈A〉 (Y ))
−1

exists, then the left-hand side of the JIMWLK equation (1.193a) may be multiplied
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by the unit element (〈A〉 (Y ))
−1 〈A〉 (Y ),

d

dY
A(Y ) =

(
d

dY
〈A〉 (Y )

)
(〈A〉 (Y ))

−1

︸ ︷︷ ︸
=:−M(Y )

〈A〉 (Y ) = −M(Y ) 〈A〉 (Y ) , (1.195)

yielding a definition of M(Y ).

Thus, the question to be answered is: When does 〈A〉 (Y ) have an inverse? Clearly, the matrix 〈A〉 (Y ) is

invertible if all its eigenvalues are nonzero. Suppose that A has a zero eigenvalue. This implies (by eq. (1.195))

that the corresponding eigenvalue ofM(Y ) must be infinite. SinceM(Y ) parametrizes HJIMWLK, an infinite

eigenvalue of M(Y ) indicates an IR or UV divergence of HJIMWLK. However, it can be shown that the

JIMWLK Hamiltonian remains finite for color singlets [76].26 Therefore, all eigenvalues of Amust be nonzero,

yielding 〈A〉 (Y ) to be invertible.

Intuitively, this was to be expected: If all Wilson lines in 〈A〉 (Y ) are set to unity, the matrix 〈A〉 (Y ) itself

becomes the unit matrix. Since this matrix is a physical observable, it should smoothly divert from the unit

matrix as we vary the Wilson lines away from 1. Hence, it is plausible to assume that A(Y ) is invertible, at

least in some neighbourhood of the unit matrix.

1.5.2 Form of the parametrization

The modern form of the parametrization of the JIMWLK equation (see the later eq. (1.201)) found its

inspiration in the MV-model (c.f. eq. (1.87)). In the present section, we give a brief overview of how this

comes about.

Consider an observable described by a Wilson line correlator A. Its rapidity-dependent expectation value is

given via the averaging procedure prescribed by the MV-functional distribution (1.87). Ignoring fluctuations

α such that the gauge field A becomes roughly equal to the background field, A = b+ α ≈ b, one may relate

the sources ρ to the background field b using eq. (1.81),

∂i∂
ib+ax = ρa(x)δ(x−) =⇒ ∂i∂

ib̃+ax = ρa(x) , where b̃+ax δ(x−) := b+ax . (1.196)

This allows one to write the MV-functional distribution (1.87) in terms of the background field as [20]

〈A〉 (Y ) =

∫
[dρ]

(
PY exp

{
−
∫ Y

Y0

dỸ

∫
d2x

ρa(Ỹ ,x)ρa(Ỹ ,x)

µ2(Ỹ , Q2)

}
A
)

=

∫
[dρ]


PY exp



−

∫ Y

Y0

dỸ

∫
d2x

(
∂i∂

ib̃+ax (Ỹ )
)(

∂j∂
j b̃+ax (Ỹ )

)

µ2(Ỹ , Q2)



A


 (1.197)

(where we have made the range of Ỹ explicit in the limits of the integral). The expectation value (1.197)

may now be calculated for several Wilson line correlators A. The details on how this can be accomplished

26The JIMWLK kernel can be split into an IR safe part (the BK-kernel), and a part that potentially causes IR divergences.
However, this second part can be shown to vanish when the Wilson line correlator is projected onto singlet states on both sides,
i.e. U =

∑
i,j |j〉〈j|U|i〉〈i| where both |i〉, |j〉 are singlets, causing such a correlator to be IR safe. On the other hand, if |i〉, |j〉

are not global color singlets, then the contribution from the IR-divergent part of the JIMWLK kernel is suppressed by a factor
e−∞ at leading order [76].

57



Section 1.5. Parametrization of JIMWLK

in general are laid out in [20]. However, already the example where A is taken to be the qq̄-dipole singlet

A = tr
(
UxU

†
y

)
given in [18] exposes several general features of the averaging procedure (1.197). We thus

recapitulate it here: As argued in detail in [77], one may change variables to express the Wilson line U as a

rapidity-ordered exponential rather than a path-ordered exponential, such that [18],27

Ux = Pexp

{
−ig

∫ ∞

−∞
dx−b+ax tax

}
= PY exp

{
−i
∫ Y

Y0

dỸ βỸ ,x

}
, (1.198)

where the function βỸ ,x can be determined through the change of variables. Owing to the fact that eq. (1.197)

is local in Y (the Gaußian weight in (1.197) depends only on one value of rapidity), the MV-average (1.197)

of a correlator of Wilson lines (1.198) inserts a 2-point correlator (connecting two Wilson lines) at the largest

rapidity Y . To paraphrase [18], the expectation value of the dipole operator to lowest order can be graphically

represented as

−dfCf

∫ Y

Y0

dỸ

Ỹ

:= −dfCf

∫ Y

Y0

dỸ





Ỹ

+




Ỹ

+

Ỹ




 (1.199)

(mirroring notation (1.177) for the sum over vertex insertions), where the hatched blob denotes the 2-point

correlator that is inserted by the MV-average, and the target is suppressed. To higher orders, due to locality

in rapidity, the 2-point correlator still attaches at the latest value of rapidity (i.e. at the very left, in a

graphical sense) [18, 20]

∫ Y

Y0

dỸn

∫ Ỹn

Y0

dỸn−1 . . .

∫ Ỹ1

Y0

dỸ0





Ỹn Ỹn−1

· · ·
Ỹ0





. (1.200)

The same effect can also be achieved through a simpler functional: Consider the following Ansatz for the

averaging procedure 〈A〉 (Y ) (for an arbitrary observable A),

〈A〉 (Y ) =

〈
PY exp

{
−
∫ Y

Y0

dỸ

∫
d2x d2y G

(δ)

Ỹ ,xy
δab∇̄axi∇̄by

}
A
〉

(Y0) , (1.201)

where G
(δ)

Ỹ ,xy
is a 2-point function yet to be determined and ∇̄ax is defined in terms of the functional derivative

δ
δUx

[18, 78]

i∇̄ax := taUx
δ

δUx
, (1.202a)

such that

i∇̄axUy = taUxδ
(2)
xy and i∇̄axU†y = −U†xtaδ(2)

xy . (1.202b)

In the modern literature [30, 71, 79, 80], the Ansatz (1.201) is also referred to as the Gaußian truncation.

By its very definition, the Ansatz (1.201) mirrors the action of the MV-averaging procedure and inserts a

27We have again neglected the fluctuations α such that A = b+ α ≈ b.
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2-point propagator G(δ) to the left of the Wilson lines in a general correlator 〈A〉 (Y0),

[
d

dY

〈
PY exp

{
−
∫ Y

Y0

dỸ

∫
d2x d2y G

(δ)

Ỹ ,xy
δabi∇̄axi∇̄by

}
A
〉

(Y0)

]

ji

=
j

...

...

...

...

G

i , (1.203)

where we have suppressed the superscript (δ) in the graphical representation. However, not only is the

parametrization (1.201) much easier to calculate than the average from the MV-model (since the latter

requires one to compute complicated integrals that the former does not), but eq. (1.201) does not require the

Wilson lines to be rapidity ordered as the parametrization itself is ordered in Y . This makes the Gaußian

truncation (1.201) preferable over the MV-model (1.197).

It is easy to show that the Gaußian truncation satisfies the desired matrix equation (1.193b), one only needs

to insert a full set of singlet states
∑

k

|k〉〈k|,

j

...

...

...

...

G

i =
∑

k

j

...

...

...

...

G

k

︸ ︷︷ ︸
[M(Y )]jk

k

...

...

...

...

i

︸ ︷︷ ︸
[〈A〉(Y )]ki

= [M(Y )]jk[〈A〉 (Y )]ki , (1.204)

where a sum over repeated indices is applied in the last step. Therefore, the operator (1.201) does indeed

give rise to a matrix M(Y ) acting on the matrix of correlators 〈A〉 (Y ). (If the algebra is so small that it

allows only one singlet state, for example API (SU(N), V ⊗ V ∗), thenM(Y ) will be a scalar and 〈A〉 (Y ) is a

single correlator.)

1.5.3 Faithfully parametrizing the JIMWLK Hamiltonian

Inspired by the symmetry of the JIMWLK Hamiltonian eq. (1.191),28

−HJIMWLK Um,n
x,y :=

...

...

...

...
+

...

...

...

...
+

...

...

...

...
(1.205)

(for the notation Um,n
x,y , c.f. eq. (1.126b)), we employ a parametrization that mimics the symmetry of

HJIMWLK, such as (up to first order) [51]

〈
PY exp

{
−
∫ Y

Y0

dỸ

∫
d2x d2y

(
G

(δ)

Ỹ ,xy
δabi∇̄axi∇̄by + L

(δ)

Ỹ ,xy
δabi∇̄axi∇by +K

(δ)

Ỹ ,xy
δabi∇axi∇by

)}
A
〉

(Y0) ,

(1.206)

where ∇ax acts to the right of the Wilson lines [18, 78],

i∇axUy := −Uxt
aδ(2)

xy and i∇axU†y := taU†xδ
(2)
xy , (1.207)

28In [71] it is made clear that HJIMWLK does not depend on the U(†)’s on which it acts, which is why eq. (1.205) appears
without the tensor product Um,n

x,y there.
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such that

[
d

dY
(eq. (1.206))

]

ji

−→
...

...

j




...

...

...

...

G

+

...

...

...

...

L

+

...

...

...

...

K




...

...

i . (1.208)

We note that the propagator L
(δ)

Ỹ ,xy
does not interact with the target in the middle term in (1.208). This

immediately disqualifies a parametrization including the middle term in (1.208), as such a term breaks the

symmetry of the Hamiltonian it ultimately tries to describe: HJIMWLK is invariant under the following

transformation of the Wilson lines Um,n
x,y (c.f. eq. (1.126b)):

Um,n
x,y −→ ULUm,n

x,y U†R , (1.209)

where

UL := UzL ⊗ . . .⊗ UzL︸ ︷︷ ︸
m times

⊗U†zL ⊗ . . .⊗ U†zL︸ ︷︷ ︸
n times

(1.210a)

UR := UzR ⊗ . . .⊗ UzR︸ ︷︷ ︸
m times

⊗U†zR ⊗ . . .⊗ U†zR︸ ︷︷ ︸
n times

, (1.210b)

for two arbitrary transverse coordinates zL and zR. This is trivially true for the left and right term in (1.205).

For the middle term in the JIMWLK Hamiltonian, the invariance with respect to the transformation (1.209)

holds, since the interaction of the gluon with the target counteracts the vertex insertion ta from standing in

the way of the cancellation of UL and UR. However, since the middle term in the parametrization (1.206)

does not interact with the target, it is invariant under the transformation if and only if zL = zR, and hence

does not capture the more general invariance of HJIMWLK. Therefore, the parametrization (1.206) can only

include the first and last terms,

[
d

dY

〈
PY exp

{
−
∫ Y

Y0

dỸ

∫
d2x d2y

(
G

(δ)

Ỹ ,xy
δabi∇̄axi∇̄by +K

(δ)

Ỹ ,xy
δabi∇axi∇by

)}
A
〉

(Y0)

]

ji

=

...

...

j




...

...

...

...

G

+

...

...

...

...

K




...

...

i . (1.211)

However, this means that the parametrization (1.211) cannot describe the middle term of the JIMWLK

Hamiltonian (1.205) — we can only hope that this term emerges from a generalization of (1.211) to higher

orders (i.e. higher n-point functions).

1.5.4 Beyond the Gaußian truncation

One may attempt to find a better parametrization of the JIMWLK Hamiltonian by including higher order

terms. In the spirit of eq. (1.201) (or, equivalently, eq. (1.211))), we generalize the left action involving

60



Chapter 1. High Energy Physics and Wilson Line Correlators

G
(δ)
Y,x1x2

to (c.f. [80], where we absorbed numerical factors into the parameters G)

j

...

...

...

...

G

i generalize−−−−−−→
[〈{∫

x1x2

G
(δ)
Y,x1x2

δa1a2i∇̄a1
x1
i∇̄a2

x2
(1.212a)

+

∫

x1x2x3

(
G

(d)
Y,x1x2x3

da1a2a3 +G
(f)
Y,x1x2x3

ifa1a2a3

)
i∇̄a1

x1
i∇̄a2

x2
i∇̄a3

x3
(1.212b)

+

∫

x1x2x3x4

(∑

j

G
(j)
Y,x1x2x3x4

Ca1a2a3a4
j

)
i∇̄a1

x1
i∇̄a2

x2
i∇̄a3

x3
i∇̄a4

x3
(1.212c)

+ . . .

}
A
〉

(Y0)

]

ji

,

where

∫

x1x2x3x4...

:=

∫ ∫ ∫ ∫
dx1 dx2 dx3 dx4 . . . , (1.213)

and similarly for the right action involving K
(δ)
Y,x1x2

(c.f. eq. (1.211)). In eq. (1.212), fa1a2a3 and da1a2a3 are

structure tensors of SU(N), and the Ca1a2a3a4
j are color factors of rank 4.

Only retaining the operators acting from the left (i.e. setting all functions K
(j)
Y,x1...xn

to zero), this approxi-

mation was used up to third order to investigate the odderon contribution to observables [80]. On the other

hand, determining the symmetries of the color factors Ca1...an
j beyond the third order is not a trivial task,

and current research is being conducted to answer this question (c.f., for example, [81, 82]). We comment on

this topic again in section 10.2.2.2 at the end of this thesis.

We emphasize that truncating the series given in (1.212) at the nth order leaves gauge invariance intact. The

underlying cause for this is that the truncation happens at the level of the Lie algebra (i.e. in the exponent)

rather than on the manifold itself. Thus, even when (1.212) is truncated, the resulting object still lies in the

group manifold.

1.5.5 Symmetries of the correlators and the parametrization of JIMWLK

Let us parallel transport the initial condition 〈A〉 (Y0) (c.f. (1.211)) from Y0 to Y using some transformations

UL[Y,Y0] and UR[Y,Y0] acting on the left and right of 〈A〉 (Y0) respectively,

〈A〉 (Y ) → UL[Y,Y0] 〈A〉 (Y0)UR[Y,Y0] . (1.214)

The Y -derivative of 〈A〉 (Y ) is then given by

d

dY

( 〈A〉(Y )︷ ︸︸ ︷
UL[Y,Y0] 〈A〉 (Y0)UR[Y,Y0]

)
=

(
d

dY
UL[Y,Y0]

)
〈A〉 (Y0)UR[Y,Y0] + UL[Y,Y0] 〈A〉 (Y0)

(
d

dY
UR[Y,Y0]

)

=

(
d

dY
UL[Y,Y0]

)(
UL[Y,Y0]

)−1

〈A〉(Y )︷ ︸︸ ︷
UL[Y,Y0] 〈A〉 (Y0)UR[Y,Y0]
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+ UL[Y,Y0] 〈A〉 (Y0)UR[Y,Y0]︸ ︷︷ ︸
〈A〉(Y )

(
UR[Y,Y0]

)−1
(

d

dY
UR[Y,Y0]

)
, (1.215)

where we have inserted the unit elements
(
UL[Y,Y0]

)−1

UL[Y,Y0] = 1 and UR[Y,Y0]

(
UR[Y,Y0]

)−1

= 1 in the second

step. Defining the operators EL(Y ) and ER(Y ) as

EL(Y ) := −
(

d

dY
UL[Y,Y0]

)(
UL[Y,Y0]

)−1

and ER(Y ) := −
(
UR[Y,Y0]

)−1
(

d

dY
UR[Y,Y0]

)
, (1.216)

the Y -evolution of 〈A〉 (Y ) can be written as

d

dY
〈A〉 (Y ) = −

(
EL(Y ) 〈A〉 (Y ) + 〈A〉 (Y )ER(Y )

)
, (1.217)

where EL(Y ) and EL(Y ) are once again k × k matrices acting on 〈A〉 (Y ) from the left, respectively, right.

If a particular element of 〈A〉 (Y ) is zero, then the corresponding elements in EL(Y ) and EL(Y ) must vanish

as well, as was already the case for M(Y ) in (1.193b).

The parametrization (1.217) can easily be reformulated to yield a matrix equation of the form (1.193b) [51]:

Multiplying the right-hand side of eq. (1.217) with 〈A〉−1
(Y ) 〈A〉 (Y ) = 1,

d

dY
〈A〉 (Y ) = −

(
EL(Y ) 〈A〉 (Y ) + 〈A〉 (Y )ER(Y )

)
〈A〉−1

(Y ) 〈A〉 (Y ) , (1.218)

and defining

M(Y ) := EL(Y ) + 〈A〉 (Y )ER(Y ) 〈A〉−1
(Y ) (1.219)

once again yields the parametrization (1.193b), which acts on the left of 〈A〉 (Y ) only. Thus, we have confirmed

that eq. (1.193b) is fully general. However, recent research [83] indicates that, even though a truncation of

the one sided parametrization (1.193b) leaves the result gauge invariant, it does not necessarily reflect the

symmetries of the matrix of correlators 〈A〉 (Y ): If, for example, we decompose 〈A〉 (Y ) into its symmetric

and antisymmetric parts,

〈A〉 (Y ) =
〈A〉 (Y ) + 〈A〉t (Y )

2
+
〈A〉 (Y )− 〈A〉t (Y )

2
, (1.220)

Then the JIMWLK evolution of each portion must reflect its symmetry. In other words,

d

dY

(
〈A〉 (Y ) + 〈A〉t (Y )

2

)
is symmetric (1.221a)

d

dY

(
〈A〉 (Y )− 〈A〉t (Y )

2

)
is antisymmetric . (1.221b)

On the other hand, the parametrization (1.219) on a symmetric matrix 1
2 (〈A〉 (Y ) + 〈A〉t (Y )) does not

necessarily yield a symmetric matrix when it is truncated at a particular order — all orders are required [83].

Recent research [83] suggests that the easiest way to maintain the symmetry properties (1.221) of 〈A〉 (Y ) is

to retain a two-sided approach à la eq. (1.217), with certain conditions imposed on the relationship between
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the n-point functions in EL(Y ) and ER(Y ). This ensures that the symmetries of the matrix of correlators

〈A〉 (Y ) is not destroyed by the parametrization of the evolution equation. In this thesis, we focus on the

symmetries of the correlators in 〈A〉 (Y ):

1.6 Symmetry implications for Wilson line correlators

Up to this point, we have given a summary of QCD interactions at high energies in the Regge-Gribov limit,

and of how observables in such a limit (i.e. Wilson line correlators) depend on the energy deposited into the

collision area (c.f. the JIMWLK equation in section 1.4). Let us recapitulate the key points discussed so far.

Confinement is a phenomenon of QCD that is, to this day, theoretically not well understood in the sense

that it is unclear which feature of QCD forces color charged objects to be confined into color neutral states.

However, one of the consequences of confinement is clear: all objects that carry net color charge (i.e. quarks

and gluons) are necessarily bound together in globally color neutral states such as baryons or mesons. It is

thus of paramount importance to understand color neutral states, so-called singlet-states, in order to perform

QCD calculations for cross sections on physically meaningful objects.

In the weak coupling region of QCD (where αs � 1), a Feynman diagram containing fewer gluon vertices is

kinematically favoured over a Feynman diagram containing many gluon vertices, as each vertex introduces a

factor ∝ αs in the corresponding Feynman integral. However, as we move to the high energy (equivalently

high rapidity Y ) region of QCD, the vertex factor receives a logarithmic enhancement such that it becomes

∝ αslnY , which is of order 1. Consequently, higher order Feynman diagrams can no longer be neglected; a

resummation of Feynman diagrams to all orders (in the number of gluons being exchanged) is necessary. As

shown in section 1.2.3, this resummation yields the interaction to be described by Wilson lines. Since the

Wilson lines themselves are elements of the gauge group SU(N) of QCD (c.f. section 1.2.4), they impart

additional structure on the correlators describing the projectile. (This structure would not have been present

at lower energies where the resummation of Feynman diagrams, which produces Wilson lines, does not take

place!) In particular, this implies that the color singlets mentioned in this section are in fact singlet with

respect to the gauge group SU(N).

In conclusion, Wilson line correlators need to be understood well in order to proceed with (most) research in

the small-xBj limit of QCD. For the remainder of this section, the particulars of how Wilson line correlators

will be studied in this thesis will be explained:

Section 1.6.1 focuses on the color singlets onto which the Wilson line correlators are projected. The fact that

Wilson lines are elements of SU(N) has group theoretic implications on color singlets; these implications will

be examined. We will find that surprisingly little is known about the singlet states of SU(N), leading to the

formulation of the main goal to be achieved in this thesis.

In section 1.6.2, the group theoretic implications of the Wilson line correlators on the parametrization of

JIMWLK are explained. This analysis presupposes knowledge about the singlet states of SU(N), therefore

substantiating the need for the research that is presented in this thesis.
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1.6.1 Wilson line correlators and JIMWLK evolution

As already stated, the color neutral states into which color charged objects combine are in fact the singlet

states of SU(N), by virtue of the Wilson lines being elements of the special unitary group. Each Wilson line

correlator considered in this thesis (such as those we encountered thus far) is of the form

〈j|U|i〉 , (1.222)

where U := Ux⊗U†x′ ⊗Uy ⊗U†y′ , and x,x′,y,y′ are transverse coordinates. (We chose to alter the notation

Um,n
x,y (c.f. eq. (1.126b)) to U for the remainder of this thesis in order not to clutter the equations. However,

the coordinate dependence on the factors in U will always be made clear.) The states |i〉, |j〉 =: 〈j|† are global

singlet states of SU(N), which is to say that |i〉 and |j〉 satisfy

U|i, j〉 = |i, j〉 and 〈i, j|U† = 〈i, j| if x = x′ = y = y′ . (1.223)

Furthermore, Wilson lines carry singlets into singlets. This is a consequence of the conservation of color at

each vertex29 in the underlying sum of Feynman diagrams. This was also observed in the cross sections (1.144)

(without fluctuations) and (1.179) (with fluctuations), where the singlet state |i〉 once again becomes a singlet

state |j〉 after the interaction.

In the case of a qq̄-dipole, there exists only one possible singlet.30 Therefore, the qq̄-pair must attain the same

singlet state after the eikonal interaction as it had before, as can be observed in eq. (1.146). For two qq̄-dipoles

the situation becomes more interesting, since there are two possible singlets that can be formed [71],

1

df
and

1√
dA

, df := N , dA := N2 − 1 . (1.224)

In practical calculations (for example, when considering the energy evolution by means of the JIMWLK

equation), all of these states have to be considered simultaneously, since one singlet state may be mapped

into another through the eikonal interaction. In other words, instead of a single correlator, one takes into

account the following matrix of correlators [71],

〈A〉 (Y ) :=




1
d2
f

1
df
√

dA

1
df
√

dA

1
dA




. (1.225)

Therefore, in order to properly encapsulate the Y -evolution of a particular Wilson line correlator over V ⊗m⊗
(V ∗)⊗n, all Wilson line correlators over this Fock space have to be known, as they will contribute towards

the evolution. Consequently, knowledge of all singlet states of SU(N) over V ⊗m⊗ (V ∗)⊗n is required for such

a calculation.

After carefully researching this topic, we found that the textbook method of constructing Hermitian projection

29For a textbook exposition, see [27].
30In chapter 5, a counting argument for singlets over V ⊗m ⊗ (V ∗)⊗m is given (see Theorem 5.2), thus proving this claim.
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operators onto the irreducible (singlet) representations of SU(N) over a mixed space V ⊗m ⊗ (V ∗)⊗n is

theoretical at best: There exists a clear algorithm to achieve this goal, but the computational effort involved

is so large that it soon become impractical (we explain this algorithm and where it fails us in detail in

chapter 5). Therefore, the goal of this thesis is simple:

Research Statement: We provide a general, practically useful construction algorithm for all singlet pro-

jection operators of SU(N) over any mixed product space V ⊗m ⊗ (V ∗)⊗n.

The details on how we plan to achieve this, as well as an overview of other important results of this thesis,

are given in section 1.7, where the outline of this thesis is presented. First, however, let us comment on

how singlet states help to constrain the parameters G
(j)
x1...xn and K

(j)
x1...xn used in the parametrization of the

JIMWLK equation (c.f. eq. (1.212)). This will immediately provide the first application of the singlet states

to be constructed in this thesis.

1.6.2 Coincidence limits of Wilson line correlators

In a general Wilson line correlator, the tensor product U consists of m fundamental and n antifundamental

Wilson lines, which are all at distinct transverse coordinates (c.f. eq. (1.222)),

U := Ux1
⊗ . . .⊗ Uxm ⊗ U†y1

⊗ . . .⊗ U†yn ∈ SU(N)× . . .× SU(N)︸ ︷︷ ︸
(m+ n) factors

. (1.226)

Such a tensor product gives a representation of the product group SU(N)× . . .× SU(N) (m+ n factors) on

V ⊗m⊗ (V ∗)⊗n. Since the states |i〉, |j〉 are globally singlet with respect to SU(N), the Wilson line correlator

simplifies in the limit where all transverse coordinates are set equal, i.e. the limit

U
x1=...=xm=−−−−−−−−→
=y1=...=yn

Ux1
⊗ . . .⊗ Ux1

⊗ U†x1
⊗ . . .⊗ U†x1

∈ SU(N)× . . .× SU(N)︸ ︷︷ ︸
(m+ n) factors

(1.227)

yields U|i, j〉 = |i, j〉 and 〈i, j|U† = 〈i, j|. In this case, the tensor product U realizes a representation of the

group SU(N) on the product space V ⊗m⊗ (V ∗)⊗n, since there exists a map Ux1 7→ U (where Ux1 ∈ SU(N)).

The limit (1.227) will from now on be referred to as a total coincidence limit, since the transverse coordinates

of the associated Wilson lines coincide.

But, what happens if only some of the coordinates are set equal? It should be noted that such a partial

coincidence limit reduces the factors in the product group for which U realizes a representation on V ⊗m ⊗
(V ∗)⊗n, for example,

U
x1=x2−−−−→ Ux1

⊗ Ux1
⊗ Ux3

⊗ . . .⊗ Uxm ⊗ U†y1
⊗ . . .⊗ U†yn ∈ SU(N)× . . .× SU(N)︸ ︷︷ ︸

(m+ n) factors

realizes a representation of SU(N)× . . .× SU(N)︸ ︷︷ ︸
(m+ n)− 1 factors

on V ⊗m ⊗ (V ∗)⊗n , (1.228)

since the first two factors in the product U realize a representation of SU(N) on V ⊗2. Therefore, as more

and more partial coincidence limits are taken, one expects more and more simplification to take place in the
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associated Wilson line correlators. We will discuss the effects of partial coincidence limits on Wilson line

correlators by means of an example.

Coinsider once again two qq̄-dipoles (c.f. (1.225)), but let us condense the graphical notation used thus far.

Firstly, we note that the rapidity dependent average 〈· · ·〉 (Y ) was graphically denoted by · · · ( c.f.

eq. (1.134)). In what follows, we will suppress the interaction with the target, thus making the notation

〈· · ·〉 (Y ) for the average preferable,




1
d2
f

1
df
√

dA

1
df
√

dA

1
dA




−→




1
d2
f

1
df
√

dA

1
df
√

dA

1
dA




(Y ) .

(1.229)

Furthermore, we will suppress the target itself; only the Wilson lines in the diagram will remind us of

the interaction taking place,31

〈A〉 (Y ) =




1
d2

f

1
d f
√

dA

1
d f
√

dA

1
dA




(Y ) . (1.230)

Different bases of the singlet states will be beneficial for different coincidence limits. For example, the basis

given in eq. (1.230) is particularly suited for studying the coincidence limits between either the top pair of

Wilson lines,

Ux ⊗ U†x′ ⊗ Uy ⊗ U†y′
x→x′

−−−−→ Ux ⊗ U†x ⊗ Uy ⊗ U†y′ , (1.231)

or the bottom pair (y → y′), as either of these limits will cause the off-diagonal elements of the matrix (1.230)

to vanish [71],




1
d2

f

1
d f
√

dA

1
d f
√

dA

1
dA




(Y )
x→x′

−−−−−→
or y→y′




1
d f

0

0 1
dA




(Y ) . (1.232)

The simplification exhibited in (1.232) boils down to the fact that the group generators [ta]ik are traceless (c.f.

section 5.3.1.2 in chapter 5 for a more in-depth explanation). In order to use this property of the generators

to our advantage for a coincidence limit between the central two Wilson lines (x′ → y), or the top-most

and bottom-most Wilson line (x → y′), a reordering (permutation) of index lines in the matrix (1.230) is

31We have highlighted the correlators on the diagonal for visual clarity.
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necessary:

〈A〉 (Y ) =




1
d2

f

1
d f
√

dA

1
d f
√

dA

1
dA




(Y ) =




1
d2

f

1
d f
√

dA

1
d f
√

dA

1
dA




(Y ) ,

(1.233)

where we merely disentangled the index lines in the second step for clarity. Under such a reordering, the

off-diagonal elements of the matrix (1.233) once again vanish in the coincidence limits x→ y′ and y → x′ [71].

Instead of viewing the matrix (1.233) as a permutation of index lines in the matrix (1.230), it may be viewed

as a change of basis. The corresponding change of basis matrix is




1
df

1√
dA




=




1
N 1

N+1
N − 1

N







1
df

1√
dA




. (1.234)

Besides coincidence limits between a fundamental and an antifundamental Wilson line, one may also consider

coincidence limits of two Wilson lines in the same representation. To achieve the maximum possible simplifi-

cation of the matrix of correlators when such a limit is imposed, one should consider the singlet states |i〉, |j〉
in a basis of (anti-)symmetrizers [71, app. C]: In birdtrack notation, (anti-)symmetrizers are written as [72]

=
1

2

(
+

)
and =

1

2

(
−

)
, (1.235)

which give rise to the following normalized basis states:

√
2

N(N+1) =

√
2

N(N+1) · 1
2

(
+

)
(1.236a)

√
2

N(N−1) =

√
2

N(N−1) · 1
2

(
−

)
. (1.236b)

Using the basis (1.236), the matrix of correlators 〈A〉 (Y ) becomes

〈A〉 (Y ) =




2
N(N+1)

2
N
√

N2−1

2
N
√

N2−1
2

N(N−1)




(Y ) , (1.237)
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where we have reordered the product of Wilson lines U to

U = Ux ⊗ U†x′ ⊗ Uy ⊗ U†y′
re-order−−−−−→ Ux ⊗ Uy ⊗ U†x′ ⊗ U†y′ =: Ũ . (1.238)

As already claimed, the coincidence limit of the top two Wilson lines (x→ y) or the bottom two Wilson lines

(x′ → y′) yields great simplifications in the (anti-) symmetrizer basis, as it causes the off-diagonal elements

of (1.237) to vanish,




2
N(N+1)

2
N
√

N2−1

2
N
√

N2−1
2

N(N−1)




(Y )
x→y−−−−−−→

or x′→y′




2
N(N+1) 0

0 2
N(N−1)




(Y ) .

(1.239)

The reason for this simplification is that such a limit essentially connects the symmetrizer and antisymmetrizer

in more than one index line (c.f. the later section 5.3.1.1).

Since eq. (1.237) gives the 4-point correlator in yet another basis, we may establish a change of basis be-

tween (1.237) and the matrix (1.230). Let us explicitly construct this change of basis: Since the two bases

have a different ordering of the Wilson lines (c.f. eq. (1.238)), we first need to reorder the Wilson lines

in the matrix (1.230) so that a change of basis can be constructed. For example, the element a12 of the

matrix (1.230) should be rewritten as

a12 :=

︸︷︷︸
〈j|
︸︷︷︸
U
︸︷︷︸
|i〉

re-order
=======

︸︷︷︸
〈j|
︸ ︷︷ ︸

U
︸︷︷︸
|i〉

=

︸︷︷︸
〈ψ̃S |

︸︷︷︸
Ũ

︸ ︷︷ ︸
|φ̃S〉

(1.240)

Thus, the basis states to be considered for the change of basis are

1

df
and

1√
dA

. (1.241)

To write the first of these two states in the basis (1.236), it suffices to disentangle the index lines,

1

df

disentangle
=========

1

df
=

1

df

(
−

)
. (1.242)

To write the second basis state of eq. (1.241) in the basis of (anti-) symmetrizers, one has to apply the Fierz

identity [72]

= +
1

N
(1.243)
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to the state and once again disentangle the index lines,

1√
dA

Fierz
=====

1√
dA

(
− 1

N

)
=

1√
dA

(
− 1

N

)
disen-

=====
tangle

1√
dA

(
− 1

N

)
.

(1.244)

It remains to apply the definition of symmetrizers and antisymmetrizers (1.235) in order to write eq. (1.244)

in terms of the (anti-)symmetrizer basis,

1√
dA

=
1√
dA

(
− 1

N

)
=

1√
dA

(
1− 1

N

)
+

1√
dA

(
1 +

1

N

)
. (1.245)

Thus, the basis change between (1.230) and (1.237) is




1
df

1√
dA




=




√
N(N+1)

2
1

df
−
√

N(N−1)
2

1
df

√
N(N+1)

2
1√
dA

(
1− 1

N

) √
N(N−1)

2
1√
dA

(
1 + 1

N

)







√
2

N(N+1)

√
2

N(N−1)




. (1.246)

As we have seen so far, a suitable choice of basis yields simplification in the matrix of correlators 〈A〉 (Y ) under

a particular coincidence limit. In other words, the constraint equations imposed by a certain coincidence limit

become simple in an appropriate basis. For example, eq. (1.232) implies the following constraint equations,

a12 :=
x→x′

−−−−−−→
or y→y′

0 (1.247a)

a21 :=
x→x′

−−−−−−→
or y→y′

0 . (1.247b)

For bases less suited to a particular coincidence limit, the according constraint equations become more

involved, in that not a particular Wilson line correlator vanishes, but rather a linear combination of various

correlators in the matrix becomes zero. As an example, the constraint equations of the matrix elements

of (1.237) under the coincidence limit x = x′ are

(
1− 1

N

)(
−

)
+

(
1 +

1

N

)(
−

)
x→x′

−−−−−→
or y→y′

0 , (1.248)

and its Hermitian conjugate. This immediately follows when applying the basis change (1.246) to eqns. (1.247).

Such constraint equations impose additional structures on the n-point functions appearing in the parametriza-

tion of the JIMWLK Hamiltonian (c.f. eq. (1.212)): In particular if a specific matrix-element Aij vanishes,

then [EL(Y )]ij and [ER(Y )]ij (c.f. eq. (1.217)) must vanish as well, as stated in section 1.5.5. As was demon-

strated in the present section, particular coincidence limits cause certain Wilson line correlators (or linear

combinations thereof) to vanish in A. This structure must be inherited by EL(Y ) and ER(Y ).
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1.6.3 Pulling singlets apart: further limits in Wilson line correlators

Besides the structures that the singlet Wilson line correlators impose on the parametrization of the JIMWLK

Hamiltonian, the study of singlet Wilson line correlators allows us to make physical statements about the

corresponding observables:

Let us return to the 2q + 2q̄-correlators presented in eq. (1.230), where x,x′ are the transverse coordinates

of the top qq̄-pair, and y,y′ label the transverse positions of the bottom qq̄-dipole,

=

Ux

U†x′

Uy

U†y′

. (1.249)

It was shown [71] that the parametrized evolution

d

dY
〈A〉 (Y ) = −M(Y ) 〈A〉 (Y ) , (1.250)

(c.f. eq. (1.193b), only the left parametrization is used) of these correlators in the Gaußian truncation can

be written as

M(Y ) =

(
m11(Y ) m12(Y )

m21(Y ) m22(Y )

)
, (1.251a)

where the matrix elements are given by

m11(Y ) =Cf
(
G′Y,xx′ + G′Y,yy′

)
(1.251b)

m12(Y ) =

√
dA

2CA

(
G′Y,xy + G′Y,x′y′ − G′Y,x′y − G′Y,xy′

)
= m†21(Y ) (1.251c)

m22(Y ) =

(
Cf −

CA
2

)(
G′Y,xx′ + G′Y,yy′

)
+
Cd + CA

4

(
G′Y,xy + G′Y,x′y′

)
− Cd − CA

4

(
G′Y,xy′ + G′Y,x′y

)
.

(1.251d)

Here, the constants Cf,A are the Casimirs of the fundamental and adjoint representations, Cdδ
ae := dabcdbce =

N2−4
N δae, and G′Y,xy is related to the parameters G in the parametrization (1.203) as

G′Y,xy := GY,xy −
1

2
(GY,xx +GY,yy) . (1.252)

Clearly, G′Y,xy is symmetric under the exchange of x and y, and vanishes if x = y.

Suppose one tries to pull the top qq̄-dipole far apart from the bottom qq̄-dipole in each of the correlators

in (1.230),

|x− x′| , |y − y′| �
∣∣∣∣
x+ x′

2
− y + y′

2

∣∣∣∣ . (1.253)
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For the correlator in the top left corner

1

d2
f

(1.254)

such a procedure will move the two “sub-singlets” away from each other, yielding a product of two

independent qq̄-singlets.

For the remaining three 2q + 2q̄-correlators,

1

df
√

dA
,

1

df
√

dA
,

1

dA
, (1.255)

increasing the spatial distance between the qq̄-pairs amounts to isolating two gluons from each other. In a

full QCD description, confinement renders these operators zero. Interestingly, this aspect of confinement is

reproduced in eqns. (1.251):

• Consider the first two operators in eq. (1.255). Making the distance between the top and bottom qq̄-pair

large can be likened to making the size of the top dipole and the bottom dipole small individually. We

already saw that the operators 1
df
√

dA
and 1

df
√

dA
vanish in both limits |x− x′| → 0 and

|y− y′| → 0 (c.f. eqns. (1.247)). Hence, their evolution is expected to be zero also in the limit (1.253).

Indeed, this is mirrored by m12(Y ), m21(Y ) obtained by [71] (c.f. eqns. (1.251)): In the limit (1.253),

the 2-point functions G′ in m12(Y ), m21(Y ) depend on two coordinates that are separated by a very

large distance. In this case the functions G′ become large [71],

G′Y,xy
|x−y|→∞−−−−−−−→ ∞ , (1.256)

causing the evolution of the two operators 1
df
√

dA
and 1

df
√

dA
to go as ∼ e−∞ — their

JIMWLK evolution is exponentially suppressed in this limit.

• On the other hand, the last operator in eq. (1.255) does not vanish in either limit |x − x′| → 0 or

|y − y′| → 0 (c.f. eq. (1.232)), but rather reduces to a 2g-singlet (if both these limits are implemented

simultaneously). However, making the distance between the two gluons large (i.e. in the limit (1.253))

would produce two isolated gluons — this is forbidden by confinement. The parametrization (1.251)

again obeys this aspect of confinement: In the limit (1.253) the two functions G′Y,xx′ and G′Y,yy′ in

m22(Y ) are negligible compared to the remaining 2-point functions G′, which, in turn, become large

in this limit (c.f. eq. (1.256)). Therefore, the JIMWLK evolution of the operator 1
dA

is

exponentially suppressed in the limit (1.253).

From the analysis presented in this section, it is of utmost importance, firstly, to know the singlet states

with which we construct the Wilson line correlators, and, secondly, to study the coincidence limits of the

correlators. The following section gives a road map for how we obtain the singlet states for the Wilson line

correlators in this thesis.
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1.7 Thesis Outline

As stated in the research statement on page 65, an effective study of Wilson line correlators (and its (partial)

coincidence limits) over V ⊗m ⊗ (V ∗)⊗n presupposes knowledge of the singlet states of SU(N) over V ⊗m ⊗
(V ∗)⊗n. However, these singlet states are much less known than a glance at the literature may lead us to

believe: In practical examples, one usually considers n-point Wilson line correlators for small n, for which

the appropriate singlet states can easily be guessed (see for example [71]). There exists an algorithm for

constructing the projection operators onto the irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n

(which includes the singlet representations), but this algorithm is useful only for classification purposes, as

it is extremely computationally expensive (this will be exemplified in chapter 5, section 5.1.3). We therefore

provide an alternative construction algorithm for the singlet projection operators (and thus the singlet states)

in part I of this thesis.

In the present chapter, the birdtrack formalism was already identified as a useful tool for our purposes.

In chapter 2, we give (and prove) several easily implementable simplification rules for birdtrack operators

comprised of symmetrizers and antisymmetrizers. These rules fall into two classes: cancellation rules, which

can be used to shorten the birdtrack expression of a particular operator, and propagation rules, which allow

one to commute certain sets of symmetrizers and antisymmetrizers.32 The second set of rules is particularly

useful for making the Hermiticity of an operator visually apparent.

In chapter 3, these simplification rules will be put to use when we shift our focus to the irreducible represen-

tations of SU(N) over the space V ⊗m. We first review the classical methods of constructing the projection

operators onto the desired representations due to Young [84] and improved by Littlewood [85]. However,

the projectors constructed in this way lack Hermiticity, which is a crucial problem for our purposes. We

then present a more modern approach by Keppeler and Sjödahl (KS) [4], which produces Hermitian Young

projection operators. However, the KS operators, beyond the most elementary examples, require a large

computational effort to construct. The main result of chapter 3 is an alternative construction principle for

compact (and thus easily obtainable) Hermitian Young projection operators, based on the measure of lexical

disorder (MOLD) of a Young tableau (Theorem 3.5). The MOLD operators are completely equivalent to the

KS operators and thus inherit all the desired properties of their KS equivalent. The MOLD construction

algorithm relies heavily on the simplification rules of chapter 2.

In chapter 4, we will augment the MOLD operators with what we call transition operators to constitute

a basis for the algebra of primitive invariants of SU(N) over V ⊗m, see section 4.3.2. These transition

operators facilitate a change of basis between projection operators corresponding to equivalent irreducible

representations of SU(N) over V ⊗m. The highlight of chapter 4 is an easy-to-implement graphical construction

method for transition operators directly from the MOLD operators (Theorem 4.5).

Chapter 5 is the heart of this thesis, as we will see all of the work done in chapters 2 to 4 bear fruit when

constructing the singlet projection operators of SU(N) over a mixed product space V ⊗m ⊗ (V ∗)⊗n. We first

remind the reader about the textbook method used to construct the projection operators corresponding to

the irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n (of which the singlet projectors form a subset)

in section 5.1. In doing so, we find that this method is beyond laborious, to the point where it becomes

essentially unusable in any practical calculation.

32In general, symmetrizers and antisymmetrizers do not commute, see eq. (2.16)
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In section 5.2 we will present a general algorithm to construct the singlet projectors in an easy,

computationally efficient way. We begin by discussing that the singlets over V ⊗k ⊗ (V ∗)⊗k (note that

there are an equal number of factors V and V ∗ in this product space) can be found by simply bending the

basis elements of the algebra of invariants of SU(N) over V ⊗k in section 5.2.1. Since the MOLD projection

and transition operators span this algebra, they are prime candidates for the construction of singlets (c.f.

Theorem 5.2).

It is then argued that all the singlet projectors constructed in this way project onto equivalent representations,

and we give a general construction principle for the transition operators between singlets (Theorem 5.3).

As an example, we construct and examine the singlet projectors and transition operators of SU(N) over

V ⊗3 ⊗ (V ∗)⊗3
in various bases, most of which were obtained by bending elements of bases of the algebra of

invariants of SU(N) over V ⊗3.

Section 5.2.2 moves on to the more general product space V ⊗m ⊗ (V ∗)⊗n. We explain that these projectors

are singlets only for certain values of N and that, for this choice of N , they are completely equivalent to the

singlets of SU(N) over V ⊗α ⊗ (V ∗)⊗α for a particular integer α (c.f. Theorem 5.4).

In light of the fact that we wish to use singlets to study Wilson line correlators, and thus infer properties about

the parametrization of the JIMWLK equation (c.f. section 1.6.2), we examine the Wilson line correlators

over the 3q+3q̄-algebra in section 5.3.2. In analogy to the discussion of the 2q+2q̄ correlators in section 1.6.2,

we will study various coincidence limits between Wilson lines. In the 3q + 3q̄ example, we will find a nested

hierarchy of smaller correlators as limiting cases of larger ones.

In the course of this PhD project, many “incidental” results pertaining to the representation theory of

SU(N) over V ⊗m ⊗ (V ∗)⊗n were obtained. These results are given in part II of this thesis. Most notably, a

counting argument for the number of irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n was found,

by establishing a relation between the Hermitian projection operators and the Hermitian primitive invariants

of SU(N) over V ⊗m ⊗ (V ∗)⊗n (Theorem 6.2). This theorem gives rise to numerous other results, which will

be given in chapter 6. In chapter 7, these results are exemplified: We examine the projection and transition

operators (in a particular basis) of SU(N) over all Fock spaces V ⊗m⊗(V ∗)⊗n such that m+n = 4. At the end

of the chapter, the special case N = 2 (relating to the theory of spin) is discussed. Chapter 8 lists a multitude

of theorems pertaining to the traces of primitive invariants of SU(N) over V ⊗(m+n) and V ⊗m ⊗ (V ∗)⊗n.

We end this thesis with a discussion on possible future research projects. Chapter 9 focuses on the math-

ematical aspects of this thesis. We list several possible research directions, following on from the results

of this thesis, in the pursuit of a full mathematical theory. Chapter 10 discusses possible future research

in a multitude of fields in high energy QCD. Such fields include transverse–momentum–dependent parton

distributions (TMDs), energy loss, and the parametrization of the JIMWLK equation itself.
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Appendix to chapter 1

1.A Functional differentiation of a Wilson line: differentiating

with respect to a parameter

In this appendix, we provide a proof for formula (1.158) given in section 1.4.2.6. While such a proof can

be found in textbooks [86, eq. (5.15)], the proof given here originated from personal communication with

A/Prof. Weigert [51].

Consider the Wilson line

U[γ,B,A][A
ν
γ(t)] = Pexp

{
−ig

∫ B

A

dγ(t)Aνaγ(t)t
a
γ(t)

}
, (1.257)

where

Aνaγ(t) := bνaγ(t) + ανaγ(t) , (1.258)

and the path γ(t), t ∈ [t0, t1], is depicted in Figure 1.12. Instead of taking the functional derivative δ

δbµb
γ(t∗)

of U[γ,B,A], we construct a 1-parameter family and differentiate with respect to the parameter: Consider the

1-parameter family bνaγ(t)(s) defined as

bνaγ(t)(s) := bνaγ(t) + sδνµδabδ(4)(γ(t)− γ(t∗)) , such that Aνaγ(t)(s) := bνaγ(t)(s) + ανaγ(t) , (1.259)

where t∗ ∈ [t0, t1]. If the parameter s is set to 0, then bνaγ(t)(s) reduces to the original background field bνaγ(t).

A derivative with respect to s at s = 0, d
ds

∣∣
s=0

, acts on the gauge field Aνaγ(t) in exactly the same way as the

functional derivative δ

δbµb
γ(t∗)

,

d

ds

∣∣∣∣
s=0

Aνaγ(t)(s) = 0 + δνµδabδ(4)(γ(t)− γ(t∗)) + 0 (1.260a)

δ

δbµbγ(t∗)

Aνaγ(t) = δνµδabδ(4)(γ(t)− γ(t∗)) + 0 . (1.260b)

Since the Wilson line U[γ,B,A] depends on the background field b only through the gauge field A, replacing
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A = γ(t0)

γ(t0 + ε)
γ(t0 +2ε)

γ(t0 + kε)

γ(t0 +(k+1)ε)

γ(t0 +(m−2)ε)
γ(t0 +(m−1)ε)

B = γ(t0 +mε) = γ(t1)

γ(t)

ε

ε
ε

ε

ε
ε

Figure 1.12: We partition the path γ of a Wilson line U[γ,B,A] into m pieces of length ε := length(γ)
m , and

then take the limit m → ∞. The path γ depends on the parameter t, t ∈ [t0, t1], such that γ(t0) = A and
γ(t1) = B.

Aνaγ(t) by Aνaγ(t)(s),

U[γ,B,A][s,A
ν
γ(t)] = Pexp

{
−ig

∫ B

A

dγ(t)Aνaγ(t)(s)t
a
γ(t)

}
, (1.261)

and differentiating with respect to the parameter s will yield the desired result δ

δbµb
γ(t∗)

U[γ,B,A][A
ν
γ(t)].

Before taking the s-derivative of the Wilson line (1.261), let us partition its path into infinitely many pieces

of length ε (c.f. Figure 1.12) such that

U[x,B,A][s,A
ν
γ(t)(s)] = lim

m→∞

m−1∏

k=0

U[x,γ(t0+(k+1)ε),γ(t0+kε)][s,A
ν
γ(t)(s)] , (1.262)

in accordance with property (1.63) of Wilson lines.

In the limit m→∞, each Wilson line of length ε = length(γ)
m → 0 becomes33

U[x,γ(t0+(k+1)ε),γ(t0+kε)][s,A
ν
γ(t)(s)]

ε→0
==== exp

(
−igεdγ

dt
Aνaγ(t)(s)t

a
γ(t)

∣∣∣∣
t=t0+kε

)
, (1.263)

where, due to the infinitesimal length of the path, we no longer have path-ordering in the exponential. By

the product rule, the s-derivative of the Wilson line (1.262) becomes

d

ds

∣∣∣∣
s=0

U[γ,B,A][s,A
ν
γ(t)(s)]

=
d

ds

∣∣∣∣
s=0

lim
m→∞

m−1∏

k=0

exp

(
−igεdγ

dt
Aνaγ(t)(s)t

a
γ(t)

∣∣∣∣
t=t0+kε

)

= lim
m→∞

m−1∑

k=0

{
U[γ,B,γ(t0+kε)][s,A

ν
γ(t)(s)]×

× exp

{
−igεdγ

dt
Aνaγ(t)(s)t

a
γ(t)

∣∣∣∣
t=t0+kε

}
(−ig)ε

dγ

dt

(
d

ds
Aνaγ(t)(s)t

a
γ(t)

∣∣∣∣
t=t0+kε

)
×

33Notice that this would be an approximation if we merely required ε to be small, but since ε will be taken to 0, eq. (1.263)
is exact.
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× U[γ,γ(t0+kε),A][s,A
ν
γ(t)(s)]

}∣∣∣∣∣
s=0

. (1.264)

We recognize the infinite sum as a Riemann sum with the measure

lim
m→∞

ε
dγ

dt

∣∣∣∣
t=t0+kε

−→ dγ(t0 + kε) . (1.265)

Further invoking the derivative at s = 0 finally yields

δ

δbµbγ(t∗)

U[γ,B,A][A
ν
γ(t)]

eq. (1.260)
========

d

ds

∣∣∣∣
s=0

U[γ,B,A][s,A
ν
γ(t)(s)] =

= (−ig)

∫ B

A

[dγ(t0 + kε)]

{
U[γ,B,γ(t0+kε)][A

ν
γ(t)]×

×
(
δνµδabδ(4)(γ(t0 + kε)− γ(t∗))taγ(t0+kε)

)
U[γ,γ(t0+kε),A][A

ν
γ(t)]

}
. (1.266)

Let us now connect the result (1.266) to the context of section 1.4.2.6, in which eq. (1.266) will ultimately be

applied: In section 1.4.2.6, we consider a Wilson line whose path extends to infinity, such that B,A → ±∞
respectively. Furthermore, γ(t) will be a straight line path parallel to the x−-direction,

γ(t0 + kε) −→ x− , (1.267)

and constant in x+, which allows us to set x+ = 0. Such a path is uniquely defined by the transverse

coordinate x at which it pierces the x− = 0 plane, such that we can write

U[γ,B,A] −→ U[x,∞,−∞] . (1.268)

In section 1.4.2.6, we are looking to take the functional derivative of the Wilson line (1.268) with respect to

the background field b+bv (c.f. eq. (1.156b)), which translates into

γ(t∗) −→ v− such that δνµδabδ(4)(γ(t0 + kε)− γ(t∗)) −→ δν+δabδ(4)(x− v) . (1.269)

Lastly, changing the integration variable to x− in accordance with eq. (1.267), the integral (1.266) collapses

due to the presence of δ(4)(x− v), leaving us with

δ

δb+bv
U[x,∞,−∞]

eq. (1.266)
======== (−ig)

∫ ∞

−∞
dx− U[x,∞,x−] δ

ν+δabδ(4)(x− v)tax U[x,x−,−∞]

= (−ig)δν+δ0v+δ(2)
xv U[x,∞,v−] t

b
v U[x,v−,−∞] , (1.270)

as was claimed in eq. (1.158).
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Singlets and Wilson Line Correlators
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Chapter 2

Simplification Rules for Birdtrack

Operators

This chapter has been published under the same name in the Journal of Mathematical Physics [1]. In some

instances, the present paper (chapter) refers to additional results not given in the paper. Where such work

is included in this thesis, a remark in square brackets and italics has been added to refer the reader to the

appropriate chapter of this thesis.

Abstract: This paper derives a set of easy-to-use tools designed to simplify calculations with birdtrack oper-

ators comprised of symmetrizers and antisymmetrizers. In particular, we present cancellation rules allowing

one to shorten the birdtrack expressions of operators, and propagation rules identifying the circumstances

under which it is possible to propagate symmetrizers past antisymmetrizers and vice versa. We exhibit the

power of these simplification rules by means of a short example in which we apply the tools derived in this

paper on a typical operator that can be encountered in the representation theory of SU(N) over the product

space V ⊗m. These rules form the basis for the construction of compact Hermitian Young projection operators

and their transition operators addressed in companion papers [2, 3] [chapters 3 and 4].

2.1 Introduction

In the 1970’s, Penrose [87, 88] developed a graphical method of dealing with objects typically encountered in

the representation theory of semi-simple compact Lie groups, as is used in quantum field theory (QFT). This

new formalism was subsequently applied in a collaboration with MacCallum [89]. It is clear from Penrose’s

work that these graphical tools found their inspiration in Feynman diagrams and thus allow visually intuitive

calculations of quantities in the QCD context, since SU(N) is the gauge group of QCD.

Penrose’s graphical formalism obtained a more modern treatment by Cvitanović [72] in early part of the 21st

century. It is Cvitanović who dubbed the diagrams birdtracks.

Birdtracks are gaining in their popularity as a computational tool for a modern treatment of group theory,

in particular the representation theory of semi-simple Lie groups, and their applications to QFT. There,

however, do not exist any practical tools that allow the easy manipulation of birdtracks in the literature.

The authors suspect that this is the reason why birdtracks are not yet as widely used as they ought to be.
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This paper aims to narrow this gap by providing several easy-to-use rules that greatly simplify dealing with

birdtrack operators.

We will lay our focus on operators that are derived from Young projection operators [84], and the simplification

rules presented in this paper are thus best suited for such operators. The reason for this is the authors’

interest in the applications of these tools in a QCD context where factorization invariably involves color

singlet projections of Wilson line correlators (see e.g. [71, 78, 90, 91] for a varied set of fields with possible

applications). Since SU(N) is the gauge group of QCD, Young projection operators come into play through

the theory of invariants, which relates the irreducible representations of SU(N) over V ⊗n to the Young

tableaux of size n (see [92, 93] and other standard textbooks). However, the lack of Hermiticity of Young

projection operators disqualifies them from the application to QCD calculations [94] [chapter 5].

Keppeler and Sjödahl made a first step towards overcoming this problem in [4], where they present a recursive

algorithm to construct Hermitian versions of Young projection operators in the birdtrack formalism. However,

the KS operators soon become unwieldy and thus impractical to work with in automated calculations owing

to computing time and memory resources necessary in their construction and application.

Using the simplification rules presented in this paper, the KS operators can be simplified drastically — an

example of this is given in Figure 2.2.

This direct application, however, is not where these simplification rules exhaust their usefulness. Further

applications are presented in a list of companion papers:

1. In [2] [chapter 3] we present an alternative construction algorithm for Hermitian Young projection

operators, which directly leads to significantly more compact and explicitly Hermitian expressions of

the operators.

2. The simplification rules are a crucial prerequisite for an algorithm that allows us to construct transi-

tion operators between (Hermitian) Young projection operators corresponding to equivalent irreducible

representations of SU(N) [3] [chapter 4], which further furnish the construction of an orthogonal basis

for the algebra of invariants on V ⊗m.

3. This orthogonal basis can then be used to form a basis for the singlet states necessary to determine all

color neutral Wilson line correlators [94] [chapter 5], which find direct applications in many branches

of QCD. First applications (in a context that can be covered with direct calculations) can be found

in [71, 80].

In this paper, we present two classes of simplification rules — they form the foundation for all three companion

papers:

1. rules that determine whether certain symmetrizers or antisymmetrizers can be cancelled from an oper-

ator (section 2.3), and

2. rules describing when it is possible to propagate sets of (anti-)symmetrizers through certain parts of

the operator (section 2.4).

Each result in these sections is accompanied by an example. In section 2.5 (Figure 2.2), we exhibit the

applicability of these rules.

Before we set out to describe the simplification rules, we need to lay the groundwork by summarizing the

conventions used in this paper in section 2.2.
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2.2 Notation, conventions and known results

There exists a multitude of (sometimes contradicting) nomenclature and conventions in the literature with

regards to Young tableaux, birdtracks, and related objects. This section serves to clarify the conventions

used in this paper, as well as to collect a list of previously known results that are needed for this paper.

2.2.1 Tableaux

Consider an arrangement of m boxes filled with unique integers between 1 and k (for k ≥ m), for example,

1 10 3

6 5 4

7

9 2 8

. (2.1)

In this paper, we will refer to such a construct as a semi-standard irregular tableau. In particular, the term

“semi-standard” will refer to the requirement that each number appears at most once within a tableau. A

special case of such a tableau is a Young tableau, in which we require k
!
= m, and the boxes to be top-aligned

and left-aligned, as well as the numbers in the boxes to increase within each row from left to right and within

each column from top to bottom (see [93, 95, 96] and many other standard textbooks1). For example,

1 3 5 6

2 4 7

8

(2.2)

is a Young tableau of size 8. In this paper, we shall denote a Young tableau by an upper case Greek letter,

usually Θ or Φ, and a semi-standard irregular tableau by Θ̃ or Φ̃. Furthermore, we will denote the set of all

Young tableaux of size n by Yn.2 For example,

Y3 :=



 1 2 3 ,

1 2

3
,

1 3

2
,

1

2

3



 . (2.3)

For a particular Young tableau Θ ∈ Yn, we refer to Θ(m) ∈ Yn−m (for m < n) as the ancestor tableau of Θ m

generations back if Θ(m) is obtained from Θ by removing the boxes n , n−1 . . . n−m from Θ. For example,

if

Θ :=

1 2 4 5

3 6 8

7 9

and Φ :=
1 2 4 5

3
, (2.4)

then Φ is the ancestor tableau of Θ four generations back, and we write Φ = Θ(4).

In this paper, we will need another kind of tableau, namely the amputated tableau, which we define as follows:

1In some references, the presently described tableau may also be referred to as a standard Young tableau (c.f., for example, [93,
95, 96]).

2The size of the set Yn is finite for any integer n, as is shown in [97].
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Definition 2.1 – Amputated Tableaux:

Let Θ̃ be a tableau.3 Furthermore, let R be a particular row in Θ̃ and C be a particular column in Θ̃. Then,

we form the column-amputated tableau of Θ̃ according to the row R, ��̃Θc [R], by removing all columns of Θ̃

which do not overlap with the row R. Similarly, we form the row-amputated tableau of Θ̃ according to the

column C, ��̃Θr [C], by removing all rows of Θ̃ which do not overlap with the column C.

It should be noted that if Θ̃ is semi-standard, then ��̃Θc [R] and ��̃Θr [C] will also be semi-standard. As an

example, consider the semi-standard irregular tableau

Θ̃ =
1 2 3 4

6 5
7 8

, (2.5)

where we have shaded the row R := (1, 2, 3, 4) and hatched the column C := (3, 6)t. Then, the column- and

row-amputated tableaux according to R and C respectively are given by

��̃Θc [R] =
1 2 3 4

6 5
7

,

where the column (8)t was removed since it does not have an overlap with the row R = (1, 2, 3, 4), (1, 2, 3, 4)∩
(8)t = ∅,4 and

��̃Θr [C] =
1 2 3 4

6 5
,

where the row (7, 8) was removed from Θ̃, as it does not have an overlap with the column C = (3, 6)t,

(3, 6)t ∩ (7, 8) = ∅.

2.2.2 Birdtracks

As is clear by the title of this paper, we aim to provide simplification rules for birdtrack operators. In particu-

lar, this paper focuses on operators comprised of symmetrizers and antisymmetrizers. In this section, we give

a short overview of the birdtrack notation [72] and its correspondence to Young projection operators [93].

For a more extensive introduction to birdtracks, readers are referred to [72], which also serves as the main

resource for this section.

For each semi-standard tableau Θ̃ (be it irregular or Young), one may construct the corresponding sets of

symmetrizers SΘ̃ and antisymmetrizers AΘ̃
5 — this is in fact a generalization to the standard construction

principle of symmetrizers and antisymmetrizers corresponding to Young tableaux [72, 84, 93]. Each row

R of the tableau will correspond to a symmetrizer over the numbers appearing in R, and each column C
corresponds to an antisymmetrizer over the numbers in C. For example, the symmetrizer over elements 1

3We do not require Θ̃ to be a Young tableau for this definition, a more general kind of tableau (e.g. a semi-standard irregular
tableau) will suffice.

4Where we transferred the familiar set notation to rows of tableaux.
5If the tableau Θ̃ consists of m boxes filled with unique integers between 1 and k for k > m, we will draw an empty index

line for each integer ≤ k not appearing in the tableau Θ̃ in birdtrack notation.
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and 2, S12, corresponds to the tableau

1 2 . (2.6)

This symmetrizer S12 is given by 1
2 (id + (12)), where id is the identity and (12) denotes the transposition

swapping elements 1 and 2. For example, S12 acts on a tensor T ab as

S12T
ab =

1

2

(
T ab + T ba

)
. (2.7)

Graphically, we denote the symmetrizer S12 = 1
2 (id + (12)) as

S12 =
1

2

(
+

)
. (2.8)

This operator is read from right to left,6 as it is viewed to act as a linear map from the space V ⊗V into itself.

In this paper, the elements of Sn (the permutation group of n objects) and linear combinations thereof will

always be interpreted as elements of Lin (V ⊗n) (the space of linear maps over V ⊗n). Following [72], we will

refer to the permutations of Sn as the primitive invariants (of SU(N) over V ⊗n), and thus denote the real

subalgebra of Lin (V ⊗n) that is spanned by these primitive invariants by API (SU(N), V ⊗n) ⊂ Lin (V ⊗n).

Following [72], we denote a symmetrizer over an index set N , SN , by an empty (white) box over the index

lines in N . Thus, the symmetrizer S12 is denoted by . Similarly, an antisymmetrizer over an index-set

M, AM, is denoted by a filled (black) box over the appropriate index lines. For example,

A12 = corresponds to the tableau
1

2
, (2.9)

since antisymmetrizers correspond to columns of tableaux. It should be noted that (sets of) (anti-)symmetrizers

are Hermitian with respect to the canonical scalar product on V ⊗m (inherited from V ), that is,

S†
Θ̃

= SΘ̃ and A†
Θ̃

= AΘ̃ . (2.10)

This is easiest seen in the birdtrack formalism, where Hermitian conjugation (with respect to the canonical

scalar product) of an operator A corresponds to flipping A about its vertical axis and reversing the arrows

(followed, in general by complex conjugation, which plays no role in the real algebra API (SU(N), V ⊗m) of

interest to us here) [72].

For each tableau Θ̃, one can then define an operator ȲΘ̃ as the product of SΘ̃ and AΘ̃

ȲΘ̃ := SΘ̃AΘ̃ ; (2.11)

this is in fact the generalization of Young operators [72, 84, 93] (c.f. eq. (2.13)) to semi-standard tableaux.

6This is no longer strictly true for birdtracks representing primitive invariants of SU(N) over a mixed product V ⊗m⊗(V ∗)⊗n,
where V ∗ is the dual vector space of V . A more informative discussion on this is out of the scope of this paper; readers are
referred to [72] [or the later chapters 5 to 8].
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As an example, the operator corresponding to the tableau (2.5) is given by

Θ̃ =

1 2 3 4

6 5

7 8

−→ ȲΘ̃ = . (2.12)

As already alluded to in the previous paragraph, Young projection operators are merely a special kind of

the operators discussed so far, namely that where Θ̃ = Θ is a Young tableau. One aspect that makes Young

projection operators special is that there exists a unique constant αΘ 6= 0 such that7

YΘ := αΘ · SΘAΘ︸ ︷︷ ︸
=ȲΘ

(2.13)

is idempotent; the object YΘ is referred to as the Young projection operator corresponding to Θ. For an

operator ȲΘ̃ corresponding to a semi-standard irregular tableau Θ̃, it is not necessarily true that a nonzero

constant c can be found that would yield YΘ̃ := c · ȲΘ̃ idempotent.8 Therefore, we adapt the following

notation: ȲΘ̃ shall denote the operator corresponding to a (semi-standard irregular or Young) tableau Θ̃

according to (2.11), while the symbol YΘ will refer to the unique Young projection operator corresponding

to Θ that is furnished with the appropriate constant αΘ yielding YΘ to be idempotent, c.f. eq. (2.13).

Let us now summarize the most important properties of Young projection operators [84, 93]:

1. Idempotency : The Young projection operator YΘ corresponding to a Young tableau Θ in Yn satisfies

YΘ · YΘ = YΘ for all n. (2.14a)

2. Orthogonality : If Θ and Φ are two Young tableaux in Yn, then the corresponding Young projection

operators YΘ and YΦ are mutually orthogonal as projectors,

YΘ · YΦ = δΘΦYΘ for n = 1, 2, 3, 4 , (2.14b)

and more generally (for all n) if Θ and Φ have different shapes.

3. Completeness: The Young projection operators corresponding to all Young tableaux in Yn sum up do

the identity operator on V ⊗n,

∑

Θ∈Yn
PΘ = 1n for n = 1, 2, 3, 4 , (2.14c)

but not beyond.

Generalizations of the Young projection operators that remove the restrictions on n on the latter two of

these three properties allow one to fully classify the irreducible representations of SU(N) over V ⊗n via Young

tableaux in Yn [72, 85, 92, 98]. All these generalization build on the generally valid idempotency property of

Young projectors, which will also be the only property we will rely on in this paper.

7αΘ is a combinatorial constant involving the Hook length of the tableau Θ [72, 95, 96].
8This is easiest seen by means of an example: It can be verified via direct calculation that the operator corresponding to

1 2 3

6 5

4

is not proportional to a projection operator.
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The Hermitian conjugate of a Young projection operator (2.13) is given by

Y †Θ = (αΘ · SΘ AΘ)
†

= α†Θ ·A†Θ S†Θ = αΘ ·AΘ SΘ , (2.15)

using the fact that αΘ is a real constant (see [72, 95, 96] and other standard textbooks). In general, sets of

symmetrizers and antisymmetrizers corresponding to a Young tableau do not commute,

[SΘ,AΘ] 6= 0 , (2.16)

implying that Young projection operators are not Hermitian; the lack of Hermiticity of Young projection

operators and the implications thereof are discussed in [2] [chapter 3].

As a last example, we construct the birdtrack Young projection operator corresponding to the following

Young tableau:

Θ =
1 3 4

2 5
. (2.17)

Since YΘ must be comprised of symmetrizers corresponding to the rows of Θ and antisymmetrizers corre-

sponding to the columns of Θ, we find that

YΘ = 2︸︷︷︸
αΘ

·S134S25A12A35 , (2.18)

where αΘ = 2 ensures the idempotency of YΘ. In birdtrack notation, this Young projection operator becomes

YΘ = 2︸︷︷︸
αΘ

·
︸ ︷︷ ︸

ȲΘ

, (2.19)

where we have used the bar-notation introduced previously (c.f. eqns. (2.11) and (2.13)). The benefit of the

bar-notation is that it allows one to ignore additional scalar factors: Let O be a birdtrack operator comprised

of symmetrizers and antisymmetrizers. Then, we define Ō to be the equivalence class of operators that are

proportional to the graphical part of O only, such that

ω · Ō = Ō , but in general ω ·O 6= O (2.20)

for any nonzero scalar ω.

In expression (2.19) for YΘ we were able to draw the two symmetrizers underneath each other since they

are disjoint, and similarly for the two antisymmetrizers. In fact, the symmetrizers (resp. antisymmetrizers)

corresponding to a semi-standard tableau will always be disjoint, since each number can occur at most once

by the definition of semi-standard tableaux.

Any operator O ∈ Lin (V ⊗n) can be embedded into Lin (V ⊗m) for m > n in several ways, simply by letting

the embedding act as the identity on (m− n) of the factors; how to select these factors is a matter of what

one plans to achieve. The most useful convention for our purposes is to let O act on the first n factors and

operate with the identity on the remaining last (m − n) factors. We will call this the canonical embedding.
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On the level of birdtracks, this amounts to letting the index lines of O coincide with the top n index lines of

Lin (V ⊗m), and the bottom (m− n) lines of the embedded operator constitute the identity birdtrack of size

(m− n). For example, the operator Ȳ 1 2
3

is canonically embedded into Lin
(
V ⊗5

)
as

↪→ . (2.21)

Furthermore, we will use the same symbol O for the operator as well for its embedded counterpart. Thus,

Ȳ 1 2
3

shall denote both the operator on the left, as well as on the right-hand side of the embedding (2.21).

Lastly, if a Hermitian projection operator A projects onto a subspace completely contained in the image of

a Hermitian projection operator B, then we denote this as A ⊂ B, transferring the familiar notation of sets

to the associated projection operators. In particular, A ⊂ B if and only if

A ·B = B ·A = A , (2.22)

for the following reason: If the subspaces obtained by consecutively applying the operators A and B in any

order is the same as that obtained by merely applying A, then the subspaces onto which A and B project

not only need to overlap (as otherwise A · B = B · A = 0), but the subspace corresponding to A must be

completely contained in the subspace of B - otherwise the last equality of (2.22) would not hold.

Hermiticity is crucial for these statements: since we have seen that sets of symmetrizers and anitsymmetrizers

individually are Hermitian, (2.22) holds for such sets: a symmetrizer SN can be absorbed into a symmetrizer

SN ′ , as long as the index set N is a subset of N ′, and the same statement holds for antisymmetrizer [72].

For example,

= = . (2.23)

Thus, by the above notation, SN ′ ⊂ SN , if N ⊂ N ′. Or, as in our example,

⊂ . (2.24)

In this sense, eq. (2.24) is a simplification rule in its own right, as it allows us to “cancel” (anti-)symmetrizers

that can be absorbed into longer (anti-)symmetrizers. In particular, (2.24) implies that the image of any

(anti-) symmetrizer is contained in the image of its ancestor (anti-) symmetrizers!9 This nested inclusion of

ancestor operators breaks down for the standard Young projection operators whenever they are not Hermi-

tian [2] [chapter 3], as for example

4

3
·

︸ ︷︷ ︸
Y 1 3

2

·
︸︷︷︸
Y 1

2

=
4

3
· =

4

3
· , (2.25)

9Where we transfer the nomenclature of ancestor-tableaux to the corresponding (anti-)symmetrizers.
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but

︸︷︷︸
Y 1

2

· 4
3
·

︸ ︷︷ ︸
Y 1 3

2

=
4

3
· 6= 4

3
· , (2.26)

which can be verified by direct calculation. On the other hand, the image of a Hermitian Young projection

operator is contained in the images of its ancestor Hermitian projectors [2] [chapter 3].

The direction of the arrow on the index lines of the birdtrack encode whether the line acts on the vector

space V (arrow pointing from right to left) or its dual V ∗ (arrow pointing from left to right) [72]. In this

paper, we will only consider birdtracks acting on a space V ⊗m (never on the dual) and thus only encounter

birdtracks with arrows pointing from right to left. To reduce clutter, we will therefore suppress the arrows

and (for example) simply write

when we mean . (2.27)

We are now in a position to discuss the main result of this paper: We describe two classes of simplification

rules for birdtrack operators O comprised of symmetrizers and antisymmetrizers, namely:

1. Cancellation rules: These describe a set of rules to cancel certain symmetrizers and antisymmetrizers

within an operator O. The usefulness of these rules is that they can make a long expression significantly

shorter, and thus more practical and less computationally expensive to work with. These rules are

described in section 2.3.

2. Propagation rules: These describe the circumstances under which it is possible to commute a particular

symmetrizer through a (set of) antisymmetrizer(s), and vice versa. These rules can be used to create

a situation in which the cancellation rules (see part 1) can be used, or to make certain features of a

particular operator O (for example its Hermiticity) explicit. These rules can be found in section 2.4.

These simplification rules come into their own when they are applied to birdtrack operators in group-theoretic

calculations. For example, we extensively used these rules in our papers on a compact construction of

Hermitian Young projection operators [2] [chapter 3] and transition operators [3] [chapter 4]. A further

example is given in section 2.5 (Figure 2.2).

2.3 Cancellation rules

2.3.1 Cancellation of wedged Young projectors

We begin by presenting two main cancellation rules, Theorem 2.1 and Corollary 2.2. The benefit of these

rules is that they can be used to shorten the birdtrack expressions of certain operators (sometimes inducing

a constant factor), and thus make the resulting expression more useful for practical calculations.
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Theorem 2.1 – cancellation of wedged Young projectors:

Consider an operator O consisting of an alternating product of altogether four symmetrizers and anti-sym-

metrizers, with the middle pair being proportional to a Young projection operator,

O = AΦ1 SΘ AΘ SΦ2 = AΦ1 ȲΘ SΦ2 , (2.28)

such that SΘ ⊃ SΦ2
and AΘ ⊃ AΦ1

, i.e. SΘSΦ2
= SΦ2

= SΦ2
SΘ and AΘAΦ1

= AΦ1
= AΦ1

AΘ (c.f.

eq. (2.22)). Then, we can drop ȲΘ while acquiring a scalar factor 1/αΘ:

AΦ1
ȲΘ SΦ2

=
1

αΘ
AΦ1

SΦ2
. (2.29)

Corresponding cancellations apply if all symmetrizers are exchanged for antisymmetrizers and vice versa.

Using YΘ instead of ȲΘ removes the constant. The form presented here is that usually encountered in practical

calculations.

Before looking at a general proof for this statement, we will develop the strategy for it through an example.

To this end, take O to be

O =

︸ ︷︷ ︸
AΦ1

︸︷︷︸
SΘ

︸ ︷︷ ︸
AΘ

︸ ︷︷ ︸
SΦ2

. (2.30)

The central sets of symmetrizers and antisymmetrizers correspond to the Young tableau

Θ =
1 2

3
(2.31)

embedded into Lin
(
V ⊗5

)
. The inclusion criterion can be verified in multiple ways:

• Thinking in terms of image inclusions, we note that SΘ ⊃ SΦ2 (since SΘ = {S12} ⊃ {S125} = SΦ2)

and AΘ ⊃ AΦ1 (since AΘ = {A13} ⊃ {A13,A24} = AΦ1).

• Equivalently, in terms of birdtracks, we see that

︸︷︷︸
SΘ

︸ ︷︷ ︸
SΦ2

=

︸ ︷︷ ︸
SΦ2

=

︸ ︷︷ ︸
SΦ2

︸︷︷︸
SΘ

and

︸ ︷︷ ︸
AΦ1

︸ ︷︷ ︸
AΘ

=

︸ ︷︷ ︸
AΦ1

=

︸ ︷︷ ︸
AΘ

︸ ︷︷ ︸
AΦ1

. (2.32)

Let us explore how the cancellation of eq. (2.29) comes about in example (2.30): First, note that due to

eq. (2.32) we may rewrite O as

O =

︸︷︷︸
AΦ1

︸︷︷︸
SΘ

︸︷︷︸
AΘ

︸︷︷︸
SΦ2

eq. (2.32)
======== =

( )

︸ ︷︷ ︸
Ȳ †Θ

( )

︸ ︷︷ ︸
Ȳ †Θ

.

AΦ1 → AΦ1AΘ SΦ2 → SΘSΦ2

(2.33)
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Idempotency of YΘ implies Ȳ †ΘȲ
†
Θ = 1/αΘȲ

†
Θ, so that

O = 1
αΘ
· eq. (2.32)

======== 1
αΘ
·
︸︷︷︸
AΦ1

︸︷︷︸
SΦ2

.

AΦ1
AΘ → AΦ1

SΘSΦ2
→ SΦ2

(2.34)

This example exhibits a clear three step pattern that immediately furnishes the general proof:

1. Factor SΘ from SΦ2
and AΘ from AΦ1

to generate Ȳ †ΘȲ
†
Θ (this is possible since SΘ ⊃ SΦ2

and AΘ ⊃ AΦ1

as required by the Theorem),

O =AΦ1
AΘ SΘ AΘ SΘ SΦ2

AΦ1 → AΦ1AΘ SΦ2 → SΘSΦ2

Ȳ †
Θ Ȳ †

Θ

(2.35)

2. use idempotency of YΘ so simplify Ȳ †ΘȲ
†
Θ = 1/αΘȲ

†
Θ,

O = 1
αΘ
·AΦ1

AΘ SΘ SΦ2

Ȳ †
Θ

(2.36)

3. reabsorb SΘ into SΦ2
and AΘ into AΦ1

,

O = 1
αΘ
·AΦ1 ��AΘ ��SΘ SΦ2

= 1
αΘ
·AΦ1

SΦ2
.

AΦ1
AΘ → AΦ1

SΘSΦ2 → SΦ2

(2.37)

In some applications, one finds the ingredients of Theorem 2.1 embedded into chains of Young projectors [2, 4]

[c.f. chapter 3], we thus explicitly formulate the following Corollary:

Corollary 2.1 – cancellation of wedged ancestor operators:

Consider two Young tableaux Θ and Φ such that they have a common ancestor tableau Γ. Let YΘ, YΦ and YΓ

be their respective Young projection operators, all embedded in an algebra that encompasses all three. Then

YΘYΓYΦ = YΘYΦ . (2.38)

This Corollary immediately follows from Theorem 2.1, since the product YΘYΓYΦ will be of the form

YΘYΓYΦ = αΘαΓαΦ · SΘ AΘ SΓ AΓ SΦ︸ ︷︷ ︸
O

AΦ , (2.39)

where the marked factor constitutes O as defined in equation (2.28) in Theorem 2.1.
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2.3.2 Cancellation of factors between bracketing sets

In this section, we present another cancellation theorem that allows us to significantly shorten certain op-

erators. The results presented here follow immediately from a result attributed to von Neumann in [99] (in

Lemma 2.1, we paraphrase a more modern version of von Neumann’s lemma given in [93, Lemma IV.5]).

Before we state von Neumann’s lemma, we need to define horizontal and vertical permutations of a Young

tableau [93]:

Definition 2.2 – horizontal and vertical permutations:

Let Θ̃ be a semi-standard (Young or irregular) tableau such that n is the largest integer appearing in Θ̃. Then,

hΘ̃ shall denote the subset of all permutations in Sn that only operate within the rows of Θ̃, i.e. that do not

swap numbers across rows. We call this the set of horizontal permutations of Θ̃. Similarly, we define the

set of vertical permutations of Θ̃, vΘ̃, to be the subset of permutations in Sn that only operate within the

columns of Θ̃, i.e. those that do not swap numbers across columns.

By definition of semi-standard tableaux (which requires each integer to appear at most once within the tableau

Θ̃), it is clear that

hΘ̃ ∩ vΘ̃ = {id} , (2.40)

where id is the identity permutation in Sn.

For example, if

Θ =

1 3

2 5

4

, (2.41)

then

hΘ = {id, (13), (25), (13)(25)} (2.42)

and

vΘ = {id, (12), (14), (24), (124), (142), (35), (12)(35), (14)(35), (24)(35), (124)(35), (142)(35)} . (2.43)

With these definitions, we restate a lemma attributed to von Neumann in [99] (we use the more modern

notation of this lemma given in [93, Lemma IV.5]):

Lemma 2.1 – von Neumann’s Lemma:

Let Θ ∈ Yn be a Young tableau and let ρ be a (linear combination of) permutation(s) in Sn. If ρ satisfies

hΘρvΘ = sign(vΘ)ρ (2.44)

for all hΘ ∈ hΘ and for all vΘ ∈ vΘ, then ρ is proportional to the Young projection operator corresponding

to Θ,

ρ = λ · YΘ. (2.45)
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Furthermore, if we write ρ as a sum of permutations,

ρ =
∑

σ∈Sn
aσσ, (2.46)

where the aσ are constants, then the constant λ in eq. (2.45) is proportional to the coefficient of the identity

in the series expansion of ρ,

λ =
HΘ

bO
aid , (2.47)

where HΘ denotes the hook length of Θ [95, 96] and bO is the product of (length of (anti-)symmetrizer)! for

all symmetrizers and antisymmetrizers in O [72].

The last statement is not included in the original version shown in [93], but follows from the proof presented

there.

It should be noted that in [93], symmetrizers and antisymmetrizers are not normalized: for example, we

define S12 := 1
2 (id + (12)) while [93] defines S12 := id + (12). Thus, the constant bO arises in our statement

of the Lemma 2.1, but is not present in [93]. Furthermore, [93]’s statement of this Lemma compares the

algebra element ρ with the irreducible symmetrizer eΘ, which differs from YΘ by the constant HΘ, (keeping

in mind the different normalizations of symmetrizers and antisymmetrizers used in this paper and in [93]).

This leads to the constant HΘ in our rendition of the Lemma.

Lemma 2.1 immediately gives rise to the following special case:

Corollary 2.2 – Cancellation of parts of the operator:

Let Θ ∈ Yn be a Young tableau and M be an element of the algebra of primitive invariants API (SU(N), V ⊗n).

Then, there exists a (possibly vanishing) constant λ such that

O := SΘ M AΘ = λ · YΘ . (2.48)

If furthermore the operator O is nonzero, then λ 6= 0.

Proof of Corollary 2.2: From the definition of horizontal and vertical permutations (Definition 2.2) it is clear

that

hΘSΘ = SΘ for all hΘ ∈ hΘ (2.49a)

AΘvΘ = sign(vΘ)AΘ for all vΘ ∈ vΘ , (2.49b)

where sign(ρ) denotes the signature of the permutation ρ.10 Since O := SΘ M AΘ (eq. (2.48)), it immediately

follows that, for all hΘ ∈ hΘ and all vΘ ∈ vΘ

hΘO = hΘ SΘM AΘ

SΘ

SΘ

OvΘ = SΘ M AΘ vΘ

sign(vΘ)AΘ

SΘ

= SΘ M AΘ = sign(vΘ) SΘ M AΘ

= O = sign(vΘ)O .

10sign(ρ) is ±1 depending on whether ρ decomposes into an even or odd number of transpositions. Tung in [93] means the
same when he writes (−1)sign(ρ).
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More compactly, these conditions become

hΘOvΘ = sign(vΘ)O for all hΘ ∈ hΘ and vΘ ∈ vΘ. (2.50)

However, according to Lemma 2.1 [93, Lemma IV.5], relation (2.50) holds if and only if O is proportional to

the Young projection operator YΘ; that is, there exists a constant λ such that

O = λ · YΘ . (2.51)

From this, it follows immediately that λ 6= 0 if and only if O 6= 0, thus establishing our claim.

One of the main cases of interest is a situation where the structure of O (and thus M) is such that we know

from the outset that it is nonzero. A necessary but not sufficient condition is that none of the antisymmetrizers

contained in O may exceed the length N — if this occurs, we refer to it as a dimensional zero. We will re-visit

this scenario at the end of this section.

Two necessary and sufficient conditions ensuring O 6= 0 are presented below, conditions 2.1 and 2.2 (condi-

tion 2.3 is a combination of conditions 2.1 and 2.2). We do not claim that the conditions given in this section

represent an exhaustive list of cases yielding O 6= 0, but rather that these cases occur most commonly in

practical examples [2, 3] [chapters 3 and 4].

Condition 2.1 – inclusion of (anti-)symmetrizers:

Let O be of the form (2.48), O = SΘ M AΘ, and M be given by

M = AΦ1 SΦ2 AΦ3 SΦ4 · · · AΦk−1
SΦk , (2.52)

such that AΦi ⊃ AΘ for every i ∈ {1, 3, . . . k − 1} and SΦj ⊃ SΘ for every j ∈ {2, 4, . . . k}. Then O is a

nonzero element of API (SU(N), V ⊗n) ⊂ Lin (V ⊗n).

Proof: The operator O = SΘ M AΘ with M given in (2.52) is defined to be a product of alternating

symmetrizers and antisymmetrizers. In particular, the outermost sets of symmetrizers and antisymmetrizers,

SΘ and AΘ respectively, correspond to a Young tableau Θ. By the definition of Young tableaux, this implies

that each symmetrizer in SΘ has at most one common leg with each antisymmetrizer in AΘ (this is the

underlying reason why ȲΘ = SΘAΘ 6= 0). Furthermore, since SΦj ⊃ SΘ for every j ∈ {2, 4, . . . k} and

AΦi ⊃ AΘ for every i ∈ {1, 3, . . . k− 1}, the same applies for every other (not necessarily neighbouring) pair

SΞi and AΞj occurring in O. This guarantees that the operator O as defined in (2.52) is nonzero.

As an example of condition 2.1 consider the operator

O =

︸ ︷︷ ︸
SΘ

︸ ︷︷ ︸
AΦ1

︸︷︷︸
SΦ2

︸ ︷︷ ︸
AΘ

. (2.53)

In O, the sets SΘ and AΘ correspond to the Young tableau

Θ :=
1 2 5

3 4
. (2.54)
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The inclusion conditions are AΦ1 = {A13} ⊃ {A13,A24} = AΘ and SΦ2 = {S12,S34} ⊃ {S125,S34} = SΘ.11

Then, according to Corollary 2.2, we may cancel the wedged sets AΦ1 and SΦ2 at the cost of a nonzero

constant κ,

Q = κ ·
︸ ︷︷ ︸

SΘ

︸ ︷︷ ︸
AΘ

= κ · ȲΘ . (2.55)

The simplification is noteable and nontrivial. It is useful in all situations where the end result is simple

enough and we have an external criterion to constrain the product of any of the unknown proportionality

factors κ acquired in the possible repeated application of Corollary 2.2.

A second way of constructing nonzero operators is by relating symmetrizers and antisymmetrizers of different

Young tableaux with a permutation. To this end, we require the following definition.

Definition 2.3 – tableau permutation:

Consider two Young tableaux Θ,Φ ∈ Yn with the same shape. Then, Φ can be obtained from Θ by permuting

the numbers of Θ; clearly, the permutation needed to obtain Φ from Θ is unique. Denote this permutation by

ρΘΦ,

Θ = ρΘΦ(Φ) ⇐⇒ Φ = ρ−1
ΘΦ(Θ) = ρΦΘ(Θ) . (2.56)

To construct ρΘΦ explicitly, write the Young tableau Θ and Φ next to each other such that Θ is to the left of

Φ and then connect the boxes in the corresponding position of the two diagrams, such as

Θ→ ← Φ. (2.57)

Write two columns of numbers from 1 to n next to each other in ascending order; the left column represents

the entries of Θ and the right column represents the entries of Φ. Connect the entries in the left and the

right column in correspondence to (2.57). The resulting tangle of lines is the birdtrack corresponding to ρΘΦ

and thus determines the permutation.

As an example, the permutation ρΘΦ between the tableaux

Θ =
1 2

3
and Φ =

1 3

2
(2.58)

is given by

Θ→ 1 2

3

1 3

2
← Φ =⇒ ρΘΦ = . (2.59)

11In this particular case, one can even notice that the set AΦ2 corresponds to the ancestor tableau Θ(2) and the set SΦ3

corresponds to the ancestor tableau Θ(1) of Θ. Hence, Q can be written as Q = SΘAΘ(2)
SΘ(1)

AΘ.
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Let Θ and Φ be two Young tableaux of the same shape and construct the permutation ρΘΦ. Furthermore,

consider a general operator KΘ comprised of sets of (anti-) symmetrizers which can be absorbed into SΘ and

AΘ respectively, and let HΦ be an operator comprised of sets of (anti-)symmetrizers which can be absorbed

into SΦ and AΦ respectively. Except for isolated examples, the product KΘ · HΦ vanishes.12 However, it

turns out that

HΦ · ρ−1
ΘΦ︸︷︷︸
ρΦΘ

KΘρΘΦ 6= 0 for all Θ,Φ ∈ Yn for all n . (2.60)

To better understand this, we accompany the general argument with an example: Consider the Young

tableaux

Θ =

1 3 5

2 4

6

and Φ =

1 2 6

3 5

4

. (2.61)

The permutation ρΘΦ as defined in Definition 2.3 is given by

ρΘΦ = . (2.62)

For a general Young tableau Ψ ∈ Yn, we denote the irregular tableau that is obtained from Ψ by deleting

the boxes with entries a1 up to am (m ≤ n) by Ψ \ {a1, . . . am}. Even though Ψ \ {a1, . . . am} is not a

Young tableau in general, it remains semi-standard. Thus, the (anti-)symmetrizers in the sets SΨ\{a1,...am}
and AΨ\{a1,...am} are disjoint and the sets themselves individually remain Hermitian projection operators.

These sets can further be absorbed into SΨ and AΨ respectively since SΨ\{a1,...am} is merely the set of

symmetrizers SΨ with the legs a1 up to am deleted, and similarly for AΨ\{a1,...am}. Thus, they satisfy the

absorbtion relations

SΨ\{a1,...am}SΨ = SΨ = SΨSΨ\{a1,...am} and AΨ\{a1,...am}AΨ = AΨ = AΨAΨ\{a1,...am} , (2.63)

this is easiest seen via the birdtracks corresponding to the semi-standard irregular tableau Ψ \ {a1, . . . am}.
A quick look at our example elucidates how equation (2.63) comes about in general: In (2.61), we may remove

boxes from Θ at will — consider for example

Θ Θ Θ︷ ︸︸ ︷
1 3 5

2 4

6

︷ ︸︸ ︷
1 3 5

2 4

6

︷ ︸︸ ︷
1 3 5

2 4

6

1 5

2 4
︸ ︷︷ ︸

1 3

2
︸ ︷︷ ︸

1 3 5

4

6
︸ ︷︷ ︸

. (2.64)

Θ \ {3, 6} Θ \ {4, 5, 6} Θ \ {2}
12This is true since the product of (most!) Young projection operators corresponding to different Young tableaux of the same

shape in Yn vanishes [85, 93].
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It is clear from this list that only some of the resulting tableaux will be Young tableaux, most will not.

Using tableaux such as (2.64), we construct an operator KΘ consisting of (anti-)symmetrizers which can be

absorbed into SΘ and AΘ, for example,

KΘ := SΘ\{3,6}AΘ\{2}SΘAΘSΘ\{2}AΘ\{3,6}SΘ\{4,5,6}

= . (2.65)

Conjugating the operator KΘ by the permutation ρΘΦ yields

︸︷︷︸
ρΦΘ

︸ ︷︷ ︸
KΘ

︸︷︷︸
ρΘΦ

; (2.66)

Each of the sets of (anti-)symmetrizers in (2.66) corresponds to one of the tableaux

Φ Φ Φ︷ ︸︸ ︷
1 2 6

3 5

4

︷ ︸︸ ︷
1 2 6

3 5

4

︷ ︸︸ ︷
1 2 6

3 5

4

1 6

3 5
︸ ︷︷ ︸

1 2

3
︸ ︷︷ ︸

1 2 6

5

4
︸ ︷︷ ︸

. (2.67)

Φ \ {2, 4} Φ \ {4, 5, 6} Φ \ {3}

The tableaux in (2.67) are obtained by superimposing the tableaux in (2.64) on Φ in a cookie cutter fashion.

By construction, all the SΦ\{b1,...bm} (resp. AΦ\{b1,...bm}) can be absorbed into SΦ (resp. AΦ), as claimed in

eq. (2.63).

The pattern is completely general and in no way restricted to the particular example used to demonstrate it.

Let us summarize:

Condition 2.2 – relating (anti-)symmetrizers across tableaux:

Let O be of the form O = SΘ M AΘ, eq. (2.48). Let Θ,Φ ∈ Yn be two Young tableaux with the same

shape and construct the permutation ρΘΦ between the two tableaux according to Definition 2.3. Furthermore,

let DΘ be a product of symmetrizers and antisymmetrizers, each of which can be absorbed into SΘ and AΘ

respectively. If M is of the form

M = ρΘΦDΦ ρΦΘ , (2.68)

then the operator O is nonzero.

It immediately follows that a combination of conditions 2.1 and 2.2 also renders the operator O nonzero:
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Condition 2.3 – combining conditions 2.1 and 2.2:

Let O be an operator of the form O = SΘ M AΘ and let M be given by

M = M (1) M (2) · · ·M (l), (2.69)

such that for each M (i) either condition 2.1 or 2.2 holds; this implies that each (anti-) symmetrizer in M

can be absorbed into SΘ or AΘ respectively. Then O is nonzero.

Dimensional zeros: Let us conclude this section with a short discussion on how the operator O becomes

dimensionally zero. Since in either of the three conditions presented in this section all sets of antisymmetrizers

in M can be absorbed into AΘ,

AjAΘ = AΘ = AΘAj , (2.70)

for every Aj in M , it follows immediately that the antisymmetrizer in O that contains the most legs (i.e. the

“longest” antisymmetrizer in O) must be part of the set AΘ, as otherwise eq. (2.70) could not hold. Thus,

O is not dimensionally zero if AΘ is not dimensionally zero. Furthermore, since YΘ ∝ SΘAΘ, it suffices to

require that N is large enough for the Young projection operator YΘ to be nonzero to ensure that the operator

O in any of the conditions 2.1–2.3 is not dimensionally zero. Thus, in cancelling parts of the operator O

(to give it the structural form of YΘ), one does not remove any indication of it being dimensionally zero:

dimensional zeros of O occur exactly when YΘ is zero.

The cancellation rules given in this section are of enormous practical use, as they allow us to shorten birdtrack

operators, often significantly so. In particular, we use Corollary 2.2 in the construction of compact Hermitian

Young projection operators [2] [chapter 3] and the construction of transition operators [3] [chapter 4].

2.4 Propagation rules

In this section, we present propagation rules that allow us to propagate certain symmetrizers through sets

of antisymmetrizers, and vice versa. These rules are particularly useful to make the Hermiticity of certain

birdtrack operators visually explicit. We demonstrate their effectiveness in [2] [chapter 3] and with a specific

example in our conclusions [section 2.5] (see Figure 2.2).

The structure of our proof of these propagation rules has been strongly inspired by an example presented in the

appendix of Keppeler and Sjödahl’s (KS) paper on Hermitian Young projection operators [4]. In this example,

KS clearly realized that symmetrizers sometimes can be propagated through sets of antisymmetrizers, and

vice versa, by “swapping” appropriate sets of antisymmetrizers around. However, the general conditions

under which this is possible were not identified by KS, and a proof is also not present in [4].

Theorem 2.2 – propagation of (anti-)symmetrizers:

Let Θ be a Young tableau and O be a birdtrack operator of the form

O = SΘ AΘ SΘ\R, (2.71)

in which the symmtrizer set SΘ\R arises from SΘ by removing precisely one symmetrizer SR. By definition,
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SR corresponds to a row R in Θ such that

SΘ = SΘ\RSR = SRSΘ\R . (2.72)

If the column-amputated tableau of Θ according to the row R, �Θc [R], is rectangular, then the symmetrizer

SR may be propagated through the set AΘ from the left to the right, yielding

O = SΘ AΘ SΘ\R = SΘ\R AΘ SΘ , (2.73)

which implies that O is Hermitian.13 We may think of this procedure as moving the missing symmetrizer SR
through the intervening antisymmetrizer set AΘ. Eq. (2.72) immediately allows us to augment this statement

to

SΘ AΘ SΘ\R = SΘ\R AΘ SΘ = SΘ AΘ SΘ . (2.74)

If the roles of symmetrizers and antisymmetrizers are exchanged, we need to verify that the row-amputated

tableau �Θr [C] with respect to a column C is rectangular to guarantee that

AΘ SΘ AΘ\C = AΘ\C SΘ AΘ = AΘ SΘ AΘ . (2.75)

This amounts to moving the missing antisymmetrizer AC through the intervening symmetrizer set SΘ.

To clarify the statement of the Propagation Theorem 2.2, consider for example the operator O

O :=

︸︷︷︸
SΘ

︸ ︷︷ ︸
AΘ

︸︷︷︸
SΘ\R

, (2.76)

where the Young tableau Θ is

Θ =

1 2 3

4 5

6 7

. (2.77)

The operator (2.76) meets the conditions laid out in Theorem 2.2: The sets SΘ and SΘ\R differ only by one

symmetrizer, namely SR = S67, which corresponds to the row (6, 7) of the tableau Θ. Indeed, we find that

the amputated tableau �Θc [(6, 7)] is rectangular,

�Θc [(6, 7)] =

1 2

4 5

6 7

, (2.78)

where we have highlighted the row corresponding to the symmetrizer S67 in blue. We therefore may commute

13Recall the Hermiticity of (sets of) (anti-)symmetrizers (eq. (2.10)).
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the symmetrizer S67 from the left of O to the right in accordance with the Propagation Theorem 2.2,

O := = . (2.79)

Furthermore, if we factor the symmetrizer S67 out of the set SΘ (i.e. if we write SΘ = S67SΘ) before

commuting it through, we obtain

O := =
Thm. 2.2

====== = . (2.80)

We thus kept S67 on both sides of the operator, making the Hermiticity of O manifest.

Having understood the statement of the Propagation Theorem 2.2, we will foreshadow the strategy of the

proof (which is given in section 2.4.1). Consider the operator

P := , (2.81)

which satisfies all conditions posed in the Propagation Theorem 2.2. It thus immediately follows from the

theorem that

= = . (2.82)

We would, however, like to show how this comes about explicitly, thus alluding to the strategy used in the

proof of Theorem 2.2. In particular, we will use a trick originally used by Keppeler and Sjödahl in the

appendix of [4].

We begin by factoring a transposition out of each symmetrizer on the left; this will not alter the operator P

in any way since

= = . (2.83)

We thus have that

1

P = = , (2.84)

2

where we have marked the top and bottom antisymmetrizer in P as 1 and 2 respectively. It is important

to notice that these two antisymmetrizers would be indistinguishable if it weren’t for the labelling. We may

thus exchange them (paying close attention to which line enters and exits which antisymmetrizer), without
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changing the operator P,

1 2

1 ↔ 2
======= . (2.85)

2 1

We have thus effectively commuted the transpositions marked in red through the set of antisymmetrizers

from the left to the right. We may now absorb the transposition on top into the right symmetrizer,

= . (2.86)

We therefore showed that

P = = . (2.87)

It now remains to add up the two different expressions of P found in (2.87), and multiply this sum by a

factor 1/2,

1

2

(
+

)

︸ ︷︷ ︸
= = P

=
1

2

(
+

)
. (2.88)

However, since

1

2

(
+

)
= , (2.89)

equation (2.88) simply becomes

P = . (2.90)

Performing the above process “in reverse” then yields

P = = = , (2.91)

as desired. That this strategy can be applied to the operator (2.76) can be seen via factoring out a symmetrizer
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of length 2 from each symmetrizer,

O = = .

=: Õ

factor factor

(2.92)

The part marked Õ in (2.92) can now be dealt with exactly as in the previous example, allowing one to

commute the symmetrizer S67 from the left to the right. It remains to reabsorb the extra symmetrizers to

obtain the desired result (2.80),

O = = = .

absorb absorb

(2.93)

In particular, the ability to factor out an operator Õ within O is encoded in the requirement that the

amputated tableau �Θc [R] be rectangular, as is discussed in section 2.4.1.3.

More generally, if Θ = Θ̃ is a semi-standard irregular tableau, then the following set of conditions on the

amputated tableau will determine whether certain symmetrizers can be propagated through antisymmetrizers

and vice versa:

Theorem 2.3 – generalized propagation rules:

A form of the Propagation Theorem 2.2 holds also if Θ = Θ̃ is a semi-standard irregular tableau:

SΘ̃ AΘ̃ SΘ̃\R = SΘ̃\R AΘ̃ SΘ̃ = SΘ̃ AΘ̃ SΘ̃ (2.94)

if all rows in ��̃Θc [R] have equal lengths, and

AΘ̃ SΘ̃ AΘ̃\C = AΘ̃\C SΘ̃ AΘ̃ = AΘ̃ SΘ̃ AΘ̃ (2.95)

if all columns in ��̃Θr [C] have equal lengths.

Requiring the amputated tableaux to have rows (resp. columns) of equal lengths rather than them being

rectangular allows for the fact that ��̃Θ (for Θ̃ being a semi-standard irregular tableau) may contain disjoint

pieces — this cannot happen for Young tableaux.14

The proof of Theorem 2.2 only has to be altered in minor ways to become a proof of the generalized Propa-

gation Theorem 2.3. These alterations are given in section 2.4.2.

As an example of Theorem 2.3, consider the semi-standard irregular tableau

Θ̃ =

1 2 3 4

7 5 6

8 9

with corresponding operator ȲΘ̃ = (2.96)

14It should be noted that missing boxes within a row/column reduce its length, for example the first row of the tableau
1 2 3

4 5
has length 3 but the second row only has length 2, thus corresponding to symmetrizers of length 3 and 2 respectively.
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(cf. eq. (2.12)). Θ̃ is neither a Young tableau nor does it uniquely specify ȲΘ̃ as we could, for example, swap

3 and 4 around and still obtain an appropriate tableau for ȲΘ̃. Let us now consider the operator

O =

︸︷︷︸
SΘ̃

︸ ︷︷ ︸
AΘ̃︸ ︷︷ ︸

ȲΘ̃

︸︷︷︸
SΘ̃\R

, (2.97)

where we would like to commute the symmetrizer SR = S89 from the left set SΘ̃ to the right set SΘ̃\R. This

symmetrizer corresponds to the row (8, 9) in Θ̃,

Θ̃ =

1 2 3 4

7 5 6

8 9

. (2.98)

All rows in the column-amputated tableau of Θ̃ according to the row (8, 9) have equal lengths,

��̃Θc [(8, 9)] =

1 2

5 6

8 9

. (2.99)

Thus, by Theorem 2.3 we may propagate the symmetrizer S89 from the left to the right, yielding

O = = = . (2.100)

The reason why the propagation rule also works in this general case is because an operator Õ can be identified

within O in a similar way as was done in (2.92) (see section 2.4.2).

2.4.1 Proof of Theorem 2.2 (propagation rules)

In this section, we provide a proof for eq. (2.74) of the Propagation Theorem 2.2,

O = SΘ AΘ SΘ\R = SΘ AΘ SΘ = SΘ\R AΘ SΘ . (2.101)

The proof of eq. (2.75) (i.e. where the operator O is of the form O := AΘ SΘ AΘ\C) only changes in minor

ways; these differences are discussed in section 2.4.1.4.

The steps of the proof given in the present section can become rather abstract; we therefore chose to accom-

pany them with several schematic drawings for clarification.

The strategy of this proof will be as follows: We start by understanding what the conditions posed in

Theorem 2.2 (in particular the requirement that the amputated tableau be rectangular) imply for the operator

O. Then, we use a trick originally given in [4] to propagate the constituent permutations of the symmetrizer

SR through the set AΘ to the right of O. We recall that each symmetrizer is by definition the sum of its
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constituent permutations,

SR =
1

length(SR)!

∑

ρ

ρ , (2.102)

where ρ are the constituent permutations of SR, for example

︸︷︷︸
S123

=
1

3!

(

︸︷︷︸
id

+

︸︷︷︸
(12)

+

︸︷︷︸
(13)

+

︸︷︷︸
(23)

+

︸︷︷︸
(123)

+

︸︷︷︸
(132)

)
. (2.103)

The operators resulting from this propagation-process will then be summed up in the appropriate manner15

to recombine to the symmetrizer SR on the right hand side of O, yielding the desired result. Let us thus

begin:

Let O := SΘAΘSΘ\R be an operator as stated in the Propagation Theorem 2.2, and let the sets SΘ and

SΘ\R only differ by one symmetrizer, SR, with SR corresponding to the row R in the Young tableau Θ. We

will represent O schematically as

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

, (2.104)

where we used the fact that SΘ = SΘ\RSR (c.f. eq. (2.72)).

2.4.1.1 Unpacking the theorem conditions:

For the amputated tableau�Θc [R] to be rectangular, we clearly require all columns that overlap with the row

R to have the same length. However, this is equivalent to saying that every row other than row R in Θ has

to have length greater than or equal to length(R): Suppose R′ is a row in Θ with length(R′) < length(R).

Hence, by definition of Young tableaux, the row R′ is situated below the row R. Furthermore, by the left-

alignedness of Young tableaux, this means that all the columns that overlap with R′ also overlap with R;

let us denote this set of columns overlapping with the row R′ by CR′ . In addition, there will be at least one

column that overlaps with R but does not overlap with R′, since length(R) > length(R′); let us denote this

column by C. Schematically, this situation can be depicted as

︸ ︷︷ ︸
CR ′

R
R ′

C

. (2.105)

It then follows by the top-alignedness of Young tableaux that C is strictly shorter than the columns in the

set CR′ , as is indicated in (2.105). This poses a contradiction, as we need all columns that overlap with R
to be of the same length for the tableau �Θc [R] to be rectangular. Hence, there cannot be a row in Θ whose

length is strictly less than the length of R.

15Similar to what was done in the example (2.88).

104



Chapter 2. Simplification Rules for Birdtrack Operators

Let CR denote the set of columns overlapping with the row R. Since R is established to be (one of) the

shortest row(s) in Θ, the top-alignedness and left-alignedness conditions of Young tableaux imply that every

other row in Θ also overlaps with every column in CR.

In the language of symmetrizers, the discussion given above can be formulated as:

1. SR (corresponding to the row R of Θ) is (one of) the shortest symmetrizer(s) in the set SΘ.

2. Each leg of SR enters an antisymmetrizer in AΘ of equal length; let us denote this subset of antisym-

metrizer by A′SR (this set of antisymmetrizers correspond to the set of columns CR).

3. Each symmetrizer in SΘ has one common leg with each antisymmetrizer in A′SR (since each row in Θ

overlaps with each column in CR).

4. Since, by the assumption of the Propagation Theorem, SΘ\R and SΘ only differ by the symmetrizer

SR, each symmetrizer in the set SΘ\R has a common leg with each antisymmetrizer in the set A′SR .

2.4.1.2 Strategy of the proof:

In this proof, we will use the fact that the symmetrizer SR by definition is the sum of all permutations of

the legs over which SR is drawn. If SR has length k, then this sum will consist of k! terms, and there will

be a constant prefactor 1/k!; this was exemplified in (2.103). In particular, if λ is a particular permutation

in the expansion of SR, then we will show that O = Oλ, where Oλ is defined to be the operator O with the

permutation λ added on the right side in the place where SR would be; schematically drawn, we will show

that

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R ?

=
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

λ

=: Oλ . (2.106)

Since the constituent permutations of a symmetrizer over a subset of factors in V ⊗n form a sub-group of

Sn [93], it immediately follows that every constituent permutation of SR can be written as a product of

constituent transpositions of SR.16 It thus suffices to show that (2.106) holds for λ being a constituent

transposition of SR (i.e. that we may propagate a transposition from the left symmetrizer SR to the right),

as then any other permutation can be produced by the successive propagation of transpositions.

2.4.1.3 Propagating transpositions:

The technique used to permute transpositions through the set of antisymmetrizers, as described in the

previous paragraph, was inspired by an example presented in the appendix of [4].

Suppose the set A′SR (introduced in condition 2 of the previous discussion) contains n antisymmetrizers.

Then, by observations 1 to 4, the length of SR will be exactly n, and each other symmetrizer in SΘ (and

thus also each symmetrizer in SΘ\R) will have length at least n. We may then factor “the symmetrizer SR”

16A proof that any permutation in Sn can be written as the product of transpositions can be found in [100] and other standard
textbooks.
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(i.e. a symmetrizer of length n) out of each symmetrizer in the sets SΘ and SΘ\R,

SSSR→
AΘ\
A′SSSR

...

...

SΘ AΘ SΘ\R

factor SR−−−−−−→

SSSR→
AΘ\
A′SSSR

...

...

...

...

...

...

...

...

...

...

...

...

...

SΘ AΘ SΘ\R

factor SSSR factor SSSR

,

(2.107)

where we lumped together the antisymmetrizers A′SR and the rest (AΘ \ A′SR). We will denote the left

set of SR’s (which were factored out of SΘ) by {SR}l, and the right set of SR’s (which were factored out of

SΘ\R) by {SR}r, see Figure 2.1. From now onwards, we will focus the part Õ within the operator O, which

is highlighted blue in Figure 2.1.

SSSR→

Õ̃O

AΘ\
A′SSSR

...

...

...

...

...

...

...

...

...

...

...

...

...

SΘ AΘ SΘ\R

{SSSR }l A′SSSR {SSSR }r

Figure 2.1: This diagram schematically depicts the operator O (c.f. eq. (2.104)) with a symmetrizer SR
factored out of each symmetrizer in SΘ and in SΘ\R. The left set of SR’s will be denoted by {SR}l, and
the right set of SR’s by {SR}r. In this proof, we will focus on the part of the operator that is highlighted in
blue. This part will be denoted by Õ.

The significance of the operator Õ in Figure 2.1: The left part of Õ, namely {SR}l ·A′SR , by itself

corresponds to a rectangular tableau, as each symmetrizer has the same length and each antisymmetrizer has

the same length. This will be important, since we will need Õ to stay unchanged under a swap of any pair of

antisymmetrizers in A′SR in order to commute the constituent permutations of SR through the intervening

set A′SR (in analogy to what was done in example (2.85) — this will become evident below). Note that Õ

would not stay unchanged under such a swap if the antisymmetrizers in A′SR had different lengths and would
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thus be distinguishable. In particular, the operator Õ corresponds to the amputated tableau�Θc [R], which is

indeed rectangular by requirement of the Propagation Theorem 2.2. This requirement, therefore, translates

into the ability of finding an operator Õ within the operator O, thus allowing the necessary propagation of

permutations.

Suppose that SΘ contains exactly m symmetrizers (hence SΘ\R contains (m− 1) symmetrizers). Then also

{SR}l contains m symmetrizers and {SR}r contains (m− 1) symmetrizers.

Furthermore, since each symmetrizer in {SR}l has a common leg with each of the n antisymmetrizer in A′SR ,

we may choose the kth leg exiting each symmetrizer in {SR}l to enter the kth antisymmetrizer in A′SR .17

We may schematically draw this, as

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

...

1
2

m
m+1
m+2

2m

(n−1)m+1
(n−1)m+2

n ·m

...

; (2.108)

In (2.108), we have labelled the index lines for clarity; from Figure 2.1 it however should be noted that the

ith index in the above graphic is not necessarily the ith index line in the operator O. The part of the operator

O highlighted in blue in Figure 2.1, operator Õ, can then be represented as

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

...

︸ ︷︷ ︸
{SR}l

...

1

2

︸ ︷︷ ︸
A′SR

...

︸︷︷︸
{SR}r

, (2.109)

where the last symmetrizer in the set {SR}l is the symmetrizer SR that we eventually wish to commute

through to the right. In (2.109), we labeled the first and the second antisymmetrizer of the set A′SR by 1

and 2 respectively for future reference.

As previously stated, we strive to commute constituent transpositions (ij) of the symmetrizer SR ∈ {SR}l
through the set of antisymmetrizers A′SR to the right set {SR}r. We achieve this goal in the following

way: We first factor the transposition (ij) out of each symmetrizer in {SR}l. By doing so, the ith leg of

each symmetrizer now enters the jth antisymmetrizer and vice versa (all the other legs remain unchanged).

We may now “remedy” this change by swapping the ith and jth antisymmetrizer, similar to what we did

17We may always choose to order index legs this way, since, within a symmetrizer, we may re-order index lines at will without
changing the symmetrizer.
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in example (2.85). For instance, if i = 1 and j = 2, we factor the transposition (12) out of each of the

symmetrizers of {SR}l,

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

1

2

...

, (2.110)

and then swap the first and second antisymmetrizer, which are marked as 1 and 2 respectively. The key

observation to make is that the antisymmetrizers 1 and 2 would be indistinguishable if it weren’t for the

labeling. Thus, the set A′SR remains unchanged even when the swap between antisymmetrizers i ( 1 ) and j

( 2 ) is carried out. This trick of swapping identical antisymmetrizers was initially used by KS in an example

in the appendix of [4].

After we swapped the two antisymmetrizers, the ith leg of each symmetrizer in {SR}l once again enters the

ith antisymmetrizer, and same is true for the jth leg. However, now the legs exiting the ith antisymmetrizer

in A′SR enter the symmetrizers in {SR}r in the jth position, and the legs exiting the jth antisymmetrizer

enter the symmetrizers in {SR}r in the ith position. Thus, we have effectively commuted the transpositions

(ij) past the set A′SR ,

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

2

1

...

. (2.111)

All but one of the propagated transpositions (ij) can then be absorbed into the symmetrizers of the set

{SR}r. One transposition, however, will remain, as there is no symmetrizer18 in the set {SR}r to absorb

18I.e. the missing symmetrizer SR on the right-hand side of the operator O.
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this transposition,

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

2

1

...

. (2.112)

We then re-absorb the sets {SR}l and {SR}l into SΘ and SΘ\R respectively. This clearly leaves the trans-

position (ij) un-absorbed. Thus, we have shown that

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

=
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

λ

= Oλ (2.113)

for λ = (ij) being a transposition. We can repeat the above procedure with any constituent tranposition of

SR.

If λ is a constituent permutation (not necessarily a transposition) of SR, we can also propagate λ to the

right-hand side, since any such permutation λ can be written as a product of constituent transpositions:

Propagating the permutation λ then corresponds to successively propagating its constituent transpositions

through to the right, yielding

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

...

λ

(2.114)

for any constituent permutation λ of SR.

In order to obtain the missing symmetrizer on the right, it remains to add up all the terms Oλ — since SR
is assumed to have length n, there will be exactly n! such terms. By relation (2.113), we know that each of

these terms is equal to O, yielding the following sum,

1

n!

n!∑

1




...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

︸ ︷︷ ︸
O




=
1

n!

∑

λ∈Sn




...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

λ
︸ ︷︷ ︸

Oλ



. (2.115)

The left-hand side of the above equation merely becomes n!
n!O = O. The right-hand side yields the desired
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symmetrizer,19 such that

O = SΘ AΘ SΘ =
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

SSSR

, (2.116)

where we used the fact that SΘ = SΘ\RSR = SRSΘ\R by assumption of Theorem 2.2 (c.f. eq. (2.72)). In

particular, using the fact that O as given in (2.116) is clearly Hermitian, O† = O,20 we find that

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

=
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

SSSR

=
...

...

...

...
...

SΘ\R
AΘ

SΘ\R

SSSR

= O†, (2.117)

as required.

2.4.1.4 Propagating antisymmetrizers:

The proof of the Propagation Theorem 2.2 for an operator Q of the form Q := AΘSΘAΘ\C is very similar

to the proof given for the operator O. However, there are some differences on which we wish to comment

here: If we want to propagate an antisymmetrizer AC corresponding to a column C in Θ from AΘ to AΘ\C ,

we first check that the amputated tableau �Θr [C] is rectangular. If so, we are able to isolate an operator Q̃

within Q in analogy to how we isolated Õ within O (see Figure 2.1), where

Q̃ := {AC}l S′AC {AC}r . (2.118)

When we propagate a transposition (ij) from the left to the right of Q̃, we need to tread with care as

this will induce a factor of (−1). This factor, however, will be vital in the recombination process that

recreates the antisymmetrizer AC by summing constituent permutations: Suppose the set {AC}l contains m

antisymmetrizers, then the set {AC}r contains (m − 1) antisymmetrizers. If we now factor a transposition

(ij) out of each antisymmetrizer in {AC}l on the left of Q̃, we obtain a factor of (−1)m. Swapping the

ith and jth symmetrizers will not induce an extra minus-sign, but absorbing the transpositions into the

antisymmetrizers in the set {AC}r will produce an extra factor of (−1)m−1. Thus, for each transposition

we commute through, we obtain a factor of (−1)2m−1 = −1, which is the signature of a transposition. In

particular, each permutation λ (consisting of a product of transpositions) will induce a prefactor of sign(λ)

when commuted through, yielding

Q̃ = sign(λ)Q̃λ. (2.119)

However, since an antisymmetrizer is by definition the sum of its constituent permutations weighted by their

signatures, for example,

=
1

3!

(
− − − + +

)
, (2.120)

19This was already exhibited in example (2.88).
20By the Hermiticity of (sets of) (anti-)symmetrizer, see eq. (2.10).
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equation (2.119) is exactly what we need in order to be able to reconstruct the antisymmetrizer AC on the

right of the operator Q̃ by summing up the terms sign(λ)Q̃λ. Re-absorbing {AC}l into AΘ and {AC}r into

AΘ\C yields the desired eq. (2.75).

2.4.2 Proof of Theorem 2.3 (generalized propagation rules)

Let Θ̃ be a semi-standard irregular tableau, and let O be an operator of the form

O = SΘ̃ AΘ̃ SΘ̃\R , (2.121)

where R denotes a particular row in Θ̃. Having gone through the proof of Theorem 2.2, it is clear that the

symmetrizer SR can be propagated through the set AΘ̃ if the following conditions are met:

1. Each leg in SR needs to enter an antisymmetrizer of the same length to perform the swapping procedure

described in section 2.4.1.3. Call the set of antisymmetrizers sharing legs with SR A′SR . If SR has

length n, then A′SR contains exactly n antisymmetrizers.

2. The remaining symmetrizers in O may have

• 0 legs in common with the antisymmetrizers in A′SR , i.e. they are not affected by swapping the

antisymmetrizers in A′SR and thus do not contribute to Õ (c.f. section 2.4.1.3), or

• n legs in common with the antisymmetrizers in A′SR (one with each antisymmetrizer) in order to

be able to absorb any permutation arising from swapping the antisymmetrizers in A′SR .

The requirement that ��̃Θc [R] only contains rows of equal length ensures that the above conditions are met:

Differently to Young tableaux, if Θ̃ is a semi-standard irregular tableau, then removing columns in order to

form ��̃Θc [R] may remove whole rows in the process, for example

Θ̃ =

5 1

7 2 3 6

4 8

−→ ��̃Θc[(4, 8)]
7 2

4 8
, (2.122)

where the row (5, 1) was removed. However, the symmetrizers corresponding to such rows have no common

legs with the antisymmetrizers in A′SR , as is evident from the example (S51 shares no legs with A74 and

A28). This is also due to the fact that Θ̃ is semi-standard, thus not allowing any of its entries to occur more

than once.

Hence, the only symmetrizers that share index legs with the antisymmetrizers in A′SR are those corresponding

to the rows of Θ̃ which have not been fully deleted (although maybe in part) in ��̃Θc [R]. Let us denote the set

of these symmetrizers by S′SR . The requirement that each row in ��̃Θc [R] has the same length ensures that

each symmetrizer in S′SR shares exactly one leg with each antisymmetrizer in A′SR and thus has length ≥ n
(this was already argued in section 2.4.1.1).

Thus, all conditions required to perform the propagating procedure already explained in sections 2.4.1.2 and

2.4.1.3 are met, allowing us to propagate SR through A′SR at will,

O = SΘ̃ AΘ̃ SΘ̃\R = SΘ̃ AΘ̃ SΘ̃ = SΘ̃\R AΘ̃ SΘ̃ . (2.123)
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The proof for symmetrizers and antisymmetrizers exchanged follows similar steps and is thus left as an

exercise to the reader.

2.5 Chapter conclusion

We have established two classes of rules that allow us to simplify and manipulate birdtrack operators. The

first such class are the cancellation rules (Theorem 2.1 and Corollary 2.2) allowing us to shorten the birdtrack

expression of an operator. The simplification reached in this process is often very significant, as is exemplified

in Figure 2.2. Shorter expressions of operators are desirable, as they are more practical to work with in that

they allow for faster automated computation. Furthermore, short expressions offer a visual assessment of

their action, making them more intuitive.

The second class of rules are propagation rules (Theorems 2.2 and 2.3). Their use lies in the ability to make

Hermitian birdtrack operators explicitly symmetric, thus exposing their innate Hermiticity. Since birdtracks

are a graphical tool designed to make working with them more intuitive, it is desirable to visually expose the

inherent properties of the birdtrack operators.

To illustrate how powerful these simplification rules are, we show their effect on the Hermitian KS projector [4]

associated with the Young tableau

Φ :=

1 2 4 7

3 6

5 8

9

. (2.124)

The recursive KS algorithm leads to a Hermitian Young projection operator PΦ, with P̄Φ being of impressive

length: It contains 127 sets of symmetrizers and antisymmetrizers, and its Hermiticity is not visually apparent

(see Figure 2.2). The cancellation rules achieve a tremendous simplification: the result contains only 13 sets.

Furthermore, multiple applications of the propagation rules can be used to translate this into an explicitly

symmetric form.

Cancellation rules

Propagation rules

Figure 2.2: For a size comparison, this figure shows the birdtrack arising from the iterative KS construction

in the top line, the much shortened version arising from the cancellation rules in the second line, and the

explicitly symmetric version achieved via the propagation rules in the third line.

In fact, the shorter, explicitly symmetric result can be constructed directly, without first constructing the

KS operator and then applying the cancellation rules; we provide the tools to do so in a separate paper [2]
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[chapter 3]. The algorithm allowing us to do this is based on the measure of lexical disorder (MOLD)

of a Young tableau [2] [chapter 3]. When used to construct the Hermitian Young projection operators in

Mathematica, the reduction in computational cost is impressive: On a modern laptop, the final result shown

in Figure 2.2 is obtained approximately 18600 times faster than the KS equivalent even before simplification

rules are implemented to shorten the latter. Thus, the MOLD construction offers a significant improvement

over the KS construction. The proof of the MOLD algorithm relies heavily on the manipulation rules laid

out in this paper.

Augmenting the Hermitian Young projection operators with transition operators yields an alternative basis of

the algebra of invariants of SU(N) over V ⊗m [3] [chapter 4]. The construction algorithm of the transition op-

erators again is built upon the simplification rules presented in this paper. With a basis for API (SU(N), V ⊗m)

consisting of projection and transition operators, one can construct a mutually orthogonal, complete basis for

the singlet states of SU(N) over V ⊗m ⊗ (V ∗)⊗m (and more generally over V ⊗m ⊗ (V ∗)⊗n) [94] [chapter 5].

These singlets are directly applicable to QCD, as they are needed to form Wilson line correlators used in the

framework of Jalilian-Marian–Iancu–McLerran–Weigert Leonidov–Kovner (JIMWLK) [20, 56–59] evolution

(see e.g. [71]), as well as a modern treatment of jet-evolution equations (see e.g. [78]), the infrared struc-

ture of QCD in the form of gluon exchange webs (see e.g. [90]), generalized parton distributions (GPDs)

and transverse–momentum–dependent parton distributions (TMDs) (see e.g. [91]). The references here only

serve to mark a specific reference point we find intriguing and are by no means exhaustive: In fact, almost

every branch of QCD in which the factorization theorems (see, e.g. [101]) apply makes use of Wilson line

correlators, and any attempt at completeness would be futile.

Besides their physics applications (which is the most appealing quality to the authors of this paper), birdtracks

are also immensely useful in the study of the representation theory of semi-simple Lie groups, as is exhibited

in [2, 4, 72, 102]. With the recent interest in Hermitian Young projection operators, birdtracks promise

interesting further developement in this branch of mathematics. It is hoped that the simplification rules

given here encourage the use of birdtracks as a viable tool for calculation.
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Chapter 3

Compact Hermitian Young Projection

Operators

This chapter has been published under the same name in the Journal of Mathematical Physics [2]. In some

instances, the present paper (chapter) refers to additional results not given in the paper. Where such work

is included in this thesis, a remark in square brackets and italics has been added to refer the reader to the

appropriate chapter of this thesis.

Abstract: In this paper, we describe a compact and practical algorithm to construct Hermitian Young pro-

jection operators for irreducible representations of the special unitary group SU(N), and discuss why ordinary

non-Hermitian Young projection operators are unsuitable for physics applications. The proof of this con-

struction algorithm uses the iterative method described by Keppeler and Sjödahl in [4]. We further show

that Hermitian Young projection operators share desirable properties with Young tableaux, namely a nested

hierarchy when “adding a particle”. We close by exhibiting the enormous advantage of the Hermitian Young

projection operators constructed in this paper over those given by Keppeler and Sjödahl.

3.1 Introduction & outline

3.1.1 Historical overview

More than a hundred years ago, the representation theory of compact, semi-simple Lie groups, in particular

also of SU(N), was a hot topic of research. Most known to physicists is the work done by Clebsch and Gordan,

where the product representations of SU(N) can be classified using the Clebsch-Gordan coefficients [25, 92, 93].

This is the textbook method for N = 2 to find the irreducible representations of spin of an m-particle

configuration by giving an explicit change of basis. While this method is perfectly adequate also for N 6= 2,

it requires one to choose the parameter N at the start of the calculation. Thus, this approach is of little use

to us, as we mainly strive to apply representation theory in a context of QCD, where it is often essential

for N (representing Nc, the number of colors in this case) to be a parameter to be varied at the end of the

calculation to get a better understanding of underlying structures [71, 75, 80].

Shortly after the research by Clebsch and Gordan was conducted, Elié Cartan introduced another method

of finding the irreducible representations of Lie groups via finding certain subalgebras of the associated
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Lie algebras [103] since known as Cartan subalgebras. This method is based on finding the highest weights

corresponding to the irreducible representations, and then constructing all basis states within it. This process

was used by Gell-Mann in 1961 [15, 104] when he introduced the eight-fold way (here N represents Nf the

number of flavors) to order hadrons into flavor multiplets such as the baryon octet and decuplet featuring

prominently in any introductory text on particle physics and as a motivation to study representation theory

in many a mathematical introduction to the topic [27, 65, 92]. Usually, one also fixes the parameter N

from the outset when using this method. While it is possible keep N as a parameter1 Cartan’s method is

of restricted use in practical applications as it requires us to construct all Nm associated basis elements to

fully characterize the irreducible representations required to span V ⊗m: For an unspecified N , this becomes

a daunting task.

In 1928, approximately three decades after Cartan’s work, Alfred Young conceived a combinatorial method

of classifying the idempotents on the algebra of permutations [84]. This method was subsequently used

in the 1930’s to establish a connection between these idempotents and the irreducible representations of

compact, semi-simple Lie groups, now known as the Schur-Weyl duality, [98]. This duality is based on the

theory of invariants, [72, 98], which exploits the invariants (in particular the primitive invariants) of a Lie

group G and constructs projection operators corresponding to the irreducible representations of G. Since the

present paper will rely on the theory of invariants, a short overview is in order: We will deal with a product

representations of SU(N) constructed from its fundamental representation on a given vector space V with

dim(V ) = N , whose action will simply be denoted by v 7→ Uv for all U ∈ SU(N) and v ∈ V . Choosing a

basis {e(i)|i = 1, . . . ,dim(V )} such that v = vie(i), this becomes vi 7→ U ij v
j . This immediately induces a

product representation of SU(N) on V ⊗m if one uses this basis of V to induce a basis on V ⊗m so that a

general element v ∈ V ⊗m takes the form v = vi1...ime(i1) ⊗ · · · ⊗ e(im):

U ◦ v = U ◦ vi1...ime(i1) ⊗ · · · ⊗ e(im) := U i1j1 · · ·U
im
jm︸ ︷︷ ︸

=:U

vj1...jme(i1) ⊗ · · · ⊗ e(im) . (3.1)

Since all the factors in V ⊗m are identical, the notion of permuting the factors is a natural one and leads to

a linear map on V ⊗m according to

ρ ◦ v = ρ ◦ vi1...ime(i1) ⊗ · · · ⊗ e(im) := viρ(1)...iρ(m)e(i1) ⊗ · · · ⊗ e(im) (3.2)

where ρ is an element of Sm, the group of permutations of m objects.2 From the definitions (3.1) and (3.2),

one immediately infers that the product representation commutes with all permutations on any v ∈ V ⊗m:

U ◦ ρ ◦ v = ρ ◦U ◦ v . (3.3)

In other words, any such permutation ρ is an invariant of SU(N) (or in fact any Lie group G acting on V ):

U ◦ ρ ◦U−1 = ρ . (3.4)

It can further be shown that these permutations in fact span the space of all linear invariants of SU(N) over

V ⊗m [72]. The permutations are thus referred to as the primitive invariants of SU(N) over V ⊗m. The full

1This is an elusive piece of knowledge: Fulton [95, chapter 8.2, Lemma 4], for example, provides the basis for finding highest
weight vectors directly from tableaux without fixing N .

2Permuting the basis vectors instead involves ρ−1: vρ(i1)...ρ(im)e(i1) ⊗ · · · ⊗ e(im) = vi1...ime(i
ρ−1(1)

) ⊗ · · · ⊗ e(i
ρ−1(m)

).
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space of linear invariants is then given by3

API
(
SU(N), V ⊗m

)
:=
{ ∑

σ∈Sm
ασσ

∣∣∣ασ ∈ R, σ ∈ Sm
}
⊂ Lin

(
V ⊗m

)
. (3.5)

Note we are exclusively focusing on API (SU(N), V ⊗m) and make no efforts to directly discuss the invariants

on V ⊗m⊗(V ∗)⊗n. For SU(N) these are implicitly included due to the presence of εi1...iN as a second invariant

besides δij — the construction of explicit algorithms tailored to expose this structure are beyond the scope of

this paper. For a more comprehensive introduction to invariant theory, readers are referred to [72, 93, 98, 105].

If we denote by Ym the complete set of irreducible representations of SU(N) on V ⊗m, (according to Young

this is in fact the set of Young tableaux with m-boxes), then a meaningful set of projection operators

{LΘ ∈ API (SU(N), V ⊗m) |Θ ∈ Ym} (where the LΘ are not identically zero) onto the invariant subspaces

must satisfy the following three properties

1. The operators must be idempotent, that is they satisfy

LΘ · LΘ = LΘ . (3.6a)

2. The operators are mutually transversal [4] in the sense that their images only intersect at 0,

LΘ · LΦ = 0 if Θ 6= Φ. (3.6b)

3. The complete set of projection operators for SU(N) over V ⊗m sum up to the identity element of V ⊗m,

∑

Θ∈Ym
LΘ = idV ⊗m . (3.6c)

Projection operators in API (SU(N), V ⊗m), derived from Young tableaux that satisfy all three conditions

without restrictions, together with equation (3.3) then classify all irreducible representations of SU(N), [4,

72, 85, 92, 93].

Young projectors YΘ are suitable for this purpose only for m = 1, 2, 3, 4: They fail to satisfy conditions (3.6b)

and (3.6c) from m = 5 onwards so that additional work is needed to ensure that the theory adresses all

irreducible representations contained in V ⊗m. In [85, section 5.4], Littlewood describes how to “correct”

Young projectors YΘ for m ≥ 5 to restore conditions (3.6b) and (3.6c). We call the resulting operators

Littlewood-Young (LY) projectors and denote them LΘ to distinguish them form the original Young projectors

YΘ. A short account of their construction using our notation is given in appendix 3.A for completeness.

For classification purposes, one does not require the operators LΘ to be Hermitian, and from m = 3 a growing

fraction of the LY projectors lack that often useful feature.

On the positive side, the LY projection operators are compact and can be constructed keeping N as a

parameter, both desirable properties for the practitioner.

With Young’s (and Littlewood’s) contributions, the representation theory of compact, semi-simple Lie groups

was considered a fully understood and complete theory from approximately 1950 onward, even though many

3One may equally well define the algebra of primitive invariants over the field of complex numbers C, but the real numbers
R are sufficient for our purposes here.
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misconceptions, especially about the full extent of the theory remained, in particular among casual practi-

tioners.

In the 1970’s, Penrose devised a graphical method of dealing with primitive invariants of Lie groups including

Young projection operators [87, 88], which was subsequently applied in a collaboration with MacCallum [89].

This graphical method, now dubbed the birdtrack formalism, was modernized and further developed by

Cvitanović [72] in recent years. The immense benefit of the birdtrack formalism is that it makes the actions

of the operators visually accessible and thus more intuitive. For illustration, we give as an example the

permutations of S3 written both in their cycle notation (see [93] for a textbook introduction) as well as

birdtracks:

︸ ︷︷ ︸
id

,

︸ ︷︷ ︸
(12)

,

︸ ︷︷ ︸
(13)

,

︸ ︷︷ ︸
(23)

,

︸ ︷︷ ︸
(123)

,

︸ ︷︷ ︸
(132)

. (3.7)

The action of each of the above permutations on a tensor product v1 ⊗ v2 ⊗ v3 is clear, for example

(123) (v1 ⊗ v2 ⊗ v3) = v3 ⊗ v1 ⊗ v2. (3.8)

In the birdtrack formalism, this equation is written as

v1
v2
v3

=
v3
v1
v2
, (3.9)

where each term in the product v1 ⊗ v2 ⊗ v3 (written as a tower
v1
v2
v3

) can be thought of as being moved along

the lines of . Birdtracks are thus naturally read from right to left, as is also indicated by the arrows on

the legs.4

The representation theory of SU(N) found a short-lived revival in 2014, when Keppeler and Sjödahl presented

a construction algorithm for Hermitian projection operators (based on the idempotents already found by

Young) [4]. This paper arose out of a need for Hermitian operators in a physics context. In their paper,

the birdtrack formalism was used to devise a recursive construction algorithm for Hermitian projection

operators. This algorithm does produce Hermitian operators satisfying the requirements (3.6) (idempotency,

transversality, and decomposition of unity) for a classification tool and allows to keep N as a parameter, just

as the Littlewood-Young operators devised much earlier.

We will argue below that Hermiticity provides more than just cosmetic advantages: We show that Hermitian

Young projection operators mimic the tableau hierarchy of Young tableaux. We directly trace this back to

Hermiticity — the Littlewood-Young projection operators like any non-Hermitian corrected version of Young

projectors must fail in this regard.

To the practitioner, this comes at a high price: the expressions created by Keppeler and Sjödahl’s algorithm

soon become extremely long and thus computationally expensive and impractical. In this paper, we give a

considerably more efficient and thus more practical construction algorithm for Hermitian Young projection

operators yielding compact expressions.

4The direction of the arrows thus encodes whether the leg is acting on V or its dual V ∗, c.f. section 3.3.1.

118



Chapter 3. Compact Hermitian Young Projection Operators

The remainder of this present section 3.1 gives a detailed outline of this paper and lists all goals that will be

achieved along the way.

3.1.2 Where non-Hermitian projection operators fail to deliver

Among practitioners, many misconceptions still exist with regards to Young projection operators and their

corrected forms. The probably most generic one stems from the presentation of Young tableaux and their

corresponding projection operators in the literature: It is usually explained in parallel that

1. Young tableaux follow a progressive hierarchy, in the sense that tableaux consisting of n boxes can be

obtained from Young tableaux of (n− 1) boxes merely by adding the box n in the appropriate place.

For example, the tableaux 1 2

3
and 1 2 3 can both be obtained from the tableau 1 2 ,

1 2

1 2 3
1 2

3

⊗ 3 ⊗ 3
and also

1

2

1 3

2

1

2

3

⊗ 3 ⊗ 3
. (3.10)

Since this is a key concept, we will need some notation and nomenclature to refer to it. In general, for

a particular Young tableau Θ with (n− 1) boxes, we will denote the set of all Young tableaux that can

be obtained from Θ by adding the box n by

{
Θ⊗ n

}
; (3.11)

this set will also be referred to as the child-set of Θ.

2. This is complemented by the fact that the corrected Young projection operators (e.g. the LY-operators)

span the full space, that is

∑

Θ∈Yn
LΘ = idn (3.12)

where Yn is understood to be the set of all Young tableaux consisting of n boxes (for a fixed n), and

idn is the identity operator on the space V ⊗n. (As mentioned earlier, this also holds for the standard

Young projection operators for m ≤ 4.) Equation (3.12) is also known as the completeness relation

of Littlewood-Young projection operators. In particular for n = 2, 3 (where the LΘ reduce to YΘ, c.f.

appendix 3.A),

Y 1 2 + Y 1
2

= id2 (3.13)

and

Y 1 2 3 + Y 1 2
3

+ Y 1 3
2

+ Y 1
2
3

= id3. (3.14)
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The completeness relations offer decompositions of unity in both cases.

The hierarchy relation (3.10) of Young tableaux, and the completeness relation (3.12) of LY projection opera-

tors, then might lead the unwary reader to (incorrectly) infer that the tableau hierarchy (3.10) automatically

implies that this decomposition of unity is in fact nested, i.e. that the child tableaux correspond to projection

operators that furnish decompositions of their parent projectors so that the identities

Y 1 2 3 + Y 1 2
3

?
= Y 1 2 and Y 1 3

2

+ Y 1
2
3

?
= Y 1

2

(3.15)

would hold. Both of these “equations” can easily be shown to be false by direct calculation. The authors

have not found any literature that clearly states that relation (3.10) holds for Young tableaux only, and does

not have a counterpart in terms of Littlewood-Young projection operators.

In physics applications, (3.12) is often not sufficient, and we require a counterpart of the structure in (3.10)

for a suitable set of projection operators, thus repairing the failure of “equation” (3.15). The desired analogue

exists, it is given by the Hermitian Young projection operators introduced by Keppeler and Sjödahl (KS) [4].5

In the present paper, we will explicitly demonstrate that the tableau hierarchy (3.10) can be transferred to

the KS operators in the desired manner: Using PΘ to denote the Hermitian Young projection operator

corresponding to the tableau Θ, it turns out that the decompositions in our example are indeed nested, so

that

P 1 2 3 + P 1 2
3

= P 1 2 and P 1 3
2

+ P 1
2
3

= P 1
2

(3.16)

hold, and that this generalizes to all Hermitian projectors corresponding to Young tableaux. Thus, the first

goal of this paper will be to show that this pattern holds in general:

Goal 1:

We are interested in a nested decomposition of projection operators in analogy to the the hierarchy relation

of Young tableaux (exemplified in eq. (3.10)) to operators, thus generalizing eq. (3.16) to

∑

Φ∈{Θ⊗n}
PΦ = PΘ where Φ ∈ Yn and Θ ∈ Yn−1 . (3.17)

1. We will look at two particular examples which illustrate that the summation property (3.17) does not

hold for Young projection operators, section 3.3.2. In particular, we will find that assuming (3.17)

holds for Young projectors over V ⊗n and all their ancestors (up to some value of n) forces one to

falsely conclude that these projectors are Hermitian. This serves as a motivation that the summation

property should hold for Hermitian Young projection operators.

2. In section 3.3.4, we will find our intuition restored when we prove that eq. (3.17) indeed holds for all

Hermitian Young projectors. This will be accomplished by using a shortened version of the KS operators;

a construction principle for these shortened operators is given in section 3.3.3.2.

5While the nested hierarchy (3.17) (and its generalization (3.18)) is obeyed by the KS operators, it was not explicitly discussed
in [4]. For up to 4 index lines, [72] constructed Hermitian Young projection operators and also discussed their nested hierarchy
property, without proceeding to a general construction algorithm. In the present paper we wish to contrast the standard Young
projection operators with the Hermitian Young projection operators, and so we choose to explicitly show the nested hierarchy
of the Hermitian projectors here.
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3. This then automatically extends over any number of generations of tableaux ( c.f. eq. (3.112)),

∑

Φ∈{Θ⊗m ⊗···⊗ n }

PΦ = PΘ for Φ ∈ Yn and Θ ∈ Ym−1, m < n , (3.18)

section 3.3.4.

3.1.3 Shorter is better

Having motivated the necessity of Hermitian Young projection operators, we will now shift our focus to their

application. In particular, the authors of this paper are foremost interested in applications in a QCD context

such as is laid out in [94] [chapter 5]. With this objective in mind, the Hermitian Young projection operators

conceived by KS [4] become impractical as the number of factors in V ⊗m grows: the expressions become too

long and thus computationally expensive; a quality, that is explained in section 3.4.3.

An array of practical tools [1] [chapter 2] particularly suited for the birdtrack formalism [72], in which the

Hermitian Young projection operators by KS were constructed, allows to devise a new construction principle

for Hermitian Young projection operators, which we could not resist to dub MOLD construction. As elements

in the algebra of invariants, the MOLD operators are identical to the KS operators, however their expressions

in terms of symmetrizers and antisymmetrizers, as well as the number of steps used in the construction, is

shorter, often dramatically so. We gain access to all the desired properties of the KS operators at a much

lower computational cost: their idempotency, their mutual transversality, their completeness relation,6 and

also the hierarchy relation (3.17). A clear comparison between the MOLD and the KS constructions and

the resulting expressions for the Hermitian Young projection operators can be found in section 3.4.3. This

constitutes the second goal of this paper:

Goal 2:

We will provide a construction principle for Hermitian Young projection operators that produces compact,

and thus practically useful expressions for these operators, section 3.4. An explicit comparison of projection

operators obtained from the MOLD and the KS algorithms is given in 3.4.3.

3.2 Tableaux, projectors, birdtracks, and conventions

Before we set out to achieve Goals 1 and 2, we will provide a short sketch of birdtracks and the way in which

they relate to Young tableaux in section 3.2.1, mainly to prepare for section 3.2.2 where we establish the

notation used in this paper. For a more comprehensive introduction to the birdtrack formalism refer to [72].

3.2.1 Birdtracks & projection operators

Our aim in this section is to establish a link between Young tableaux [93] and birdtracks [72, 87–89], as it is

our ultimate goal is to use these tools in a QCD context, where SU(N) with N = Nc = 3 is the gauge group

of the theory [94] [chapter 5], in a manner that allows us to keep N as a parameter in order to have direct

access to additional structure, not least the large Nc limit.

6All of these properties of the KS operators are described in Theorem 3.3 and in [4].
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As mentioned earlier, one way to generate the projection operators corresponding to the irreducible represen-

tations of SU(N) without being forced to choose a numerical value for N at the outset is via the method of

Young projection operators, which can be constructed from Young tableaux, see for example [92, 93, 95, 96]

and other standard textbooks.

We therefore begin with a short memory-refresher on Young tableaux, our main source for this will be [93].

A Young tableau is defined to be an arrangement of m boxes which are left-aligned and top-aligned, and each

box is filled with a unique integer between 1 and m such that the numbers increase from left to right in each

row and from top to bottom in each column.7 For example, among the two conglomerations of boxes

Θ =

1 3 6

2 5 7

4

and Θ̃ =
3 4 1

2 6 7 5
, (3.19)

Θ is a Young tableau but Θ̃ is not since Θ̃ is neither top aligned nor are the numbers increasing within each

column and row. The study of Young tableaux is the topic of several books, e.g. [95], and is thus too vast a

topic to fully explore here.

Throughout this paper, Yn will denote the set of all Young tableaux consisting of n boxes. For example,

Y3 :=



 1 2 3 ,

1 2

3
,

1 3

2
,

1

2

3



 =

{
1 2 ⊗ 3

}
∪
{

1

2
⊗ 3

}
. (3.20)

We will denote a particular Young tableau by an upper case Greek letter, usually Θ or Φ.

To establish the connection with birdtrack notation, let us consider a symmetrizer over elements 1 and 2,

S12, corresponding to a Young tableau

1 2 , (3.21)

as symmetrizers always correspond to rows of Young tableaux [93]. We know that this symmetrizer S12 is

given by 1
2 (id + (12)), where id is the identity and (12) denotes the transposition that swaps elements 1 and

2. Graphically, we would denote this linear combination as [72]

S12 =
1

2

(
+

)
. (3.22)

This operator is read from right to left,8 as it is viewed to act as a linear map from the space V ⊗ V into

itself. In this paper, permutations and linear combinations thereof will always be interpreted as elements of

Lin (V ⊗n), where Lin (V ⊗n) denotes the space of linear maps over V ⊗n. In particular, we will denote the

sub-space of Lin (V ⊗n) that is spanned by the primitive invariants of SU(N) by API (SU(N), V ⊗n).

Following [72], we denote a symmetrizer over an index-set N , SN , by an empty (white) box over the index

lines in N . Thus, the symmetrizer S12 is denoted by . Similarly, an antisymmetrizer over an index-set

7In some references, the presently described tableau may also be referred to as a standard Young tableau [95, 96].
8This is no longer strictly true for birdtracks representing primitive invariants of SU(N) over V ⊗m⊗ (V ∗)⊗n, which includes

dual vector spaces. A more informative discussion on this is out of the scope of this paper; readers are referred to [72] [or
chapters 5 to 8 of this thesis].
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M, AM, is denoted by a filled (black) box over the appropriate index lines. For example,

A12 = corresponds to the Young tableau
1

2
, (3.23)

since antisymmetrizers correspond to columns of Young tableaux [93]. For any Young tableau Θ, one can

form an idempotent, the so-called Young projection operator corresponding to Θ [72, 84, 93, 95, 96]: Let

SRi denote the symmetrizer corresponding to the ith row of the tableau Θ, and let SΘ denote the set (or

product, it does not matter since the symmetrizers SRi are disjoint by the definition of a Young tableau) of

all symmetrizers SRi ,

SΘ = SR1 · · ·SRk . (3.24)

Similarly, let

AΘ = AC1 · · ·ACl (3.25)

where ACj corresponds to the jth column of Θ. Then, the object

YΘ := αΘ · SΘAΘ (3.26)

is an idempotent, where αΘ is a combinatorial factor involving the hook length of the tableau Θ [95, 96]. YΘ

is called the Young projection operator corresponding to Θ. Besides being idempotent9

YΘ · YΘ = YΘ , (3.27a)

Young projection operators on V ⊗n are also mutually transversal if n < 5: If Θ and Φ are two Young tableaux

consisting of the same number of boxes, then

YΘ · YΦ = δΘΦYΘ for n = 1, 2, 3, 4 , (3.27b)

and for general n provided the shapes of the associated tableaux are different.

Furthermore, again for m < 5, Young projection operators satisfy a completeness relation, that is, the Young

projection operators corresponding to the tableaux in Yn sum up to the identity operator on the space V ⊗n,

∑

Θ∈Yn
YΘ = 1n n = 1, 2, 3, 4 . (3.27c)

Both properties (3.27b) and (3.27c) can be restored for m ≥ 5 by suitable subtractions without compro-

mising (3.27a) in the process (see [85, sec. 5.4] or in [106, sec. II.3.6]), c.f. eqns. (3.6) and appendix 3.A.

These three properties allow the (corrected) Young projection operators associated to the Young tableaux

in Yn to fully classify the irreducible representations of SU(N) over V ⊗n [72, 93, 98, 105]. The Hermitian

replacements for these operators given in [4, 82, 102] share all three properties without restrictions on n and

are formulated in terms of YΘ entirely, relying on the unrestricted nature of (3.27a). This remains to be the

9This property is surprisingly hard to prove without the simplification rules paraphrased in section 3.2.3 [1] [chapter 2].
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case for the improved algorithms presented here.

It should be noted that, since all symmetrizers in SΘ (resp. antisymmetrizers in AΘ) are disjoint, each index

line enters at most one symmetrizer (resp. antisymmetrizer) in birdtrack notation. Thus, one may draw all

symmetrizers (resp. antisymmetrizers) underneath each other.

As an example, we construct the birdtrack Young projection operator corresponding to the following Young

tableau,

Θ =
1 3 4

2 5
. (3.28)

YΘ is given by

YΘ = 2 · S134S25A12A35 , (3.29)

where the constant 2 is the combinatorial factor that ensures the idempotency of YΘ. In birdtrack notation,

the Young projection operator YΘ becomes

YΘ = 2 · , (3.30)

where we were able to draw the two symmetrizers in SΘ and the antisymmetrizers in AΘ underneath each

other, as claimed.

3.2.2 Notation & conventions

In the literature, there is a great multitude of (sometimes conflicting) conventions and notations regarding

birdtracks, Young symmetrizers and other quantities used in this paper. We will devote this section to laying

down the conventions that will be used here.

3.2.2.1 Structural relationships between Young tableaux of different sizes

Throughout this paper, YΘ shall denote the normalized Young projection operator corresponding to a Young

tableau Θ, and PΘ will refer to the normalized Hermitian Young projection operator corresponding to Θ.

Furthermore, for any operator O consisting of symmetrizers and antisymmetrizers, the symbol Ō will refer to

the equivalence class of operators that are proportional to the product of symmetrizers and antisymmetrizers

of O without any additional scalar factors. For example,

YΘ :=
4

3︸︷︷︸
=:αΘ

︸ ︷︷ ︸
=:ȲΘ

. (3.31)

Thus, for a birdtrack operator O, comprised solely of symmetrizers and antisymmetrizers, Ō denotes the

graphical part alone,

O := ωŌ, (3.32)
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where ω is some scalar. The benefit of this notation is that the barred operator stays unchanged under

multiplication with a nonzero scalar λ,

λ · Ō = Ō but in general λ ·O 6= O . (3.33)

It should be noted that ȲΘ and P̄Θ are only quasi-idempotent, while YΘ and PΘ are idempotent. We will

denote the normalization constants of YΘ and PΘ by αΘ and βΘ respectively, such that

YΘ := αΘȲΘ and PΘ := βΘP̄Θ ; (3.34)

where αΘ can be obtained from the hook length formula [72, 95, 96] and the normalization constant βΘ is

given together with the appropriate construction principle for PΘ (we encounter three different versions, one

each for the original KS construction in Theorem 3.3, the simplified KS construction in Corollary 3.1, and

the MOLD version in Theorem 3.5).

It is a well-known fact that Young tableaux in Yn can be built from Young tableaux in Yn−1 by adding the

box n at an appropriate place as to not destroy the properties of Young tableaux; such places are referred

to as outer corners [96]. In this way, the Young tableau Θ = 1 2 3

4
generates the subset {Θ⊗ 5 } of Y5,

Θ =
1 2 3

4
∈ Y4

1 2 3

4

5

1 2 3

4 5

1 2 3 5

4
∈
{

Θ⊗ 5

}
⊂ Y5

(3.35)

This operation is not a map from Yn to Yn+1 in the mathematical sense as it does not yield a unique result;

instead, we obtain a map from Yn to the power set (the set of all subsets) of Yn+1, P(Yn+1). The reverse

operation, taking away the box with the highest entry, is a map from Yn+1 to Yn: Let us denote this map

by π. π can then repeatedly be applied to the resulting tableau,

1 3 6

2 5

4

π−−→
1 3

2 5

4

π−−→
1 3

2

4

π−−→ 1 3

2
. (3.36)

Definition 3.1 – parent map and ancestor tableaux:

Let Θ ∈ Yn be a Young tableau. We define its parent tableau Θ(1) ∈ Yn−1 to be the tableau obtained from

Θ by removing the box n of Θ.10 Furthermore, we will define a parent map π from Yn to Yn−1, for a

particular n,

π : Yn → Yn−1, (3.37a)

10We note that the tableau Θ(1) is always a Young tableau if Θ was a Young tableau, since removing the box with the highest
entry cannot possibly destroy the properties of Θ (and thus Θ(1)) that make it a Young tableau.
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which acts on Θ by removing the box n from Θ,

π : Θ 7→ Θ(1). (3.37b)

In general, we define the successive action of the parent map π by

Yn π−−→ Yn−1
π−−→ Yn−2

π−−→ . . .
π−−→ Yn−m, (3.38a)

and denote it by πm,

πm : Yn → Yn−m, πm := Yn π−−→ Yn−1
π−−→ Yn−2

π−−→ . . .
π−−→ Yn−m . (3.38b)

We will further denote the unique tableau obtained from Θ by applying the map π m times, πm(Θ), by Θ(m),

and refer to it as the ancestor tableau of Θ m generations back,

πm : Θ 7→ Θ(m) . (3.38c)

3.2.2.2 Embeddings and images of linear operators

Any operator O ∈ Lin (V ⊗n) can be embedded into Lin (V ⊗m) for m > n in several ways, simply by letting

the embedding act as the identity on (m− n) of the factors; how to select these factors is a matter of what

one plans to achieve. The most useful convention for our purposes is to let O act on the first n factors and

operate with the identity on the last (m−n) factors. We will call this the canonical embedding. On the level

of birdtracks, this amounts to letting the index lines of O coincide with the top n index lines of Lin (V ⊗m),

and the bottom (m−n) lines of the embedded operator constitute the identity birdtrack of size (m−n). For

example, the operator Ȳ 1 2
3

is canonically embedded into Lin
(
V ⊗5

)
as

↪→ . (3.39)

Furthermore, we will use the same symbol O for the operator as well as for its embedded counterpart. Thus,

Ȳ 1 2
3

shall denote both the operator on the left as well as on the right hand side of the embedding (3.39).

Lastly, if a Hermitian projection operator A projects onto a subspace completely contained in the image of

a Hermitian projection operator B, then we denote this as A ⊂ B, transferring the familiar notation of sets

to the associated projection operators. In particular, A ⊂ B if and only if

A ·B = B ·A = A (3.40)

for the following reason: If the subspaces obtained by the consecutive application of the operators A and

B in any order is the same as that obtained by merely applying A, then not only need the subspaces onto

which A and B project overlap (as otherwise A · B = B · A = 0), but the subspace corresponding to A

must be completely contained in the subspace of B — otherwise the last equality of (3.40) would not hold.

Hermiticity is crucial for these statements — they thus do not apply to most Young projection operators on

V ⊗m if m ≥ 3. A familiar example for this situation is the relation between symmetrizers of different length:
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a symmetrizer SN can be absorbed into a symmetrizer SN ′ , as long as the index set N is a subset of N ′,
and the same statement holds for antisymmetrizer, [72]. For example,

= = . (3.41)

Thus, by the above notation, SN ′ ⊂ SN , if N ⊂ N ′. Or, as in our example,

⊂ . (3.42)

In particular, it follows immediately from the definition of the ancestor tableau (Definition 3.1, eq. (3.38c))

that

SΘ(k)
SΘ = SΘ = SΘSΘ(k)

and AΘ(k)
AΘ = AΘ = AΘAΘ(k)

(3.43)

for every ancestor tableau Θ(k) of Θ.

3.2.3 Cancellation rules

We suspect that one of the reasons why the birdtrack formalism has not yet gained as much popularity as it

ought is because there exist virtually no practical rules which allow easy manipulation of birdtrack operators

in the literature. In [1] [chapter 2], we establish various rules designed to easily manipulate birdtrack operators

comprised of symmetrizers and anti-symmetrizers. Since all operators considered in this paper are of this form,

the simplification rules of [1] [chapter 2] are immediately applicable: None of the proofs of the construction

algorithms in this paper would have been possible without these rules. Thus, we choose to summarize the

most important results of [1] [chapter 2] here. For the proofs of these rules, readers are referred to [1]

[chapter 2].

The simplification rules of [1] [chapter 2] fall into two classes:

1. Cancellation rules (Theorems 3.1 and 3.2, section 3.2.3): these rules are to cancel large chunks of

birdtrack operators, thus making them shorter (often significantly so) and more practical to use. The

cancellation rules are used in several places in this paper, in particular in the proof of the shortened KS

operators (Corollary 3.1) and the proof of the construction of MOLD operators (Theorem 3.5). Since

the cancellation rules are used multiple times throughout this paper, we recapitulate these rules in this

present section.

2. Propagation rules (Theorem 3.6, section 3.C.1.1): these rules allow one to commute (sets of) sym-

metrizers through (sets of) antisymmetrizers and vice versa. The propagation rules come in handy

when trying to expose the implicit Hermiticity of a birdtrack operator. In this paper, we use these

rules in the proof of Theorem 3.4, which is why we defer the re-statement of the propagation rules to

appendix 3.C.1 where also the proof of Theorem 3.4 can be found.

Theorem 3.1 – cancellation of wedged ancestor-operators:

Consider two Young tableaux Θ and Φ such that they have a common ancestor tableau Γ. Let YΘ, YΦ and

YΓ be their respective Young projection operators, all embedded in an algebra that is able to contain all three.
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Then

YΘYΓYΦ = YΘYΦ. (3.44)

For example, consider the Young tableaux

Θ =
1 2 5

3 4
and Φ =

1 2 4

3
, (3.45)

which have the common ancestor

Γ =
1 2

3
. (3.46)

Then, the product YΘYΓYΦ is given by

YΘYΓYΦ = 4 ·
︸ ︷︷ ︸

ȲΘ

︸ ︷︷ ︸
ȲΓ

︸ ︷︷ ︸
ȲΦ

, (3.47)

where αΘαΓαΦ = 4. According to Theorem 3.1, we are allowed to cancel the operator YΓ hence reducing the

above product to

YΘYΓYΦ = 4 ·
︸ ︷︷ ︸

ȲΘ

�
�
�
�

︸ ︷︷ ︸
ȲΦ

= 3 ·
︸ ︷︷ ︸

ȲΘ

︸ ︷︷ ︸
ȲΦ

, (3.48)

where αΘαΦ = 3.

A more general cancellation-Theorem is:

Theorem 3.2 – cancellation of parts of the operator:

Let Θ ∈ Yn be a Young tableau and M be an element of API (SU(N), V ⊗n). Then, there exists a (possibly

vanishing) constant λ such that

O := SΘ M AΘ = λ · YΘ . (3.49)

If furthermore the operator O is nonzero, then λ 6= 0. One instance in which O is guaranteed to be nonzero

is if M is of the form

M = AΦ1
SΦ2

AΦ3
SΦ4

· · · AΦk−1
SΦk , (3.50)

where AΦi ⊃ AΘ for every i ∈ {1, 3, . . . k − 1} and SΦj ⊃ SΘ and for every j ∈ {2, 4, . . . k}.

As an example, consider the operator

O := = {S125,S34} · {A13} · {S12,S34} · {A13,A24} . (3.51)

This operator meets all conditions of the above Theorem 3.2: The sets {S125,S34} and {A13,A24} together
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constitute the birdtrack of a Young projection operator ȲΘ corresponding to the tableau

Θ :=
1 2 5

3 4
. (3.52)

The set {A13} corresponds to the ancestor tableau Θ(2), and the set {S12,S34} corresponds to the ancestor

tableau Θ(1) and can thus be absorbed into AΘ and SΘ respectively, c.f. eq. (3.43). Hence O can be written

as

O = SΘ AΘ(2)
SΘ(1)

AΘ . (3.53)

Then, according to the above Cancellation Theorem 3.2, we may cancel the wedged ancestor sets AΘ(2)
and

SΘ(1)
at the cost of a nonzero constant λ̃. In particular, we find that

O = λ̃ ·
︸ ︷︷ ︸

ȲΘ

, (3.54)

which is proportional to YΘ.

3.3 Hermitian Young projection operators

Throughout this paper, we will be working with linear maps over linear spaces, in particular with maps in

API (SU(N), V ⊗m) ⊂ Lin (V ⊗m). All the familiar tools from linear algebra (as can be found in [107] and

other standard textbooks) apply but will likely look unfamiliar when employed in the language of birdtracks.

We thus devote this section to translate the most important tools for this paper into the birdtrack formalism.

3.3.1 Hermitian conjugation of linear maps in birdtrack notation

We begin by recalling the definition of Hermitian conjugation for linear maps. Let U and W be linear spaces,

and let 〈·, ·〉U : U × U → F, where F is a field usually taken to be C or R, denote the scalar product defined

on U , and similarly for W . Furthermore, let P : U →W be an operator. The scalar products then furnish a

definition of the Hermitian conjugate of P (denoted by P † : W → U) in the standard way:

〈w,Pu〉W !
= 〈P †w, u〉U (3.55)

for any u ∈ U and w ∈ W [107]. In our case, u and w will be elements of V ⊗m, both u and w appear as

tensors with m upper indices,11

uj1...jm and wi1...im , (3.56)

11At this point we recall that the basis vectors e of V ⊗m are denoted with lower indices; therefore u and w act on the e’s as
linear maps.
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and P : V ⊗m → V ⊗m. Eq. (3.55) is equivalent to requiring the following diagram to commute,

V⊗m⊗V⊗m V⊗m⊗V⊗m

V⊗m⊗V⊗m C

1m⊗P

P†⊗1m 〈·, ·〉

〈·, ·〉

. (3.57)

The scalar product between these maps is then defined in the usual way, 〈u,w〉 = u†w ∈ C. The map u†

is an element of the dual space (V ∗)⊗m and thus needs to be equipped with lower indices12 (note that the

index convention used here differs from that in [72]),

u† =
(
uj1...jm

)∗
=: uj1...jm . (3.58)

Complex conjugation ∗ is necessary, since the vector space V may be complex. Hence, we have that

〈u,w〉 = u†w = ui1...imw
i1...im ∈ C. (3.59)

In the above, all indices of u† and w were contracted so that the outcome of the scalar product lies in a field,

in our case C. Graphically, let us represent a tensor with j lower indices and i upper indices by a box which

has j legs entering on the right and i legs exiting on the left,

T a1a2...ai
b1b2...bj

→
a1
a2

ai−1
ai

b1
b2

b j−1
b j

...
...T . (3.60)

Therefore, the tensors ui1...im and wi1...im will have m legs exiting on the right and left respectively,

ui1...im →
...u

i1
i2

im−1
im

and wi1...im →
i1
i2

im−1
im

... w ; (3.61)

from now on, we will suppress the index labels of the birdtracks corresponding to the tensors in question.

The scalar product 〈u,w〉 is diagrammatically represented as

〈u,w〉 = ...u ... w , (3.62)

where the contraction of indices is indicated via the connection of corresponding index lines in the birdtrack.

In (3.62), we see that the birdtrack corresponding to 〈u,w〉 does not have any index lines exiting on either

the right or the left, indicating that it is indeed a scalar. We will now consider a scalar product 〈u, Pw〉,
where P : Lin (V ⊗m)→ Lin (V ⊗m) is an operator, to find its Hermitian dual P †. P must have m lower and

m upper indices,

P i1...imj1...jm →
i1
i2

im−1
im

...
...P

j1
j2

jm−1
jm

, (3.63)

12Since basis vectors ω of (V ∗)⊗m have upper indices.
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where the j-indices act on an element of Lin (V ⊗m) via index contraction. The scalar product 〈u, Pw〉 will

then be given by

〈u, Pw〉 =
(
ui1...im

)∗
P i1...imj1...jm w

j1...jm → ...u

i1
i2

im−1
im

...
...P

j1
j2

jm−1
jm

... w = ...u ...
...P ... w . (3.64)

The adjoint P † of P is defined to be the object such that relation (3.55) holds. Thus, P † acts on the dual

space, P † : Lin
(

(V ∗)⊗m
)
→ Lin

(
(V ∗)⊗m

)
, which again means that it has m upper and m lower indices,

but now the j-indices act on the element of Lin
(

(V ∗)⊗m
)

,

P † =
(
P i1...imj1...jm

)∗
= P j1...jm

i1...im
. (3.65)

It should be noted that once again, the raising and lowering of indices induces a complex conjugation of the

tensor components, as we have already seen for u in (3.58).13 The same caveat applies to the associated

birdtrack diagrams in which we have to mirror the operator about its vertical axis and reverse the direction

of the arrows:




i1
i2

im−1
im

...
...P

j1
j2

jm−1
jm



†

=

j1
j2

jm−1
jm

...
...P

i1
i2

im−1
im

. (3.66)

This results in all contracted index lines lining up correctly. For example,

Y 1 2
3

=
4

3
· ⇒ Y †

1 2
3

=
4

3
· (3.67)

=
1

3

(
+ − −

)
=

1

3

(
+ − −

)
.

Therefore,

〈P †u,w〉 =
(
uj1...jm

)∗ (
P i1...imj1...jm

)∗
wi1...im → ...u

j1
j2

jm−1
jm

...
...P

i1
i2

im−1
im

... w = ...u ...
...P ... w ; (3.68)

in direct correspondence with equation (3.64). For birdtrack operators, the Hermitian conjugate can thus be

graphically formed by reflecting the birdtrack about its vertical axis and reversing the arrows, for example

reflect−−−−→ rev. arr.−−−−−→ i.e

( )†
= . (3.69)

The mirroring of birdtracks under Hermitian conjugation immediately implies the unitarity of the primitive

invariants (and thus that we are dealing with a unitary representation of Sm on V ⊗m): the inverse permutation

of any primitive invariant ρ ∈ Sm is obtained by traversing the lines of the birdtrack corresponding to ρ in

13The projection operators considered in this paper are real and thus remain unaffected by complex conjugation. This is no
longer true for group elements or representations.
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the opposite direction [72], for example

· = =⇒ =

( )−1

. (3.70)

However, since “traversing the lines in the opposite direction” clearly corresponds to flipping the birdtrack

about its vertical axis and reversing the direction of the arrows, we have that

ρ−1 = ρ† ∀ρ ∈ Sm ; (3.71)

the primitive invariants are unitary.

These obvious Hermiticity properties of the primitive invariants make it easy to judge Hermiticity of an

operator once it is expanded in this basis set. This is no longer the case in other representations: While any

mirror symmetric birdtrack represents a Hermitian operator, the converse is not true in all representations.

Despite a lack of apparent mirror symmetry, the product birdtrack

(3.72)

is Hermitian, as can be shown by either using the simplification rules of Theorem 3.6 (app. 3.C.1.1) which

allow us to recast (3.72) in an explicitly mirror symmetric form, or by expanding it fully in terms of primitive

invariants.

In this paper, we will always consider birdtrack operators with lines directed from right to left (as is indicated

by the arrows on the legs). To reduce clutter, we will from now on suppress the arrows and (for example)

simply write

when we mean . (3.73)

3.3.2 Why equation (3.15) and its generalization cannot hold for Young projec-

tion operators

In this section, we will have a look at the summation property

∑

Φ∈{Θ⊗n}
YΦ

?
= YΘ for Θ ∈ Yn−1 , (3.74)

and how it fails to apply to Young projection operators. We will examine two particular examples: We

will assume that the summation property (3.74) holds for the standard (not necessarily Hermitian) Young

projection operators over V ⊗3 and V ⊗4, which will force us to conclude that the corresponding Young

projectors are Hermitian in both cases — clearly a false statement. This motivates us to check whether the

summation property (3.74) does hold for Hermitian Young projection operators, thus completing part 1 of

Goal 1.
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Let us begin with our first example: In section 3.1.2 equation (3.15), we claimed that

Y 1 2 3 + Y 1 2
3

6= Y 1 2 , (3.75)

where YΘ is the Young projection operator corresponding to the tableau Θ. We have now acquired the

necessary tools to show why the two sides fail to match. Assuming equality in (3.75) and adopting birdtrack

notation, this relation takes the form

+
4

3
· ?

= (3.76)

and would imply that

4

3
· ?

= − . (3.77)

From section 3.3.1, the right hand side of (3.77) is Hermitian, leading us to conclude that the left hand side

is Hermitian as well. This is clearly not true (as is evident from the expansions in (3.67), specifically the last

terms shown),

Y 1 2
3

6= Y †
1 2
3

. (3.78)

Thus we have arrived at a contradiction. In a similar way, it can be falsely concluded that Y 1 3
2

is Hermitian.

Let us now illustrate a slightly more advanced example involving an additional step which was not present

in the example for n = 3. We will explicitly discuss the case n = 4. Let us assume that equation (3.74) holds

for n = 3,

Y 1 2 3 + Y 1 2
3

?
= Y 1 2 and Y 1

2
3

+ Y 1 3
2

?
= Y 1

2

(3.79)

and also for n = 4,

Y 1 2 3

?
= Y 1 2 3 4 + Y 1 2 3

4

(3.80a)

Y 1 2
3

?
= Y 1 2 4

3

+ Y 1 2
3 4

+ Y 1 2
3
4

(3.80b)

Y 1 3
2

?
= Y 1 3 4

2

+ Y 1 3
2 4

+ Y 1 3
2
4

(3.80c)

Y 1
2
3

?
= Y 1 4

2
3

+ Y 1
2
3
4

. (3.80d)

Equations (3.80a) and (3.80d), if indeed valid, tell us that the operators Y 1 2 3
4

and Y 1 4
2
3

are Hermitian.14 To

show that the remaining operators are Hermitian, we notice that a similarity transformation with an element

14This can be concluded in the same way that we previously found that Y 1 2
3

is Hermitian.
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ρ of S4 of the form

Yi 7→ ρ†Yiρ (3.81)

does not change the Hermiticity of the operator Yi. Thus, for example the operator (34) · Y 1 2 3
4

· (34), where

(34) ∈ S4 is a transposition, is still “Hermitian”. It is now easy to check (via direct calculation) that15

(34) · Y 1 2 3
4

· (34) = Y 1 2 4
3

and (234) · Y 1 2 3
4

· (243) = Y 1 3 4
2

, (3.82)

where (243)† = (234), and similarly

(34) · Y 1 4
2
3

· (34) = Y 1 3
2
4

and (234) · Y 1 4
2
3

· (243) = Y 1 2
3
4

. (3.83)

We therefore conclude that also the Young projection operators Y 1 2 4
3

, Y 1 3 4
2

, Y 1 3
2
4

and Y 1 2
3
4

are Hermitian.

The remaining two operators Y 1 2
3 4

and Y 1 3
2 4

can thus be written as linear combinations of Hermitian operators,

using equations (3.80b) and (3.80c),

Y 1 2
3 4

=Y 1 2
3

−


Y 1 2 4

3

+ Y 1 2
3
4


 (3.84a)

Y 1 3
2 4

=Y 1 3
2

−


Y 1 3 4

2

+ Y 1 3
2
4


 , (3.84b)

leading us to conclude that they are Hermitian as well. Thus, we have found that all Young projection

operators corresponding to Young tableaux in Y4 are Hermitian — a contradiction. It should be noted that,

since the Littlewood-Young projection operators over V ⊗m reduce to the Young projectors for m ≤ 4, we

conclude that also the LY-operators cannot satisfy the summation property (3.74) (at least for m ≤ 4).

In fact, one may continue this game for one more level (to the Young projectors over V ⊗5) before the tricks

given in the above examples seize to suffice and one has to come up with new tools.

Nonetheless, the key message to take away from this section is that the reason why the Young operators do

not obey the summation property (3.74) is their lack of Hermiticity. This provides a strong hint that (3.74)

might hold for a Hermitian version of the Young projection operators (as was already claimed in section 3.1.2).

In section 3.3.4, we show explicitly that this is true, completing part 2 of Goal 1.

In order to be able to do so, we first need to describe how to obtain Hermitian Young projection operators.

This will be the subject of section 3.3.3.

15In fact, [93] defines the Young projection operator of a tableau Θ that can be obtained from Φ by reordering the entries of
Φ according to a permutation ρ as YΘ := ρ†YΦρ.
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3.3.3 Hermitian Young projection operators: KS and beyond

3.3.3.1 KS construction principle

A construction principle for Hermitian Young projection operators has recently been found by Keppeler

and Sjödahl [4]. We will now paraphrase their construction method (see Theorem 3.3), as it forms a basis

for proving that the summation property eq. (3.74) (resp. eq. (3.17)) and its generalizations indeed hold

for Hermitian Young projectors, section 3.3.4. We will further use Theorem 3.3 as a starting point for a

new construction principle, which yields much more compact expressions for Hermitian Young projection

operators, section 3.4. We will give Keppeler and Sjödahl’s algorithm without proof; a formal proof can be

found in [4].

Theorem 3.3 – KS Hermitian Young projectors [4]:

Let Θ ∈ Yn be a Young tableau. If n ≤ 2, then the Hermitian Young projection operator PΘ corresponding to

the tableau Θ is given by

PΘ := YΘ. (3.85)

This provides a termination criterion for an iterative process that obtains PΘ from PΘ(1)
via

PΘ := PΘ(1)
YΘ PΘ(1)

, (3.86)

once n > 2. In (3.86) PΘ(1)
is understood to be canonically embedded in the algebra API (SU(N), V ⊗n). Thus,

PΘ is recursively obtained from the full chain of its Hermitian ancestor operators PΘ(m)
.

The above operators generalize properties (3.27) of Young projection operators to all n:

Idempotency: PΘ · PΘ = PΘ (3.87a)

Transversality: PΘ · PΦ = δΘΦPΘ (3.87b)

Completeness:
∑

Θ∈Yn
PΘ = 1n (3.87c)

As an example, consider the Young tableau

Θ =
1 2 4

3 5
, (3.88)

with ancestor tableaux16

Θ(1) =
1 2 4

3
, Θ(2) =

1 2

3
and Θ(3) = 1 2 . (3.89)

When constructing the Hermitian Young projection operator PΘ according to the KS Theorem 3.3, we first

have to find PΘ(3)
, PΘ(2)

and PΘ(1)
. According to the Theorem, PΘ(3)

= YΘ(3)
, since Θ(3) ∈ Y2. Then,

16We do not have to consider the ancestor Θ(4), since Θ(3) ∈ Y2 and thus terminates the recursion (3.86).
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following the iterative procedure of the KS Theorem, PΘ(2)
and PΘ(1)

are given by

PΘ(2)
= PΘ(3)

YΘ(2)
PΘ(3)

= YΘ(3)
YΘ(2)

YΘ(3)
(3.90)

PΘ(1)
= PΘ(2)

YΘ(1)
PΘ(2)

= YΘ(3)
YΘ(2)

YΘ(3)︸ ︷︷ ︸
=PΘ(2)

YΘ(1)
YΘ(3)

YΘ(2)
YΘ(3)︸ ︷︷ ︸

=PΘ(2)

. (3.91)

Then, the desired operator PΘ is

PΘ = PΘ(1)
YΘPΘ(1)

= YΘ(3)
YΘ(2)

YΘ(3)
YΘ(1)

YΘ(3)
YΘ(2)

YΘ(3)︸ ︷︷ ︸
=PΘ(1)

YΘ YΘ(3)
YΘ(2)

YΘ(3)
YΘ(1)

YΘ(3)
YΘ(2)

YΘ(3)︸ ︷︷ ︸
=PΘ(1)

. (3.92)

As a birdtrack, PΘ can be written as

PΘ =
128

9
·
︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(1)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)︸ ︷︷ ︸

P̄Θ(1)

︸ ︷︷ ︸
ȲΘ

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(1)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)︸ ︷︷ ︸

P̄Θ(1)

, (3.93)

where

128

9
=
(
αΘ(3)

)8 (
αΘ(2)

)4 (
αΘ(1)

)2
αΘ (3.94)

is the appropriate normalization constant arising from the KS algorithm.

Let us emphasize that KS have proven that this or any other operator constructed with their algorithm

is Hermitian. The operator (3.93) is however not symmetric under a flip about its vertical axis, and thus

Hermiticity is not visually obvious. An additional advantage of the construction algorithm described in

the later section 3.4 is that it will necessarily yield mirror-symmetric operators, making their Hermiticity

immediately visible.

3.3.3.2 Beyond the KS construction

The results regarding Hermitian Young projection operators presented up until now are all taken from [4].

We will now move beyond the established results and show that

1. the KS operators can be simplified to yield more compact expressions (c.f. Corollary 3.1)17

2. the KS operators obey the summation property (3.74) (resp. (3.17))

∑

Φ∈{Θ⊗n}
PΦ = PΘ ; (3.95)

this will be shown in section 3.3.4.

In [1] [chapter 2], we found several simplification rules for birdtrack operators, some of which are summarized

17While the simplification in Corollary 3.1 is already significant, the alternative construction given in section 3.4 will be even
more efficient.
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in section 3.2.3. In particular, Theorem 3.1 can be used to shorten the above operator (3.93) to

PΘ = YΘ(3)
YΘ(2)

YΘ(1)
YΘYΘ(1)

YΘ(2)
YΘ(3)

(3.96)

= 8 ·
︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸ ︷︷ ︸
ȲΘ(1)

︸ ︷︷ ︸
ȲΘ

︸ ︷︷ ︸
ȲΘ(1)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)

, (3.97)

where
(
αΘ(3)

αΘ(2)
αΘ(1)

)2
αΘ = 8. The above expression for PΘ is clearly considerably shorter than the

expression given in (3.93). In fact, Theorem 3.1 allows us to systematically shorten the KS projection

operators, exposing a new, much simpler general form:

Corollary 3.1 – staircase form of Hermitian Young projectors:

Let Θ ∈ Yn be a Young tableau. Then, the corresponding Hermitian Young projection operator PΘ is given

by

PΘ = YΘ(n−2)
YΘ(n−3)

YΘ(n−4)
. . . YΘ(2)

YΘ(1)
YΘ YΘ(1)

YΘ(2)
. . . YΘ(n−4)

YΘ(n−3)
YΘ(n−2)

. (3.98)

This result simply follows from a repeated application of Theorem 3.1, where we notice that Θ(n−2) ∈ Y2

necessarily.

Even though this simplification is already quite substantial, it is by no means the simplest form achievable.

We will present a new construction principle in section 3.4, creating even more compact and thus easier

usable Hermitian Young projection operators. The proof of this construction will however make use of the

KS Theorem 3.3, see appendix 3.C.

3.3.4 Spanning subspaces with Hermitian operators

We are finally in a position to show that

∑

Φ∈{Θ⊗n}
PΦ = PΘ (3.99)

holds for every Θ ∈ Yn−1 if the PΞ are the Hermitian operators introduced previously. In section 3.1.2, we

gave the particular example

P 1 2 3 + P 1 2
3

= P 1 2 (3.100)

which holds for the Hermitian Young operators PΞ but fails to hold for their Young operator counterparts.

To prove (3.99) in general, we first need to show that a projection operator PΘ projects onto a subspace of

the image of an operator PΘ(m)
, where Θ(m) is an ancestor tableau of Θ. In particular, this will mean that

the image of an operator PΘ is a subset of the image of its parent operator PΘ(1)
.

Lemma 3.1 – Subspaces corresponding to Hermitian Young projection operators are nested:

Let Θ ∈ Yn be a Young tableau and let Θ(m) be its ancestor tableau, with m < n. Furthermore, let PΘ and

PΘ(m)
be the Hermitian Young projection operators corresponding to these tableaux. Then, the image of PΘ
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lies entirely in the image of PΘ(m)
,

PΘPΘ(m)
= PΘ = PΘ(m)

PΘ . (3.101)

An immediate consequence of this Lemma is that a Hermitian Young projection operator PΘ commutes with

its ancestor operator PΘ(m)
. In appendix 3.B, we first exemplify that Young projectors do not necessarily

obey the analgous image inclusion properties YΘYΘ(m)
= YΘ and/or YΘ(m)

YΘ = YΘ. We prove that, where

the image inclusion fails to hold, the associated commutator [YΘ(m)
, YΘ] does not vanish.

Image inclusion will play an integral part in the proof of eq. (3.99) and thus highlights where the proof would

break down for the (not necessarily Hermitian) Young projectors.

Before we give the proof of Lemma 3.1, We wish to draw attention to how this proof makes use of some of

the simplification rules given in section 3.2.3, as this will be mirrored in the proofs of the main Theorems

given in appendix 3.C.

Proof of Lemma 3.1: To prove the inclusion of the subspaces, it suffices to show that the product of the

operators satisfies eq. (3.101) (c.f. eq. (3.40)). What this relation implies is that if we first act the product

PΘ(m)
PΘ (or equivalently PΘPΘ(m)

) on an object x, we obtain the same outcome as if we only act PΘ on

x. Hence, PΘ must correspond to a smaller subspace than PΘ(m)
, and this subspace must completely be

contained in the subspace corresponding to PΘ(m)
. From the shortened KS construction (Corollary 3.1), the

Hermitian Young projection operators PΘ and PΘ(m)
are given by

PΘ = YΘ(n−2)
YΘ(n−3)

. . . YΘ(m+1)
YΘ(m)

. . . YΘ(1)
YΘ YΘ(1)

. . . YΘ(m)
YΘ(m+1)

. . . YΘ(n−3)
YΘ(n−2)

(3.102)

PΘ(m)
= YΘ(n−2)

YΘ(n−3)
. . . YΘ(m+1)

YΘ(m)
YΘ(m+1)

. . . YΘ(n−2)
YΘ(n−2)

. (3.103)

When forming the product PΘPΘ(m)
, we see a lot of cancellation of wedged ancestor operators due to Theo-

rem 3.1,

PΘ · PΘ(m)
= YΘ(n−2)

. . . YΘ(m)
. . . YΘ(1)

YΘ YΘ(1)
. . . YΘ(m)

. . . YΘ(n−2)
· YΘ(n−2)

. . . YΘ(m)

︸ ︷︷ ︸
= YΘ(m)

. . . YΘ(n−2)

= YΘ(n−2)
. . . YΘ(m)

. . . YΘ(1)
YΘ YΘ(1)

. . . YΘ(m)
. . . YΘ(n−2)

. (3.104)

The above can easily be identified to be the operator PΘ, yielding the first equality PΘPΘ(m)
= PΘ. The

second equality can similarly be shown, leading to the desired result.

Let us now prove the summation property (3.99) for Hermitian Young projection operators: Recall the

completeness relation of Hermitian Young projection operators, eq. (3.87c),

∑

Θ∈Yn−1

PΘ = idn−1 , (3.105)

where idk is the identity operator on the space V ⊗k. Equation (3.105) can be canonically embedded into the

space V ⊗n as was discussed in section 3.2.2.2. In order to make the embedding of the operator PΘ explicit, we
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will — for this section only — make the identity operator on the last factor explicitly visible in the birdtrack

spirit and denote the embedded operator by the symbol PΘ.18 The embedded equation (3.105) thus is

∑

Θ∈Yn−1

PΘ = idn . (3.106)

Even though (3.106) is a decomposition of unity, a finer decomposition of idn (also using only transversal

objects) is obtained with Hermitian Young projection operators corresponding to Young tableaux in Yn,

∑

Φ∈Yn
PΦ = idn . (3.107)

Since clearly Yn is the union of all the sets {Θ⊗ n }, for all Θ ∈ Yn−1, the sum (3.107) can be split into

∑

Φ∈Yn
PΦ =

∑

Θ∈Yn−1


 ∑

Ψ∈{Θ⊗n}
PΨ


 = idn . (3.108)

Since both (3.106) and (3.108) are a decomposition of idn, they must be equal to each other, yielding

∑

Θ∈Yn−1

PΘ =
∑

Θ∈Yn−1


 ∑

Ψ∈{Θ⊗n}
PΨ


 . (3.109)

Let us now multiply the above equation with a particular operator PΘ′ on V ⊗n, where Θ′ is a particular

tableau in Yn−1. Due to the transversality property (eq. (3.87b), Theorem 3.3) and the inclusion property

(eq. (3.101), Lemma 3.1) of Hermitian Young projectors,19 it follows that

∑

Θ∈Yn−1

δΘΘ′PΘ =
∑

Θ∈Yn−1


δΘΘ′

∑

Ψ∈{Θ⊗n}
PΨ


 (3.110)

PΘ′ =
∑

Ψ∈{Θ′⊗n}
PΨ , (3.111)

yielding the desired equation (3.99). This concludes part 2 of Goal 1.

Since the Hermitian operators sum up to their Hermitian parent operators (eq. (3.111)), and these in turn

sum to their Hermitian parent operators, the summation property necessarily holds over multiple generations.

This statement also follows straight from Lemma 3.1, which states that the image of a Hermitian Young

projection operator PΘ is contained in the image of its Hermitian ancestor operator PΘ(m)
, where m can be

any positive integer. Therefore, if YΘ,n := {Θ ⊗ m ⊗ · · · ⊗ n } is the subset of Yn containing all tableaux

that have Θ ∈ Ym−1 as their ancestor, then

∑

Φ∈YΘ,n

PΦ = PΘ , (3.112)

18In birdtrack notation, the canonically embedded operator PΘ will be PΘ with an extra index line on the bottom, making
the notation PΘ intuitive.

19This is where the proof would break down for the standard Young projection operators even for n ≤ 4, as they explicitly do
not satisfy the image inclusion property (3.101), c.f. appendix 3.B.
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confirming eq. (3.18). For example, if Θ = 1 2 3 , then PΘ can be written as a sum of the following

Hermitian Young projection operators corresponding to tableaux in Y5,

P 1 2 3 4 5 + P 1 2 3 4
5

+ P 1 2 3 5
4

+ P 1 2 3
4 5

+ P 1 2 3
4
5︸ ︷︷ ︸∑

Φ∈YΘ,5
PΦ

= P 1 2 3︸ ︷︷ ︸
PΘ

. (3.113)

This concludes the last part (part 3) of the first Goal of this paper.

Figure 4.3 (inspired by [72, Fig. 9.1]) shows all Hermitian Young projectors corresponding to Young tableaux

in Yn up to and including n = 4. The arrows indicate which operators sum to which ancestor operators. (We

will augment Figure 4.3 with transition operators in [3, Fig. 3] [chapter 4, Figure 4.3]).

3.4 An algorithm to construct compact expressions of Hermitian

Young projection operators

We will now come to Goal 2 of this paper and provide a construction principle that allows us to directly arrive

at compact expressions for Hermitian Young projection operators (see Theorem 3.5 below). This construction

yields much shorter expressions than the previously encountered KS algorithm (Theorem 3.3), or even the

shortened version of Theorem 3.1, as is exemplified in Figure 3.2.

3.4.1 Lexically ordered Young tableaux

It turns out that the ordering of the numbers within the Young tableau plays a vital role in our algorithm.

Thus, we will first establish what we mean by the lexical order of a Young tableau. To do so, we will introduce

column- and row-words:20

Definition 3.2 – column- and row-words & lexical ordering:

Let Θ ∈ Yn be a Young tableau. We define the column-word of Θ, CΘ, to be the column vector whose entries

are the entries of Θ as read column-wise from left to right. Similarly, the row-word of Θ, RΘ, is defined to

be the row vector whose entries are those of Θ read row-wise from top to bottom.

We will call a tableau Θ lexically ordered, if either CΘ or RΘ or both are in lexical order. In particular, we

say that Θ is column-ordered (resp. row-ordered), if CΘ (resp. RΘ) is in lexical order.

For example, the tableau

Φ :=

1 5 7 9

2 6 8

3

4

(3.114)

20It should be noted that Definition 3.2 of the row-word is different to the definition given in the standard literature such
as [95, 96]: there, the row word is read from bottom to top rather than from top to bottom. However, for the purposes of this
paper, Definition 3.2 is more useful than the standard definition.
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P 1 =

P 1 2 =

P 1
2
=

P 1 2 3 =

P 1 2
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=

4
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P 1
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3

=

P 1 2 3 4 =

P 1 2 3
4

=

3
2

P 1 2 4
3

=

2

P 1 2
3 4

=

4
3

P 1 2
3
4

=

3
2

P 1 3 4
2

=

3
2

P 1 3
2 4

=

4
3

P 1 3
2
4

=

2

P 1 4
2
3

=

3
2

P 1
2
3
4

=

d = N

d =
N(N+1)

2

d =
N(N−1)

2

d =
N(N+1)(N+2)

6

d =
N(N2−1)

3

d =
N(N−1)(N−2)

6

d =
N(N+1)(N+2)(N+3)

24

d =
N(N+2)(N2−1)

8

d =
N2(N2−1)

12

d =
N(N−2)(N2−1)

8

d =
N(N−1)(N−2)(N−3)

24

Figure 3.1: Hierarchy of Young tableaux and the associated nested Hermitian Young projector decompositions
(in the sense of embeddings into API

(
SU(N), V ⊗4

)
): Projection operators that are contained in a grey box

correspond to equivalent irreducible representations of SU(N), as their corresponding Young tableaux have the
same shape [72, 93]. The dimension of the irreducible representation corresponding to a (set of) operators(s)
is given on the left. The arrows indicate which operators sum to which ancestor. (This figure is based on [72,
Fig. 9.1])
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has a column-word

CΦ = (1, 2, 3, 4, 5, 6, 7, 8, 9)t, (3.115)

and a row-word

RΦ = (1, 5, 7, 9, 2, 6, 8, 3, 4). (3.116)

From this, we see that Φ in (3.114) is lexically ordered. In particular, it is column-ordered (but not row-

ordered).

In Theorem 3.4, we will describe a construction principle for the Hermitian Young projection operators corre-

sponding to lexically ordered tableaux. This will form a starting point for the general construction principle

of the Hermitian Young projectors given in section 3.4.2, as is evident from their proofs in appendix 3.C. It is

clear that Keppeler and Sjödahl had noticed that the projectors associated with ordered tableaux are special:

In the appendix of [4], they discuss two examples of Hermitian Young projection operators (which happen

to correspond to lexically ordered tableaux) constructed according to the KS Theorem, and argue that these

operators can be simplified quite drastically. The procedure leads eventually to the same expressions that

emerge directly from Theorem 3.4. However, Keppeler and Sjödahl do not establish the connection to the

lexical order of the Young tableau and do not even hint at a general construction principle.

Theorem 3.4 – lexical Hermitian Young projectors:

Let Θ ∈ Yn be row-ordered. Then, the corresponding Hermitian Young projection operator PΘ is given by

PΘ = αΘ · ȲΘȲ
†
Θ. (3.117a)

On the other hand, if Θ ∈ Yn is a column-ordered tableau, then the corresponding Hermitian Young projection

operator PΘ is given by

PΘ = αΘ · Ȳ †ΘȲΘ. (3.117b)

The proof of this Theorem is deferred to appendix 3.C.1. It is directly evident from eqns. (3.117) that PΘ

is Hermitian in both cases. Since Hermitian conjugation in birdtrack notation amounts to reflection about a

vertical axis, the formulae also guarantee that Hermiticity is directly visible as a reflection symmetry of the

associated birdtrack diagrams.

As an example, consider the Young tableau

Θ =
1 2

3
(3.118)

which has a lexically ordered row-word RΘ = (1, 2, 3). The associated Hermitian Young projection operator

PΘ according to the Lexical Theorem 3.4 is given by

PΘ =
4

3︸︷︷︸
αΘ

·
︸ ︷︷ ︸

ȲΘ

︸ ︷︷ ︸
Ȳ †Θ

=
4

3
·
︸ ︷︷ ︸

=:P̄Θ

. (3.119)

142



Chapter 3. Compact Hermitian Young Projection Operators

The Hermiticity of this operator is prominently visible in its mirror symmetry.

3.4.2 Young tableaux with partial lexical order

We will now give a construction principle for compact expressions of Hermitian Young projection operators

corresponding to general, not necessarily lexically ordered, tableaux. The goal is to use what partial order

there is to a diagram to obtain an optimized iterative procedure. As a first step we need to be able to quantify

how “un-ordered” a Young tableau is; we define a Measure Of Lexical Disorder :

Definition 3.3 – measure of lexical disorder (MOLD):

Let Θ ∈ Yn be a Young tableau. We define its Measure Of Lexical Disorder (MOLD) to be the smallest

natural number M(Θ) ∈ N such that

Θ(M(Θ)) = πM(Θ) (Θ) (3.120)

is a lexically ordered tableau. (Recall from Definition 3.1 that πM(Θ) refers to M(Θ) consecutive applications

of the parent map π to the tableau Θ.)

We note that the MOLD of a Young tableau is a well-defined quantity, since one will always eventually arrive

at a lexically ordered tableau, as, for example, all tableaux in Y3 are lexically ordered. This then implies

that the MOLD of a tableau Θ ∈ Yn has an upper bound,

M(Θ) ≤ n− 3, (3.121)

making it a well-defined quantity. As an example, consider the tableau

Φ :=
1 2 4

3 5
. (3.122)

The MOLD of the above tableau is M(Φ) = 2, since two applications of the parent map generate a lexically

ordered tableau, but just one application of π on Φ would not be sufficient,

1 2 4

3 5
︸ ︷︷ ︸

Φ

π−−→ 1 2 4

3
︸ ︷︷ ︸

Φ(1)

π−−→ 1 2

3
︸ ︷︷ ︸

Φ(2)

. (3.123)

We will now give the main Theorem of this section, the construction principle of Hermitian Young projection

operators corresponding to Young tableaux Θ, using the MOLD of the latter. To do so, we distinguish four

cases; the reason why they have to be dealt with separately is given in the analysis following the Theorem,

section 3.4.2.1.

Theorem 3.5 – MOLD operators:

Consider a Young tableau Θ ∈ Yn with MOLD M(Θ) = m. Furthermore, suppose that Θ(m) has a lexically

ordered row-word. Then, the Hermitian Young projection operator corresponding to Θ, PΘ, is, for even m,

PΘ = βΘ ·SΘ(m)
AΘ(m−1)

SΘ(m−2)
. . . SΘ(2)

AΘ(1)
ȲΘȲ

†
Θ AΘ(1)

SΘ(2)
. . . SΘ(m−2)

AΘ(m−1)
SΘ(m)

, (3.124a)
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and, for odd m,

PΘ = βΘ ·SΘ(m)
AΘ(m−1)

SΘ(m−2)
. . . AΘ(2)

SΘ(1)
Ȳ †ΘȲΘ SΘ(1)

AΘ(2)
. . . SΘ(m−2)

AΘ(m−1)
SΘ(m)

. (3.124b)

Similarly, if Θ(m) has a lexically ordered column-word, PΘ is, for even m,

PΘ = βΘ ·AΘ(m)
SΘ(m−1)

AΘ(m−2)
. . . AΘ(2)

SΘ(1)
Ȳ †ΘȲΘ SΘ(1)

AΘ(2)
. . . AΘ(m−2)

SΘ(m−1)
AΘ(m)

, (3.124c)

and, for odd m,

PΘ = βΘ·AΘ(m)
SΘ(m−1)

AΘ(m−2)
. . . SΘ(2)

AΘ(1)
ȲΘȲ

†
Θ AΘ(1)

SΘ(2)
. . . AΘ(m−2)

SΘ(m−1)
AΘ(m)

. (3.124d)

In the above, all symmetrizers and antisymmetrizers are understood to be canonically embedded into V ⊗n;

βΘ is a nonzero constant chosen such that PΘ is idempotent.

The formal proof of this Theorem can be found in appendix 3.C.2. A comparative example of a Hermitian

Young projection operator constructed using MOLD and KS is given is section 3.4.3, Figure 3.2.

It should be noted that we have not provided an explicit expression for the constant βΘ in Theorem 3.5.

This normalization-constant, however, can easily be found for specific operators by direct calculation since

the MOLD operators are very well suited for automated calculations on a computer, as is described in

section 3.4.3. We would like to draw the reader’s attention to the fact that the symmetrizers and antisym-

metrizers in all four expressions of Theorem 3.5 strictly alternate, including those inside the Young projectors.

As an example, consider the Young tableau

Θ :=
1 2 4

3 5
. (3.125)

This tableau has MOLD 2 (i.e. even MOLD), and Θ(2) has a lexically ordered row-word. Thus, we have to

construct the Hermitian Young projection operator PΘ corresponding to Θ according to equation (3.124a).

PΘ is therefore given by

PΘ = βΘ · SΘ(2)
AΘ(1)

SΘ AΘ SΘ AΘ(1)
SΘ(2)

= βΘ ·
︸︷︷︸
SΘ(2)

︸ ︷︷ ︸
AΘ(1)

︸ ︷︷ ︸
SΘ

︸ ︷︷ ︸
AΘ

︸ ︷︷ ︸
SΘ

︸ ︷︷ ︸
AΘ(1)

︸︷︷︸
SΘ(2)

= βΘ · . (3.126)

A direct calculation in Mathematica reveals that βΘ
!
= 4 for PΘ to be idempotent.

3.4.2.1 A Short Analysis of the MOLD Theorem 3.5

We now pause for a moment to look at the four cases presented in Theorem 3.5 in more detail and emphasize

their differences. We hope to convey an intuitive feel as to why the corresponding operators are constructed

the way they are.
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First, let us look at the first two operators (3.124a) and (3.124b). Both these operators PΘ have a symmetrizer

on the outside, namely SΘ(m)
, opposed to the operators (3.124c) and (3.124d) which have an antisymmetrizer

on the outside. This stems from the iterative construction of Hermitian Young projection operators given by

the KS Theorem 3.3: By the Lexical Theorem 3.4 we know that PΘ(m)
is given by

PΘ(m)
= αΘ · ȲΘ(m)

Ȳ †Θ(m)
= αΘ · SΘ(m)

AΘ(m)
SΘ(m)

, (3.127)

since PΘ(m)
is assumed to correspond to a row-ordered Young tableau. When we thus construct PΘ recursively

according to KS [4], we find that

PΘ = PΘ(m)
. . . YΘ . . . PΘ(m)

∝ SΘ(m)
AΘ(m)

SΘ(m)
. . . YΘ . . .SΘ(m)

AΘ(m)
SΘ(m)

. (3.128)

Thus, we expect there to be symmetrizers on the outside of the operators PΘ in expressions (3.124a) and

(3.124b). Following a similar logic, we expect there to be antisymmetrizers on the outside of operators (3.124c)

and (3.124d).

Lastly, we discuss the importance of the distinction between even and odd m in the MOLD Theorem 3.5. In

the construction of all PΘ in the Theorem, we find that they consist of products of alternating symmetrizers

and antisymmetrizers to more and more recent generations of Θ as we move further to the center of PΘ. If

the operator PΘ thus starts with S(m) on the outside, as it does in equations (3.124a) and (3.124b), and

the product has alternating sets of symmetrizers and antisymmetrizers, each going up one generation, then

the parity of m will decide whether the set corresponding to the tableau Θ(1) in the product PΘ is a set of

symmetrizers or antisymmetrizers. Thus, the central three sets of symmetrizers and antisymmetrizers in the

product PΘ will then either be

AΘ SΘ AΘ = Ȳ †ΘȲΘ or SΘ AΘ SΘ = ȲΘȲ
†
Θ , (3.129)

depending on the nature of the sets corresponding to Θ(1), but keeping the alternating structure of sym-

metrizers and antisymmetrizers.

The fact that the central sets of PΘ in all four equations of the above Theorem 3.5 are either product of

(3.129), opposed to simply YΘ or Y †Θ, can be attributed to the fact the PΘ is Hermitian and we would like

its Hermiticity to be visually explicit.

3.4.3 The advantage of using MOLD

The practical advantages of our construction opposed to the KS Theorem 3.3 are striking. To illustrate this,

we return to the same example used in [1, Fig. 5.2] [c.f. chapter 2 Figure 2.2] to demonstrate the effectiveness

of the simplification rules derived there. The Young tableau

Φ :=

1 2 4 7

3 6

5 8

9

(3.130)

leads to an expression of the corresponding KS projector with 127 symmetrizer- and antisymmetrizer-sets,

which reduce to an object with only 13 such sets after applying the cancellation and propagation rules of [1]
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Section 3.4. An algorithm to construct compact expressions of Hermitian Young projection operators

[chapter 2].

Both construction principles (KS and MOLD) are iterative in the sense that they both require knowledge

about the ancestor tableaux of a tableau Θ ∈ Yn. For the construction of KS as it was originally described

in [4], one needs all ancestor operators of Θ up until Θ(n−2), while the MOLD construction merely uses the

ancestor tableaux up until ΘM(Θ), which is at most Θ(n−3) according to (3.121). This one tableau difference

does not seem excessive at first glance, but one should keep in mind that the difference is at least one tableau,

often more. However the bulk of the computing power used to generate P̄KSΦ comes from the fact that, in

addition to the ancestor tableaux of Θ, one further requires information about the explicit form of the ancestor

Hermitian Young projectors PΘ all the way up to PΘ(2)
, which have to be calculated separately. The MOLD

construction merely uses the Young sets of symmetrizers or antisymmetrizers (S and A respectively) of the

ancestor tableaux of Θ up to ΘM(Θ), which can be immediately read off the tableaux and thus needs minimal

computing power.

Using the MOLD Theorem 3.5, one arrives at the shorter version of [1, Fig. 5.2] [c.f. chapter 2 Figure 2.2]

directly, after a considerably shorter recursive path and without the need for additional simplifications. One

bypasses a long repetitive list of steps altogether! The 127/13 length ratio between P̄KS
Φ and P̄MOLD

Φ
21

Figure 3.2: For a size comparison, this figure shows P̄KS
Φ (top) and P̄MOLD

Φ (bottom) for the tableau Φ as
defined in (3.130) using two different constructions: The top operator was constructed using the KS algorithm,
while the bottom operator was constructed using MOLD. Both operators and the associated graphics were
generated in Mathematica.

is strikingly apparent in Figure 3.2. This makes the MOLD algorithm a lot more practical to work with

analytically. The algorithm really comes into its own when used in symbolic algebra programs: the MOLD

construction allows us to efficiently create projection operators for considerably larger Young tableaux than

the iterative KS equivalent. In particular, for the example in Figure 3.2, the fact that the MOLD algorithm

simply avoids a long series of steps makes it over 18600 times faster than its KS counterpart: It generates

its result in approximately 0.0038 seconds, while KS takes approximately 71 seconds (not even taking into

account the cost of the simplification steps to arrive at the final result) on a modern laptop.

Unlike PKS
Θ , PMOLD

Θ is obviously and visibly Hermitian by construction.22 Given that birdtracks are meant

to be a tool that makes dealing with these operators visually clear, this is an obvious advantage.

We have given a construction principle for compact expressions of Hermitian Young projection operators, the

MOLD operators, in section 3.4.2, and we have now seen that the MOLD operators are indeed more useful

for practical calculations. We have thus achieved Goal 2 of this paper.

21It is important to note that P̄KSΦ and P̄MOLD
Φ both differ from PΦ by a constant, but this constant will depend on the

construction principle used to find P̄Φ. In that sense,

βKSΦ · P̄KSΦ = PΦ = βMOLD
Φ · P̄MOLD

Φ (3.131)

but βKS
Φ 6= βMOLD

Φ in general.
22PKSΘ do not exhibit their Hermiticity directly since the center-piece of the KS operator is the Young projection operator

ȲΘ, which is inherently non-Hermitian. We need to rely on the proof given in [4] to be assured of their Hermiticity.
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3.5 Chapter conclusion & outlook

The representation theory of SU(N) is an old theory with many successful applications in physics. Yet, some

of the tools remain awkward and only applicable in specific situations, like the general theory of angular

momentum or the construction of Young projection operators that lack Hermiticity. Newer tools, like the

birdtrack formalism, remain only partially connected with these time honored results. We have a very specific

interest in applications to QCD in the context of Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner

(JIMWLK) [20, 56–59] evolution, in jet physics, in energy loss and generalized parton distributions, so we

have aimed at creating a set of tools that we know will aid in these applications and, in the process, have

pointed out where the existing tools fall short of our needs.

1. We have found that projection operators built on Young tableaux are uniquely suited to calculations

that keep N as a parameter.

To simply list the irreducible multiplets in V ⊗m, Young’s procedure forms descendant tableaux of

those representing the irreducibles contained in V ⊗(m−1), portraying an iterative procedure of “adding

a particle” in each step.

To parallel this in terms of projection operators and the associated subspaces (i.e. to implement

eq. (3.112), which represents the general case of the summation relations collected in Figure 4.3) — as

one needs to do to actually perform calculations in physics applications — we have established that

one needs Hermitian versions of these projection operators, as those constructed earlier by Keppeler

and Sjödahl [4]. This sets the backdrop for the remaining developments.

2. Having motivated the necessity for Hermitian Young projection operators, we are faced with the fact

that the KS algorithm quickly becomes unwieldy — the iterative procedures are computationally ex-

pensive and produce long expressions (Figure 3.2). We have earlier presented simplification rules [1]

[chapter 2] to distill these down to more compact expressions, but that does not alleviate the compu-

tational cost.

To address this issue, we have provided a new algorithm based on the Measure Of Lexical Disorder

(MOLD) of a tableau in section 3.4.2 that drastically reduces the calculational footprint of the procedure

compared to the KS method. It should be noted that the normalized operators constructed using the

MOLD algorithm are equal to the KS operators (as is evident from the proof given in appendix 3.C),

and thus inherit all properties of the KS operators over V ⊗m: idempotency, mutual transversality and

completeness for all values of m.

The MOLD algorithm almost completely incorporates the simplifications of [1] [chapter 2] at vastly

reduced calculational cost — only isolated cases of MOLD operators still allow for further simplification

with the tools presented in [1] [chapter 2]; an example of such an operator is

Θ :=

1 3
2
4
5
6

, PΘ =
simplification

==========
rules

. (3.132)

All the algorithms are eminently suited for implementation in symbolic algebra programs: all our

explorations and examples have been generated in Mathematica.
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In particular, the operators shown in Figure 3.2 were generated in Mathematica: the operator on the

top was constructed using the KS Theorem, while the operator on the bottom resulted from the MOLD

construction. The automated calculation was significantly improved with the MOLD algorithm, as the

MOLD operator in Figure 3.2 was obtained approximately 18600 times faster than the KS equivalent

on a modern laptop — an improvement of 4 orders of magnitude.

Our own list of applications for the tools and insights presented in this paper are QCD centric: Global singlet

state projections of Wilson-line operators that appear in a myriad of applications due to factorization of

hard and soft contributions help analyzing the physics content in all of them; this will be explored further

in [94] [chapter 5]. We hope that our presentation is suitable to unify perspectives provided by the various

approaches to representation theory of SU(N) and that the results prove useful beyond these immediate

applications.
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Appendix to chapter 3

3.A Littlewood-Young projection operators

For completeness, this appendix summarizes the construction principle of generalized Young projection op-

erators due to Littlewood [85, section 5.3], which corrects for the failure of Young projection operators over

V ⊗n to be transversal or complete beyond n = 4. We shall call these the Littlewood-Young (LY) projectors

and denote them by L.

Before we give the construction principle of the LY-projectors, let us have a closer look at products of Young

projection operators, and criteria, which make these products transversal. Consider two Young tableaux Θ

and Φ in Yn, then the product of their corresponding Young projection operators is given by

YΘYΦ = αΘαΦ · SΘAΘSΦAΦ . (3.133)

Clearly, if the product AΘSΦ vanishes, then so does the product of the Young projectors, but if AΘSΦ 6= 0,

then YΘYΦ 6= 0 in general,

YΘYΦ = αΘαΦ· SΘ AΘ SΦ AΦ =⇒ YΘYΦ 6= 0 in general .
6= 0 6= 0

6= 0

(3.134)

For AΘSΦ to vanish indentically, we merely require a particular antisymmetrizer Ai ∈ AΘ to have more

than one leg in common with a symmetrizer Sj ∈ SΦ.

If the tableaux Θ and Φ have different shapes, then this is trivially given, since there must exist at least one

pair of boxes ( k , l ) that appear in the same column in Θ and in the same row in Φ and vice versa, such

that [85, section 5.3, Theorem III]

AΘSΦ = 0 = AΦSΘ where Θ and Φ have different shapes . (3.135)

If the two tableaux Θ and Φ have the same shape, one must work harder to see where this criterion applies

to force AΘSΦ = 0. To see when a pair of boxes ( k , l ) appears in the same column in Θ and in the same

row in Φ for tableaux of the same shape, we need to introduce an order relation between tableaux of the

same shape using their row-words (c.f. Definition 3.2):

Definition 3.4 – order relation amongst tableaux of the same shape:

Let Θ and Φ be two Young tableaux and let θij be the entry in the ith row and jth column of Θ, and similarly for

φij. Their corresponding row-words are given by RΘ = (θ11, θ12, . . . , θ21, . . .) and RΦ = (φ11, φ12, . . . , φ21, . . .)
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Section 3.A. Littlewood-Young projection operators

respectively. We say that Θ precedes Φ and write Θ ≺ Φ if θij < φij for the leftmost ij where θij ∈ RΘ and

φij ∈ RΦ differ.23

For example, the Young tableaux of shape can be ordered as

1 2 3

4 5
︸ ︷︷ ︸

RΘ=(1,2,3,4,5)

≺ 1 2 4

3 5
︸ ︷︷ ︸

RΘ=(1,2,4,3,5)

≺ 1 2 5

3 4
︸ ︷︷ ︸

RΘ=(1,2,5,3,4)

≺ 1 3 4

2 5
︸ ︷︷ ︸

RΘ=(1,3,4,2,5)

≺ 1 3 5

2 4
︸ ︷︷ ︸

RΘ=(1,3,5,2,4)

. (3.136)

It turns out that this order relation defines exactly when a pair of boxes ( k , l ) appearing in the same

column of a tableau Θ appear in the same row of a tableau Φ, forcing the product AΘSΦ to vanish [85,

section 5.3, Theorem V]. We repeat the proof given by [85]: Let Θ and Φ be two Young tableaux of the same

shape and let Θ ≺ Φ. Then, the first entry θij ∈ RΘ distinct from φij ∈ RΦ satisfies θij < φij . Thus, the

entry φkl ∈ RΦ such that θij = φkl must appear in a row below row i, but, by definition of Young tableaux,

must be in a column to the left of column j,

θij = φkl with l < j and k > i . (3.137)

Since l < j, the entries θil and φil must be equal (we assumed that the entries θij and φij were the first

distinct entries appearing in the respective row-words), θil = φil. Thus, the pair of entries (θij = φkl, θil = φil)

appears in the same row in Θ (the ith row) and in the same column in Φ (the lth column), yielding AΦSΘ = 0.

Thus, we can say that

Θ ≺ Φ =⇒ YΦYΘ = 0 . (3.138)

It should be noted that (3.138) does not necessarily hold for the reverse ordering of the Young projectors,

that is

Θ ≺ Φ 6=⇒ YΘYΦ = 0 . (3.139)

Littlewood uses this one-sided transversality of Young projection operators to create mutually transversal

ones:

Let {Θ1,Θ2, . . .Θk} be the set of all Young tableaux in Yn with a particular shape YΘ, and let them be

ordered such that Θi ≺ Θj whenever i < j. From eq. (3.138), we have that

YΘjYΘi = 0 whenever i < j . (3.140)

The Littlewood-Young projection operators LΘi corresponding to the tableaux Θi ∈ {Θ1,Θ2, . . .Θk} ⊂ Yn

23In words, we order a set of tableaux according to the relative lexical order of their associated row-words. This concept is
not to be confused with the lexical order within a tableau introduced in Defintion 3.2.
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are defined as

LΘ1
= YΘ1

LΘ2 = (1− LΘ1)YΘ2

...

LΘk = (1− LΘ1
− LΘ2

− . . .− LΘk−1
)YΘk . (3.141)

It should be noticed that the LY-operators corresponding to tableaux in Yn for n ≤ 4 reduce to the Young

projectors, as, in these instances, the Young projectors are mutually transversal. Even for n > 5, many LY-

projection operators reduce to the regular Young projectors, or at least simplify drastically, since most of the

Young projectors remain transversal even for large n. As an example, at n = 5 the only two Littlewood-Young

projection operators that differ from their Young counterpart are given by

L 1 3 5
2 4

=

(
1− Y 1 2 3

4 5

)
Y 1 3 5

2 4

and L 1 4
2 5
3

=


1− Y 1 2

3 4
5


Y 1 4

2 5
3

. (3.142)

The LY-operators constructed according to (3.141) are transversal for all values of n: If two operators LΘ

and LΦ correspond to tableaux of different shapes, then LΘ and LΦ are transversal since their respective

constituent Young projection operators are transversal. If LΘi and LΘj correspond to tableaux of the same

shape with Θi ≺ Θj (i < j), then

LΘjLΘi = 0 from eq. (3.140) (3.143)

To show the reverse (LΘiLΘj = 0), it is highly advantageous to note that LΘj as given in (3.141) can be

recast as

LΘj = (1− YΘ1
)(1− YΘ2

) · · · (1− YΘj−1
)YΘj . (3.144)

This can be shown by induction: For j = 1, 2 eq. (3.144) trivially holds, we therefore go through the case

j = 3 explicitly:

LΘ3
=
(

1− YΘ1︸︷︷︸
=LΘ1

− (1− YΘ1
)YΘ2︸ ︷︷ ︸

=LΘ2

)
YΘ3

=
(
(1−YΘ1

)− (1−YΘ1
)YΘ2

)
YΘ3

= (1−YΘ1
)(1−YΘ2

)YΘ3
. (3.145)

Suppose eq. (3.144) holds for all LΘk up some integer k = j − 1. Then, by eq. (3.141), LΘj is given by

LΘj =
(

1− YΘ1︸ ︷︷ ︸
=(1−YΘ1 )

−(1− YΘ1
)YΘ2

− . . .− (1− YΘ1
)(1− YΘ2

) · · · (1− YΘj−2
)YΘj−1

)
YΘj

= (1− YΘ1)
(

1− YΘ2︸ ︷︷ ︸
=(1−YΘ2

)

−(1− YΘ2)YΘ3 − . . .− (1− YΘ2) · · · (1− YΘj−2)YΘj−1

)
YΘj

= (1− YΘ1
)(1− YΘ2

)
(

1− YΘ3︸ ︷︷ ︸
=(1−YΘ3

)

−(1− YΘ3
)YΘ4

− . . .− (1− YΘ3
) · · · (1− YΘj−2

)YΘj−1

)
YΘj

151



Section 3.A. Littlewood-Young projection operators

...

= (1− YΘ1
)(1− YΘ2

) · · · (1− YΘj−1
)YΘj , (3.146)

confirming eq. (3.144).

Let

MΘi−1
:= (1− YΘ1

)(1− YΘ2
) · · · (1− YΘi−1

) (3.147)

such that LΘi = MΘi−1YΘi . From eq. (3.140) is is clear that

YΘk(1− YΘl) = YΘk − 0 = YΘk for every l < k . (3.148)

Thus, if i < j we have that

LΘi · LΘj = MΘi−1
YΘi︸ ︷︷ ︸

=LΘi

· (1− YΘ1
) · · · (1− YΘi) · · · (1− YΘj−1

)YΘj︸ ︷︷ ︸
=LΘj

eq. (3.148)
======== MΘi−1 YΘi(1− YΘi)︸ ︷︷ ︸

=YΘi
−Y 2

Θi
=0

· · · (1− YΘj−1)YΘj

= 0 , (3.149)

where we used the fact that Young projectors are idempotent (Y 2
Θi

= YΘi). Thus, LΘi and LΘj are transversal

even if i < j.

We notice that the LΘ remain idempotent just like their Young counterparts,

LΘi ·LΘi = LΘi (1− LΘ1
− LΘ2

− . . .− LΘi−1
)YΘi︸ ︷︷ ︸

=LΘi

= (LΘi−0−0− . . .−0)YΘi = LΘiYΘi = LΘi . (3.150)

Putting everything together, we can conclude that

LΘLΦ = δΘΦLΦ for all Θ,Φ ∈ Yn for all values of n , (3.151)

confirming eqns. (3.6a) and (3.6b).

Since the LY-operators are mutually transversal (eq. (3.151)), they can be simultaneously diagonalised and

have images that only intersect at 0. Since they are idempotent, their trace provides the dimension of their

image:

tr (LΘ) = dim(Θ) . (3.152)

Thus, if we can show that the dimensions of the subspaces corresponding to the LΘ sum up to the dimension

of the whole space dim(V ⊗n) = Nn, it must hold that the transversal operators LΘ sum up to the identity

on V ⊗n. To show this, we notice that LΘ has the same trace as its counterpart YΘ: Using the cyclic property
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of the trace, we have

tr (LΘi) = tr
(
(1− LΘ1

− LΘ2
− . . .− LΘi−1

)YΘi

)

= tr
(
YΘi(1− LΘ1 − LΘ2 − . . .− LΘi−1)

)

= tr (YΘi − 0− 0− . . .− 0)

= tr (YΘi) , (3.153)

which implies that

∑

Θ∈Yn
tr (LΘ) =

∑

Θ∈Yn
tr (YΘ) = Nn for all n, where N = dim(V ) . (3.154)

Therefore, we conclude that the LY-operators sum up to the identity on the space V ⊗n

∑

Θ∈Yn
LΘ = idn for all n , (3.155)

as was claimed in eq. (3.6c).

3.B Young projectors that do not commute with their ancestors

In this appendix, we prove that the standard Young projection operators, which do not project onto subspaces

included in the image of their ancestors (unlike their Hermitian counterpart, c.f. Lemma 3.2),

YΘYΘ(m)
6= YΘ and/or YΘ(m)

YΘ 6= YΘ (3.156)

do not commute with their ancestor operators. While there exist Young projection operators for which one

of the two equations (3.156) yields an equality, for example

Y 1 2 · Y 1 2
3

= Y 1 2
3

, (3.157)

for most Young projection operators neither of these conditions hold, e.g.

Y 1 2
3 4

· Y 1 2
3

6= Y 1 2
3 4

and Y 1 2
3

· Y 1 2
3 4

6= Y 1 2
3 4

. (3.158)

Lemma 3.2 – Young operators do not generally commute with their ancestor operators:

Let Θ be a Young tableau and Θ(m) be its ancestor m generations back, where m is a strictly positive integer

(m > 0). If the images of YΘ and YΘ(m)
are not nested, i.e. YΘYΘ(m)

6= YΘ and/or YΘ(m)
YΘ 6= YΘ, then YΘ

and YΘ(m)
do not commute,

[
YΘ, YΘ(m)

]
6= 0 . (3.159)

Conversely, a vanishing commutator
[
YΘ, YΘ(m)

]
= 0 implies image inclusion YΘYΘ(m)

= YΘ = YΘ(m)
YΘ.

Proof of Lemma 3.2: We present a proof by contradiction: Suppose there exists a Young projection operator
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YΘ which commutes with its ancestor operator YΘ(m)
while YΘ(m)

YΘ 6= YΘ,

YΘYΘ(m)
= YΘ(m)

YΘ . (3.160)

If we multiply equation (3.160) with the operator YΘ on the right, and use Theorem 3.1 to simplify the LHS

of the resulting equation, we obtain

YΘYΘ(m)
YΘ︸ ︷︷ ︸

=YΘYΘ=YΘ

= YΘ(m)
YΘYΘ︸ ︷︷ ︸
=YΘ

=⇒ YΘ = YΘ(m)
YΘ , (3.161)

a contradiction. The case where YΘYΘ(m)
6= YΘ follows from left multiplication with YΘ.

We note that Lemma 3.2 is the reason why the proof of the summation property for Hermitian Young

projection operators (3.99) breaks down for most Young projectors at the last step (eq. (3.110)), since


 ∑

Θ∈Yn−1


 ∑

Ψ∈{Θ⊗ n }

YΨ




 · YΘ′ 6=

∑

Θ∈Yn−1


δΘΘ′

∑

Ψ∈{Θ⊗ n }

YΨ


 . (3.162)

3.C Proofs of the construction principles for Hermitian Young

projection operators

This appendix provides the proofs of the Theorems given in section 3.4.

3.C.1 Proof of Theorem 3.4 “lexical Hermitian Young projectors”

The proof of Theorem 3.4 makes use of propagation rules of birdtrack operators [1] [chapter 2]. We thus

summarize the applicable rules of [1] [chapter 2] in section 3.C.1.1, before giving the proof of the Lexical

Theorem 3.4 in section 3.C.1.2.

3.C.1.1 Propagation rules

We first require the definition of a new quantity, an amputated tableau:

Definition 3.5 – amputated (Young) tableaux:

Let Θ be a (Young) tableau and let C denote a particular column in Θ. We construct the row-amputated

tableau of Θ according to C, �Θr [C], by removing all rows of Θ which do not overlap with C.

Similarly, if R is a particular row in Θ, we construct the column-amputated tableau of Θ according to R,

�Θc [R], by removing all columns that do not overlap with R.

For example, for the following tableau Θ, the row amputated tableau �Θr according to column (3, 4, 7)t is

Θ =

1 3 5 9

2 4 8 10

6 7 13

11

12

7→ �Θr

[
(3, 4, 7)t

]
=

1 3 5 9

2 4 8 10

6 7 13

; (3.163)
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the rows (11) and (12) were deleted since they did not overlap with the shaded column (3, 4, 7)t. An example

for column amputation is shown in the step from eq. (3.169) to (3.170). The idea of amputated tableaux is

necessary to describe the following simplification rule for birdtrack operators:

Theorem 3.6 – propagation of (anti-)symmetrizers:

Let Θ be a Young tableau and O be a birdtrack operator of the form

O = SΘ AΘ SΘ\R , (3.164)

in which the symmtrizer set SΘ\R arises from SΘ by removing precisely one symmetrizer SR. By definition,

SR corresponds to a row R in Θ such that SΘ = SΘ\RSR = SRSΘ\R.

If the column-amputated tableau of Θ according to the row R, �Θc [R], is rectangular, then the symmetrizer

SR may be propagated through the set AΘ from the left to the right, yielding

O = SΘ AΘ SΘ\R = SΘ\R AΘ SΘ , (3.165)

which implies that O is Hermitian. We may think of this procedure as moving the missing symmetrizer SR
through the intervening antisymmetrizer set AΘ.

Noting that SΘ = SΘSR = SRSΘ, we immediately augment this statement to

SΘ AΘ SΘ\R = SΘ\R AΘ SΘ = SΘ AΘ SΘ . (3.166)

If the roles of symmetrizers and antisymmetrizers are exchanged, we need to verify that the row-amputated

tableau �Θr [C] with respect to a column C is rectangular to guarantee that

AΘ SΘ AΘ\C = AΘ\C SΘ AΘ = AΘ SΘ AΘ . (3.167)

This amounts to moving the missing antisymmetrizer AC through the intervening symmetrizer set SΘ.

As an example, consider the operator Q given by

Q :=

︸︷︷︸
SΘ

︸ ︷︷ ︸
AΘ

︸︷︷︸
SΘ\R

, (3.168)

To check if the amputated tableau is rectangular, we first need to reconstruct Θ with rows corresponding to

SΘ and columns corresponding to AΘ. Evidently,

Θ =

1 2 3

4 5

6 7

. (3.169)

In Θ, we have marked the row (6, 7) corresponding to the symmetrizer S67, which we would like to propagate

through to the right. Thus, in accordance with Theorem 3.6, we form the column-amputated tableau of Θ
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according to the row (6, 7),

�Θc [(6, 7)] =

1 2

4 5

6 7

, (3.170)

and see that it is indeed a rectangular tableau. Thus, we may propagate the symmetrizer S67 from the left

to the right,

Q = = = . (3.171)

3.C.1.2 Proof of Theorem 3.4:

We will present a proof by induction: First, we prove the Base Step for the projection operators of SU(N)

over V ⊗3 (i.e with 3 legs), since this is the smallest instant for which the KS algorithm produces a new

operator (and also the first instant for which non-Hermitian Young projectors occur). Thereafter, we will

consider a general projection operator corresponding to a Young tableau Θ ∈ Ym+1 with a lexically ordered

column-word (the proof for operators corresponding to row-ordered Young tableaux is very similar and thus

left as an exercise to the reader). We will assume that Theorem 3.4 is true for the Hermitian operator

corresponding to its parent tableau PΘ(1)
, where Θ(1) ∈ Ym; this is the Induction Hypothesis. Then, we show

that the projection operators obtained from the KS Theorem reduce to the expression given in the Lexical

Theorem 3.4,

PΘ = PΘ(1)
YΘPΘ(1)

= αΘ · Ȳ †ΘȲΘ , (3.172)

concluding the proof.

The Base Step: For the projection operators of SU(N) over V ⊗1 or V ⊗2 (i.e. with 1 or 2 legs), the

proof of (3.172) is trivial since all Young projection operators are automatically Hermitian; thus, Ȳ †Θ = ȲΘ,

and (3.172) reduces to

αΘ · Ȳ †ΘȲΘ = αΘ ȲΘȲΘ︸ ︷︷ ︸
1
αΘ

ȲΘ

= ȲΘ . (3.173)

Since all Young projection operators YΘ with Θ ∈ Y1,2 have normalization constant 1 (as can easily be

checked by looking at all three of them explicitly), YΘ = ȲΘ holds for these operators. Thus, the Lexical

Theorem 3.4 returns the original, already Hermitian operators, as does the KS algorithm. The first nontrivial

differences occur for n = 3. We use this as the base step. Here, we have the following Young projection

operators corresponding to their respective Young tableaux,

4

3

4

3
and (3.174a)

1

2

3

1 3

2

1 2

3
1 2 3 . (3.174b)
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In (3.174a), the first and last operator are already Hermitian and have normalization constant 1. Therefore,

the Lexical Theorem will return these operators unchanged, c.f. eq. (3.173).

The second and third tableaux in (3.174b) are lexically column-ordered and row-ordered respectively. Thus,

we must construct their Hermitian Young projection operators according to prescriptions (3.117b) and (3.117a)

respectively.

Table 3.1 shows that the construction of the Hermitian projection operators corresponding to the tableaux

(3.174b) obtained from the Lexical Theorem 3.4 is equivalent that of the KS Theorem 3.3, [4], thus concluding

the base step of this proof:

KS Theorem 3.3 [4] Lexical Theorem 3.4

(Multiplying Hermitian parent on either side) (Multiplying by Hermitian conjugate on appropriate side)

= =

4
3 · =

4
3 ·

4
3 · =

4
3 ·

4
3 · =

4
3 ·

4
3 · =

4
3 ·

= =

Table 3.1: This table contrasts the construction of Hermitian Young projection operators according to the

KS Theorem 3.3 (left), with that according to the Lexical Theorem 3.4 (right). Despite visible algorithmic

differences, the results are identical.

The Induction Step: Let Θ ∈ Ym+1 be a tableau with a lexically ordered column-word, and let Θ(1) ∈ Ym
be its parent tableau. Clearly, the column-word of Θ(1) is also in lexical order. We will assume that the

Lexical Theorem 3.4 holds for the Hermitian Young projection operator PΘ(1)
, i.e. that

PΘ(1)
= αΘ · Ȳ †Θ(1)

ȲΘ(1)
, (3.175)

and we will refer to this condition as the Induction Hypothesis. Thus, according to this induction hypothesis,

PΘ(1)
can be written in terms of sets of symmetrizers and antisymmetrizers corresponding to the tableau Θ(1)

as

PΘ(1)
= αΘ(1)

·AΘ(1)
SΘ(1)

AΘ(1)
, (3.176)

where we used the fact that SΘ(1)
SΘ(1)

= SΘ(1)
. We now construct P̄Θ from P̄Θ(1)

using the KS Theorem 3.3;

we have

P̄Θ = AΘ(1)
SΘ(1)

AΘ(1)︸ ︷︷ ︸
P̄Θ(1)

SΘ AΘ︸ ︷︷ ︸
ȲΘ

AΘ(1)
SΘ(1)

AΘ(1)︸ ︷︷ ︸
P̄Θ(1)

. (3.177)
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In the above, we have chosen to ignore the proportionality constant for now, as carrying it with us would

draw attention away from the important steps of the proof. Once we have shown that P̄Θ = Ȳ †ΘȲΘ, we will

show that the proportionality constant αΘ given in (3.172) (c.f. (3.117b)) is indeed the one we require for

PΘ to be idempotent.

Since Θ(1) is the parent tableau of Θ, the images of all symmetrizers and antisymmetrizers in YΘ (and thus

PΘ) are contained in the images of the symmetrizers and antisymmetrizers in YΘ(1)
respectively,24

SΘ ⊂ SΘ(1)
and AΘ ⊂ AΘ(1)

, (3.178)

and hence

SΘ(1)
SΘ = SΘ = SΘ SΘ(1)

and AΘ(1)
AΘ = AΘ = AΘ AΘ(1)

, (3.179)

c.f. eq. (3.43). Therefore, we are able to factor SΘ(1)
out of SΘ in (3.177) to obtain

P̄Θ = AΘ(1)
SΘ(1)

AΘ(1)
SΘ(1)

SΘ AΘ AΘ(1)
SΘ(1)

AΘ(1)
.

= Ȳ †
Θ(1)

= Ȳ †
Θ(1)

SΘ → SΘ(1)
SΘ

(3.180)

Since Y †Θ(1)
= αΘ(1)

Ȳ †Θ(1)
is a projection operator, it follows that Y †Θ(1)

Y †Θ(1)
= Y †Θ(1)

. Hence, eq. (3.180)

reduces to (making use of the bar-notation to retain equality, c.f. eq. (3.33))

P̄Θ = AΘ(1) ���SΘ(1)
SΘ AΘ���AΘ(1)

SΘ(1)
AΘ(1)

= AΘ(1)
SΘ AΘ SΘ(1)

AΘ(1)
,

= Ȳ †
Θ(1)

SΘ(1)
SΘ → SΘ

AΘAΘ(1)
→ AΘ

(3.181)

where we used eq. (3.179) to reabsorb SΘ(1)
into SΘ and AΘ(1)

into AΘ. Thus

P̄Θ = AΘ(1)
SΘ AΘ SΘ(1)

AΘ(1)
. (3.182)

To complete the proof, we have to distinguish two cases: The case where m+1 lies in the first row of Θ, and

the case where it is positioned in any but the first row.

1. Suppose m+1 lies in the first row of Θ. Since this is the box containing the highest value in the tableau

Θ, there is no box positioned below it (otherwise Θ would not be a Young tableau). Thus, the leg

(m + 1) is not contained in any antisymmetrizer (of length > 1), yielding the sets AΘ(1)
and AΘ

identical, AΘ(1)
= AΘ,

P̄Θ = AΘ(1)
SΘ AΘ SΘ(1)

AΘ(1)
= AΘ SΘ AΘ SΘ(1)

AΘ . (3.183)

We now apply the Cancellation Theorem 3.2 to the part of PΘ in the red box to obtain

P̄Θ = AΘ SΘ AΘ (3.184)

24We use the notation introduced in section 3.2.2.2.
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as required.

2. Suppose now that m+1 is situated in any but the first row of Θ. In this case, the leg m+ 1 does enter

an antisymmetrizer (of length > 1), thus AΘ(1)
6= AΘ — a new strategy is needed. To understand the

obstacles, let us once again look at the operator PΘ as described by equation (3.182),

P̄Θ = AΘ(1)
SΘ AΘ SΘ(1)

AΘ(1)
. (3.185)

Describing the strategy: In (3.185), we have suggestively shaded a part of PΘ: if we were allowed to

exchange the sets AΘ(1)
and AΘ, replacing P̄Θ by

AΘ SΘ AΘ(1)
SΘ(1)

AΘ(1)
, (3.186)

we would be able to factor the symmetrizer SΘ(1)
out of SΘ by relation (3.179), and use the fact that

YΘ(1)
= αΘ(1)

ȲΘ(1)
is a projection operator to obtain

(3.186) = AΘ SΘ SΘ(1)
AΘ(1)

SΘ(1)
AΘ(1)

= AΘ SΘ SΘ(1)
AΘ(1)

.

SΘ → SΘSΘ(1)

= ȲΘ(1)
= ȲΘ(1)

(3.187)

Re-absorbing SΘ(1)
into SΘ yields

(3.187) = AΘ SΘ���SΘ(1)
AΘ(1)

= AΘ SΘ AΘ(1)
.

SΘSΘ(1)
→ SΘ

(3.188)

From there, a similar argument as is needed to justify the missing step from (3.185) to (3.186) can be

used to show that

AΘ SΘ AΘ(1)
= AΘ SΘ AΘ , (3.189)

yielding the desired form of P̄Θ. The main obstacle in achieving this result thus lies in the justification

of the exchange of antisymmetrizers in the step from (3.185) to (3.186).

The full argument: We will accomplish this exchange of AΘ(1)
and AΘ within the marked region

of (3.185) in the following way: Consider the Young tableaux Θ(1) and Θ as depicted in Figure 3.3:

Θ(1) =
m

and Θ =
m

m+1

Figure 3.3: This figure gives a schematic depiction of the Young tableaux Θ(1) and Θ. The boxes that are

common in the two tableaux have been shaded in. The box with entry (m+ 1) has to lie in the bottom-most

position of the last column of Θ, as otherwise the column-word of Θ, CΘ, would not be in lexical order,

contradictory to our initial assumption. The requirement that CΘ is lexically ordered therefore also uniquely

determines the position of the box m, as is indicated in this figure.
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Since, by assumption, m+1 does not lie in the first row of Θ, the leg (m + 1) is contained in an

antisymmetrizer (of length > 1) in AΘ, as was already mentioned previously. Let us denote this

antisymmetrizer by Am+1
Θ ∈ AΘ. Furthermore, let Am

Θ(1)
be the corresponding antisymmetrizer of the

tableau Θ(1): in other words, Am
Θ(1)

is the antisymmetrizer Am+1
Θ with the leg m+ 1 removed. Hence

Am
Θ(1)
⊃ Am+1

Θ , using the notation introduced in section 3.2.2.2.

Since Θ(1) is the parent tableau of Θ, all columns but the last will be identical in the two tableaux,

see Figure 3.3. Thus, the antisymmetrizers corresponding to any but the last row will be contained in

both sets AΘ(1)
and AΘ, which in particular implies that

AΘ = AΘ(1)
Am+1

Θ (3.190)

since Am
Θ(1)
⊃ Am+1

Θ . Thus, if we were able to commute the antisymmetrizer Am+1
Θ through the set

SΘ from the right to the left (and then absorb Am
Θ(1)

into Am+1
Θ ), we could cast PΘ into the desired

form (3.186) (and thus (3.189)). In fact, this is exactly what we will do: According to Theorem 3.6,

the antisymmetrizer Am+1
Θ can be propagated through the set SΘ if the row-amputated Young tableau

�Θr according to the last column of Θ is rectangular. Thus, let us form this amputated tableau,

�Θr = m

m+1

. (3.191)

This tableau is indeed rectangular,25 allowing us to propagate the antisymmetrizer Am+1
Θ from the

right to the left, yielding

P̄Θ = AΘ SΘ AΘ(1)
SΘ(1)

AΘ(1)
. (3.192)

Having demonstrated, that AΘ(1)
and AΘ may be swapped, it is possible to simplify P̄Θ as shown in

eqns. (3.187) to (3.188),

P̄Θ = AΘ SΘ SΘ(1)
AΘ(1)

SΘ(1)
AΘ(1)

= AΘ SΘ���SΘ(1)
AΘ(1)

= AΘ SΘ AΘ(1)

SΘ → SΘSΘ(1)
SΘSΘ(1)

→ SΘ

= ȲΘ(1)
= ȲΘ(1)

= ȲΘ(1)

. (3.193)

We once again use Theorem 3.6 to obtain the desired form of P̄Θ,

P̄Θ = AΘ SΘ AΘ(1)

Thm. 3.6
======= AΘ SΘ AΘ . (3.194)

It remains to show that the normalization constant given in (3.172) is the right one: that is, we will show that

PΘ = αΘP̄Θ, where P̄Θ = Ȳ †ΘȲΘ = AΘSΘAΘ (as was found in (3.184) and (3.194)), is indeed a projection

operator. We will establish this by simply squaring PΘ = αΘP̄Θ and checking whether it is idempotent:

PΘPΘ = α2
Θ · (AΘ SΘ AΘ) (AΘ SΘ AΘ) = α2

Θ ·AΘ SΘ AΘ︸ ︷︷ ︸
=ȲΘ

SΘ AΘ︸ ︷︷ ︸
=ȲΘ

, (3.195)

25It is important to note that this amputated tableau would not necessarily be rectangular if Θ were not lexically ordered,

as then m+1 could be situated in a column other than the last one. Thus, for non-lexically ordered tableaux, the proof breaks

down at this point.
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where we have used the fact that AΘAΘ = AΘ. By the idempotency of Young projection operators YΘ, it

follows that ȲΘȲΘ = 1/αΘȲΘ, simplifying (3.195) as

PΘPΘ =
α2

Θ

αΘ
·AΘ SΘ AΘ︸ ︷︷ ︸

=ȲΘ

= αΘ ·AΘ SΘ AΘ = PΘ . (3.196)

This concludes the proof of this Theorem 3.4.

3.C.2 Proof of Theorem 3.5 “partially lexical Hermitian Young projectors” (or

MOLD Theorem)

We now present a proof of the MOLD Theorem 3.5 by induction, using the Lexical Theorem 3.4 as a base

step:

Consider a Young tableau Θ with MOLD M(Θ) such that Θ(M(Θ)) has a lexically ordered row-word; the

proof for Θ(M(Θ)) having lexically ordered column-word is very similar and thus left as an exercise to the

reader. We will provide a Proof by Induction on the MOLD of Θ,M(Θ). Furthermore, we will for now ignore

the proportionality constant βΘ and concentrate on the birdtrack P̄Θ only. From the steps in the following

proof, it will become evident that βΘ 6= 0 and βΘ < ∞ (as is explicitly discussed at the appropriate places

within the proof), ensuring that PΘ := βΘP̄Θ is a non-trivial (i.e. nonzero) finite projection operator.

The Base Step: Suppose that M(Θ) = 0. In that case, Θ itself has a lexically ordered row-word. Then,

by the MOLD Theorem, P̄Θ must be of the following form

P̄Θ = SΘ AΘ SΘ︸ ︷︷ ︸
=ȲΘȲ

†
Θ

; (3.197)

this agrees with the result we obtained from the Lexical Theorem 3.4, for which we have already given a

full proof in the appendix 3.C.1. Also, the normalization constant βΘ = αΘ 6= 0, as required by the MOLD

Theorem. Thus, the base step of the induction is fulfilled.

The Induction Step: Let us now consider a Young tableau Θ, such that the MOLD Theorem holds for

its parent tableau Θ(1). Further, assume that M(Θ(1)) = m, for some positive integer m, with Θ(m) being

row-ordered. Thus, we have that M(Θ) = m+ 1. We can now have one of two situations: either m is even,

or m is odd. First, suppose that m is even (i.e. m+ 1 is odd). Then, according to the MOLD Theorem,

the birdtrack of the projection operator PΘ(1)
is given by (c.f. eq. (3.124a))

P̄Θ(1)
= C SΘ(1)

AΘ(1)
SΘ(1)

︸ ︷︷ ︸
=ȲΘ(1)

Ȳ †Θ(1)

C† , (3.198)

where we defined C to be

C := SΘ(m+1)
AΘ(m)

SΘ(m−1)
. . .SΘ(3)

AΘ(2)
. (3.199)
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We will now construct the birdtrack P̄Θ according to the KS Theroerm 3.3 [4]; this yields

P̄Θ = P̄Θ(1)
ȲΘ P̄Θ(1)

= C SΘ(1)
AΘ(1)

SΘ(1)
· · · AΘ(m) ����SΘ(m+1)

SΘ AΘ SΘ(m+1)
· · · SΘ(1)

AΘ(1)
SΘ(1)

C † ,SΘ(1)
AΘ(1)

SΘ(1)
SΘ(1)

AΘ(1)
SΘ(1)

SΘ AΘ

SΘ(m+1)
SΘ → SΘ

C † C

(3.200)

where we absorbed SΘ(m+1)
into SΘ. We notice that the parts of P̄Θ outside the grey outlined box (denoted

by C(†)) are already in the form that we want them to be. We thus focus our attention on the part of P̄Θ

inside the grey box. If we can show that this part can be written as

P̄Θ
?
= C SΘ(1)

AΘSΘAΘ︸ ︷︷ ︸
Y †ΘYΘ

SΘ(1)
C†, (3.201)

then we have completed the proof. We will accomplish this goal in two steps:

1. We will use the Cancellation Theorem 3.2 (see section 3.2.3) to cancel the wedged ancestor sets of

(anti-)symmetrizers in the grey box and thus reduce P̄Θ to

P̄Θ = C SΘ(1)
AΘ(1)

SΘAΘSΘ(1)
C†. (3.202)

2. We then make use of the Hermiticity of PΘ to show that

P̄Θ = C SΘ(1)
AΘSΘAΘSΘ(1)

C†. (3.203)

Let us start the two-step-process:

1. The first step is easily accomplished: We factor a set SΘ(1)
out of SΘ and a set AΘ(1)

out of AΘ,

P̄Θ = C SΘ(1)
AΘ(1)

SΘ(1)
· · · AΘ(m)

SΘ(1)
SΘ AΘ AΘ(1)

SΘ(m+1)
· · · SΘ(1)

AΘ(1)
SΘ(1)

C† .SΘ(1)
AΘ(1)

SΘ(1)
SΘ(1)

AΘ(1)
SΘ(1)

SΘ AΘ

SΘ → SΘ(1)
SΘ

AΘ → AΘAΘ(1)

(3.204)

We now encounter sets of symmetrizers and antisymmetrizers corresponding to ancestor tableaux Θ(k)

with 1 ≤ k ≤ m wedged between sets belonging to the tableau Θ(1). Thus, we may use Theorem 3.2 to

simplify the operator P̄Θ (once again making use of the bar-notation, c.f. eq. (3.33), to retain equality

in the process)

P̄Θ = C SΘ(1)
AΘ(1)

SΘ(1)
· · · AΘ(m)

SΘ(1)
SΘ AΘ AΘ(1)

SΘ(m+1)
· · · SΘ(1)

AΘ(1)
SΘ(1)

C †SΘ(1)
AΘ(1)

SΘ(1)
SΘ(1)

AΘ(1)
SΘ(1)

SΘ AΘ

∝ AΘ(1)
SΘ(1)

∝ AΘ(1)
SΘ(1)
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= C SΘ(1)
AΘ(1)

SΘ(1)
SΘ AΘ AΘ(1)

SΘ(1)
C†SΘ AΘ . (3.205)

Re-absorbing SΘ(1)
into SΘ and AΘ(1)

into AΘ yields the desired result,

P̄Θ = C SΘ(1)
AΘ(1) ���SΘ(1)

SΘ AΘ ���AΘ(1)
SΘ(1)

C†SΘ AΘ

SΘ(1)
SΘ → SΘ

AΘAΘ(1)
→ AΘ

= C SΘ(1)
AΘ(1)

SΘ AΘ SΘ(1)
C† , (3.206)

thus concluding this step of the proof.

2. For the second step of the proof, we first notice that the operator obtained in the previous step,

operator (3.206), is Hermitian; this is due to the fact that P̄Θ (as given in (3.200)) was constructed

according to the iterative method described in the KS Theorem 3.3 [4]. In particular, this implies that

P̄Θ = P̄ †Θ, yielding

P̄Θ = C SΘ(1)
AΘ(1)

SΘAΘSΘ(1)
C† = C SΘ(1)

AΘSΘAΘ(1)
SΘ(1)

C† = P̄ †Θ. (3.207)

When we gave the proof of the Lexical Theorem 3.4 in appendix 3.C.1, we were able to prove that AΘ(1)

can be extended to become AΘ by using techniques described in Appendix 3.C.1.1. Now however, we are

no longer able to use these techniques, as most amputated tableaux ��Θr or ��Θc would not be rectangular

(as can be easily verified by an example). We therefore need a different strategy to arrive at the desired

form for P̄Θ.

In addition to P̄Θ as given in (3.206), let us define the operator Ō by

Ō := C SΘ(1)
AΘSΘAΘSΘ(1)

C†; (3.208)

clearly, this operator is Hermitian by construction due to its symmetry. We seek to show that P̄Θ = Ō

in order to conclude the second step of this proof. This will be accomplished by showing that

Ō ⊂ P̄Θ and P̄Θ ⊂ Ō, (3.209)

where we used the notation introduced in section 3.2.2.2. These inclusions will then lead us to conclude

that the subspaces onto which Ō and P̄Θ project are equal, rendering the two operators equal, Ō = P̄Θ.

Let us prove the two inclusions (3.209): As discussed in section 3.2.2.2, the first inclusion holds if and

only if Ō · P̄Θ = P̄Θ = P̄Θ · Ō (c.f. equation (3.40)). We thus need to examine the product of Ō and

P̄Θ. We consider

Ō · P̄Θ = C SΘ(1)
AΘSΘAΘSΘ(1)

C† · C SΘ(1)
AΘ(1)

SΘAΘSΘ(1)
C† . (3.210)

Similar to what was done in part 1, we use Theorem 3.2 to simplify the central part of the product
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Ō · P̄Θ

Ō · P̄Θ = C SΘ(1)
AΘ SΘAΘSΘ(1)

C† · C SΘ(1)
AΘ(1)

SΘAΘ︸ ︷︷ ︸
∝SΘAΘ

SΘ(1)
C† , (3.211)

yielding (making use of the bar-notation)

Ō · P̄Θ = C SΘ(1)
AΘ SΘAΘ︸ ︷︷ ︸

=ȲΘ

SΘ(1)
C† = Ō . (3.212)

Hence, we found that Ō · P̄Θ = Ō. Recalling that both operators Ō and P̄Θ are Hermitian, it follows

that

Ō = Ō† =
(
Ō · P̄Θ

)†
= P̄ †Θ · Ō† = P̄Θ · Ō. (3.213)

Thus, we have shown that both equalities, Ō · P̄Θ = Ō and P̄Θ ·Ō = Ō, hold, implying the first inclusion

Ō ⊂ P̄Θ.

To prove the second inclusion in (3.209), we need to consider the product P̄Θ · Ō,

P̄Θ · Ō = C SΘ(1)
AΘ(1)

SΘAΘSΘ(1)
C† · C SΘ(1)

AΘSΘAΘSΘ(1)
C†. (3.214)

Once again, we may use Theorem 3.2 to simplify this product as

P̄Θ · Ō = C SΘ(1)
AΘ(1)

SΘAΘSΘ(1)
C† · C SΘ(1)

AΘSΘAΘ︸ ︷︷ ︸
∝SΘAΘ

SΘ(1)
C†

= C SΘ(1)
AΘ(1)

SΘAΘ︸ ︷︷ ︸
=ȲΘ

SΘ(1)
C†. (3.215)

We recognize the right hand side of equation (3.215) to be the operator P̄Θ. We thus found that

P̄Θ · Ō = P̄Θ. Once again, we make use of the Hermiticity of the operators Ō and P̄Θ to see that

P̄Θ = P̄ †Θ =
(
P̄Θ · Ō

)†
= Ō† · P̄ †Θ = Ō · P̄Θ , (3.216)

yielding the desired inclusion P̄Θ ⊂ Ō. We have thus managed to prove both inclusions in (3.209),

forcing us to conclude that the two operators Ō and P̄Θ are equal, Ō = P̄Θ, yielding

P̄Θ = Ō = C SΘ(1)
AΘSΘAΘSΘ(1)

C† , (3.217)

as desired (c.f. eq. (3.124b)).

Suppose now that m is odd (i.e. m+ 1 is even). The proof for odd m will also be conducted in two steps,

just as for even m. We will only give an outline of this proof, as the steps are very similar to those for even

m.
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By the induction hypothesis, the projection operator PΘ(1)
is of the form

P̄Θ(1)
= SΘ(m+1)

AΘ(m)
. . . SΘ(2)

AΘ(1)
SΘ(1)

AΘ(1)

︸ ︷︷ ︸
=Ȳ †Θ(1)

ȲΘ(1)

SΘ(2)
. . . AΘ(m)

SΘ(m+1)
. (3.218)

Constructing the birdtrack of the Hermitian Young projection operator PΘ, P̄Θ, according to the KS Theo-

rem 3.3 [4] gives

P̄Θ = P̄Θ(1)
ȲΘ P̄Θ(1)

= CΘ AΘ(1)
SΘ(1)

AΘ(1)
SΘ(2)

. . .SΘ(m+1)
SΘAΘ SΘ(m+1)

. . .SΘ(2)
AΘ(1)

SΘ(1)
AΘ(1)

C†Θ ,

(3.219)

where CΘ := SΘ(m+1)
. . .SΘ(2)

. We again use Theorem 3.2 to simplify the operator (3.219),

P̄Θ = SΘ(m+1)
. . .SΘ(2)

AΘ(1)
SΘAΘSΘ(1)

AΘ(1)
SΘ(2)

. . .SΘ(m+1)
. (3.220)

We then define an operator Ō by

Ō := SΘ(m+1)
. . .SΘ(2)

AΘ(1)
SΘAΘSΘAΘ(1)

SΘ(2)
. . .SΘ(m+1)

. (3.221)

Using Theorem 3.2, as well as the fact that both P̄Θ and Ō are Hermitian by construction, we may show the

inclusions P̄Θ ⊂ Ō and Ō ⊂ P̄Θ, to conclude that P̄Θ = Ō, yielding the desired result (c.f. eq. (3.124a))

P̄Θ = SΘ(m+1)
. . .SΘ(2)

AΘ(1)
SΘAΘSΘ︸ ︷︷ ︸

=ȲΘȲ
†
Θ

AΘ(1)
SΘ(2)

. . .SΘ(m+1)
. (3.222)

The proof of equations (3.124c) and (3.124d) in the MOLD Theorem follows the same steps as the proof of

equations (3.124a) and (3.124b) given above, and is thus left as an exercise for the reader.

Lastly, we notice that the idempotency of PΘ in each of the cases (3.124) can be verified by using the

Cancellation Theorem 3.2: For example if PΘ is constructed according to (3.124a), it follows that

PΘ · PΘ = β2
Θ · SΘ(m)

. . . SΘ AΘ SΘ . . . SΘ(m)
· SΘ(m)

. . . SΘ AΘ SΘ︸ ︷︷ ︸
=λ· SΘ AΘ SΘ

. . . SΘ(m)

= β2
Θλ · SΘ(m)

. . . SΘ AΘ SΘ . . . SΘ(m)
,

where λ is a nonzero constant, since all the cancelled sets can be absorbed into SΘ and AΘ respectively (c.f.

Theorem 3.2). Thus, defining

βΘ :=
1

λ
<∞ (3.223)

ensures that PΘ is indeed a projection operator.
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Chapter 4

Transition Operators

This chapter has been published under the same name in the Journal of Mathematical Physics [3]. In some

instances, the present paper (chapter) refers to additional results not given in the paper. Where such work

is included in this thesis, a remark in square brackets and italics has been added to refer the reader to the

appropriate chapter of this thesis.

Abstract: In this paper, we give a generic algorithm of the transition operators between Hermitian Young

projection operators corresponding to equivalent irreducible representations of SU(N), using the compact ex-

pressions of Hermitian Young projection operators derived in [2] [chapter 3]. We show that the Hermitian

Young projection operators together with their transition operators constitute a fully orthogonal basis for

the algebra of invariants of V ⊗m that exhibits a systematically simplified multiplication table. We discuss

the full algebra of invariants over V ⊗3 and V ⊗4 as explicit examples. In our presentation we make use of

various standard concepts, such as Young projection operators, Clebsch-Gordan operators, and invariants (in

birdtrack notation). We tie these perspectives together and use them to shed light on each other.

4.1 Introduction

Applications of representation theory generally are concerned with irreducible representations of the group

under scrutiny. Physics applications in particular are generally aimed at finding all irreducible representa-

tions in an m-particle Fock space. The textbook example here is of course angular momentum and spin

with the group SU(2) and the construction of the periodic table in quantum mechanics via the irreducible

multiplets for m electrons in an atom with m protons that classify its orbital configuration, its spectral and

chemical properties. In quantum chromodynamics, we meet flavor symmetry (flavor SUf (2) or SUf (3)) as an

approximate symmetry that guides us through interpreting the mesons and baryons as members of irreducible

representations of the flavor group in the eightfold way [15, 104]. Gauge invariance and confinement force the

same particles into singlets of the color gauge group SUc(3). The latter are of particular interest in the color

glass condensate which dominates QCD in high energy applications, i.e. in modern collider experiments. In

this set of applications, Wilson line correlators appear, whose color structures are of central importance and

the presently existing techniques are limited to explicit calculations at a given order of complexity. In [2]

[chapter 3], we have established an efficient algorithm to construct a full set of Hermitian projection op-

erators for the decomposition of a product of m fundamental representations of SU(N) as a subset of the
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associated algebra of invariants. Here, we aim to find a complete basis for the algebra of invariants that is

fully shaped by the irreducible representations that these operators represent, and identify the missing basis

elements as transition operators between equivalent representations contained in the product. In a future

paper [94] [chapter 5], this information will be used to give a full account of all singlets (i.e. all 1-dimensional

representations that remain invariant under the group action) constrained in a product of m fundamental

representations with m′ antifundamental representations. In physics parlance, this gives access to the gauge

invariant part of the Fock space of m particles and m′ antiparticles.

There are, of course, several different technologies on the market to address these questions. The most

familiar to the practicing physicist are the construction of Clebsch-Gordan coefficients [108] (see [25, 92, 93] for

textbook introductions), Elié Cartan’s method of roots and weights [103], and Alfred Young’s combinatorial

method of classifying the idempotents on the algebra of permutations [84]. The Schur-Weyl duality [98] relates

these idempotents to the irreducible representations of compact, semi-simple Lie groups and thus to SU(N).

This duality is based on the theory of invariants [72, 98], which exploits the invariants (in particular the

primitive invariants) of a Lie group G and constructs projection operators corresponding to the irreducible

representations of G from the invariants of that group. It is this method that allows us to carry N as a

parameter throughout, which has important advantages in applications in QCD we are ultimately interested

in. The core part of our discussion will deal with a product representations of SU(N) constructed from the

fundamental representation of a Lie group G on a given vector space V with dim(V ) = N , whose action will

simply be denoted by v 7→ Uv for all U ∈ SU(N) and v ∈ V . Choosing a basis {e(i)|i = 1, . . . ,dim(V )} such

that v = vie(i), this becomes vi 7→ U ij v
j . This immediately induces product representations of SU(N) on

V ⊗m if one uses this basis of V to induce a basis on V ⊗m, so that a general element v ∈ V ⊗m takes the form

v = vi1...ime(i1) ⊗ · · · ⊗ e(im):

U ◦ v = U ◦ vi1...ime(i1) ⊗ · · · ⊗ e(im) := U i1j1 · · ·U
im
jm︸ ︷︷ ︸

=:U

vj1...jme(i1) ⊗ · · · ⊗ e(im) . (4.1)

Since all the factors in V ⊗m are identical, the notion of permuting the factors is a natural one and leads to

a linear map on V ⊗m according to

ρ ◦ v = ρ ◦ vi1...ime(i1) ⊗ · · · ⊗ e(im) := viρ(1)...iρ(m)e(i1) ⊗ · · · ⊗ e(im) , (4.2)

where ρ is an element of Sm, the group of permutations of m objects.1 From the definitions (4.1) and (4.2),

one immediately infers that the product representation commutes with all permutations on any v ∈ V ⊗m:

U ◦ ρ ◦ v = ρ ◦U ◦ v . (4.3)

In other words, any such permutation ρ is an invariant of SU(N) (or in fact any Lie group G acting on V ):

U ◦ ρ ◦U−1 = ρ . (4.4)

It can further be shown that these permutations span the space of all linear invariants of SU(N) over V ⊗m [72].

The permutations are thus referred to as the primitive invariants of SU(N) over V ⊗m. The full space of

1Permuting the basis vectors instead involves ρ−1: vρ(i1)...ρ(im)e(i1) ⊗ · · · ⊗ e(im) = vi1...ime(i
ρ−1(1)

) ⊗ · · · ⊗ e(i
ρ−1(m)

).
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linear invariants is then given by

API
(
SU(N), V ⊗m

)
:=
{ ∑

σ∈Sm
ασσ

∣∣∣ασ ∈ R, σ ∈ Sm
}
⊂ Lin

(
V ⊗m

)
. (4.5)

As defined in (4.5), API (SU(N), V ⊗m) is a real vector space and becomes a real algebra with the product

induced by the product of permutations. It will become obvious from our presentation that this space is large

enough to encompass all group-theoretically interesting objects, namely

1. Hermitian projectors onto irreducible representations (see [2, 4]), and

2. any transition operators associated with equivalent representations.

We will show that these operators do not only fit into it, they in fact span the whole space and form an

orthogonal basis for API (SU(N), V ⊗m). We will call this the projector basis for API (SU(N), V ⊗m) in the

remainder of this paper (such a basis is referred to as a multiplet basis in [102]), and discuss in detail its

unique structures and the freedom of choice still left open.

Naively, since the number of permutations in Sm is m!, one might expect the dimension of API (SU(N), V ⊗m)

to be simply m! and indeed this is the maximal dimension of the algebra. However, this is realized only

if N = dim(V ) ≥ m. Failing that, not all permutations remain linerarly indepdendent (as elements of the

vector space Lin (V ⊗m)). This is particularly clearly exhibited in the projector basis. A number of clearly

distinguished basis elements will explicitly become null operators, all others will remain nonzero and thus

form a basis for the now smaller space of invariants (see appendix 4.A). It is this feature that allows us to

use N as a parameter in calculations.

We begin with a short presentation of some background material, which is needed to fully appreciate the

arguments made in this paper, in section 4.2. This section begins by introducing the birdtrack formalism [72],

which is particularly suited for dealing with the objects discussed in this paper. We then proceed by sum-

marizing classic textbook material on Young tableaux and their corresponding projection operators (see for

example [72, 92, 93, 95, 96]). Lastly, we state some cancellation rules for birdtrack operators [1] [chapter 2].

Section 4.3 provides the first new results. We show that the Young projection operators can be augmented

by what we choose to call transition operators to give an alternative basis for the algebra of invariants

API (SU(N), V ⊗m) for m ≤ 4, and proceed to give the full basis for API
(
SU(N), V ⊗3

)
(a diagram depicting

the full basis up to m = 4 is given in Figure 4.2). Since orthogonality of Young projection operators breaks

down beyond m = 4, the Young basis cannot be generalized to larger m. This motivates a basis in terms of

Hermitian projection operators and their unitary transition operators:

Section 4.4 discusses such a basis through Clebsch-Gordan operators for allm. As it turns out, Hermiticity and

unitarity of these operators automatically guarantee mutual orthogonality of the basis elements with respect

to the inner product 〈A,B〉 := tr
(
A†B

)
. Since this method requires the construction of Nm normalized states

to find m! basis elements for API (SU(N), V ⊗m), we then proceed to present a more efficient algorithm to reach

this goal. Our method is based on streamlined methods to construct Hermitian Young projection operators [2]

[chapter 3] (themselves based on earlier work by Keppeler and Sjödahl [4]). These Hermitian Young projection

operators are complemented by unitary transition operators to provide a full basis for API (SU(N), V ⊗m) for

all m in section 4.5 (Theorem 4.4). This construction algorithm for transition operators serves as a starting
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point for a more efficient method (Theorem 4.5) yielding much shorter expressions of the transition operators.

The proof of Theorem 4.5 can be found in appendix 4.D.

We close with some examples. We give the basis of API (SU(N), V ⊗m) in terms of Hermitian Young projection

operators and unitary transition operators for both m = 3 and m = 4 in section 4.6. Figures 4.2 and 4.3

summarize the most important aspects of Young and Hermitian Young decompositions of API (SU(N), V ⊗m)

for all m ≤ 4.

4.2 Background: birdtracks, Young tableaux, notations and con-

ventions

4.2.1 Birdtracks, scalar products, and Hermiticity

In the 1970’s, Penrose devised a graphical method of dealing with primitive invariants of Lie groups including

Young projection operators [87, 88], which was subsequently applied in a collaboration with MacCallum [89].

This graphical method, now dubbed the birdtrack formalism, was modernized and further developed by

Cvitanović [72] in recent years. The immense benefit of the birdtrack formalism is that it makes the actions

of the operators visually accessible and thus more intuitive. For illustration, we give as an example the

permutations of S3 written both in their cycle notation (see [93] for a textbook introduction) as well as

birdtracks:

S3 =
{

︸ ︷︷ ︸
id

,

︸ ︷︷ ︸
(12)

,

︸ ︷︷ ︸
(13)

,

︸ ︷︷ ︸
(23)

,

︸ ︷︷ ︸
(123)

,

︸ ︷︷ ︸
(132)

}
. (4.6)

The action of each of the above permutations on a tensor product v1 ⊗ v2 ⊗ v3 is clear, for example

(123) (v1 ⊗ v2 ⊗ v3) = v3 ⊗ v1 ⊗ v2. (4.7)

In the birdtrack formalism, this equation is written as

v1
v2
v3

=
v3
v1
v2
, (4.8)

where each term in the product v1 ⊗ v2 ⊗ v3 (written as a tower
v1
v2
v3

) can be thought of as being moved along

the lines of . Birdtracks are thus naturally read from right to left as is also indicated by the arrows on

the legs.

The graphical structure faithfully represents the multiplication table of Sm by impolementing a “glue and

follow the lines prescription” along the lines of

· := = . (4.9)

Selecting a set of integers {a1, . . . , an}, we can introduce two prominent types of elements of these algebras:
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symmetrizers

Sa1,...,an :=
1

n!

∑

σ∈Sn
σa1,...,an , (4.10a)

where σa1,...,an denotes a permutation in Sn over the letters a1, . . . , an, and antisymmetrizers

Aa1,...,an :=
1

n!

∑

σ∈Sn
sign(σ)σa1,...,an . (4.10b)

These may act on subsets of n factors in V ⊗m. Both symmetrizers and antisymmetrizers are by definition

idempotent,

S2
a1,...,an = Sa1,...,an and A2

a1,...,an = Aa1,...,an , (4.11)

they are projection operators.

All of these have birdtrack representations in which symmetrizers (resp. antisymmetrizers) are shown as

unfilled (filled) boxes covering the lines to be symmetrized (resp. antisymmetrized). Take for example

S134 ∈ API
(
V ⊗5

)
and A35 ∈ API

(
V ⊗5

)
, which take the form

S134 = ∈ API
(
SU(N), V ⊗5

)
and A35 = ∈ API

(
SU(N), V ⊗5

)
. (4.12)

We note in passing that Hermitian conjugation for birdtracks (in the sense of linear maps on V ⊗m with the

scalar product inherited from V ) is achieved by reflection around a vertical axis, followed by a reversal of the

arrows (see [72] [or section 3.3.1 in chapter 3]). As an example, take

reflect−−−−→ reverse arrows−−−−−−−−−→ , i.e

( )†
= . (4.13)

This implies that all symmetrizers and antisymmetrizers as defined in eqns. (4.10) and (4.12) are Hermitian,

S†a1,...,an = Sa1,...,an and A†a1,...,an = Aa1,...,an , (4.14)

and that all permutations are unitary:

σ−1 = σ† for all σ ∈ Sm. (4.15)

The direction of arrows on the legs also allows us to account for complex conjugation (c.f. [72]). In this

paper, we will exclusively be working with real operators and thus suppress the direction of the arrows, for

example

will refer to . (4.16)

Lastly, if a Hermitian projection operator A projects onto a subspace completely contained in the image of
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a Hermitian projection operator B, then we denote this as A ⊂ B, transferring the familiar notation of sets

to the associated projection operators. In particular, A ⊂ B if and only if

A ·B = B ·A = A (4.17)

for the following reason: If the subspaces obtained by consecutively applying the operators A and B in any

order is the same as that obtained by merely applying A, then not only need the subspaces that A and B

project onto overlap (as otherwise A·B = B ·A = 0), but the subspace corresponding to A must be completely

contained in the subspace of B - otherwise the last equality of (4.17) would not hold. Hermiticity is crucial for

these statements — they thus do not apply to most Young projection operators [c.f. section 3.2.1 and later

section 4.2.3] on V ⊗m if m ≥ 3.2 A familiar example for this situation is the relation between symmetrizers

of different lengths: a symmetrizer SN can be absorbed into a symmetrizer SN ′ , as long as the index set N
is a subset of N ′, and the same statement holds for antisymmetrizers [72]. For example,

= = . (4.18)

Thus, by the above notation, SN ′ ⊂ SN if N ⊂ N ′. Or, as in our example,

⊂ . (4.19)

API (SU(N), V ⊗m) itself is equipped with a scalar product for linear maps that is consistent with the scalar

product on V ⊗m and simply given by a trace

〈 , 〉 : API
(
SU(N), V ⊗m

)
× API

(
SU(N), V ⊗m

)
→ R , 〈A,B〉 := tr(A†B) . (4.20)

In birdtrack notation, the trace tr merely connects each line exiting A†B on the left with the line entering

A†B on the right that is on the same level [72],

tr
(
A†B

)
= ...

...
A†B . (4.21)

For example,

tr

(( )† )
= tr

( )
= tr

( )
= = N2, (4.22)

where we have drawn the lines originating from the trace in red for visual clarity. Each closed loop in the

trace yields a factor of N (the dimension of the fundamental representation), so that the scalar product (4.20)

will always yield a polynomial of N . In particular, it is clear that this polynomial will not be identically 0 if

A,B ∈ Sm (and hence A† ∈ Sm), since Sm is a group and thus A†B ∈ Sm. The cyclic property of the trace

2As can be explicitly verified by an example.
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becomes very apparent in birdtrack notation, as the operator A1 in

tr (A1A2 . . . An) (4.23)

can just be “pulled” to the right of An along the lines induced by the trace. [Traces of the elements of

API (SU(N), V ⊗m) and API
(
SU(N), V ⊗m ⊗ (V ∗)⊗m

′)
are discussed in more detail in chapter 8.]

4.2.2 The hierarchical nature of Young tableaux

A Young tableau is a conglomerate of numbered boxes with shape and ordering restrictions imposed. The

shape and ordering restrictions automatically emerge if we construct these tableaux iteratively, starting from

a single box 1 in a process governed by branching rules (see for example [95, 96]). The second box 2 and

all further boxes are attached (in order) to the right of or below an existing box in all possible ways that

lead to a set of boxes in which no row is longer than that above it and no column is longer than the one left

of it. The process results in a tree whose first few branchings are displayed in Figure 4.1.

1 2 3 4
1 2 3

4

1 2 4

3

1 2

3 4

1 2

3

4

1 3 4

2

1 3

2 4

1 3

2

4

1 4

2

3

1

2

3

4

1 2 3
1 2

3

1 3

2

1

2

3

1 2
1

2

1

⊗ 2

⊗ 3

⊗ 4

Figure 4.1: Branching tree of Young tableaux from its root to the 4th generation.

We denote the set of Young tableaux with n boxes by Yn, and note that in each branching step every Young

tableau Θ ∈ Yn−1 creates a whole set of descendant tableaux in Yn. We will refer to this set by {Θ ⊗ n }
and notice that it has no overlap with the descendants of any other element of Yn−1. Any Yn is the disjunct

union of descendant sets: For example,

Y3 :=



 1 2 3 ,

1 2

3
,

1 3

2
,

1

2

3



 =

{
1 2 ⊗ 3

}
∪
{

1

2
⊗ 3

}
. (4.24)

Traversing the tree of Figure 4.1 downwards is a branching operation, in which each desendant has a well

defined ancestry chain: Starting at a Young tableau and taking away the box with the highest entry is a map

in the mathematical sense, it yields a unique tableau. We call this map the parent map and denote it by π.

π can then repeatedly be applied to the resulting tableau generating the ancestry chain for a given tableau.
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An example for part of such a chain is

. . .
π−−→

1 3 6

2 5

4

π−−→
1 3

2 5

4

π−−→
1 3

2

4

π−−→ 1 3

2

π−−→ . . . . (4.25)

This idea can obviously be formalized in a way that provides some useful notation:

Definition 4.1 – parent map and ancestor tableaux:

Let Θ ∈ Yn be a Young tableau. We define its parent tableau Θ(1) ∈ Yn−1 to be the tableau obtained from Θ

by removing the box n of Θ. Furthermore, we will define a parent map π from Yn to Yn−1, for a particular

n,

π : Yn → Yn−1 , (4.26)

which acts on Θ by removing the box n from Θ,3

π : Θ 7→ Θ(1) . (4.27)

In general, we define the successive action of the parent map π by

Yn π−−→ Yn−1
π−−→ Yn−2

π−−→ . . .
π−−→ Yn−m , (4.28)

and denote it by πm,

πm : Yn → Yn−m , πm := Yn π−−→ Yn−1
π−−→ Yn−2

π−−→ . . .
π−−→ Yn−m . (4.29)

We will further denote the tableau obtained from Θ by applying the map π m times, πm(Θ), by Θ(m), and

refer to it as the ancestor tableau of Θ m generations back. Applying the map πm to a Young tableau Θ then

yields the unique tableau Θ(m),

πm : Θ 7→ Θ(m) . (4.30)

We now reverse direction again and return to thinking about adding boxes. As we keep adding more and

more boxes, we encounter more and more tableaux that share their overall shape, they only differ by the

ordering of entries. The shape (represented by the boxes with the entries deleted) is commonly referred to

as a Young diagram. The reordering required to relate two tableaux of the same shape defines a tableau

permutation:

Definition 4.2 – tableau permutation:

Consider two Young tableaux Θ,Θ′ ∈ Yn with the same shape. Then, Θ′ can be obtained from Θ by permuting

the numbers of Θ; clearly, the permutation needed to obtain Θ′ from Θ is unique. We denote the permutation

that maps Θ′ into Θ by ρΘΘ′ ,

Θ = ρΘΘ′(Θ
′) ⇐⇒ Θ′ = ρ−1

ΘΘ′(Θ) = ρΘ′Θ(Θ) . (4.31)

3We note that the tableau Θ(1) is always a Young tableau if Θ was a Young tableau, since removing the box with the highest
entry cannot possibly destroy the properties of Θ (and thus Θ(1)) that make it a Young tableau.

174



Chapter 4. Transition Operators

4.2.3 From Young tableaux to Young operators

The literature (see for example [93]) provides a standard manner in which each Young tableau is associated

with a Young projection operator that is constructed from symmetrizers and antisymmetrizers — symmetriz-

ers for the rows and antisymmetrizers for the columns. (For completeness, we assign the identity permutation

for rows or columns of length one. If all rows or columns are exactly of length one, we refer to this as the

symmetrizers or antisymmetrizers becoming trivial.) As such, the Young projection operators corresponding

to tableaux in Ym are elements of the (real) algebra of invariants API (SU(N), V ⊗m).

Take, for example

Θ =
1 3 4

2 5
. (4.32)

The Young projection operator corresponding to this tableau, YΘ, is given by

Y 1 3 4
2 5

= 2 · S134S25A12A35 , (4.33)

where the constant 2 ensures idempotency of Y 1 3 4
2 5

(c.f. eq. (4.37)). (This is a textbook topic. For a reminder

on how to construct Young projection operators from Young tableaux, readers are referred to [93, 95, 96].)

All the symmetrizers of a tableau commute with each other and so do the antisymmetrizers, since no number

appears more than once in any tableau. Thus, when constructing the birdtrack corresponding to Y 1 3 4
2 5

, we

are able to draw the two symmetrizers appearing in it underneath each other (since they are disjoint), and

similarly for the two antisymmetrizers,

Y 1 3 4
2 5

= 2 · . (4.34)

We denote the set (or product — it does not really matter as they mutually commute) of symmetrizers

associated with the tableau Θ by SΘ, and the set (or product) of antisymmetrizers by AΘ. However, the

symmetrizers of a tableau do not commute with its antisymmetrizers (unless one or both are trivial):

[SΘ,AΘ] 6= 0 . (4.35)

Therefore their relative order matters in the general definition of a Young projector4

YΘ := αΘSΘAΘ , (4.36)

where αΘ ∈ R is defined as [72]

αΘ :=
HΘ∏

R |length(R)|!∏C |length(C)|! . (4.37)

The products in the denominator run over every row R respectively over every column C in Θ [72], and HΘ

is the hook length of the tableau Θ [95, 96]: For a particular Young tableau Θ, form its underlying Young

4Placing the antisymmetrizers to the right of the symmetrizers is a choice of convention — the reverse order leads to equivalent
strutural results, it only matters to stay consistent.
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diagram YΘ by deleting all entries and then re-fill each box c in YΘ with the integer counting all boxes to

the right and below it (including itself), called the hook of c Hc, for example,

Θ =

1 3 5 8

2 6 7

4

delete entries−−−−−−−−→ hooks Hc−−−−−−−→
6 4 3 1

4 2 1

1

. (4.38)

The hook length of Θ, HΘ, (equivalently the hook length of YΘ, HYΘ) is defined to be the product of all the

hooks Hc,

HΘ = HYΘ
:=
∏

c∈Θ

Hc ; (4.39)

for the tableau in (4.38), the hook length is HΘ = 6 · 42 · 3 · 2 = 576.

The Young projection operators are nonzero precisely if all their columns are at most of length N , otherwise

they vanish identially — we refer to this as being dimensionally zero (see appendix 4.A).

From eqns. (4.35) and (4.36), one infers that YΘ is not Hermitian (unless at least one of the sets is trivial):

Y †Θ = αΘ(SΘAΘ)† = αΘAΘSΘ 6= YΘ . (4.40)

Hermiticity (or the lack thereof) in birdtrack notation is best judged after expanding in primitive invariants,

for example

Y 1 3
2

=
4

3
· ⇒ Y †

1 3
2

=
4

3
· (4.41)

=
1

3

(
− + −

)
=

1

3

(
− + −

)
.

The definition of Y 1 3 4
2 5

in (4.33) speaks of a linear map on V ⊗5, i.e. an element of Lin
(
V ⊗5

)
, or with equal

validity of a linear map on a larger space V ⊗m, m ≥ 5, in which the factors beyond the first five remain

unaffected. We speak of this case as the canonical embedding of Lin (V ⊗n) ↪→ Lin (V ⊗m) (with m ≥ n). For

a given tableau Θ ∈ Yn, we will, in a slight abuse of notation, employ the same notation, YΘ, to talk both

about the original case or any of the embeddings. The idea of an embedding in birdtrack terms requires to

explicitly draw the “unaffected lines”, for example the operator Ȳ 1 2
3

is canonically embedded into Lin
(
V ⊗5

)

as

↪→ . (4.42)

Furthermore, for any operator O consisting of symmetrizers and antisymmetrizers, the symbol Ō will refer to

the equivalence class of operators that are proportional to the product of symmetrizers and antisymmetrizers
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of O without any additional scalar factors. For example,

YΘ :=
4

3︸︷︷︸
=:αΘ

︸ ︷︷ ︸
=:ȲΘ

. (4.43)

The benefit of this notation is that it allows us to ignore all additional scalar factors; in particular, for a

nonzero scalar ω,

ω · Ō = Ō but in general ω ·O 6= O . (4.44)

Tableau permutations (c.f. Definition 4.2) can be represented as birdtracks. A graphical procedure is probably

the most efficient mean to obtain this representation:

Definition 4.3 – tableau permutations as birdtracks:

To construct the birtrack form of the tableau permutation ρΘΦ between tableaux of the same shape ( c.f.

Definition 4.2) explicitly, write the Young tableaux Θ and Φ next to each other, such that Θ is to the left of

Φ, and then connect the boxes in the corresponding position of the two diagrams, such as

Θ→ ← Φ. (4.45)

Then, write two columns of numbers from 1 to n next to each other in descending order; the left column

represents the entries of Θ, and the right column represents the entries of Φ. Lastly, connect the entries

in the left and the right column in correspondence to (4.45). The resulting tangle of lines is the birdtrack

corresponding to ρΘΦ and thus determines the permutation.

As a birdtrack, ρΘΦ immediately becomes a linear map in API (SU(N), V ⊗m) and as such directly relates the

associated Young projectors:

YΘ = ρΘΦYΦρ
−1
ΘΦ = ρΘΦYΦρΦΘ . (4.46)

This property is in fact part and parcel of the very definition of Young projectors in [93, def. 5.4]. Eq. (4.46)

demonstrates that tableaux of the same shape correspond to equivalent representations and ρΘΦ is the

isomorphism that seals the equivalence. For the Hermitian projection operators (c.f. sec. 4.5.1), eq. (4.46)

breaks down, as is exemplified in appendix 4.B.

It may help to illustrate this with an example: Take the equivalence pair corresponding to the Young tableaux

Θ :=
1 2

3
and Φ :=

1 3

2
(4.47)

with

YΘ =
4

3
· and YΦ =

4

3
· . (4.48)
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To find the permutation ρΘΦ, we connect boxes between Θ and Φ as

1 2

3

1 3

2
, (4.49)

and identify ρΘΦ as . Evidently, eq. (4.46) holds, since

4

3
· =

4

3
· . (4.50)

4.2.4 Cancellation rules

In [1] [chapter 2], we established various rules designed to easily manipulate birdtrack operators comprised

of symmetrizers and antisymmetrizers. Since all operators considered in this paper are of this form, the

simplification rules of [1] [chapter 2] are immediately applicable here. One of them plays a crucial role

throughout this paper, so we recall the result without repeating the proof:

Theorem 4.1 – cancellation of parts of the operator [1]:

Let Θ ∈ Yn be a Young tableau, and M ∈ API (SU(N), V ⊗n) be an algebra element. Then, there exists a

(possibly vanishing) constant λ such that

O := SΘ M AΘ = λ · YΘ . (4.51)

Note that if the operator O is nonzero, then λ 6= 0.

To obtain the maximum benefit of this theorem, we provide some crucial criteria that allow us to identify

particularly important cases of nonzero O in API (SU(N), V ⊗n) ⊂ Lin (V ⊗n):

1. Let AΦi ⊃ AΘ and SΦj ⊃ SΘ be (anti-) symmetrizers that can be absorbed into AΘ and SΘ for every

i ∈ {1, 3, . . . k − 1} and for every j ∈ {2, 4, . . . k}. If M in (4.51) is of the form

M = AΦ1
SΦ2

AΦ3
SΦ4

· · · AΦk−1
SΦk , (4.52)

then O is nonzero unless YΘ is dimensionally zero.

2. Let Θ,Φ ∈ Yn be two Young tableaux with the same shape, and construct the permutations ρΘΦ

and ρΦΘ between the two tableaux according to Definition 4.3. Furthermore, let DΦ be a product of

symmetrizers and antisymmetrizers which can be absorbed into SΦ and AΦ respectively. If M in (4.51)

is of the form

M = ρΘΦ DΦ ρΦΘ , (4.53)

then O is nonzero unless YΘ is dimensionally zero.

3. If M is a product of expressions of the forms (4.52) and (4.53), then O is nonzero unless YΘ is dimen-

sionally zero.
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The general proof of these statements can again be found in [1] [chapter 2], but it is apparent that under

the conditions listed for the ingredients of (4.52) and (4.53), any dimensional zero of O manifests itself as a

dimensional zero of YΘ, since AΘ automatically contains the longest antisymmetrizer in O.

As an example, consider the operator

O := = {S125,S34} · {A13} · {S12,S34} · {A13,A24}. (4.54)

This operator meets all conditions of Theorem 4.1: the sets {S125,S34} and {A13,A24} together constitute

the birdtrack of a Young projection operator ȲΘ corresponding to the tableau

Θ :=
1 2 5

3 4
. (4.55)

The set {A13} corresponds to the ancestor tableau Θ(2), and the set {S12,S34} corresponds to the ancestor

tableau Θ(1) and thus can be absorbed into AΘ resp. SΘ (c.f. eq. (4.18)). Hence, O can be written as

O = SΘ AΘ(2)
SΘ(1)

AΘ. (4.56)

According to the Cancellation Theorem 4.1, we may cancel the wedged ancestor sets AΘ(2)
and SΘ(1)

at the

cost of a nonzero constant λ,

O = λ ·
︸ ︷︷ ︸
Ō=Ȳ 1 2 5

3 4

, (4.57)

which is proportional to Y 1 2 5
3 4

.

4.3 Young projection and transition operators over V ⊗m for small

m: an inspiration for a multiplet adapted basis for API (SU(N), V ⊗m)

The group theoretical interest in Young operators is that they project onto irreducible representations. They

satisfy the following three properties [85]:

1. Young projection operators are idempotent, that is they satisfy5

YΘ · YΘ = YΘ . (4.58a)

They are mutually transversal as projectors in that their images intersect only at 0: if Θ and Φ are two

distinct Young tableaux in Ym, then

YΘ · YΦ = 0 for m = 1, 2, 3, 4 , (4.58b)

5This is surprisingly hard to demonstrate unless you have access to the Cancellation Theorem 4.1.
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(
SU(N), V ⊗m

)
and for all m if Θ and Φ have a different shape.

2. The set of Young projection operators for SU(N) over V ⊗m sum up to the identity element of V ⊗m:

∑

Θ∈Ym
YΘ = idV ⊗m for m = 1, 2, 3, 4 . (4.58c)

In physics parlance this constitutes a completeness relation.

The Young tableaux underlying the projection operators fully classify the irreducible representations of SU(N)

over V ⊗m for any m. If m ≤ 4, the Young projectors split the space V ⊗m into mutually transversal subspaces,

which can be shown to be irreducible [93]. For m ≥ 4, generalizations of Young projectors take over this role.

Such generalizations include subtracted operators [85, 106] and Hermitian Young projection operators [2, 4]

[c.f. chapter 3]. In this paper, we will focus on the latter.

Besides Young projection operators not being pairwise transversal for m ≥ 5 as linear maps, they are not

orthogonal with respect to the scalar product on API (SU(N), V ⊗m) even for smaller m, for example

tr
(
Y †

1 2
3

Y 1 3
2

)
6= 0 , (4.59)

as emerges quickly from an explicit calculation:

tr
(
Y †

1 2
3

Y 1 3
2

)
= Tr

((
4

3

)2

·
)

=
1

9
Tr
(
− + − 2 · + + 2 · −

)

= −N
3
c

9
+
Nc
9
6= 0 .

This mishap is only possible since the Young projectors are not Hermitian — otherwise their transversality

as projectors would create a zero automatically at least for m ≤ 4.6

Nevertheless, the trace of YΘ corresponding to Θ ∈ Ym, normalized as a projector, uncovers the dimension

of the associated irreducible representation (see [72, appendix B4] for a textbook exposition):

tr(YΘ) = dim(Θ) for all m . (4.60)

As is evident from Figure 4.1, |Ym|, the number of Young tableaux in Ym, is smaller than the dimension of

API (SU(N), V ⊗m), which is m! (up to dimensional zeros).

4.3.1 Transition operators for Young projectors over V ⊗m for m ≤ 4

Generally, the established goal of representation theory is to find a set of operators that satisfy idempotency,

transversality and decopmosition of unity, nothing more, nothing less, and for m ≤ 4, Young projection

operators do just that.

6This is truly an issue with Hermiticity, not a consequence of choosing an unsuitable scalar product: The sets of left and
right eigenvectors differ if YΘ is not Hermitian.
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We step beyond this point by noting that there is an additional set of linearly independent operators in

API (SU(N), V ⊗m) for m ≤ 4 that are closely related to the set of Young projectors, and that complete it

to a basis of the full algebra in a transparent way. Recall that for any pair of equivalent representations

corresponding to tableaux Θ and Φ in Ym, there exists a unique tableau permutation ρΘΦ such that YΘ =

ρΘΦYΦρΦΘ (c.f. eq. (4.46)). From this, define transition operators as

TΘΦ := ρΘΦYΦ = YΘρΘΦ = YΘρΘΦYΦ for m = 1, 2, 3, 4 , (4.61)

and observe that they seamlessly extend the multiplication table of the Young projectors:

YΘTΘΦ = TΘΦ = TΘΦYΦ (4.62a)

TΘΦTΦΘ = YΘ (4.62b)

TΦΘTΘΦ = YΦ . (4.62c)

We see that TΘΦ maps the image YΦ(V ⊗m) bijectlively onto YΘ(V ⊗m) for m ≤ 4. The inverse on the images

is TΦΘ. The operators TΘΦ are transition operators between the irreducible representations. An example of

all Young projection and transition operators over V ⊗3 is given in section 4.3.3.

Note that, in general, the transition operators between Young projectors are not unitary on the subspaces,

(TΘΦ)
†

= Y †ΦρΦΘY
†
Θ 6= TΦΘ , (4.63)

since the Young projection operators are not Hermitian (for an explicit example, see appendix 4.C).

4.3.2 A multiplet adapted basis for API (SU(N), V ⊗m)

In this section, we prove that the set of all mutually orthogonal projection operators corresponding to

irreducible representations of SU(N) over V ⊗m and their transition operators — call this set Sm — spans the

algebra of invariants API (SU(N), V ⊗m). This proof holds for all m allowing us to construct Sm: for Young

projection operators, this means that m ≤ 4. Later on (section 4.4), we see that Sm can be constructed for

all m if Hermitian Young projection operators are used.

The projection operators corresponding to irreducible representations of SU(N) over V ⊗m project onto equiv-

alent irreducible representations if and only if the corresponding Young tableaux have the same shape [72, 93]

and thus correspond to the same underlying Young diagram. Suppose now that a particular Young diagram

Y gives rise to l Young tableaux. Then, the set of all projection operators corresponding to these l tableaux

and all transition operators between them — let us denote this set by SY — will be of size l2,

|SY| = l2 , (4.64)

since one may always arrange the elements of SY into an l × l matrix which has the projection operators

on the diagonal and each off-diagonal element in position ij is the transition operator between the diagonal

elements ii and jj. Fortunately, there is a way of counting how many Young tableaux can be obtained from

a Young diagram with a particular shape, namely via the hook length HY [95, 96, 109]7 (c.f. eq. (4.39)): If

7Note that one often finds the statement that “the number of tableaux corresponding to a diagram is given by the hook
length.” It would be less misleading to state that it is a function of the hook length.

181



Section 4.3. An inspiration for a multiplet adapted basis for API
(
SU(N), V ⊗m

)
Y is a particular Young diagram, then the set SY has size (m!/HY)2 [109],

|SY| =
(
m!

HY

)2

. (4.65)

If we sum the |SY| over all Young diagrams Y consisting of m boxes, we obtain the aggregate number of all

projection and transition operators associated with SU(N) over V ⊗m, |Sm|,

|Sm| =
∑

Y

|SY| =
∑

Y

(
m!

HY

)2

. (4.66)

To proceed further, we need to use some well established facts of the representation theory of the permutation

group of m elements, Sm, which can be found in many standard textbooks such as [100]. To this end, let us

briefly recapitulate: Each irreducible representation of Sm corresponds to a Young diagram Y (not a Young

tableau!), and the multiplicity of each representation in the regular representation of the symmetric group is

given by m!/HY. From the representation theory of finite groups (such as Sm), it is further known that the

sum of the square of the multiplicities of all irreducible representations of a finite group G is equal to the size

of the group. In particular, for the finite group Sm, this means that

|Sm| =
∑

Y

(
m!

HY

)2

, (4.67)

where we sum over all Young tableaux Y consisting of m boxes. (For a bijective proof of eq. (4.67) see [96].)

However, (4.66) tells us that the sum on the right hand side of equation (4.67) also represents the aggregate

number of all Hermitian Young projection and transition operators of SU(N) over V ⊗m, so that

|Sm| = |Sm| . (4.68)

Provided that N ≥ m, so that dimensional zeros are absent, the projection and transition operators in Sm

are all linearly independent (see appendix 4.A for the general case). It follows that these operators span the

algebra of invariants over V ⊗m, and thus constitute an alternative basis of this algebra,

API
(
SU(N), V ⊗m

)
=
{
αksk|αk ∈ R, sk ∈ Sm

}
. (4.69)

4.3.3 An example: the full algebra over V ⊗3 in a Young projector basis

API
(
SU(N), V ⊗3

)
is spanned by the primitive invariants

{
, , , , ,

}
⊂ Lin

(
V ⊗3

)
. (4.70)
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If N ≥ 3, its dimension is 3! = 6. There are 3 Young diagrams consisting of 3 boxes, which give rise to a

total of 4 Young tableaux,

1 2 3
1 2

3

1 3

2

1

2

3

. (4.71)

Indeed, we find that the sum of the squares of 3!/HYi
corresponding to each diagram Yi is equal to the size

of the group S3,

3! = |S3| =
∑

Yi

(
3!

HYi

)2

= 12 + 22 + 12. (4.72)

The first and last Young tableaux have a unique shape and thus project onto unique irreducible representations

of SU(N). The corresponding Young projection operators are given by

Y1 = and Y4 = , (4.73)

where Yi corresponds to the ith tableau (read from left to right) in (4.71). The central two tableaux of (4.71)

stem from the same Young diagram. Thus, their corresponding projection operators project onto equivalent

irreducible representations; there must therefore exist two transition operators between them. The projection

operators Y2 and Y3 are

Y2 =
4

3
and Y3 =

4

3
, (4.74)

and the transition operators Tij between Yi and Yj are

T23 = Y2ρ23 =
4

3
and T32 = Y3ρ32 =

4

3
, (4.75)

in accordance with eq. (4.61) (the permutations ρ23 and ρ32 were calculated in eq. (4.49)). Arranging all

projection and transition operators in a matrix M, where the diagonal elements mii are projection operators,

and each off-diagonal element mij is the transition operator between mii and mij , one obtains the following

matrix of operators,

M =




0 0 0

0 4
3

4
3 0

0 4
3

4
3 0

0 0 0




, (4.76)
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where all projection operators are highlighted in blue for visual clarity. The sole purpose of arranging the

projection and transition operators in the matrix M is to emphasize the structure and multiplication table

of the subalgebras corresponding to the equivalence classes (i.e. the blocks in M).

Notice that the operator in the 1× 1 block in the bottom right corner contains an antisymmetrizer of length

3. Thus, for N ≤ 2, this operator is a null-operator, and only the remaining two blocks are non-trivial

in the above matrix (c.f. appendix 4.A). If N ≤ 1, also the central 2 × 2 block vanishes, as it contains

antisymmetrizers of length 2.

4.4 Orthogonal projector bases

As we have seen in section 4.3, the Young projection and transition operators provide a basis for the algebra

of invariants of SU(N) over V ⊗m, provided m ≤ 4. Due to a lack of pairwise transversality and completeness

of the Young projection operators beyond this point (c.f. eqns. (4.58b) and (4.58c) [and appendix 3.A]),

the Young basis cannot be generalized to larger m. This motivates a basis in terms of Hermitian Young

projection operators, since these are transversal and complete for all values of m [4].

We restate the most important aspects of Hermitian Young projection operators in section 4.4.1, before

discussing transition operators between Hermitian projections in sections 4.4.2 (in terms of Clebsch-Gordan

operators) and 4.5 (between Hermitian Young projection operators).

Section 4.4.3 discusses the mutliplication table of the basis of the algebra of invariants of SU(N) over V ⊗m

in terms of Hermitian projectors and their corresponding transition operators.

4.4.1 Hermitian projection operators

If we replace the Young projectors YΘ by their (more complicated) Hermitian counterparts PΘ, either following

Keppeler and Sjödahl [4, 82, 102] or our own improved versions thereof [1, 2] [chapters 2 and 3], the group

theoretically important features of Young projection operators now apply for all values of m [4]:8

1. The Hermitian Young projection operators are idempotent and mutually transversal as projectors: for

any two Young tableaux Θ and Φ in Ym, they satisfy

PΘ · PΘ = δΘΦPΘ for all m . (4.77a)

2. They provide a complete decomposition of unity on V ⊗m

∑

Θ∈Ym
PΘ = idV ⊗m for all m (4.77b)

into irreducible representations.

3. Unlike their Young counterparts, they are Hermitian

P †Θ = PΘ . (4.77c)

8The constructions used in this paper are summarized in section 4.5.1.
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Due to this new property (Hermiticity), several new features appear [2] [chapter 3]:

4. The projectors in the descendant set {Θ ⊗ m } of any Θ ∈ Ym−1 sum to the parent projector, thus

augmenting the single identity (4.77b) by a whole nested set of inclusion sums or partial completness

statements [2] [chapter 3]:

∑

Φ∈{Θ⊗m}

PΦ = PΘ . (4.77d)

This can be generalized further,

∑

Φ∈{Θ⊗ k ⊗···⊗m}

PΦ = PΘ for Θ ∈ Yk−1, Φ ∈ Ym and k < m . (4.77e)

5. Unlike their conventional Young counterparts YΘ (or the corrected Littlewood-Young operators LΘ,

see [2, 85] [or appendix 3.A]), the Hermitian Young projectors PΘ are automatically orthogonal with

respect to the scalar product on API (SU(N), V ⊗m),

〈PΘ, PΦ〉 = tr
(
P †ΘPΦ

)
(4.77c)

====== tr (PΘPΦ)
(4.77a)

====== 0 for Θ 6= Φ . (4.77f)

Both of these properties hinge crucially on Hermiticity — standard (Littlewood-) Young projectors do not

share them [c.f. chapter 3].

While the existence of projection operators satisfying eqns. (4.77), and transition operators between them,

follows directly from Schur’s Lemma, we find it beneficial to illustrate the existence of these operators using

Clebsch-Gordan operators.9 This method remains computationally expensive and keeping N a parameter

appears a hopeless task (see section 4.4.2). In section 4.5, we give an effective construction of transition

operators between Hermitian Young projection operators.

4.4.2 A full orthogonal basis for API (SU(N), V ⊗m) via Clebsch-Gordan operators

Consider a general Clebsch-Gordan operator Cλκ;j1...nm1...n that implements the projection and basis change

from a product of irreducible representations labelled by j1, . . . , jn (with states labelled by m1, . . . ,mn) into

an irreducible representation labelled by λ (where λ stands in for a Young tableau, and with states labelled

by κ) [93]:

Cλκ;j1m1...jnmn = |λ, κ〉
Cλκ;j1m1...jnmn︷ ︸︸ ︷

〈λ, κ|j1,m1〉|j2,m2〉 . . . |jn,mn〉〈j1,m1|〈j2,m2| . . . 〈jn,mn|

=: |λ, κ〉 κ ...λ

j1,m1
j2,m2

jn−1,mn−1
jn,mn

〈 j1,m1|〈 j2,m2|

〈 jn−1,mn−1|〈 jn,mn|

, (4.78)

the part marked as Cλκ;j1m1...jnmn is the usual Clebsch-Gordan coefficient, and the diagram in the second

line is the birdtrack representation of Cλκ;j1m1...jnmn (c.f. [72]). Since we are interested only in products

9For a more comprehensive discussion on Clebsch-Gordan operators than section 4.4.2, readers are referred to [108, in German]
or [93] for a more modern treatment.
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of the fundamental representation acting on V ⊗n (so that the ji all refer to this one representation), we

can suppress the corresponding label, but we must retain λ to reference a specific irreducible representation

contained in this product. The full operator is obtained by summing over all the indices:

Cλ,n :=
∑

κ

∑

mi

Cλκ;j1m1...jnmn = := ...λ . (4.79)

By its very nature, the Clebsch-Gordan operator translates a product representation into its irreducible

sub-blocks labelled by λ, i.e.

...λ

U
U

U
U

= U(λ)
...λ and ...λ

U†

U†

U†

U†

= U†(λ)
...λ (4.80)

for all U,U† ∈ SU(N) and U(λ) in the representation of SU(N) labelled by λ. Orthonormality of the new

states,

κ ...λ λ ′ κ ′ = δλ,λ′δκ,κ′ , (4.81)

allows us to cast projection operators in the form

Pλ :=
∑

κ

|λ, κ〉〈λ, κ| = C†λ,n · Cλ,n = ...
... λλ , (4.82)

which are clearly mutually transversal,

PλPλ′ = λλ,λ′Pλ . (4.83)

Equation (4.82) also introduces the birdtrack notation of C†λ,n, the Hermitian conjugate of Cλ,n given

in eq. (4.79). The operators Pλ are mutually transversal elements of the algebra of primitive invariants

API (SU(N), V ⊗n) due to eq. (4.80),

U
U

U
U

...
... λλ

U†

U†

U†

U†

= ... λ U(λ)U
†
(λ)

...λ = ...
... λλ , (4.84)

and general theory assures us that these yield projectors on all irreducible subspaces contained in V ⊗n [93].

From the perspective of Clebsch-Gordan operators, there are obvious candidates for transition operators:

When two equivalent representations λ and λ′ are isomorphic, one can choose the states |λ, κ〉 and |λ′, κ〉
such that the representation matrices are identical, U(λ′) = U(λ). This allows us to identify the transition

operators

Tλ′λ :=
∑

κ

|λ′, κ〉〈λ, κ| = C†λ′,n · Cλ,n = ...
... λλ ′ (4.85)
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as additional algebra elements, since, with this particular basis choice, they also are invariant:

U
U

U
U

...
... λλ ′

U†

U†

U†

U†

= ... λ ′ U(λ′)U
†
(λ)

...λ
U(λ′)=U(λ)

========= ...
... λλ ′ . (4.86)

Unlike the projection operators Pλ, the transition operators Tλ′λ are clearly not Hermitian. From their

definition in terms of states (4.85), it, however, follows that they are unitary (on the subspaces corresponding

to λ and λ′),

(Tλ′λ)† = Tλλ′ . (4.87)

These operators in fact define the isomorphisms that in the standard perspective allow us to claim equivalence

between the two representations in the first place. Our point here is that these isomorphisms are elements of

API (SU(N), V ⊗n).

The totality of all projection and transition operators (4.82) and (4.85) obviously exhausts the algebra of

invariants due to the completeness of Clebsch-Gordan operators; the transition operators (4.85) provide all

the missing basis elements, which fixes their total number. This matches with the counting arguments of

section 4.3, and seamlessly fits into the multiplication pattern of closed subalgebras discussed in section 4.4.3.

Note that this procedure leads to a particular realization of projectors and associated transition operators, any

other equivalent construction may produce results that differ by a similarity transformation as discussed in

section 4.4.3.10 As a means to find a basis in a practical calculation, this procedure is exceedingly inefficient:

It relies on finding a total of Nn normalized states in V ⊗n as a stepping stone to produce n! basis states

for API (SU(N), V ⊗n), while keeping N ≥ n to avoid dimensional zeros.11 It clearly is not the most efficient

option to achieve this goal, in particular if one aims to keep N as a parameter. Therefore, we use the Clebsch-

Gordan method as a proof of concept, and abstract the main features of the resulting basis as the goalposts

for a more efficient construction to be presented in section 4.5.

We observe:

1. TΘΦ, as a map from V ⊗n to V ⊗n, projects onto the image of PΦ and maps that surjectively onto the

image of PΘ,

TΘΦPΦ = TΘΦ = PΘTΘΦ . (4.88)

It thus can be considered a map from the image of PΦ, PΦ (V ⊗n), to the image of PΘ, PΘ (V ⊗n).

2. T †ΘΦ is the right inverse of TΘΦ on PΘ (V ⊗n),

TΘΦT
†
ΘΦ = PΘ . (4.89)

3. T †ΘΦ is the left inverse of TΘΦ on PΦ (V ⊗n),

T †ΘΦTΘΦ = PΦ . (4.90)

10We will see that this similarity transform leaves the block structure of the associated matrix M invariant (see section 4.4.3
and refined below in eq. (4.99)).

11This forces us into the domain where Nn ≥ nn > n!. There will always be more states than multiplets.
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We see that TΘΦ maps the image PΦ(V ⊗n) bijectlively onto PΘ(V ⊗n) — the inverse is TΦΘ = T †ΘΦ. The TΘΦ

are unitary transition operators between the irreducible representations.

These properties are sufficient to uniquely characterize the TΘΦ. The argument for uniqueness follows a

similar pattern as the uniqueness proof for inverses in a group.

Alternatively, one may cast the statements 2 and 3 as

2’. T †ΘΦ = TΦΘ

3’. TΘΦTΦΘ = PΘ .

This is the form we use in the definition:

Definition 4.4 – unitary transition operators:

Let Θ,Φ ∈ Yn be two Young tableaux with the same underlying Young diagram, and let PΘ and PΦ be

their respective Hermitian Young projection operators. Then, the operator TΘΦ, satisfying the following three

properties

TΘΦPΦ = TΘΦ = PΘTΘΦ (4.91a)

T †ΘΦ = TΦΘ (4.91b)

TΘΦTΦΘ = PΘ , (4.91c)

is called the transition operator between PΘ and PΦ.

4.4.3 The multiplication table of the algebra of invariants

If we look at a given Young diagram Yi, then the set of all projection and transition operators corresponding

to tableaux with shape Yi, SYi
, forms a closed subalgebra of API (SU(N), V ⊗m). Its multiplication table is

given by eqns. (4.83) and (4.91), and evidently decouples from the rest of the algebra. A simple relabelling

allows to condense these equations into a single one (see eq. (4.93b) below). To do so, form a matrix pattern

in which the projection operators are placed on the diagonals, such that

mii = PΘi for all Θi ∈ Ym with underlying diagram Yi (4.92a)

and poplulate the off-diagonal sites with the transition operators, such that

mij = TΘiΘj for all Θi,Θj ∈ Ym with underlying diagram Yi . (4.92b)

Calling the matrix of elements for this subalgebra MYi
we can then assemble all such blocks into a matrix

pattern of indepdendent closed subalgebras by placing the blocks along the diagonal while filling the remainder

with zeros (this makes sense since the “transition operators” between projectors belonging to different blocks
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have to be zero by Schur’s Lemma). Schematically, we obtain

M =







MY1

MY2

MYi

MYk

. (4.93a)

This matrix once again illustrates the fact that the sum of all projection operators and transition operators

of SU(N) must be a sum of squares (c.f. eq. (4.66)), as M is block diagonal. It is clear that the matrix

elements mij of M in (4.93a) satisfy the property

mijmkl = δjkmil . (4.93b)

Eq. (4.93b) (together with the statement which of the mij are zero) is probably the most compact form to

encode both eqns. (4.83) and (4.91) simultaneously. In the new notation, we have

API
(
SU(N), V ⊗m

)
=
{
αijmij |αij ∈ R,mij ∈ Sm

}
, (4.93c)

where the sum is over all i, j ∈ {1, . . . ,m!}, and Sm once again denotes the set of all projection and transition

operators corresponding to the irreducible representations of SU(N) over V ⊗m. This basis has the advantage

that dimensional zeros manifest themselves directly as zeros of the basis elements: if a dimensional zero

appears at N < m, it affects whole equivalence blocks. All operators in the block turn into null-operators

simultaneously (c.f. appendix 4.A, or section 4.6 for an explicit example). No additional dimensional zeros

can arise from linear combinations of the remaining basis elements.

In particular, the product (4.93b) yields a nonzero result if and only if two elements of the same block are

multiplied in the correct order. A special case of this is squaring a projection operator, such that i = j = k = l.

In fact, (4.93b) is the structure of the multiplication table of the multiplet basis for API (SU(N), V ⊗m), and

even for API
(
SU(N), V ⊗m ⊗ (V ∗)⊗m

′)
[this is discussed in chapter 5].

The multiplication table (4.93b) is clearly more structured than that of the primitive invariant basis of

API (SU(N), V ⊗m), which is directly the multiplication table of Sm:

ρiρj = Akijρk . (4.94)

This has consequences: The simpler structure of (4.93b) also gives access to the uniqueness of the operators

mij appearing in it. While the types and equivalence patterns (the block structure) of irreducible representa-

tions contained in API (SU(N), V ⊗m), or API
(
SU(N), V ⊗m ⊗ (V ∗)⊗m

′)
, are uniquely determined by N , m

and m′, the operators themselves are not uniquely determined by the multiplication table and decomposition

of unity reqirements alone, if the size of the block it falls into is greater than one.

This can be seen as follows: Since the block structure is fixed, two realizations M and M̃ of bases with the
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Section 4.5. Unitary transition operators for Hermitian Young projectors

same block structure must satisfy

mijmkl = δjkmil and m̃ijm̃kl = δjkm̃il , (4.95)

and be related by a general real linear transformation as

m̃ij := aiαmαβbβj . (4.96)

This implies that (note that the m are operators, while the aij and bij are real coefficients that commute with

the m)

m̃ijm̃kl = aiαmαβbβjakγmγδbδl
mαβmγδ=mαδδβγ

============= aiαmαδbδl (akβbβj)︸ ︷︷ ︸
!
=δkj

!
= δkjm̃il , i.e. b = a−1 . (4.97)

With this constraint, a must have the same block structure as both M and M̃.

Everything we said up to this point also holds for a basis of Young projection and transition operators over

API (SU(N), V ⊗m), provided m ≤ 4.12 The main disadvantage (besides being restricted to small m) of this

basis remains that it is not orthogonal under the standard scalar product on API (SU(N), V ⊗m) provided by

〈A,B〉 = tr
(
A†B

)
, as is exemplified in (4.59).

Populating the subalgebra listing M with Hermitian projectors and their unitary transition operators results

in an orthogonal basis:

〈mij ,mkl〉 = tr
(
m†ijmkl

)
(4.91b)

======
(4.77c)

tr (mjimkl)
(4.93b)

====== δiktr (mjl) = δikδjldim(Θj) , (4.98)

where Θj labels the representation corresponding to the projection operator mjj . Note that this is a general

statement based purely on the multiplication table, Hermiticity and unitarity, without any reference to a

specific realization of the basis elements, and thus automatically also applies to the basis we construct in

section 4.5.

Hermiticity and unitarity also restrict the freedom to change the mij beyond what we had seen in eq. (4.97):

The Hermiticity properties (m†ij = mji, m̃
†
ij = m̃ji and aij ∈ R since the algebra is real) then lead to

m̃†ij = aiαm
†
αβa
−1
βj = aiαmβαa

−1
βj = (a−1)tjβmβαa

t
αi

!
= m̃ji i.e. a−1 = at , (4.99)

the freedom is restricted to (blockwise!) orthogonal transformations of the mij .

4.5 Unitary transition operators for Hermitian Young projectors

Like the (non-unitary) transition operators for Young projectors over V ⊗m (m ≤ 4) introduced in section 4.3,

the unitary transition operators associated with Hermitian Young projectors are based on the projectors

themselves. In the present case, the building blocks will be a set {PΘ|Θ ∈ Ym} (with the full list of properties

listed in section 4.4.1), where we need not put a restriction on m. We first recapitulate their ingredients in

12We have not provided transition operators for the Littlewood-Young operators, so that at this point we need to switch to
Hermitian operators as soon as m ≥ 5.
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section 4.5.1 before we use them, and the tableau permutations of Definition 4.3, to construct the transition

operators in section 4.5.2.

4.5.1 Construction methods of Hermitian Young projection operators

At the present time, there exist three ways of constructing (completely equivalent) Hermitian Young projec-

tion operators. The first is an iterative method that goes back to Keppeler and Sjödahl (KS) and is discussed

in [4]. The second method is based on the KS-algorithm, but produces substantially shorter operators [2]

[chapter 3]. The third method exploits the structure of Young tableaux and their “lexical ordering” [2]

[chapter 3]. Since the second and third method are used in this paper, we summarize these two construction

algorithms in the present section.

In the second method, Hermitian Young projection operators are constructed by forming a product of con-

secutively “older” Young projection operators:

Theorem 4.2 – staircase form of Hermitian Young projectors [2]:

Let Θ ∈ Yn be a Young tableau. Then, the corresponding Hermitian Young projection operator PΘ is given

by

PΘ = YΘ(n−2)
YΘ(n−3)

YΘ(n−4)
. . . YΘ(2)

YΘ(1)
YΘ YΘ(1)

YΘ(2)
. . . YΘ(n−4)

YΘ(n−3)
YΘ(n−2)

. (4.100)

In the third method, one takes into account the lexical ordering of the Young tableau. In order to accomplish

this, we require a few more definitions.

Definition 4.5 – column- & row-words and lexical ordering:

Let Θ ∈ Yn be a Young tableau. We define the column-word of Θ, CΘ, to be the column vector whose entries

are the entries of Θ read column-wise from left to right. Similarly, the row-word of Θ, RΘ, is defined to be

the row vector whose entries are those of Θ read row-wise from top to bottom.

We say that a tableau Θ is (lexically) ordered if either its row-word or its column-word (or both) is in lexical

order. If we want to be more specific, we might call Θ row-ordered resp. column-ordered.

For example, the tableau

Φ :=

1 5 7 9

2 6 8

3

4

(4.101)

has a column-word

CΦ = (1, 2, 3, 4, 5, 6, 7, 8, 9)t, (4.102)

and a row-word

RΦ = (1, 5, 7, 9, 2, 6, 8, 3, 4). (4.103)

Since CΦ is lexically ordered, we say that Φ is a (column-) ordered tableau.
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It should be noted that the above definition of the row-word is different to that given in the standard literature

such as [95, 96] (there, the row word is read from bottom to top rather than from top to bottom). However,

for the purposes of this paper, Definition 4.5 is more useful than the standard definition.

Definition 4.6 – measure of lexical disorder (MOLD):

Let Θ ∈ Yn be a Young tableau. We define its Measure Of Lexical Disorder (MOLD) to be the smallest

natural number M(Θ) ∈ N such that

Θ(M(Θ)) = πM(Θ) (Θ) (4.104)

is a lexically ordered tableau. (Recall from Definition 4.1 that πM(Θ) refers to M(Θ) consecutive applications

of the parent map π to the tableau Θ.)

We note that the MOLD of a Young tableau is a well-defined quantity, since one will always eventually arrive

at a lexically ordered tableau, as, for example, all tableaux in Y3 are lexically ordered. This then implies

that the MOLD of a tableau Θ ∈ Yn has an upper bound,

M(Θ) ≤ n− 3 , (4.105)

making it a well-defined quantity. As an example, consider the tableau

Φ :=
1 2 4

3 5
. (4.106)

The MOLD of the above tableau is M(Θ) = 2, one needs to apply π twice to arrive at the first lexically

ordered ancestor, which in this case is row ordered:

1 2 4

3 5
︸ ︷︷ ︸

Φ

π−−→ 1 2 4

3
︸ ︷︷ ︸

Φ(1)

π−−→ 1 2

3
︸ ︷︷ ︸

Φ(2)

. (4.107)

The following construction algorithm of Hermitian Young projection operators uses the MOLD of the corre-

sponding Young tableau [2] [chapter 3]:

Theorem 4.3 – MOLD operators [2]:

Consider a Young tableau Θ ∈ Yn with MOLD M(Θ) = m. Furthermore, suppose that Θ(m) has a lexically

ordered row-word. Then, the Hermitian Young projection operator corresponding to Θ, PΘ, is, for even m,

PΘ = βΘ ·SΘ(m)
AΘ(m−1)

SΘ(m−2)
. . . SΘ(2)

AΘ(1)
ȲΘȲ

†
Θ AΘ(1)

SΘ(2)
. . . SΘ(m−2)

AΘ(m−1)
SΘ(m)

, (4.108a)

and, for odd m,

PΘ = βΘ ·SΘ(m)
AΘ(m−1)

SΘ(m−2)
. . . AΘ(2)

SΘ(1)
Ȳ †ΘȲΘ SΘ(1)

AΘ(2)
. . . SΘ(m−2)

AΘ(m−1)
SΘ(m)

. (4.108b)

Similarly, if Θ(m) has a lexically ordered column-word, PΘ is given by, for even m,

PΘ = βΘ ·AΘ(m)
SΘ(m−1)

AΘ(m−2)
. . . AΘ(2)

SΘ(1)
Ȳ †ΘȲΘ SΘ(1)

AΘ(2)
. . . AΘ(m−2)

SΘ(m−1)
AΘ(m)

, (4.108c)
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and, for odd m,

PΘ = βΘ·AΘ(m)
SΘ(m−1)

AΘ(m−2)
. . . SΘ(2)

AΘ(1)
ȲΘȲ

†
Θ AΘ(1)

SΘ(2)
. . . AΘ(m−2)

SΘ(m−1)
AΘ(m)

. (4.108d)

In the above, all symmetrizers and antisymmetrizers are understood to be canonically embedded into the

algebra over V ⊗n; βΘ is a nonzero constant chosen such that PΘ is idempotent.

This construction seems complicated at first glance as four cases need to be considered. In [2] [chapter 3],

we discuss why this is necessary and how the structure of Theorem 4.3 can be understood.

4.5.2 Unitary transition operators for Hermitian Young projectors

For the standard Young projection operators, the tableau permutation ρΘΦ, viewed as an element of Lin (V ⊗m),

directly relates any associated Young projectors:

YΘ = ρΘΦYΦρ
−1
ΘΦ (4.109)

(c.f. eq. (4.46)). For Hermitian Young projection operators, this is no longer true in general: There exist

tableaux Θ and Φ such that

PΘ 6= ρΘΦPΦρ
−1
ΘΦ . (4.110)

The simplest example for such a mismatch is probably the equivalence pair corresponding to the Young

tableaux from eq. (4.47)

Θ :=
1 2

3
and Φ :=

1 3

2
(4.111)

with

YΘ =
4

3
· and YΦ =

4

3
· (4.112)

and

PΘ =
4

3
· and PΦ =

4

3
· (4.113)

respectively. We recall the associated tableau permutation from eq. (4.49): ρΘΦ = . Evidently,

4

3
· =

4

3
· , while

4

3
· 6= 4

3
· , (4.114)

as claimed.

However, what remains true is that

PΘ · ρΘΦPΦρ
−1
ΘΦ 6= 0 , (4.115)
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since all symmetrizers and anti-symmetrizers in ρΘΦPΦρ
−1
ΘΦ can be absorbed into SΘ and AΘ respectively,

see condition 2 (eq. (4.53)) in section 4.2.4. The fact that PΘ · ρΘΦPΦρ
−1
ΘΦ 6= 0 in eq. (4.115) is the main

ingredient that guarantees that the transition operators constructed below fulfill all necessary criteria. A

more involved example illustrating the action of ρΘΦ on PΦ is given in appendix 4.B.

Here is a first version of the construction algorithm for transition operators:

Theorem 4.4 – unitary transition operators:

Let Θ,Φ ∈ Yn be two Young tableaux with the same underlying Young diagram, and let PΘ and PΦ be their

respective Hermitian Young projection operators, and TΘΦ the transition operator between them. Then, TΘΦ

is given by

TΘΦ = τ · PΘρΘΦPΦ , (4.116)

where τ is a nonzero constant, and ρΘΦ ∈ Sn is the permutation constructed according to Definition 4.3. The

constant τ is constrained by eq. (4.91c) and can be determined through explicit calculation ( c.f. eq. (4.128)).

That the operator (4.116) defined in Theorem 4.4 satisfies all conditions (4.91) as is readily seen:

Property (4.91a), TΘΦPΦ = TΘΦ = PΘTΘΦ, is easily shown: Let

TΘΦ := τ · PΘρΘΦPΦ with τ ∈ R \ {0} . (4.117)

Then,

TΘΦ · PΦ := τ · PΘρΘΦ PΦ · PΦ︸ ︷︷ ︸
=PΦ

= τ · PΘρΘΦPΦ , (4.118)

since PΦ is a projection operator. Similarly,

PΘ · TΘΦ := τ · PΘ · PΘ︸ ︷︷ ︸
=PΘ

ρΘΦPΦ = τ · PΘρΘΦPΦ . (4.119)

Property (4.91b), T †ΘΦ = TΦΘ:

T †ΘΦ =
(
PΘρΘΦPΦ

)†
= PΦρ

†
ΘΦPΘ = TΦΘ , (4.120)

where the last equality holds since ρ†ΘΦ = ρΦΘ is the inverse permutation of ρΘΦ (c.f. Definition 4.3).

Property (4.91c), TΘΦTΦΘ = PΘ: We unpack

TΘΦTΦΘ = τ2 · PΘρΘΦ PΦ · PΦ︸ ︷︷ ︸
=PΦ

ρ†ΘΦPΘ = τ2 · PΘρΘΦPΦρ
†
ΘΦPΘ , (4.121)

writing ρΦΘ as ρ†ΘΦ for clarity in the steps to follow. Of the equivalent ways to express the projectors PΘ and

PΦ [2, 4] [c.f. chapter 3], we choose PΘ and PΦ to be constructed according to the shortened KS Theorem 4.2
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(section 4.5.1):

TΘΦTΦΘ

τ2
= YΘ(n−2)

· · ·YΘ · · ·YΘ(n−2)︸ ︷︷ ︸
PΘ

ρΘΦ YΦ(n−2)
· · ·YΦ · · ·YΦ(n−2)︸ ︷︷ ︸

PΦ

ρ†ΘΦ YΘ(n−2)
· · ·YΘ · · ·YΘ(n−2)︸ ︷︷ ︸

PΘ

. (4.122)

Writing each Young projection operator as a product of symmetrizers and antisymmetrizers, YΞ = αΞSΞAΞ,

eq. (4.122) becomes

TΘΦTΦΘ

τ2β2
ΘβΦ

= (4.123)

SΘ(n−2)
· · · SΘ AΘ SΘ(1)

· · ·AΘ(n−2)
ρΘΘ′ SΘ′

(n−2)
· · · SΘ′ AΘ′ · · ·AΘ′

(n−2)
ρΘ′Θ SΘ(n−2)

· · ·AΘ(1)
SΘ AΘ · · ·AΘ(n−2)

,

=: M(1) =: M(2) =: M(3)

P̄Θ P̄Θ′ P̄Θ

where the constants βΘ and βΦ lump together all the constants αΞ appearing in PΘ and PΦ respectively. Let

us now take a closer look the part of TΘΦTΦΘ that is enclosed in a green box in (4.123): We notice that this

part is of the form

O := SΘ M (1) M (2) M (3) AΘ , (4.124)

where the M (i) are defined in (4.123). According to the Cancellation Theorem 4.1, there exists a constant λ

such that

O = λYΘ . (4.125)

Furthermore, we know that λ 6= 0, if the operator O itself is nonzero. In section 4.2.4, we gave two conditions

under which O is guaranteed to be nonzero. From the definition of the M (i) in eq. (4.123), it is clear that M (1)

and M (3) satisfy the first such condition (condition 1), while M (2) satisfies the second condition (condition 2).

Thus, a combination of the two conditions hold, and O is nonzero (c.f. condition 3). This implies that (4.125)

holds for a nonzero constant λ. We may therefore simplify (4.123) as

TΘΦTΦΘ

τ2β2
ΘβΦ

= λ· SΘ(n−2)
· · ·AΘ(1)

SΘ AΘ SΘ(1)
· · ·AΘ(n−2)

. (4.126)

Once again writing the sets of symmetrizers and antisymmetrizers as Young projection operators, YΞ =

αΞSΞAΞ (where we recall that the αΞ are encoded in the constants β), the product TΘΦTΦΘ becomes

TΘΦTΦΘ =
(
τ2βΘβΦλ

)
· YΘ(n−2)

· · ·YΘ · · ·YΘ(n−2)︸ ︷︷ ︸
PΘ

. (4.127)

Thus, for

τ =
1√

βΘβΦλ
, (4.128)
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where obviously τ < ∞ and τ 6= 0 since λ, βΘ and βΦ are nonzero and finite [c.f. chapters 2 and 3], the

transition operator TΘΦ also satisfies Property 3 of Definition 4.4.

Since TΘΦ does indeed satisfy all properties laid out in eqs. (4.91), we conclude that it is the transition

operator between the Hermitian Young projection operators PΘ and PΦ.

Due to the length of the operator expressions, Theorem 4.4 becomes inefficient very easily. We will build

on this result to refine our methods in Theorem 4.5, which provides a more efficient way of constructing the

transition operators.

Returning to our example of eq. (4.113), we obtain

TΘΦ = τ ·
︸ ︷︷ ︸

PΘ

︸︷︷︸
ρΘΦ

︸ ︷︷ ︸
PΦ

. (4.129)

Using Theorem 4.1, this can be simplified to

TΘΦ =
√

4

3
· . (4.130)

The constant
√

4
3 is determined via implementing eq. (4.91c). In fact, one can incorporate this simplification

step directly in the construction, arriving at a general efficient algorithm.

Our description of the algorithm is based on a specific graphical convention for the birdtracks used to

represent the projection operators: For any birdtrack operator, we will align all sets of symmetrizers and

antisymmetrizer at the top. If a particular set of symmetrizers SΘ contains several symmetrizers such that

each Si ∈ SΘ corresponds to the ith row of Θ, then we draw Si above Sj if i < j. A similar convention is

used for antisymmetrizers corresponding to the columns of Θ.

For birdtrack operators containing 3 index lines, we have neglected to follow this convention in two cases for

consistency with the literature (for example [72]). This is remedied using the two identities

= and = . (4.131)

Theorem 4.5 – compact transition operators:

Let Θ and Φ be two Young tableaux of equivalent representations of SU(N). They therefore have the same

shape, and the sets of antisymmetrizers AΘ and AΦ are in one to one correspondence: For each element

of AΘ, there exists a counterpart in AΦ with the same length (this is important for the graphical matching

described below). Let P̄Θ and P̄Φ be the birdtracks of two Hermitian Young projection operators constructed

according to the MOLD Theorem 4.3, drawn using the conventions listed in the previous paragraph. Then P̄Θ

and P̄Φ contain AΘ and AΦ at least once, but at most twice. This determines how to proceed:

1. If both P̄Θ and P̄Φ each contain exactly one set of AΘ respectively AΦ, then pick this set in each

operator.

2. If one of P̄Θ and P̄Φ contains one copy of AΘ respectively AΦ, the other contains two, then pick the

leftmost set AΘ in P̄Θ and the rightmost set AΦ in P̄Φ.
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3. If both P̄Θ and P̄Φ each contain two sets of AΘ respectively AΦ, then pick either the leftmost set or

the rightmost set in both operators. (It does not matter which one, but it needs to be the same in both

operators.)

Now split P̄Θ and P̄Φ by vertically cutting through the tower of antisymmetrizers chosen according to these

rules. The next step discards everything to the right of the cut in P̄Θ and everything to the left of the cut in

P̄Φ, and glues the remaining pieces together at the cut. The resulting birdtrack is T̄ΘΦ.13

The proof of this Theorem is rather lengthy and thus deferred to appendix 4.D. This proof will also shed

light on the three distinctions 1, 2 and 3 we had to make in the Theorem.

To forestall any misunderstanding about the cut, discard and glue procedures (the significance of which is

discussed in appendix 4.D.1), we will now clarify them with an example: Consider the two Hermitian Young

projection operators

PΘ =
3

2
· and PΦ = 2 · (4.132)

corresponding to the Young tableaux

Θ =

1 4

2

3

and Φ =

1 3

2

4

(4.133)

respectively. We construct T̄ΘΦ according to the compact construction Theorem 4.5: we first split the leftmost

antisymmetrizer A123 of P̄Θ and discard everything to the right of the cut,

P̄Θ = 7→
�
�
�
��

= . (4.134)

Similarly,

P̄Φ = 7→
�
�

�
��

= . (4.135)

Gluing the remaining pieces together at the cut then yields

T̄ΘΦ = ; (4.136)

and indeed, the transition operator TΘΦ =
√

2 · T̄ΘΦ, as can be easily checked by direct calculation.

Readers should note that one can replace antisymmetrizer sets (AΘ respectively AΦ) by symmetrizer set

(SΘ respectively SΦ) in all the steps outlined in Theorem 4.5. This leads to the same birdtrack T̄ΘΦ as

13It should be noted that this gluing can always be done, since the two Young tableaux Θ and Φ have the same shape, thus
do their sets of antisymmetrizers AΘ and AΦ, and the two sets are top-aligned.
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becomes evident in the proof (c.f. appendix 4.D). Basing the procedure on antisymmetrizers however makes

the discussion on “vanishing representations” in appendix 4.A clearer.

To obtain TΘΦ = τ · T̄ΘΦ, one still needs to find the normalization constant τ from direct calculation by

requiring eq. (4.91c) to hold. The relatively compact expression are well suited for an automated treatment

(to obtain this constant).

4.6 Examples

4.6.1 API (SU(N), V ⊗3) — the full algebra of 3 quarks

Revisiting the Young tableaux in Y3 (eq. (4.71)),

1 2 3
1 2

3

1 3

2

1

2

3

. (4.137)

Denote the Hermitian projection operator corresponding to the ith tableau in (4.137) (read from left to right)

by Pi. The Hermitian projectors corresponding to the first and last tableaux in (4.137) are equal to the

Young projection operators (4.73)

P1 = = Y1 and P4 = = Y4 , (4.138)

since these Young projectors are Hermitian to begin with. The Hermitian projection operators corresponding

to the central two tableaux are different from their Young counterparts (4.74)

P2 =
4

3
6= Y2 and P3 =

4

3
6= Y3 , (4.139)

and similarly for their transition operators Tij between Pi and Pj ,

T23 =
√

4

3
and T32 =

√
4

3
. (4.140)

The birdtracks of the T̄ij were constructed using Theorem 4.5, and the constants were determined to match

eq (4.91c). Arranging all projection operators and transition operators in a matrix M as in (4.93a), one
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obtains

M3 =




0 0 0

0 4
3

√
4
3 0

0
√

4
3

4
3 0

0 0 0




, (4.141)

where all projection operators are highlighted in blue. The Hermitian Young projection operators were already

known [4, 72]. Ref. [110] also presents the transition operators given in eq. (4.141), and [102] describes a

method of obtaining a general transition operators through solving equations. The explicit construction

algorithm for transition operators presented here is a new result.

As is the case for the Young projector matrix (4.76), the operator in the bottom right corner in (4.141)

becomes a null-operator for N ≤ 2, and so does the 2× 2 block for N ≤ 1.

4.6.2 API (SU(N), V ⊗4) — the full algebra of 4 quarks

The general pattern analyzed in section 4.4.3 and once again observed in section 4.6.1 must reappear if m

increases. The case m = 4 provides additional illustration.

All Young tableaux of Y4, and the Young diagrams from which they originate, are

1 2 3 4
1 2 3

4

1 2 4

3

1 3 4

2

1 2

3 4

1 3

2 4

1 2

3

4

1 3

2

4

1 4

2

3

1

2

3

4

.

(4.142)

The first and last tableaux each stem from a unique Young diagram, and their corresponding representations

thus are not equivalent to any other irreducible representation of SU(N). Tableaux 2, 3 and 4 (as counted

from left to right) all have the same shape and therefore correspond to equivalent irreducible representations.

The same holds for the tableaux 5 and 6, and the tableaux 7, 8 and 9.

If we arrange the Young projection operators corresponding to the tableaux in (4.142), as well as the transition

operators, in a block-diagonal matrix as was done in (4.93a) (with projection operators on the diagonal and
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transition operators on the off-diagonal), the resulting block diagonal matrix will be of the form

M4 =




1

3

2

3

1



, (4.143)

where the number in each block gives the size of the block. Indeed, we again find that

4! = |S4| =
∑

Yi

(
4!

HYi

)2

= 12 + 32 + 22 + 32 + 12. (4.144)

Since the matrix (4.143) would be rather large, we will now give each block separately. The first block,

consisting only of one Hermitian Young projection operator, is

:





, (4.145)

and corresponds to an irreducible representation of SU(N) with dimension d = N(N+1)(N+2)(N+3)
24 . The second

block, a 3× 3 block, is

:




3
2

√
2

√
3
2

√
2 2

√
3

√
3
2

√
3 3

2




. (4.146)

All Hermitian Young projection operators on the diagonal of this block correspond to equivalent irreducible

representations of SU(N) with dimension d = N(N+2)(N2−1)
8 . The following 2×2 block has projection operators

on its diagonal that correspond to equivalent irreducible representations of dimension d = N2(N2−1)
12 ,

:




4
3

√
4
3

√
4
3

4
3




. (4.147)
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The next 3× 3 block is given by

:




3
2

√
3

√
3
2

√
3 2

√
2

√
3
2

√
2 3

2




; (4.148)

here, the projection operators each correspond to irreducible representations of dimension d = N(N−2)(N2−1)
8 .

What remains is a 1× 1 block:

:





 . (4.149)

This operator corresponds to an irreducible representation of dimension d = N(N−1)(N−2)(N−3)
24 .

All the projection operators given above have previously been known [72], the transition operators are a new

result.

Similarly to what we observed for the 3-quark algebra, we find that the blocks described above give null-

operators from bottom right to top left as we incrementally decrease N below 4: For N = 3, only the last

1×1 block turns into a null-operator. For N = 2, the last 1×1 block as well as the second-to-last 3×3 block

consist of null-operators. All but the topmost 1 × 1 block give null-operators for N = 1. The entire matrix

will (trivially) consist of null-operators if we decrease N to 0. In fact, we can read off which operators will

be null-operators from their dimension formula, as d = 0 for a null-operator.

Figures 4.2 and 4.3 expand on the content of Figures 9.1 and 9.2 in Ref. [72] respectively: These figures

collect the hierarchy of Young tableaux and the associated nested Hermitian projector decompositions (in

the sense of embeddings into API
(
SU(N), V ⊗4

)
) and add the transition operators we have derived in this

paper (recall that for m ≤ 4, the construction algorithm for transition operators between Young projectors

over V ⊗m is well-defined). We would like to draw attention to the fact that only the leftmost and rightmost

branches in each tree, consisting solely of a single symmetrizer or antisymmetrizer, are fully unique as they

are not connected by transition operators listed on the right.
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Figure 4.2: Hierarchy of Young tableaux and the associated (non-nested) Young projector decompositions over V ⊗m for m = 1, 2, 3, 4 (in the sense of

embeddings into API
(
SU(N), V ⊗4

)
): The solid lines indicate ancestry. The associated transition operators for groups of equivalent representations are

listed to the right. Note that this tree cannot be extended beyond m = 4 due to the failure of the corresponding Young projectors to be transversal or

complete.
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Figure 4.3: Hierarchy of Young tableaux and the associated nested Hermitian Young projector decompositions over V ⊗m for m ≤ 4 (in the sense of

embeddings into API
(
SU(N), V ⊗4

)
): The arrows indicate which operators sum to which ancestors (see [2] [chapter 3] — this does not apply to their

standard Young counterparts shown in Figure 4.2). The associated transition operators for groups of equivalent representations are listed to the right

(recall that these transition operators are unitary on the image of the projection operators, TΘΦ = T †ΦΘ). This tree can be extended to arbitrary m using

the construction algorithm of Hermitian Young projectors [2] [chapter 3] and that of transition operators given in this paper.
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4.7 Chapter conclusion & outlook

The representation theory of SU(N) is an old theory with many successful applications in physics. Yet, some

of the tools remain awkward and only applicable in specific situations, like the general theory of angular

momentum or the construction of Young projection operators that lack Hermiticity. Newer tools, like the

birdtrack formalism, remain only partially connected with these time honored results. We have a very specific

interest in applications to QCD in the context of Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner

(JIMWLK) [20, 56–59] evolution, in jet physics, in energy loss and generalized parton distributions, so we

have aimed at creating a set of tools that we know will aid in these applications and, in the process have

pointed out where the existing tools fall short of our needs.

Building on the previously found Hermitian Young projection operators [2, 4] [c.f. chapter 3], the main

result of this paper is the inclusion of transition operators that complement the set of multiplet projectors

to a basis for the full algebra of invariants API (SU(N), V ⊗m); for Young projectors and their associated

transition operators, this is only possible up to m = 4. Any subset of projectors encoding mutually equivalent

representations, together with their transition operators, form closed subalgebras. Relabelling the set of basis

operators as mij (with double indices according to (4.92)) so that

API
(
SU(N), V ⊗m

)
=
{
αijmij |αij ∈ R,mij ∈ Sm

}
(4.150)

leads to a simplified multiplication table for the new basis elements

mijmkl = δjkmil, (4.151)

significantly simpler than the standard basis of primitive invariants ρi ∈ Sm, ρiρj = Akijρk.

The transition operators obtained from Hermitian projectors are automatically unitary, causing the basis

elements to be mutually orthogonal and normalized to match the dimension of the irreducible representations,

〈mij ,mkl〉 = δikδjldim(Θj) . (4.152)

This is an essential prerequisite for a future publication that aims at constructing an orthonormal basis for

the space of all global color singlet states for a given Fock-space configuration [chapter 5]; it is important to

note that (4.152) does not hold for the standard Young projectors and their associated transition operators.

We have used the new form of the multiplication table (4.151) to show that the projection operators in

API (SU(N), V ⊗m) are only uniquely determined if the representation occurs precisely once in the decompo-

sition. All Hermitian projectors onto equivalent representations, and their associated transition operators,

are only unique up to orthogonal rotations as described in sections 4.4.3 and 4.5. Figures 4.2 and 4.3 collect

all the examples worked out in this paper, displaying all their relationships in a compact form for reference.

Our own list of future applications for the tools and insights presented in this paper are QCD centric [c.f.

chapters 5 and 10]. Global singlet state projections of Wilson-line operators that appear in a myriad of

applications due to factorization of hard and soft contributions help analyzing the physics content in all of

them. We hope that our presentation is suitable to unify perspectives provided by the various approaches to

representation theory of SU(N), and that the results prove useful beyond these immediate applications.
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4.A Dimensional zeros

For small enough values of N (and we will define what we mean by “small enough” shortly), some of the

irreducible representations of SU(N) over V ⊗m vanish. The reason for this is simple: An antisymmetrizer

over p legs, viewed as a linear map on V ⊗p, is a null-operator, if dim(V ) < p,

...

1
2

...

p−1
p

: V ⊗p → 0 if dim(V ) < p . (4.153)

Thus, if an operator in Lin (V ⊗m) with dim(V ) = N contains an antisymmetrizer of length > N , the operator

will be a null-operator on the space V ⊗m. For example, the antisymmetrizer

=
1

3!

(
− − − + +

)
(4.154)

acts as a null-operator on the space V ⊗3 = V ⊗ V ⊗ V if the dimension of V is ≤ 2. The reason for this

is that the primitive invariants constituting the antisymmetrizer A123, as elements of Lin
(
V ⊗3

)
, are not

linearly independent if the vector space V has dimension ≤ 2. In this situation, the identity permutation (for

example) can be expressed as a linear combination of the remaining primitive invariants,

dim(V )≤2
======== + + − − . (4.155)

We discussed previously that each irreducible representation of SU(N) over V ⊗m corresponds to a particular

Young tableau in Ym. From the construction theorems of (Hermitian) Young projection operators (eq. (4.36)

for Youngs and section 4.5.1 for Hermitian projectors) and their transition operators (section 4.3 for Youngs

up to m = 4 and section 4.5.2 for unitary operators for all m), it is evident that the longest antisymmetrizer

present in such an operator corresponds to the longest column of the corresponding Young tableau. In

particular, if N < m, there will be at least one Young tableau containing a column which is longer than N ,

namely

1

2
···
m

. (4.156)
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There may be more tableaux with columns longer than N , depending by how much N differs from m. If

two (non-) Hermitian Young projection operators PΘ and PΦ (resp. YΘ and YΦ) correspond to equivalent

irreducible representations of SU(N), they both will contain antisymmetrizers of equal length (AΘ or AΦ

respectively), and so will their transition operators by construction (see eq. (4.61) for Young operators up

to m = 4, resp. Theorem 4.5 for the unitary operators for all values of m). They will therefore all vanish

simultaneously if N is too small. Thus, decreasing N will render entire block of the matrix M (c.f. eq. (4.93a))

zero

To summarize, we see that all multiplets and transition operators are only present in API (SU(N), V ⊗m) if

N ≥ m. If N is smaller than m, some of them become null-operators. These can explicitly be identified by

their corresponding Young tableau Θ or directly by AΘ in the birdtrack notation.

4.B Illustrating the action of ρΘΦ on Hermitian Young projection

operators: an example

In this section, we illustrate why eq. (4.115),

PΘ · ρΘΦPΦρΦΘ 6= 0 , (4.157)

holds by means of an example. In the process, we will show that eq. (4.46) (saying that YΘ = ρΘΦYΦρΦΘ)

breaks down for Hermitian projection operators,

PΘ 6= ρΘΦPΦρΦΘ . (4.158)

Consider two Young tableaux

Θ =

1 2 5

3 4

6

and Φ =

1 3 5

2 6

4

. (4.159)

The permutation ρΘΦ according to in Definition 4.3 is given by

ρΘΦ = . (4.160)

Let us now construct the MOLD operators (c.f. Theorem 4.3) corresponding to Θ and Φ. To do so, we need

to construct their MOLD ancestries (c.f. Definition 4.6 for the MOLD of a tableau),

Θ =

1 2 5

3 4

6

→ 1 2 5

3 4
→ 1 2

3 4
(4.161)
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and

Φ =

1 3 5

2 6

4

→
1 3 5

2

4

→
1 3

2

4

→ 1 3

2
. (4.162)

The MOLD projectors PΘ and PΦ are thus determined by

P̄Θ = (4.163)

P̄Φ = . (4.164)

The full projection operators PΘ and PΦ require additional constants βΘ and βΦ, respectively, to ensure their

idempotency. From the differing lengths of PΘ and PΦ (due to the different MOLD of the tableaux Θ and

Φ), it is abundantly clear that PΘ 6= ρΘΦPΦρ
−1
ΘΦ, confirming eq. (4.158). Let us nonetheless take a closer look

at ρΘΦPΦρΦΘ,

ρΘΦPΦρΦΘ = . (4.165)

By transforming PΦ with the permutation ρΘΦ, we have transformed each set of (anti-)symmetrizers into a

different set of the same shape. In particular, the (anti-)symmetrizers of the ancestor tableaux of Φ have

been transformed into (anti-)symmetrizers of tableaux obtained from Θ by deleting the corresponding boxes,

Φ Φ(1) Φ(2) Φ(3)
︷ ︸︸ ︷
1 3 5

2 6

4

→

︷ ︸︸ ︷
1 3 5

2

4

→

︷ ︸︸ ︷
1 3

2

4

→
︷ ︸︸ ︷
1 3

2
(4.166a)

1 2 5

3 4

6
︸ ︷︷ ︸

→
1 2 5

3

6
︸ ︷︷ ︸

→
1 2

3

6
︸ ︷︷ ︸

→ 1 2

3
︸ ︷︷ ︸

. (4.166b)

Θ Θ(Φ,1) Θ(Φ,2) Θ(Φ,3)

Each tableau Θ(Φ,k) in (4.166b) was obtained from the predecessor Θ(Φ,k−1) by removing the box which is in

the same position as the box with the highest number in Φ(k−1). We shall refer to the tableaux in (4.166b)

as the Φ-MOLD ancestry of Θ. Note that most of the tableaux in the Φ-MOLD ancestry of Θ are not

the ancestor tableaux of Θ; in fact, most of them are not even Young tableaux. The Θ(Φ,i) emerge by

superimposing the Φ(i) in cookie cutter fashion over Θ and thus intrinsically differ from the ancestry of Θ
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itself — compare

1 2 5

3 4

6
︸ ︷︷ ︸

Θ

→ 1 2 5

3 4
︸ ︷︷ ︸

Θ(1)

→ 1 2

3 4
︸ ︷︷ ︸

Θ(2)

(4.167)

with eq. (4.166b).

We now see that the symmetrizers and antisymmetrizers in the operator (4.165) are exactly those correspond-

ing to the tableaux in the Φ-MOLD ancestry of Θ eq. (4.166b). This means that the (anti-)symmetrizers

in (4.165) can be obtained from SΘ and AΘ by removing index legs. Thus, all symmetrizers (resp. antisym-

metrizers) of (4.165) are contained in SΘ (resp. AΘ), yielding the product PΘ · ρΘΦPΦρΦΘ to be nonzero

(c.f. eq. (4.52)) as claimed in (4.157).

4.C Consequences of non-Hermiticity: an example

In this appendix, we illustrate the non-unitarity of transition operators between Young projection operators

as given in eq. (4.63),

(TΘΦ)
†

= Y †ΦρΦΘY
†
Θ 6= TΦΘ , (4.168)

by means of an example. Consider the two Young tableaux

Θ :=
1 2

3
and Φ :=

1 3

2
. (4.169)

In eq. (4.49) we found that ρΘΦ = . Using eq. (4.61) we construct TΘΦ

︸︷︷︸
ρΘΦ

︸ ︷︷ ︸
YΦ

=

︸ ︷︷ ︸
TΘΦ

=

︸ ︷︷ ︸
YΘ

︸︷︷︸
ρΘΦ

(4.170)

and TΦΘ

︸︷︷︸
ρΦΘ

︸ ︷︷ ︸
YΘ

=

︸ ︷︷ ︸
TΦΘ

=

︸ ︷︷ ︸
YΦ

︸︷︷︸
ρΦΘ

. (4.171)

From this example, it is immediately clear that (TΘΦ)
† 6= TΦΘ,

(

︸ ︷︷ ︸
TΘΦ

)†
=

︸ ︷︷ ︸
(TΘΦ)†

6=
︸ ︷︷ ︸
TΦΘ

, (4.172)
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and vice versa

(

︸ ︷︷ ︸
TΦΘ

)†
=

︸ ︷︷ ︸
(TΦΘ)†

6=
︸ ︷︷ ︸
TΘΦ

, (4.173)

confirming eq. (4.168).

4.D Proof of Theorem 4.5 “compact transition operators”

4.D.1 The significance of the cutting-and-gluing procedure

Before we present the proof of Theorem 4.5, we need to make some observations: Let I be any set of

symmetrizers or antisymmetrizers, and let ρ be a permutation. Then, using the fact that ρ† = ρ−1 for any

permutation,14 we have that

ρ I = ρ I ρ†ρ︸︷︷︸
id

= ρ I ρ†︸ ︷︷ ︸
=:I′

ρ = I′ ρ, (4.174)

where I′ is now a set of symmetrizers, respectively antisymmetrizers, over a different set of indices.15

In the proof of Theorem 4.5, we will come across a particular such case, namely where ρ is the permutation

ρΘΦ as defined in Definition 4.3. The simplest case we encounter are the products ρΘΦSΦ and ρΘΦAΦ. By

its very definition ρΘΦ explicitly relates Θ and Φ such that

ρΘΦSΦ = SΘρΘΦ = SΘρΘΦSΦ (4.176a)

ρΘΦAΦ = AΘρΘΦ = AΘρΘΦAΦ , (4.176b)

where the last equality follows from the fact that each (anti-) symmetrizer individually is idempotent (4.11).

Recognizing the parallel between eq. (4.176) and transition operators eq. (4.116) (between Hermitian pro-

jectors, such as symmetrizers SΞ and antisymmetrizers AΞ), the objects (4.176) can be viewed as transition

operators between individual sets of (anti-) symmetrizers. This observation extablishes the connection to

the graphical cutting-and-gluing procedure discussed in Theorem 4.5: cutting antisymmetrizers AΘ and AΦ

vertically and gluing them as suggested by the Theorem is equivalent to forming the product AΘρΘΦAΦ (and

similarly for symmetrizers). This is illustrated in the following example: For the Young tableaux

Θ =

1 3

2

4

and Φ =

1 2

3

4

, (4.177)

14This becomes evident in the birdtrack formalism, where the inverse of a permutation ρ is obtained by flipping ρ about its
vertical axis [72], which is incidentally also the process for Hermitian conjugation of a birdtrack [72].

15We consider this to be self evident, but an example may help diffuse anxiety:

︸︷︷︸
ρ
︸︷︷︸
I

=

︸︷︷︸
ρ
︸︷︷︸
I
︸ ︷︷ ︸
ρ†ρ

=

︸ ︷︷ ︸
I′

︸︷︷︸
ρ

, (4.175)

where we have I = {S123,S45} and I′ = {S124,S35}.
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we have

︸ ︷︷ ︸
AΘ

︸︷︷︸
ρΘΦ

︸ ︷︷ ︸
AΦ

= = . (4.178)

The feature observed in this example is fully general: ρΘΦ is defined to translate the ordering of the left legs

on AΦ into the ordering of the right legs on AΘ — this is precisely what the cutting and gluing procedure

achieves graphically:

AΘ →
�
�
�� and AΦ →

�
�
�� 7→ . (4.179)

Both procedures lead to the same result (this is a consequence of relation (4.176)). Thus, we will refer to the

algebraic construct (4.176b) as the cut-antisymmetrizer and denote it by

��AΘΦ := AΘρΘΦAΦ = AΘρΘΦ = ρΘΦAΦ , (4.180)

and similarly for the cut-symmetrizer �SΘΦ := SΘρΘΦSΦ. For the proof of Theorem 4.5, we will only concern

ourselves with cut-antizymmetrizers, as we already did in the Theorem. However, all the following arguments

hold equally well if we consider cut-symmetrizers instead.

Before we dive into the proof, we need to notice that eqns. (4.176) do not hold for the ancestor sets SΦ(k)
and

AΦ(l)
of SΦ and AΦ (c.f. eqns. (4.181)). However, such ancestor sets will be transformed (upon commutation

with the permutation ρΘΦ) into sets of the same shape that can be obtained from SΘ resp. AΘ by dropping

lines. Thus, the resulting (anti-)symmetrizers can be absorbed into SΘ and AΘ respectively,

ρΘΦSΦ(k)
= SΘ(Φ,k)

ρΘΦ for SΘ(Φ,k)
⊃ SΘ (4.181a)

ρΘΦAΦ(l)
= AΘ(Φ,l)

ρΘΦ for AΘ(Φ,l)
⊃ AΘ , (4.181b)

the (anti-)symmetrizers SΘ(Φ,k)
and AΘ(Φ,l)

correspond to tableaux in the Φ-MOLD ancestry of Θ (c.f.

eq. (4.166) in appendix 4.B). For further clarification, we refer the reader to appendix 4.B for an explicit

example.

We will now present a proof for the shorthand graphical construction of the birdtracks of transition operators

given in Theorem 4.5.

4.D.2 Proof of Theorem 4.5

Let Θ,Φ ∈ Yn be two Young tableaux with the same shape, thus corresponding to equivalent irreducible

representations of SU(N), and let the corresponding Hermitian Young projection operators PΘ and PΦ be

constructed according to the MOLD Theorem 4.3. Furthermore, let I denote either a set of symmetrizers or

antisymmetrizers, and B denote the other set (that is, if I denotes a set of symmetrizers then B denotes a

set of antisymmetrizers and vice versa): we use these generalized sets rather than the concrete sets A and S
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in order to discuss all possible forms of PΘ and PΦ in one go. We then have that P̄Θ is given by

P̄Θ = CΘ IΘBΘIΘ C†Θ , (4.182)

where CΘ consists of ancestor sets of (anti-) symmetrizers of Θ, and the exact structure of CΘ is determined

by the MOLD of Θ, M(Θ), and the parity of M(Θ). Similarly, P̄Φ is of the form

P̄Φ = DΦ IΦBΦIΦ D†Φ or P̄Φ = DΦ BΦIΦBΦ D†Φ , (4.183)

where, like CΘ, DΦ consists of ancestor sets of (anti-)symmetrizers of Φ. In equation (4.183), we have taken

into account that the central part of PΦ can either have the same form as PΘ (which is IBI), or it may have

symmetrizers and antisymmetrizers exchanged from PΘ. It should be noted that the set DΦ will be different

whether the central part of P̄Φ is IΦBΦIΦ or BΦIΦBΦ, but in both cases it will consist of ancestor sets

of symmetrizers and antisymmetrizers of Θ. Understanding this, we have chosen not to introduce different

symbols for the set DΦ in order to introduce the following compact notation for P̄Φ,

P̄Φ := DΦ

{
IΦBΦIΦ

BΦIΦBΦ

}
D†Φ , (4.184)

which says that the central part of P̄Φ is either given by the top row, or by the bottom row in the curly

bracket.16 According to Theorem 4.4, the birdtrack of the transition operator TΘΦ is given by

T̄ΘΦ = CΘ IΘBΘIΘ C†Θ︸ ︷︷ ︸
=P̄Θ

ρΘΦ DΦ

{
IΦBΦIΦ

BΦIΦBΦ

}
D†Φ

︸ ︷︷ ︸
=P̄Φ

. (4.185)

As was discussed in section 4.D.1, the permutation ρΘΦ can be commuted with DΦ, in accordance with

relations (4.181). Furthermore, equations (4.176) tell us that ρΘΦIΦ = IΘρΘΦ and ρΘΦBΦ = BΘρΘΦ .

In commuting the ρΘΦ through the sets IΦ and BΦ, it will be convenient to stop the commutation in a

different place in the top row than the bottom row of T̄ΘΦ,

T̄ΘΦ = CΘ IΘBΘIΘ C†Θ DΘ

{
IΘBΦρΘΦIΦ

BΘIΘBΘρΘΦ

}
D†Φ , (4.186)

this choice may seem arbitrary at this point, but the position of ρΘΦ in (4.186) will turn out to specify the

position of the cut in the cutting-and-gluing procedure (c.f. section 4.D.1). We emphasize that DΘ denotes

the product of (anti-)symmetrizers in DΦ when commuting them with ρΘΦ (c.f. eqns. (4.181)),

DΘρΘΦ := ρΘΦDΦ . (4.187)

We may apply the Cancellation Theorem 4.1 to the operator (4.186) to simplify T̄ΘΦ as

T̄ΘΦ
Thm. 4.1

======== CΘ IΘBΘIΘ

{
IΘBΘρΘΦIΦ

BΘIΘBΘρΘΦ

}
D†Φ = CΘ

{
IΘBΘIΘ IΘBΘρΘΦIΦ

IΘBΘIΘ BΘIΘBΘρΘΦ

}
D†Φ . (4.188)

16This notation is convenient, as it will allow us to discuss both cases simultaneously.
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Let us now look at the central part of T̄ΘΦ (the part in the curly brackets) in more detail: Since IΘ denotes

either AΘ or SΘ, and BΘ denotes the other set, then the product IΘBΘ is proportional to either a Young

projection operator or the Hermitian conjugate thereof, IΘBΘ = Ȳ
(†)
Θ . Thus, if the central part of T̄ΘΦ is

given by the top option (implementing that IΘIΘ = IΘ), we can use the fact that Ȳ
(†)
Θ is quasi-idempotent

to obtain

IΘBΘ︸ ︷︷ ︸
Ȳ

(†)
Θ

IΘBΘ︸ ︷︷ ︸
Ȳ

(†)
Θ

ρΘΦIΦ ∝ IΘBΘρΘΦIΦ . (4.189)

Similarly, if the central part of T̄ΘΦ is given by the bottom option of (4.188), we may reduce it to

IΘBΘ︸ ︷︷ ︸
Ȳ

(†)
Θ

IΘBΘ︸ ︷︷ ︸
Ȳ

(†)
Θ

IΘBΘ︸ ︷︷ ︸
Ȳ

(†)
Θ

ρΘΦ ∝ IΘBΘρΘΦ . (4.190)

This turns (4.188) into (using the bar-notation introduced in eq. (4.44) to retain equality)

T̄ΘΦ = CΘ
{

IΘBΘρΘΦIΦ

IΘBΘρΘΦ

}
D†Φ . (4.191)

In Theorem 4.5, we discussed three different cutting-and-gluing procedures, depending on the exact structure

of the projection operators PΘ and PΦ.

1. Option 1 requires both operators P̄Θ and P̄Φ to contain exactly one set of antisymmetrizers AΘ and AΦ

respectively. This occurs if we choose the top option of T̄ΘΦ as given in (4.185) (and hence the top line

in (4.191)) and if B denotes the set of antisymmetrizers and thus IΘ denotes the set of symmetrizers,

(4.191) : T̄ΘΦ = CΘ IΘBΘρΘΦIΦ D†Φ
B=A, I=S−−−−−−−→ CΘ SΘ AΘρΘΦ

︸ ︷︷ ︸
=�AΘΦ

SΦ D†Φ , (4.192)

where we marked the cut-antisymmetrizer ��AΘΦ (see eq. (4.180)). Clearly, (4.192) coincides with the

cutting-and-gluing prescription of Theorem 4.5 if each projector PΘ and PΦ contains exactly one set

AΘ and AΦ respectively.

2. Option 2 of Theorem 4.5 requires P̄Θ and P̄Φ to have a different number of AΘ and AΦ. The bottom

option of operator (4.185) (and hence operator (4.191)) corresponds to this case. Dependent on which

operator (P̄Θ or P̄Φ) contains two sets of antisymmetrizers (AΘ or AΦ) is whether B denotes the set

of antisymmetrizers and I the set of symmetrizers, or the other way around: If B denotes the set of

antisymmetrizers (i.e. P̄Θ contains AΘ once and P̄Φ contains two copies of AΦ), we have

(4.191) : T̄ΘΦ = CΘ IΘBΘρΘΦ D†Φ
B=A, I=S−−−−−−−→ CΘ SΘ AΘρΘΦ

︸ ︷︷ ︸
=�AΘΦ

D†Φ . (4.193a)

The operator (4.193a) is the same operator that would have resulted from cutting P̄Θ at its leftmost

set AΘ and P̄Φ at its rightmost set AΦ, and gluing the pieces in the appropriate manner as described

by the Theorem 4.5. On the other hand, if I denotes the set of antisymmetrizers (i.e. P̄Θ contains two

212



Chapter 4. Transition Operators

copies of AΘ and P̄Φ contains AΦ once), then

T̄ΘΦ
I=A, B=S−−−−−−−→ CΘ AΘSΘρΘΦ D†Φ

eq. (4.176a)
========= CΘ AΘρΘΦ

︸ ︷︷ ︸
=�AΘΦ

SΦD†Φ , (4.193b)

where we used the commutation relation (4.176a) to commute SΘ and ρΘΦ. This again yields the same

result as the cutting-and-gluing procedure of Theorem 4.5.

3. Lastly, suppose that both P̄Θ and P̄Φ each contain two sets of antisymmetrizers AΘ and AΦ respectively.

Then, we once again need to look at the top option of the operator T̄ΘΦ as given in (4.185) (and

hence (4.191)), but this time we require that I denotes the set of antisymmetrizers. Then,

(4.191) : T̄ΘΦ = CΘ IΘBΘρΘΦIΦ D†Φ
I=A, B=S−−−−−−−→ CΘ AΘSΘ ρΘΦAΦ

︸ ︷︷ ︸
=�AΘΦ

D†Φ . (4.194a)

Equivalently,

T̄ΘΦ = CΘ AΘSΘρΘΦ AΦD†Φ
eq. (4.176a)

========= CΘ AΘρΘΦ
︸ ︷︷ ︸

=�AΘΦ

SΦAΦD†Φ ; (4.194b)

eq. (4.194a) corresponds to cutting-and-gluing at the rightmost sets of antisymmetrizers AΘ and AΦ

(respectively) in both P̄Θ and P̄Φ, while eq. (4.194b) corresponds to cutting-and-gluing the leftmost

sets of antisymmetrizers AΘ and AΦ in both P̄Θ and P̄Φ.

Thus, we have shown that T̄ΘΦ can indeed be obtained by the graphical cutting-and-gluing prescription given

in Theorem 4.5, concluding the proof.
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Chapter 5

Singlets: A Construction Algorithm

for the Singlets of SU(N), and What

They Tell Us About Wilson Line

Correlators

We systematically classify all possible singlet states for any given Fock space configuration of quarks and anti-

quarks. We explain that the currently known method of constructing the projection operators corresponding to

irreducible representations of SU(N) over a mixed tensor product V ⊗m⊗(V ∗)⊗n (from Littlewood-Richardson

tableaux) is virtually useless in practice due to the enormous computational cost. We give a far more efficient

construction algorithm for the projection operators corresponding to 1-dimensional irreducible representations

of SU(N), the singlet projectors, over an algebra of an equal number of quarks and antiquarks V ⊗m⊗(V ∗)⊗m,

and provide a counting argument for the number of these singlet projectors. We then show that these singlets

may be cast into a different form, giving rise to the remaining singlets of SU(N) over V ⊗m ⊗ (V ∗)⊗n. We

end by looking at the singlet states of the 3q + 3q̄-algebra and use these to construct Wilson line correlators.

We examine various coincidence limits of these correlators.

5.1 The necessity of a new construction algorithm for singlet pro-

jectors of SU(N)

As already discussed in chapters 3 and 4, the irreducible representations of SU(N) over V ⊗m can be classified

through Young tableaux [84]. In the 1970’s, Littlewood and Richardson were able to generalize Young’s

tableaux to what will be referred to as Littlewood-Richardson (LR) tableaux,1 which correspond to the ir-

rducible representations of SU(N) over more general product spaces W (i.e. W may include spaces derived

from V (such as V ∗ or V †) in addition to V [111]). If one considers a product space consisting of V and

1These are not to be confused with Littlewood-Richardson skew tableaux [92, 95], which are sometimes simply referred to as
Littlewood-Richardson tableaux in the literature.
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V ∗ only, for example V ⊗m ⊗ (V ∗)⊗n, then the projection operators corresponding to the irreducible repre-

sentations of SU(N) over V ⊗m ⊗ (V ∗)⊗n can be extracted from the LR tableaux via Leibniz’s formula for

determinants [112], as will be exemplified in section 5.1.4.2.

This textbook method is, however, extremely computationally elaborate, and thus virtually useless in practical

applications. Luckily, in physics applications one is mainly interested in the singlet representations of SU(N)

over V ⊗m ⊗ (V ∗)⊗n (for N = Nc, the number of colors), as only these correspond to observable particle

configurations — the last statement is imposed on us by confinement.

In the following sections, we will elaborate on all the concepts mentioned so far, with the aim of exhibiting

their strengths as well as where they fail us in practical applications. This will make the need for an alternative

way of constructing singlet projection operators abundantly clear.

We then present a new construction method for the singlet projection operators of SU(N) over V ⊗m⊗(V ∗)⊗n

in section 5.2. Since SU(N) has two kinds of invariants, the Kronecker δ and the Levi Civita tensor ε12...N , a

general singlet projector of SU(N) may be built out of these two invariants. In section 5.2.1, we first discuss

the singlets comprised of Kronecker δ’s only. The motivation for this will become evident in section 5.2.2,

where we show that the singlets that also contain ε-tensors do not give new information but are already

included in the former kind.

We will see that singlet projectors containing Kronecker δ’s only are singlet independently of the value N ,

whilst the singlet-ness of projectors containing ε-tensors depends on the exact value of N . This can be

intuitively understood when we interpret N = Nc as the number of colors in QCD, as explained in a short

discussion on page 248.

Many of the results presented in this chapter were discovered using the birdtrack formalism [72, 87], as was

already the case for the previous chapters of this thesis. However, to conform to the literature, we refrain

from proving results in the birdtrack formalism in the main text (unless absolutely necessary) but rather

present these proofs in more conventional notation. We do provide the birdtrack version of these proofs in

the appendix at the end of this chapter, as we believe that the birdtrack formalism is advantageous in this

situation, and to further familiarize readers with this tool of calculation.

5.1.1 Theory of invariants & birdtracks

We saw in the previous chapters, 3 (section 3.1.1) and 4 (section 4.1), that the primitive invariants of SU(N)

over V ⊗m are given by the permutations over m objects,

Sm = PI
(
SU(N), V ⊗m

)
. (5.1)

The algebra of linear invariants is then given by

API
(
SU(N), V ⊗m

)
:=
{ ∑

σ∈Sm
ασσ

∣∣∣ασ ∈ R, σ ∈ Sm
}
⊂ Lin

(
V ⊗m

)
. (5.2)

In this chapter, we also want to consider the antifundamental representation of SU(N) on the dual space V ∗.

Again, the irreducible representations of SU(N) over a mixed product space V ⊗m ⊗ (V ∗)⊗n can be classified
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through the invariants in the algebra [72, 93]

API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
:=
{ ∑

ρ∈Sm,n
αρρ

∣∣∣ αρ ∈ R
}
⊂ Lin

(
V ⊗m ⊗ (V ∗)⊗n

)
, (5.3)

where Sm,n denotes the set of primitive invariants of SU(N) over V ⊗m ⊗ (V ∗)⊗n,

Sm,n = PI
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
. (5.4)

The primitive invariants Sm,n (over V ⊗m ⊗ (V ∗)⊗n) are closely related to the primitive invariants Sm+n

(over V ⊗(m+n)). In fact, the birdtrack formalism allows one to easily construct the primitive invariants Sm,n

(eq. (5.4)) from Sm+n (eq. (5.1)) by swapping fundamental lines out for antifundamental lines [72]: This is

done graphically by swapping the left and right end points on the specific V in V ⊗(m+n) to be converted into

its dual vector space V ∗. An example will give clarity: The primitive invariants S3 = PI
(
SU(N), V ⊗3

)
map

onto S2,1 = PI
(
SU(N), V ⊗2 ⊗ (V ∗)⊗1

)
as

S3 : , , , , , (5.5a)

S2,1 : , , , , , (5.5b)

in a direct, 1-to-1 correspondence. Since primitive invariants of SU(N) are Hermitian if and only if their

birdtrack expressions are symmetric under a flip about the vertical axis [72] (c.f. eq. (3.69)),2 the graph-

ical procedure of transforming some of its fundamental legs into antifundamental legs does not affect the

Hermiticity of a birdtrack. Thus, the subset of Hermitian elements in Sm,n and Sm+n will have the same

size.

From the multiplication rule of birdtracks (connect and follow the lines [72]) it immediately follows that S2,1

(unlike S3) is not a group, as only the first two elements in (5.5b) have an inverse. In general, the primitive

invariants Sm+n form a group, while Sm,n do not — the underlying reason for this is that index contraction

does not have an inverse operation, since it is not 1-to-1. Hence, the multiplication tables of the algebras

API
(
SU(N), V ⊗(m+n)

)
and API

(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
differ greatly.

5.1.2 The irreducible representations of SU(N) over V ⊗m: Young tableaux

The representation theory of SU(N) over a mixed product space V ⊗m ⊗ (V ∗)⊗n plays an important role in

physics applications, as V ⊗m⊗(V ∗)⊗n is the Fock space component encapsulating m quarks and n antiquarks.

In the absence of antiquarks (i.e. for n = 0), the irreducible representations of SU(N) can be fully classified

using Young’s combinatorial method of constructing Young tableaux [84, 95, 96], as was explained in the

previous chapters. Even though the construction algorithm for Young tableaux has already been discussed

(see, for example, sections 3.1.1 and 4.1), we reiterate it in the present section. The purpose of this is to

present a different viewpoint, which aims to emphasize the correspondence between Young’s construction and

the Littlewood-Richardson tableaux (the latter will be constructed in the following section, 5.1.3).

2This is only true for the primitive invariants; objects in the algebra of invariants may be Hermitian even if they are not
manifestly symmetric under a flip about their vertical axis, c.f. the Hermitian operator (3.93) given in chapter 3.
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In Young’s construction method for the tableaux, each quark in the fundamental representation is denoted

by a box filled with an integer, e.g. i corresponds to the ith quark. A tensor product of m such boxes

corresponds to a product of m fundamental representations of SU(N),

1 ⊗ 2 ⊗ . . .⊗ m −→ ...

1
2
3

m

, (5.6)

which itself is a representation of SU(N), albeit not irreducible.

The irreducible representations within the product representation (5.6) is found by stacking the boxes i in

a particular iterative manner: The Young tableaux for 2 quarks are built from 1 by positioning 2 either

to the right of or below 1 . One then adds boxes containing consecutively higher numbers (up to m ) in

a way that preserves the top-alignedness (the length of each row is always greater than or equal to the row

below it) and left-alignedness (the length of each column is always greater than or equal to the column to

the right of it) of the tableau. This iterative construction was presented up to m = 4 in Figure 4.1.

5.1.3 The irreducible representations of SU(N) over V ⊗m⊗ (V ∗)⊗n with standard

methods: Littlewood-Richardson tableaux

With Young’s contributions, the representation theory of compact, semi-simple Lie groups over V ⊗m was

considered a fully understood and complete theory from approximately 1950 onward, even though many

misconceptions (in particular about the full extent of the theory) remained, especially among casual practi-

tioners.

The situation for the irreducible representations of SU(N) over a mixed product V ⊗m ⊗ (V ∗)⊗n is not as

well developed, despite what a casual glance at the literature might lead us to believe. There exist standard

methods to construct the projection operators corresponding to the irreducible representations of SU(N) over

V ⊗m⊗ (V ∗)⊗n, but these methods are only adequate for classification purposes, not for explicit calculations.

In order to drive home our point of its unsuitability for practical calculations, we present a brief account of the

standard method. We explain how to construct the tableaux corresponding to the irreducible representations

of SU(N) over V ⊗m ⊗ (V ∗)⊗n and how to obtain the appropriate projection operators from these tableaux.

While all pieces of information given in this section are present in the standard literature, we are not aware

of a text that describes the entire method from start (constructing the tableaux) to finish (obtaining the

projection operators), and thus have chosen to give a full account here.

When constructing the (Hermitian) Young projection operators from Young tableaux, one presupposes each

particle (represented by a box in the tableau) to be in the fundamental representation; it is thus identified

with a quark. Antiquarks, however, live in the antifundamental representation, thus no longer allowing us

to represent them by a single box in a Young tableau. As a result of the Leibniz formula for determinants

(c.f. section 5.1.4.1, or [112] for a textbook treatment), a single antiquark can be viewed as an antisymmetric

combination of (N − 1) quarks [93]. In the tableau sense, an antiquark is thus represented by a tower of

(N − 1) boxes. Eq. (5.7) shows a few examples of Young tableaux corresponding to a single particle in a
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particular representation,

fundamental: antifundamental: adjoint:

1

1

2
...

N−1

1 N

2
...

N−1

, (5.7)

where the numbers here help to keep track of the amount of boxes, but are not necessarily the filling of

the box in the tableau sense. Further motivation behind the claim (5.7) is given by the dimension of these

tableaux: If we calculated the dimension of the representations corresponding to the tableaux directly from

the tableaux (we will explain how to accomplish this shortly), we would find these dimensions to be N , N

and (N2 − 1) respectively, leading us to conclude that the tableaux (5.7) correspond to the fundamental,

the antifundamental and the adjoint representation respectively. We emphasize, however, that the dimension

alone is not sufficient to identify a particular tableau with a representation. (This statement is substantiated

by realizing that the fundamental and antifundamental representations have the same dimension N .) Nev-

ertheless, the dimension does provide the first step towards such an identification. The actual reason why

the antifundamental representation is classified by the tableau given in (5.7) is the Leibniz identity, as will

become clear in section 5.1.4.1.

Let us now explain how to calculate the dimension of a representation directly from the corresponding Young

tableau [72, 113].

Dimension of a representation corresponding to a Young tableau [72, 113]: Let Θ be a Young

tableau in Ym, for example

1 2 5 7

3 6 9

4

8

∈ Y9. (5.8)

Each cell c in the tableau Θ can be referred to by the position vector (R, C), where R is the row and C is the

column in which c appears. For example, the cell 9 in (5.8) has the position vector (2, 3). To obtain the

dimension of the representation corresponding to the Young tableau Θ, one deletes all entries in Θ to form

the underlying Young diagram YΘ, and re-fills it in two ways:

1. In the first case, each cell c in YΘ is filled with its hook length Hc [72, 95, 96] (c.f. eq. (4.38)): for

every cell c, one counts the number of boxes appearing below and to the right of c (including c) and

writes this number into the cell c. For the tableau given in (5.8) this procedure yields

hook length:

7 4 3 1

5 2 1

2

1

. (5.9)

219



Section 5.1. The necessity of a new construction algorithm for singlet projectors of SU(N)

2. In the second case, we construct a k × k matrix D, where k = max (length(R1), length(C1)) and R1

and C1 are the first row resp. column of the diagram YΘ. We assign to each entry dij of the matrix

D the value (j − i), and then cut out the Young diagram YΘ, making sure that the top left corners of

YΘ and D coincide. As for the tableau given in eq. (5.8), we obtain

distance: D =




0

−1

−2

−3

1

0

−1

−2

2

1

0

−1

3

2

1

0




−→

0 1 2 3

−1 0 1

−2

−3

. (5.10)

Since the new values in the tableau essentially describe the distance from the diagonal (where positive

entries lie above the diagonal and negative entries lie below it), the entry in each cell c will be referred

to as the distance and will be denoted by dc.

The dimension of the representation corresponding to the tableau Θ is then given by [72, 113]

dim(Θ) =
∏

c∈Θ

N + dc
Hc

=

∏
c∈Θ(N + dc)

HΘ
, (5.11)

where the product runs over all cells c in the Young tableau Θ, and

HΘ :=
∏

c∈Θ

Hc (5.12)

defines the hook length of the tableau Θ. In the standard literature such as [72, 113], the quantity fc := N+dc

is also referred to as the factor of the cell c. Thus, formula (5.11) is also called “factors-over-hooks”.

Using the “factors-over-hooks” formula, the dimension of the representation corresponding to the tableau in

eq. (5.8) is

dim((5.8)) =
N + 0

7

N + 1

4

N + 2

3

N + 3

1︸ ︷︷ ︸
row 1

· N − 1

5

N + 0

2

N + 1

1︸ ︷︷ ︸
row 2

· N − 2

2︸ ︷︷ ︸
row 3

· N − 3

1︸ ︷︷ ︸
row 4

·

=
N2(N + 1)(N2 − 1)(N2 − 4)(N2 − 9)

1680
. (5.13)

Formula (5.11) allows one to confirm that the dimensions of the tableaux given in (5.7) are N , N , and

(N2 − 1) respectively, supporting the claim that they correspond to the fundamental, antifundamental and

adjoint representations.

From Young’s algorithm, we know how to add another particle in the fundamental representation to a Young

tableau in Yk−1. However, to add a particle in a different representation (for example, the antifundamental

or adjoint representation), a generalization of the existing algorithm is needed. In the 1970’s, Littlewood and

Richardson (LR) did just that [85]: In all its generality, the LR-rule gives a method of multiplying two Young

tableaux of arbitrary shape that respects the multiplication properties of their underlying Schur functions.3

3Each irreducible representation of SU(N) corresponds to a unique Schur function. Thus, when we perform the product of
two tableaux Θ and Φ, the product of their underlying Schur functions once again must yield a sum of Schur functions, so that
each tableau in the sum Θ ⊗ Φ corresponds to an irreducible representation of SU(N). A full treatment of Schur functions is
beyond the scope of this thesis — readers are referred to [114], or e.g. [96] for a textbook treatment.
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Thus, LR generalize the iterative procedure exemplified in Figure 4.1 beyond the fundamental representation.

In this thesis, we are mainly interested in adding antiquarks, so we quote a simplified version of the LR-rule

that applies to adding a particle in the antifundamental representation only. This simplified version is also

referred to as Pieri’s formula [95, 96]. For the fully general algorithm, readers are referred to Littlewood’s

book [85] or Sagan’s book [96], the latter offering a more modern combinatorial view. Furthermore, Howe and

Lee [115] provide a wonderfully intuitive proof of the general LR-rule using only classical invariant theory.

Theorem 5.1 – adding antiquarks (LR-rule, Pieri’s formula) [85, 95, 96]:

Let Θ ∈ Ym be a Young tableau consisting of m boxes, and let an antiquark be represented by the Young

tableau consisting of one column of length (N − 1) ( c.f. eq. (5.7)),

Φ̄ =

m+1

m+2

m+3

...
m+

N−1

=:

a1

a2

a3

...

ak

with aj+1 := aj + 1, and end points a1 = m+ 1 and ak = m+N − 1 . (5.14)

Then, the product Θ ⊗ Φ̄ yields the sum of all tableaux that can be constructed as follows: Take the tableau

Θ and add each box aj ∈ Φ̄ in the same way as one would using Young’s construction ( c.f. Figure 4.1).

Additionally, we require that each box aj appears in a row strictly above aj+1, and that the resulting tableau

has a maximum of N rows. Evidently, all tableaux in this sum are Young tableaux in Ym+N−1.

We may iterate the above described procedure to form the tableaux

Θ⊗ Φ̄1 ⊗ · · · ⊗ Φ̄n , (5.15)

where each Φ̄i is a tableau consisting of a single column of length (N − 1), as described in eq. (5.14). Let the

set of all tableaux appearing in the sum (5.15) be denoted by
{

Θ⊗ Φ̄1 ⊗ · · · ⊗ Φ̄n
}

, and let the union of all

such sets over every Θ ∈ Ym be denoted by Ym,n,

⋃

Θ∈Ym

{
Θ⊗ Φ̄1 ⊗ · · · ⊗ Φ̄n

}
=: Ym,n . (5.16)

All tableaux constructed according to the Littlewood-Richardson rule will be referred to as Littlewood-Richardson

tableaux in this thesis.4

The requirement that the resulting LR-tableau has at most N rows ensures that the corresponding operator

is not dimensionally zero:5 Suppose a particular LR-tableau Θ has a column with length > N (i.e. this

tableau has more than N rows), and let us treat Θ as a Young tableau where each box corresponds to an

index line in the fundamental representation — that this is a reasonable thing to do will become clear in

section 5.1.4.2. Then, the corresponding (Hermitian) Young projection operator contains an antisymmetrizer

over more than N factors in V ⊗m. Since however dim(V ) = N , this antisymmetrizer is a null-operator,

causing the whole projection operator to become zero. Since this zero is caused by the dimension of V being

“too small”, we say that this operator is dimensionally zero.

4These are not to be confused with Littlewood-Richardson skew tableaux [92, 95], which are sometimes simply referred to as
Littlewood-Richardson tableaux in the literature.

5C.f. section 4.A for a further discussion on dimensionally null operators.
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As an example of the LR-rule described in Theorem 5.1, consider the Young tableau

Θ =
1 3

2
, (5.17)

and let N = 4 such that

Φ̄ =

4

5

6

. (5.18)

Then, according to Theorem 5.1, the product Θ⊗ Φ̄ yields

Θ⊗ Φ̄ =

1 2 4

3 5

6

⊕

1 2 4

3

5

6

⊕

1 2

3 4

5

6

, (5.19)

where each tableau in the sum is an element of Y6 = Y3+N−1. As a further example, we show the branching

tree of the tableaux up to 2q + 2q̄ in Figure 5.1:

1 2 a1 b1

a2 b2

a3 b3··· ···
aŇ bŇ

1 2 a1 b1

a2 b2

a3
······ bŇ-1

aŇ

bŇ

1 2 a1

a2 b1

a3 b2··· ···
aŇ bŇ-1

bŇ

1 2 b1

a1 b2

a2 b3··· ···
aŇ-1 bŇ

aŇ

1 2

a1 b1

a2 b2

a3 b3··· ···
aŇ bŇ

1 a1

2 b1

a2 b2

a3 b3··· ···
aŇ bŇ

1 a1 b1

2 b2

a2 b3··· ···
aŇ-1 bŇ

aŇ

1 a1 b1

2 a2 b2

a3 b3··· ···
aŇ bŇ

1 a1 b1

2 a2 b2

a3
······ bŇ-1

aŇ

bŇ

1 a1 b1

2 a2

a3 b2··· ···
aŇ bŇ-1

bŇ

1 2 a1

a2

a3···
aŇ

1 2

a1

a2

a3···
aŇ

1 a1

2

a2

a3···
aŇ

1 a1

2 a2

a3···
aŇ

1 2
1

2

1

⊗ 2

⊗
a1

a2···
aŇ

⊗
b1

b2···
bŇ

Ň := N−1

Figure 5.1: This branching tree shows all tableaux up to 2q + 2q̄. In the first two generations, this tree is

identical to Figure 4.1, as these generations consist of quarks only. In generations three and four we add one

antiquark each, which is given by the light grey and dark grey boxes respectively.

The observant reader might note that the number of tableaux appearing in each generation of Figures 5.1

and 4.1 is the same. This is no mere coincidence, but in fact a general statement, which will be proven in

chapter 6, Corollary 6.2.
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5.1.4 Projection operators from Littlewood-Richardson tableaux using the Leib-

niz formula for determinants

The LR-rule (Theorem 5.1) allows us to build up the Young tableaux corresponding to the irreducible

representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n. Let us now discuss how to construct the corresponding

projection operators. To accomplish this, we first need to recall the Leibniz formula for determinants [112].

5.1.4.1 Leibniz rule for determinants

Let U ∈ SU(N) and consider U to be in the fundamental representation such that it can act on the N -

dimensional vector space V ; in the physics sense, this means that U acts on the Fock space constituent

corresponding to a quark. Thus, U itself is given by an N ×N -matrix, and we denote its components as Uiai .

The Leibniz formula for determinants [112] allows us to calculate the determinant of any matrix by forming

an antisymmetric sum over its columns (or, equivalently, rows) as

det (U) = εa1a2...aNU1a1
U2a2

. . . UNaN , (5.20)

where a sum over repeated indices is implied. Further permuting the rows (resp. columns) of a matrix induces

a minus sign in its determinant [107] such that

εb1b2...bN det (U)︸ ︷︷ ︸
=1

= εa1a2...aNUb1a1
Ub2a2

. . . UbNaN , (5.21)

where we have used the fact that, by the definition of the special unitary group, the determinant of U must

equal 1. Lastly, since U is unitary, it follows that

(Uiai)
−1

= (Uiai)
†

= U†iai . (5.22)

Eq. (5.21) may, therefore, be cast as

εb1b2...bNU
†
bNaN

= εa1a2...aNUb1a1Ub2a2 . . . Ub(N−1)a(N−1)
. (5.23)

Thus, the Levi-Civita symbol εa1a2...aN acts as a map that translates a representation on V ⊗(N−1) into a

representation on V ∗ — eq. (5.23) allows us to read an antiquark as an antisymmetric product of (N − 1)

quarks, in agreement with eq. (5.7). Even more generally, one may write

εb1b2...bN U
†
bNaN

. . . U†b(N−j+1)a(N−j+1)︸ ︷︷ ︸
N−j antiquarks

= εa1a2...aN Ub1a1
Ub2a2

. . . Ub(N−j)a(N−j)︸ ︷︷ ︸
j quarks

. (5.24)

Let us now translate the two identities (5.23) and (5.24) into birdtrack notation: Following [72], the Levi-

Civita tensor ε12...N will be denoted by a black box over N index lines, where all of these lines exit to the

left. On the other hand, the index lines of ε†12...N will exit the black box to the right. For example,

iφεijk =
i
j
k

and i−φ(εijk)† =
i
j
k
, (5.25)
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where i−φ is a phase factor with φ = n(n−1)/2, and n is the number of legs/indices of the Levi-Civita tensor [72]

(for the example (5.25), φ = 3).6

As was already done in section 1.4.2.1, we will denote the elements of SU(N) by pink arrows pointing from

right to left,

Uij → i j ; (5.26a)

the placement of the matrix indices shows that U acts on elements of V from the left (i.e. the right index j

is contracted with the index of the vector in V ). As for the primitive invariants, we will eventually drop the

index labels on the birdtrack. In our examples, U† typically acts on elements of the dual space V ∗ from the

right, so we define its corresponding birdtrack as

U†ji → i j ; (5.26b)

readers should take note of the placement of the matrix indices on U†. If, however, we need to consider the

right action of U , or the left action of U†, we need to transpose the matrices of eqns. (5.26). In the birdtrack

language (where we do not want to explicitly write the index labels), we will indicate this with a bar over

the arrowhead,

([U ]ij)
t

= [U ]ji → i j and
(
U†ji

)t
= U†ij → i j (5.27)

(c.f. eqns. (1.145) and (1.146)). As in chapter 1, a tensor product of Wilson lines is represented by a tower

of lines with pink arrowheads, for example

Ui1j1 ⊗ Ui2j2 ⊗ U†j3i3 =
i1
i2
i3

j1
j2
j3
. (5.28)

Writing a bar over the tower of Wilson lines will indicate that each Wilson line in the tower has undergone

Hermitian conjugation,

(Ui1j1)
† ⊗ (Ui2j2)

† ⊗
(
U†j3i3

)†
= U†i1j1 ⊗ U

†
i2j2
⊗ Uj3i3 =

i1
i2
i3

j1
j2
j3
. (5.29a)

If we only wish to form the Hermitian conjugate of some (but not all) of the Wilson lines in the product, then

we will graphically gather the arrowheads of the conjugated Wilson lines to one side, such that the bar

only covers the affected arrowheads but not the unaffected ones, for example

(Ui1j1)
† ⊗ (Ui2j2)

† ⊗ U†j3i3 = U†i1j1 ⊗ U
†
i2j2
⊗ U†j3i3 =

i1
i2
i3

j1
j2
j3

(5.29b)

or Ui1j1 ⊗ (Ui2j2)
† ⊗ U†j3i3 = Ui1j1 ⊗ U†i2j2 ⊗ U

†
j3i3

=
i1
i2
i3

j1
j2
j3
. (5.29c)

6The phase factors i±φ are needed to ensure that the reordering of index lines of (εa1a2...aN )† brought abut by the Hermitian
conjugate † does not destroy the property (εa1a2...aN )†εa1a2...aN = 1, see [72, section 6.3].
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In birdtrack notation, (5.23) amounts to

... =
... , (5.30)

and similarly eq. (5.24) becomes

...

...

=

...

...

. (5.31)

It further should be noted that, due to the identity [72, eq. (6.28)]

...
...

1
2

N−1
N

dim(V )=N
=========

...
...

1
2

N−1
N

(5.32)

for Levi-Civita symbols of length N (where the numbers on the index lines in (5.32) keep track of their

amount, but are not necessarily the index label), the product (εa1a2...aN )†εb1b2...bN is an element of the

algebra of invariants API (SU(N), V ⊗m).

One now has to ask how the Leibniz formula for determinants introduced in this section can be used to

obtain the projection operators from the LR-tableaux. We believe that this is best illustrated by means of

an example:

5.1.4.2 The irreducible representations of SU(N) over V ⊗ V ∗ from Littlewood-Richardson

tableaux

The Fierz identity is a commonly used tool in many physics calculations. It allows one to decompose the

tensor product space of two Kronecker delta’s (one in the fundamental, the other in the antifundamental

representation)7 into two irreducible subspaces

δlkδij = [ta]ik[ta]jl +
1

N
δikδjl , (5.33)

where [ta]ik is the generator of the group. The Fierz identity is easily verifiable — the basic idea is to

exploit properties of traces of (products of) γ-matrices [116, sec. 29.3]. We will now show that the projection

operators appearing in the Fierz identity, and their summation exhibited in eq. (5.33), can be recovered from

the appropriate Littlewood-Richardson tableaux corresponding to 1 fundamental and 1 antifundamental

factor: We prove that the LR-tableaux give rise to the two irreducible projection operators

1

N
δikδjl =

1

N
and δlkδij −

1

N
δikδjl = − 1

N
(5.34)

7In practice, we usually consider them to be acted upon by Wilson lines.
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of SU(N) over V ⊗ V ∗. We will then utilize the Fierz identity to write the operator δlkδij − 1
N δikδjl in terms

of the generators ta. This is sufficient to achieve the main goal of this section, namely to demonstrate that

the standard method (starting from LR-tableaux and then using the Leibniz identity to arrive at the desired

operators) is not useful for practical calculations.

In birdtrack notation, the Fierz identity can be written as [72]

= +
1

N
, (5.35)

where the vertex between the dotted and solid lines denotes the generator ta := [ta]ik,

1√
2

[ta]ik :=
k

i
a and

1√
2

[tb]jl :=
l

j
b . (5.36)

As already mentioned, the Fierz identity decomposes the space V ⊗ V ∗ into irreducible subspaces. Thus,

the operators on the right-hand side of eq. (5.35) are projection operators corresponding to the irreducible

representations of SU(N) over V ⊗ V ∗ (see, for example, [72] or any other standard textbook),

adjoint representation: dim = N2 − 1 (5.37a)

singlet representation: dim = 1 . (5.37b)

Viewing the operators in eq. (5.35) as projectors, the Fierz identity tells us that the projection operators

corresponding to the irreducible representations of SU(N) over V ⊗ V ∗ sum up to the identity; this is a

property that we are already familiar with from Young projection operators over V ⊗m for m ≤ 4, and

their generalization by Littlewood for all m (c.f. eq. (3.6c)). When deriving the Fierz identity starting

from the corresponding LR-tableaux, we will need something stronger than the total summation property of

Young projection operators, namely the partial summation property of Hermitian Young projection operators

eq. (3.112) (c.f. section 3.3.4). This property states that the Hermitian Young projectors sum up to their

common Hermitian ancestor operator. This is the reason why the Hermitian Young projection operators are

of vital importance in the derivation described below.

Consider the branching tree of LR-tableaux for 1q + 1q̄ constructed according to Theorem 5.1:

1

1 2

3
···
N

1

2

3
···
N

. (5.38)

Using the dimension formula for Young tableaux (5.11), we see that the left tableau corresponds to a (N2−1)-

dimensional representation of SU(N), while the right tableau corresponds to a 1-dimensional representation

of SU(N). Thus, we expect these tableaux to give rise to operators (5.37a) and (5.37b) respectively. For the

remainder of this section, we will suggestively refer to the projection operators corresponding to the tableaux

in (5.38) as the adjoint and singlet, respectively.

Using the MOLD Theorem 3.5, the Hermitian Young projection operators corresponding to the tableaux (5.38)
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are given by8

P 1 2
3
···
N

=
2(N − 1)

N
· ...

... and P 1
2
3
···
N

=
...

... . (5.39)

The Hermitian parent operator of these two projectors corresponds to the tableau 1 . The Levi-Civita

symbol εa1a2...aN−1
embeds V ∗ into V ⊗(N−1) such that we may embed the projection operator P 1 into the

algebra API
(
SU(N), V ⊗ V ⊗(N−1)

)
,

1 ↪→ 1 ⊗

2

3
···
N

−→ ↪→ ...
... ; (5.40)

notice that in this embedding the antiquark is represented by (N − 1) quark lines in an antisymmetric state,

c.f. eq. (5.7). The summation property of Hermitian Young projection operators proved in section 3.3.4

predicts that the operators (5.39) sum up to their parent operator (5.40),9

...
... =

...
... +

2(N − 1)

N
· ...

... . (5.41)

We now wish to translate the fundamental legs 2 . . . N of each operator in (5.41) into an antifundamental

leg. This is done by acting an epsilon tensor of length N , ε2...N(N+1), on either side of the operators; such a

transformation cannot possibly make the operators zero, since the legs 2 . . . N are already in an antisymmetric

combination by construction. Having performed this transformation, we may then implement the Leibniz

formula (5.30) to regard the last leg exiting ε2...N(N+1) as an antifundamental leg. For example, for the

singlet operator this procedure yields

...
...

act ε−−−→ N · ...
... =: N · ...

1

...

q̄

, (5.42)

where we have decided to suppress the arrows in the last step and, instead, labelled the legs 1 and q̄ for

clarity. Notice that the additional factor N arising from acting ε2...N(N+1) on either side of the operator is

needed to ensure that the resulting operator is idempotent: when squaring this operator, the two Levi-Civita

tensors coming to stand next to each other will combine into an antisymmetrizer of length N , according to

eq. (5.32). However, due to the fact that the bottom leg on each ε-tensor is bent, the antisymmetrizer will

be traced over its bottom leg, inducing a factor 1/N .

8The prefactors of the operators in eq. (5.39) arise from the MOLD algorithm: since both operators correspond to lexically
ordered tableaux (c.f. section 3.4.1), the MOLD algorithm predicts that the Hermitian operators have the same normalization
factor as their Young counterparts.

9This can easily be double-checked via direct calculation.
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Going through the steps demonstrated in (5.42), the operators in eq. (5.41) transform as

...
... → N · ...

1

...

q̄

(5.43a)

...
... → N · ...

1

...

q̄

(5.43b)

2(N − 1)

N
· ...

... → 2(N − 1) · ...

1

...

q̄

. (5.43c)

These operators do not yet bear any visual resemblance to the objects appearing in the Fierz identity (5.35);

it requires approximately four pages of calculation and simplification (see appendix 5.A) to establish the

desired outcome:

N · ...

1

...

q̄

= (5.44a)

N · ...

1

...

q̄

=
1

N
(5.44b)

2(N − 1) · ...

1

...

q̄

= , (5.44c)

c.f. equations (5.174), (5.185) and (5.194), respectively. Substituting these results back into eq. (5.41) indeed

yields the Fierz identity,

=
1

N
+ , (5.45)

albeit at an excessive computational effort.

At this point, we hope to have convinced the reader that the standard method of obtaining the projection

operators from Littlewood-Richardson tableaux is very laborious. In this chapter, we will show that, at

least for singlet operators, there exists a more efficient construction method: Note that the singlet projector

in the Fierz identity, , could have been obtained by bending and mirroring the projection operator

corresponding to the irreducible representation of SU(N) over V ,

bend−−−→ mirror−−−−→ . (5.46)

Eq. (5.46) sets the general strategy for our construction algorithm discussed in section 5.2.
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5.1.4.3 A comment on the dimension of projection operators obtained from LR-tableaux

As mentioned previously, an operator is dimensionally nonzero if N is large enough to allow for all

antisymmetrizers contained in the operator to be nonzero. Thus, we can guarantee a projection operator

corresponding to an irreducible representation of SU(N) over V ⊗m ⊗ (V ∗)⊗n to be dimensionally nonzero if

N ≥ (m+n). In this case, the maximal dimension of the algebra of invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
,

namely d = (m + n)!, is reached. (The algebra API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
and its properties will be

discussed in more detail in chapters 6 to 8.)

The example of section 5.1.4.2 further shows that the textbook method of talking about irreducible represen-

tations of SU(N) over a mixed space V ⊗m⊗(V ∗)⊗n (using LR-tableaux) is rather more indirect than that over

a monotone space V ⊗m (using Young tableaux): The primitive invariants of SU(N) over V ⊗m⊗ (V ∗)⊗n, and

thus all elements of API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
, are included in API

(
SU(N), V ⊗[m+n(N−1)]

)
in the sense

of a subalgebra, as is evident from the corresponding Littlewood-Richardson tableaux Ym,n (c.f. eq. (5.16) in

Theorem 5.1), which form a subset of Ym+n(N−1). This is due to the presence of εi1...iN as a second invariant

in addition to δij (c.f. eq. (5.32)). To be a little more explicit: API
(
SU(N), V ⊗[m+n(N−1)]

)
encompasses

representations on V ⊗m ⊗ (V ∗)⊗n via the LR-rule, which exploits the determinant condition for SU(N), i.e.

the invariance of the ε-tensor in N dimensions, and so formally gives access to all these representations as

well. The drawback, clearly, is the size of the algebra: [m+ n(N − 1)]!� (m+ n)! generically, and keeping

N as a parameter will not be a trivial task.

In this chapter, we will use what we have learnt about API (SU(N), V ⊗m) in chapters 3 and 4 to construct

singlet projectors directly as elemets of API
(
SU(N), V ⊗m ⊗ (V ∗)⊗m

)
(in physics parlance, that is, with m

particles and m antiparticles), and more generally API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
without any detour through

API
(
SU(N), V ⊗[m+m(N−1)]

)
(resp API

(
SU(N), V ⊗[m+n(N−1)]

)
), thus keeping N as a parameter in the pro-

cess.

5.2 Singlet projection operators

The special unitary group SU(N) has two kinds of primitive invariants over a mixed product space V ⊗m ⊗
(V ∗)⊗n: a product of Kronecker δ’s, and Levi-Civita tensors of size N , ε12...N , where N = dim(V ) (see [72,

92, 93] or any other standard textbook). Since the projection operators corresponding to (irreducible) rep-

resentations of SU(N) must themselves be invariant under the group operation — that is, they are elements

of the algebra of invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
— they have to be comprised of Kronecker δ’s

and Levi-Civita symbols. In particular, this holds for the singlet projection operators corresponding to the

1-dimensional irreducible representations of SU(N). It is clear that a singlet projector containing only Kro-

necker δ’s must act on a product space containing the same amount of fundamental and antifundamental

factors V ⊗m ⊗ (V ∗)⊗m [93, 117]; this is best understood in terms of birdtracks, where each Kronecker δ,

represented by a line,

δij = i j , (5.47)

connects each fundamental index to a unique antifundamental index. Only the presence of Levi-Civita tensors

allows for singlets over a product space that is not evenly split between V and V ∗, section 5.2.2.
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It can, however, be shown that the singlets including Levi-Civita tensors are completely equivalent to a subset

of singlets over V ⊗k ⊗ (V ∗)⊗k for N = dim(V ), see section 5.2.2.2. This should come as no surprise since a

product of Levi-Civita symbols of length N , (εa1a2...aN )†εb1b2...bN , becomes an antisymmetrizer of length N ,

which in turn can again be written as a product of Kronecker δ’s [72] (c.f. eq. (5.32)),

...
...

1
2

N−1
N

dim(V )=N
=========

...
...

1
2

N−1
N

. (5.48)

Before diving into the general argument, we will motivate this equivalence by taking a closer look at the

singlet projector of SU(3) over V ⊗3, which is comprised solely of Levi-Civita tensors,

PS = , (5.49)

in section 5.2.2.1. This example will be familiar to physicists, as it describes a 3-quark, color neutral repre-

sentation — a baryon.

5.2.1 Singlet projectors over V ⊗k ⊗ (V ∗)⊗k: Kronecker δ’s

In this section, we provide an explicit construction algorithm for the singlet projection operators of SU(N)

over a product space consisting of an equal number of quarks and antiquarks, V ⊗k ⊗ (V ∗)⊗k. Our general

argument is best understood using Clebsch-Gordan operators over V ⊗m ⊗ (V ∗)⊗n where m + n = k. We

therefore dedicate section 5.2.1.1 to adapting the birdtrack notation for Clebsch-Gordan operators over V ⊗m

(c.f. section 4.4.2 in chapter 4) to those over V ⊗m ⊗ (V ∗)⊗n.

In section 4.4.2, we showed (using Clebsch-Gordan operators) that the Hermitian projection and unitary

transition operators of SU(N) over V ⊗m constitute a basis for the algebra of invariants API (SU(N), V ⊗m).

This argument will be generalized to mixed spaces V ⊗m ⊗ (V ∗)⊗n in section 5.2.1.2. The fact that the

projection and transition operators span API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
is a key ingredient in the general

construction algorithm for singlet projectors over V ⊗k ⊗ (V ∗)⊗k, which will be given in section 5.2.1.3.

In practical applications, however, Clebsch-Gordan operators are of little use, as obtaining them requires one

to first construct all possible states. In section 5.2.1.4 we argue that the Clebsch-Gordan operators used in

the construction of the singlet projectors can be substituted for Hermitian Young projection operators (such

as MOLD operators, c.f. Theorem 3.5) and transition operators (c.f. Theorem 4.5). Since the construction

algorithms for the MOLD operators and corresponding transition operators are very efficient, these operators

are much better suited for practical applications.

Note that the results of sections 5.2.1.2 and 5.2.1.3 could, equally well, be derived from Schur’s Lemma, but

the graphical bending algorithm to generate singlet states (c.f. eq. (5.76) in section 5.2.1.3) is best understood

in terms of Clebsch-Gordan operators.

5.2.1.1 A short review of Clebsch-Gordan operators

Analogous to the quark-only case (c.f. section 4.4.2), we denote a general Clebsch-Gordan operator

that implements the projection and basis change from a product of irreducible representations labelled
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q1, . . . , qm, q̄1, . . . , q̄n (with states labelled by k1, . . . , km, k̄1, . . . , k̄n) into an irreducible representation la-

belled by λ (where λ stands in for a Littlewood-Richardson tableau and with states labelled by κ) [93], by

Cλκ;q1...mk1...mq̄1...nk̄1...n
,

Cλκ;q1...mk1...mq̄1...nk̄1...n
= |λ, κ〉

Cλκ;q1...mk1...mq̄1...nk̄1...n︷ ︸︸ ︷
〈λ, κ|q1, k1〉 . . . |qm, km〉|q̄1, k̄1〉 . . . |q̄n, k̄n〉〈q1, k1| . . . 〈qm, km|〈q̄1, k̄1| . . . 〈q̄n, k̄n|

=: |λ, κ〉 κ

...

...
λ

q1,k1

qm,km
q̄1, k̄1

q̄n, q̄n

〈q1,k1|

〈qm,km|
〈q̄1, k̄1|

〈q̄n, q̄n|

. (5.50)

The part marked Cλκ;q1...mk1...mq̄1...nk̄1...n
is the usual Clebsch-Gordan coefficient, and the diagram in the

second line is the birdtrack representation of Cλκ;q1...mk1...mq̄1...nk̄1...n
(c.f. [72] and chapter 4). The full

operator is obtained by summing over all the states

Cλ,m,n :=
∑

κ

∑

ki,k̄i

Cλκ;q1...mk1...mq̄1...nk̄1...n
=

...

...
λ . (5.51)

By their very definition, the Clebsch-Gordan operators (5.51) satisfy analogous properties to their quark-only

counterparts,

...

...
λ

U

U
U†

U†

= U(λ)

...

...
λ and

...

...
λ

U†

U†

U

U

= U†(λ)

...

...
λ (5.52a)

〈λ, κ|λ′, κ′〉 = κ

...

...
λ λ ′ κ ′ = δλ,λ′δκ,κ′ , (5.52b)

c.f. eqns. (4.80) and (4.81).

5.2.1.2 Projection and transition operators as a basis for the algebra of invariants

In this section, the argument (given in section 4.4.2) that the Hermitian projection and transition operators

of SU(N) over V ⊗m span API (SU(N), V ⊗m) will be adapted for the operators over V ⊗m⊗ (V ∗)⊗n. We begin

with a recapitulation of what it means for two representations to be equivalent.

Consider two unitary irreducible representations of SU(N) labelled λ and λ′ respectively. These two repre-

sentations are said to be equivalent if there exists an isomorphism Sλ′λ between the corresponding vector

spaces,

S(λ′λ) : V(λ) −→ V(λ′) , (5.53a)

such that

S(λ′λ)U(λ)S−1
(λ′λ) = U(λ′) for every U ∈ SU(N) , (5.53b)
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where U(λ) (resp. U(λ′)) denotes the group element U in the representation λ (resp. λ′). The map S(λ′λ)

is unitary in the sense that it maps an orthonormal basis of V(λ) to an orthonormal basis of V(λ′). To be

explicit, we may now choose an orthonormal basis {|λκ〉|κ = 1, . . . ,dim(V(λ))} in the vector space V(λ) so

that

〈λκ|λκ′〉 = δκ′κ , (5.54)

and consider the associated basis in V(λ′) given by

|λ′κ〉 =: S(λ′λ)|λκ〉 . (5.55a)

The orthonormality of this basis follows from eq. (5.54) and the unitarity of S(λ′λ),

〈λ′κ|λ′κ′〉 = 〈λκ|S†(λ′λ)S(λ′λ)|λκ′〉 = 〈λκ|λκ′〉 = δκ′κ . (5.55b)

With this choice of basis, the matrix elements of S(λ′λ) become the identity matrix,

〈λ′κ′| S(λ′λ)|λκ〉︸ ︷︷ ︸
=|λ′κ〉

= 〈λ′κ′|λ′κ〉 = δκ′κ . (5.55c)

With this synchronized basis choice, the matrices U(λ) and U(λ′) are equal for every U ∈ SU(N):10

[U(λ)]κ′κ := 〈λκ′|U(λ)|λκ〉 = 〈λ′κ′|S(λ′λ)U(λ)S−1
(λ′λ)|λ′κ〉

eq. (5.53b)
======== 〈λ′κ′|U(λ′)|λ′κ〉 =: [U(λ′)]κ′κ . (5.56)

It should be noted that for any two representations λ and λ′ with the same dimension an isomorphism

between the corresponding vector spaces, à la eq. (5.53a), can be found, but the identity (5.53b) holds if and

only if the two representations are equivalent.

Let us now consider a product of Clebsch-Gordan operators C†λ,m,nSλλ′Cλ′,m,n (which is a linear map on the

space V ⊗m ⊗ (V ∗)⊗n) in which the representations λ and λ′ are equivalent,

C†λ,m,nSλλ′Cλ′,m,n =
∑

κ,κ′

∑

ki,k′i,k̄i,k̄
′
i

{
|q1, k1〉 . . . |q̄n, k̄n〉Cλκ;q1...mk1...mq̄1...nk̄1...n

×

× 〈λ, κ|Sλλ′ |λ′, κ′〉︸ ︷︷ ︸
δκκ′

Cλ′κ′;q′1...mk′1...mq̄′1...nk̄′1...n〈q
′
1, k
′
1| . . . 〈q̄′n, k̄′n|

}
,

(5.57)

where we assume the basis choice (5.55) in the last step.

10Note that projecting out the matrix elements only makes sense if the basis states are orthonormal, since the underlying
procedure is a spectral decomposition of U .
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In birdtrack notation, the product (5.57) is written as 11

C†λ,m,nSλλ′Cλ′,m,n =

...

...

...

...
λ ′λ , (5.58)

where δκκ′ (which is the Kronecker δ in the representation λ or, equivalently, λ′) is explicitly visible,

δκκ′ = κ κ′ , (5.59)

and thus the map Sλλ′ is invisible in the birdtrack formulation. For this reason, displaying Sλλ′ on the

left-hand side of eq. (5.58) might seem unnecessary, but can be useful as a reminder that we connect different

vector spaces V(λ) and V(λ′). Since the Clebsch-Gordan operators Cλ,m,n satisfy eqns. (5.52), products of the

form C†λ,m,nSλλ′Cλ′,m,n are explicitly invariant under a global transformation of SU(N),

U

U
U†

U†

...

...

...

...
λ ′λ

U†

U†

U

U

=

...

...
λ U(λ)U

†
(λ′)

...

...
λ ′

eq. (5.56)
========

...

...

...

...
λ ′λ . (5.60)

In other words, all products C†λ,m,nSλλ′Cλ′,m,n are elements of the algebra of invariants

API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
. This discussion covers both transition and projection operators, the latter

arising from the special case that V(λ) = V(λ′), so that Sλλ′ is the identity map from the outset. For the

further discussion, we nevertheless distinguish projection and transition operators notationally,

Projection ops. (λ = λ′): Pλ :=
∑

κ

|λ, κ〉〈λ, κ| = C†λ,m,nSλλCλ,m,n =

...

...

...

...
λλ (5.61a)

Transition ops. (λ 6= λ′): Tλλ′ :=
∑

κ

|λ, κ〉〈λ′, κ| = C†λ,m,nSλλ′Cλ′,m,n =

...

...

...

...
λ ′λ . (5.61b)

This combined set of operators satisfies

PλPλ′ = δλλ′Pλ (5.62)

and

Tλλ′Pλ′ = Tλλ′ = PλTλλ′ (5.63a)

T †λλ′ = Tλ′λ (5.63b)

Tλλ′Tλ′λ = Pλ ; (5.63c)

these properties are a consequence of the orthogonality of Clebsch-Gordan operators eq. (5.52b). Unlike the

11In the birdtrack spirit, the Hermitian conjugate of a Clebsch-Gordan operator is obtained by flipping it about the vertical

axis and reversing the arrows [72], C†λ,m,n :=
...

...
λ , c.f. section 3.3.1.
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projection operators Pλ, the transition operators Tλλ′ are clearly not Hermitian. However, unitarity follows

immediately from their definition in terms of the Clebsch-Gordan states (5.61b),

(Tλ′λ)† = Tλλ′ . (5.64)

These operators in fact represent the isomorphisms Sλλ′ that, in the standard perspective, allow us to claim

equivalence between the two representations in the first place. Our point here is that these isomorphisms are

elements of the algebra of invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
.

By their very definition, the Clebsch-Gordan operators give a complete set of states translating the product

representation into the representation λ (see, for example, [93, Thm. 3.12]). Furthermore, the totality of all

projection and transition operators, eqns. (5.61), gives all nonzero combinations of Clebsch-Gordan operators

of the form C†λ,m,nSλλ′Cλ′,m,n : V ⊗m ⊗ (V ∗)⊗n → V ⊗m ⊗ (V ∗)⊗n. Since these are necessarily invariants

of SU(N), the projection and transition operators exhaust the algebra of invariants and thus

constitue a basis for API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
.

5.2.1.3 Singlet projectors and transition operators over V ⊗k ⊗ (V ∗)⊗k from Clebsch-Gordan

operators

We begin this section with an analysis of singlet projectors in the birdtrack language, which will ultimately

inspire the general construction algorithm.

In this chapter, “singlet projector” is the name given to an operator that projects onto a 1-dimensional

representation of the special unitary group SU(N) (c.f. [27]). It will be convenient to begin our exposition of

the singlet representations of SU(N) with the 1-dimensional representations of the unitary group U(N) (of

which SU(N) is a subgroup).

In general, a particular n-dimensional representation Rλ,n of U(N) specifies a group homomorphism πλ,n

from U(N) to the general linear group acting on an n-dimensional vector space V n,

πλ,n : U(N) −→ GL(V n) ; (5.65)

in this chapter, we will always take V = C. Thus, if Rλ,1 is a singlet representation, πλ,1 is a homomorphism

into GL(C). Furthermore, since it is a group homomorphism, U(N) will be mapped to unitary elements in

GL(C). These lie along the unit circle,

πλ,1 : U(N) −→ GL(C) (5.66a)

U 7→ eiφ(U) , (5.66b)

where the scalars φ(U), giving the phase of the unit circle, depend on the group elements U .

To restrict the singlet representation (5.66) to the special unitary group SU(N) ⊂ U(N), the determinant

condition det(U)
!
= 1 (making SU(N) “special”) also has to be satisfied by the elements πλ,1(U), yielding

det (πλ,1(U)) = det
(
eiφ(U)

)
!
= 1 =⇒ φ(U) = 0 . (5.67)
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Hence, in a singlet representation, the elements of SU(N) get mapped to unity,

U
singlet rep.−−−−−−−→ 1 . (5.68)

What does this mean for a Clebsch-Gordan operator projecting onto a singlet representation in the birdtrack

language? In general, we have relation (5.52a)

U

U
U†

U†

...

...
λ =

...

...
λ U(λ) . (5.69)

If λ corresponds to a singlet representation Rλ,1 of SU(N), then U(λ) = 1, according to eq. (5.68). In

particular, the scalar U(λ) = 1 does not carry an index and therefore neither does the “index line”

representing a Kronecker-δ in the representation Rλ,1, δij
Rλ,1−−−→ 1. This allows us to omit altogether,

U

U
U†

U†

...

...
λ =

...

...
λ · 1 =

...

...
λ . (5.70)

Eq. (5.70) recovers the defining condition (1.223) of a singlet state,

U|φSλ〉 = |φSλ〉 and 〈φSλ |U† = 〈φSλ | , (5.71)

where U = U ⊗ · · · ⊗ U ⊗ U† ⊗ · · · ⊗ U† and

|φSλ〉 :=

...

...
λ . (5.72)

Furthermore, eq. (5.70) teaches us that a projection operator constructed from Clebsch-Gordan operators

(c.f. eq. (5.61a)) corresponding to singlet representations will take the graphical form

...

...
λ

...

...
λ , (5.73)

with the key feature that no index line passes through the middle. This characteristic graphical property of

a singlet projection operator can also be concluded in a different way:

The dimension of the irreducible representation of SU(N) over V ⊗m⊗(V ∗)⊗n corresponding to the projection

operator Pλ is given by the trace of Pλ (see, for example, [72] for a textbook exposition): Suppose Pλ

corresponds to a d-dimensional representation of SU(N). One may always choose a basis such that Pλ is

given by a (m+ n)× (m+ n) matrix with 1 on the diagonal of the d× d sub-block onto which Pλ projects,

and zeros everywhere else. In this basis, it is easily seen that the trace of Pλ is d, tr (Pλ) = d. Since the

trace of an operator is basis-independent, it follows that the trace of Pλ gives the dimension of the irreducible

representation of SU(N) corresponding to Pλ in any basis. Hence

d = tr (Pλ) =
∑

κ

tr (|λ, κ〉〈λ, κ|) =
∑

κ

〈λ, κ|λ, κ〉 = |{κ}| , (5.74)
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where the second equality originates from tracing Pλ as given in (5.61a), and |{κ}| is the size of the set of

states {κ} over which κ is summed. If we consider λ to correspond to a singlet representation Rλ,1 of SU(N)

(that is, d = 1), it follows that |{κ}| = 1, which implies that the set {κ} contains one element. Hence, no

sum over the index κ takes place, and the Kronecker δ in the representation λ inducing the sum may be

omitted [72],

...

...

...

...
λλ

singlet rep.−−−−−−−→
...

...
λ

...

...
λ . (5.75)

Hence, we have once again arrived at the conclusion that, in the birdtrack sense, a singlet projection operator

is visually characterized by an operator with no index lines crossing through the middle (c.f. eq. (5.73)).

This observation motivates a graphical construction of singlet states |φS〉 of SU(N) over V ⊗(m+n)⊗(V ∗)⊗(m+n)

via reshaping the projection and transition operators, eqns. (5.61), over V ⊗m ⊗ (V ∗)⊗n (see the following

eq. (5.76)), as then the singlet projection operators |φS〉〈φS | will not have any index lines passing through

the middle (c.f. eq. (5.84)): Starting from an operator Tλλ′
12 and labelling the fundamental lines as q, p and

the antifundamental lines as q̄, p̄ for clarity, we obtain the following state

p1

pm
p̄1

p̄n

...

...
λ

...

...
λ ′

q1

qm
q̄1

q̄n

reshape−−−−−→

p1

pm
p̄1

p̄n

...

...

q̄n

q̄1
qm

q1

...

...

λ

λ ′

=

p1

pm
p̄1

p̄n
q̄n

q̄1
qm

q1

...

...

...

...

λ

λ ′
=: |φSλλ′〉 . (5.76)

Due to the reshaping process the quark lines q1 . . . qm have become antiquark lines, and similarly the antiquark

lines q̄1 . . . q̄n have become quark lines in that their transformation behaviour changed: We call a Kronecker δ

a quark line if we can interpret it as the unit operator in Lin(V ), and thus transforms under the associated

representation:

quark line: U U† = ∈ Lin(V ) . (5.77a)

Similarly, an antiquark line is a Kronecker δ that acts as a the unit operator in Lin(V ∗) and transforms

accordingly as

antiquark line: U† U = ∈ Lin(V ∗) . (5.77b)

The arrow on the index line indicates which transformation behaviour the Kronecker δ obeys. Consistently,

we interpret as an element in V ⊗V ∗, and as an element in V ∗⊗V , transforming under the associated

product representations as invariants,

U

U†
= ∈ V ⊗ V ∗ (5.78a)

U†

U
= ∈ V ∗ ⊗ V . (5.78b)

12We allow for λ and λ′ to be equal, Tλλ′
λ=λ′−−−−→ Pλ.
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This obviously generalizes to the products appearing in the Clebsch-Gordan constructions of eq. (5.76). In

this sense, the index lines q1 . . . qm transformed as quark lines in the operators Tλλ′ but now transform as

antiquark lines after the reshaping procedure, and similarly for the index lines labelled q̄1 . . . q̄n.

In summary, the states (5.76) take in the quark lines {p1, . . . , pm, q̄n, . . . , q̄1} (a total of m + n quark lines)

and the antiquark lines {p̄1, . . . , p̄n, qm, . . . , q1} (a total of n+m antiquark lines), and are therefore elements

in V ⊗(m+n)⊗ (V ∗)⊗(m+n)
. It immediately follows from eq. (5.60) that the states |φSλλ′〉 are also singlet states

in that they satisfy eq. (5.71),

U|φSλλ′〉 = |φSλλ′〉 and 〈φSλλ′ |U† = 〈φSλλ′ | , (5.79)

where U is an appropriate tensor product of U,U† ∈ SU(N). Lastly, by the completeness of Clebsch-

Gordan operators [93], the construction (5.76) exhausts all possible singlet states of SU(N) over V ⊗(m+n) ⊗
(V ∗)⊗(m+n)

, and thus spans the algebra of singlet states.

The singlet states (5.76) can be used to construct the projection operator PSλλ′ (which lies in the algebra of

invariants API
(
SU(N), V ⊗(m+n) ⊗ (V ∗)⊗(m+n)

)
) as

PSλλ′ := |φSλλ′〉〈φSλλ′ | = βλλ′ ·

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′
, βλλ′ is a constant . (5.80)

The operators (5.80) are singlet projectors, as they satisfy

U · PSλλ′ = PSλλ′ = PSλλ′ ·U† ; (5.81)

this is an immediate consequence of eq. (5.79). The requirement that PSλλ′ be a projection operator

PSλλ′ · PSλλ′
!
= PSλλ′ (5.82)

fixes the constant βλλ′ :

PSλλ′ ·PSλλ′ = β2
λλ′ ·

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′
= β2

λλ′ ·

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′

!
= βλλ′ ·

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′
(5.83)

such that

PSλλ′ := βλλ′ ·

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′
, where βλλ′ :=




...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′




−1

. (5.84)
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Noticing that a trace of birdtrack operators is realized by connecting index lines on the same level [72],

ρ = ...
...

ρ → tr (ρ) :=
...

...

ρ , (5.85)

it follows that

βλλ′ =




...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′




−1

=


tr




...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′







−1

. (5.86)

With this value of βλλ′ it becomes clear that the trace of PSλλ′ is 1:

tr
(
PSλλ′

)
= βλλ′ · tr




...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′


 = 1 , (5.87)

once again confirming that PSλλ′ corresponds to a singlet representation of SU(N). At this point, we want to

emphasize that we have not chosen βλλ′ such that tr
(
PSλλ′

)
= 1, but rather so that the idempotency property

PSλλ′ ·PSλλ′ = PSλλ′ is satisfied; while it is always possible to force the trace of a projection operator O to 1 by

fixing its normalization constant, this constant may not be the correct one for rendering O idempotent.

The projection operators constructed in this way are clearly orthonormal from eq. (5.52b). Furthermore, we

note that we have not fixed dim(V ) = N to a particular value in our considerations so far, but have rather

kept it as a parameter. Thus, the projector (5.84) is a singlet independently of N .

Lastly, we notice that the singlet projection operators (5.84) all correspond to equivalent irreducible repre-

sentations of SU(N) since we can explicitly construct the transition operators between them: Consider two

singlet projection operators

PSλλ′ = βλλ′ ·

...

...

...

...

λ

λ ′

...

...

...

...

λ

λ ′
and PSξ,ξ′ = βξξ′ ·

...

...

...

...

ξ

ξ ′

...

...

...

...

ξ

ξ ′
, (5.88)

where βλλ′ and βξξ′ are defined according to eq. (5.86). The object TSλλ′,ξξ′ defined as

TSλλ′,ξξ′ :=
√
βλλ′βξξ′ ·

...

...

...

...

λ

λ ′

...

...

...

...

ξ

ξ ′
(5.89)

is the unique transition operator between PSλλ′ and PSξξ′ as it satisfies the defining properties of transition

operators (c.f. eqns. (5.63))

TSλλ′,ξξ′ · PSξξ′ = TSλλ′,ξξ′ = PSλλ′ · TSλλ′,ξξ′ (5.90a)
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(
TSλλ′,ξξ′

)†
= TSξξ′,λλ′ (5.90b)

TSλλ′,ξξ′ · TSξξ′,λλ′ = PSλλ′ ; (5.90c)

this is an immediate consequence of eq. (5.52b). We thus conclude that all singlet projection operators

constructed according to (5.84) correspond to equivalent irreducible representations of SU(N) over V ⊗(m+n)⊗
(V ∗)⊗(m+n)

.

5.2.1.4 Constructing singlet projectors over V ⊗k ⊗ (V ∗)⊗k from the projector basis Sk

In the previous section, we constructed the singlet states of SU(N) over V ⊗k ⊗ (V ∗)⊗k (where k = m + n)

by reshaping the Clebsch-Gordan projection (5.61a) and transition (5.61b) operators, c.f. eq. (5.76). While

the reshaping process itself is very simple and thus ideal for practical applications, these singlet states have

one major drawback: one first needs to construct all states over V ⊗m⊗ (V ∗)⊗n in order to build all Clebsch-

Gordan operators to then form the transition and projection operators that will eventually be reshaped

into singlet states — a cumbersome and time-consuming task. Thus, in order to make the construction

method (5.76) practical, we need to find an alternative to the Clebsch-Gordan operators:

It is important to note that, had we started out with the Clebsch-Gordan operators over a total of (m+ n)

particles split into quarks and antiquarks in some other way, we would have obtained equivalent singlet states,

which can be made into the states (5.76) by essentially reordering the (anti-) fundamental lines. In particular,

this holds for Clebsch-Gordan operators taking in k = m+ n fundamental lines only,

Cλ,(m+n) := ...λ , (5.91)

since clearly

PSλλ′ := βλλ′ ·

...

...

...

...

λ

λ ′

...

...

λ

λ ′
where βλλ′ :=




...

...

λ

λ ′

...

...

...

...

λ

λ ′




−1

(5.92)

is a singlet projection operator of SU(N) over V ⊗k⊗(V ∗)⊗k. It should be noted that the algebras of invariants

API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
and API

(
SU(N), V ⊗(m+n) = V ⊗k

)
have the same size basis, since their bases

in terms of primitive invariants are in 1-to-1 correspondence, c.f. “swapping fundamental for antifundamental

lines” on page 217.

This observation does not seem like a breakthrough yet, as we are still required to construct the Clebsch-

Gordan operators in order to arrive at the desired singlet states. However, since the projection and transition

operators of SU(N) over V ⊗k form a basis for API
(
SU(N), V ⊗k

)
, a different basis will also provide all singlet

projection operators over V ⊗k ⊗ (V ∗)⊗k via the reshaping process. Furthermore, we know that the basis of

API
(
SU(N), V ⊗k

)
has size k! and thus gives rise to exactly k! distinct singlet states.

In section 4.3.2, we showed that the algebra of invariants API
(
SU(N), V ⊗k

)
is spanned by the MOLD

operators (c.f. Theorem 3.5) and their corresponding transition operators (c.f. Theorem 4.5). The algorithm

used to construct these operators is very efficient and easily implementable on a computer. Thus, bending
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these operators will provide us with a computationally inexpensive way of constructing the singlet states and

corresponding projection operators of SU(N) over V ⊗k ⊗ (V ∗)⊗k:

Let Sk denote the set of all MOLD projection and transition operators (c.f. section 4.3.2). We arrange the

elements of Sk in a matrix Mk where the diagonal elements mii are the Hermitian projection operators, and

the off-diagonal elements mij are the transition operators between mii and mjj ; this will yield a block-diagonal

matrix where each block corresponds to a set of equivalent representations λi,




λ1

λ2

λ3

λn




. (5.93)

For example, the matrix M3 is given by (c.f. section 4.6.1)

M3 =




0 0 0

0 4
3 ·

√
4
3 · 0

0
√

4
3 · 4

3 · 0

0 0 0




, (5.94)

where we have highlighted the projection operators mii for visual clarity. The orthonormal singlet states of

SU(N) over V ⊗k ⊗ (V ∗)⊗k are obtained by bending the operators mij in Mk,

|mij〉√
〈mij |mij〉

:=

. .
.

. . .

mi j . (5.95)

These singlet states are clearly orthonormal: The scalar product 〈A|B〉 of two operators A and B is formed

by contracting indices on A† and B. However, this is equivalent to taking their trace,

〈A|B〉 = tr (|A〉〈B|) = tr
(
A†B

)
. (5.96)

Orthogonality of the operators in Sk under the scalar product (5.96) (c.f. chapter 4) in turn renders the

singlet states (5.95) orthogonal, since

〈mji|mkl〉 = tr (mjimkl) = δikδjltr (mjimij) = δikδjl〈mji|mij〉 , (5.97)

where we used the fact that m†ij = mji.
13 For a proof of the orthogonality of the states (5.95) in the birdtrack

13 If mji = mii is a projection operator, m†ii = mii follows immediately from the Hermiticity property of the MOLD operators.

If mji is a transition operator, then m†ij = mji is merely the defining property (5.63b) of transition operators.
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formalism see appendix 5.B.1.

We may now construct projection operators using the singlet states (5.95),

PSij :=
|mij〉〈mij |
〈mij |mij〉

, (5.98)

which, in birdtrack notation, can be written as

PSij =
1

tr
(
m†ijmij

)
. .
.

. . .

mi j

. . .

. .
.

m†
i j =

1

tr (mjimij)

. .
.

. . .

mi j

. . .

. .
.

m ji . (5.99)

Idempotency and mutual orthogonality of these operators follows from eq. (5.97). From the same token, it

can be shown that these operators indeed correspond to 1-dimensional representations of SU(N) and thus

deserve to be called singlet projectors,

dim
(
PSij
)

= tr
(
PSij
)

= tr

( |mij〉〈mij |
〈mij |mij〉

)
=

tr (|mij〉〈mij |)
〈mij |mij〉

=
〈mij |mij〉
〈mij |mij〉

= 1 . (5.100)

Proofs of the mutual orthogonality of these projection operators and their dimension in birdtrack notation

are given in appendices 5.B.2 and 5.B.3 respectively.

Let us summarize our discussion on singlet projection operators in the following Theorem:

Theorem 5.2 – orthogonal N-independent singlets & singlet count:

Consider the irreducible representations of SU(N) on a product space V ⊗k ⊗ (V ∗)⊗k. There exist exactly k!

singlet states |φS〉 satisfying

U|φS〉 = |φS〉 and 〈φS |U† = 〈φS | , (5.101)

where U is a tensor product defined as U := U⊗k⊗
(
U†
)⊗k

, and U ∈ SU(N) is arbitrary. These singlet states

are obtained from reshaping the basis elements of API
(
SU(N), V ⊗k

)
. In particular, if one chooses a basis of

Hermitian Young projection operators and transition operators Sk = {mij}, the resulting normalized singlet

states

|mij〉√
〈mij |mij〉

:=

. .
.

. . .

mi j (5.102)

are orthonormal

〈mkl|mij〉√
〈mij |mij〉

√
〈mkl|mkl〉

= δikδjl . (5.103)

From these singlet states one can form exactly k! singlet projection operators corresponding to the k! 1-
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dimensional irreducible representations (singlet representations) of SU(N) over V ⊗k ⊗ (V ∗)⊗k,

PSij :=
|mij〉〈mij |
〈mij |mij〉

=
1

tr
(
m†ijmij

)
. .
.

. . .

mi j

. . .

. .
.

m†
i j . (5.104)

5.2.1.5 Transition operators and an example of the complete singlet algebra over V ⊗k⊗ (V ∗)⊗k

In section 5.2.1.3 we discussed that all singlet projection operators constructed from bending the basis

elements of the algebra of invariants of SU(N) are equivalent. While a basis for API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)

(with m+n = k) in terms of Clebsch-Gordan operators was used in section 5.2.1.3, the same statement must

hold if one chooses a different basis for any API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
such that m+n = k. In particular,

one may choose the basis Sk of API
(
SU(N), V ⊗k

)
used in Theorem 5.2 to construct the singlet projectors of

SU(N) over V ⊗k ⊗ (V ∗)⊗k. Theorem 5.3 constructs the transition operators using the basis Sk by analogy

to eq. (5.89):

Theorem 5.3 – transition operators between singlet projectors:

All 1-dimensionel irreducible representations of SU(N) over the product space V ⊗k ⊗ (V ∗)⊗k are equivalent.

Let PSij and PSkl be two singlet projection operators corresponding to such 1-dimensionel representations, and

let them be constructed according to Theorem 5.2, eq. (5.104). Then the transition operator TSij,kl between PSij
and PSkl is given by

TSij,kl :=
1√

tr
(
m†ijmij

)
tr
(
m†klmkl

)
. .
.

. . .

mi j

. . .

. .
.

m†
kl . (5.105)

In appendix 5.B.4, we explicitly demonstrate in the birdtrack formalism that the operators (5.105) satisfy all

defining properties of transition operators given in eqns. (5.90).

Having obtained a practical construction algorithm for the singlet states, and thus also for the singlet pro-

jection and transition operators of SU(N) over V ⊗k ⊗ (V ∗)⊗k (Theorems 5.2 and 5.3), we now look at an

example: Let us construct all singlet projection and transition operators of SU(N) over V ⊗3 ⊗ (V ∗)⊗3
. To

accomplish this, we bend the elements of S3
14

S3 =

{
,

4

3
· ,

√
4

3
· ,

√
4

3
· ,

4

3
· ,

}
(5.106)

into singlet states

χ1 · , θN>1χ2 · , θN>1χ2 · , θN>1χ2 · , θN>1χ2 · , and θN>2χ3 · , (5.107)

14This set can be read off from eq. (5.94). The order of the elements in S3 arises from listing the matrix elements in M3

row-wise from left to right, starting at the top row. This particular order is helpful as it produces explicitly block-diagonal
matrices in the coincidence limits discussed in section 5.3.2.1.
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where the function θN>p defined as

θN>p :=





1 if N > p

0 if N ≤ p
, p ∈ N , (5.108)

reminds us that the affected operators in (5.107) are dimensionally zero (c.f. appendix 4.A or page 221 for

a discussion on dimensional zeros) for values of N that are smaller than the threshold p. The normalization

constants χi are given by

χ1 =
6

(N + 2)(N + 1)N
, χ2 =

3

N(N2 − 1)
and χ3 =

6

(N − 2)(N − 1)N
. (5.109)

Using the singlet states (5.107), we can construct the singlet projection and transition operators of SU(N)

over V ⊗3 ⊗ (V ∗)⊗3
. Arranging them into a matrix MS

3,3, which has the projection operators on the diagonal

and the transition operators on the off-diagonal (in analogy to eq. (5.93)), we obtain

MS
3,3 =




χ11· χ12 · χ12 · χ12 · χ12 · χ13 ·

χ21 · χ22· χ22 · χ22 · χ22 · χ23 ·

χ21 · χ22 · χ22· χ22 · χ22 · χ23 ·

χ21 · χ22 · χ22 · χ22· χ22 · χ23 ·

χ21 · χ22 · χ22 · χ22 · χ22· χ23 ·

χ31 · χ32 · χ32 · χ32 · χ32 · χ33·




(5.110)

(where we have suppressed the functions θN>p in order not to clutter MS
3,3). The constants χij are defined

as

χij :=
√
χi · χj with χj given in eq. (5.109) , (5.111)

and have been marked in color for visual clarity, highlighting that there are only six different constants in

the matrix MS
3,3

χ11, χ12, χ13, χ22, χ23 and χ33 .

5.2.1.6 Singlet projectors of SU(N) over V ⊗k in a different basis

As already mentioned, the singlet states constructed from bending the operators in Sk give rise to just one

basis of the singlet algebra of SU(N) over V ⊗k ⊗ (V ∗)⊗k; we will call this basis the singlet projector basis.

The benefit of this basis is that it yields mutually orthogonal singlet states with minimal computing power.
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However, bending the elements of a particular choice of basis for API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
with m+n = k

merely provides one way of constructing the singlet projectors of SU(N) over V ⊗k⊗(V ∗)⊗k. If one constructs

these operators by some other means, it is easy to verify whether the resulting set spans the singlet algebra

of SU(N) over V ⊗k ⊗ (V ∗)⊗k by checking that it has size k! as required by Theorem 5.2 (provided that the

new set of singlet operators that has been constructed is linearly independent).

For example, one may make an Ansatz for singlet states that make the gluons (i.e. adjoint lines) explicit:

Recall the notation (5.36) for the group generators [ta]ki, and the fact that gluons can couple to each other

via the structure constants fabc and dabc. Following [72], these constants will be graphically represented,

respectively, by a filled (black) and an empty (white) circle at the vertex of the three gluon lines,

fabc :=
a

b
c and dabc :=

a

b
c . (5.112)

With these additional birdtrack notations at hand, we are able to make the following Ansatz for the singlet

states over V ⊗3 ⊗ (V ∗)⊗3
,

ξ1 · , ξ2 · , ξ2 · , ξ2 · , ξ3 · and ξ4 · (5.113)

with normalization constants

ξ1 =
1√
N3

, ξ2 =
1√

N(N2 − 1)
, ξ3 =

1√
2N(N2 − 1)

and ξ4 =

√
N

2(N2 − 4)(N2 − 1)
. (5.114)

This basis is orthogonal due to the fact that the generators [ta]ki are traceless,

0 =
1√
2

tr ([ta]ki) =
1√
2

[ta]kiδik =
k

i
a = a . (5.115)

In this basis, the matrix of singlet projection and transition operators becomes

M̃S
3,3 =




ξ11 · ξ12 · ξ12 · ξ12 · ξ13 · ξ14 ·

ξ12 · ξ22 · ξ22 · ξ22 · ξ23 · ξ24 ·

ξ12 · ξ22 · ξ22 · ξ22 · ξ23 · ξ24 ·

ξ12 · ξ22 · ξ22 · ξ22 · ξ23 · ξ24 ·

ξ13 · ξ23 · ξ23 · ξ23 · ξ33 · ξ34 ·

ξ14 · ξ24 · ξ24 · ξ24 · ξ34 · ξ44 ·




, (5.116)
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where ξij :=
√
ξi · ξj , and the ξi are defined in eq. (5.114).

Since (5.116) and (5.110) both give us all the singlet projection and transition operators of SU(N) over

V ⊗3 ⊗ (V ∗)⊗3
, they must be related by a change of basis C3,3 such that

MS
3,3 = C3,3M̃

S
3,3C

†
3,3 . (5.117)

For eq. (5.117) to hold, the matrix elements of C have to be of the form

[C3,3]ij =
∑

k

[MS
3,3]ik ρ [M̃S

3,3]kj , (5.118)

where

ρ := is the permutation that re-sorts the fundamental and antifundamental lines . (5.119)

As an example, one term in the sum that is the matrix element [C3,3]14 will be

[MS
3,3]11 ρ [M̃S

3,3]14 = . (5.120)

5.2.1.7 Using the primitive invariants Sk or the standard Young projector basis to construct

singlet projectors

By Theorem 5.2, one obtains all singlet projectors of SU(N) over V ⊗k ⊗ (V ∗)⊗k by bending the elements of

any basis of the algebra of invariants API
(
SU(N), V ⊗k

)
. It seems natural to use the primitive invariants Sk,

which by definition span API
(
SU(N), V ⊗k

)
, for this task, for example

S3 −→ 1

N3
c

· ,
1

N3
c

· ,
1

N3
c

· ,
1

N3
c

· ,
1

N3
c

· ,
1

N3
c

· (5.121)

The drawback when using Sk is that the resulting singlet states are not orthogonal with respect to the scalar

product 〈·|·〉 introduced in eq. (5.96). The reason for this is that the trace of two primitive invariants tr
(
ρ†σ
)
,

for ρ, σ ∈ Sk, is nonzero; this statement will be made precise at the end of section 8.2.3 in chapter 8. As an

example,

= tr

(( )† )
= tr

( )
= tr

( )
= = N2 6= 0 , (5.122)

where we have drawn the lines arising from the trace in red for visual clarity.15

15Each closed loop corresponds to a trace of a Kronecker δ in the fundamental representation, and thus gives a factor N ,
c.f. [72] or the later section 8.2.1.
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Similarly, the Young projection and transition operators are not orthogonal with respect to 〈·|·〉, for example

tr
(
Y †

1 2
3

Y 1 3
2

)
= tr

((
4

3

)2

·
)

=
1

9
tr
(
− + − 2 · + + 2 · −

)

= −N
3
c

9
+
Nc
9
6= 0 . (5.123)

Here, we face the additional challenge that the Young projection operators over V ⊗m are, themselves, only

orthogonal up to m = 4, see [85] or section 3.A.

Thus, both the primitive invariants, as well as the Young projection and transition operators, are not a good

basis to use for building singlet states, as the resulting states will not be mutually orthogonal.

5.2.2 Singlet projectors over V ⊗m ⊗ (V ∗)⊗n: ε-tensors

We have, so far, discussed the singlets of SU(N) that are composed entirely out of Kronecker δ’s. Since the

ε-tensor is an additional invariant of SU(N) over mixed product spaces, one ought to discuss their role in

constructing singlets. Firstly, it should be noted that a Levi-Civita tensor is only an invariant of SU(N) if

its length (i.e. its number of index legs) coincides with N = dim(V ), length(ε) = N .

As it turns out, the Levi-Civita tensors do not produce new singlets; that is, every singlet of SU(N) containing

an ε-tensor is completely equivalent to a singlet comprised entirely out of Kronecker δ’s (those singlets

discussed in section 5.2.1). In particular, in this section we will show that, for N
!
= length(ε), every singlet

containing a Levi-Civita symbol can be recast into a singlet consisting only of Kronecker δ’s, and vice versa.

Before exploring this equivalence in general, let us look at an example:

5.2.2.1 Baryon singlet projector A123

Consider the antisymmetrizer A123

A123 = with dimension dim(A123) =
(N − 2)(N − 1)N

6
. (5.124)

From the dimension formula, it immediately follows that A123 projects onto a singlet representation if N = 3.

This is further highlighted by the fact that, for N = 3, A123 antisymmetrizes over N legs and thus splits into

the product of two Levi-Civita tensors of length 3 in accordance with eq. (5.32),

A123 =
dim(V )=N=3

========== . (5.125)

Hence, for length(ε) = 3, A123 becomes a singlet operator (with no index lines crossing through the center,

c.f. eq. (5.75)) comprised entirely of Levi-Civita tensors. Using the Leibniz identity (5.23), we will now show
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that this singlet is completely equivalent to the totally antisymmetric singlet of SU(N) over V ⊗2 ⊗ (V ∗)⊗2
:

and are equivalent for dim(V ) = N = 3 . (5.126)

The Leibniz identity (5.23) translates N − 1 = 2 antifundamental intex lines into a fundamental line through

the Levi-Civita symbols

and (5.127)

of size N = 3. We act a Levi-Civita tensor of length N = 3 on the bottom two antifundamental legs of the

antisymmetric 2q + 2q̄ singlet, and then absorb the antisymmetrizers into the Levi-Civita tensors

act ε−−−→ absorb
=======
antisym.

. (5.128)

We now flip each antisymmetrizer about its vertical axis, keeping the end points fixed,

flip
==== (−1)2 , (5.129)

where we had to absorb a transposition (12) into each ε-tensor in the process, inducing a factor of (−1)2 = 1.16

It should be noted that through this flipping procedure each ε-tensor in (5.129) will be accompanied by a factor

i±φ (c.f. eq. (5.25)) with the wrong sign in the exponent. However, in the product (5.129), each prefactor

can be reassigned to the other ε-tensor, thus remedying the incorrect sign. If this “prefactor conundrum”

caused by the flip in (5.129) seems undesirable to the reader, we present a work-around in appendix (5.C),

which leaves the prefactors untouched, but still yields the desired result.

It now remains to recombine the two Levi-Civita tensors in (5.129) into the antisymmetrizer A123 according

to eq. (5.32) in order to obtain the desired result,

=
eq. (5.32)

======== . (5.130)

As we have seen, the antisymmetrizer A123 is a singlet projection operator of SU(N) over V ⊗3 if dim(V ) =

N
!
= 3. Interpreting N = Nc as the number of colors in the QCD sense, A123 corresponds to a color neutral,

3-particle configuration (the Fock space of 3 particles is V ⊗3) — a baryon.

In this example, we chose to transform (N − 1) antifundamental lines into a fundamental line by means of

the Leibniz identity (5.30). Equally effectively, we could have transformed (N − j) antiquarks into j quarks

16Defining κk to be the transposition between k and (N − k), longer and thus more “entangled” Levi-Civita tensors will have
a prefactor [sign (κ1κ2κ3 . . .)]

2 = 1.
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according to eq. (5.31), for example, if j = 2,

act ε−−−→ flip
==== = . (5.131)

However, the first way of obtaining the baryon singlet projector will be more useful when looking at Wilson

line correlators and coincidence limits, see section 5.3.3.

Let us interpret N = Nc as the number of colors to develop an intuitive sense for the distinction between

singlets consisting entirely of Kronecker δ’s, and singlets containing ε-tensors as well.

Baryons and mesons: In this chapter, we have encountered the two projection operators corresponding

to the most common quark–antiquark configurations occurring in nature: the meson17 and the baryon,

meson: and baryon: . (5.132)

A meson contains one charge of color and one charge of anti-color. This combination gives a color neutral

operator (the meson) irrespective of the total number of colors Nc. On the other hand, the baryon projector

exploits the fact that the combination of all colors (with equal weight) results in a color neutral object; if,

for example, Nc = 4, then the baryon would have to consist of 4 partons in order to be a color singlet.

Thus, the “singlet-ness” of an operator containing no Levi-Civita symbol (e.g. the meson) is independent of

the value of N (Nc), while the “singlet-ness” of an operator containing Levi-Civita symbols (e.g. the baryon)

depends on the exact value of N .

5.2.2.2 Singlets over V ⊗m ⊗ (V ∗)⊗n from singlets over V ⊗k ⊗ (V ∗)⊗k

The procedure exemplified by the antisymmetrizer A123 may be generalized to antisymmetrizers of length

dim(V ) = N forming part of a larger singlet projector.

A general singlet may contain several ε-tensors of length N . The remaining index legs (not entering ε) must

be contained in a subsinglet consisting of Kronecker δ’s only, in order for the overall operator to be color

neutral. This subsinglet therefore contains an equal number of fundamental and antifundamental index lines.

A schematic drawing of such a general singlet projection operator of SU(N) over V ⊗m ⊗ (V ∗)⊗n is given in

Figure 5.2.

17The projection operator constructed in eq. (5.46) is the unique singlet projector for one fundamental and one antifundamental
factor and thus describes a meson.
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Figure 5.2: This figure depicts a general singlet PSm,n over the space V ⊗m ⊗ (V ∗)⊗n, where the top m index

lines q1 . . . qm (counted top to bottom) are in the fundamental representation, and the bottom n index lines

q̄1 . . . q̄n (counted bottom to top) are in the antifundamental representation. This singlet contains (a + b)

ε-tensors: a of them over fundamental lines, and b over antifundamental lines. The remaining k = m − aN
fundamental lines and k = n− bN antifundamental lines together form a subsinglet containing Kronecker δ’s

only; this subsinglet is indicated by the blue shaded box. Note that this N -independent subsinglet contains

an equal number of fundamental and antifundamental lines.

Each of the ε-tensors appearing in Figure 5.2 can be related to an antisymmetric (sub)singlet over N − 1

fundamental and antifundamental legs, analogously to the example in the previous section 5.2.2.1. Thus,

the singlet PSm,n of Figure 5.2 can be shown to be equivalent to a singlet over V ⊗α ⊗ (V ∗)⊗α for α :=

(a+ b)(N − 1) + k, as depicted in Figure 5.3.
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Figure 5.3: The operator of Figure 5.2 is transformed into a singlet projector consisting of Kronecker δ’s only

(no Levi-Civita symbols): Each ε-tensor of length N in the singlet in Figure 5.2 has been transformed into

an antisymmetric subsinglet over N − 1 fundamental and antifundamental legs. The subsinglet of Figure 5.2

containing Kronecker δ’s only (blue box) remains unchanged. (In this graphic, we have numbered each

fundamental leg and each antifundamental leg (marked by the overbar) to keep track of their number.)

Let us summarize:
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Theorem 5.4 – General singlets and equivalences:

Let N be a particular integer and let PSm,n be a singlet projection operator of SU(N) over V ⊗m ⊗ (V ∗)⊗n.

PSm,n has to fulfill the following conditions:

• PSm,n contains exactly (a + b) antisymmetrizers of length N (a of which are antisymmetrizers over

fundamental legs, and b over antifundamental legs) such that

m− aN = n− bN =: k (5.133)

for some integer k. Note that N , m and n do not uniquely determine a, b and k through eq. (5.133),

allowing for several singlet projectors over V ⊗m ⊗ (V ∗)⊗n.

• The remaining k fundamental and k antifundamental legs not contained in a Levi-Civita tensor are

joined in an N -independent subsinglet PSm,n,(k).

Then, there exists an N -independent singlet projection operator PSα,α in API
(
SU(N), V ⊗α ⊗ (V ∗)⊗α

)
for

α := (a+ b)(N − 1) + k (5.134)

that is equivalent to PSm,n for the chosen value of N

PSα,α
∣∣
N

= PSm,n . (5.135)

In particular, PSα,α will have the following subsinglet structure:

• k of its fundamental and antifundamental legs will constitute the subsinglet PSm,n,(k),

• the remaining legs constitute (a + b) totally antisymmetric subsinglets, each containing exactly N − 1

fundamental and antifundamental legs.

As mentioned in the theorem, eq. (5.133) does not uniquely determine the integers a, b and k from m,n and

N . An immediate consequence of this is that two different singlets QS1 and QS2 of SU(N) over V ⊗m⊗ (V ∗)⊗n

may be equivalent to singlets over V ⊗α1 ⊗ (V ∗)⊗α1 and V ⊗α2 ⊗ (V ∗)⊗α2 respectively, where α1 6= α2. As

singlets, QS1 and QS2 remain equivalent (one can always construct the transition operator between them).

5.3 Wilson line correlators

As was explained in section 1.6.1 of chapter 1, partial coincidence limits of Wilson line correlators impose

constraints on the n-point functions G
(j)
Y,x1...xn

and K
(j)
Y,x1...xn

in the parametrization of HJIMWLK. In sec-

tion 5.3.1, we examine several coincidence limits of the correlators of 3q + 3q̄. To this end, we construct the

Wilson line correlators using two bases of the 3q+ 3q̄ singlet states (sections 5.3.2.1 and 5.3.2.2), each suited

for a particular kind of coincidence limit.

However, in order to discuss coincidence limits, we need to reintroduce the coordinate dependence of the

Wilson lines (c.f. section 1.6.2): Up until now, this thesis has given a road map for constructing the global

singlet states of SU(N), which is to say that all Wilson lines in question are considered to be in a total
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coincidence limit (c.f. eq. (1.227)). In the present section, the singlet states will be acted upon by an

arbitrary product of Wilson lines, and we will study the behaviour of these Wilson line correlators in a partial

coincidence limit.

In section 5.3.1, we first discuss the physical picture behind a partial coincidence limit. Thereafter, we

pinpoint the reason why the two bases previously discussed in section 1.6.2 yielded a simplification of the

matrix of correlators 〈A〉 (Y ) for certain partial coincidence limits but not for others. Section 5.3.2 applies

this new-found wisdom to the Wilson line correlators over V ⊗3 ⊗ (V ∗)⊗3
in two bases, analogously to the

discussion in section 1.6.2 for the 2q + 2q̄-correlators.

We end with a brief comment on the equivalence between singlets containing a Levi-Civita tensor and singlets

not containing a Levi-Civita tensor in the light of coordinate dependent Wilson lines in section 5.3.3.

5.3.1 Coincidence limits: a tale of two bases

Recall from chapter 1 that an n-point Wilson line correlator describes a projectile (consisting of n particles)

interacting eikonally with a dense gluonic target. Due to the high Lorentz contraction, the target has a

δ-function-like support in the x−-direction, and is thus fully described by a distribution function depending

only on the transverse coordinate x. The interaction of a particular parton with the target will depend on

the transverse coordinate at which the parton’s worldline pierces through the x− = 0 plane. A priori, there is

no reason to believe that the target is uniform in the transverse plane. Hence, each parton will in general be

acted upon by a distinct Wilson line Uxi
∈ SU(N). For example, a projectile comprised of 3 quarks probing

the target at coordinates x, y and z respectively will pick up the Wilson lines

U := Ux ⊗ Uy ⊗ Uz ∈ SU(N)× SU(N)× SU(N) , (5.136)

which realizes a particular representation of the product group SU(N)× SU(N)× SU(N) on V ⊗3. In certain

situations, we may, however, have reason to assume that two (or more) particular Wilson lines in the correlator

coincide. This may, for example, happen when the distance r between two partons probing the target is very

small (compared to the size of the target), allowing us to approximate r ≈ 0. In this case, the two partons

are assumed to probe the target at essentially the same transverse coordinate, x→ y, and thus pick up the

same Wilson line in the interaction, Ux ⊗ Uy → Ux ⊗ Ux. For example,

Ux ⊗ Uy ⊗ Uz
x→y−−−→ Ux ⊗ Ux ⊗ Uz . (5.137)

A Wilson line correlator is projected onto global singlet states |i〉, |j〉 of SU(N) in order to describe a physical

observable (c.f. chapter 1). Since we may choose these states to be orthonormal, Wilson line correlators in

the coincidence of all its coordinates must obey

〈j|Ux1 ⊗ · · · ⊗ Uxm ⊗ U†y1
⊗ · · · ⊗ U†yn

|i〉
total coincidence limit−−−−−−−−−−−−−−→ 〈j|Ux1 ⊗ · · · ⊗ Ux1 ⊗ U†x1

⊗ · · · ⊗ U†x1
|i〉

eq. (1.223)
======== 〈j|i〉 = δij . (5.138)

We therefore naively expect more and more Wilson line correlators to vanish as increasingly more coincidence

limits are considered. We may think of partial coincidence limits as “activating” more and more of the
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orthogonality between the singlet states. In section 1.6.1, we found this to be partly true: While a certain

partial coincidence limit causes several Wilson line correlators to vanish in one basis, the same limit in a

different basis may merely establish a complicated relation between correlators, c.f. eqns. (1.247) and (1.248).

In particular, we looked at two kinds of bases: one consisting of symmetrizers and antisymmetrizers, and one

consisting of (anti-) fundamental as well as adjoint index lines. We then proceeded to claim that the fact

that certain limits are better suited for one basis than the other can be attributed to the properties of the

building blocks of the specific basis. In this section, we will make this statement more precise.

5.3.1.1 Symmetrizers and antisymmetrizers

Let us first consider a basis for the singlet states that consists of symmetrizers and antisymmetrizers; an

example of this are the operators in Sk and the singlet states constructed from it, c.f. Theorem 5.2.

In such a basis, a particular Wilson line correlator may contain two index lines that are in an antisymmetric

combination before the interaction and in a symmetric combination after the interaction,

S12(Ux ⊗ Uy)A12 =
Uxxx

Uyyy
, where Ux ⊗ Uy ∈ SU(N)× SU(N) , (5.139)

or vice versa. An example of this are the top two index lines in the Wilson line correlator

3
N(N2−1)

(Y ) , (5.140)

where the blue slab behind the Wilson line arrowheads reminds us that not all Wilson lines are equal (i.e.

gauge equivalent to 1), c.f. Figure 1.6 in chapter 1.

Let us decompose the symmetrizer and antisymmetrizer in (5.139) into their primitive invariants,

Uxxx

Uyyy
=

1

4

{
Uxxx

Uyyy
+

Uxxx

Uyyy
− Uxxx

Uyyy
− Uxxx

Uyyy

}
. (5.141)

Each index line represents a Kronecker δ and is an invariant of each Ui ∈ SU(N) in the tensor product

individually, c.f. sections 3.1.1 and 4.1,

Ui = Ui . (5.142)

Eq. (5.142) allows one to pull each Wilson line Ux and Uy across the lines of the birdtrack to the other side,

for example

Uxxx

Uyyy
=

Uyyy

Uxxx
. (5.143)

Therefore, the operator (5.141) becomes

Uxxx

Uyyy
=

1

4

{(
Uxxx

Uyyy
− Uyyy

Uxxx

)
+

(
Uxxx

Uyyy
− Uyyy

Uxxx

)}
, (5.144)

which is nonzero in general, but vanishes in the limit x → y. The underlying reason for this is that the
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product Ux⊗Uy → Ux⊗Ux commutes with both the symmetrizer and the antisymmetrizer, since the latter

are invariants of SU(N) (as explained in sections 3.1.1 and 4.1). Thus, commuting Ux⊗Ux to either the left

or the right end of the operator (5.144) leaves the symmetrizer and antisymmetrizer to act on each other,

yielding a null result.

Let us now adapt our graphical notation for Wilson lines to indicate certain partial coincidence limits: In

this thesis, we have denoted a product of Wilson lines that is not in a total coincidence limit by a tower of

pink arrowheads on a blue slab, for example,

Ux ⊗ Uy ⊗ U†z −→ . (5.145)

We will graphically indicate a partial coincidence limit between two (or more) Wilson lines in the same

representation by coinciding the arrowheads,

Ux ⊗ Uy ⊗ U†z
x=y−−−→ . (5.146)

This notation is particularly intuitive as it mirrors the physical situation to which it corresponds: Wilson

lines picked up in distinct transverse locations are drawn in different places on the paper, while Wilson lines

with the same transverse coordinate are drawn in the same place on the paper.

We emphasize that notation (5.146) can only be used for Wilson lines in the same representation. The

graphical notation for a coincidence limit between a fundamental and an antifundamental Wilson line will be

discussed in section 5.3.1.2.

In the graphical notation (5.146), the invariance condition

U ◦ ρ = ρ ◦U , where U ∈ SU(N)× . . .× SU(N) and ρ is an invariant of SU(N) (5.147)

(c.f. eqns. (3.3) and (4.3)) can, for the example of two index legs, be written as

[
ρ ,

]
= 0 . (5.148a)

For a general tensor product Ux ⊗ Uy ∈ SU(N)× SU(N) with x 6= y, this relation breaks down,

[
ρ ,

]
6= 0 , (5.148b)

as we have seen in the example (5.144).

Using notation (5.146), the coincidence limit x→ y of the Wilson line correlator (5.139) is expressed as

S12(Ux ⊗ Uy)A12 :=
x→y−−−→ . (5.149)

Since both the symmetrizer and the antisymmetrizer are invariants of SU(N), the commutation relation (5.148a)
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indeed causes the operator (5.149) to vanish,

( )
eq. (5.148a)

=========

( )
=
︸ ︷︷ ︸

=0

= 0 , (5.150)

as claimed.

In summary, a basis of singlet states built from symmetrizers and antisymmetrizers (such as the basis con-

structed from bending the MOLD operators and their transition operators) is particularly well suited for

studying coincidence limits of two or more Wilson lines in the same representation. The reason for this is

that many Wilson line correlators will vanish due to symmeterizers and antisymmetrizers having more than

one common leg when a partial coincidence limit is invoked (as exhibited in eq. (5.150)). We will put this

insight to good use in section 5.3.2.1 where we study the 3q + 3q̄ Wilson line correlators in such a basis.

5.3.1.2 (Anti-) fundamental and adjoint lines

As exemplified in section 1.6.2, a coincidence limit between a fundamental and an antifundamental Wilson line

is best studied in what we call a Fierz basis (c.f. eqns. (1.232) and (1.233)). The underlying reason for this

is that many correlators will become zero by virtue of the generator [ta]ki being traceless (c.f. eq. (5.115)).

Let us explain: A particular Wilson line correlator in the Fierz basis may contain a fundamental and an

antifundamental Wilson line that combine into a singlet before the interaction, and into an adjoint line after

the interaction,

1√
2
taUδ = a

Uxxx

U†
xxx′′′

, for U := Ux ⊗ U†x′ ∈ SU(N)× SU(N) (5.151)

(recall the normalization factor 1√
2

from eq. (5.36)), or vice versa. An example of this are the top and middle

pairs of Wilson lines in the operator

1

N2
√

2(N2−1)
(Y ) . (5.152)

Let us be more careful when writing eq. (5.151) and add all matrix indices,

1√
2

[ta]ik[Ux]klδlj [U
†
x′ ]ji =

1√
2

[ta]ik[Ux]kj [U
†
x′ ]ji , (5.153)

where we have used the property of the Kronecker δ to contract indicies. In the last expression in (5.153), we

encounter a tensor product of two Wilson lines that have been contracted in one index. The coincidence limit

x→ x′ together with the unitarity property of the Wilson lines (they are elements of SU(N)) reduces (5.153)

to

1√
2

[ta]ik[Ux]kj [U
†
x′ ]ji

x→x′

−−−−→ 1√
2

[ta]ik [Ux]kj [U
†
x]ji︸ ︷︷ ︸

=δki

=
1√
2

[ta]ikδki =
1√
2

tr (ta) = 0 , (5.154a)
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yielding the desired simplification. In birdtrack notation, this can equivalently be written as

a
x→x′

−−−−→ a
eq. (5.36)

========
1√
2

tr (ta) = 0 . (5.154b)

Let us now also introduce a graphical notation for the partial coincidence limit between a fundamental and

an antifundamental Wilson line. If such a pair of Wilson lines combines into the unique qq̄-dipole singlet

before and after the interaction, a coincidence limit between these two Wilson lines will merely yield a factor

N , such that we can write

x→x′

−−−−→ = N . (5.155a)

On the other hand, if the fundamental and antifundamental Wilson lines combine into a color octet (i.e. a

gluon) before and after the interaction, a coincidence limit will yield an adjoint Wilson line, such that

a b
x→x′

−−−−→ a b = a b , (5.155b)

where the second equation follows from the fact that adjoint Wilson lines are real (c.f. eq. (1.116)).

Eqns. (5.154b) and (5.155) exhaust all possible outcomes of coincidence limits between a fundamental and

an antifundamental Wilson line in the Fierz basis.18

5.3.2 Wilson line correlators of 3q + 3q̄ and their coincidence limits

In this section, we construct the matrix of Wilson line correlators 〈A〉 (Y ) for three qq̄-pairs. We then

investigate 〈A〉 (Y ) by considering various coincidence limits between the coordinates of the Wilson lines. As

discussed in section 1.6.2, the constraint equations resulting from imposing various coincidence limits bring

about simplifications in the matrix 〈A〉 (Y ), provided it is written in a suitable basis. We therefore discuss

the Wilson line correlators for 3q + 3q̄ in two distinct bases in sections 5.3.2.1 and 5.3.2.2 respectively.

5.3.2.1 Hermitian Young projector basis

The elements of the matrix of Wilson line correlators 〈A〉 (Y ) take the form

〈mkl|U|mij〉 , (5.156)

where |mij〉, |mkl〉 are singlet states of SU(N) over V ⊗3 ⊗ (V ∗)⊗3
, and U is a tensor product of Wilson

lines describing the eikonal interaction. Constructing the singlet states by bending the elements of S3 in

accordance with Theorem 5.2, the top three index lines of the correlator will be in the fundamental, and the

bottom three lines in the antifundamental representation. Thus U must be of the form

U := Ux ⊗ Uy ⊗ Uz ⊗ U†z′ ⊗ U†y′ ⊗ U†x′ . (5.157)

18That is, provided one wishes to achieve the maximum possible simplification of the matrix of correlators. If one needs
to investigate the coincidence limit between a fundamental and an antifundamental Wilson line where neither of the three
situations (5.154b) and (5.155) hold, one should coinsider a change of basis, c.f. eq. (1.234) in chapter 1.
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In order to avoid clutter when translating the correlators into the birdtrack language, we will suppress the

normalization constants and instead indicate that the operators are properly normalized by the symbol ,

for example,

3

N + 1

√
2

(N + 1)N(N − 1)
· === , (5.158)

where we have placed in the center of the birdtrack to save space. This allows us to focus our discussion

on the birdtrack part of the correlators for now. However, we emphasize that one needs to carefully take into

account the correct normalization constant in order to obtain meaningful results in physics calculations.

The matrix 〈A〉 (Y ) containing all singlet Wilson line correlators for 3q + 3q̄ (in a basis of symmetrizers and

antisymmetrizers) is given by

〈A〉 (Y ) =







(Y ) . (5.159)

Due to the (anti-)symmetrizer structure of the correlators in this matrix, it is particularly suited to the

study of coincidence limits between two Wilson lines in the same representation, c.f. section 1.6.1. For

example, a coincidence limit between the top two Wilson lines (x→ y) will cause correlators containing both
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a symmzetrizer and an antisymmetrizer over the top two indices to vanish (as exemplified in eq. (5.150)),

〈A〉 (Y ) =







(Y ) −−−→
x→y




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




(Y ) .

(5.160)

Thus, the limit x→ y causes the matrix 〈A〉 (Y ) to become block-diagonal. The additional coincidence limit

between the bottom two antiquark coordinates (x′ → y′) offers even more simplification,

〈A〉 (Y ) −−−→
x→y




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




(Y ) −−−−→
x′→y′




0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0




(Y ) .

(5.161)

If both limits (x → y and x′ → y′) are implemented, only two 2 × 2 blocks and two 1 × 1 blocks remain.

It is interesting to notice that the 2 × 2 blocks are comprised of the correlators obtained by bending those

projection operators in S3 that correspond to Young tableaux with the same parent tableau. On the other

hand, the 1× 1 blocks originate from bending the two transition operators in S3. This however could have

been anticipated since the operators of S3 with the same parent operator have the same symmetry structure

in the topmost index pair by construction.19 We further comment on this phenomenon in section 9.2.

5.3.2.2 Fierz basis

Let us now discuss the coincidence limits between a fundamental and an antifundamental representation. As

exemplified in section 5.3.1.2, the Fierz basis given in eq. (5.113) yields the most simplification in such a

19Depending on the MOLD of the corresponding Young tableaux, two operators in Sk with the same parent operator may
have the same symmetry structure in the ≤ (k − 1) topmost index lines. This follows immediately from the construction of the
MOLD operators, see Theorem 3.5.
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limit. In this case, the tensor product of Wilson lines U in the correlator must be ordered as

U := Ux ⊗ U†x′ ⊗ Uy ⊗ U†y′ ⊗ Uz ⊗ U†z′ . (5.162)

Once again suppressing the normalization constants to avoid clutter (we indicate that the correlators are

properly normalized by the symbol ), the matrix of Wilson line correlators in the basis (5.113) becomes

〈A〉 (Y ) =







(Y ) . (5.163)

Indeed, a coincidence limit between the bottommost two Wilson lines (z → z′) of the matrix (5.163) causes

many of its elements to vanish due to relation (5.154),

〈A〉 (Y ) =







(Y ) −−−→
z→z′




0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0




(Y ) . (5.164)

In the limit z → z′, 〈A〉 (Y ) has become block-diagonal. In fact, the upper left block becomes the matrix of

correlators for 2q + 2q̄ given in [71] and paraphrased in eq. (1.230). The 4× 4 block gives the singlet Wilson

line correlators for 2q + 2q̄ + g.

Performing an additional coincidence limit between the middle pair of Wilson lines (y → y′) gives rise to
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further simplifications,

〈A〉 (Y ) −−−→
z→z′




0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0




(Y ) −−−→
y→y′




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0




(Y ) .

(5.165)

In this limit, we recover the correlator of the qq̄-dipole in the top left corner, and the Wilson line correlator

for q + q̄ + g twice on the diagonal. The bottom right 3× 3 block yields the correlators for q + q̄ + 2g.

At leading order, the JIMWLK evolution of the 2-point function (corresponding to a qq̄-pair) is propelled

by the 3-point function containing an additional gluon, qq̄ + g, [71]. In other words, the evolution of the

Wilson line correlator in the top left corner of (5.165) is actuated by the second element on the diagonal

(equivalently the third element, since they are equal) of (5.165). Their JIMWLK evolution, in turn, is driven

by the bottom 3 × 3 block of (5.165), creating an “evolution hierarchy” within the matrix of correlators

〈A〉 (Y ). This hierarchy is currently being investigated by R. Moerman and H. Weigert [83].

5.3.3 Singlets containing Levi-Civita tensors

Before concluding this chapter, let us once more comment on the equivalence between singlets containing

a Levi-Civita tensor and singlets not containing a Levi-Civita tensor, in the light of coordinate dependent

Wilson lines. When we first showed this equivalence in section 5.2.2, we acted the same group element U (†)

on each leg of a singlet operator in order to transform fundamental into antifundamental legs (and vice versa)

by means of the Leibniz formula (5.30), see section 5.2.2.1. Introducing a coordinate dependence on the group

elements U (†) therefore gives rise to an additional challenge. In this section, we will see how to overcome

this.

Consider, once again, the baryon projector

A123 =
dim(V)=N=3

========== . (5.166)

As was done in section 5.2.2.1, we will show that A123 is equivalent to the totally antisymmetric singlet over

V ⊗2 ⊗ (V ∗)⊗2
:

and are equivalent for N = 3 . (5.167)
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Previously, we have acted the same group element of SU(N) (Wilson line) on each leg of the singlet over

V ⊗2⊗ (V ∗)⊗2
and then used the Leibniz identity to show the desired equivalence (5.167). In other words, for

the Leibniz identity to apply, each Wilson is taken to be at the same transverse coordinate (c.f. the sketch

of the derivation of the Leibniz identity in section 5.1.4.1).

The following observation will allow us to introduce coordinate dependence on the Wilson lines in the proof of

statement (5.167), while still using essentially the same strategy as in section 5.2.2.1: An interaction between

the baryon projector and the target gives rise to at most three distinct Wilson lines since A123 contains

exactly three legs. Thus, when showing the equivalence (5.167), we need to consider at most three distinct

Wilson lines acting on the legs of the 2q+2q̄ operator. In particular, we are allowed to consider a coincidence

limit between the two Wilson lines acting on the bottom two legs of this operator,

U†
xxx1

U†
xxx2

Uxxx3
Uxxx4

Uxxx1
Uxxx2

U†
xxx3

U†
xxx4

=
x3→x4−−−−−→ . (5.168)

This coincidence limit is sufficient to use the Leibniz identity to transform the two antifundamental index

lines into a fundamental line as we did before (in section 5.2.2.1),

similarity−−−−−−→
transform

simplify
======= . (5.169)

Thus, we conclude that the equivalence (5.167) indeed holds for dim(V ) = N = 3 in the coincidence limit

x3 → x4. The strategy exemplified here can immediately be extended to general singlet projectors such as

Figure 5.2.

On the other hand, showing equivalence between the meson and the baryon projectors (as in eq. (5.131))

forces the Wilson lines acting on the bottom two index lines of A123 into a coincidence limit through the

Leibniz identity,

similarity−−−−−−→
transform

Leibniz
======

flip
==== = . (5.170)

Thus, the meson projector and the baryon projector are equivalent for dim(V ) = N = 3 in

the coincidence limit x2 = x3. This further implies that the projector (5.167) is equivalent to the meson

projector in the limit x1 = x1 and x3 = x4,

x1→x2,x3→x4−−−−−−−−−−→ equiv.←−−→ . (5.171)
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Appendix to chapter 5

5.A Simplifying the 1q+1q̄ Littlewood-Richardson operators (5.43)

In this appendix, we show how to simplify the three operators in equations (5.43) using the birdtrack for-

malism.

The identity operator (5.43a): First, we absorb the smaller antisymmetrizer of length (N − 1) into one

of the Levi-Civita tensors of length N . For convenience, we then pull the left Levi-Civita symbol to the right,

N · ...

1

...

q̄

absorb
====== N · ...

1

...

q̄

pull ε
===== N ·

1

q̄

...
...

. (5.172)

Now, we may use the identity (5.32) (keeping in mind that, by construction, both Levi-Civita tensors have

length N) to write the product (εa1a2...aN )†εb1b2...bN as an antisymmetrizer,

N ·
1

q̄

...
...

eq. (5.32)
======== N ·

1

q̄

...
...

. (5.173)

This is merely an antisymmetrizer with all but one of its legs traced. Using [72, eq. (6.23)], this trace may

be carried out, inducing a factor 1/N . This leaves us with

N · ...

1

...

q̄

= N ·
1

q̄

...
...

= N
1

N
· = . (5.174)
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The singlet operator (5.43b): Once again, we may pull the left Levi-Civita tensor to the right and then

use identity (5.32) to simplify this operator as

N · ...

1

...

q̄

pull ε
===== N ·

1

q̄

...
...

eq. (5.32)
======== N ·

1

q̄

...
...

. (5.175)

For simplicity, we will “disentangle” the q̄-leg for the remainder of this calculation and treat it as a quark

leg,

N ·
1

q̄

...
...

→ N ·
. .
. . . .

, (5.176)

but we will reverse this at the end of the calculation (in eq. (5.184)). Furthermore, we wish to explicitly

distinguish the lengths of the two antisymmetrizers in (5.176) for the sake of clarity in the argument to follow.

We thus say that the left antisymmetrizer (originating from the LR-tableau) has length p, while the right

antisymmetrizer (originating from the Levi-Civita tensors) has length N . At the end of the calculation, we

will once again set p = N .

By identity [72, eq. (6.19)], the right antisymmetrizer of length N in (5.176) can be decomposed as follows:

N ·
. .
. . . .

=
. .
. . . .

− (N − 1) ·
. .
. . . .

. (5.177)

We may absorb the shorter antisymmetrizer(s) into the longer one in each of the terms — in the last term,

we pull the rightmost antisymmetrizer over the top to the left of the longer antisymmetrizer and absorb it

from the left. This yields

N ·
. .
. . . .

=
. .
. . . .

− (N − 1) ·
. .
. . . .

. (5.178)

We consider each term separately: The first term is just a free index line and a trace over all but one of the

indices of the antisymmetrizer of length p. Again using [72, eq. (6.23)], we can carry out this trace,

. .
. . . .

=

[
(N − 1)!/ [N − (p− 1)− 1]!

p!

]
. (5.179)

262



Chapter 5. Singlets of SU(N) and Wilson Line Correlators

Setting p = N , we find

. .
. . . .

=

[
(N − 1)!0!

N !

]
=

1

N
. (5.180)

We now simplify the second term in (5.178). This term is just a trace of all except two indices of the

antisymmetrizer of length p. Again we follow [72, eq. (6.23)] to evaluate this trace,

(N − 1) ·
. .
. . . .

= (N − 1)

[
(N − 2)!/ [N − (p− 1)− 1]!

p!/2!

]
. (5.181)

Again setting p = N we find

(N − 1) ·
. .
. . . .

=
2

N
. (5.182)

Substituting (5.180) and (5.182) back into (5.178) yields

N ·
. .
. . . .

=
1

N
− 2

N
=

1

N
. (5.183)

Lastly, we have to transform the bottom index leg back into an antiquark leg,

1

N
−→ 1

N
. (5.184)

In summary, we found that

...

1

...

q̄

=
1

N
. (5.185)

The adjoint operator (5.43c): Once again, we pull the left Levi-Civita tensor to the right and use eq. (5.32)

to combine the two ε-tensors into an antisymmetrizer of length N . Furthermore, as we did in the calculation

of the singlet operator, we will treat the antiquark leg q̄ as a quark leg, transforming it back at the end of
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our calculation. We have:

2(N − 1) · ...

1

...

q̄

→ 2(N − 1) ·
. .
. . . .

. (5.186)

Using the cancellation rules derived in chapter 2, this operator may be simplified as

2(N − 1) ·
. .
. . . .

= 2(N − 1) ·
. .
. . . .

, (5.187)

where no additional constant is induced.20 We begin the simplification process by decomposing the sym-

metrizer in (5.187) into its primitive invariants,

2(N − 1) ·
. .
. . . .

= (N − 1)


 . .

. . . .

+
. .
. . . .




= (N − 1)


 . .

. . . .

+
. .
. . . .


 , (5.188)

where we merely disentangled the index lines of the second term in the bracket in the last step. The first term

in (5.188) is an antisymmetrizer of length N with all but one of its legs traced. Thus, using [72, eq. (6.23)],

this term simplifies to

(N−1) ·
. .
. . . .

= (N−1)

[
(N − 1)!/ [N − (N − 1)− 1]!

N !

]
=

(N − 1)

N
. (5.189)

The second term in eq. (5.188) is an antisymmetrizer with all but two indices traced,

(N − 1) ·
. .
. . . .

= (N − 1)

[
(N − 2)!/ [N − (N − 1)− 1]!

N !/2!

]
=

2

N
. (5.190)

20This is true since the cancelled part of the operator is a Young projection operator with normalization constant 2(N − 1),
as can be verified by direct calculation.
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Substituting expressions (5.189) and (5.190) back into (5.188) yields

2(N − 1) ·
. .
. . . .

=
(N − 1)

N
+

2

N
. (5.191)

Decomposing the antisymmetrizer into its primitive invariants allows for further simplification,

2(N −1) ·
. .
. . . .

=
(N − 1)

N
+

1

N

(
−

)
= − 1

N
. (5.192)

It remains to transform the bottom leg back into the antifundamental representation,

− 1

N
−→ − 1

N
= , (5.193)

where we used the Fierz identity (5.35) to obtain the operator in the last step. Thus, we obtain

2(N − 1) · ...

1

...

q̄

= . (5.194)

5.B Calculations in the birdtrack formalism

This appendix aims to show how various calculations of section 5.2 could have been performed in the birdtrack

language.

5.B.1 Scalar product & orthogonality

Consider two singlet states,

|φS〉 =

. .
.

. . .

φ S and |ψS〉 =

. .
.

. . .

ψS =⇒ 〈ψS | =

. . .

. .
.

ψS . (5.195)

We would like to examine whether these two states are orthogonal: The product 〈ψS |φS〉 of the according

birdtracks is formed by connecting the corresponding index lines (c.f. eq. (4.9) or [72]),

〈ψS |φS〉 =

. . .

. .
.

ψS

. .
.

. . .

φ S . (5.196)
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Recalling that the trace of any birdtrack operator ρ is defined to be the operator ρ with all index lines on

the same level connected [72],

ρ = ...
...

ρ → tr (ρ) :=
...

...

ρ , (5.197)

it follows that the inner product (5.196) becomes

〈ψS |φS〉 = tr
((
ψS
)†
φS
)
, (5.198)

the canonical scalar product on V ⊗m ⊗ (V ∗)⊗m. Thus, the scalar product (5.198) is the natural product

to use on the space of singlet states, and we define our notion of orthogonality between singlet states with

respect to it.

5.B.2 Orthogonal singlet projection operators

We explicitly show in the birdtrack language that two singlet projection operators PSij and PSkl constructed

according to Theorem 5.2 are orthogonal: In appendix 5.B.1 we found that

〈mij |mkl〉 =

. . .

. .
.

m ji

. .
.

. . .

mkl = tr (mjimkl) , (5.199)

where we used the fact that m†ij = mji (see footnote 13). For mji,mkl ∈ Sm (as in Theorem 5.2), the trace

tr (mjimkl) vanishes unless i = k and j = l such that

tr (mjimkl) = δikδjltr (mjimkl) . (5.200)

Thus, we have

PSij · PSkl =
1

tr (mjimij)

1

tr (mlkmkl)

. .
.

. . .

mi j

. . .

. .
.

m ji

. .
.

. . .

mkl

. . .

. .
.

mlk

tr (mjimkl) δikδjl

(5.201a)

=
tr (mjimkl) δikδjl

tr (mjimij) tr (mlkmkl)

. .
.

. . .

mi j

. . .

. .
.

mlk (5.201b)
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=
δikδjl

tr (mjimij)

. .
.

. . .

mi j

. . .

. .
.

m ji . (5.201c)

In summary , the singlet projection operators obtained from reshaping the basis elements in Sm are indeed

orthogonal,

PSij · PSkl = δikδjlP
S
ij . (5.202)

5.B.3 Dimension of the representations corresponding to singlet projection op-

erators

As explained in section 5.2.1.3 (page 235), the trace of a projection operator gives the dimension of the

corresponding representation. In the birdtrack language, the trace of an operator is obtained by connecting the

index lines on the same level (c.f. eq. (5.197)). Thus, the dimension dim
(
PSij
)

of the irreducible representation

corresponding to the singlet projection operator PSij is

dim
(
PSij
)

=
1

tr
(
m†ijmij

)
. .
.

. . .

...

...

mi j

. . .

. .
.

...

...

m†
i j =

1

tr
(
m†ijmij

)

. . .

. .
.

mi j

. .
.

. . .

m†
i j

︸ ︷︷ ︸
=tr(m†ijmij)

=
tr
(
m†ijmij

)

tr
(
m†ijmij

) = 1 . (5.203)

Therefore, the projection operator PSij does indeed correspond to a 1-dimensional representation of SU(N)

over V ⊗m ⊗ (V ∗)⊗m (irrespective of the value of N), making it N -independently a singlet.

5.B.4 Transition operators between singlet projectors

In this section, we verify, in the birdtrack language, that the transition operators constructed according to

Theorem 5.3 (eq. (5.105)) satisfy eqns. (5.90),

TSij,kl · PSkl = TSij,kl = PSij · TSij,kl (5.204a)
(
TSij,kl

)†
= TSkl,ij (5.204b)

TSij,kl · TSkl,ij = PSij . (5.204c)

Consider two singlet projection operators PSij and PSkl given by

PSij =
1

tr
(
m†ijmij

)
. .
.

. . .

mi j

. . .

. .
.

m†
i j and PSkl =

1

tr
(
m†klmkl

)
. .
.

. . .

mkl

. . .

. .
.

m†
kl (5.205)

267



Section 5.B. Calculations in the birdtrack formalism

according to Theorem 5.2. It will be convenient to define

β2
ij :=

1

tr
(
m†ijmij

) , (5.206)

such that

PSij = β2
ij · |mij〉〈mij | and PSkl = β2

kl · |mkl〉〈mkl| . (5.207)

It should be noted that tr
(
m†ijmij

)
gives the dimension of the representation corresponding to the operator

mjj (c.f. appendix 5.B.3),

tr
(
m†ijmij

)
= tr (mjj) = dim (mjj) , (5.208)

since either i = j, in which case m†jjmjj = mjjmjj = mjj as follows from the Hermiticity and idempotency

of the MOLD operators, or i 6= j, such that m†ijmij = mjj is a consequence of the unitarity of the transition

operators between MOLD projectors (c.f section 4.5.2). As the dimension dim (mjj) must be a strictly

positive number, it follows that βij is finite and real,

(βij)
∗

= βij and βij <∞ . (5.209)

Using notation (5.206), the operator TSij,kl defined in (5.105) can be written as

TSij,kl = βijβkl ·
. .
.

. . .

mi j

. . .

. .
.

m†
kl . (5.210)

We will now use the birdtrack formalism to show that TSij,kl satisfies all conditions of transition operators

given in eqns. (5.204).

Property (5.204a): Consider the product PSij · TSij,kl,

PSij · TSij,kl = β3
ijβkl ·

. .
.

. . .

mi j

. . .

. .
.

m†
i j

. .
.

. . .

mi j

︸ ︷︷ ︸
=:1/β2

ij

. . .

. .
.

m†
kl =

β3
ijβkl

β2
ij︸ ︷︷ ︸

=βijβkl

·
. .
.

. . .

mi j

. . .

. .
.

m†
kl = TSij,kl . (5.211)
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Similarly, the product TSij,kl · PSkl becomes

TSij,kl · PSkl = βijβ
3
kl ·

. .
.

. . .

mi j

. . .

. .
.

m†
kl

. .
.

. . .

mkl

︸ ︷︷ ︸
=:1/β2

kl

. . .

. .
.

m†
kl =

βijβ
3
kl

β2
kl︸ ︷︷ ︸

=βijβkl

·
. .
.

. . .

mi j

. . .

. .
.

m†
kl = TSij,kl . (5.212)

Thus, we have that

TSij,kl · PSkl = TSij,kl = PSij · TSij,kl (5.213)

as required.

Property (5.204b): To show this property, we need the Hermitian conjugate of TSij,kl,
(
TSij,kl

)†
: the Her-

mitian conjugate of a birdtrack is formed by flipping the birdtrack about its vertical axis and reversing the

arrows [72] (c.f. section 3.3.1). Thus, we have that
(
TSij,kl

)†
is

(
TSij,kl

)†
=


βijβkl ·

. .
.

. . .

mi j

. . .

. .
.

m†
kl




†

= (βij)
∗

(βkl)
∗ ·

. .
.

. . .

mkl

. . .

. .
.

m†
i j = βijβkl ·

. .
.

. . .

mkl

. . .

. .
.

m†
i j , (5.214)

where we used the fact that βij and βkl are real (see eq (5.209)). The resulting operator in (5.214) can easily

be identified as the operator TSkl,ij , yielding the desired result

(
TSij,kl

)†
= TSkl,ij . (5.215)

Property (5.204c): Examine the product TSij,kl · TSkl,ij ,

TSij,kl · TSkl,ij = β2
ijβ

2
kl ·

. .
.

. . .

mi j

. . .

. .
.

m†
kl

. .
.

. . .

mkl

︸ ︷︷ ︸
=:1/β2

kl

. . .

. .
.

m†
i j =

β2
ijβ

2
kl

β2
kl︸ ︷︷ ︸

=β2
ij

·
. .
.

. . .

mi j

. . .

. .
.

m†
i j = PSij . (5.216)

Thus, we indeed find that

TSij,kl · TSkl,ij = PSij . (5.217)

We showed that the operator TSij,kl as defined in (5.105) (resp eq.(5.210)) does indeed satisfy all the properties

of transition operators given in equations (5.204), leading us to conclude that it is the transition operator

between PSij and PSkl. Thus, the representations corresponding to PSij and PSkl are equivalent.

269



Section 5.C. Untwisting ε-tensors without inducing a factor of i±φ

5.C Untwisting ε-tensors without inducing a factor of i±φ

In section 5.2.2, we explicitly showed the equivalence between

and (5.218)

for dim(V ) = N = 3. In the process, we had to flip two Levi-Civita tensors without adjusting the sign of

the corresponding prefactor i±φ (c.f. eq. (5.129)), but we saw that in the product each prefactor may be

reassigned to the other ε-tensor, respectively, to counteract the incorrect sign. In this appendix, we present

an alternative to the flipping procedure that does not cause havoc with any prefactors.

Let us pick up at eq. (5.128) where we obtained the operator

. (5.219)

Keeping the end points fixed, we may now move the left ε† to the right of ε without flipping it ; this yields a

somewhat entangled operator,

move ε-tensors
=========== . (5.220)

The two Levi-Civita tensors of length N = 3 combine into an antisymmetrizer of length N = 3 according to

eq. (5.32),

eq. (5.32)
======== . (5.221)

The antisymmetrizer in the middle may now be flipped to disentangle the index lines; this does not produce

any phase factors, as the antisymmetrizer is a real quantity,

= = (−1)2 , (5.222)

where, in the disentanglement process, we absorb a transposition (12) on either side of the antisymmetrizer,

inducing an additional prefactor (−1)2 = 1 in the last step (we also encountered this factor when flipping

the ε-tensors, c.f. eq. (5.129) and footnote 16).

Thus, we once again arrive at the desired result (5.130).
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Part II

Incidental Results Regarding

Multiplets of SU(N)

or: What to do in a boring Colloquium*

*The author does not advocate the view that all colloquia are boring, or that one should not pay attention (in fact quite the
opposite!). However, some of the results presented in this part have indeed been derived during a colloquium...
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Chapter 6

On Mixed Multiplets of SU(N):

Counting and General Results

In this chapter, we provide a counting argument for the irreducible representations of SU(N) over a mixed

product space V ⊗m⊗(V ∗)⊗n for general m and n, using the Hermiticity properties of the primitive invariants

of SU(N). For n = 0 (i.e. in the absence of antiquarks) an explicit formula has been known since 1800, but

this result seems to be unknown in representation theory circles. Furthermore, we put a modern spin on the

recursive count of Young tableaux by Rothe and Chowla et al. by using the birdtrack formalism. For n = 1,

Pieri’s formula gives an underlying counting argument. We present a bijection between the Pieri tableaux

and Young tableaux.

6.1 Introduction

In chapter 4, it was shown that the set of MOLD-operators (c.f. chapter 3) can be augmented with unitary

transition operators to form an orthogonal basis of the algebra of invariants of SU(N) over V ⊗m, the so-called

projector basis Sm. That this can be generalized to a mixed product space V ⊗m⊗ (V ∗)⊗n was demonstrated

in chapter 5, section 5.2.1.2:

Theorem 6.1 – projector basis for the algebra of invariants over a mixed product space:

The Hermitian projection operators and their unitary transition operators constitute a basis of the algebra of

invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
called the projector basis, Sm,n.1

The argument presented in section 5.2.1.2 to prove Theorem 6.1 uses Clebsch-Gordan operators. From this

proof, it is apparent that the projector basis is orthogonal with respect to the canonical scalar product

〈A|B〉 = Tr
(
A†B

)
on V ⊗m ⊗ (V ∗)⊗n.

In section 6.2.1, we give a general analysis of transition operators through their relation to intertwining

operators, the latter not having been discussed yet in this thesis. This relation allows us to give an alternative

proof that the projection and transition operators constitute an orthogonal set with respect to the canonical

scalar product.

1This mirrors the notation we introduced for the set of primitive invariants of SU(N) over V ⊗m ⊗ (V ∗)⊗n, Sm,n, c.f.
section 5.1.1.
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Besides spanning the algebra of invariants, the projector basis Sm,n leads to a multitude of new results. The

main result presented in this chapter is a counting argument for the number of irreducible representations

SU(N) over V ⊗m⊗ (V ∗)⊗n, Theorem 6.2: Denoting the set of all projection operators of SU(N) over V ⊗m⊗
(V ∗)⊗n by Pm,n and the set of all transition operators by Tm,n such that

Pm,n ∪ Tm,n = Sm,n , (6.1)

we will establish a 1-to-1 correspondence between the elements of Pm,n and the Hermitian elements in the

set of primitive invariants Sm,n of SU(N) over V ⊗m ⊗ (V ∗)⊗n. It will be shown that Sm,n contains the

same number of Hermitian elements as Sm+n (the set of primitive invariants of SU(N) over V ⊗(m+n)), thus

allowing us to conclude that the number of irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n only

depends on the sum of factors in the product space (m + n), but not on the individual values of m and

n. The fact that the projection operators are Hermitian and the transition operators are unitary (on the

corresponding subspaces) is key in proving this counting argument. This result (Theorem 6.2) and some

immediate consequences (Corollaries 6.2 to 6.4) are summarized in section 6.3. In fact, the observations

made in this section allow us to derive an explicit formula for the number of irreducible representations of

SU(N) over V ⊗m ⊗ (V ∗)⊗n as a function of (m+ n) (Theorem 6.3 in section 6.4).

It turns out that a less general version of Theorem 6.3 had already been developed by Rothe as early as

1800 [118, in German]: In his paper, Rothe presents a recursive formula counting the irreducible representa-

tions of SU(N) over a quark-only Fock space V ⊗k. From this, one can easily derive the counting formula in

Theorem 6.3 (for n = 0) [97]. However, Rothe’s paper seems to be virtually unknown in representation theory

circles,2 presumably in part because it has not been translated into English. This derivation is therefore given

in section 6.4. We would, however, like to emphasize that the formula in Theorem 6.3 goes beyond what has

been known in the literature in that our argument holds for the irreducible representations of SU(N) over

V ⊗m ⊗ (V ∗)⊗n, while in Rothe’s formula n
!
= 0 is required.

In section 6.5, we revisit Rothe’s recursion formula for the number of Young tableaux. In the 1950’s, Chowla,

Herstein and Moore [97] supplied a more modern proof of this formula in terms of permutation matrices. We

translate [97]’s proof into the language of birdtracks, thus giving it a more modern spin. Furthermore, the

birdtrack formalism provides a graphical, more intuitive description of the underpinnings of the formula in

question.

Lastly, by this time in the chapter we will have established that the number of irreducible representations of

SU(N) over V ⊗m ⊗ (V ∗)⊗n is the same as that over V ⊗(m+n). In particular, this result holds for n = 1. In

this case, we can make the correspondence even more explicit and provide a graphical form of the bijection

between the Littlewood-Richardson tableaux (c.f. section 5.1.3 in chapter 5) for m fundamental and 1

antifundamental objects, and the Young tableaux consisting of (m + 1) boxes. This bijection is given in

section 6.6.

2The author only stumbled across it by accident when recreationally reading about a famous problem in graph theory, namely
the telephone number problem, on Wikipedia [119].
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6.2 The projector basis of the algebra of invariants

6.2.1 Transition operators from intertwining operators

In chapter 4, we went to great lengths to discuss transition operators between equivalent irreducible repre-

sentations of SU(N) over a product space V ⊗m. In particular, an explicit construction principle for these

transition operators was given.

As of this point, an explicit construction principle for the transition operators between projection operators

corresponding to equivalent irreducible representations of SU(N) over a mixed product space V ⊗m⊗ (V ∗)⊗n

is not yet known (presumably due to the lack of a practical construction method for the projection operators),

but we know that they exist from the argument given section 5.2.1.2 of chapter 5. However, general comments

about the structure of transition operators can be made by recognizing that these operators are merely a

generalization of intertwining operators to the whole space. To see this, let us first give a short summary of

intertwining operators. Our main reference for this is [65], but other standard textbooks on representation

theory will contain equivalent information.

Suppose (V1, ϕ1) and (V2, ϕ2) are two equivalent irreducible representations of SU(N) over V , where V1,2 ⊂ V
are the subspaces and ϕ1,2 : V → V1,2 are the homomorphisms corresponding to these representations. Then,

for every U ∈ SU(N), there exists an intertwining operator I12 : V2 → V1 such that

ϕ1(U) = I12 ◦ ϕ2(U) ◦ I†12 , (6.2)

where I†12 =: I21 translates V1 into V2 and ◦ is understood to be the composition of liner maps; from now on we

will suppress ◦. Thus, the intertwining operator I12 translates the group element ϕ2(U) from representation

ϕ2 to ϕ1. However, I12 merely acts on the subspace V2 of V , but not the whole space,

V2 V1

V2 V1

I12

ϕ2(U) ϕ1(U)

I12 (6.3)

We define the transition operator to be a generalization of the intertwining operator acting on the whole

space V

T12 : V → V such that T12v =




I12v if v ∈ V2

0 if v ∈ V \ V2

, (6.4)

that is, the action of T12 restricted onto V2 becomes the action of I12, T12

∣∣
V2

= I12. (Note that eq. (6.4)

complements the definition of transition operators over V ⊗m given in Theorem 4.4 in chapter 4.) The

operator T12 can be constructed from I12 by first projecting onto the appropriate subspaces. This is done by

multiplying the corresponding Hermitian projection operators P1,2 on either side, thus effectively embedding

I12 into the whole space,

T12 := P †1 I12P2 ; (6.5)
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P2 : V → V2 first projects onto the subspace V2, the intertwining operator I12 : V2 → V1 then translates V2

into V1, and finally P †1 embeds the result back into the whole space V :

V V

V2 V1

T12

P2 P†
1

I12

. (6.6)

In this chapter, we will be working with Hermitian projection operators such that

T12 = P1I12P2 . (6.7)

Eq. (6.7) can be generalized to product representations of SU(N) over a product space V ⊗m ⊗ (V ∗)⊗n. In

this case, the projection operators P will be acting on a product of (anti-) fundamental representations of

SU(N)

U := U ⊗ U ⊗ . . .⊗ U︸ ︷︷ ︸
m times

⊗U† ⊗ U† ⊗ . . .⊗ U†︸ ︷︷ ︸
n times

, (6.8)

and Iij will translate each Vj ⊂ V and each V ∗j ⊂ V ∗ into Vi and V ∗i respectively,

Iij : V ⊗mj ⊗
(
V ∗j
)⊗n → V ⊗mi ⊗ (V ∗i )

⊗n
. (6.9)

Understanding Vi and Vj to be embedded into V (by acting the identity on elements in V \ Vi,j) makes it

clear that Iij is an element of the algebra of invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
. The transition operator

corresponding to Iij ,

Tij = PiIijPj , (6.10)

is then of the form PiρPj where ρ = Iij is an element of API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
. This resembles the

construction of transition operators given in Theorem 4.4.

From eq. (6.10) it immediately follows that Tij satisfies the following conditions:

PiTij = Tij = TijPj (6.11a)

Tij = T †ji (6.11b)

TijTji = Pi , (6.11c)

thus allowing us to treat eqns. (6.11) as the defining properties of transition operators. That eqns. (6.11) hold

true also immediately follows from their definition in terms of Clebsch-Gordan operators (c.f. section 5.2.1.2,

as well as our treatment of transition operators in the absence of anti-quarks in section 4.4.2).

If we set i = j, eq. (6.2) forces the intertwining operator Iij to become the identity id (also on the product

space),

Tij := PiIijPj
i=j−−→ Tii = Pi Iii︸︷︷︸

=id

Pi = PiPi = Pi , (6.12)
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reducing the transition operator Tij to the projection operator Pi.

6.2.2 The projector basis is orthogonal

An immediate consequence of the projector basis in terms of Clebsch-Gordan operators (c.f. section 5.2.1.2

of chapter 5) is that this basis is orthogonal with respect to the canonical scalar product on V ⊗m⊗ (V ∗)⊗n,

〈A|B〉 := Tr
(
A†B

)
for A,B acting on V ⊗m ⊗ (V ∗)⊗n . (6.13)

However, with the structural identities of transition operators discussed in the previous section 6.2.1 at hand,

we are able to give an alternative proof of the orthogonality of the projector basis Sm,n with respect to the

scalar product (6.13):

Corollary 6.1 – projector basis is orthogonal:

The projector basis of API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
is orthogonal under the canonical scalar product 〈A|B〉 =

Tr
(
A†B

)
.

Proof of Corollary 6.1: All projection operators in Pm,n ⊂ Sm,n are Hermitian and mutually orthogonal as

linear maps, see section 5.2.1.2. Any two projection operators Pi, Pj ∈ Pm,n therefore satisfy

〈Pi|Pj〉 = tr
(
P †i Pj

)
P †i =Pi

====== tr (PiPj)
PiPj=δijPi

========= tr (δijPi) = δijdim(Pi) , (6.14)

where we use the fact that tr (Pi) is the dimension of the representation corresponding to Pi, dim(Pi), as

explained in [72] and in chapter 5 on page 235. Thus, the inner product 〈Pi|Pj〉 of two projection operators

Pi, Pj ∈ Pm,n ⊂ Sm,n vanishes unless i = j.

Eq. (6.10) tells us that the transition operator Tij between two projection operators Pi and Pj corresponding

to equivalent representations is of the form

Tij = PiIijPj , (6.15)

where Iij lies in the algebra of invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
. Thus, using the cyclic property of

the trace, the inner product between a Hermitian projection operator Pk and the transition operator Tij is

given by

〈Pk|Tij〉 = Tr
(
P †kPiIijPj

)
P †k=Pk

====== Tr (PkPiIijPj) = Tr (PjPkPiIij) . (6.16)

From the mutual orthogonality of the Hermitian projection operators (c.f. section 5.2.1.2 in chapter 5), the

product PjPkPi is nonzero if and only if i = j = k. However, if i = j, the transition operator Tij = PiIijPj

reduces to Pi (c.f. eq. (6.12)) which poses a contradiction to our initial assumption that Tij is a transition

operator. Thus, we conclude that

〈Pk|Tij〉 = 0 for all Pk ∈ Pm,n and Tij ∈ Tm,n . (6.17)
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Lastly, we consider the inner product between two transition operators Tkl and Tij in Tm,n ⊂ Sm,n,

〈Tkl|Tij〉 = tr
(
T †klTij

)
= tr

(
(PkIklPl)

†
PiIijPj

)
= tr

(
PlI
†
klPkPiIijPj

)
. (6.18)

Using the cyclic property of the trace and the orthogonality of projection operators as linear maps, eq. (6.18)

becomes

tr
(
PlI
†
klPkPiIijPj

)
= tr

(
PjPl︸︷︷︸
δjlPl

I†kl PkPi︸ ︷︷ ︸
δkiPi

Iij

)
. (6.19)

This shows that the inner product between Tkl and Tij vanishes unless i = k and j = l, making the two

transition operators equal. Using properties (6.11b) and (6.11c) of transition operators finally yields

〈Tkl|Tij〉 = δkiδjltr
(
T †ilTil

)
= δkiδjltr (Pl) = δkiδjldim(Pl) . (6.20)

In summary, eqns. (6.14), (6.17) and (6.20) show that the elements of Sm,n are mutually orthogonal.

6.3 A counting argument of the number of irreducible represen-

tations of SU(N)

In this section, we give a counting argument for the number of irreducible representations of SU(N) over a

product space W = V ⊗m ⊗ (V ∗)⊗n consisting of a total of k factors (i.e. k = m + n) in Theorem 6.3. As

demonstrated in chapter 5, the standard method of constructing the projection operators of SU(N) over a

mixed product space V ⊗m ⊗ (V ∗)⊗n (which involves the Littlewood-Richardson tableaux and the Leibniz

formula for determinants), is extremely cumbersome and computationally expensive. The benefit of knowing

a priori how many irreducible representations exist is that one may determine whether a set of projection

operators obtained by some other means (for example by making a suitable Ansatz) is complete and thus

classifies the irreducible representations of SU(N).

Suppose first that n = 0, that is, W = V ⊗k consists of factors V only. Then, the primitive invariants of

SU(N) over W = V ⊗k are given by the permutations in the symmetric group Sk. Since all permutations in

Sk are unitary,

ρ−1 = ρ† for all ρ ∈ Sk , (6.21)

the Hermitian elements of Sk are those that are their own inverse, also referred to as involutions [96].

Furthermore, for W = V ⊗k, the irreducible representations of SU(N) are classified by the Young tableaux

in Yk. Thus, our general counting argument (which also allows for W to include factors of V ∗ as well as V )

will have the consequence that the number of Young tableaux in Yk is equal to the number of involutions in

Sk. Knuth [120, section 5.1.4 page 49] once said that

“This connection between involutions and tableaux is by no means obvious, and there is probably

no very simple way to prove it.”
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He then proceeds to present a lengthy proof (approximately 18 pages) involving inserting boxes into Young

tableaux to establish this connection. In particular, he re-derives Rothe’s recursive formula [118] counting

the number of Young tableaux of k boxes,

|Yk| = |Yk−1|+ (k − 1)|Yk−2| . (6.22)

In this chapter we demonstrate that Knuth should have been more optimistic by presenting a proof (of a

more general statement!) that is approximately one page long. It turns out that the necessary ingredients for

this proof, that Knuth did not have at his disposal, are the transition operators between Hermitian projection

operators. In particular, the key observation in establishing the relation between the Hermitian primitive

invariants and the projection operators of SU(N) over V ⊗m ⊗ (V ∗)⊗n is that they form part of the basis of

the algebra of invariants, as will be shown in the present section.

Before stating the counting argument (Theorem 6.2), let us stress once more that this result goes beyond the

previously known results in that it gives the number of irreducible representations of SU(N) over a mixed

product space V ⊗m ⊗ (V ∗)⊗n, while the currently known results require the absence of V ∗, that is n
!
= 0.

Theorem 6.2 – counting argument for the irreducible representations of SU(N):

Consider the irreducible representations of SU(N) over the mixed product space V ⊗m⊗(V ∗)⊗n. The following

three statements hold:

1. The set union Sm,n = Pm,n ∪ Tm,n of all Hermitian projection and unitary transition operators and

the set Sm,n of all primitive invariants have the same size,

|Sm,n| = |Pm,n ∪ Tm,n| = |Sm,n| . (6.23a)

2. Let nP (Q) denote the number of non-Hermitian elements in a set Q. The non-Hermitian elements in

Sm,n occur in Hermitian conjugate pairs such that nP (Sm,n) is an even number. Furthermore,

|Tm,n| = nP (Sm,n) = nP (Sm,n) , (6.23b)

the number of transition operators in Sm,n is the same as the number of non-Hermitian elements in

Sm,n.

3. Let nH (Q) denote the number of Hermitian elements in a set Q. Then,

|Pm,n| = nH (Sm,n) = nH (Sm,n) , (6.23c)

stating that there are as many projection operators in Sm,n as there are Hermitian elements in Sm,n.

We emphasize that Sm,n and Sm,n are the sets of projection and transition operators resp. primitive

invariants, not the algebras spanned by these sets.

Proof of Theorem 6.2: 1. Equation (6.23a) is a consequence of the fact that both Sm,n and Sm,n constitute

a basis of the algebra of primitive invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
(c.f. Theorem 6.1) and therefore

must contain the same number of elements.

2. Since Sm+n is a group and all its elements are unitary (i.e. ρ−1 = ρ†), the elements of Sm+n either are

self-inverse ρ−1 = ρ, or occur in Hermitian conjugate pairs (ρ, ρ†) . Translating n of the (m+n) fundamental
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legs of the elements in Sm+n into antifundamental legs does not change their Hermiticity property (as is

apparent from the graphical mapping between Sm+n and Sm,n, c.f. section 5.1.1). Thus, the elements of

Sm,n are either Hermitian or occur in Hermitian conjugate pairs, forcing nP (Sm,n) to be an even number.

For each such pair (ρ, ρ†) we can form a Hermitian element hρ and an anti-Hermitian element aρ as

hρ := ρ+ ρ† and aρ := ρ− ρ† . (6.24)

Thus, after such a change of basis, Sm,n splits into two disjoint subsets:

1. the set Hm,n ⊂ Sm,n consisting of all Hermitian elements in Sm,n with size

|Hm,n| = nH (Sm,n) +
nP (Sm,n)

2
, (6.25a)

2. the set Am,n ⊂ Sm,n containing all anti-Hermitian elements in Sm,n with size

|Am,n| =
nP (Sm,n)

2
. (6.25b)

Similarly, the projector basis of API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
, Sm,n, consists of Hermitian elements (the

projection operators) and elements that occur in Hermitian conjugate pairs (the transition operators). Thus,

Sm,n again splits into disjoint sets Hm,n and Am,n consisting of Hermitian and anti-Hermitian elements

respectively, analogous to eqns. (6.24) and (6.25).

Since Hm,n and Am,n (resp. Hm,n and Am,n) are disjoint, it follows that

|Hm,n| !
= |Hm,n| and |Am,n| !

= |Am,n| (6.26)

for both unions Hm,n ∪ Am,n and Hm,n ∪ Am,n to constitute a basis of the algebra of invariants of SU(N)

over V ⊗m ⊗ (V ∗)⊗n, API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
.

Clearly, a linear combination of Hermitian objects will be Hermitian. Thus, only the elements of Am,n and

Am,n can be used to form the non-Hermitian subsets of Sm,n respectively Sm,n. From eq. (6.26) it then

follows that

nP (Sm,n) = |Tm,n| = 2|Am,n| = 2|Am,n| = nP (Sm,n) , (6.27)

proving equation (6.23b).

3. We have already shown that the sets Sm,n and Sm,n have the same size (eq. (6.23a)) as do their subsets

containing only the non-Hermitian elements (eq. (6.23b)). By construction, we further have

|Sm,n| = nH (Sm,n) + nP (Sm,n) and |Sm,n| = nH (Sm,n) + nP (Sm,n) , (6.28)

such that the number of projection operators |Pm,n| is given by

|Pm,n| = nH (Sm,n) = |Sm,n| − nP (Sm,n)
eq. (6.23a)

========
eq. (6.23b)

|Sm,n| − nP (Sm,n) = nH (Sm,n) , (6.29)

thus also proving eq. (6.23c) of the Theorem.
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Theorem 6.2 has some immediate consequences which are summarized in Corollaries 6.2 to 6.4:

Eq. (6.23c) of Theorem 6.2 states that the number of irreducible representations of SU(N) over V ⊗m⊗(V ∗)⊗n

is given by the number of Hermitian primitive invariants in Sm,n. In section 5.1.1 we summarized a graphical

method of constructing the elements in Sm,n from those in Sm+n [72], which preserves Hermiticity. Thus,

nH (Sm,n) = nH (Sm+n) , (6.30)

giving rise to the following Corollary:

Corollary 6.2 – the irreducible representations of SU(N) and the total particle count:

The number of irreducible representations of SU(N) over a product space V ⊗m ⊗ (V ∗)⊗n does not depend

on m and n individually, but only on the sum (m + n). In physics parlance, the number of irreducible

representations of SU(N) over a particular Fock space only depends on the total number of particles; it is

irrelevant how this number is split into particles and anti-particles.

This is a rather astonishing result: Since the primitive invariants Sm+n of SU(N) over an only-quark space

constitue a group but the primitive invariants Sm,n over a mixed product space do not, the multiplication

tables of their respective algebras of invariants are vastly different. It is therefore natural to assume that the

algebras API
(
SU(N), V ⊗(m+n)

)
and API

(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
spanned by Sm+n and Sm,n respectively

have significant structural differences. Just from this consideration, there is no a priori reason to believe that

there should be an equal number of irreducible representations of SU(N) over V ⊗(m+n) and V ⊗m ⊗ (V ∗)⊗n;

Corollary 6.2 nonetheless ensures us that this is the case.

In chapter 7, we analyze the irreducible representations of SU(N) over a 4-particle product space for all

particle-antiparticle configurations. This analysis will show that the block structure (signifying which irre-

ducible representations are equivalent) of the multiplication tables M4-particles may differ, while the number

of projection operators remains fixed as predicted by Corollary 6.2.

In chapter 4, we explained that the size of the symmetric group Sk (and thus the size of the set Sk from

Theorem 6.2) is given by a sum of squares, since one can always arrange the elements of Sk into a matrix

Mk, which has all projection operators on the diagonal, and each off-diagonal element mij is the transition

operator between mii and mjj . Analogously, the elements of Sm,n can also be arranged into a matrix Mm,n,

causing this matrix to be block-diagonal. This implies that the size of Sm,n (and thus the size of Sm,n) is

also a sum of squares:

Corollary 6.3 – number of primitive invariants as a sum of squares:

Consider the irreducible representations of SU(N) over a mixed product space V ⊗m ⊗ (V ∗)⊗n. The number

of primitive invariants of SU(N) over V ⊗m⊗ (V ∗)⊗n, as well as the number of all Hermitian projection and

transition operators, can be written as a sum of squares,

(m+ n)! = |Sm,n| = |Sm,n| =
q∑

i=1

k2
i , (6.31)

where q is the number of inequivalent irreducible representations of SU(N), and ki is the number of projection

operators projecting onto a particular representation Ri (or a representation equivalent to it).

It should be noted that the ki’s are not in 1-to-1 correspondence with the factors (m+n)!/HY in eq. (4.67) in

general. An example of this is the matrix M2,2, which has a different block-structure to M4 (see chapter 7).
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Nonetheless, M2,2 and M4 are both 10×10 matrices since SU(N) has equally many irreducible representations

on V ⊗2 ⊗ (V ∗)⊗2
as on V ⊗4 (by Corollary 6.2) translating into M2,2 and M4 having equally many diagonal

elements.

Lastly, notice that there is an upper bound on the number of irreducible representations of SU(N) over a

(possibly mixed) product space:

Corollary 6.4 – upper bound for the number of projection operators:

Let Tm,n denote the set of all transition operators between equivalent irreducible representations of SU(N)

over the space V ⊗m ⊗ (V ∗)⊗n. Then, if m+ n > 2, Tm,n is not empty,

Tm,n 6= ∅ , (6.32a)

implying that

Pm,n ≤ |Sm,n| − 2 , (6.32b)

since transition operators always occur in Hermitian conjugate pairs.

Proof of Corollary 6.4: Recall that |Tm,n| = nP (Sm,n) by Theorem 6.2, where Sm,n is the set of all primitive

invariants of SU(N) over V ⊗m ⊗ (V ∗)⊗n and nP (Sm,n) denotes the number of non-Hermitian elements in

Sm,n.

We first notice that nP (Sm,n) = nP (Sm+n), since the map transforming the elements of Sm+n into those of

Sm,n does not alter their Hermiticity. This allows us to focus on the non-Hermitian elements of Sm+n for the

remainder of this proof. The elements of the group Sm+n are Hermitian if and only if they contain no cycles

longer than 2 (see the later Lemma 6.1 in section 6.4). Therefore, a permutation that contains cycles of

length ≥ 3 is not Hermitian. Such a permutation can (and will!) exist in Sm+n if m+ n ≥ 3 (or equivalently

if m + n > 2). Since transition operators always occur in Hermitian conjugate pairs, it follows that there

exist at least two transition operators between irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n if

m+ n > 2, implying both eqns. (6.32).

6.4 An explicit formula for the number of irreducible representa-

tions of SU(N) over V ⊗m ⊗ (V ∗)⊗n

The aim of this section is to derive an explicit formula for the number of irreducible representations of SU(N)

over V ⊗m⊗(V ∗)⊗n. Due to Corollary 6.2, we know that this number is the same as the number of irreducible

representations of SU(N) over V ⊗(m+n). It therefore suffices to study the irreducible representations of SU(N)

on a uniform product space V ⊗(m+n).

An explicit formula for the number of irreducible representations of SU(N) over V ⊗(m+n) has already been

around for a long time [97, 118] (although this result seems unknown among representation theorists). Note

that the proof given in the present section was written before we found out about [97, 118] and therefore does

not follow any of these sources in particular. We however are almost certain that a proof similar to the one
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given in this section can be found elsewhere in the literature. Lastly, we emphasize that Corollary 6.2 allows

us to conclude that the formula presented here not only gives the number of irreducible representations of

SU(N) over V ⊗(m+n), but also over all spaces V ⊗m⊗ (V ∗)⊗n, thus adding new insight and going beyond the

standard result.

An explicit formula: An immediate consequence of Theorem 6.2 eq. (6.23c) is that the number of irre-

ducible representations of SU(N) over V ⊗k is given by the number of Hermitian permutations in Sk

|Pk| = nH (Sk) . (6.33)

Thus, we need to study the Hermitian permutations in Sk, which are also referred to as involutions [96]. By

the unitarity of all elements in Sk, the Hermitian elements are those that are their own inverse,

ρ−1 = ρ† = ρ . (6.34)

When written in cycle notation, it becomes clear that a permutation ρ satisfying eq. (6.34) can only contain

disjoint cycles of length ≤ 2: Suppose σ is a cycle of length `, σ = (a1a2 . . . a`). It’s inverse is given by [100]

σ−1 = (a`a`−1 . . . a1). Thus, if ` ≥ 3, it follows that σ−1 6= σ [121]:

Lemma 6.1 – permutations that are their own inverse [121]:

A permutation ρ ∈ Sk is its own inverse (and thus Hermitian) if and only if ρ is comprised of transpositions

and 1-cycles solely; that is, it contains no cycles of length > 2.

Hence, a Hermitian permutation ρ ∈ Sk has the disjoint cycle structure3 λρ

λρ = (2, 2, . . . 2︸ ︷︷ ︸
r

, 1, 1, . . . 1︸ ︷︷ ︸
t

), (6.35a)

such that

r · 2 + t · 1 = k . (6.35b)

Eq. (6.35a) says that ρ contains r 2-cycles and t 1-cycles. The number of the irreducible representations

of SU(N) over V ⊗k is therefore given by the number of permutations in Sk that have the disjoint cycle

structure (6.35a). Counting these permutations amounts to a combinatorial problem:

• If r = 0, i.e. ρ contains 1-cycles only, then ρ is the identity of Sk. Since the identity element of any

group is unique, there exists exactly one element in Sk for which r = 0.

• Finding the number of permutations in Sk for which r = 1 is equivalent to finding the number of

transpositions in Sk. Since a transposition can be written as a cycle containing two letters (or numbers),

we need to count how many ways we can choose 2 distinct letters out of k letters, which is

(
k

2

)
=

k!

(k − 2)!2!
. (6.36)

3The disjoint cycle structure λρ of a permutation ρ is the row vector listing the lengths of the disjoint cycles comprising ρ in
decreasing order. For example, the disjoint cycle structure of the permutation ρ = (13)(245) ∈ S5 is λρ = (3, 2), c.f. [121].
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• If r = 2, then ρ is a disjoint product of two transpositions. The number of such permutations in Sk

corresponds to the number of ways one can choose two disjoint pairs of letters out of k letters: The

first pair is chosen in the same way as for r = 1, c.f. equation (6.36). The second pair has to be chosen

out of the k − 2 remaining letters thus yielding a total number of

(
k

2

)
·
(
k − 2

2

)
(6.37)

ways to choose two disjoint pairs of letters out of k letters. However, we have been double counting:

So far, we have treated the case where a particular pair (ab) is chosen before a pair (cd) as distinct

from the case where they are chosen in the opposite order. However, the permutations corresponding

to these two choices are identical, (ab) · (cd) = (cd) · (ab), since the two transpositions (ab) and (cd) are

disjoint. Correcting for this, the number of permutations with r = 2 is given by

1

2!
·
(
k

2

)
·
(
k − 2

2

)
. (6.38)

• Following this pattern, the number of permutations with r = p for some integer p is given by

1

l!
·
(
k

2

)
·
(
k − 2

2

)
·
(
k − 4

2

)
. . .

(
k − 2(p− 1)

2

)
=

1

p!
·
p−1∏

l=0

(
k − 2l

2

)
. (6.39)

It will be convenient to define j := p− 1 such that the counting for r = j + 1 becomes

1

(j + 1)!
·
j∏

l=0

(
k − 2l

2

)
. (6.40)

It now remains to add up all the contributions we obtained for each r from 0 up to some maximum value

rmax,

1 +

rmax∑

j=0

1

(j + 1)!
·
j∏

l=0

(
k − 2l

2

)
. (6.41)

The value rmax is the maximum number of 2-cycles that can make up a Hermitian permutation ρ in Sk. Since

there are exactly k letters at our disposal, ρ can contain at most (k−2)/2 transpositions if k is even, and at

most (k−3)/2 transpositions if k is odd. Using the floor function4 b·c, one may define rmax as

rmax :=

⌊
(k − 2)

2

⌋
(6.42)

since

⌊
(k − 2)

2

⌋
=





(k−2)
2 if k is even

(k−2)
2 − 1

2 = (k−3)
2 if k is odd

. (6.43)

4The floor function bnc is defined to return the largest integer ≤ n.
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Summarizing our findings yields the following formula counting the irreducible representations of SU(N) over

V ⊗m ⊗ (V ∗)⊗n:

Theorem 6.3 – formula for the number of irreducible representations of SU(N):

Let Pm,n be the set of all projection operators corresponding to the irreducible representations of SU(N)

over V ⊗m ⊗ (V ∗)⊗n; by definition |Pm,n| gives the number of irreducible representations of SU(N) over

V ⊗m ⊗ (V ∗)⊗n. Then,

|Pm,n| = 1 +

b((m+n)−2)/2c∑

j=0

1

(j + 1)!
·
j∏

l=0

(
(m+ n)− 2l

2

)
. (6.44)

As mentioned previously, in the absence of antiparticles (i.e. setting n = 0 in the product V ⊗m ⊗ (V ∗)⊗n),

Theorem 6.3 reduces to a result that has been known for a while [97, 118], namely the number of Young

tableaux consisting of m boxes. The reason we nevertheless chose to explicitly re-derive eq. (6.44) here (even

though the derivation is almost exclusively done for n = 0 due to Corollary 6.2) is that practitioners in

representation theory seem to be are unaware of this result:

• Standard textbooks talking about Young tableaux, such as Fulton’s “Young tableaux” [95] and Sagan’s

“Symmetric Group” [96], do not mention this counting argument.

• Sagan’s Combinatorica package [122] (rewritten in 2003) for Mathematica is designed to deal with

permutations and Young tableaux. It includes a function called NumberOfTableaux[m] calculating the

number of tableaux consisting of m boxes. The Mathematica documentation [123] explains that this

function first explicitly constructs the Young diagrams consisting of m boxes, and then uses the hook

length of each diagram to obtain the number of Young tableaux corresponding to it (c.f. [109] to see why

this can be done). This method of counting the Young tableaux of a given size is, however, impractical

and computationally expensive, since it requires each Young diagram to be explicitly generated.5 The

use of eq. (6.44) would appear to be more efficient.

6.5 Birdtracks and the recursion formula for the number of irre-

ducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n

In 1800, Rothe [118] published a paper containing a recursion formula for the number of involutions in the

symmetric group Sk, where the recursion occurs over the integer k. According to Theorem 6.2, this number

corresponds to the number of Young tableaux (classifying the irreducible representations of SU(N) over V ⊗k).

In the language of Young tableaux, Rothe’s formula reads

|Yk| = |Yk−1|+ (k − 1)|Yk−2| . (6.45)

Going beyond the standard literature, Corollary 6.2 predicts that Rothe’s recursion formula also gives the

number of irreducible representations of SU(N) over a mixed product space consisting of k factors.

5Furthermore, there is, a priori, no way of knowing the number of Young diagrams of size m, since this number is equal to
the number of partitions of the integer m, which is one of the great unsolved problems in number theory.
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Chowla et.al. [97] provide an intuitive proof of Rothe’s recursion formula (6.45) using the standard repre-

sentation of permutations in SU(N) (in this representation, each permutation ρ ∈ Sk is written as a k × k
matrix where each row and each column contains the integer 1 exactly once and all remaining entries are 0

— see [96, 100, 124]). In this section, [97]’s proof will be adapted to birdtracks: We will follow similar steps

as given in [97], but instead of using the standard representation of the elements of the symmetric group we

will use their birdtrack representation.

Proof of eq. (6.45): A consequence of Theorem 6.2 (in section 6.3) is that the number of Hermitian permu-

tations in Sk is equal to the number irreducible representations of SU(N) over V ⊗k, which in turn is given

by the number of Young tableaux with k boxes |Yk|. As we have seen in Lemma 6.1, a permutation is an

involution (i.e. its own inverse and thus Hermitian) if and only if it contains 1-cycles and transpositions only.

In birdtrack notation, this means that the birdtrack corresponding to an involution ρ can contain either:

• horizontal legs corresponding to 1-cycles, e.g. id3 = (1)(2)(3) = ,

• cross-over between pairs of legs representing transpositions, e.g. (12)(3) = .

Thus, we may sort the Hermitian birdtracks in Sk into two categories: those where the topmost leg is a

horizontal line, and those where the top-most leg crosses over some other leg in the permutation .6

1. If the top-most leg is horizontal, then the remaining (k− 1) legs may constitute any Hermitian permu-

tation found in Sk−1. As we know from Theorem 6.2, there are exactly |Yk−1| such permutations.

2. If the top-most leg crosses over another leg in the permutation, then there are (k − 2) legs left to

comprise the Hermitian permutations of Sk−2, of which we know there exist |Yk−2|. Since there are

(k−1) possible legs that can cross over the topmost leg, there are a total of (k−1)|Yk−2| permutations

in this category.

As an example, we have arranged the birdtracks corresponding to the Hermitian permutations in S5 into

these two categories in Figure 6.1.

|Yk−1|

|Yk−2|

(k−1)

Figure 6.1: The birdtracks corresponding to the Hermitian permutations in S5. This figure shows that there

are exactly |Yk−1| = |Y4| permutations with a horizontal topmost leg, and (k−1)|Yk−2| = 4·|Y3| permutations

where the topmost leg crosses over another leg. (All birdtracks in this figure were generated in Mathematica.)

6This corresponds to the two categories into which Chowla et.al. [97] divide the Hermitian permutations in Sk: In the
standard representation, the integer 1 appearing in the first row may be situated in the first column, or in any but the first
column.
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Thus, the total number of Hermitian permutations in Sk, |Yk|, is given by

|Yk| = |Yk−1|+ (k − 1)|Yk−2| (6.46)

as claimed.

6.6 A graphical bijection between the Young tableaux in Ym+1

and the Littlewood-Richardson tableaux in Ym,1

In this section, we present a graphical bijection between the Young tableaux consisting of (m+ 1) boxes and

the Littlewood-Richardson tableaux Ym,1. The latter can be constructed using a simplified version of the

LR-rule, often referred to as Pieri’s formula [95], which was paraphrased in chapter 5 (c.f. Theorem 5.1).

Corollary 6.2 tells us that the number of irreducible representations of SU(N) over a product space V ⊗m ⊗
(V ∗)⊗n only depends on the sum (m+ n) but not on m and n individually. Since this number of irreducible

representations over V ⊗m⊗(V ∗)⊗n resp. V ⊗(m+n) is given by the number of Littlewood-Richardson tableaux

|Ym,n| resp. the number of Young tableaux |Ym+n|, an immediate consequence of Corollary 6.2 is that

|Ym,n| = |Ym+n| for all positive integers m, n . (6.47)

In particular, equation (6.47) must hold true for n = 1 (i.e. tableaux/product spaces consisting of m

fundamental and 1 antifundamental factors). In this specific situation, we are able to formulate a graphical

bijection between the tableaux in Ym+1 and the tableaux in Ym,1. The strategy to construct this bijection is

as follows: Let Θ be an arbitrary tableau in Ym. We will establish a 1-to-1 correspondence from each tableau

in the sum

Θ⊗ m+1 (6.48a)

to each tableau in the sum

Θ⊗

m+1

m+2

m+3

...
m+

N−1︸︷︷︸
=:Φ̄

, (6.48b)

and vice versa. Since Θ was chosen arbitrarily, the correspondence between the tableaux in (6.48a) and

in (6.48b) immediately establishes a bijection between Y(m+1) and Ym,1.

According to Pieri’s formula (Theorem 5.1), the tableaux in (6.48b) have each box m+i placed in a row lower

than m+j for every N − 1 ≥ i > j. In particular, one tableau in the sum Θ⊗ Φ̄ will have each m+i situated

in the ith row. Call this tableau ΨΘ
1 .
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Notice that the first column of ΨΘ
1 will have length (N − 1). Since we may consider tableaux with columns

of length at most N , we are, in principle, allowed to “add” another box to this first column and still obtain

a valid tableau: we will signify this by drawing a dot • in the place where this additional box could be added

(i.e. below the first column). This dot will from now on be referred to as the empty space. As an example,

consider the tableau

Θ =

1 2 4 6

3 5

7 9

8

∈ Y9 . (6.49)

To add one anti-quark, we need to form the tensor product of Θ with the tableau consisting of one column

and N − 1 rows (let us denote Ň := N − 1),

ϕ̄ =

a1

a2

···
aŇ

. (6.50)

The corresponding tableau ΨΘ
1 is formed from Θ by adding the box ai at the end of the ith row of Θ,

ΨΘ
1 =

1 2 4 6 a1

3 5 a2

7 9 a3

8 a4

a5

···
aŇ

•

, (6.51)

where we have marked the empty spot with a dot •.

The remaining tableaux in the sum (6.48b) can be constructed from ΨΘ
1 by playing a game of exchanging

the empty space • consecutively with the boxes ai until another valid Young tableau ΨΘ
2 is obtained. To

return to our example (6.51), we begin by exchanging the empty space with the box aŇ . This, however,

yields a disjoint tableau, not a Young tableau, requiring us to slide the empty space further up. For ΨΘ
1 in

eq. (6.51), it becomes evident that all boxes aŇ up to a4 have to be swapped with the empty space before

another valid tableau is obtained; this tableau will be called ΨΘ
2

ΨΘ
2 =

1 2 4 6 a1

3 5 a2

7 9 a3

8 •
a4

a5

···
aŇ

. (6.52)

One may continue this swapping game, moving the empty spot • to consecutively higher rows, to yield further
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tableaux ΨΘ
i . The final tableau is obtained when the empty space • appears in the first row. For our example,

this procedure yields two more tableaux,

ΨΘ
3 =

1 2 4 6 a1

3 5 a2

7 9 •
8 a3

a4

a5

···
aŇ

and ΨΘ
4 =

1 2 4 6 •
3 5 a1

7 9 a2

8 a3

a4

a5

···
aŇ

. (6.53)

With the empty space clearly marked as illustrated in the example, it is easy to establish a 1-to-1 corre-

spondence between the tableaux in the sum Θ⊗ m+1 and those in
{

ΨΘ
1 ,Ψ

Θ
2 , . . .Ψ

Θ
l

}
, by identifying the two

tableaux in which m+1 and the empty space • appear in the same column.7

In our example, the correspondence between
{

ΨΘ
1 ,Ψ

Θ
2 ,Ψ

Θ
3 ,Ψ

Θ
4

}
and the tableaux in Θ⊗ 10 is given by

1 2 4 6 a1

3 5 a2

7 9 a3

8 a4

a5

···
aŇ

•

1 2 4 6 a1

3 5 a2

7 9 a3

8 •
a4

a5

···
aŇ

1 2 4 6 a1

3 5 a2

7 9 •
8 a3

a4

a5

···
aŇ

1 2 4 6 •
3 5 a1

7 9 a2

8 a3

a4

a5

···
aŇ

1 2 4 6

3 5

7 9

8

10

1 2 4 6

3 5

7 9

8 10

1 2 4 6

3 5 10

7 9

8

1 2 4 6 10

3 5

7 9

8

.

This clearly yields a unique correspondence, as the empty space • as well as the box 10 can only appear in

one spot in a particular column for the resulting tableau to be a Young tableau. Thus, there exists a 1-to-1

mapping between the tableaux in Ym+1 and the tableaux in Ym,1, confirming the equality

|Ym,1| = |Ym+1| . (6.54)

We suspect that an easy bijection between individual tableaux in Ym,n and Ym+n no longer exists for n > 1,

since in this case the block structures of the associated matrices Mm,n and Mm+n may be different (as

exemplified in chapter 7 for m = n = 2). However, there exists, as yet, no conclusive proof for this statement

(as far as the author is aware).

7It should be noted that both • and m+1 can only appear in a specific set of columns in the resulting tableaux, since all the

ai as well as m+1 have to be added to Θ according to the branching rules [95, 96].
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Chapter 7

The Irreducible Representations of

SU(N) over the 4-Particle Fock Spaces:

An Example

In the present chapter, the results derived in chapter 6 will be verified in an example. We explicitly study the

irreducible representations of SU(N) over V ⊗m⊗(V ∗)⊗n for all positive integers m,n such that m+n = 4. We

begin by examining the projection and transition operators in each of the cases. In particular, the orthogonality

and completeness of the projectors will be verified (where it is not obvious).

Thereafter, in section 7.5, we explore what happens to these representations if we fix N = 2. This is partic-

ularly interesting in a physics context since SU(2) is the symmetry group of the theory of spin. Furthermore,

since particles (composed of partons) do carry spin, it no longer suffices to consider the singlet representa-

tions of SU(2) only in this context. We review general results of SU(2) using standard methods found in many

modern textbooks, and then subject the projection operators given previously to the limit N = 2, verifying the

standard results.

Having established various general results with regards to the irreducible representation of SU(N) over V ⊗m⊗
(V ∗)⊗n – most notably a counting argument for the number of irreducible representations – in chapter 6,

we will now see these results applied in an example. In the present chapter, we will discuss the irreducible

representations of SU(N) over the 4-particle Fock spaces, that is, all spaces V ⊗m⊗(V ∗)⊗n such that m+n = 4.

The focus here will be on a practical calculation to verify the general results. All examples in this chapter

are performed in the birdtrack formalism [72, 87].

We will examine the irreducible representations over V ⊗4 in section 7.2. The irreducible representations

over (V ∗)⊗4
are isomorphic to those over V ⊗4 (this isomorphism is given in section 7.2.3) and are thus

not discussed separately. The irreducible representations over V ⊗3 ⊗ (V ∗)⊗1
are analyzed in section 7.3.

Since the irreducible representations over V ⊗1 ⊗ (V ∗)⊗3
are again isomorphic to those over V ⊗3 ⊗ (V ∗)⊗1

(see section 7.3.3) we refrain from discussing them in any further detail. Lastly, we inspect the irreducible

representations of SU(N) over V ⊗2 ⊗ (V ∗)⊗2
in section 7.4.1.
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7.1 The projector basis over the 4-particle Fock spaces

Before specifying the exact particle-antiparticle content of the 4-particle Fock space, let us make some general

observations. Theorem 6.2 of chapter 6 tells us that the number of irreducible representations of SU(N) over

a mixed product space V ⊗m ⊗ (V ∗)⊗n is the same as the number of Hermitian elements in the set of

primitive invariants Sm,n. Since the operation relating the primitive invariants of Sm,n and Sm′,n′ (where

m+ n
!
= m′ + n′) does not alter the Hermiticity properties of the elements, this number remains unchanged

as long as the total number of particles (m+ n) is fixed, c.f. Corollary 6.2. In our example, this means that

SU(N) has exactly 10 irreducible representations over V ⊗m⊗ (V ∗)⊗n for all m,n satisfying m+n = 4, since

there exist 10 Hermitian primitive invariants in S4,

. (7.1)

Since the projection and transition operators of SU(N) can always be arranged in a block-diagonal matrix

M, the sum of all projection and transition operators must be a sum of squares, as stated in Corollary 6.3.

In particular, since the totality of the projection and transition operators of SU(N) over V ⊗m⊗ (V ∗)⊗n span

the algebra of primitive invariants API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
, there must be a total of (m+n)! operators

in Sm,n. For the 4-particle algebra this means that

4! = 24 =

l∑

i=1

k2
i (7.2a)

for some set of natural numbers {ki}. The prediction that there must be exactly 10 irreducible representations

of SU(N) over the 4-particle Fock space (i.e. there are exactly 10 diagonal elements in the matrix M4-particle)

gives the additional constraint

10 =

l∑

i=1

ki , (7.2b)

where the ki are the same as those in eq. (7.2a). Eqns. (7.2) allow two sets of solutions, namely

k1 = 4 , k2 = 2 , k3 = k4 = k5 = k6 = 1 , kj = 0 ∀j ≥ 7 (7.3a)

and

k1 = k2 = 3 , k3 = 2 , k4 = k5 = 1 , kj = 0 ∀j ≥ 6 , (7.3b)

where we have arranged the ki’s in decreasing order without loss of generality. Thus, the 4-particle Fock

space allows for two distinct block-structures of the matrix M4-particle,

M4-particle =




1

3

2

3

1




(7.4a)
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or

M4-particle =




4

2
1

1
1

1




, (7.4b)

where the numbers indicate the size of the blocks and all other entries of M4-particle are understood to be

zero.1

In the following sections 7.2 to 7.4, we will explicitly construct the matrix M4-particle for every particle-

antiparticle configuration of the 4-particle Fock space. This will show that only the 2q + 2q̄-space gives rise

to the block-structure (7.4b); all other configurations of the 4-particle Fock space will force M4-particle into

the block structure (7.4a).

The projection and transition operators presented in this chapter are given in a basis of symmetrizers and

antisymmetrizers. However, for the space V ⊗2⊗(V ∗)⊗2
, [72] gives an alternative basis involving adjoint lines;

this basis highlights how fundamental-antifundamental pairs (qq̄-pairs) combine into an adjoint representation

(a gluon). We repeat this basis here and augment it with the corresponding transition operators, which are

not present in [72].

It should be noted that we do not give a construction algorithm for the projection and transition operators

of SU(N) over V ⊗m ⊗ (V ∗)⊗n for n ≥ 1 (for n = 0, these algorithms are given in chapters 3 and 4 respec-

tively). The projection operators can, in principle, be found via the corresponding Littlewood-Richardson

tableaux. However, as exemplified in chapter 5, this method is extremely laborious and time consuming. The

appropriate projection operators given in this chapter were found by making a suitable Ansatz. It was then

verified that these operators constitute a set of 10 mutually orthogonal projection operators that sum up to

unity. We will not show that the operators listed in sections 7.3.1 and 7.4.1 are idempotent (this is easily

verified and thus left as an exercise to the reader), but we will show mutual orthogonality where this is not

obvious. We also discuss how the projection operators sum up to the identity.

The transition operators Tij between projectors Pi and Pj corresponding to equivalent representations of

SU(N) were again found by making an Ansatz, and it was subsequently checked that these operators satisfy

the defining properties (4.91) of transition operators.

In physics applications, SU(2) is an important group since it is the gauge group of the theory of spin. Thus,

the irreducible representations of SU(N) over the 4-particle Fock space in the special case where N = 2 are

discussed separately in section 7.5. We begin this discussion with general statements about SU(2) over the 4-

particle Fock space without specifying how many factors are particles and how many are antiparticles. Using

standard methods [27, 125], we show that in each case, SU(2) has six irreducible representations with certain

dimensions, c.f. section 7.5.1. In the remaining sections 7.5.2 to 7.5.4 we discuss each particle-antiparticle

configuration of the 4-particle Fock space separately for N = 2.

1If we consider fewer than 4 particles, the block-structure of M can be uniquely determined, as explained in chapter 9,
section 9.3.2.
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7.2 The 4q-algebra

We begin our discussion with the irreducible representations of SU(N) over the product space V ⊗4, this being

the most familiar of all examples discussed in this chapter. However, since the Hermitian Young projection2

and transition operators of SU(N) over this space were discussed in chapters 3 and 4 respectively, this section

will be kept brief – we merely state the operators.

7.2.1 The projection operators of the 4q-algebra

The Hermitian Young projection operators each correspond to a unique Young tableau in Y4:

1 2 3 4 1 2 3
4

1 2 4
3

1 3 4
2

1 2
3 4

1 3
2 4

1 2
3
4

1 3
2
4

1 4
2
3

1
2
3
4

Figure 7.1: This graphic depicts all Young tableaux in Y4, indicating the Young diagrams from which they

stem. A full ancestry tree of the tableaux in Y4 is given in Fig. 4.1.

The projection operators Pi (where Pi corresponds to the ith tableau in Fig. 7.1 read from left to right) and

the dimension d of their corresponding representations are given by

P1 = d1 =
N(N + 1)(N + 2)(N + 3)

24
(7.5a)

P2 =
3

2
d2 =

N(N + 2)(N2 − 1)

8
(7.5b)

P3 = 2 d3 =
N(N + 2)(N2 − 1)

8
(7.5c)

P4 =
3

2
d4 =

N(N + 2)(N2 − 1)

8
(7.5d)

P5 =
4

3
d5 =

N2(N2 − 1)

12
(7.5e)

P6 =
4

3
d6 =

N2(N2 − 1)

12
(7.5f)

2The Hermitian Young projection operators without corresponding transition operators were first given in [72].
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P7 =
θN>2 · 3

2
d7 =

N(N − 2)(N2 − 1)

8
(7.5g)

P8 = θN>2 · 2 d8 =
N(N − 2)(N2 − 1)

8
(7.5h)

P9 =
θN>2 · 3

2
d9 =

N(N − 2)(N2 − 1)

8
(7.5i)

P10 = θN>3 · d10 =
N(N − 1)(N − 2)(N − 3)

24
. (7.5j)

In eqns. (7.5), we have added prefactors θN>k (where θN>k := 1 if N > k and θN>k := 0 if N ≤ k, c.f.

later eq. (7.10)) to highlight dimensionally null operators. While the length of the longest antisymmetrizer

in each operator in (7.5) immediately determines the value of N at which it becomes dimensionally zero,

this reasoning no longer holds true for the projection and transition operators of SU(N) over mixed product

spaces V ⊗m⊗ (V ∗)⊗n (as becomes evident in the following sections 7.3 and 7.4), and the prefactor θN>k has

to be added to mark the dimensionally null operators over V ⊗m ⊗ (V ∗)⊗n. For the sake of consistency, we

have therefore also added the prefactor θN>k to the relevant operators here.

7.2.2 The full 4q-algebra: transition operators

Young tableaux with the same shape correspond to equivalent irreducible representations of SU(N) [93].

Thus, the block-structure of the matrix M4 can be read off from Figure 7.1,

M4 =




1

3

2

3

1




. (7.6)

Explicitly, these blocks are as follows (we have highlighted the projection operators for visual clarity):

:





 (7.7a)

:




3
2

√
2

√
3
2

√
2 2

√
3

√
3
2

√
3 3

2




(7.7b)
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:




4
3

√
4
3

√
4
3

4
3




(7.7c)

:




θN>2·3
2 θN>2 ·

√
3 θN>2 ·

√
3
2

θN>2 ·
√

3 θN>2 · 2 θN>2 ·
√

2

θN>2 ·
√

3
2 θN>2 ·

√
2 θN>2·3

2




(7.7d)

:


 θN>3 ·


 (7.7e)

7.2.3 The 4q̄-algebra

In birdtrack notation, it is easy to translate the projection operators on V ⊗4 into those on (V ∗)⊗4
; one merely

has to reverse the arrows on the index legs, for example,

4q → 4q̄−−−−−→ . (7.8)

Thus, the projection and transition operators of SU(N) over (V ∗)⊗4
immediately follow from eqns. (7.7).

7.3 The 3q + 1q̄-algebra

7.3.1 The projection operators of the 3q + 1q̄-algebra

As already mentioned, it is possible to obtain the Hermitian projection operators corresponding to the

irreducible representations of SU(N) over V ⊗3 ⊗ V ∗ from Littlewood-Richardson tableaux, although the

caveat of this method is that it is computationally very expensive.3 Instead, an Ansatz (based on much

trial and error) for the Hermitian projection operators was made. Showing that the operators of our Ansatz

satisfy the following four conditions ensures that they indeed correspond to the irreducible representations

of SU(N) over V ⊗3 ⊗ V ∗:

1. we must obtain the correct number of operators as predicted by Theorem 6.2, namely 10 operators

2. every operator must be idempotent

3C.f. the derivation of the irreducible projectors of SU(N) over V ⊗V ∗ from the appropriate Littlewood-Richardson tableaux
in section 5.1.4.2 of chapter 5.
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3. the operators must sum up to the identity of the space V ⊗3 ⊗ V ∗ (and thus the corresponding

dimensions must sum up to N4)

4. the operators must be mutually orthogonal.

Our Ansatz is

− 3

N + 2
d1 =

N(N2 − 1)(N + 3)

6
(7.9a)

3

N + 2
d2 =

N(N + 1)

2
(7.9b)

θN>3 ·
{

− 3

N − 2

}
d3 =

θN>3 ·N(N − 3)(N2 − 1)

6
(7.9c)

θN>2 · 3
N − 2

d4 =
θN>2 ·N(N − 1)

2
(7.9d)

θN>2 ·
{

4

3
− 8

3(N − 1)

− 2

N + 1

}
d5 =

θN>2 ·N2(N2 − 4)

3
(7.9e)

8

3 (N − 1)
d6 =

N(N + 1)

2
(7.9f)

2

N + 1
d7 =

N(N − 1)

2
(7.9g)

θN>2 ·
{

4

3
− 8

3(N + 1)

− 2

N − 1

}
d8 =

θN>2 ·N2(N2 − 4)

3
(7.9h)

8

3 (N + 1)
d9 =

N(N − 1)

2
(7.9i)

2

N − 1
d10 =

N(N + 1)

2
. (7.9j)

We draw attention to the fact that several operators in eqns. (7.9) have a prefactor θN>k, which is defined

as

θN>k :=





1 if N > k

0 if N ≤ k ,
(7.10)
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analogous to the Heaviside step function, but with a definite value at N = k. The reason for adding this

prefactor is threefold:

1. For one, the prefactors θN>k conveniently demarcate operators which become dimensionally zero for

N ≤ k.4

2. Furthermore, the prefactors θN>k prevent certain dimensions from becoming negative: For example,

while the birdtrack expression of the operator (7.9c) can be used to show that it vanishes for N ≤ 3,

and thus corresponds to a representation of dimension 0, the corresponding dimension formula produces

a negative result for N = 2. This is counteracted by the prefactor θN>3.

3. Lastly, some operators contain constant factors that threaten to become infinite for certain values of

N . (For example, operators (7.9c) and (7.9d) each contain a factor 1
N−2 , which would go to infinity as

N → 2.) This is again rectified by the prefactor θN>k.

The remainder of this section is devoted to showing that the operators (7.9) satisfy the necessary conditions 1

to 4.

Clearly, the operators (7.9) satisfy condition 1 as there are exactly 10 operators. Furthermore, their idem-

potency (condition 2) is easily verified (the only ingredients needed to accomplish this are some of the

cancellation rules given in chapter 2); we leave this as an exercise for the reader.

With regards to condition 3 (summability), it is important to notice that the operators (7.9) form the following

partial sums:

(7.9a) + (7.9b) = (7.11a)

(7.9c) + (7.9d) = (7.11b)

(7.9e) + (7.9f) + (7.9g) =
4

3
(7.11c)

(7.9h) + (7.9i) + (7.9j) =
4

3
. (7.11d)

The four operators in eqns. (7.11) can be recognized as the Hermitian Young projection operators of SU(N)

over V ⊗3 canonically embedded into V ⊗3 ⊗ V ∗. Thus, the total sum of the operators (7.9) is given by

+ +
4

3
+

4

3
= , (7.12)

as required. Also, the dimensions of the representations corresponding to the operators (7.9) sum up to N4,

as is easily verified via direct calculation.

Lastly, we investigate the orthogonality of the operators (7.9) (condition 4). Most operators are obviously

orthogonal by the orthogonality of the Hermitian Young projection operators (7.11). However, there are

4We remind the reader of our discussion on dimensionally null operators in section 4.A.
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pairs of operators in (7.9) for which this condition is not sufficient; these pairs are {(7.9f), (7.9g)} and

{(7.9i), (7.9j)}.5 We show the orthogonality of these operators here explicitly.

Let us consider the product of operators (7.9f) and (7.9g)

16

3 (N2 − 1)
· =

16

3 (N2 − 1)
. (7.13)

In (7.13), we have marked a part of the operator that requires further simplification:

=
1

2

(
−

)

=
1

2

(
− N + 1

2

)
. (7.14)

Substituting this back into (7.13) yields

8

3 (N2 − 1)

(
− N + 1

2

)

=
4(1−N)

3(N2 − 1)
. (7.15)

Eq. (7.15) contains a symmetrizer and an antisymmetrizer (in the shaded box), which have more than one

index leg in common. Such a construct vanishes, yielding the operator (7.13) to be zero. Thus, the opera-

tors (7.9f) and (7.9g) are indeed orthogonal, as claimed. Similarly, it can be shown that the projectors (7.9i)

and (7.9j) are orthogonal.

7.3.2 The full 3q + 1q̄-algebra: transition operators

The dimensions of the projection operators (7.9) not only suggest the block structure (7.4a) for M3,1
6 but

demand it: Since a necessary condition for two operators corresponding to equivalent representations is that

the dimensions of the subspaces onto which they project are the same, the block structure (7.4b) immediately

disqualifies as there are no four operators in eqns. (7.9) projecting onto subspaces with equal dimensions.

Thus, M3,1 has the block structure (7.4a),

M3,1 =




1

3

2

3

1




. (7.16)

5If these pairs are mutually orthogonal, it immediately follows that the operators (7.9f) and (7.9g) are orthogonal to every
other operator in eqns. (7.9), and similarly for the operators (7.9i) and (7.9j).

6There are two operators ((7.9a) and (7.9c)) with a unique dimension formula each, two sets of three operators
({(7.9b), (7.9f), (7.9j)} and {(7.9d), (7.9g), (7.9i)}) where each sets corresponds to the same dimension, and a pair of opera-
tors ((7.9e) and (7.9h)) corresponding to representations with the same dimension, mirroring the 1-3-2-3-1 pattern of the block
structure (7.4a).
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This is confirmed by the Littlewood-Richardson (LR) tableaux over V ⊗3⊗V ∗, which are given in Figure 7.2.

1 2 3 a1

a2

a3···
aŇ

1 2 3

a1

a2

a3···
aŇ

1 2 a1

3 a2

a3···
aŇ

1 2 a1

3

a2

a3···
aŇ

1 2

3 a1

a2

a3···
aŇ

1 3 a1

2 a2

a3···
aŇ

1 3 a1

2

a2

a3···
aŇ

1 3

2 a1

a2

a3···
aŇ

1 a1

2 a2

3 a3···
aŇ

1 a1

2 a2

3

a3···
aŇ

1 2 3
1 2

3

1 3

2

1

2

3

1 2
1

2

1

⊗ 2

⊗ 3

⊗
a1

a2···
aŇ

Ň := N−1

Figure 7.2: This figure gives the ancestry tree of the Littlewood-Richardson tableaux in Y3,1, which can

be constructed using Pieri’s formula paraphrased in Theorem 5.1. Since tableaux with the same shape

correspond to equivalent irreducible representations of SU(N) (c.f. [93] or the discussion around eq. (7.33)),

these tableaux incite the block structure (7.16) for M3,1.

Using the “factors-over-hooks” formula (c.f. [72, 113], or our rendition in section 5.1.3 of chapter 5), one

may match each block in the matrix M3,1 (corresponding to a representation of dimension d) to a particular

LR-diagram.

In particular, the two 1× 1-blocks will contain the operators (7.9a) and (7.9c) respectively,

length
N − 1



 ···

:


 − 3

N+2


 ,

length
N − 1



 ···

: θN>3 ·

 − 3

N−2


 . (7.17)

The first 3 × 3-block corresponds to the equivalent representations of dimension N(N+1)
2 , and thus has the

projection operators (7.9b), (7.9f) and (7.9j) on its diagonal. Augmenting the projectors with their transition

operators (which were constructed by making an Ansatz that was required to satisfy eqns. (4.91)) yields

length
N



 ···

:




3
N+2

√
8

(N−1)(N+2)

√
6

(N−1)(N+2)

√
8

(N−1)(N+2)
8

3(N−1)

√
16
3

1
N−1

√
6

(N−1)(N+2)

√
16
3

1
N−1

2
N−1




. (7.18)
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The operators (7.9e) and (7.9h) determine the central 2 × 2-block of M3,1, as they project onto equivalent

representations of dimension N(N2−4)
3 . The two projection operators, which correspond to the LR-diagram

length
N − 1



 ···

, (7.19a)

together with their transition operators, are given by




θN>2 ·
{

4
3 − 8

3(N−1) − 2
N+1

}
θN>2 ·

√
4
3

(
− 2

N−1 − 2
N+1

)

θN>2 ·
√

4
3

(
− 2

N−1 − 2
N+1

)
θN>2 ·

{
4
3 − 8

3(N+1) − 2
N−1

}



.

(7.19b)

Lastly, the operators (7.9d), (7.9g) and (7.9i), corresponding to equivalent irreducible representations of

dimension N(N−1)
2 , dictate the structure of the second 3× 3-block in M3,1. This block is given by

length
N



 ···

:




θN>2·3
N+2 θN>2 ·

√
6

(N−1)(N+2) θN>2 ·
√

8
(N−1)(N+2)

θN>2 ·
√

6
(N−1)(N+2)

2
N−1

√
16
3

1
N−1

θN>2 ·
√

8
(N−1)(N+2)

√
16
3

1
N−1

8
3(N−1)




.

(7.20)

7.3.3 The 1q + 3q̄-algebra

In section (7.2.3), we presented the isomorphism between the irreducible representations of SU(N) over V ⊗4

and those over (V ∗)⊗4
: the operators are translated into each other by reversing the arrow direction.

If the same method is applied to the operators of SU(N) over V ⊗3⊗V ∗ and those over V ⊗3⊗V ∗, one obtains

the projectors on (V ∗)⊗3 ⊗ V rather than V ⊗ (V ∗)⊗3
(as birdtracks are conventionally read from top to

bottom). We need to additionally flip the operators about the horizontal axis, for example

− 3

N + 2

3q+1q̄ → 1q+3q̄−−−−−−−−−−→ − 3

N + 2
. (7.21)

In physics parlance, the top index line once again represents the quark, and the bottom three index lines

represent the antiquarks. This isomorphism implies that the matrices M3,1 and M1,3 have the same block-

structure.
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7.4 The 2q + 2q̄-algebra

In this section, we present all projection and transition operators of SU(N) over V ⊗2⊗(V ∗)⊗2
. In section 7.4.1,

we give the Hermitian projection operators corresponding to the irreducible representations of SU(N), and

discuss some of their properties. In section 7.4.2, we focus our discussion on the block structure of the matrix

M2,2; we provide the transition operators between projectors onto equivalent irreducible representations, thus

completing the basis of the algebra of primitive invariants API
(
SU(N), V ⊗2 ⊗ (V ∗)⊗2

)
.

Cvitanović [72, secs. 8.3 and 9.12] has already provided these operators in a basis of (anti-) fundamental and

adjoint lines. We repeat this basis in section 7.4.3 and augment it with the appropriate transition operators.

7.4.1 The projection operators of the 2q + 2q̄-algebra in an (anti-)symmetrizer

basis

Cvitanović [72, sec. 8.3] noted that the projection operators

, , , and (7.22a)

are a decomposition of unity,

+ + + = , (7.22b)

and thus provide a good starting point in finding the projection operators corresponding to the irreducible

representations of SU(N) over V ⊗2 ⊗ (V ∗)⊗2
. [72] then proceeds by giving the 2q + 2q̄-projection operators

in an alternative basis, c.f. section 7.4.3.

The alternative basis given by Cvitanović teaches us that none of the representations corresponding to the

operators (7.22a) are irreducible, but observation (7.22b) motivates the Ansatz that the irreducible operators

can be obtained from the operators (7.22a) by subtracting suitable irreducible operators obtained by other

means. For example, from chapter 5, we are already familiar with the singlet projection operators

2

N(N − 1)
and

2

N(N + 1)
, (7.23)

which correspond to the irreducible singlet representations of SU(N) over V ⊗2 ⊗ (V ∗)⊗2
. A first Ansatz for

two further “irreducible” operators would be

− 2

N(N − 1)
and − 2

N(N + 1)
. (7.24)

It turns out that one has to subtract another piece from each operator in (7.24) to obtain an irreducible one,

but we hope that the general strategy is now clear.

In this way, we were able to construct 10 projection operators that are:

302



Chapter 7. The Irreducible Representations of SU(N) over the 4-Particle Fock Spaces: An Example

• mutually orthogonal

• idempotent

• complete (they sum up to the identity).

We can thus be sure that the set of operators we found indeed corresponds to the irreducible representations

of SU(N) over V ⊗2 ⊗ (V ∗)⊗2
. These operators were found to be

− 4 · θN>2

N − 2

(
− 1

N

)
− 2

N(N − 1)
= (7.25a)

= θN>3 ·
{

− 2

N − 2

(
2 − 1

N − 1

)}
d1 = θN>3 ·

N2(N + 1)(N − 3)

4

4 · θN>2

N − 2

(
− 1

N

)
d2 = θN>2

(
N2 − 1

)
(7.25b)

2

N(N − 1)
d3 = 1 (7.25c)

− 4

N + 2

(
− 1

N

)
− 2

N(N + 1)
=

= − 2

N + 2

(
2 − 1

N + 1

)
d4 =

N2(N − 1)(N + 3)

4
(7.25d)

4

N + 2

(
− 1

N

)
d5 = N2 − 1 (7.25e)

2

N(N + 1)
d6 = 1 (7.25f)

θN>2 ·
{

− 4

N

}
d7 =

(N2 − 1)(N2 − 4)

4
(7.25g)

4

N
d8 = N2 − 1 (7.25h)

θN>2 ·
{

− 4

N

}
d9 =

(N2 − 1)(N2 − 4)

4
(7.25i)

4

N
d10 = N2 − 1 (7.25j)

By construction, the operators (7.25) sum up to the four operators in (7.22a), which in turn add up to unity,

c.f. eq. (7.22b). Thus, the projection operators (7.25a) to (7.25j) also sum up to unity, further implying that

their dimensions add up to N4.

As already mentioned, Cvitanović [72] previously found the projection operators for the 2q + 2q̄-algebra in
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a different basis, which is also given in section 7.4.3. For each operator in the alternative basis found by

Cvitanović, there exists a corresponding operator in eqns. (7.25) with the same dimension. If the operator

projects onto a subspace with no other representation equivalent to it, then the projection operators in the

two bases are identical. If there exist equivalent representations, the correspondence between operators in the

two bases is no longer (necessarily) 1-to-1 but rather corresponds to a rotation within the associated block

in the matrix M2,2 (c.f. the analogous discussion for quark-only spaces in section 4.4.3).

Some of the operators (7.25) are once again decorated with a prefactor θN>k, which is defined in eq. (7.10).

The reason for this is identical to the case of 3q + 1q̄ and will thus not be repeated here (c.f. the discussion

following eq. (7.10)).

That the operators (7.25a) to (7.25j) are orthogonal is easily checked via direct calculation, no computational

tricks are necessary. However, as an example we explicitly show that the operators (7.25b) and (7.25c) are

orthogonal: Consider their product

4 · θN>2

(N − 2)

[
− 1

N

]
· 2

N(N − 1)
=

8 · θN>2

N(N − 1)(N − 2)

[
− 1

N

]
(7.26)

To simplify each term in the square bracket in (7.26), we recall that antisymmetrizers are projection operators,

· = , (7.27)

and that the partial and full trace of an antisymmetrizer A12 is given by [72, eq. (6.23)]

=
N − 1

2
· and =

N(N − 1)

2
. (7.28)

Using eqns. (7.27) and (7.28), we simplify the first term in the square bracket in (7.26) as

(7.27)
=====

(7.28)
=====

N − 1

2

(7.27)
=====

N − 1

2
. (7.29)

The second term in the bracket becomes

1

N

(7.27)
=====

1

N

(7.28)
=====

1

N
· N(N − 1)

2
=

N − 1

2
. (7.30)

Thus, the product (7.26) vanishes,

8 · θN>2

N(N − 1)(N − 2)

[
− 1

N

]
=
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8 · θN>2

N(N − 1)(N − 2)

[
N − 1

2
− N − 1

2

]
= 0 . (7.31)

7.4.2 The full 2q + 2q̄-algebra: transition operators

The analysis of the 2q+ 2q̄-operators given in [72, sec. 9.12] (albeit in a different basis) tells us that the four

adjoint operators (with dimension (N2 − 1)) correspond to equivalent irreducible representations, and so do

the two singlet projection operators. The two operators (7.25g) and (7.25i) corresponding to subspaces with

dimension (N2−1)(N2−4)
4 are not equivalent to each other. This is however not surprising when looking at the

two LR-tableaux corresponding to the two operators in question: Despite the fact that both tableaux classify

representations of dimension (N2−1)(N2−4)
4 , they have a different shape (i.e. their underlying diagrams are

different) and thus cannot produce equivalent representations [93]. These inequivalent tableaux, together

with their corresponding projection operators, are given in the later eq. (7.38).

This analysis implies that the block-structure of the matrix M2,2 containing all projection and transition

operators is given by eq. (7.4b),

M2,2 7→




4

2
1

1
1

1




. (7.32)

This is confirmed by the Littlewood-Richardson tableaux given in Fig. 5.1, where all tableaux with the same

shape correspond to equivalent representations [93]. This fact (that Littlewood-Richardson tableaux with the

same shape correspond to equivalent representations) can also be extracted from an alternative formulation

of the LR-rule in terms of Schur functions (c.f. footnote 3): Consider two tableaux with shapes µ and ν, and

let sµ and sν be their corresponding Schur functions. Then, the Littlewood-Richardson rule can be written

as [96]

sµ ⊗ sν =
∑

λ

cλµνsλ , (7.33)

where the sum is performed over all tableau shapes λ which can result from multiplying tableaux with shapes

µ and ν according to the LR-rule, and the constants cλµν (also called the Littlewood-Richardson constants),

giving the number of tableaux of shape λ, result from a multiplication of two tableaux with shapes µ and

ν respectively. Since the Schur function sλ determining the representation depends only on the shape λ of

the LR-tableau but not its filling, two LR-tableaux with the same shape correspond to equivalent irreducible

representations of SU(N) [96].

Again using the “factors-over-hooks” formula (see Refs. [72, 113] or section 5.1.3 in chapter 5), we may

identify blocks of M2,2 corresponding to a particular representation with a Littlewood-Richardson diagram

through its dimension. The birdtrack expressions for the transition operators appearing in the blocks of M2,2

can be obtained from the projectors (7.25) without much effort, using the defining properties of transition

operators (4.91). We present the result in this section.

As stated earlier, the four operators (7.25b), (7.25e), (7.25h) and (7.25j) correspond to equivalent irreducible
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representations of SU(N) with dimension d=N
2−1, and thus constitute a 4×4-block in the matrix M2,2. This

block, classified by the LR-diagram (c.f. Fig. 5.1 for the branching tree of all LR-tableaux over V ⊗2⊗(V ∗)⊗2
)

length
N





··· ···
, (7.34a)

is given by




4·θN>2

N−2

[
− 1

N

]
4·θN>2√
N2−4

[
− 1

N

]
4·θN>2√
N(N−2)

4·θN>2√
N(N−2)

4·θN>2√
N2−4

[
− 1

N

]
4

N+2

[
− 1

N

]
4√

N(N+2)

4√
N(N+2)

4·θN>2√
N(N−2)

4√
N(N+2)

4
N

4
N

4·θN>2√
N(N−2)

4√
N(N+2)

4
N

4
N




.

(7.34b)

From chapter 5 Theorem 5.3 we also know that the two singlet projection operators, (7.25c) and (7.25f),

correspond to equivalent representations of SU(N). The corresponding 2 × 2-block in M2,2, together with

the associated Littlewood-Richardson diagram, is given by

length
N



 ··· ···

:




2
N(N−1)

2
N
√
N2−1

2
N
√
N2−1

2
N(N+1)



. (7.35)

The remaining operators (7.25a), (7.25d), (7.25g) and (7.25i) each constitute a 1× 1-block in M2,2. Two of

these operators ((7.25a) and (7.25d)) can be matched up with a Littlewood-Richardson diagram purely from

the dimension of the corresponding representations,

length
N





···
··· : θN>3 ·


 − 2

N−2

(
2 − 1

N−1

) 
 (7.36)

length
N − 1



 ··· ···

:


 − 2

N+2

(
2 − 1

N+1

) 
 . (7.37)

For the remaining two operators, (7.25g) and (7.25i), the dimension alone is not sufficient to uniquely identify

them with a LR-diagram, as they correspond to inequivalent irreducible representations that both have

dimension d = (N2−4)(N2−1)
4 . However, the symmetries between the top two fundamental index lines allow
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for a unique identification,

length
N





···
··· : θN>2 ·


 − 4

N


 (7.38)

length
N − 1



 ··· ···

: θN>2 ·

 − 4

N


 , (7.39)

where the white boxes correspond to fundamental factors, and the shaded boxes correspond to antifunda-

mental factors (c.f. Fig. 5.1).

7.4.3 An alternative basis for the 2q + 2q̄-algebra

In this section, we present the projection and transition operators of SU(N) over V ⊗2 ⊗ (V ∗)⊗2
in an

alternative basis, M̃2,2. (If one wanted to be pedantic, one would have to say that we are actually looking at

projection and transition operators of SU(N) over (V ⊗ V ∗)⊗2
, but since there is an isomorphism between

the spaces (V ⊗ V ∗)⊗2
and V ⊗2 ⊗ (V ∗)⊗2

, we’ll speak of these spaces interchangeably.) As was mentioned

previously, [72] gives a set of such projection operators in a basis that makes the gluons explicit. In particular,

this basis exploits the fact that a fundamental and an antifundamental line (a qq̄-pair) can combine to an

adjoint line (a gluon) by means of the generators [ta]ik, c.f. eq. (5.36), and that the adjoint lines couple to

each other via the structure constants fabc and dabc, c.f. eq. (5.112).

The projection operators of [72] are given by7

1

N2
d1 = 1 (7.40a)

1

N2 − 1
d2 = 1 (7.40b)

1

N
d3 = N2 − 1 (7.40c)

1

N
d4 = N2 − 1 (7.40d)

N · θN>2

2(N2 − 4)
d5 = θN>2 · (N2 − 1) (7.40e)

1

2N
d6 = N2 − 1 (7.40f)

7Note that there is a printing error in [72, Table 9.4] where the second term in the operator (7.40i) is given as

(note the arrow direction in the fundamental loop). The corrected version was already given in [102].
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θN>3

2

{
− − 1

2(N − 2)
− 1

N(N − 1)

}

d7 =
θN>3 ·N2(N − 3)(N + 1)

4
(7.40g)

1

2

{
+ − 1

2(N + 2)
− 1

N(N + 1)

}

d8 =
N2(N + 3)(N − 1)

4
(7.40h)

θN>2

2

{
− − 1

2N

}
d9 =

(N2 − 4)(N2 − 1)

4
(7.40i)

θN>2

2

{
+ − 1

2N

}
d10 =

(N2 − 4)(N2 − 1)

4
(7.40j)

Both [72] and [102] correctly identify the equivalent irreducible representations among the operators (7.40),

and thus the block structure of M̃2,2. Ref. [102] also gives the corresponding transition operators, which can

be found by exploiting the defining conditions (4.91) of transition operators; we present these operators again

here.

The 4×4-block corresponding to the equivalent irreducible representations of SU(N) with dimension d3,4,5,6 =

N2 − 1 is given by




1
N

1√
N

θN>2√
2(N2−4)

1√
2N

1√
N

1
N

θN>2√
2(N2−4)

1√
2N

θN>2√
2(N2−4)

θN>2√
2(N2−4)

θN>2·N
2(N2−4)

θN>2

2
√
N2−4

1√
2N

1√
2N

θN>2

2
√
N2−4

1
2N




. (7.41)

Similarly, the 2× 2-block corresponding to the equivalent singlet representations of SU(N) is




1
N2

1
N
√
N2−1

1
N
√
N2−1

1
N2−1



. (7.42)

This again establishes the block structure (7.32) of M̃2,2 in this basis.
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7.5 Spin: the special case N = 2

7.5.1 SU(2) over 4-particle Fock spaces

Having established all Hermitian projection and transition operators of the 4-particle algebra, we now turn

to the particular case where we set N = 2. In other words, we wish to determine the possible spin-states

of a 4-particle system, in which each particle has the same spin s. We will be using standard methods as

described in [27, 125] and other standard textbooks.

To find the spin-states of a system of particles, all possible values of the spin quantum number s for such

a composite system need to be known, as s offers direct access to the dimension d of the corresponding

irreducible representation of SU(2) via d = 2s + 1.8 Furthermore, the multiplicity of the number s gives

access to the block-structure of the matrix M4-particles at N = 2, as shown below.

Before turning to explicit examples, let us calculate the possible spins of a 4-particle system (where each of

the 4 particles has the same spin s) in general, that is, without specifying which of them are particles (living

in the Fock space V ), and which are antiparticles (living in the dual space V ∗). We will be using a highly

condensed notation, only making the quantum number s specific. For the purpose of this calculation, let

s = 1
2 (i.e. a fermion), so that the corresponding particle lives in a fundamental (resp. antifundamental)

factor V (∗) of the product space. A system of four spin-1/2 particles is given by

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
. (7.43)

Eq. (7.43) can be refined into the irreducible multiplets of the product: Since the tensor product is associative,

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
=

[(
1

2
⊗ 1

2

)
⊗ 1

2

]
⊗ 1

2
, (7.44)

eq. (7.43) can be calculated in stages. The round bracket in (7.44) becomes

1

2
⊗ 1

2
= 0⊕ 1 . (7.45)

Remembering that the tensor product ⊗ is distributive over the direct sum ⊕ yields

(
1

2
⊗ 1

2

)
⊗ 1

2
= (0⊕ 1)⊗ 1

2

=

(
0⊗ 1

2

)
⊕
(

1⊗ 1

2

)

=

(
1

2

)
⊕
(

1

2
⊕ 3

2

)

=
1

2
⊕ 1

2
⊕ 3

2
. (7.46)

8The reason for this is simple (see [27, 125] or other standard textbooks): First, recall that the quantum number s gives the
positive numerical value of the spin, for example s = 0, 1

2
, 1, 3

2
, 2 . . .. Since the possible values of the spin momentum ms of a

particle (system) are ms ∈ {−s,−s+ 1, . . . , s− 1, s}, there are exactly 2s+ 1 possible values of ms for any given s. Hence, for
a particular value of the spin s, the corresponding particle (system) lives in a spin “(2s+ 1)-plet”.

309



Section 7.5. Spin: the special case N = 2

We are now able to perform the final step of the calculation (7.44),

[
1

2
⊗ 1

2
⊗ 1

2

]
⊗ 1

2
=

[
1

2
⊕ 1

2
⊕ 3

2

]
⊗ 1

2

=

(
1

2
⊗ 1

2

)
⊕
(

1

2
⊗ 1

2

)
⊕
(

3

2
⊗ 1

2

)

= (0⊕ 1)⊕ (0⊕ 1)⊕ (1⊕ 2)

= 0⊕ 1⊕ 0⊕ 1⊕ 1⊕ 2 . (7.47)

Eq. (7.47) predicts that there are six irreducible multiplets within the 4-fermion product: two have spin 0,

three have spin 1 and the last has spin 2. As explained previously (c.f. footnote 8), the dimension d of the

irreducible representations of SU(2), corresponding to spin s, is given by d = 2s+ 1,

s 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 2

d = 2s+ 1 1︸︷︷︸
Singlet

1︸︷︷︸
Singlet

3︸︷︷︸
Adjoint

3︸︷︷︸
Adjoint

3︸︷︷︸
Adjoint

5︸︷︷︸
Higher

dimensional

. (7.48)

Thus, a product state consisting of four spin-1/2 particles gives rise to six irreducible states with spin 0, 0,

1, 1, 1 and 2 corresponding to the irreducible representations of SU(2) with dimensions 1, 1, 3, 3, 3 and 5

respectively.

Since the spin calculation performed in this section is independent of how many factors in the 4-particle Fock

space are V and how many are V ∗, the obtained result must hold for all 4-fermion algebras at N = 2. We

will show this explicitly in sections 7.5.2 to 7.5.4.

7.5.2 SU(2) over V ⊗4 (dimensional zeros)

For the 4-quark representations of SU(N), many operators become dimensionally zero as one decreases N

below 4, as discussed in chapter 4. The reason for this is that an antisymmetrizer A of length length(A)

will necessarily vanish if there are fewer than length(A) linearly independent objects over which A anti-

symmetrizes. Since the maximum size of a set of linearly independent objects in a vector space V is given

by the dimension dim(V ) of the vector space, we say that the antisymmetrizer is dimensionally zero if

length(A) > dim(V ); this nomenclature reflects the fact that the dimension of the vector space is not large

enough to support an antisymmetrizer of this size. Since furthermore N := dim(V ) = dim(V ∗), it follows

that any antisymmetrizer of length > 2 will vanish once we fix N = 2.

For N = 2, the operators in blocks corresponding to the tableaux of shape

and (7.49)

become null-operators, since these tableaux contain columns of length > 2 and thus induce antisymmetrizers
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in the associated projectors that are longer than 2. The blocks corresponding to the tableaux with shape

, and (7.50)

remain and correspond to representations of dimensions 5, 3 and 1 respectively.9 Thus, the block structure

of the matrix M4 restricted to N = 2 becomes

M4

∣∣∣
N=2

=




1

3

2


 , (7.51)

in agreement with eq. (7.48). For completeness, we repeat the operators on the diagonal of the block

matrix (7.51), together with the corresponding dimensions:

d =
2(2 + 1)(2 + 2)(2 + 3)

24
= 5 (7.52a)

3

2
d =

2(2 + 2)(22 − 1)

8
= 3 (7.52b)

2 d =
2(2 + 2)(22 − 1)

8
= 3 (7.52c)

3

2
d =

2(2 + 2)(22 − 1)

8
= 3 (7.52d)

4

3
d =

22(22 − 1)

12
= 1 (7.52e)

4

3
d =

22(22 − 1)

12
= 1 (7.52f)

7.5.2.1 The operators of SU(2): the standard method vs. simplifying projectors

In standard practice, one obtains the projection operators of SU(2) over a mixed product space V ⊗m⊗(V ∗)⊗n

from the operators over V ⊗(m+n) via the Leibniz formula:

The Leibniz formula for determinants allows us to translate a product of (N − 1) particles into antiparti-

cles [112],

εa1a2...aNUb1a1
Ub2a2

. . . Ub(N−1)a(N−1)

(
εb1b2...bN

)†
= [U†]bNaN ; (7.53)

this was discussed in detail in chapter 5. If N = 2, eq. (7.53) simplifies, and in doing so, establishes a 1-to-1

correspondence between particles and antiparticles,

εa1a2
Ub1a1

(
εb1b2

)†
= [U†]b2a2

. (7.54)

9This can be verified directly from the tableaux using the “factors-over-hooks” method explained in section 5.1.3 of chapter 5.
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Thus, replacing a particle with an antiparticle in a projection operator at N = 2 is simply done by conjugating

this particle with an epsilon-tensor of length 2. Successive applications of the Levi-Civita tensor to legs of the

operators over V ⊗(m+n) produces the projection operators of SU(2) over V ⊗m⊗ (V ∗)⊗n; this is the standard

method described in textbooks, e.g. [93].

On the other hand, if one already knows all projection operators of SU(N) over the space V ⊗m ⊗ (V ∗)⊗n,

one may subject these operators to the limit N = 2, offering a second method of obtaining the projectors for

SU(2).

These two methods are, however, not guaranteed to give rise to the same operators: If there exist multiple

equivalent representations for a particular N , then there is no unique basis for constructing the projection

operators and their transition operators, as certain linear combinations will yield an equivalent set of operators

(this has already been discussed for the operators over V ⊗k in chapter 4). For the case of the projection

operators of SU(2) over a particular 4-particle Fock space, both methods will yield the same operator for the

5-dimensional representation (when written as a sum of primitive invariants), as it is unique. However, the

projectors obtained from the two methods may (and do) differ for the 3- and 1-dimensional representations

of SU(2), as these representations are characterized by blocks of size > 1 in the multiplication table, c.f.

eq. (7.51).

In the following sections, we will focus on the second method of obtaining the projection operators of SU(2)

over the 4-particle Fock spaces, since it is the non-standard method and therefore promises new insight.

7.5.3 SU(2) over V ⊗3 ⊗ V ∗

For the irreducible representations of SU(N) over V ⊗3 ⊗ V ∗, there are, once more, two operators for which

it is immediately obvious that these vanish when we set N = 2: the operators (7.9c) and (7.9d) contain

antisymmetrizers of length 3 in each term and thus become dimensionally zero in the same way as we already

observed for certain operators over V ⊗4, c.f. page 310.

Furthermore, the operators (7.9e) and (7.9h) project onto the zero-dimensional spaces for N = 2, as is

immediately evident from their dimension formula

d =
N2(N + 2)(N − 2)

3
. (7.55)

We will now show explicitly that these operators vanish:

Let us first consider the operator (7.9e),

4

3
− 8

3(N − 1)
− 2

N + 1
. (7.56)

Our strategy to prove that this operator vanishes if N = 2 is to show that the middle term in (7.56) exactly

cancels the remaining two terms. To see this, we first write the antisymmetrizers of length 2 = N in the

middle term as a product of Levi-Civita tensors according to [72, sec. 6.3]

N=2
===== , (7.57)
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such that

8

3(N − 1)

eq. (7.57)
========

8

3(N − 1)
. (7.58)

Using eq. (7.57) again, we may recombine the ε-tensors into antisymmetrizers in a different way,

8

3(N − 1)

eq. (7.57)
========

8

3(N − 1)
. (7.59)

We now simplify the shaded part of the operator by decomposing the antisymmetrizer into its primitive

invariants,

=
1

2

(
−

)
, (7.60)

yielding the following operator,

8

3(N − 1)
=

4

3(N − 1)


N + 1

2
−


 . (7.61)

The first term in this sum simply reduces to

N + 1

2
(7.62)

by eq. (7.57). The second term in the sum (7.61) is found by resolving the shaded symmetrizer as

=
1

2

(
+

)
, (7.63)

yielding

=
1

2

(
+

)
. (7.64)

A further simplification is possible: We notice that we may move the antisymmetrizer A23, in the second

term in (7.64), up to index lines 1 and 2, and then swap the index lines of the symmetrizers,

move A23========
= =

=============
swap lines in S12

. (7.65)
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Thus, the middle term in the projector (7.56) becomes

8

3(N − 1)
=

4

3(N − 1)

{
N + 1

2
− 1

2

(
+

)}

=
2

3(N − 1)

(
N −

)
(7.66)

in the limit N = 2. We now substitute this result back into the operator (7.56) and evaluate N = 2,

{
4

3
− 8

3(N − 1)
− 2

N + 1

}

N=2
=====

{
4

3
− 2

3(N − 1)

(
N −

)
− 2

N + 1

}∣∣∣∣∣∣
N=2

=
4

3
− 4

3
+

4

3
− 4

3

= 0 , (7.67)

as desired.

Showing that the operator (7.9h)

4

3
− 8

3(N + 1)
− 2

N − 1
(7.68)

also vanishes for N = 2 is more labour-intensive, since we need to consider each term separately. We will

now go through the relevant steps. We begin by simplifying the first term in the sum (7.68): Splitting the

two antisymmetrizers into Levi-Civita symbols according to (7.57) and then recombining the central two

ε-tensors into a new antisymmetrizer yields

4

3

eq. (7.57)
========

4

3

eq. (7.57)
========

4

3
. (7.69)

Two index lines in the central part of the operator are now traced over. Evaluating the trace on the anti-

symmetrizer will give rise to a factor N−1
2 and leave us with a symmetrizer with one leg traced. Evaluating

this trace gives a scalar factor N+1
2 such that we finally obtain

4

3
=

4

3
· N − 1

2
=

4

3
· N − 1

2
· N + 1

2

eq. (7.57)
========

N2 − 1

3
. (7.70)
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Thus, in the limit N = 2, the first term of the operator (7.68) becomes

4

3

N=2
=====

N2 − 1

3
. (7.71)

To simplify the second term in the operator (7.68), we once again split the antisymmetrizers of length 2 = N

into Levi-Civita tensors and recombine them into different antisymmetrizers according to eq. (7.57),

8

3(N + 1)

eq. (7.57)
========

8

3(N + 1)

eq. (7.57)
========

8

3(N + 1)
. (7.72)

As in eq. (7.70), we can evaluate the traced index lines in (7.72) sequentially at the cost of additional scalar

factors, reducing the middle term of the operator (7.68) to

8

3(N + 1)

c.f. eq. (7.70)
==========

8

3(N + 1)

(
N − 1

2

)2(
N + 1

2

)2

. (7.73)

Our simplification process of the last term of the projection operator (7.68) once again begins with splitting

and recombining antisymmetrizers of length N = 2,

2

N − 1

eq. (7.57)
========

2

N − 1

eq. (7.57)
========

2

N − 1
. (7.74)

The resulting operator contains a traced index leg that is now contained in a symmetrizer and an antisym-

metrizer. Thus, we first need to resolve either the symmetrizer or the antisymmetrizer into its primitive

invariants before evaluating the trace. We choose to resolve the antisymmetrizer according to eq. (7.60),

2

N − 1
=

1

N − 1


 −


 . (7.75)

The first term in the resulting sum still has a traced index leg, which, upon evaluation, will give a scalar

factor N+1
2 . The second term in (7.75) requires us to resolve the symmetrizer as well,

=
1

2

(
+

)
, (7.76)
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before allowing further simplification,

2

N − 1
=

1

N − 1

(
N + 1

2
− 1

2

(
+

))
. (7.77)

What remains are minor algebraic manipulations to obtain the following expression for the last term of

operator (7.68) in the limit N = 2,

2

N − 1
=

1

2(N − 1)

(
N −

)
. (7.78)

Substituting the simplified terms (7.71), (7.73) and (7.78) back into the operator (7.68) (operator (7.9h))

yields

{
4

3
− 8

3(N + 1)
− 2

N − 1

}

N=2
=====

{
N2 − 1

3
− (N − 1)2(N + 1)

6
− 1

2(N − 1)

(
N −

)}∣∣∣∣∣∣
N=2

= − − 1

2
+

1

2

= 0 . (7.79)

Thus, the operator (7.68) also vanishes in the limit N = 2, as expected.

The only operators that remain, together with their associated dimensions are

− 3

4
d =

2(2− 1)(2 + 1)(2 + 3)

6
= 5 (7.80a)

3

4
d =

2(2 + 1)

2
= 3 (7.80b)

4

3
d =

2(2 + 1)

2
= 3 (7.80c)

2 d =
2(2 + 1)

2
= 3 (7.80d)

2

3
d =

2(2− 1)

2
= 1 (7.80e)

8

9
d =

2(2− 1)

2
= 1 . (7.80f)
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We previously found transition operators for the projectors (7.80b), (7.80c) and (7.80d) (c.f. eq. (7.18)) that

remain forN = 2, thus constituting a 3×3-block in the matrix M3,1 forN = 2. Similarly, the operators (7.80e)

and (7.80f) have transition operators (see (7.20)). In fact, the 3×3 matrix (7.20) immediately reduces to a 2×2

matrix due to many operators becoming dimensionally zero (by virtue of them containing an antisymmetrizer

of length > 2).

Thus, we once again obtain the block structure

M3,1

∣∣∣
N=2

=




1

3

2


 . (7.81)

7.5.4 SU(2) over V ⊗2 ⊗ (V ∗)⊗2

We now analyze the projection operators of the irreducible representations of SU(N) over V ⊗2 ⊗ (V ∗)⊗2

in the case N = 2. We will again show that only six irreducible representations remain, and that these

representations have dimensions 5, 3, 3, 3, 1 and 1 according to eq. (7.48). In particular, we will explicitly

demonstrate how the operators (7.25a), (7.25b), (7.25g) and (7.25i) vanish for N = 2.

As was already the case for the projectors over V ⊗3⊗V ∗, an important step in showing that certain projectors

in eqns. (7.25) vanish is that an antisymmetrizer of length N splits into a product of two Levi-Civita tensors

(c.f. eq. (7.57))

N=2
===== . (7.82)

Let us begin with the operator (7.25b),

4 · θN>2

N − 2

(
− 1

N

)
. (7.83)

The antisymmetrizers of the first term in the sum (7.83) can be split and recombined according to eq. (7.82),

eq. (7.82)
========

eq. (7.82)
======== = . (7.84)

In (7.84) we encounter two antisymmetrizers with several index legs traced over. These traces can be evaluated

sequentially: The top traces over each individual antisymmetrizer induce a factor N−1
2 each, and the remaining

trace gives a factor N . Thus, the first term in the operator (7.83) simplifies to

=

︸ ︷︷ ︸
(N−1

2 )
2
N

=

(
N − 1

2

)2

N . (7.85)
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With the simplification (7.85), the part in the bracket of the operator (7.83) vanishes as N approaches 2,

− 1

N

N=2
=====

{(
N − 1

2

)2

N − 1

N

}∣∣∣∣∣
N=2

=
1

2
− 1

2

= 0 . (7.86)

We emphasize that the function θN>2 (c.f. eq. (7.10)) was added to the operators to prevent the prefactor
4

N−2 from becoming infinite as N → 2. Thus, we have shown that the projector (7.25b) indeed vanishes for

N = 2.

We now seek to take the limit N → 2 for the operator (7.25a). The first (unsimplified) expression in (7.25a)

will be beneficial in this endeavour, as we may recognize the second and third term of (7.25a) as the projection

operators (7.25b) and (7.25c),

− 4 · θN>2

N − 2

(
− 1

N

)

︸ ︷︷ ︸
(7.25b)

− 2

N(N − 1)
︸ ︷︷ ︸

(7.25c)

. (7.87)

Since we just demonstrated that (7.25b) = 0 in the limit N = 2, it remains to focus on the first and last terms

in the sum (7.87). We begin by splitting and recombining the antisymmetrizers of the first term of (7.87)

according to eq. (7.82),

eq. (7.82)
========

eq. (7.82)
======== = . (7.88)

Thus, for N = 2, operator (7.87) becomes

− 4

N − 2

(
− 1

N

)
− 2

N(N − 1)

N=2
=====

{
− 0 − 2

N(N − 1)

}∣∣∣∣∣
N=2

= −

= 0 , (7.89)

confirming that the operator (7.25a) indeed vanishes for N = 2.

Lastly, we claimed that the operators (7.25g) and (7.25i) become zero for N = 2. Since (7.25i) can be viewed

as (7.25g) flipped about its vertical axis (with reversed arrows), showing that they vanish will involve the
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exact same steps; we thus only present the explicit calculations for the operator (7.25g),

− 4

N
, (7.90)

here. We first split and recombine the antisymmetrizers in the second term in the sum (7.90) according to

eq. (7.82),

4

N

eq. (7.82)
========

4

N

eq. (7.82)
========

4

N
. (7.91)

The traced index leg in (7.91) can be evaluated, inducing a constant factor N−1
2 , and the bottom two Levi-

Civita tensors may once again be recombined into an antisymmetrizer by virtue of eq. (7.82), such that

4

N
=

4

N
· N − 1

2

=
==========

eq. (7.82)

2(N − 1)

N
. (7.92)

Thus, in the limit N = 2, the projection operator (7.25g) becomes

− 4

N

N=2
===== − 2(N − 1)

N

∣∣∣∣∣
N=2

= −

= 0 , (7.93)

as claimed. The same happens for the operator (7.25i),

− 4

N

N=2
===== 0 . (7.94)

In summary, the following multiplets with corresponding dimensions remain for N = 2:

− 1

2

(
2 − 1

3

)
d =

22(2− 1)(2 + 3)

4
= 5 (7.95a)

− 1

2
d = 22 − 1 = 3 (7.95b)

2 d = 22 − 1 = 3 (7.95c)

2 d = 22 − 1 = 3 (7.95d)
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d = 1 (7.95e)

1

3
d = 1 . (7.95f)

Operators (7.95b), (7.95c) and (7.95d) all correspond to equivalent representations, as they are part of the

4× 4-block (7.34b) in M2,2. We have shown that one of the operators in the block, namely operator (7.25b),

vanishes for N = 2 (c.f. eq. (7.86)). Similarly, it can be shown that all transition operators between

operator (7.25b) (resp. (7.83)) and any other operator in the 4 × 4-block vanish for N = 2. This trait is

important for establishing a connection to the operators in the alternative basis of V ⊗2⊗ (V ∗)⊗2
, which will

be the topic of the following section, 7.5.5. In any case, the operators projecting onto representations with

dimension 3 constitute a 3× 3-block in the matrix M2,2 at N = 2.

Similarly, the singlet operators constitute a 2 × 2-block (c.f. eq. (7.35)). Thus, we again encounter the

following block structure

M2,2

∣∣∣
N=2

=




1

3

2


 . (7.96)

7.5.5 SU(2) over V ⊗2 ⊗ (V ∗)⊗2 — an alternative basis

For completeness, we would like to give a short discussion on the projection operators of SU(N) over V ⊗2 ⊗
(V ∗)⊗2

for N = 2 in the basis described in section 7.4.3. This discussion will be very brief, as it only serves

a comparative purpose to the discussion in the previous section, 7.5.4.

From [72], one may piece together the arguments that show that the operators (7.40e), (7.40g), (7.40i)

and (7.40j) vanish for N = 2. For operators (7.40e) and (7.40g), this is rooted in the fact that dabc, which is

symbolized by the white circle (c.f. eq. (5.112))

dabc →
a

b
c , (7.97)

vanishes for N ≤ 2. That the two operators (7.40i) and (7.40j) become zero for N = 2 is apparent from their

corresponding dimension formula. Thus, we are once again left with the block structure (7.96) for M̃2,2

∣∣
N=2

as in the previous section.

We would like to draw attention to the fact that both operators (7.25b) and (7.40e) are part of a 4× 4 block

in their respective algebras. However, the fact that they both vanish for N = 2 means that they translate

directly into each other in an explicit change of basis, while the remaining adjoint projectors in the 4 × 4

block are free to form linear combinations in a change of basis. Observations like this show the benefit of an

analysis at small N . We will elaborate on the benefits of a small N analysis in chapter 9.
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Chapter 8

On Traces of Primitive Invariants

This chapter serves to capture various additional results which were obtained in the course of this Ph.D.

project. These results largely concern themselves with traces of primitive invariants. A link between the trace

of a primitive invariant in Sm+n to the minimum number of transpositions required to express this invariant

as a product of transpositions is established. Thereafter, we turn towards the primitive invariants in Sm,n and

find that the trace is invariant under the 1-to-1 map
N←→ (defined in this chapter) between Sm,n and Sm+n.

Lastly, we show that the trace commutes with the product operation (viewing primitive invariants as linear

maps).

8.1 Introduction and overview

In order to effectively derive the results discussed in the abstract of this chapter, we first remind the reader

how to take a trace in the birdtrack formalism. In particular, we recall that a closed loop in the trace of a

birdtrack operator contributes a factor of N to the trace.

We then state our first result: If ρ is a primitive invariant in the group Sk acting on a product space V ⊗m

(m ≥ k), and κ(ρ) denotes the minimum number of transpositions required to write ρ as a product of

transpositions, then the trace of ρ is given by

tr (ρ) = Nm−κ(ρ) (8.1)

(see Theorem 8.2 in section 8.2.3). An immediate consequence of eq. (8.1) is that the trace of a primitive

invariant stays the same under Hermitian conjugation or taking the inverse,

tr (ρ) = tr
(
ρ−1

)
= tr

(
ρ†
)

(8.2)

(c.f. section 8.2.4). To establish result (8.1), we need to make a detour via the theory of transpositions and

their connections to permutations in section 8.2.2. There, we develop a method of representing a permutation

ρ by a graph, where each edge corresponds to a particular transposition in ρ. This method was inspired by an

argument given by Lossers [126] proving that κ(σ) = p− 1 for a p-cycle σ. Our discussion of transpositions

gives rise to an interpretation of multiplication with a transposition as a “ladder operation” (c.f. Lemma 8.3).

This Lemma is of crucial importance when proving the formula (8.1).
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Having established an explicit formula for the trace of a primitive invariant in Sk, we will shift our focus

to the primitive invariants Sm,n of SU(N) over a mixed product space V ⊗m ⊗ (V ∗)⊗n. In section 8.3.1, we

remind the reader of the graphical mapping
N←→ that allows us to transform the primitive invariants in S(m+n)

into those in Sm,n (Definition 8.1). We discover that the trace of a primitive invariant remains unchanged

under this mapping: If ρ ∈ S(m+n), and
↔
ρ denotes the unique element in Sm,n satisfying

N←→: ρ 7→ ↔
ρ , then

tr (ρ) = tr
(↔
ρ
)

; (8.3)

this is stated in Theorem 8.3.

It should be noted that the map
N←→ does not distribute over a general product ρ · σ for ρ, σ ∈ S(m+n),

N←−→
ρ · σ 6=

N←→
ρ ·

N←→
σ in general . (8.4)

Astonishingly however, the distributive quality of
N←→ is restored under the trace,

Tr
( N←−→
ρ · σ

)
= Tr

( N←→
ρ ·

N←→
σ
)

; (8.5)

this is a consequence of Theorem 8.4, which is summarized in Corollary 8.2.

8.2 Traces of primitive invariants in Sk

8.2.1 Traces of birdtracks

As seen in previous chapters of this thesis, the trace of a birdtrack is formed by connecting the index legs on

the same level [72],

Tr (ρ) =
...

...

ρ . (8.6a)

In birdtrack notation, a closed loop (of a solid line) corresponds to the trace of a Kronecker δ in the (anti-)

fundamental representation,

= δijδ
j
i = δii = N , (8.6b)

which induces a factor of N . Thus, the trace (8.6a) will necessarily yield a polynomial in N for any birdtrack

ρ consisting of fundamental and antifundamental lines. If ρ is a primitive invariant of SU(N), then its trace

322



Chapter 8. On Traces of Primitive Invariants

will be a single power of N . For example, we calculate the traces of all primitive invariants in S3,

= N3 = N2

= N2 = N2

= N = N .

(8.7)

In eqns. (8.7), we see that the highest power of N is achieved by the trace of the identity permutation; all

other permutations produce lower powers of N when traced. This is, in fact, a general feature of the primitive

invariants in Sk. One may go a step further and recognize a pattern in the powers of N (c.f. Theorem 8.2).

To do so, we need to make a small detour via the theory of transpositions, which is done in the following

section 8.2.2. (Note that even though the results established in section 8.2.2 could be derived for general

cycles, we prefer to speak about transpositions as these are the smallest fundamental building blocks of

permutations, c.f. Theorem 8.1 below.)

8.2.2 A graph-theoretic approach to transpositions and permutations

It is commonly known that any permutation in Sk may be expressed as a product of transpositions (see [96,

100, 124] or other standard textbooks). Thus, the study of transpositions promises to provide much insight

into Sk as a whole. It comes as no surprise that transpositions and their connections to the permutations

in Sk are well studied. However, the research in this topic is ongoing, as a recent paper [127] (published

in February 2017) giving the number of ways in which a permutation can be written as a product of p

transpositions, p ∈ N, indicates.

A standard result [100] on transpositions and permutations is:

Theorem 8.1 – minimum number of transpositions to express a permutation:

Let ρ ∈ Sk be a permutation. There exists a minimum number of transpositions required to express ρ as a

product of transpositions τi. This minimum number will be denoted as

κ(ρ) such that ρ = τκ(ρ)τ(κ(ρ)−1) · · · τ2τ1 . (8.8a)

In particular, if we write ρ as a product of disjoint cycles1 σi,

ρ = σ`σ`−1 · · ·σ2σ1 , (8.8b)

then

κ(ρ) =
∑̀

i=1

(|σi| − 1) , where |σi| is the length of the cycle σi . (8.8c)

1This can always be done – see [96, 100, 124] or other standard textbooks.
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The signature of the permutation ρ is given by

sign(ρ) = (−1)κ(ρ) . (8.8d)

Theorem 8.1 has been known for a while, and it is this theorem that ultimately allows us to forge a compact

formula giving the trace of any permutation in Sk (see Theorem 8.2). In recent years, Lossers [126] has

provided a proof of eq. (8.8c) using a graph-theoretic approach. This proof (which is paraphrased later in

the present section on page 325) inspires a representation of permutations in terms of graphs with numbered

edges; [126] already represents permutations as graphs with unnumbered edges, however it is the numbering

of the edges that prompted us to derive the results given in the present section. We will now develop this

graph-theoretic method in detail. Notice that since any permutation can be written as a product of disjoint

cycles [96, 100, 124], it suffices to discuss how a particular cycle is represented as a graph.

Let σ := (a1a2 . . . ap) be a p-cycle (that is a cycle of length p) and consider the ai to be vertices of a p-gon

ordered clockwise.2 As an example,

(13452) −→

1

3

45

2
. (8.9)

When writing the p-cycle σ as a product of (p− 1) transpositions τi (according to Theorem 8.2 eq. (8.8c)),

σ = (a1a2 . . . ap) = τ(p−1)τ(k−2) . . . τ2τ1 , (8.10)

we represent each transposition τi = (alaj) by an edge marked with the integer i between the vertices al

and aj . It should be noted that, since there is no unique way of representing σ as a product of (p − 1)

transpositions (in fact, the number of ways can be explicitly calculated [127]), there will be more than one

representation of σ as a graph. As an example we provide various ways of writing the cycle (13452) as a

product of 4 transpositions and their corresponding graphs,

1

3

45

2

1

2

3

4
1

3

45

2 1
2

3

4

1

3

45

2

12
3

4

1

3

45

2

1

2

3

4

1

3

45

2

1

2

3
4

(8.11)

(13)(34)(45)(52) (24)(45)(13)(23) (35)(15)(25)(34) (23)(35)(12)(34) (23)(12)(34)(45)

Since any permutation ρ ∈ Sk may be written as a product of disjoint cycles σi, the graph G corresponding

to ρ will consist of subgraphs Hi (the Hi’s are disjoint from each other), where each subgraph Hi corresponds

to a cycle σi.

Conversely, suppose G is a graph corresponding to a particular permutation ρ; we may recover ρ directly

from its graph G as follows: It is clear that any node not contained in G will not enter a cycle of length > 1

2This requirement is merely aesthetic as it ensures that the graph corresponding to σ is planar (i.e. has no crossing edges)
but may be omitted if the aestheticity is not important to the practitioner.
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in ρ (that is to say that ρ acts trivially on any element not represented as a node in G). For any element a

represented by a node a in G, we recover the action of ρ on a as follows:

1. Start at node a and follow the edge with the lowest number k ending on node a ; if the edge k

runs between nodes a and b, this will lead to the vertex b .

2. From b , follow the edge with a number strictly greater than k. If there is more than one edge

fulfilling this criterion, select the edge with the lowest such number.

3. Continue in this fashion until you arrive at a vertex z such that no edges with a number strictly

greater than the edge followed to z leads away from z .

Once we have arrived at such a vertex z , we say that the element a is mapped to z under the permutation

ρ, ρ : a 7→ z. In this fashion, we can recover the action of ρ (and thus the permutation ρ itself) on any

element.

As an example, let us reconstruct the permutation ρ corresponding to the graph

G :=

1 2

34

1

2

3

. (8.12)

As already stated, the action of ρ on any element not represented by a node in G is trivial. Thus, we need

only consider the elements 1, 2, 3 and 4. Starting at vertex 1 , we move along the edge with the lowest

number, edge 1. This brings us to vertex 2 where there is no edge with a number > 1 to follow. Thus,

ρ : 1 7→ 2. Starting at node 2 , we follow edge 1 to vertex 1 . From there, we may follow edge 2 (since

2 > 1) to node 3 . We may follow yet another edge (namely edge 3, since 3 > 2) to vertex 4 , where we

no longer have an edge with a number > 3 to follow. Hence, ρ : 2 7→ 4. From vertex 3 , we must follow the

adjacent edge with the lowest number, edge 2, to node 1 . There, we reach our termination condition, since

all edges incident on node 1 (edges 1 and 2) are not strictly greater than the edge we followed to arrive at

1 (edge 2). This yields ρ : 3 7→ 1. Lastly, starting at node 4 , we follow edge 3 to node 3 , where we

again terminate, since 2,3 ≤ 3. Thus, ρ : 4 7→ 3. In summary, we find that the permutation ρ corresponding

to the graph G in (8.12) is given by

ρ = (1243) . (8.13)

Armed with this graphical representation of a permutation, we are able to give Lossers’ [126] proof of Theo-

rem 8.2 eq. (8.8c): Consider a particular p-cycle σ := (a1a2 . . . ap), and represent each element a1, a2, . . . , ap

by a node on a graph G. For G to represent σ as described in this section, G has to be a connected graph,

since each ai gets mapped to each aj under appropriately many applications of σ. The minimum number of

edges needed to connect a graph consisting of p nodes is (p− 1). Since each edge represents a transposition,

it follows that κ(σ) = (p − 1) = |σ| − 1. If ρ is a permutation written as a product of ` disjoint cycles σi,

ρ = σ` · · ·σ2σ1, then its corresponding graph K consists of ` subgraphs Hi, where each Hi corresponds to a
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cycle σi. Since the σi are disjoint, the Hi’s are disjoint from each other. Thus the minimum number of edges

needed for K to represent ρ is κ(ρ) =
∑`
i=1(|σi| − 1) =

∑`
i=1 κ(σi).

So far, we have been considering minimally connected graphs corresponding to permutations. Let us now

consider a graph that is a closed loop; in graph theory, such a closed loop is usually referred to as a “cycle”

(see [128] or other standard graph theory textbooks), however, to avoid confusion, we reserve the term “cycle”

for a particular kind of permutation, and refer to the graph-theoretic cycle as a multi-node loop (as a “loop”

in graph theory usually only involves one node [128]) in this chapter.

Lemma 8.1 – multi-node loop graphs correspond to permutations:

Consider a multi-node loop graph L consisting of n nodes and n edges, each labeled with a unique number

from 1 to n (not necessarily in order). Such a graph corresponds to a permutation.

Proof of Lemma 8.1: To show that L corresponds to a permutation, it suffices to show that the mapping

L : {a1, a2, . . . an} → {a1, a2, . . . an}, according to the rules established in this section, is 1-to-1. If the map

is 1-to-1, it automatically has to be onto since the domain and co-domain have the same size.

Consider the pair of nodes (ai, aj) such that L : ai 7→ aj . Then, there exists a path I along the multi-node

loop from ai to aj consisting of edges i1 . . . ik such that i1 < i2 < . . . < ik,

ai

a j

e i1

ikf

I . (8.14)

Furthermore, edge e, also incident on ai, satisfies i1 < e (as we initially followed edge i1 and not edge e), and

edge f ending on aj satisfies f < ik such that the stopping criterion is reached on node aj ,

i1 < e and f < ik . (8.15)

We now wish to show that there cannot be a second element ah 6= ai that also gets mapped to aj under the

action of L.

First, assume ah lies on the path I in L. Then there exists a pair of edges (is, is+1), is < is+1 ending on ah,

ai

a j

ah

i1

is

is+1

ik

I . (8.16)
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To examine the action on ah according to L, we first follow edge is (since is < is+1) away from aj to the next

node. There, we reach the termination criterion since the next edge is−1 is strictly less than is, is−1 < is.

Thus, an element ah lying along the path I does not get mapped to aj under L.

Now consider an element ah not lying on the path I. Incident on it, there will be two edges; call these edges

h1 and edge h2. The path that must be followed away from ah is dependent on whether h1 < h2 or h1 > h2,

h1 < h2 : h1 > h2 :

H 1

ai

a j

ah

e i1

h1

h2

ikf

I or

H 2

ai

a j

ah

e i1

h1

h2

ikf

I . (8.17)

First suppose that h1 < h2 (we follow the path H1): The termination criterion is, at the latest, reached at

node ai, since i1 < e (c.f. eq. (8.15)). Thus, ah does not map to aj in this case. Now consider the case

h1 > h2 (we follow the path H2): If the termination criterion is reached before we arrive at node aj , ah

trivially does not map to aj . If, however, we may follow edges all the way from ah to aj along the path H2,

then the termination criterion will not be reached on the node aj either, since f < ik (see eq. (8.15)). Thus,

ah once again does not map to node aj under L.

We have thus shown that there exists a unique ai that gets mapped to an element aj according to the graph

L (note that we have not excluded the possibility that ai = aj). Hence, the mapping described by L is both

1-to-1 and onto, and thus describes a permutation of the elements a1, . . . an.

As an example, consider the multi-node loop graph L consisting of vertices a1 . . . a5 and edges with numbers

increasing clockwise,

L :=

a1

a2

a3a4

a5
i1

i2
i3

i4

i5
where il < il+1 for each l . (8.18)

Examining the action of L on each of the ai, we notice the following:

• Starting from a1, we first follow the edge with the lowest number i1 to a2, then edge i2 to a3, and so on.

Once we arrive back at a1, we may not follow edge i1 again, since ii < i5, thus invoking the termination

condition. Therefore, L : a1 7→ a1.

• From a2 we follow the edge with the lowest number i1 to a1, and then continue via i5 to a5. There, we

once again have to stop, since i4 < i5. Hence, L : a2 7→ a5.

• In a similar manner one finds that L : a3 7→ a2, L : a4 7→ a3 and L : a5 7→ a4.
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Thus, the permutation ρ represented by the multi-node loop graph L can be written in terms of its disjoint

cycles as

ρ = (a1)(a2a5a4a3) . (8.19)

Theorem 8.1 teaches us that the number of minimum transpositions κ(ρ) for ρ given in eq. (8.19) is 3. Thus, ρ

may equally well be represented by a disjoint graph (each piece corresponding to the disjoint cycles in (8.19))

containing only 3 edges,

ρ −→

a1

a2

a3a4

a5

i2
i3

i4
, (8.20)

where we have essentially deleted edges i1 and i5 from (8.18). Thus, the multi-node loop graph in (8.18) and

the graph (8.20) act in the same way, and we have to conclude that they are equal as permutations, even

though they contain a different number of edges. This observation actually allows a general result:

Lemma 8.2 – κ(ρ) of a multi-node loop graph:

Consider a multi-node loop graph L with E edges that describes the action of a permutation ρ. Then

κ(ρ) ≤ E − 2 . (8.21)

Proof of Lemma 8.2: Consider a multi-node loop graph L consisting of E vertices a1 . . . aE and E edges

i1 . . . iE between them, where il < il+1 for every l (we note that the edges do not have to be arranged in

order within L). Suppose edge i1 runs between nodes ai and ai+1, and edge iE lies between ak and ak+1,

ai ai+1

akak+1

i1

iE

. (8.22)

We now aim to show that the permutation ρ corresponding to the graph (8.22) consists of at least two disjoint

cycles of length p and (E − p) respectively, such that

κ(ρ)
?
≤ (p− 1) + (E − p− 1) = E − 2 . (8.23)

In particular, we will show that the nodes ai and ak are contained in two separate disjoint cycles. We present

a proof by contradiction: Suppose the graph (8.22) corresponds to a permutation containing the cycle

σ = (ai . . . ak . . .) . (8.24)

Then, there exists an integer j such that aj 7→ ak under the cycle σ, σ = (ai . . . ajak . . .). Starting from

vertex ai, we follow edge i1 (since it is the edge with the smallest number) in a clockwise direction to ai+1,

and then continue clockwise to some node as at which the termination condition is reached. That is, if the
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two edges adjacent to as are called e and f , and we travelled along edge e to arrive at as, then f < e invokes

the termination condition,

ai

as ef

. (8.25)

This establishes that σ = (aias . . . ajak . . .). To determine the action of σ on as, we once again have to move

along the multi-node loop in a clockwise direction along edge f , as this is the edge with the lowest number

adjacent to as.

In this way we may fill in all elements of the permutation σ. The key observation is that whenever we reach

a termination condition on some node ax (which is a new element in σ), we may find the next element in σ

by moving away from ax in a clockwise direction.

Eventually we arrive at node aj , which maps onto ak under σ by our initial assumption. There are two

possible places within the graph L at which aj can be situated; we consider these cases separately.

• Suppose aj is situated between nodes ai+1 and ak,3

ai ai+1

akak+1

a j

i1

iE

. (8.26)

Then, we follow the edges from aj to ak in a clockwise direction. However, once we arrive at ak, we

may not stop there since edge iE is by definition the edge with the highest number and thus exceeds the

number of the previous edge, forcing us to follow it to ak+1 where the termination condition is reached.

Thus, σ : aj 7→ ak+1 6= ak.

• Suppose now that aj is situated between ak+1 and ai,

ai ai+1

akak+1

a j

i1

iE

, (8.27)

where we include the possibility that aj = ak+1. We once again need to follow the multi-node loop in a

clockwise direction to determine the action of σ on aj . However, we reach the termination condition, at

the latest, at node ai, since i1 is by definition the node with the smallest number. Thus, σ : aj ��7→ ak.

In either case, node aj does not map to ak under the action of the multi-node loop graph L. We have thus

3Note that aj 6= ai+1: Since we followed a path in a clockwise direction to aj , the edge followed to ai+1 would be edge i1,
which, by virtue of it being the smallest edge, requires us to follow at least one more edge away from ai+1.
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arrived at a contradiction and are forced to conclude that the permutation ρ described by the graph (8.22)

contains at least two disjoint cycles, one containing ai and the other containing ak. Thus,

κ(ρ) ≤ E − 2 (8.28)

as required.

The essence of Lemma 8.2 is that the number of edges E of a graph G corresponding to a permutation ρ is

not necessarily equal to the minimum number of transpositions κ(ρ), but it has a lower bound,

κ(ρ) ≤ E . (8.29)

This now raises the following question: Suppose we multiply ρ with a transposition (ij), which corresponds

to adding an edge between the nodes i and j to the graph G. Does the minimum number of transpositions

κ ((ij) · ρ) increase or decrease compared to κ(ρ)? This question will turn out to be important when we prove

the general formula for the trace of a permutation, Theorem 8.2. It is answered by the following Lemma.

Lemma 8.3 – increasing and decreasing κ with transpositions:

Let ρ be a permutation in Sk acting on the space V ⊗m, which, written as a product of disjoint cycles σi

(including 1-cycles), takes the form

ρ = σ`σ`−1 . . . σ2σ1 . (8.30)

Furthermore, let (ij) be a transposition, i, j ∈ {1, 2, . . .m}.

1. If i and j are contained in the same cycle in (8.30), then

κ (ρ · (ij)) = κ ((ij) · ρ) ≤ κ(ρ)− 1 . (8.31a)

2. If i and j are contained in the two distinct cycles in (8.30), then

κ (ρ · (ij)) = κ ((ij) · ρ) = κ(ρ) + 1 . (8.31b)

We draw attention to the fact that multiplication of a general permutation ρ by a transposition in eqns. (8.31)

somewhat resembles the action of raising and lowering operators in quantum mechanics, in that a particular

choice of transposition will either raise or lower κ(ρ).

Proof of Lemma 8.3: Consider the permutation ρ as described in (8.30) and let G be the corresponding graph

consisting of κ(ρ) edges. G will consist of ` disjoint sub-graphs, each corresponding to a cycle σi. Multiplying

the permutation ρ by (ij) corresponds to adding an edge (ij) between the vertices i and j to the graph G.

For left multiplication, this edge is labelled κ(ρ)+1, and for right multiplication, the edge is labelled 1 (while

simultaneously increasing the numbers of all previously existing edges in G by 1).

1. If there exists a p-cycle σs in (8.30) containing both integers i and j, then i and j are contained in

a connected sub-graph Gs of G consisting of p vertices and (p − 1) edges. Adding the edge (ij) to

Gs necessarily produces a closed multi-node loop in Gs, thus decreasing the count of κ by at least 2
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according to Lemma 8.2. Hence

κ (ρ · (ij)) = κ ((ij) · ρ) ≤
(
κ(ρ) + 1︸ ︷︷ ︸
edges in G

+ edge (ij)

)
− 2 = κ(ρ)− 1 . (8.32)

2. If the integers i and j are contained in two separate cycles σs and σt respectively, then adding the

edge (ij) corresponds to joining two disjoint sub-graphs into one sub-graph Gst. Notice that Gst is

minimally connected since it contains (length(σs) + length(σt)) nodes and

(length(σs)− 1) + (length(σt)− 1) + 1 = length(σs) + length(σt)− 1 (8.33)

edges. Hence,

κ (ρ · (ij)) = κ ((ij) · ρ) = κ(ρ) + 1 , (8.34)

concluding the proof.

8.2.3 Traces of permutations and minimum number of transpositions

One may now ask the question: Why did we go to great lengths to talk about the minimum number of

transpositions κ(ρ) for a particular permutation ρ, when actually we aim to find a formula for the trace of ρ?

It turns out that the power of N achieved by tracing a primitive invariant ρ ∈ Sk is intimately linked with

κ(ρ). From the example given in eqns. (8.7), one observes an inverse relation between these two quantities.

This is made explicit in the following Theorem:

Theorem 8.2 – trace of ρ from κ(ρ):

Let ρ ∈ Sk be a permutation viewed as a linear map over the space V ⊗m, and let κ(ρ) be the minimum

number of transpositions required to express ρ as a product of transpositions ( c.f. Theorem 8.1). The trace

of the permutation ρ is then given by

tr (ρ) = N (m−κ(ρ)) . (8.35)

Proof of Theorem 8.2: Let ρ ∈ Sk be a permutation acting on a product space V ⊗m. If m > k, then ρ is

assumed to act on the top k factors of the product V ⊗m and the identity acts on the bottom (m− k) factors

of V ⊗m. We will present a proof by induction on the minimum number of transpositions κ(ρ) to verify the

desired eq. (8.35).

Suppose κ(ρ) = 0: The unique permutation ρ satisfying this constraint is the identity ρ = id. Translating

the corresponding birdtrack back into Kronecker δ’s (c.f. eq. (1.107) in section 1.4.2.1) yields

ρ = id =

b1
b2
b3

bm

...

a1
a2
a3

am

= δb1a1
δb2a2

δb3a3
. . . δbmam . (8.36)

As discussed in (8.6b), computing the trace of (8.36) is achieved by connecting the index lines on the same
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level, which corresponds to a multiplication of ρ with

δa1

b1
δa2

b2
δa3

b3
. . . δambm . (8.37)

The full trace of the identity element is therefore

tr (id) = δb1a1
δb2a2

δb3a3
. . . δbmam︸ ︷︷ ︸

id

δa1

b1
δa2

b2
δa3

b3
. . . δambm︸ ︷︷ ︸

trace

(8.38a)

= δb1a1
δa1

b1︸ ︷︷ ︸
=N

δb2a2
δa2

b2︸ ︷︷ ︸
=N

δb3a3
δa3

b3︸ ︷︷ ︸
=N

. . . δbmam δ
am

bm︸ ︷︷ ︸
=N

(8.38b)

= (N)
m
, (8.38c)

confirming eq. (8.35) for κ(ρ) = 0.

Suppose now that eq. (8.35) holds for all permutations with minimum number of transpositions n ∈ N; this

will be referred to as the induction hypothesis. We now aim to show that this implies that eq. (8.35) must

hold for all permutations ρ′ such that

κ(ρ′) = n+ 1 , (8.39a)

that is, we want to prove that

tr (ρ′)
?
= N (m−(κ(ρ)+1)) . (8.39b)

First, let us write ρ′ as a product of transpositions τi

ρ′ = τn+1τn · · · τ2︸ ︷︷ ︸
=:ρ

τ1 = ρ · τ1 . (8.40)

The permutation ρ defined through eq. (8.40) clearly satisfies

κ(ρ) = n . (8.41)

We thus know that eq. (8.35) holds for this permutation ρ by the induction hypothesis. Furthermore, when

written in terms of its disjoint cycle structure, Lemma 8.3 tells us that the two elements contained in the

transposition τ1 are not contained in the same cycle in ρ, otherwise eq. (8.39a) would not be satisfied.

The strategy to prove the induction step (8.39b) will be to assume the induction hypothesis for the per-

mutation ρ and then multiply ρ with the transposition τ1. This is most easily accomplished in an adapted

birdtrack formalism: From now on, instead of merely writing

δb3a1
7→ , (8.42)

we will make the indices on the Kronecker δ explicit,

δb3a1
7→ b3 a1 , (8.43)
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essentially viewing the indices as nodes on a graph, and the δ as a (directed) edge between them (c.f.

section 8.2.2). In (8.38), we have indicated the Kronecker δ’s stemming from the birdtrack in black, and the

δ’s originating from the trace in red. We continue in this spirit by color-coding the edges of our graph such

that eq. (8.38b) becomes

tr (id) 7→

a1 a2 am

b1 b2 bm

. . . , (8.44)

where each closed multi-node loop in the graph (8.44) induces a factor of N (c.f. eq. (8.6b)). Since the trace

of a birdtrack is always formed via multiplication with the product (8.37) irregardless of the birdtrack, the

red arrows in a graph representing such a trace remain fixed, while the black arrows change according to the

permutation. As an example, the transposition τ̃ := (i(i+ 1)) given by

τ̃ = δb1a1
δb2a2

. . . δbi+1
ai δ

bi
ai+1

. . . δbmam (8.45)

gives rise to the following graph when traced:

tr (τ̃) 7→

a1 a2 ai ai+1 am

b1 b2 bi bi+1 bm

. . . . . . . (8.46)

Let us analyze this example in more detail: If we define ρ = id and ρ′ = τ̃ , then these two permutations

satisfy eqns. (8.39a) and (8.40),

κ
(

τ̃︸︷︷︸
ρ′

)
= κ

(
id︸︷︷︸
ρ

)
+ κ

(
τ̃
)

︸ ︷︷ ︸
1

and τ̃︸︷︷︸
ρ′

= id︸︷︷︸
ρ

· τ̃︸︷︷︸
τ1

. (8.47)

Thus, if we can show that

tr (τ̃)
?
= N (m−(κ(id)+1)) (8.48)

we have illustrated that the induction step works in the first instant (κ(ρ′) = 1), and gain insight into how

the proof may be generalized to κ(ρ′) = n+1. We notice that the graph (8.44) corresponding to tr (id) yields

the graph (8.46) corresponding to tr (τ̃) when we rearrange two black edges as follows,

a1 a2 ai ai+1 am

b1 b2 bi bi+1 bm

. . . . . .

︸ ︷︷ ︸
tr(id)

−→
a1 a2 ai ai+1 am

b1 b2 bi bi+1 bm

. . . . . .

︸ ︷︷ ︸
tr(τ̃)

; (8.49)

this operation joined two separate multi-node loops into one, which becomes immediately clear when rear-
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ranging the nodes in the graph corresponding to tr (τ̃) as

tr (τ̃) 7→

a1 a2 ai bi+1 am

b1 b2 bi ai+1 bm

. . . . . . . (8.50)

Thus, the graph of tr (τ̃) contains one closed multi-node loop fewer than the graph of tr (id), and we have to

conclude that

tr (τ̃) =
tr (id)

N
= N (m−κ(id)−1) = N (m−(κ(id)+1)) . (8.51)

We would like to draw attention to the key feature that allowed this step to be proved: Rearranging the black

edges in (8.49) combines two multi-node loops into one because the two edges in question are contained in

separate cycles in the pemutation id.

Let us return to the premise in eqns. (8.39). Lemma 8.3 ensures us that the two elements in the transposition

τ1 are contained in separate cycles in ρ. Thus, altering the black nodes in the graph tr (ρ) to become the

graph tr (ρ · τ1) necessarily joins two separate multi-node loops into one, decreasing the total multi-node loop

count of tr (ρ′) compared to that of tr (ρ) by 1. Hence, we have that

tr (ρ′) =
tr (ρ)

N
= N (m−κ(ρ)−1) = N (m−(κ(ρ)+1)) = N (m−κ(ρ′)) , (8.52)

concluding the proof.

To end this section, we briefly comment on the trace of a product of two primitive invariants in Sk: Since Sk

is a group, and all its elements are unitary, the product

ρ† · σ = ρ−1 · σ (8.53)

lies in the group Sk for all ρ, σ ∈ Sk. Theorem 8.2 then implies that the inner product 〈·|·〉 (c.f. eq. (5.96))

of two permutations in Sk yields a non-vanishing result,

〈ρ|σ〉 = tr
(
ρ† · σ

)
= Nα 6= 0 (8.54)

for some positive integer α. This is the reason why a basis of singlets states over V ⊗k ⊗ (V ∗)⊗k obtained

from bending the primitive invariants in Sk (as discussed in section 5.2.1.7) can never be orthogonal.

8.2.4 Transpositions of inverses and Hermitian conjugates

We would like to note that the minimum number of transpositions κ must be the same for a permutation ρ

and its inverse ρ−1. This is most easily seen when writing ρ in terms of its disjoint cycles,

ρ = σ`σ`−1 · · ·σ2σ1 , (8.55)
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as then its inverse is given by

ρ−1 = σ−1
1 σ−1

2 · · ·σ−1
`−1σ

−1
` , where (σi)

−1
= ((a1a2 . . . ap−1ap))

−1
= (apap−1 . . . a2a1) (8.56)

for every p-cycle σi [96, 100, 124]. Thus, we have that κ(ρ) = κ(ρ−1), immediately implying that

tr (ρ) = Nm−κ(ρ) = Nm−κ(ρ−1) = tr
(
ρ−1

)
. (8.57)

Since permutations are unitary, ρ−1 = ρ†, it immediately follows that

Corollary 8.1 – trace and Hermitian conjugation:

Let ρ ∈ Sk. Then,

tr (ρ) = tr
(
ρ†
)
, (8.58)

where ρ† is the Hermitian conjugate of ρ.

8.3 Traces of primitive invariants in Sm,n and traces of products

8.3.1 Antifundamental factors in the product space

Chapters 2, 3 and 4 concerned themselves almost exclusively with the irreducible representations of SU(N)

on a product space V ⊗m consisting only of fundamental factors. In chapters 5, 6 and 7, we include antifun-

damental representations in the product, discussing various aspects of the representation theory of SU(N)

over V ⊗m ⊗ (V ∗)⊗n. An important facet of this discussion is the graphical map transforming the birdtracks

of the primitive invariants S(m+n) of SU(N) over V ⊗(m+n) into Sm,n, the primitive invariants of SU(N) over

a mixed product V ⊗m ⊗ (V ∗)⊗n [72]. We now repeat the definition of this map, also introducing some new

notation.

Definition 8.1 – from fundamental to antifundamental lines (the map ↔):

Consider the primitive invariants in S(m+n). These operators are transformed into the primitive invariants

in Sm,n by exchanging the endpoints on the same level of the legs (m+ 1), . . . , (m+ n). We denote this map

by the symbol

N←→ , where N = {m+ 1,m+ 2, . . . ,m+ n} (8.59)

denotes the set of index lines upon which the map
N←→ acts. If the set N is clear from the context, we may

suppress the index set and merely write ↔. Furthermore, for ρ ∈ S(m+n), we will denote the object in Sm,n

obtained from ρ via the map
N←→ by

N←→
ρ (or simply by

↔
ρ if the set N is clear),

N←→: ρ 7→ ↔
ρ . (8.60)

The map
N←→ evidently is a bijection between S(m+n) and Sm,n.
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For example, the primitive invariant

(8.61)

transforms under the map
3←→ as

3←→ : 7→ =:

3←−→
. (8.62)

In fact, all primitive invariants in S2,1 of SU(N) over V ⊗2⊗V ∗ are constructed from those in S3 via the map
3←→,

S3 : , , , , , (8.63)

3←→ :

S2,1 : , , , , , . (8.64)

With regards to birdtracks, we have seen the notion of swapping lines on the same level before, namely when

taking inverses and for Hermitian conjugation (c.f. section 3.3.1). Let us recapitulate:

1. The inverse mapping of a primitive invariant ρ ∈ Sk is naturally obtained by following the lines of

the birdtrack ρ (indicating the original mapping) in reverse. In other words, the inverse of a primitive

invariant in Sk is formed by mirroring the birdtrack about its vertical axis and reversing the arrows,

mirror−−−−→ reverse−−−−→
arrows

=:

( )−1

. (8.65)

2. The Hermitian conjugate of any birdtrack operator is obtained by flipping the birdtrack about its vertical

axis and reversing the arrows,

flip−−→ reverse−−−−→
arrows

= =:

( )†
; (8.66)

this is discussed in detail in [72] and in section 3.3.1 of chapter 3.

For the primitive invariants in Sk, Hermitian conjugation and forming an inverse involves the same procedure,

implying that all elements in Sk are unitary (c.f. section 8.2.4),

ρ−1 = ρ† for every ρ ∈ Sk . (8.67)

It should be noted however that this is not the case for a general element of the algebra of primitive invariants,

for example

=

( )†
, but 6=

( )−1

; (8.68)
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in particular, the operators in eq. (8.68) do not have an inverse, as they are quasi-idempotent.4

In the group S(m+n) every element has an inverse. This is not the case for Sm,n (c.f. the last four elements

of S2,1 in eq. (8.64)), thus excluding it from being classified as a group. In particular, flipping a birdtrack ρ

in Sm,n about its vertical axis and reversing the arrows, as exemplified in (8.65), only yields ρ−1 if such an

inverse exists, which is not true for most elements of Sm,n. What this procedure undoubtedly yields is the

Hermitian conjugate ρ† of ρ, as demonstrated in eq. (8.66).

From the definition of the map
N←→, N = {m + 1, . . . ,m + n} (c.f. Definition 8.1), it is apparent that the

Hermiticity of the elements in S(m+n) stays unaffected under the map
N←→,

σ = ρ† ⇐⇒ ←→σ =
←−→(
ρ†
)

=
(←→ρ

)†
, (8.69)

where ↔ is understood to be
N←→. This is summarized in the following Lemma:

Lemma 8.4 – † and ↔ commute:

Let ρ ∈ S(m+n) and
↔
ρ ∈ Sm,n correspondingly. Then,

(←→ρ )
†

=
←−→(
ρ†
)
. (8.70)

Thus, as already mentioned, the Hermiticity properties of an element ρ ∈ S(m+n) stay unchanged under the

map
←→N . In particular, if ρ is Hermitian, then

↔
ρ must also be Hermitian,

(←→ρ )
† Lemma 8.4

=========
←−→(
ρ†
) ρ†=ρ

=====
←→
(ρ) = (←→ρ ) . (8.71)

8.3.2 Traces of primitive invariants in Sm,n

As we already know, the trace of any birdtrack is calculated by connecting the lines on the same level and

assigning a factor N to each closed loop (c.f. eqns. (8.6)). In section 8.2.2 we showed that the trace of a

birdtrack is unaffected under the Hermitian conjugation (Corollary 8.1). We now wish to “close the circle”

and show that the trace remains unaffected by the map
N←→ as well. This notion is encapsulated schematically

by the triangle of operations on the left, or more concretely by the commutative diagram on the right

TrTr

†† N←→N←→
commute

Lemma 8.4

C
or

ol
la

ry
8.

1
in

va
ri

an
t

T
heorem

8.3

invariant

ρ ∈ S(m+n)
↔
ρ ∈ Sm,n

ρ† ∈ S(m+n) tr(ρ) ∈ R

N←→

†

tr

trtr . (8.72)

The following Theorem formulates the desired characteristic:

4It is easy to show that an idempotent P (that is P 2 = P ) can have an inverse P−1 if and only if P = id:

id = P · P−1 P=P2

====== (P 2) · P−1 = P · (P · P−1︸ ︷︷ ︸
id

) = P · id = P .

337



Section 8.3. Traces of primitive invariants and products thereof

Theorem 8.3 – tr is invariant under
N←→:

Let ρ ∈ S(m+n) be a permutation and let
↔
ρ be the element in Sm,n that is obtained from ρ under the map

N←→, where N is understood to be a subset of {1, . . . ,m,m+ 1, . . . ,m+ n} of size n. Then,

tr (ρ) = tr
(↔
ρ
)
, (8.73)

that is, the trace remains invariant under the operation ↔.

Proof of Theorem 8.3: Let ρ and
↔
ρ be as defined in the theorem, and consider the trace of ρ, tr (ρ). We will

now investigate how this trace changes as we flip consecutive index lines according to the map ↔, thereby

building tr
(↔
ρ
)

from tr (ρ). Usually we would start with the bottommost level, but in this case we found that

the clarity of the accompanying graphics in this proof is improved if we start with the topmost index line. The

index lines ending on the topmost level correspond to the Kronecker δ’s δbia1
δb1aj for some integers i, j. (We

include the possibility that aj = bi, inducing a horizontal line δb1a1
on the top level; flipping δb1a1

, however,

is trivial as it only reverses the arrow on the top index line.) Upon a swap transforming the fundamental

lines ending on the top level into antifundamental lines, the product δbia1
δb1aj becomes

δbia1
δb1aj

b1↔a1−−−−→ δaja1
δb1bi . (8.74)

Schematically, we represent the birdtrack corresponding to ρ as

ρ 7→

b1

bi

a1

a j

, (8.75)

where we have explicitly drawn the index lines corresponding to the Kronecker δ’s δbia1
and δb1aj and

suppressed the remaining index lines constituting ρ so as not to clutter (and thus mystify) the picture; these

remaining index lines are understood to form part of the grey rectangle. Transforming the topmost level into

an antifundamental representation is schematically expressed as

b1

bi

a1

a j

1←→−−−→

b1

bi

a1

a j

; (8.76)

we note that the part of ρ represented by the grey rectangle is not affected by the map
1←→. From now on,

we will suppress the index labels a, b.

In order to form the trace of ρ, we connect each of the index lines on the same level (c.f. eqns. (8.6)). Only

explicitly drawing δa1

b1
, but understanding all other trace δ’s to be present, we schematically represent tr (ρ)
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as

tr (ρ) 7→ . (8.77)

The trace of an operator necessarily yields a scalar, implying that there cannot be any open-ended index legs

in tr (ρ). In particular, since the two nodes a1 and b1 are connected through the trace δb1a1
, they form part

of a closed loop. This means that the nodes aj and bi must also be connected through the trace,

tr (ρ) 7→ ; (8.78)

we emphasize that the connection between aj and bi represented by the blue dashed line may contain several

other Kronecker deltas δbuav constituting ρ. The crux of the matter is that the explicitly drawn loop in the

above diagram is exactly 1 loop. Thus, if tr (ρ) = (N)s for some s ∈ N (c.f. Theorem 8.2), then the remaining

part of tr (ρ) not explicitly drawn in (8.78) consists of exactly (s− 1) closed loops.

We now wish to apply the map
1←→ to ρ, exchanging the ends of the index lines on the topmost level. Under

the trace, this corresponds to severing the loop in (8.78) at the points a1 and b1 (indicated by 8 below), and

reconnecting the black index lines as was done in eq. (8.76)

8 8
1←→−−−−−−−−−−−−−−−→

δ
bi
a1
δ
b1
aj
→δbib1 δ

a1
aj

. (8.79)

We have not altered the remainder of tr (ρ) (the part indicated by the grey box) in any way, so it still consists

of exactly (s − 1) closed loops. Eq. (8.79) illustrates that the map
1←→ merely “disentangled” the explicitly

drawn loop containing all four nodes a1, aj , b1, bi, but we remain with exactly 1 closed loop. Therefore, after

applying
1←→ to ρ inside the trace, the loop count and thus the trace itself is not altered,

tr
( 1←→
ρ
)

= tr (ρ) . (8.80)

We may now repeat the above procedure with any number of indices and will still find that

tr
(↔
ρ
)

= tr (ρ) , (8.81)

concluding the proof of Theorem 8.3.

Since any birdtrack operator A ∈ Lin
(
V ⊗(m+n)

)
is a linear combination of the primitive invariants in S(m+n),
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Theorem 8.3 trivially also holds for A,

tr (A) = ...
...A =

...
...A = tr

(↔
A

)
(8.82)

as is illustrated here for the case where n = 1.

Theorem 8.3 gives an alternative way of computing the trace of a primitive invariant λ ∈ Sm,n (acting on a

product space consisting of a total of k factors): one first transforms λ into a primitive invariant of S(m+n)

(acting on V ⊗k) via the map
N←→, and then uses Theorem 8.2 to evaluate the trace,

tr
(

λ︸︷︷︸
∈Sm,n

)
Thm. 8.3

======= tr
( N←→

λ︸︷︷︸
∈S(m+n)

)
= N

(
k−κ

( N←→
λ
))

. (8.83)

8.3.3 Traces of products of primitive invariants

Let us now turn our attention to products of primitive invariants. Let ρ, σ ∈ S(m+n) and let
↔
ρ and

↔
σ be

their corresponding primitive invariants in Sm,n under the map
N←→, N = {m+ 1, . . . ,m+ n}. In general, it

is true that

←−→ρ · σ 6= ↔ρ ·↔σ . (8.84)

As an example,

1←−−−−→( )
·

1←−−−−→( )
= · = , (8.85a)

but

1←−−−−−−−−−→(
·

)
=

1←−−−−→( )
= 6= . (8.85b)

Astonishingly, however, the trace of both (8.85a) and (8.85b) is the same,

tr

( )
= tr

( )
= N2 . (8.86)

This is not a mere coincidence, but a general feature of primitive invariants:

Theorem 8.4 – the trace stays invariant under
N←→ for products:

Let ρ, σ ∈ S(m+n) and let
↔
ρ ,
↔
σ be the two elements in Sm,n obtained from ρ and σ via the map

N←→, N is a

subset of {1, . . . ,m,m+ 1, . . . ,m+ n} of size n.5 Then,

tr (ρ · σ) = tr
(↔
ρ ·↔σ

)
, (8.87)

5This subset is usually taken to be {m+ 1, . . . ,m+ n}.
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that is, the trace of the product remains unchanged if the map
N←→ is applied to the individual primitive

invariants.

Proof of Theorem 8.4: Let ρ, σ ∈ S(m+n) and
↔
ρ ,
↔
σ ∈ Sm,n be as required by the Theorem. To prove the

desired eq. (8.87), we will use a similar strategy as in the proof of Theorem 8.3: We will argue that the total

number of loops in the trace tr (ρ · σ) stays the same if each invariant ρ, σ is acted upon by the map
N←→

individually. We will show this by acting
N←→ successively on the various index lines of ρ and σ. Once again,

it will be convenient to start with the topmost index line. Let us therefore consider the action of
1←→:

Written as a product of Kronecker δ’s, ρ and σ will contain terms δbia1
δb1aj and δcsb1 δ

c1
bt

respectively, which

correspond to the index lines ending on the topmost level of the two birdtracks. Schematically, expressing

all other index lines except δbia1
δb1aj and δcsb1 δ

c1
bt

by a grey box, the product ρ · σ is written as

ρ · σ 7→

a1

a j

b1

bt

bi

c1

cs . (8.88)

If we act the map
1←→ on each primitive invariant ρ or σ individually, the product ρ · σ becomes

a1
a j

b1

bt

bi

c1

cs

1←→−−−→

a1
a j

b1

bt

bi

c1

cs

1 1

=

a1
a j

b1

bt

bi

c1

cs . (8.89)

For the remainder of this proof, we suppress the index labels a, b, c.

Taking the trace of the product ρ · σ results in connecting all index lines on the same level (c.f. eq. (8.6a)).

Only making the topmost such connection explicit, but understanding that all are present in the schematic

depiction below, tr (ρ · σ) becomes

tr (ρ · σ) 7→ . (8.90)

A product of any two primitive invariants in S(m+n) will yield another primitive invariant in S(m+n) by virtue
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of S(m+n) being a group,

ρ · σ ∈ S(m+n) . (8.91)

As we know from Theorem 8.2, the trace of a primitive invariant in S(m+n), such as ρ · σ, will yield a power

of N ,

tr (ρ · σ) = Nq for some q ∈ N . (8.92)

Thus, the schematic drawing (8.90) of tr (ρ · σ) must consist of exactly q closed loops. We now notice the

following: The index lines representing δbia1
and δc1bt are connected through the trace (red line), therefore

forming part of the same loop in (8.90); we will indicate this by the blue dashed line in the following eq. (8.93).

Similarly, the index lines representing δb1aj and δcsb1 are connected at b1, therefore also forming part of the

same loop; this loop is indicated by the pink dotted line below,

tr (ρ · σ) 7→ . (8.93)

It is understood that the dashed and dotted lines may involve other index lines not explicitly represented in

this schematic drawing of tr (ρ · σ). The key observation to be made is that the Kronecker deltas δbia1
, δb1aj ,

δcsb1 and δc1bt form part of 2 distinct closed loops. Hence, if tr (ρ · σ) = Nq according to eq. (8.92), the part

of tr (ρ · σ) contained in the grey box in (8.93) consists of exactly (q − 2) closed loops.

Remark: We would like to point out that if the Kronecker δ’s ending on the top most level of ρ and σ

(these are δbia1
, δb1aj , δ

cs
b1

and δc1bt ) form part of only one loop, then the proof of Theorem 8.4 reduces to

the proof of Theorem 8.3 and we are done.

We now wish to act the map
1←→ on each of the primitive invariants ρ and σ in tr (ρ · σ). Graphically, this

results in cutting the loops in (8.93) at points a1, b1, c1 (marked by 8 below) and reconnecting them as

demonstrated in eq. (8.89),

8 8 8

1←→−−−→ . (8.94)

It should be noted that all other closed loops in tr (ρ · σ) (included in the grey boxes) remain intact under

the action of
1←→ on ρ and σ and thus continue to contribute a factor N (q−2) to tr

(↔
ρ ·↔σ

)
(where ↔:=

1←→).
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Furthermore, from eq. (8.94) it is abundantly clear that the two explicitly drawn loops in tr (ρ · σ) remain

two distinct loops in tr
(↔
ρ ·↔σ

)
. Thus, the total loop count in tr

(↔
ρ ·↔σ

)
continues to be q,

tr
(↔
ρ ·↔σ

)
= Nq . (8.95)

We conclude, therefore, that

tr (ρ · σ) = tr
(↔
ρ ·↔σ

)
, (8.96)

where ↔:=
1←→, as required. One may now consecutively transform fundamental lines into antifundamental

lines under the trace as exhibited above. This will however keep the number of loops in the trace constant,

as we have already seen for the case
1←→. Hence, the trace tr (ρ · σ) remains invariant under an application of

the map
N←→.

As was already the case for Theorem 8.3, since all birdtrack operators A,B ∈ Lin
(
V ⊗(m+n)

)
are linear

combinations of the primitive invariants in S(m+n), Theorem 8.4 trivially also holds for the product AB,

tr (AB) = ...
...A
...

...B =
...

...A
...

...B = tr

(↔
A
↔
B

)
(8.97)

as is illustrated here for the case where n = 1.

Theorem 8.4 indeed explains that the observation made in eqns. (8.85) and (8.86) is completely general:

Given that for any ρ, σ ∈ S(m+n) it is true that λ := ρ ·σ also lies in S(m+n) since S(m+n) is a group, we have

that:

Corollary 8.2 –
N←→ distributes under Tr:

For any ρ, σ ∈ S(m+n), it follows that

tr (←→ρ · ←→σ )
Thm. 8.4

======== tr (ρ · σ)
Thm. 8.3

======== tr
(←−→ρ · σ

)
, (8.98)

where ↔ is understood to mean
N←→, for N being a subset of {1, . . . ,m,m+ 1, . . . ,m+ n} of size n (usually

taken to be N = {m+ 1, . . . ,m+ n}).
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Chapter 9

Towards a Full Mathematical Theory:

Outlook

While the results given in this thesis are directly applicable to the physics context we are interested in (as

discussed in the following chapter 10), there are still some unresolved issues that need to be addressed in order

to obtain a full mathematical theory. We list some of these issues in the present chapter.

9.1 A formula for the normalization constants?

For the standard Young projection operators YΘ, the normalization constant αΘ ensuring their idempotency

can be calculated by means of a combinatoric formula involving the Hook length of the tableau Θ (c.f.

eq. (4.37) in chapter 4). The normalization constant βΘ corresponding to the MOLD projectors PΘ in

Theorem 3.5 was shown to be finite and nonzero, however, no explicit formula to obtain this constant exists

up to this point. While calculating the constant βΘ via squaring PΘ and requiring that PΘ · PΘ
!
= PΘ is

easily done (for example in Mathematica), and thus does not cause problems with respect to the practical

usability of the MOLD operators in physics examples,1 an explicit formula for βΘ analogous to the Hook rule

is desirable to obtain a full mathematical theory.

The underlying reason for the lack of an explicit formula is that the simplification rule used in the construction

of the MOLD operators, Corollary 2.2 in chapter 2, is not as well understood as it ought to be. This rule

states the conditions under which it is possible to cancel certain sets of symmetrizers and antisymmetrizers

in a product at the cost of a nonzero constant λ. This constant must be combinatoric in nature, as it is

linked to the number and respective sizes of the sets of (anti-)symmetrizers that are cancelled (this statement

is based on observations made when calculating a large number of examples), although the precise relation

is as yet unclear.

Studying these simplification rules (in particular the cancellation rules of section 2.3) further promises not

only better insight into birdtrack operators themselves, but also a deeper understanding of the effect that

such cancellation rules have on the operators, hopefully leading us to an explicit formula for the constant

1Similarly, since the transition operators in chapter 4 are constructed from the MOLD projectors, they also have to be
normalized manually. This procedure is also computationally inexpensive, and thus causes no problems in practical applications.
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λ. This will culminate in an explicit formula for the normalization constant of the MOLD projection and

transition operators, thus making their automated implementation on a computer even easier.

9.2 Coincidence limits of Wilson lines beyond what is already es-

tablished

As has been pointed out on numerous occasions, coincidence limits of Wilson line correlators are directly

applicable in a physics context. However, from a mathematical point of view, such coincidence limits are

interesting in their own right:

In a basis of symmetrizers and antisymmetrizers, we have seen that a particular coincidence limit yields

a correlator zero if it essentially causes two legs of a symmetrizer to be connected with two legs of an

antisymmetrizer (c.f. section 5.3.1.1). For example, a coincidence limit between the top two legs (x→ y) of

the following operator gives a null result,

x→y−−−→ = 0 . (9.1)

(This was already demonstrated in eq. (5.160), we merely “unbent” the singlet states and suppressed the

U†’s here for clarity.) On the other hand, the same coincidence limit between the following two operators

did not vanish,

x→y−−−→ 6= 0 . (9.2)

In fact, it would need a coincidence limit of all Wilson lines (x→ y → z) to make this operator zero,

x→y→z−−−−−−→ = 0 . (9.3)

As already mentioned in section 5.3.2.1, the two operators on either side of the Wilson lines in (9.2) have

the same parent operator, while the operators in (9.1) do not. Since the MOLD algorithm (Theorem 3.5)

stacks sets of symmetrizers and antisymmetrizers of consecutively older generations of Young tableaux next

to each other, it is conceivable that the ancestry of two operators gives information about how many coinci-

dence limits (starting from the top) need to be taken before the resulting operator becomes zero. Since the

construction of transition operators has the MOLD operators as its basis (Theorem 3.5), a valid argument

for the MOLD operators will immediately transfer to the transition operators.

However, due to the fact that an ancestor tableau of size n only holds information of the top n index lines of

an operator, it will not be able to give any information about coincidence limits other than the first n. Thus,

information about a coincidence limit of a random subset of index lines cannot be encoded in (ancestor)

Young tableaux, and a different approach is required.

Lastly, we emphasize that we have not yet commented on coincidence limits of Wilson lines connecting

operators in a different basis. For example, the criterion when a coincidence limit in the basis discussed in
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section 5.3.2.2 yields a null operator is very different than in a basis of symmetrizers and antisymmetrizers.

Thus, we expect a general argument to involve very different considerations.

9.3 Irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n

As was demonstrated in chapter 5, section 5.1.4, the standard method of constructing the projection operators

of SU(N) over a mixed product space V ⊗m⊗ (V ∗)⊗n from the Littlewood-Richardson tableaux is inadequate

for practical calculations as it involves an immense computational effort. In section 5.2 of chapter 5, we

presented a computationally efficient method of obtaining a subset of these projection operators, namely

those corresponding to singlet representations. A practical, easy-to-implement algorithm for the remaining

projection operators is (to the author’s knowledge) not yet known and thus invites future research on the

matter. In particular, such an algorithm will be of interest for physics applications, as it allows one to

verify that the n-point functions G
(j)
Y,x1···xn and K

(j)
Y,x1···xn in the parametrization of JIMWLK behave in the

expected way for non-singlets. We will comment further on this topic in section 10.2.4 of chapter 10.

There remains, however, a number of as yet unresolved mathematical oddities standing in the way of attaining

the desired construction method. In this section, we focus on those peculiarities that result from making

the parameter dim(V ) = N small enough to produce dimensionally null representations of SU(N) over

V ⊗m ⊗ (V ∗)⊗n. Investigating such phenomena in the future may pave the way to a practical construction

algorithm for all projection operators of SU(N) over V ⊗m ⊗ (V ∗)⊗n. We expect that such an algorithm –

once it has been formulated – will enable the study of new properties of the irreducible representations of

SU(N), which would not have been identified as noteworthy without the explicit expressions of the projection

(and transition) operators.

9.3.1 Systematic knowledge of dimensionally null operators of SU(N) over the

4-particle Fock spaces

Let us consider the representations of SU(N) over a product space V ⊗m ⊗ (V ∗)⊗n, and let k := m + n. If

n = 0, and hence V ⊗m ⊗ (V ∗)⊗n = V ⊗m = V ⊗k, then the Young tableaux consisting of k boxes uniquely

classify the irreducible representations of SU(N) over this product space. If, furthermore, dim(V ) = N < k,

then the Young tableaux containing more than N rows correspond to null representations of SU(N), since the

associated projection operators include antisymmetrizers of more than N elements (c.f. eq. (3.29) for Young

projectors, and Theorem 3.5 for MOLD projectors). In other words, the number of irreducible representations

of SU(N) is reduced if the dimension N of V is too small to accommodate all possible representations. For

example, the Young tableau

1

2

3
···
k

(9.4)

is the unique tableau that requires N ≥ k in order for the corresponding representation to be nonzero. Notice

that the proof of Corollary 6.2, which states that SU(N) has the same number of representations over all
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product spaces V ⊗m ⊗ (V ∗)⊗n with m+ n = k as over V ⊗(m+n) = V ⊗k, is independent of N . This implies

that Corollary 6.2 holds for all values of N . There consequently exists a unique projection operator of SU(N)

over every space V ⊗m ⊗ (V ∗)⊗n (with m + n = k) whose dimension is nonzero if and only if N ≥ m + n.

This was exemplified in chapter 7, where we found that the following operators,2

V ⊗4 : P (4) = θN>3 · (9.5a)

V ⊗3 ⊗ V ∗ : P (3,1) = θN>3 ·
{

− 3

N − 2

}
(9.5b)

V ⊗2 ⊗ (V ∗)⊗2
: P (2,2) = θN>3 ·

{
− 2

N − 2

(
2 − 1

N − 1

)}
, (9.5c)

and only these operators for each basis, vanish if N is decreased below 4. They each constitute a 1× 1 block

in the matrices M4-particle, and correspond to the respective tableaux

P (4) →

1

2

3

4

, P (3,1) →

1 a1

2 a2

3 a3

···
aŇ

and P (2,2) →

1 a1 b1

2 a2 b2

a3
······ bŇ-1

aŇ

bŇ

, Ň := N − 1 , (9.6)

as discussed in chapter 7. For completeness, we ought to include the operator

P̃ (2,2) =
θN>3

2

{
− − 1

2(N − 2)
− 1

N(N − 1)

}
, (9.7)

as it is also only a nonzero operator if N ≥ 4 [72].

Suppose we want to form the singlet states of SU(N) over V ⊗4 ⊗ (V ∗)⊗4
. According to Theorem 5.2 in

chapter 5, we may generate these states via bending the basis elements of API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
for

m + n = 4. For example, the nonzero matrix elements of M4 (c.f. section 7.3.2) yield all 24 singlet states.

As explained in sections 5.2.1.3 and 5.2.1.4, bending the elements of M3,1, M2,2 or M̃2,2 (c.f. sections 7.3.2,

7.4.2 and 7.4.3, respectively) will also lead to sets of 24 singlet states of SU(N) over V ⊗4 ⊗ (V ∗)⊗4
, all of

which are completely equivalent to the first, and thus to each other. Therefore, there exists a change of basis

between the various sets of singlets obtained from bending the elements of the different matrices M4-particle.

In each of these singlet sets, there exists a unique singlet state that is nonzero if and only if N ≥ 4, namely

the singlet obtained from bending the operators in eqns. (9.5) and (9.7) respectively. Thus, in a change of

basis, these singlets must map directly to each other (as opposed to a linear combination of other singlets).

Spinning this one step further, we notice that there are nine matrix elements in each basis M4, M3,1, M2,2

and M̃2,2 that become nonzero for N ≥ 3 (this was discussed in great detail in section 7.5). Let us denote

2We remind the reader that the function θN>k is defined as (c.f. eq. (7.10))

θN>k :=

{
1 if N > k

0 if N ≤ k .
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this set of operatores by Sq,q̄[3] (where q and q̄ denote the number of fundamental resp. antifundamental

factors in V ⊗q⊗ (V ∗)⊗q̄). Thus, the corresponding subsets of nine singlet states of SU(N) over V ⊗4⊗ (V ∗)⊗4

must map to each other in a change of basis. However, here we notice something curious: In the matrix M4,

the set S4[3] is contained in a 3× 3 block marked below,

S4[3] −→




1

3

2

3

1




. (9.8a)

On the other hand, the nine operators in question are distributed rather oddly in the matrices M3,1, M2,2

and M̃2,2. In M3,1, the elements of the set S3,1[3] that contain an antisymmetrizer of length 3 (and thus

vanish for N < 3) populate one row and column in a 3 × 3 block (c.f. eq. (7.17)). Additionally, it was

shown in section 7.5.3 that the two projection operators of the 2× 2 block vanish, causing the corresponding

transition operators to also become null. Therefore,

S3,1[3] −→




1

3

2
1

3

1




. (9.8b)

For the matrices M2,2 and M̃2,2, one of the projection operators that vanishes for N ≤ 3 is contained in a

4× 4 block (c.f. eqns. (7.34b) and (7.41) respectively). Thus, this projection operator, and all six transition

operators to it, vanish for N ≤ 3. The remaining two null operators for N ≤ 3 are each contained in a 1× 1

block,

S2,2[3]

S̃2,2[3]

}
−→




1
4

2
1

1
1

1




. (9.8c)

Thus, when forming singlet states out of the matrix elements of the various M’s, the states originating from

the marked portions in eqns. (9.8) will be mapped to each other in a change of basis.

We used the case of the 4-factor product space to illustrate certain traits of the bases of singlet states

formed from the projection and transition operators over these spaces. As the factors in the product spaces

V ⊗m ⊗ (V ∗)⊗n (out of which we build the singlets over V ⊗(m+n) ⊗ (V ∗)⊗(m+n)
) increase, the study of the

subsets of operators becoming zero (when incrementally decreasing N) becomes more intricate: Let N = N∗
where N∗ < m+ n. From the theory of Young tableaux, we know that the operators of S(m+n)[N∗] occupy

entire blocks in the matrix M(m+n) – these blocks correspond to Young diagrams with more than N∗ rows.

Thus, the size of the set S(m+n)[N∗] must be given by a sum of squares of integers,

∣∣S(m+n)[N∗]
∣∣ =

∑

i

n2
i , where ni ∈ N for every i . (9.9)
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The number of elements of the matrix Mm,n that vanish for N ≤ N∗ must be the same as that of M(m+n),

∣∣S(m+n)[N∗]
∣∣ = |Sm,n[N∗]| , (9.10)

even though the elements of Sm,n[N∗] need not fill an entire block in the matrix Mm,n, as was exhibited in

eqns. (9.8b) and (9.8c) for M3,1 and M2,2 respectively. However, If a certain projection operator in Mm,n

vanishes for N ≤ N∗, then all transition operators to and from it must vanish as well. Thus, the elements

of Sm,n[N∗] populate entire rows and columns in Mm,n. This puts a restriction on how the elements of

Sm,n[N∗] can be distributed in Mm,n. As an example, we know that there are exactly nine elements in

S4[3], and hence in S3,1[3] and S2,2[3]. For these nine elements to populate entire rows and columns of the

matrices M4-particles, the only other possible configuration, besides eqns. (9.8), is




1

3

1
2

1
3

1




, (9.11)

which interestingly enough does not occur. Thus, we are presented with an interesting problem in number

theory whose solution3 promises further insight into the representation theory of SU(N) over V ⊗m⊗ (V ∗)⊗n

and the study of its multiplets.

9.3.2 Comparing the projector bases S3 and S2,1

The phenomena discussed in the previous section in fact already occur at the level of three factors in the

product space V ⊗m ⊗ (V ∗)⊗n:

We previously presented the projector basis of API
(
SU(N), V ⊗3

)
in chapter 4, section 4.3.3. To recapit-

ulate, the Hermitian Young projection operators of SU(N) over V ⊗3, together with the dimensions of the

corresponding irreducible representations, are

d =
(N + 2)(N + 1)N

6
(9.12a)

4

3
d =

N(N2 − 1)

3
(9.12b)

4

3
d =

N(N2 − 1)

3
(9.12c)

θN>2 · d =
N(N − 1)(N − 2)

6
, (9.12d)

3The author is not aware of any solution at this point in time.
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and the matrix M3, including the transition operators, is

M3 =




0 0 0

0 4
3

√
4
3 0

0
√

4
3

4
3 0

0 0 0 θN>2 ·




. (9.13)

We have not yet discussed the projection operators of SU(N) over V ⊗2 ⊗ V ∗. These can be obtained either

from the LR-tableaux, or (as in our case) through making an educated guess (Ansatz),

− 2

N + 1
d =

N(N − 1)(N + 2)

2
(9.14a)

2

N + 1
d = N (9.14b)

2

N − 1
d = N (9.14c)

θN>2 ·
{

− 2

N − 1

}
d = θN>2 ·

N(N + 1)(N − 2)

2
. (9.14d)

Sceptical readers may satisfy themselves that the operators (9.14) indeed correspond to the irreducible rep-

resentations of SU(N) over V ⊗2 ⊗ V ∗ by checking that

• we have the right number of operators (namely 4 – see Corollary 6.2)

• these operators are mutually orthogonal (left as an exercise)

• their dimension adds up to N3,

N(N − 1)(N + 2)

2
+N +N +

N(N + 1)(N − 2)

2
= N3 ; (9.15)

the analogous exercise for the 4-particle operators was presented in chapter 7.

Since there are two transition operators in M3, Theorem 6.2 predicts that there also need to be two transition

operators between the projectors (9.14). This immediately tells us that the operators (9.14b) and (9.14c)

correspond to equivalent irreducible representations of SU(N).4 Using their defining properties (4.91) (see

chapter 4, Definition 4.4), one may find the transition operators between these two projectors, yielding the

4Recall that their dimension being equal is a necessary but not sufficient criterion for the equivalence between representations.

For example, we saw that there exist two irreducible representations of SU(N) over V ⊗2⊗(V ∗)⊗2 with dimension
(N2−1)(N2−4)

4
,

which are not equivalent (c.f. section 7.4).
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matrix M2,1 to be

M2,1 =




− 2
N+1 0 0 0

0 2
N+1

2√
N2−1

0

0 2√
N2−1

2
N−1 0

0 0 0 θN>2 ·
{

− 2
N−1

}




.

(9.16)

Cvitanović previously found the projection operators for the algebra of one quark and one gluon 1q+ 1g [72,

Table 9.3], which forms a subalgebra of 2q+1q̄. In the 1q+1g-algebra, there exist three projection operators,

of dimensions N(N−1)(N+2)
2 , N and N(N+1)(N−2)

2 respectively. The operator of dimension N as given in [72]

may be expressed as a linear combination of the elements in the 2× 2 block in (9.15) (although the constant

prefactors are fairly lengthy).

While Theorem 6.2 ensures that the matrices M3 and M2,1 have the same number of nonzero elements, this

theorem says nothing about their block structure. However, in the case of the 3-particle Fock space, there is

a simple reason why it is to be expected that M3 and M2,1 have the same block structure (c.f. eqns. (9.13)

and (9.16)): It is clear that the total number of projection and transition operators must be a sum of squares,

since one may always arrange these operators in a block-diagonal matrix (see section 4.3.2 and Corollary 6.3

for a more detailed argument). Since the totality of projection and transition operators spans the algebra of

invariants of SU(N) over the appropriate product space (see section 5.2.1.2), their number must be the same

as the number of primitive invariants, |S3| = |S3| and |S2,1| = |S2,1|. This was summarized in Theorem 6.2

and Corollary 6.2. Even further, Theorem 6.2 tells us that all these sets must have the same size

3! = 6 = |S3| = |S3| = |S2,1| = |S2,1| . (9.17)

Since 6 is a rather small number, there are only two ways to write it as a sum of squares,

6 =12 + 12 + 12 + 12 + 12 + 12 (9.18a)

=12 + 12 + 22 . (9.18b)

Option (9.18a) requires that there are only inequivalent representations – each block in the associated matrix

has size one, so there are no transition operators. However, by Corollary 6.4, we know that this cannot

happen if the total number of particles is greater than 2. We are therefore only left with option (9.18b),

implying that all matrices M3-particles have the same block structure,5

M3

M2,1

}
−→




1

2

1


 . (9.19)

5As usual, the numbers in the block refer to the size of the block, and the elements outside these blocks are understood to
be zero.
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For the 4-particle algebra, there are two ways of writing 4! = 24 as a sum of squares (which are not all 1,

as this is prohibited by Corollary 6.4), c.f. section 7.1. These two ways give rise to the two different block

structures discussed in the previous section.

9.3.2.1 Systematic knowledge of dimensionally null operators of SU(N) over the 3-particle Fock

spaces

Analogously to the 4-particle example, there exists exactly one operator (contained in a 1 × 1 block) that

becomes dimensionally zero for N < 3 in each matrix M3-particles. These operators, and their corresponding

Young resp. Littlewood-Richardson tableaux, are

P (3) = θN>2 · −→
1

2

3

, P (2,1) = θN>2 ·
{

− 2

N − 1

}
−→

1 a1

2 a2

a3

···
aŇ

, (9.20)

where again Ň := N − 1. For N < 2, another four operators in each matrix M3 and M2,1 vanish. In M3,

these operators constitute the 2 × 2 block. On the other hand (as is easily checked via direct calculation),

the vanishing operators in M2,1 occupy a 1× 1 block, and one full row and column in the 2× 2 block,

S3[2] −→




1

2

1


 and S2,1[2] −→




1
2

1
1


 , (9.21)

using the notation introduced in section 9.3.1.
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Chapter 10

Summary and Outlook

We summarize the key results that have been derived in the course of this PhD project in section 10.1.

Thereafter, in section 10.2, we give an outlook and describe possible future research following on from the

results of this thesis.

10.1 Thesis summary

The singlet projection operators of SU(N) are of vital importance in high energy QCD, as they are needed

to construct physical Wilson line correlators: Confinement forces color charged partons into color neutral

systems, the singlet states of SU(N).1 Hence, a Wilson line correlator describing the eikonal interaction

between a system of partons and a dense gluonic target must project onto a singlet state before and after

the interaction. As it was argued in chapter 1, such a correlator must be of the the form

〈j|U|i〉 , (10.1)

where U is a tensor products of Wilson lines

U = Ux1
⊗ . . .⊗ Uxm ⊗ U†y1

⊗ . . .⊗ U†yn ∈ SU(N)× SU(N)× . . .× SU(N)︸ ︷︷ ︸
(m+ n) times

, (10.2)

and |i〉, |j〉 are global singlet states of SU(N), which is to say that

Ux1 ⊗ . . .⊗Uxm ⊗U†y1
⊗ . . .⊗U†yn |i, j〉

x1=...=xm=−−−−−−−−→
=y1=...=yn

U ⊗ . . .⊗U ⊗U†⊗ . . .⊗U†|i, j〉 = |i, j〉 . (10.3)

In this thesis, we presented a construction algorithm for the singlet projection operators of SU(N) over the

Fock space V ⊗m ⊗ (V ∗)⊗n.2 In doing so, we focused on the group theoretic aspects of QCD, particularly in

the context of the JIMWLK evolution of Wilson line correlators.

1We emphasize that we do not claim to have “solved” confinement, but rather that we take this one aspect of confinement
(that color charged objects combine into color neutral systems) as an axiom on which we built a large portion of the research
conducted in this thesis.

2We remind the reader that such a Fock space encapsulates the behaviour of all partons (quarks, antiquarks and gluons),

since an adjoint Wilson line can be decomposed into (anti-) fundamental Wilson lines due to the identity Ũabz = 2tr
(
taUztbU

†
z

)
.
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Section 10.1. Thesis summary

Part I (chapters 2 to 5) described the journey of obtaining the singlet states and singlet projection operators

of SU(N), starting from rudimentary properties of birdtrack operators. In actual fact, our path to the desired

singlet projectors was not as streamlined as it is depicted in part I, but led us along multiple tangents into

other aspects of the study of SU(N). The results are given in part II (chapters 6 to 8).

Let us now summarize the highlights of parts I and II:

Simplification rules for birdtrack operators

In chapter 1, we already identified the birdtrack language as the appropriate formalism to achieve our main

goal – constructing the singlet projectors of SU(N) over a mixed product space V ⊗m⊗(V ∗)⊗n. The reason for

this is that the birdtrack formalism shed new light on previously studied topics, such as the representation

theory of SU(N) over V ⊗m, thus allowing us to uncover new properties and structures. However, when

we started off in pursuit of this goal, we found that there did not exist any practical rules for the quick

manipulation of birdtrack operators in calculations.

Therefore, the first subgoal of this thesis was to find easy-to-use rules allowing us to efficiently manipulate

birdtrack operators comprised entirely of symmetrizers and antisymmetrizers. This was achieved in chapter 2,

where we presented two classes of rules: cancellation rules (Theorem 2.1 and Corollary 2.2), which allow one

to shorten the birdtrack expression of a particular operator, and propagation rules (Theorems 2.2 and 2.3),

which give criteria for when it is possible to commute sets of symmetrizers and antisymmetrizers. We remind

the reader of Figure 2.2, where the effectiveness of these rules was illustrated by applying it to a sample

operator.

Hermitian Young projection operators

Slowly building towards the singlet projectors of SU(N) over a mixed space V ⊗m ⊗ (V ∗)⊗n, we first needed

to understand the Hermitian Young projection operators of SU(N) over the only-quark space V ⊗m. The only

method to construct such operators was by Keppeler and Sjödahl (KS) [4]. This method, beyond the most

elementary examples, yields long and unwieldy expressions for the projection operators, and therefore soon

becomes impractical (c.f. Figure 3.2).

Therefore, the second subgoal of this thesis was to find an alternative construction algorithm for a Hermitian

version of the Young projection operators of SU(N) over V ⊗m. In chapter 3, we found such an algorithm

based on the measure of lexical disorder (MOLD) of the underlying Young tableau. The proof of the MOLD

algorithm (Theorem 3.5) uses both the KS operators as well as the simplification rules derived in chap-

ter 2. This algorithm reduced the computing power needed to obtain Hermitian Young projection operators

compared to the KS equivalent by a factor of approximately 18000.

In addition, we proved other useful results, for example, the nested summation property of Hermitian Young

projectors to their ancestor operator (c.f. eq. (3.112)).

Transition operators

In chapter 4, we used the MOLD operators constructed in chapter 3 to form unitary transition operators.

As the name suggests, these operators transition between projection operators corresponding to equivalent
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irreducible representations of SU(N) over V ⊗m.3 These transition operators are easily obtained from the

MOLD operators via a graphical cutting-and-gluing procedure given in Theorem 4.5. This procedure makes

the action of the transition operators even more intuitive.

In section 4.3, it was shown that the set of Hermitian Young projection operators and unitary transition

operators spans the algebra of invariants of SU(N) over V ⊗m, and is thus referred to as the projector basis

Sm. The reasons why the projector basis is preferable over the primitive invariant basis of SU(N) (i.e.

the symmetric group Sm) are twofold: Firstly, unlike the primitive invariants, the elements of Sm are

mutually orthogonal with respect to the canonical scalar product 〈A|B〉 = tr
(
A†B

)
(c.f. sections 4.4.2

and 4.4.3). Secondly, the projector basis yields a particularly simple block-diagonal multiplication table (see

section 4.4.3). Both of these properties would turn out to be crucial for the construction of the singlet

projectors in chapter 5.

Singlets of SU(N) and Wilson line correlators

Chapter 5 brings together all the work done in the previous chapters to achieve the main goal of this thesis:

We use the the projection and transition operators obtained in chapters 3 and 4 to construct the singlet

projectors of SU(N) over V ⊗m ⊗ (V ∗)⊗n:

We began by motivating the need for an alternative construction method of the singlet projection operators

of SU(N) over a mixed product space V ⊗m ⊗ (V ∗)⊗n. In section 5.1.4, we revised the standard method

used to construct all projection operators of SU(N) over V ⊗m ⊗ (V ∗)⊗n,4 and exemplified its inadequacy

in practical calulations (because of the immense computational effort involved) by deriving the projection

operators of SU(N) over V ⊗ V ∗.
While a practical construction algorithm for general projection operators of SU(N) over a mixed space

V ⊗m ⊗ (V ∗)⊗n is still outstanding, the singlet operators can be constructed in an easy way. If the mixed

product space consists of an equal amount of fundamental and antifundamental factors (i.e. m = n, c.f.

section 5.2.1), then an orthonormal basis of the singlet projectors of SU(N) over V ⊗m⊗(V ∗)⊗m is obtained via

bending and mirroring the elements of Sm, as proven in Theorem 5.2. Additionally, we were able to construct

the transition operators between all these singlet projection operators, showing that the corresponding singlet

representations are indeed all equivalent (Theorem 5.3).

The singlet projectors over V ⊗m ⊗ (V ∗)⊗m in fact give rise to the singlet projection operators over a more

general product space V ⊗m⊗(V ∗)⊗n (note that m 6= n), as shown in section 5.2.2. It turns out that the singlet

projectors over V ⊗m ⊗ (V ∗)⊗n are N -dependent, in that they correspond to a 1-dimensional representation

only for a particular value of N , see section 5.2.2. For this particular N , the singlets over V ⊗m ⊗ (V ∗)⊗n

were shown to be completely equivalent to certain singlet projectors over V ⊗k⊗ (V ∗)⊗k (where k is a natural

number depending on m and n) in Theorem (5.4).

Chapter 5 ends by constructing Wilson line correlators over a 3q+ 3q̄ algebra in two bases (section 5.3). We

discussed coincidence limits between Wilson lines in these correlators, which can be used in the future to

study the parametrization of the JIMWLK equation (c.f. section 10.2).

3For two projection operators corresponding to inequivalent (irreducible) representations, one takes the transition operator
to be zero, as there exists no change of basis between the corresponding representations.

4A reminder: One first constructs tableaux corresponding to the irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n

according to an algorithm devised by Littlewood and Richardson. Then, one forms the regular MOLD projection operators from
these tableaux (treating the boxes corresponding to an antifundamental line as if they corresponded to fundamental lines) and
translates this operator into the algebra over V ⊗m ⊗ (V ∗)⊗n by means of the Leibniz formula (c.f. section 5.1.4).
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Multiplets & examples

In chapter 6, we went beyond the singlets of SU(N) towards studying all irreducible representations over

V ⊗m ⊗ (V ∗)⊗n. Whilst a general practical algorithm for the appropriate projection operators is still out-

standing, we were nonetheless able to find general properties pertaining to these representations.

For example, we were able to map the Hermitian and non-Hermitian elements of the primitive invariants

Sm,n of SU(N) over V ⊗m ⊗ (V ∗)⊗n to the projection and transition operators in Sm,n respectively, c.f.

Theorem 6.2. (For the special case where n = 0, this has already been known [120], although the proof given

in this thesis (despite being more general) is much shorter and thus more elegant.) An immediate implication

of Theorem 6.2 is that SU(N) has the same number of representations over V ⊗m⊗ (V ∗)⊗n as over V ⊗(m+n),

as shown in Corollary 6.2.

As a consequence of the connection between the projection operators in Sm,n and the Hermitian elements

in Sm,n, we were able to re-derive (fairly unknown) formulae by Rothe [118], which give the number of

Young tableaux with (m + n) boxes either explicitly or recursively (sections 6.4 and 6.5 respectively). Due

to Theorem 6.2, we are now able to count the number of representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n.

In chapter 7, we presented the Hermitian projection and transition operators (in particular bases) of SU(N)

over all product spaces V ⊗m⊗ (V ∗)⊗n such that m+n = 4. This confirmed the results given in chapter 6. In

addition, we discussed what happens to these operators if N = 2, thus answering questions such as “Which

operators vanish dimensionally?” or “Which operators become equal?”.

Traces of primitive invariants

Chapter 8 gave further results on traces of primitive invariants of SU(N) over V ⊗m ⊗ (V ∗)⊗n:

For n = 0, we were able to relate the trace of a primitive invariant to the minimum number of transpositions

required to write this invariant as a product of transpositions (see Theorem 8.2). This theorem allowed us

to pinpoint why the singlet states over V ⊗k ⊗ (V ∗)⊗k constructed from the primitive invariants Sk are not

orthogonal (c.f. section 8.2.3).

Furthermore, we found that the trace of a primitive invariant stays unchanged under the graphical map ↔
(see Definition 8.1) that translates the elements of Sm+n into those of Sm,n, c.f. Theorem 8.3. Astonishingly

enough, the trace remains invariant even if the map ↔ is applied to each primitive invariant in a product

individually,

tr (←→ρ · ←→σ )
Thm. 8.4

======= tr (ρ · σ)
Thm. 8.3

======= tr
(←−→ρ · σ

)
. (10.4)

10.2 Outlook

The research conducted in this PhD project is applicable in a variety of areas. We have already discussed

possible future mathematics projects following on from this thesis in chapter 9.

Besides the direct connection to mathematics, there are numerous applications in the physics context. In the

present section, we will list several physics applications, and explain how the results of this thesis prompt

further research in the areas mentioned here.
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10.2.1 Wilson line correlators in high energy QCD

Wilson line correlators occur in a multitude of contexts within high energy QCD. We already discussed the

JIMWLK equation in chapter 1, but further areas in which Wilson line correlators arise include

• transverse-momentum-dependent parton distributions (TMDs) at small xBj

• energy loss calculations at high energies

• evolution of non-global observables.

We will briefly discuss each of these topics, and how the results of this thesis may potentially further these

fields.

10.2.1.1 Transverse-momentum-dependent parton distributions (TMDs)

In recent years, a lot of progress has been made in marrying the saturation formalism (i.e. the CGC frame-

work) to TMDs, in order to study the latter at small Bjorken-x [129–131]. To illustrate this, we give a brief

summary of [130]: One considers the collision of a dilute projectile with a dense target giving rise to the

inclusive production of two forward jets,

dilute projectile + dense target −→ jet 1 + jet 2 + remainder . (10.5)

In this system, the projectile (parton) is described by a parton distribution whose evolution is governed by the

DGLAP-equation [53–55], while the target is given in terms of TMDs. Since the operator description of the

TMDs is process dependent, [130] considers three channels: The two jets in the final state are described by a

quark and a gluon (qg), a quark and an antiquark (qq̄), or two gluons (gg). Each of these partons is dressed

by a multitude of soft, colinear gluons. It was shown that in the small xBj limit (i.e. the Regge-Gribov limit,

see section 1.1.2.3), the TMDs of all channels considered in [130] reduce to Fourier transforms of Wilson line

correlators depending on the two transverse coordinates x and y of the jet-partons (where the average is the

rapidity dependent average whose evolution with Y is given by the JIMWLK equation).

On the other hand, starting from the cross sections in the CGC framework yields the same result [130]: One

identifies the Feynman diagrams corresponding to the qg, qq̄ and gg-channel, respectively, to calculate the

cross section, which yields a sum of Wilson line correlators (c.f. the cross sections (1.144) and (1.179)). For

example, in the q → qg channel, one encounters the following diagrams for the amplitude [80, 129, 130, 132]

− , (10.6)

where the interaction with the target occurs either before the gluon is radiated (right term) or afterwards

(left term). The total cross section therefore becomes


 −




 −


 . (10.7)
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Implicit to this cross section is a trace over the color indices carried by the outgoing quarks, as no net color

can occur. Let us suppress the target in diagrams (10.7) (analogous to what was done in section 1.6.2) and

multiply out the brackets. Further, making the trace explicit through connecting the quark-lines at the end

points yields the following expression,

1
df

− 1
Cfdf

− 1
Cfdf

+ 1
Cfdf

(Y ) , (10.8)

where we have chosen to draw the gluon (dotted line) at the bottom of each diagram, as we will establish a

correspondence with several diagrams that have already been discussed in this thesis. It can be shown [129]

that these Wilson line correlators become

1
df

− 1
Cfdf

− 1
Cfdf

+ 1
Cfdf (Y ) . (10.9)

(The step from eq. (10.8) to (10.9) is non-trivial, as it involves moving Wilson lines across the final state (in

the center of each diagram, c.f. eq. (1.142)) from the amplitude into the complex conjugate amplitude, and

vice versa.) Each diagram in (10.9) corresponds to the following expression in [130, eqns. (49)–(51)],

S
(2)
qq̄ [b, b′] =

1

df

〈
tr
(
U†b′Ub

)〉
−→ 1

df
(Y ) (10.10a)

S
(3)
qq̄g[b, b

′,x] =
1

dfCf

〈
tr
(
U†b′t

cUbt
d
)

[Vx]cd
〉
−→ 1

Cfdf
(Y ) (10.10b)

S
(4)
qq̄gg[b, b

′,x,x′] =
1

dfCf

〈
tr
(
tcU†b′Ubt

d
)

[VxV
†
x′ ]

cd
〉
−→ 1

Cfdf (Y ) , (10.10c)

where the generators tb and the Wilson lines Ub are in the fundamental representation, and V cbx is a Wilson line

in the adjoint representation (i.e. a gluon line). We have already encountered the diagrams corresponding to

the correlators S
(2)
qq̄ [b, b′] and S

(3)
qq̄g[b, b

′,x]; in particular, these diagrams are contained in the matrix (5.165),

which was constructed by imposing two coincidence limits on the matrix of singlet correlators over the 3q+3q̄-

algebra. Using the Fierz identity, the operator S
(4)
qq̄gg[b, b

′,x,x′] in (10.10c) may also be related to familiar

operators: S
(4)
qq̄gg[b, b

′,x,x′] turns out to be a linear combination of all operators appearing in the 4th row of

the matrix (5.165),

= α1 + α2 + α3 , (10.11)

where the αi are constants and the hat indicates that the correlators are normalized. Thus, all the

correlators (10.10) are contained in the matrix (5.165). This shows that the Wilson line correlators constructed
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in this thesis are immediately applicable to a typical TMD calculation.

Ref. [130] goes on and rewrites the Wilson line correlators (10.10) in terms of fundamental Wilson lines only.

Invoking coincidence limits to ensure that the radiated soft gluons constituting the jet are colinear causes

the resulting expression to agree with the cross section obtained in the TMD formalism. This equivalence

encourages the use of the CGC formalism to study the structures of TMDs in the small xBj regime. However,

for this to be done correctly, knowledge about coincidence limits of the appropriate Wilson line correlators

is paramount. As demonstrated in the present section, the singlet states found in this thesis (see chapter 5)

facilitate the study of these concidence limits in Wilson line correlators, c.f. section 5.3.

In the future, it will be interesting to investigate the Y -evolution of the Wilson line correlators arising in

TMD calculations. This can be done in the CGC formalism via (the parametrization of) the JIMWLK

equation. (As already mentioned, the results of this thesis facilitate the study of the color structures and

the parameters G and K (c.f. sections 1.5.3 and 1.5.4) for higher point truncations of the parametrization

of JIMWLK.) L. Lippstreu and H. Weigert are currently looking into this [133].

10.2.1.2 Energy loss

In pp-collisions, one observes a particular rate of hadron productions. When naively extrapolating this rate

to a pA collision by modelling it as A times pp-collisions,5 one observes a suppression in hadron production

rates [50]. Similar effects are observed for quarkonium production in a pA collision when extrapolating to AA-

collisions [50]. For quarkonium production, the suppression of hadrons produced in the collision can, to a good

approximation, be explained using a model based on coherent energy loss in cold nuclear matter [134, 135].6

However, at small Bjorken-x there is a second effect called shadowing, which also contributes to the observed

suppression rates [50]: Once the medium reaches saturation (as predicted by the color glass condensate

effective theory due to the high density), recombination effects balance the rate of gluon production, causing

a depletion in the gluon number compared to what would naively be expected [136]. In the literature, this

effect is also referred to as saturation [21]. It thus seems natural to examine this effect in the saturation

formalism.

Munier, Peigné and Petreska [50] describe the gluon radiation in the medium (shadowing) in the saturation

formalism. They explicitly discuss processes of the form

a+A −→ a+ g +X , (10.12)

where a = q, g is a parton, A is a nucleus and X denotes the remainder (besides ag) after the interaction.

If one takes a = q to be a quark, one once again obtains the Wilson line correlators (10.10) from such an

interaction (c.f. [50, eqns. (2.7)–(2.10)]),

1
df

− 1
Cfdf

− 1
Cfdf

+ 1
Cfdf (Y ) . (10.13)

5Where A is the nuclear number of the target nucleus.
6The cold nuclear matter effects act as a baseline to which hot nuclear matter effects (which are present in AA-collsions) can

be added [135].
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This once again demonstrates that the results of this thesis may be used to study the energy loss in a medium

due to shadowing. Further, one may also tackle energy loss calculations in the saturation formalism for more

complicated scatterings involving larger n-point Wilson line correlators, thus allowing one to study situations

that may not be accessible with regular energy loss methods.

As mentioned in [50], the JIMWLK evolution of these correlators has not yet been implemented, but it is

desirable to do so. In order to accomplish this, one should parametrize the correlators using the Gaußian

truncation and its genaralizations (which in turn can be studied using the projectors derived in this thesis).

This is currently being done by D. Adamiak and H. Weigert [137].

10.2.1.3 Non-global jet observables and the Banfi-Marchesini-Smye equation

Banfi, Marchesini and Smye (BMS) [138] previously derived an equation describing the energy-evolution of

non-global jet observables in the large Nc limit. As the name suggests, these new observables are non-global

in that they are restricted to a region of phase space away from the jets.

Ref. [78] draws attention to a striking resemblence between the BMS equation and the Balitsky-Kovchegov

(BK) [60–62] equation, the latter being equivalent to a large Nc limit of JIMWLK. In particular, while outside

of the jet region the BMS equation becomes linear, inside the jet region the BMS evolution is identical to BK

evolution. This matches our intuition behind the analogy, as the BK equation assumes a nonlinear background

field (such as is present in the jets) everywhere [18]. This resemblance seems to suggest a relationship between

the transition probabilities Gab(E,Eout) in BMS and the dipole Wilson line correlators tr
(
UxU

†
y

)
in BK. If

one performs a stereographic projection mapping the transverse coordinates x,y onto the directions a, b of

the two jets, it seems suggestive that [78]

Gab(E,Eout)
?−−→
〈

tr
(
VaV

†
b

)〉
E
, (10.14)

where the right-hand side is some Wilson line correlator, and 〈· · · 〉E denotes an averaging procedure with

respect to the energy.

Ref. [78] exploits the analogy between the BMS and BK equations in order to generalize BMS to finite

values of Nc. The result is an energy-evolution equation that strongly resembles the JIMWLK equation.

(In particular, the suggested relationship (10.14) is made precise.) Thus, in the context of non-global jet

observables, we once again encounter Wilson line correlators, which can be studied using the techniques

introduced in this thesis.

10.2.2 Parametrization of Wilson line correlators

We have seen that in all areas described in section 10.2.1, one necessarily needs to study Wilson line correla-

tors, as these encode the relevant degrees of freedom. For the more elementary examples, it is still possible to

obtain the relevant singlet states to construct these Wilson line correlators by hand. However, more differen-

tial observables give rise to larger Wilson line correlators (i.e. involving a multitude of coordinates), calling

for a machinery that allows one to easily construct all relevant Wilson line correlators in an automated way.

The results of this thesis promise to do just that.
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However, studying such larger Wilson line correlators is not a new idea in itself: Any evolution equation of

Wilson line correlators can be parametrized analogously to the JIMWLK equation (1.212),

j

...

...

...

...

G

i generalize−−−−−−→
[〈{∫

x1x2

G
(δ)

Ỹ ,x1x2
δa1a2i∇̄a1

x1
i∇̄a2

x2
(10.15a)

+

∫

x1x2x3

(
G

(d)

Ỹ ,x1x2x3
da1a2a3 +G

(f)

Ỹ ,x1x2x3
ifa1a2a3

)
i∇̄a1

x1
i∇̄a2

x2
i∇̄a3

x3
(10.15b)

+

∫

x1x2x3x4

(∑

j

G
(j)

Ỹ ,x1x2x3x4
Ca1a2a3a4
j

)
i∇̄a1

x1
i∇̄a2

x2
i∇̄a3

x3
i∇̄a4

x3
(10.15c)

+ . . .

}
A
〉

(Y0)

]

ji

,

where

∫

x1x2x3x4...

:=

∫ ∫ ∫ ∫
dx1 dx2 dx3 dx4 . . . , (10.16)

for the operators acting on the left, and similarly for the parameters K acting from the right, c.f. section 1.5.

However, studying such parametrizations beyond the third order again requires automated machinery, as

discussed in section 10.2.2.2. Nonetheless, even up to third order, such a parametrization yields interesting

results:

10.2.2.1 Beyond the Gaußian truncation: results at third order

Consider only the left parametrization of the JIMWLK equation (10.15), i.e. set all parameters K
(j)

Ỹ ,x1...xn

acting from the right (c.f. eq. (1.211)) to zero. The truncation of this parametrization at the second order

(i.e. at (10.15a), the Gaußian truncation) has been used for several years to study the JIMWLK evolution

of Wilson line correlators (see for example [18, 30], just to name a few). More recently, [80] set out to study

the odderon contribution to the JIMWLK evolution of various Wilson line correlators.

It was found that, for the qq̄-correlator Sxy,

Sxy =

〈
tr
(
UxU

†
x

)〉
(Y )

Nc
, where Nc is the number of colors , (10.17)

the odderon contribution enters via an imaginary part in the exponential [80],

Sxy = e−Cf (Pxy+iOxy)(Y ) , (10.18)

where Cf =
N2
c−1

2Nc
is the Casimir of the fundamental representation. The 2-point functions Pxy(Y ) and

Oxy(Y ) are shown to be symmetric, respectively, antisymmetric under exchange of the transverse coordinates

x,y. This symmetry structure links these two functions to the pomeron, respectively, odderon contribution

to the dipole-correlator. Since the 2-point function G
(δ)
xy is symmetric under the exchange of its indices, the

odderon contribution becomes visible for the first time at the third order. In particular, Oxy(Y ) emerges
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from an antisymmetric combination of the 3-point function G
(d)
xyz in a coincidence limit [80],

iOxy(η) =
Cd
4

∫ η

η0

dη̃
(
G

(d)
η̃,yxx −G

(d)
η̃,yyx

)
+ iOxy(η0) , (10.19)

where Cdδ
ae := dabcdbce = N2−4

N δae, and η := lnx−, with x− being the longitudinal coordinate. Interestingly,

not only is the function G
(d)
xyz by itself completely symmetric under the exchange of any indices, but the

function G
(f)
xyz, which has a more complicated symmetry, does not contribute to the qq̄-correlator at all [80].

The exposition of [80] motivates further study of the parameters G, in particular their symmetry structure.

Recent research by H. Weigert and R. Moerman [83] shows that general statements can be made about

whether a particular n-point function G
(j)
x1...xn (or K

(j)
x1...xn) with color factor Ca1...an

j gives rise to a real

or imaginary contribution in the exponent of the parametrized correlator (c.f. eq. (10.18)), thus yielding a

symmetric (pomeron) or antisymmetric (odderon) contribution. The symmetry structure of the G
(j)
x1...xn ’s

(resp. K
(j)
x1...xn ’s) and the color factors Ca1...an

j is necessarily dictated by the allowed symmetries of the

gauge group SU(N), i.e. by the symmetries encapsulated by the irreducible representations of SU(N) over

an appropriate product space. Thus, the results of the present thesis assist in further investigation of the

symmetry structures (for example, mixed symmetries) of the parametrization (10.15) at higher orders.

10.2.2.2 Generalized structure constants

We have previously alluded to the fact that parametrization (10.15) beyond the third order requires the use

of automated machinery. In the present section, we explain why this is the case.

Consider truncating the parametrization (10.15) at the fourth order. One first has to determine the color

factors Ca1a2a3a4
i ; the idea to accomplish this is as follows: We start with a basis of the trace space of the

generators ta := ta1 , tb := ta2 , tc := ta3 and td := ta4 , for example,

a
b
c
d︸ ︷︷ ︸

tr(tatb)tr(tctd)

,
a
b
c
d︸ ︷︷ ︸

tr(tatc)tr(tbtd)

,
a
b
c
d︸ ︷︷ ︸

tr(tatd)tr(tctb)

, (10.20a)

a
b
c
d︸ ︷︷ ︸

tr(tatbtctd)

,
a
b
c
d︸ ︷︷ ︸

tr(tatctbtd)

,
a
b
c
d︸ ︷︷ ︸

tr(tatbtdtc)

,
a
b
c
d︸ ︷︷ ︸

tr(tatdtctb)

,
a
b
c
d︸ ︷︷ ︸

tr(tatdtbtc)

,
a
b
c
d︸ ︷︷ ︸

tr(tatctdtb)

. (10.20b)

The caveat of this basis is that it is not orthogonal,

〈µ|ν〉 6= 0 for |µ〉, |ν〉 as defined in (10.20) . (10.21)

As an example,

〈
tr
(
tatb

)
tr
(
tctd

)∣∣tr
(
tatctdtb

)〉
=

a
b
c
d

Fierz
===== (N2 − 1)(N − 1) 6= 0 , (10.22)
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where we used the Fierz identity

= − 1

N
(10.23)

repeatedly. However, if each state in (10.20) is projected onto mutually orthogonal subspaces using, for

example, the MOLD projection operators Pi, Pj with four legs (c.f. Theorem 3.5), where these four legs are

in the adjoint representation, then the resulting states will be orthogonal for i 6= j since the MOLD projectors

are orthogonal: If |µ〉, |ν〉 are states as defined in eqns. (10.20), then the states

|µ̃i〉 := Pi|µ〉 and |ν̃j〉 := Pj |ν〉 (10.24)

are orthogonal if i 6= j,

〈µ̃i|ν̃j〉 = 〈µ|P †i Pj |ν〉 = 〈µ|PiPj︸︷︷︸
δij

|ν〉 = δij 〈µ|ν〉 . (10.25)

Eq. (10.25) raises the question: What happens if i = j? That is, are the states |µ̃i〉 = Pi|µ〉 and |ν̃i〉 = Pi|ν〉
orthogonal? It turns out that many of the states Pi|ν〉 vanish identically [81], such that we are only left with

9 non-vanishing states; this is to be expected, since the trace space is 9-dimensional [102].

While the fact that some of the projections Pi|ν〉 vanish takes care of many instances of the question whether

|µ̃i〉 and |ν̃i〉 are orthogonal, it does not eliminate all such pairs. For these remaining pairs, additional

research is necessary. Furthermore, we note that the MOLD projectors, when written with adjoint legs, no

longer project onto irreducible representations of SU(N), albeit still being orthogonal. Therefore, eq. (10.24)

produces orthogonal singlets (for i 6= j), but not the finest decomposition of the singlet algebra. As an

alternative to the MOLD projectors, Keppeler and Sjödahl [82, 102] offer a method to construct projection

operators over the n-gluon algebra. However, since we are interested in the singlet states of n gluons only,

constructing all multiplets seems inefficient. Current research is being conducted by H. Weigert, R. Moerman

and J. Rayner [81, 83] to streamline the problem at hand.

10.2.3 Changing bases for singlet projection operators

In chapter 5, we presented an algorithm giving all singlet states of SU(N) over V ⊗m ⊗ (V ∗)⊗m (and thus

also V ⊗m⊗ (V ∗)⊗n) in a particular basis, namely by bending the MOLD projection and transition operators

in Sm. However, as demonstrated in section 1.6.2, we often want these singlet states to be written in a

different basis, as different bases simplify the constraint equations imposed by different coincidence limits of

Wilson line correlators. In particular, we found that a basis containing (anti-) fundamental and adjoint lines

(the Fierz basis) is particularly well suited for studying coincidence limits between a fundamental and an

antifundamental Wilson line (c.f. section 5.3.2.2). However, at this point in time, we are still at want for a

general, efficient construction algorithm of the singlet states in such a basis.

Alternatively, instead of trying to obtain a construction method for the Fierz basis from scratch, one could

investigate the change of basis between the MOLD and the Fierz basis in the currently known examples.

Patterns in the change of basis for these examples may allude to the singlet states of the Fierz basis for

higher orders, or even to a general construction for the Fierz states in mq +mq̄.
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It is, however, important to note that an algorithm to construct such an alternative basis does not yield the

results of this thesis null and void. Firstly, coincidence limits between Wilson lines in the same representation

are most easily analysed in the basis given in this thesis, as explained in section 5.3.1.1. Furthermore, the

basis of singlet states in terms of symmetrizers and antisymmetrizers makes it particularly easy to spot

dimensionally null operators – this trait is not shared by, for example, the Fierz basis.

10.2.4 Multiplets and physics

Lastly, we emphasize that, even though confinement forces color carrying partons into a singlet representation

of SU(N) (among other things), the study of higher dimensional representations, as discussed in chapter 9,

is still of relevance to a physics context:

At leading order, the averaging procedure over the background field governed by the JIMWLK equation

suppresses all color non-singlets with a factor e−∞ [76]. This is rather reassuring in that this aspect of

confinement is obeyed by JIMWLK at LO. On the other hand, the parametrization should also vanish for all

non-singlet states/projectors of SU(N), although, this condition most probably has to be imposed manually

on the n-point parameters G
(j)
Y,x1...xn

and K
(j)
Y,x1...xn

. In order to impose this condition, however, one first

needs to know the appropriate multiplets of SU(N).

If we consider the theory of spin (and thus set N = 2), no analogous principle to confinement exists, and the

parton system may have any net spin that is allowed by the group SU(2) (c.f. section 7.5), making multiplets

of interest here. For SU(2), there exists a working method that usually receives fairly in-depth treatment in

(physics) textbooks [64, 65, 93, 139, 140]. However, the birdtrack formalism has the potential to make this

standard discussion much simpler and therefore more pedagogical.

10.3 Concluding remarks

Singlet projection operators are of vital importance in physics, since one aspect of confinement requires

color charged particles to combine into color neutral states. However, the textbook method of constructing

projection operators corresponding to irreducible representations of SU(N) over V ⊗m ⊗ (V ∗)⊗n in general,

and singlet operators in particular, is computationally costly and thus not useful in practice. Besides giving

a simple, computationally efficient construction algorithm for the singlet states and singlet projectors of

SU(N), this thesis has put forward many results regarding the representation theory of SU(N) over Fock

spaces V ⊗m⊗ (V ∗)⊗n describing quarks, antiquarks and gluons. While there are still some unresolved issues

that need to be addressed in order to obtain a full mathematical theory, the focus of this thesis was on

practicality, such that all results given here directly furnish the study of Wilson line correlators in the context

of QCD at high energies. This manifests in the fact that all operators in this thesis require minimal computing

time to be constructed, and are thus well suited for practical applications.
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