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Abstract We consider a non-minimally coupled (with gravity) scalar field with
non-canonical kinetic energy. The form of the kinetic term is of Dirac–Born–
Infeld form. We study the early evolution of the universe when it is sourced only
by the k-field, as well as late time evolution when both the matter and k-field are
present. For the k-field, we have considered constant potential as well as potential
inspired from boundary string field theory. We show that it is possible to have an
inflationary solution in early time as well as late time accelerating phases. The
solutions also exhibit attractor properties in a sense that they do not depend on the
initial conditions for certain values of the parameters.

Keywords K-essence, Dark energy, Inflation

1 Introduction

The recent rekindled interest in scalar fields, describing spin-0 particles, in the
relativistic theory of gravitation stems from their potential role in solving some
of the outstanding issues in cosmology. Two such issues are related to the accel-
erated expansion of the universe: one during its earlier evolution associated with
very high energy scales and another during the much later period of evolution
(more precisely at the present epoch) with much lower energy scale. In both the
cases, a slowly varying energy density of a scalar field φ can mimick an effective
cosmological constant. This in turn can result in the violation of the strong energy
condition causing accelerated expansion.

The most widely studied scalar fields in cosmology are minimally coupled,
i.e. the contribution from the scalar field can be separated from gravity (the Ricci
scalar R to be precise) and other matter fields in the action. In such realistic scalar
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field models describing an accelerated expansion of the universe, one requires a
potential V (φ) for the scalar field which drives the acceleration. This scalar field
which is responsible for the early time accelerated expansion of the universe, is
called the inflaton. There are a large number of investigations regarding the role
of scalar fields in inflationary cosmology and subsequently its role in creating the
initial fluctuations in the universe. We refer the reader to [1] and references therein
for this purpose.

On the other hand, the discovery of the late time acceleration of the universe
around the end of last century, is one of the most puzzling and daunting phenom-
ena in recent times. First discovered by two different groups around 1999 [2; 3], by
observing supernova type Ia explosions which are quite abundant in our universe,
it has subsequently been confirmed by more recent supernova type-Ia observations
by different groups [4; 5; 6] and indirectly confirmed by cosmic microwave back-
ground radiation observations [7; 8] and also observing the galaxy clustering by
large scale redshift
surveys [9].

To explain such phenomena, one needs to add an extra component in the en-
ergy budget of the universe, which has a large negative pressure and also domi-
nates over all other components, e.g. non-relativistic matter, radiation, etc. This
missing component is termed as “dark energy” in the literature. One optimistic
choice for this dark energy can be a minimally coupled scalar field slowly rolling
down its considerably flat potential [10; 11]. Such a scalar field is also known as
“quintessence” [12; 13]. It is similar to the inflaton field mentioned above, but
evolving in a much lower energy scale. To make the evolution of these scalar
fields independent of the initial conditions, a particular class of models known
as “tracker quintessence models” has been proposed [14; 15; 16], where a late
time accelerating regime can be reached from a variety of initial conditions mak-
ing these models more appealing. These type of scalar fields have both scaling
as well as attractor property. They mimic the background matter component at
early times and its late time attractor phase is accelerating which can also be sta-
ble [17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27]. Tracker quintessence models with
different types potential have been widely studied in recent times and their ob-
servational signatures have also been explored (see [28; 29] for a nice review).
Although minimally coupled scalar field models are interesting possibilities in
modelling dark energy, one needs to do some degree of fine tuning involving the
parameters of the potential.

Scalar tensor theories are generalization of the minimally coupled scalar field
theories in a sense that here the scalar field is non-minimally coupled with the
gravity sector of the action, i.e. with the Ricci scalar R. In these theories, the
scalar field participates in the gravitational interaction, unlike its counterpart in
the minimally coupled case where it behaves as a non-gravitational source like any
other matter field. Such a scalar partner for gravity which has a tensorial nature
in general, can naturally arise in attempts at quantizing gravity or its unification
with other fundamental forces in nature. Superstring theory is one such possibility
where one encounters dilaton field which is non-minimally coupled with the grav-
ity sector. The reason that this non-minimally coupled scalar field theory is one of
the most natural alternatives to general relativity (GR) is also due to the fact that
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these theories respect most of the symmetries in GR like local Lorentz invariance,
energy–momentum conservation, etc.

Although a long range scalar field as a gravitational field was first introduced
by Jordan [30], this kind of non-minimally coupled scalar field actually attracted
the attention of the researchers when Brans and Dicke invoked such a field in order
to incorporate the Mach’s Principle in General Theory of Relativity [31]. Brans–
Dicke (BD) theory, where the scalar field is directly coupled to the Ricci scalar,
has the merit of producing results which can be compared with the corresponding
GR results against observations [32; 33; 34; 35; 36; 37]. A further important virtue
of BD theory is that it is believed to produce the GR in a particular limit (see [38]
for a different result).

The possibility of having late time acceleration of the universe with a non-
minimally coupled scalar field (a.k.a scalar tensor theories) has also been ex-
plored in great detail [39; 40; 41; 42; 43; 44]. Scaling attractor solutions with
non-minimally coupled scalar fields have been studied with both exponential and
power law potentials [45].
Faraoni [46] has also studied with a non-minimal coupling term (φ 2/2)R with
different scalar field potentials for the late time acceleration. Bertolo et al. [47],
Bertolami et al. [48], Ritis et al. [49] have found tracking solutions in scalar ten-
sor theories with different types of potential. In another work, Sen and Seshadri
[50] have obtained suitable scalar field potential to obtain power law acceleration
of the universe. Saini et al. [51] and Boisseau et al. [52] have reconstructed the
potential for a non-minimally coupled scalar field from the luminosity-redshift
relation available from the observations. Attempts have also been made to ob-
tain an accelerating universe at present by introducing a coupling between the
normal matter field and the BD field in a generalised scalar tensor theory [53].
But the form of coupling chosen was ad-hoc and did not follow from any fun-
damental theory. Non-minimally coupled scalar field theories giving rise to the
late time acceleration of the universe have been confronted with observational re-
sults like CMB anisotropies or growth of matter perturbations [54; 55; 56; 57;
58].

In recent years, an alternative possibility of having an effective scalar field
theory governed by a Lagrangian containing a non-canonical kinetic term L =
−V (φ)F(X) where X = (1/2)∂µ φ∂ µ φ has been proposed. One of the most stud-
ied forms for F(X) is F(X) =

√
1−2X . This form for the Lagrangian is called

the Dirac–Born–Infeld (DBI) form. Such a model can lead to late time acceler-
ation of the universe and popularly called “k-essence” in literature [59; 60; 61].
This field can also give rise to inflation in early universe and is called “k-inflation”
[62]. This type of field can naturally arise in string theory [63; 64] and can be very
interesting in cosmological context [65; 66; 67].

In this work, we have considered non-minimally coupled scalar fields having a
non-canonical kinetic term of DBI form. We have investigated both the early time
evolution of the universe when it is dominated only by the scalar field, as well
as its late time evolution when it is sourced by both matter field and scalar field.
We have studied under what condition one can obtain an inflationary phase at the
early times as well as an accelerating phase at late times. We have also studied
the attractor properties of the solutions. We should mention that such a model was
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earlier considered by Chingangbam et al. [68] and Piao et al. [69] in the context
of slow-roll inflation.

2 Non-minimally coupled k-field

The action for a scalar tensor theory where a scalar field having a standard canon-
ical kinetic term is non-minimally coupled with the gravity sector is given by
Esposito-Farese et al. [70]

S =
1

16πG

∫
d4x

√
−g

(
F(φ)R−Z(φ)∂µ φ∂

µ
φ
)
. (1)

Here G denotes the gravitational coupling constant, R is the Ricci scalar, g is the
determinant of the metric tensor gµν . Here F(φ) and Z(φ) are dimensionless.
F(φ) has to be positive for graviton to carry positive energy.

We now modify the action assuming the kinetic term for the scalar field φ of
DBI Form. Taking care of all dimensional and dimensionless quantities, one can
now rewrite the action as

S =
1

16πG

∫
d4x

√
−g

[
F(φ)R− τ3V (φ)

√
1+η2∂µ φ∂ µ φ

]
. (2)

Here we have introduced two parameters η and τ3 to make the action dimen-
sionally correct. η has the dimension of [length] and τ3 has the dimension of
[length]−2. Varying the action (2) with respect to the metric tensor, one gets the
field equation as:

Gµν = −1
2

τ3V (φ)
F(φ)

[
gµν

√
1+η2∂ α φ∂α φ −

η2∂µ φ∂ν φ√
1+η2∂ α φ∂α φ

]

+
(F(φ)),ν ;µ

F(φ)
−

gµν�F(φ)
F(φ)

. (3)

The above equations are written in so called “Jordon Frame”. However, it is much
simpler to tackle the system of equations in “Einstein Frame” where one can break
the coupling between the scalar field φ and the Ricci scalar R. This can be achieved
through a conformal transformation of the form ¯gµν = F(φ)gµν . In this Einstein
frame, the action (2) becomes

S =
1

16πG

∫
d4x

√
−ḡ

[
R̄− 3

2
F ′(φ)2

F(φ)
¯gµν ∂µ φ∂ν φ

−τ3V̄ (φ)
√

1+η2F(φ)∂µ φ∂ µ φ

]
; (4)

here V̄ (φ) = V (φ)/F2(φ). The action is identical with that for a minimally cou-

pled tachyon field φ with a potential τ3V̄ (φ) except for the extra 3
2

F ′(φ)2

F(φ)
¯gµν ∂µ φ∂ν φ

term which arises due to the non-minimal coupling. We should point out that
for a scalar field with canonical kinetic term, the action in the Einstein frame is
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exactly similar to the corresponding case in minimally coupled theory except the
changed form of the potential which we discuss in the next paragraph. But other-
wise the form of the action is exactly the same. But with a non-canonical kinetic
term, in the Einstein frame, one extra term gets generated. In other words, this
type of non-minimal coupling that we consider here, always generates a correc-
tion to L (X ,φ) which are of the form A(φ)X , where X = ∂ µ φ∂ν φ when trans-
formed to the Einstein frame. This is a new feature for non-minimally coupled
k-essence field and can play important role in cosmological models. One point of
caution is that, these models are only stable under quantum corrections as long
as the non-minimal coupling term F(φ) and its variation is small.For this mini-
mally coupled case, the DBI form of the kinetic term is protected under the five
dimensional Lorentz invariance. If this extra term that appears in the minimally
coupled Einstein frame, is large, then this symmetry is strongly broken and will
effect significant correction in L (X ,φ).1

Another interesting feature is that even though one starts with a constant po-
tential V (φ) = V0 in the original Jordon frame, in the Einstein frame it becomes
1/φ 2. This is similar to “extended inflation” scenario [71], where the constant po-
tential for the inflaton field in its false vacuum state, gets modified to exponential
potential due to the conformal transformation. This results much slower power
law inflation for the universe solving some of the problems present in the original
Guth’s model of inflation [72]. Although this model has its own problem, non-
minimal coupling and subsequent conformal transformation play a crucial role for
the initial success of this model.

Next we assume a homogeneous and isotropic universe described by a Friedmann–
Robertson–Walker (FRW) spacetime. It is given by the spacetime metric

ds2 = −dt2 +a2(t)
[
dr2 + r2dθ

2 + r2 sin2
θdχ

2] , (5)

where a(t) is scale factor of the universe. One also has to assume the form for
F(φ) for further calculations. One of the most studied forms in the literature is
F(φ) = φ which is also called the BD form [31]. The original motivation for the
BD theory was to implement the Mach principle in relativistic theory of gravity.
This was done by promoting the Newton’s constant to the role of a dynamical
field determined by the environment. Later on, it was shown that the low energy
limit of the bosonic string theory is indeed similar to the BD theory for some par-
ticular parameter value [73; 74]. Moreover, the higher dimensional Kaluza–Klein
gravity can give rise to BD theory after dimensional reduction. In our subsequent
calculations we shall assume F(φ) = φ .

With these choices, Einstein equations derived from the action (4) becomes,

3H̄2 =
τ3V (φ)

2φ 2
√

1−η2φφ ′2
+

3
4

φ ′2

φ 2 , (6)

2H̄ ′ +3H̄2 =
τ3V (φ)

2φ 2

√
1−η2φφ ′2 − 3

4
φ ′2

φ 2 , (7)

where prime denotes differentiation w.r.t t̄, the time in Einstein frame and H̄ =
d
dt̄ log ā. We have also assumed 16πG = 1.

1 We thank the anonymous referee for pointing out this.
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Fig. 1 Phase portrait in the ψ ′−ψ phase plane for constant potential. The different initial con-
ditions for (ψ ′

i ,ψi) are (1.8, 0.8), (1.6, 0.6), (1.4, 0.4) and (1.2, 0.2), respectively, from top to
bottom. α = 0.2 for this plot

Fig. 2 Phase portrait in the ψ ′−ψ phase plane for constant potential. The different initial con-
ditions for (ψ ′

i ,ψi) are (1.8, 0.8), (1.6, 0.6), (1.4, 0.4) and (1.2, 0.2), respectively, from top to
bottom. α = 0.8 for this plot

One can further redefine the scalar field to have a more simpler equation. This
is done by defining η2φφ ′2 = ψ ′2. Using this, the field equations (10) and (11)
now become

3H̄2 =
V (ψ)α

ψ4/3
√

1−ψ ′2
+

1
3

ψ ′2

ψ2 , (8)

2H̄ ′ +3H̄2 =
V (ψ)α

ψ4/3

√
1−ψ ′2 − 1

3
ψ ′2

ψ2 , (9)

where α = [( 2
3 η)4/3τ3]/2. One can also combine the above two equations to get

one equation for the evolution of the scalar field ψ:[
αV1(ψ)

(1−ψ ′2)3/2 +
2
3

1
ψ2

]
ψ
′′ +ψ

′H

[
2

ψ2 +
3αV1(ψ)√

1−ψ ′2

]

−2
3

ψ ′2

ψ3 +
αV ′

1(ψ)√
1−ψ ′2

= 0, (10)

where V1(ψ) = V (ψ)
ψ4/3 and V ′

1(ψ) = dV1(ψ)
dψ

. Here also prime denotes differentiation
w.r.t the time in Einstein frame. We now consider different forms for the potential
to study the evolution of the universe.

2.1 V (φ) = constant = V0

In this case, as we are not considering any other field (either radiation or mat-
ter),and the universe only contains the scalar field ψ , we are primarily interested
in the early universe scenario, more specifically we look for possible inflationary
scenario in this model.

The potential becomes V1(ψ) = V0/ψ4/3 in Eq. (14). We assume the constant
V0 = 1 in our subsequent calculations without any loss of generality. With this
choice for the potential, we now have the system of Eqs. (12)–(14). We first inves-
tigate whether the solution for this system of equations is sensitive to the initial
condition. More specifically, we check whether the evolution of the scalar field in
the ψ ′−ψ phase-plane has any attractor behaviour. Here ψ ′ = dψ

dt̄ . Similar kind
of study has been done earlier for minimally coupled fields with DBI type kinetic
term [75]. One can see from Eq. (12) that we only need the initial conditions on ψ

and ψ ′. The initial condition on H is fixed through Eq. (12). In Figs. 1 and 2, we
have shown the evolution in the ψ ′−ψ phase plane with two different values for
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Fig. 3 Variation of the Hubble parameter H(t) with time for V (φ) = constant. We have chosen
α = 1,0.5,0.1, respectively, from top to bottom

Fig. 4 Variation of the Hubble parameter H(t) with time for V (φ) = exp(−φ 2/4). We have
chosen η = 1 and τ3 = 1,10,100 from bottom to top, respectively

Fig. 5 Phase portrait in the ψ ′−ψ phase plane for V (φ) = exp(−φ 2/4). The different initial
conditions for (ψ ′

i ,ψi) are (1.6, 0.6), (1.4, 0.4) and (1.2, 0.2), respectively, from top to bottom.
η = 1 and τ3 = 10 for this plot

Fig. 6 Same as Fig. 5 except τ3 = 1 in this plot

the parameter α . In both cases, it shows that the evolution of the scalar field does
not depend on the initial conditions. It always has a late time attractor. This feature
is crucial in order to have a reliable inflationary model whose predictions should
not depend on the initial conditions. Next we show the behaviour of the Hubble
parameter H(t) for different values of the parameter α in Fig. 3. One can see for
all the cases, it starts with an inflationary era (showing H(t) = constant) and then
exits from this inflationary phase. The time of exit depends on the parameter α in
a sense that lower values of α causes the exit at later time. So one can tune the
parameter α to get sufficient number of e-folding to solve the horizon or flatness
problem.

2.2 V (φ) = exp(−φ 2/4)

Next we consider the potential V (φ) = exp(−φ 2/4) in the action (2). This type of
Gaussian potential can arise in boundary string field theory (B-SFT) [76] and has
been studied for models of inflation driven by minimally coupled tachyon field. In
this case the potential V (ψ) in Einstein frame becomes V (ψ) = exp(−Aψ4/3/4),
where A = τ3/α . We have chosen η = 1 throughout for this case. Similar to the
constant potential case, described above, one can study the variation of the Hub-
ble parameter with time. This has been shown in Fig. 4. Here also, the universe
undergoes an exponential expansion in the early time, and then it exits from this
inflationary era. The duration for which this rapid expansion lasts, depends on the
parameter τ3 with lower values of τ3 results larger duration for inflation.

We have also studied the phase portrait in the ψ ′−ψ plane to see the attractor
property. This has been shown in Fig. 5. Here we have assumed τ3 = 10. As in
the constant potential case, here also we have the attractor property so that the late
time solution does not depend on the initial conditions. But this attractor property
is lost as one decreases the value of the τ3 parameter. This has been shown in Fig. 6
where we have assumed τ3 = 1. Hence for this potential τ3 plays a crucial role for
the attractor solution. As we mention before that we have assumed η = 1 for this
case. But with higher values of η one can get attractor behaviour with smaller τ3.

Fig. 7 Behaviour of ψ ′ with time. η = 1. τ3 = 1,2,5,10 from bottom to top
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Fig. 8 Behaviour of pressure P for the potential V (φ) = exp(−φ 2/4) with time. η = 0.5 and
τ3 = 10

One can compare this non-minimally coupled case with the corresponding
minimally coupled case with the same exponential potential. This has been stud-
ied by Sen [63; 64] and Frolov et al. [77]. In the minimally coupled case, ψ ′ ap-
proaches 1 asymptotically and the k-field behaves as a pressure-less dust. We study
the corresponding situation in the non-minimally coupled case. The behaviour of
ψ ′ is shown in Fig. 7. Here also we have assumed η = 1. But higher values of τ3
which is also necessary for attractor behaviour, the figure shows that here also ψ ′

approaches 1 very quickly. But there is an extra term in r.h.s of Eq. (12) which
arises due to non-minimal coupling. But still the asymptotically the pressure van-
ishes, similar to the minimally coupled case. This has been shown in Fig. 8.

3 Non-minimal k-essence

In this section we consider the late time solution for the universe where it is
dominated by a non-relativistic matter together with a non-canonical scalar field
which is non-minimally coupled with the gravity sector. We call it “non-minimal
k-essence”.

There are different approaches for adding matter in scalar tensor theories. This
is because of the ambiguity of representing the physical space-time structure:
whether it belongs to the Jordan frame or to Einstein Frame. And this ambiguity
has an elaborate representation in the literature dealing with scalar tensor theories
[78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88]. Choosing a physical frame is utmost
important for theoretical investigations. Also the physical metric should be singled
out for the pure gravity only vacuum case and subsequently the matter field should
be added. In a detail study, Magnano and Sokolowski [89] have argued in favour
of Einstein frame as a physical frame in scalar tensor theories. They showed that
if a Lagrangian in scalar tensor theory admits a flat space as a stable solution, then
it is always equivalent to a scalar field with potential minimally coupled to confor-
mally transformed metric. Then any matter should be minimally coupled with the
transformed metric and not with the scalar field. But this does not apply to theo-
ries where the coupling between the matter field and scalar field already exists in
more fundamental theory. As an example, in string theory, the four dimensional
effective action contains a number bosonic fields which couple both with the met-
ric and the dilaton. In our subsequent calculations, we consider both the Einstein
frame and Jordan frame for pure gravity case and add matter fields in these frames
and compare our results. For this purpose, we consider only V (φ) = V0 case. But
one can consider any potential in principle.
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Fig. 9 Variation of the Hubble parameter H(t) with time for V (φ) = constant plus matter. We
have chosen α = 1,5,10, respectively, from bottom to top

Fig. 10 Phase portrait in the ψ ′−ψ phase plane for V (φ) = constant and with matter included
in Jordan frame. The different initial conditions for (ψ ′

i ,ψi) are (1.8, 0.8), (1.6, 0.6), (1.4, 0.4)
and (1.2, 0.2), respectively, from top to bottom. α = 5

Fig. 11 Behaviour of the energy densities (solid for ρmatter and dashed for ρψ ) for V (φ) =
constant case. α = 5

3.1 Adding matter in Jordan frame

In this case we add matter in the Jordan Frame, i.e. we add the matter in action
(2):

S =
1

16πG

∫
d4x

√
−g

[
F(φ)R− τ3V (φ)

√
1+η2∂µ φ∂ µ φ

]
+Smatter. (11)

We have considered pressure-less dust for our purpose. We have also trans-
formed our equations in Einstein Frame and they take the form (assuming F(φ) =
φ ):

3H̄2 = 8πGρ̄ +
V (ψ)α

ψ4/3
√

1−ψ ′2
+

1
3

ψ ′2

ψ2 , (12)

2H̄ ′ +3H̄2 =
V (ψ)α

ψ4/3

√
1−ψ ′2 − 1

3
ψ ′2

ψ2 , (13)

where ρ̄ is the energy density in the Einstein frame. The field ψ and the constant
α are defined in Sect. 2. The equation of motion for the scalar field and the energy
conservation equation for matter now become:[

αV1(ψ)
(1−ψ ′2)3/2 +

2
3

1
ψ2

]
ψ
′′ +ψ

′H

[
2

ψ2 +
3αV1(ψ)√

1−ψ ′2

]

−2
3

ψ ′2

ψ3 +
αV ′

1(ψ)√
1−ψ ′2

=
1
3

ρ̄

ψ
, (14)

ρ̄
′ +3H̄ρ̄ = −1

3
ρ̄ψ ′

ψ
. (15)

One can notice that in this frame there is a coupling between the matter ρ̄ and
the scalar field ψ . This is usual for the case where one incorporates matter in the
Jordan frame. In Fig. 9 we show the behaviour of the Hubble parameter H(t) as
function of time for different values of the α parameter. It shows that a late time
acceleration phase (H(t) = constant) exists in this model. The epoch when this
accelerating phase starts, depends on the α parameter.

We also study the phase diagram in ψ ′−ψ plane, to check whether our so-
lution depends on the initial condition. We show the result in Fig. 10. It is shown
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Fig. 12 Variation of the Hubble parameter H(t) with time for V (φ) = constant adding matter in
Einstein frame. We have chosen α = 0.5,1,2, respectively, from bottom to top

Fig. 13 Phase portrait in the ψ ′−ψ phase plane for V (φ) = constant and with matter included in
Einstein frame. The different initial conditions for (ψ ′

i ,ψi) are (1.8, 0.8), (1.6, 0.6), (1.4, 0.4) and
(1.2, 0.2), respectively, from top to bottom. α = 5

for different initial conditions with α = 5. We have showed the behaviour of the
energy densities for the matter and scalar field in Fig. 11 for α = 5. It shows that al-
though matter dominates the energy budget at early time, but eventually the scalar
field takes over and starts dominating.

3.2 Adding matter in Einstein frame

Next we add matter in the Einstein frame, i.e. we consider the physical metric for
pure gravity for vacuum in Einstein frame and then add matter in it. The action
now becomes:

S =
1

16πG

∫
d4x

√
−ḡ

[
R̄− 3

2
F ′(φ)2

F(φ)
¯gµν ∂µ φ∂ν φ

−τ3V̄ (φ)
√

1+η2F(φ)∂µ φ∂ µ φ

]
+Smatter (16)

We write the field equations in this case and they take the form (assuming
F(φ) = φ ):

3H̄2 = 8πGρ +
V (ψ)α

ψ4/3
√

1−ψ ′2
+

1
3

ψ ′2

ψ2 , (17)

2H̄ ′ +3H̄2 =
V (ψ)α

ψ4/3

√
1−ψ ′2 − 1

3
ψ ′2

ψ2 . (18)

The field ψ and the constant α are defined in Sect. 2. The conservation equa-
tion for matter field is given by

ρ
′ +3H̄ρ = 0. (19)

We have shown the behaviour of the Hubble parameter H(t) as a function of time
in Fig. 12. Here also one can get a late time accelerating period (constant H(t)).
But one needs to have low α to get the acceleration, in comparison to the previous
case where we add matter in Jordan frame. We also study the phase portrait in
ψ ′ −ψ plane in Fig. 13. It also shows the attractor behaviour. In this case the
range for α for which one gets the attractor property is wider than the previous
one. The behaviours of the two energy densities are also shown in Fig. 14. In this
case also, although the matter dominates in the early time, the scalar field starts
dominating in the late time resulting acceleration.
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Fig. 14 Behaviour of the energy densities (solid for ρmatter and dashed for ρψ ) for V (φ) =
constant case with matter added in Einstein frame. α = 0.5

4 Conclusion

In this work, we have considered a k-field having DBI-type kinetic term, which is
non-minimally coupled with gravity. The coupling term is of BD type, i.e. F(φ) =
φ in the action. We have investigated in detail the cosmological solutions in this
model.
Inflationary solutions in D-Brane models with the scalar field having a DBI-type
kinetic term has been previously investigated by Underwood [90; 91].

We have considered both the early era for universe evolution, when it is sourced
only by the scalar field as well as its late time evolution when both scalar and the
matter fields are present. Our main aim is to check, whether it is possible to have
a epoch of accelerated expansion either in early time or in late time. Our results
show that with proper choice of parameters, it is possible to have both inflation
and late time acceleration in this model. More over we have shown that these so-
lutions show attractor property in a sense that they do not depend on the initial
conditions. For the inflation case, we have considered both the constant potential
and potential inspired from the BSFT theories, in our original action in Jordan
frame. But in the Einstein frame, where we study the solutions, the potentials get
modified. Moreover the r.h.s of the field equations (Eqs. 10, 11), contains an ex-
tra term which is due to the non-minimal coupling. This term is completely new
and does not occur in the corresponding minimally coupled case. It can play an
important role specially for models where one can have a fast roll inflationary
phase.

As our results show, this model can have interesting cosmological implica-
tions. We have shown that the model allows an inflationary phase. One has to
now apply it to a more realistic inflationary scenario (so called slow-roll model),
and study the implications, e.g. whether it allows sufficient e-folding, what is the
power spectrum for this k-field and whether that matches with the observations.
Scalar field with DBI type kinetic term minimally coupled with gravity has al-
ready been considered for possible inflaton field [92; 93]. But such models with
specific potentials arising from realistic string theory models has been problem-
atic in inflationary model building [94]. But introducing non-minimal coupling
with gravity may alleviate such problems.

Also although we have shown that attractor solutions exist in this model for
both early time and late time evolution, a more detail study is required to study
the fixed points, and their stability.

We have shown that the model also allows a late time accelerating phase, when
the universe is sourced by matter together with the k-field. One has to now make
a detailed study regarding the observational aspects of this model.

To summarise, non-minimally coupled k-field is an attractive model for cos-
mological purpose for both inflation and late time accelerating universe. But fur-
ther study is needed to confirm its viability.
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Noted added in proof Just before submitting the paper in arXiv, another paper
with similar model has appeared [95]. The authors have investigated similar type
of non-minimally coupled k-field models but in a different approach.
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