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Abstract. In this work, we evaluate the coupling constant and the form factors of the vertex
J/ψD∗sDs using the techniques of the QCD sum rules. We consider all the three mesons off
shell, resulting in three different form factors. However, despite the different form factors,
when extrapolated to the pole of each off-shell meson, we find coupling constants that are in
completely agreement each other. The result for the vertex J/ψD∗sDs coupling constant is
gJ/ψD∗

sDs = 4.30+0.42
−0.37GeV

−1.

1. Introduction
The QCD sum rules has been used in the calculation of the coupling constants and form factors
of various vertices and a great variety of mesons. Our group has calculated a graet number of
vertices as the D∗Dπ [1], D∗Dρ [2], J/ψD∗D [3] and many others. In recent works using the
QCDSR, vertices with the heavy beauty mesons(B, B∗, Bs, B

∗
s ,...) were object of study as the

B∗sBK [4], BsB
∗K [5], B∗sBsη

(′) [6]. Vertices with strange-charmed mesons(Ds, D
∗
s , Ds1,...) has

been studied as the J/ψDsDs [7, 8], J/ψD∗sD
∗
s [8] and others.

The strange-charmed vertices are a subject of a great interest actually in view of the new

exotic states detected recently. Some of them with masses that lies just above the D
(∗)
s D

(∗)
s

mass threshold. Exotic states means that the usual quark-model description as qq̄ does not
hold for the case of new states. An example of exotic state is the Y (4140), whose its first
detection was made by the CDF collaboration [9], it has an observed decay in the pair J/ψφ.
There are some interpretations for its internal structure as the DsD̄∗s molecular state [10],
D∗sD̄

∗
s molecular state [11, 12, 13, 14], the tetraquark state [15] and a hybrid state [11].

Among these interpretations, we emphasize the molecular D∗sD̄
∗
s hypothesis, so that the decay

Y (4140) → J/ψφ can be understood as an intermediate decay as Y (4140) → D∗sD̄
∗
s → J/ψφ.

The vertex J/ψD∗sDs is present in this decay, so that a precise knowledge of its form factor
and coupling constant may contribute for the understanding of the constitution of the Y (4140)
meson.

In this present work, the vertex J/ψD∗sDs is studied by applying the QCDSR formalism. The
development of this work consists in evaluating the form factors from the three point correlation
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function with quark and gluons degrees of freedom(OPE side) and with hadronic degrees of
freedom(phenomenological side); so, the next step is to perform a double Borel transform in
both sides and equating them. From the calculated form factor, we obtain the coupling constant
by extrapolating its value to the pole of the off-shell meson.

2. Formalism
In this work, we calculate three different three point correlation functions [16], each
corresponding to each off-shell meson. The correlation functions corresponds respectively to
J/ψ off-shell, D∗s off-shell and Ds off-shell.

Γ(J/ψ)
µν (p, p′) =

∫
〈0′|T{jDs5 (x)jJ/ψ†µ (y)jD

∗
s†

ν (0)}|0′〉 eip′xe−iqyd4xd4y, (1)

Γ(D∗s )
µν (p, p′) =

∫
〈0′|T{jDs5 (x)jD

∗
s†

ν (y)jJ/ψ†µ (0)}|0′〉 eip′xe−iqyd4xd4y, (2)

Γ(Ds)
µν (p, p′) =

∫
〈0′|T{jD∗sν (x)jDs†5 (y)jJ/ψ†µ (0)}|0′〉 eip′xe−iqyd4xd4y, (3)

where q = p′ − p is the transferred momentum.
Firstly, these correlation functions are calculated using the quarks and gluons degrees of

freedom(OPE side) and using the hadron degrees of freedom(phenomenological side). Then, the
form factors and the coupling constants are obtained by equating both sides using the quark-
hadron duality, after applying a double Borel transform in both sides.

2.1. The phenomenological side
The effective Lagrangian of J/ψD∗sDs vertex [17, 18] is given by

LJ/ψD∗sDs = −gJ/ψD∗sDsε
αβγδ∂αψβ

(
∂γD

∗−
sδ D

+
s + ∂γD

∗+
sδ D

−
s

)
, (4)

where ε0123 = +1 is the Levi-Civita totally antisymmetric tensor.
From this Lagrangian, we obtain the vertices of the hadronic processes that are used to the

calculation of the phenomenological side . For the J/ψ, D∗s and Ds off-shell cases, these vertices
are, respectively:

〈D∗s(p)J/ψ(q)|Ds(p
′)〉 = ig

(J/ψ)
J/ψD∗sDs

(q2)εβ(q, λ)εδ(p, λ)qαpγε
αβγδ , (5)

〈J/ψ(p)D∗s(q)|Ds(p
′)〉 = ig

(D∗s )
J/ψD∗sDs

(q2)εβ(p, λ)εδ(q, λ)pαqγε
αβγδ , (6)

〈J/ψ(p)Ds(q)|D∗s(p′)〉 = −ig(Ds)
J/ψD∗sDs

(q2)εβ(p, λ)ε∗δ(p
′, λ)pαp

′
γε
αβγδ , (7)

where g
(M)
J/ψD∗sDs

(q2) is the form factor of the J/ψD∗sDs vertex with meson M off-shell (M =

J/ψ,Ds, D
∗
s).

Using each of these vertices in the corresponding correlation function, we can obtain the
phenomenological side. It is convenient to make the change of variables p2 → −P 2, p′2 → −P ′2
and q2 → −Q2. Then, we have the correlation functions of the phenomenological side for each
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off-shell case:

Γphen(J/ψ)
µν =

Cg
(J/ψ)
J/ψD∗sDs

(q2)p′λpσεµνλσ

(p2 +m2
D∗s

)(q2 +m2
J/ψ)(p′2 +m2

Ds
)

+h.r. ,

(8)

Γphen(D∗s )
µν =

−Cg(D∗s )
J/ψD∗sDs

(q2)p′λpσεµνλσ

(p2 +m2
J/ψ)(q2 +m2

D∗s
)(p′2 +m2

Ds
)

+h.r. ,

(9)

Γphen(Ds)
µν =

Cg
(Ds)
J/ψD∗sDs

(q2)p′λpσεµνλσ

(p2 +m2
J/ψ)(q2 +m2

Ds
)(p′2 +m2

D∗s
)

+h.r. ,

(10)

where h.r. stands for the contributions of higher resonances and continuum states of each meson
and C is defined as:

C =
fDsfD∗sfJ/ψm

2
Ds
mD∗smJ/ψ

(mc +ms)
. (11)

2.2. The OPE side
In order to obtain the OPE side; in the eqs. (1), (2) and (3), we use the interpolating currents

in terms of quark fields: j
J/ψ
µ = c̄γµc, j

D∗−s
ν = c̄γνs and jD

−
s

5 = ic̄γ5s. The OPE side is an
expansion named as Wilson’s Operator Product Expansion. This expansion is dominated by
the perturbative term and followed by the non-perturbative contributions:

ΓOPE(M)
µν = Γpert(M)

µν + Γnon-pert(M)
µν , (12)

where Γ
pert(M)
µν is the perturbative term and Γ

non-pert(M)
µν are the non-perturbative contributions

to the correlation function. Considering the similarities between the J/ψD∗sDs and both
J/ψDsDs and J/ψD∗D vertices, we expect a similar behavior regarding the OPE series as
obtained in the two latter works [3, 7].Therefore, it should be adequate to consider non-
perturbative contributions up to the mixed quark-gluon condensate:

Γnon-pertµν = Γ〈q̄q〉µν + Γ
mq〈q̄q〉
µν + Γ〈g

2G2〉
µν + Γ〈q̄gσGq〉µν + Γ

mq〈q̄gσGq〉
µν . (13)

The calculation of eq. (12) regarding the perturbative and the non-perturbative contributions
of eq. (13) corresponds to the calculation of the diagrams of fig. 1. The J/ψ off-shell case
is the only that has contributions from all the non-perturbative terms as a consequence of
the application of the Borel transform. In the Ds and D∗s off-shell cases the non-perturbative
contributions are suppressed because these cases involves the condensates of charm quark that
are very small or even zero.

Using the dispersions relations, the perturbative term (fig. 1a) for a given meson M off-shell
can be written as:

Γpert(M)
µν (p, p′) = − 1

4π2

∫ ∞
0

∫ ∞
0

ρ
pert(M)
µν (s, u, t)

(s− p2)(u− p′2)
dsdu , (14)
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where the spectral density ρ
pert(M)
µν (s, u, t) is obtained by the application of Cutkosky’s rules.

The quantities s = p2, u = p′2 and t = q2 are the Mandelstam variables.
The eq. (14) is the main contributing term of the OPE series in a QCDSR calculation. The

spectral density can be parametrized as:

ρpert(M)
µν (s, u, t) =

3√
λ
F (M)(s, u, t)p′

λ
pσεµνλσ , (15)

where λ = (u+ s− t)2 − 4us and F (M) is an invariant amplitude. For the J/ψ and Ds off shell,
the invariant amplitude can be written as:

F (J/ψ) = (ms −mc)(A+B)−ms , (16)

F (Ds) = −F (D∗s ) = (mc −ms)B −mc , (17)

where

A =

[
k̄0√
s
− p′0|~k|cos θ

|~p′|√s

]
, B =

|~k|cos θ

|~p′|
. (18)

The quark condensate in fig. 1b corresponds to the first non-perturbative contributions:

Γ〈s̄s〉(J/ψ)
µν =

−〈s̄s〉p′λpσεµνλσ
(p2 −m2

c)(p
′2 −m2

c)
. (19)

The expressions for the gluon condensates (〈g2G2〉) of fig. 1d-1i and mixed quark-gluon
condensates (〈s̄gσ ·Gs〉) of fig. 1j-1o for the J/ψ off-shell case can be found in Ref. [23].

2.3. The QCD sum rules
In order to obtain the expressions for the form factors, we make the change of variables
p2 → −P 2, p′2 → −P ′2 and q2 → −Q2 followed by a double Borel transform to both sides
of the QCDSR in eqs. (8)-(10) and (12), which involves the transformation: P 2 → M2 and
P ′2 →M ′2, where M and M ′ are the Borel masses. After that, we equate the phenomenological
and OPE sides, taking the quark-hadron duality. So, we obtain the QCDSR expressions for the
form factor for each case off-shell:

g
(J/ψ)
J/ψD∗sDs

(Q2) =
− 3

4π2

∫ s0
sinf

∫ u0
uinf

1√
λ
F (J/ψ)e−

s
M2 e−

u
M′2 dsdu+ BB

[
Γnon-pert

]
C

(Q2+m2
J/ψ

)
e
−m2

D∗s
/M2

e−m
2
Ds
/M ′2

, (20)

g
(D∗s )
J/ψD∗sDs

(Q2) =

3
4π2

∫ s0
sinf

∫ u0
uinf

1√
λ
F (D∗s )e−

s
M2 e−

u
M′2 dsdu+ BB

[
Γ〈g

2G2〉
]

C
(Q2+m2

D∗s
)
e
−m2

J/ψ
/M2

e−m
2
Ds
/M ′2

, (21)

g
(Ds)
J/ψD∗sDs

(Q2) =
− 3

4π2

∫ s0
sinf

∫ u0
uinf

1√
λ
F (Ds)e−

s
M2 e−

u
M′2 dsdu+ BB

[
Γ〈g

2G2〉
]

C
(Q2+m2

Ds
)
e
−m2

J/ψ
/M2

e
−m2

D∗s
/M ′2

, (22)

As the QCDSR, the definition for the coupling constant gJ/ψD∗sDs is given by:

lim
Q2→−m2

M

g
(M)
J/ψD∗sDs

(Q2) . (23)
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Figure 1: Contributing OPE diagrams for J/ψ(D∗s) off-shell. The Ds off-shell case corresponds
to a permutation of the Ds and D∗s mesons of the D∗s off-shell case.

To calculate the coupling constants, it is necessary to extrapolate the results for the form
factor to the region of Q2 < 0. From eqs. (20)-(22) we can obtain the coupling constant from
three different form factors, one for each meson off-shell. However, the coupling constant must
be the same regardless the form factor used for the extrapolation. This condition is used to
minimize the uncertainties in the determination of the coupling constant.

3. Results and discussion
The vertex J/ψD∗sDs has three different form factors shown in eqs. (20)-(22) . We perform
numerical calculation of these form factors that gives results that must be fitted to an analytical
function of Q2. To minimize the uncertainties, it is required that these three form factors lead
to the same coupling constant. This condition is useful to find the Borel masses and continuum
thresholds and to reduce the errors.
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Table 1: Parametrization of the form factors and numerical results for the coupling constant of
this work.

Quantity J/ψ off-shell D∗s off-shell Ds off-shell

Q2 (GeV2) [0.5, 2.0] [1.0, 3.0] [1.0, 4.0]
M2 (GeV2) [7.0, 7.9] [5.3, 7.3] [4.9, 5.9]

g
(M)
J/ψD∗sDs

(Q2) A
B+Q2 Ae−Q

2/B Ae−Q
2/B

A 193.4 GeV 2.003 GeV−1 2.330 GeV−1

B (GeV2) 54.46 6.027 6.122

g
(M)
J/ψD∗sDs

± σ (GeV−1) 4.31+1.21
−1.20 4.20+1.32

−1.12 4.39+1.44
−1.30

Table (1) shows the parameters used in this calculation. The continuum threshold parameters,
s0 and u0, are defined as s0 = (mi + ∆i)

2 and u0 = (mo + ∆o)
2, where the quantities ∆i and

∆o have been determined imposing the most stable Borel window. In order to include the pole
and to exclude the contributions from higher resonances and continuum states, the values for
∆J/ψ, ∆D∗s and ∆Ds cannot be far from the experimental value (when available) of the distance
between the pole and the first excited state [19, 24]. In our analysis, we have found that the best
values are ∆Ds = 0.6 GeV and ∆D∗s = ∆J/ψ = 0.5 GeV, which leads to a stable Borel windows
for the three off-shell cases, as shown in fig. 2 for J/ψ and Ds off-shell. Figures for D∗s off-shell
are omitted as they are very similar to the Ds off-shell case.

7.0 7.2 7.4 7.6 7.8

M2  (GeV2 )

0
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3

4

5
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/ψ

)

J
/ψ
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2
=
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2
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〉
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〈
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〉
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g2 G2

〉
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Figure 2: OPE contributions for J/ψ off-shell (panel (a)) and Ds off-shell (panel (b)).

Besides the values of the Borel masses and the continuum thresholds, we also need to know
the values of decay constants, quark masses, condensates and hadrons and quark masses. These
values are: fDs = 257.15±6.1(MeV ) [19], fD∗s = 301±13(MeV ) [19], fJ/ψ = 416±6(MeV ) [19],

mc = 1.27+0.07
−0.09 (GeV) [19], ms = 101+29

−21 (MeV)[19], 〈s̄s〉 = −(290 ± 15)3 (MeV3)[25],

〈g2G2〉 = 0.88± 0.16(GeV4)[26], 〈s̄gσ ·Gs〉 = (0.8± 0.2)〈s̄s〉(GeV5)[27]. The masses of hadrons
of this vertex are mDs = 1.968 GeV, mD∗s = 2.112 GeV and mJ/ψ = 3.097 GeV [19].

The form factor obtained for the J/ψ off-shell case was well adjusted by a monopolar curve,
while for the D∗s and Ds off-shell cases, the form factors were well adjusted by exponential curves

in fig. 4. The coupling constant of the J/ψ off-shell is g
(J/ψ)
J/ψD∗sDs

±σ(GeV −1) = 4.31+1.21
−1.20GeV

−1.
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Figure 3: Pole and continuum contributions for the J/ψ off-shell (panel (a)) and for Ds off-shell
(panel (b)), both at Q2 = 1 GeV2.

The value found for the D∗s off-shell case is g
(D∗s )
J/ψD∗sDs

± σ(GeV −1) = 4.20+1.32
−1.12GeV

−1 and the

coupling constant of the Ds off-shell case is g
(Ds)
J/ψD∗sDs

± σ(GeV −1) = 4.39+1.44
−1.30GeV

−1.
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D ∗
s  off-shell

Ds  off-shell

Figure 4: Form factors of the J/ψD∗sDs vertex.

4. Conclusion
In this work we have calculated the gJ/ψD∗sDs coupling constant by three different QCD sum
rules: one with the Ds meson off-shell, another with the D∗s meson off-shell and a third one with
the J/ψ meson off-shell. This procedure allowed us to reduce the uncertainties related to the
method, leading to compatible coupling constants, as seen in fig. 4.

Taking the mean value between the numbers presented in table 1, we obtain the following
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final result for gJ/ψD∗sDs :

gJ/ψD∗sDs = 4.30+1.53
−1.22 GeV−1 . (24)

This coupling constant was obtained from sum rules that respect the pole dominance over
the continuum, the perturbative contribution of the OPE being the dominant one and the form
factor stability regarding the Borel mass in the whole Borel window, as shown in fig. 3.

In these results, there is the form factor given by a monopolar parametrization when the
heaviest meson (J/ψ) is off-shell, while an exponential one is the case when one of the lightest
mesons (Ds or D∗s) is off-shell. Furthermore, the OPE series presents, in both vertices, the same
hierarchy for the contribution of each term, as well as comparable contributions among terms
of the same dimension.

We can also compare our result for the gJ/ψD∗sDs coupling constant eq. (24) with the results
of previous QCDSR works, presented in table 2.

Table 2: Values of coupling constants obtained using different methods.

QCDSR [20] (GeV )−1 QCDSR [3] (GeV )−1 QCDSR [7] VMD [21, 22]

gJ/ψD∗sDs = 3.03± 0.62 gJ/ψD∗D = 4.0± 0.6 gJ/ψDsDs = 5.98+0.67
−0.58 gJ/ψDD = 7.44

Finally, we can compare our result with the coupling constant gJ/ψDD from the vector meson
dominance (VMD) [21, 22] using the SU(3) and HQET relations, which leads to gJ/ψD∗sDs = 3.84

GeV−1. This coupling is also compatible with the one of eq. (24) within 1σ.
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