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The asymptotic behavior of the correlations in the low-temperature phase are found for the following 
two-dimensional quantum systems: a two-dimensional lattice of plane rotators, two-dimensional mag
netic substances having an easy plane of magnetization, a two-dimensional Bose liquid (Sec. 1), and a 
two-dimensional isotropic Heisenberg ferromagnet (Sec. 2). The nature of the change of the asymptotic 
behavior with increasing temperature is investigated for the systems considered in Sec. 1. The nature 
of the change of the asymptotic behavior with increasing temperature is investigated for the systems 
considered in Sec. 1. The nature of the low-temperature phase consists in the superfluidity of a two
dimensional Bose liquid; the corresponding property can also be formulated in terms of magnetic 
substances. 

IN the previous article[1J by the author, the correla
tion functions were determined at low temperatures in 
two-dimensional systems of classical spins and in other 
two-dimensional systems possessing a continuous sym
metry group. In the present article similar results are 
derived for two-dimensional quantum systems: in Sec. 
1 the correlations are investigated in a two-dimensional 
lattice of planar rotators, in a two-dimensional Bose 
liquid, and in planar magnetic substances (these three 
problems are equivalent), and in Sec. 2 the correlations 
in a two-dimensional Heisenberg ferromagnet are in
vestigated. To within quantities of the order of the cut
off parameter ro, these correlations coincide with the 
correlations in classical systems, which were found 
inUJ. The nature of the temperature-dependent correc
tions to the found expressions is briefly described in 
Sec. 1, and the question of the nature of the low- tem
perature phase, which was treated incorrectly in arti
cle[1J, is touched upon: The characteristic of the low
temperature phase is not an infinite susceptibility, as 
was erroneously asserted in.C1J, but rather the super
fluidity of a two-dimensional Bose liquid and the corre
sponding property of two-dimensional magnetic substan
ces. The author hopes to return to this question, too. 
One-dimensional systems are not considered in this 
article. 

1. TWO-DIMENSIONAL LATTICE OF PLANAR 
ROTATORS AND SYSTEMS EQUIVALENT TO IT 
(TWO- DIMENSIONAL BOSE LIQUID AND PLANAR 
MAGNETIC SUBSTANCES) 

Lattice of Planar Rotators 

This system corresponds to a two-dimensional lat
tice with lattice constant a (the notation for the lattice 
sites is the same as inUJ), where a planar rotator:._ des
cribed by the dynamical variables cPr (angle) and vr 
= ia/arpr (angular momentum) is associated with each 
site r. The wave function of the system must be periodic 
with respect to eachpf the variables <Pr with period 21T, 
and the eigenvalues vr are integers. We take the Hamil
tonian of the system in the form 

H = .E ;ll ;,' + ~ .E .E H,., 
r Jr-r'l=a 

( 1) 

where only nearest neighbors interact (r- r' = 6; 161 
= a) and the interaction energy is an even periodic func
tion of the difference vr 6 = <i'r'- <Pr, having a single 
minimum at vr 6 = 0 in 'the interval !Vr ,. 1 < 1T, that is, 

' ,u 
the interaction is ferromagnetic: 

+~ 

lf,. = J (v,, &) = ~ J meim (o,·-<o,.)' (2) 

+m +~ 

!(0)= _EJ,.=O, )=!"(0)= .E m'Jm>O. (3) 

For the time being we shall forget about the periodicity 
conditions on the wave function, regarding it as a func
tion of the variables cpr, which vary over the entire 
aixs -oo < <Pr < +oo. The potential energy then has 
minima for configurations satisfying the conditions 

(ir-r'! =a), ( 4) 

where nrr' is an arbitrary integer function, defined on 
neighboring pairs of sites r and r' such that nr' r 
=- nrr'· Each such configuration corresponds to the 
minimum configuration (4). We assume that near this 
minimum one can replace the Hamiltonian by its quad
ratic expansion with respect to small deviations from 
(4), which gives 

'j ' "' 1 '' 1 ,, "' 1 '( ., " I = fl(u. > = LJ-:;:-- v, 2 + -.- LJ LJ ·-,,-· ·.p, .• - <p, - "''tna·) . 
r ... q 2 I 1'-r' I =a """ 

(5) 

We have a situation which is similar to the one which is 
encountered in the well-known method of Heitler and 
London, viz., in different regions of configuration space 
the Hamiltonian separates differently into the major 
part and the perturbation ("asymmetrical perturbation 
theory," see(2J ). In the first approximation the eigen
functions of the initial Hamiltonian will be linear com
binations of the eigenfunctions of the Hamiltonians (5). 
In order to find these linear combinations it is, in gen
eral, necessary to solve the secular equation, but allow
ance for the symmetry requirements simplifies this 
problem. In the present case the total wave function 
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must be periodic in all the variables <Pr. that is, invar
iant with respect to the substitution <Pr- <Pr + 211'nr, 
where nr is an arbitrary integer lattice function. Upon 
making such a substitution, nrr' in the Hamiltonian (5) 
goes over into another function iirr', which is related to 
the previous nrr' by the equation 

n,.., = n.,, + 1lr -l'lr.. (6) 

We shall call the two functions nrr' and nrr' 
.):•-equivalent if they are related by equation (6) for a 
certain integer lattice function nr· One can easily verify 

. that (6) is an equivalence relation and hence it divides 
the set of functions nrr' into nonintersecting classes of 
.'i.-equivalent functions. If nrr' is a certain (arbitrary) 
representation of a given class ·:t-, then all the others 
are obtained from it by formula (6), when nr takes all 
possible values of the integer lattice functions. The 
summation over a given class r:') therefore reduces to a 
summation over nr. Let 1/J(E)( ... , <Pr• ••• )denote the 

n •. 
eigenfunction of (5) with energy E. The summation of 
all such functions for nrr', corresponding to a given 
class <:.J, has the form 

qr~l ( ... , cp.., ..• ) Cl:l ~ ••• ~ ¥~~) ( ... , 'Pr + 2:n:n,, •.. ). (7) 
( ... ,n,.., .. \ 

where nrr' is a certain (arbitrary) representation of the 
class [{!. Since (7) is an eigenfunction with the same en
ergy E, the approximate eigenfunctions of the initial 
Hamiltonian must be linear combinations of the func
tions (7) in order to satisfy the periodicity condition. 

Let us consider the physical meaning of the states 
described by the functions (7). Let ro, r1, ... , rz be a 
certain closed path (contour) along the bonds of the 
lattice (ro = rz, ri and ri •1 are neighbors). Let us call 

l-1 
the quantity K = :E nr.r· . the circulation of nrr' along 

i=O 1 1•1 

the contour. It is easy to see that if nrr' and nrr' are 
equivalent in the sense of (6), then their circulations 
along any arbitrary contour coincide, so that the set of 
circulations over all contours is an invariant of the 
class r.;, and uniquely describes this class. It is suffi
cient to specify the circulation along the minimum con
tour-that is, along the boundaries of the elementary 
squares (faces) of the lattice. One can associate each 
face having a nonvanishing circulation with a defect, 
which we shall call a "vortex," since for the case of a 
Bose liquid (see below) these defects correspond to the 
well-known quantized vortices (see[3J). 

Thus, each class q corresponds to a definite distri
bution of the vortices over the faces of the lattice. The 
states without vortices correspond to the class !l'o, hav
ing as one of its representations the function nrr' = 0 
(that is, consisting of functions nrr' of the form 
nr- nr'). For the class :.':o the Hamiltonian (5) goes over 
into the Hamiltonian for a system of harmonic oscilla
tors, having an energy spectrum for the low-lying exci
ted states of the form1> (here and in what follows, k 

1>The condition for the applicability of "asymmetric perturbation 
theory" is a small overlap of the eigenfunctions of the Hamiltonian 
(5) for a different nrr•. For'functions of the class !l!, this reduces to 
((~.·-1$.)2 )11 2 <.1. By calculating the standard deviation of the dif
ference ~.•-tPr from the wave function for the ground state of the 
system of oscillators, we obtain the condition for the validity of 
the method in the form (J11r114 > l. 

denotes the quasi-momentum) 
s. = liw.=hciki + o(Jki), c = (aln)yJ ITJ. (8) 

For classes :z; different from mo, (5) is the Hamilton
ian of a system of "displaced" harmonic oscillators 
and its energy spectrum is shifted with respect to (8) by 
an amount ~Erfl> equal to the minimum of the inhomo
geneous quadiitic form in (5). 2> By virtue of this, taking 
the classes 0 ¢ (? 0 into consideration should give cor
rections of the order of exp(- ~Ea/T) and at low tem
peratures one can confine attention to only the contribu
tions from the class 0 0 • Thereby the calculation of the 
averages reduces to the similar problem for a system 
of harmonic oscillators having the spectrum (8). 

In fact, let the averaging (with a Gibbs weight func
tion) be carried out with respect to the approximate 
eigenfunctions (7) of the class ~0 and the averaged quan
tity is a periodic function Fper(<Pr1, ... , <Prn) of the 
angles CfJrs· Then each term of the summation (7) gives 
the same contribution to the average, and it coincides 
with the average of Fper<lj9r1, ... , cprn) over the system 

of oscillators. In particular, for integer values of ms 
one can write 

( 
ll f ~ A A} 

exp{iL,m.qJ,,(t,) }) =exp{ - 2 L,L, m,m,.(!p,,(t,)qJ.,,(t,•)), 
•-1 '• •'=I 

(9) 

where ( 41r(t)$r'(t')) 0 is the correlation function for the 
coordinates of the harmonic oscillators. One can easily 
deduce Eq. (9) for a system of harmonic oscillators for 
arbitrary values of ms, but, according to what was said 
above, in that case when ms is an integer and hence the 
averaged function is periodic, its average with respect 
to the system of oscillators coincides (for T/J « 1) 
with the Gibbs average over the initial system. 

For ts ¢ ts' the correlation function 
( CfJr (ts)<Pr ,(ts'))o depends on the method of ordering 
the goncom'buting operators cp r(t), but at large distan
ces these differences are of the order of 1/uss', where 
Uss' is defined as 

{ Jr,-r,.J if 
U.u'= 2 2 2 • cJt,-t,.J+ l'c (t,-t,•) -(r,-r,.) 1f 

Jr,- r,•J > cJt,- t,•J 
lr,-r,.J < cJt,-t,.J 

(10) 

that is, the operators CfJr(t) at remote points asymptotic
ally commute. 

For uss' » a the asymptotic form of the correlators 
in (9) has the form 

A A ( R)· u ... (!p, (t,)~p,,(t,,))e::O ln- -(1-ll,,,.)aln-·-, 
a. ' a ro (11) 

where the following notation is used (y = 0.5772 .... is 
Euler's constant) 

a= T l2nl, r, = 2e->hc IT ~ 1,28/ic IT (12) 

and o s s' is the Kronecker symbol (o s s' = 1 for s = s' 
and o s' s' = 0 for s ¢ s' for integer values of s, s'). The 

' 
2>confl.gurations of vortices with non-vanishing total circulation 

have an energy of the order of ln (Ria), where R is the size of the 
system, and these configurations drop out of the partition function. 
The minimum ~Eq> = 1r2 J corresponds to a pair of vortices with 
K = + l and K = -1, situated in neighboring faces. 
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first term in (11) is a logarithmically divergent constant 
(for R-oo, where R is the size of the system). 

Substituting (11) into (9) and taking into consideration 
that the first term from (11) gives a factor 
exp{-O(ln(R/a)(ml + ... + mn) 2 } to the right-hand side 
of Eq. (9), which is equal to o m 1 + ... + mn, 0 in the limit 
R- oo, we obtain the following result for us, s' >> a: 

< cxp{ it m,c[,, (t;)}) 
s=t 

~ cSm,t. + m n 0 rt Ii ( u;:·· )"'•m,m,- (ms- integers). ( 13) ·-t ., ... t 
(,;_ofc.•') 

Correlations involving the participation of "r(t) 
= J]dfl.irldt are of the same order, 0(1/uss'), as the 
terms connected with the noncommutativity of the <Pr(t) 
which were thrown away earlier, so that at large distan
ces one can neglect them and assume 

(u" ~a). (14) 

Formulas (13) and (14) enable us to calculate the asymp
totic behavior for any arbitrary correlation function. 
Forts = ts' expression (13) is equivalent to formula 
(21) from[1J, but with a different value of the cutoff 
parameter r 0 • 3 > 

Two-dimensional Bose Liquid 

Now let us show that the long- range correlations in a 
two-dimensional neutral Bose liquid can be calculated 
on the basis of an equivalent Hamiltonian isomorphic to 
(1). Let us assume that the Bose condensate only exists 
in the ground state (for T = 0), and for T "'0 it is des
troyed by the fluctuations of the phase, a description of 
which we also wish to derive. We introduce the follow
ing notation: m denotes the mass of the atoms, p = 1/l2 

is the number of particles per unit area (l is the aver
age distance between the rarticles), Cs is the Speed of 
sound, K =aN/all = 1/mcs is the compressibility in the 
ground state. There are two correlation lengths in the 
problem: the average de Broglie wavelength ~ =fl./ mcs 4 > 

and r c- the radius of correlation for fluctuations of the 
phase; at T = 0 (in the ground state) r c = oo, but at low 
temperatures rc >> ~ and has a macroscopic value. 5 > 

Therefore, one can separate the entire system into 
cells, having macroscopic dimensions a such that 
~ << a « r c; for simplicity we shall assume that these 
cells are the cells of a square lattice, and their centers 
coincide with the lattice sites r. 

Let us represent the Hamiltonian of the system in the 
form of a sum of Hamiltonians of the individual cells 
and of terms describing the transitions between the 
cells. If at first we neglect the latter, then the Hamil
tonian separates into the sum of independent Hamilton
ians for the individual cells. In this connection one can 
construct the low-lying eigenstates as products of the 

3>rn the classical case the cutoff is due to the short-wavelength 
behavior of wk • and r 0 "" a. In the quantum case the cutoff is due 
to the Planck distribution for liwk"" T, r0 ""liwk/T ~a. 

4>Fulfillment of the condition of quantum degeneracy,~~ I, is 
necessary for the very existence of the Bose liquid. 

5> As we shall see below (see Eq. (20)), rc/~ ""(KTr1exp I -O(e/ 
J2KT)}. 

eigenstates of the individual cells with quantum numbers 
differing slightly from the equilibrium number Na 
= pa2 • Namely, let us denote the ground state of the 
r-th cell by lvr>r when the number of particles in it is 
given by Nr = Na + vr; then one can associate a state 
jv.) = IT/vr>r (the product over all cells) to each dis
tribution{ ... , "r• ... } = {v.} of the particles over the 
cells, in which Na + "r particles fall into the r-th cell 
(and where L; Vr = 0). 

The energy of this state is composed of the energies 
of the individual cells and is equal to E(v.) = E 0 

+ L; (2 K Nar1 v~ + o(v~) (the linear terms in "r drop out 
due to the fact that L; "r = 0). Since the quadratic terms 
in "r are small (they are of the same order as the 
terms associated with transitions between the cells, 
which have been discarded), so the states jv.) form an 
almost degenerate system of states. According to per
turbation theory for this case, in the first- order ap
proximation the energies are determined as the eigen
values of an effective Hamiltonian which is equal to 
Heff = PH1?, where P is a projection operator on a sub
space spanned by the states jv.). More precisely 

~ 1 ~ ~~~ ~ 
H, 11 =E,+ --v,'+ ,:..,.~PH.,.P, 

2xNu 
r lr-r'l=c 

(15) 

where ~r is the oper11tor ll}ultiplying the state jv.) by 
the number "r• and PHrr'P is the term in the Hamilton
ian corresponding to transitions from cell r to cell r', 
from which only the matrix elements (v.'IHrr'/v.) are 
left. It is obvious that these matrix elements will differ 
from zero only for transitions { v.} - { v.'} such that v 
particles go from cell r to the neighboring cell r' but 
the number of particles in the remaining cells does not 
change. Let us denote the value of such a matrix ele
ment by J 11 ; then one can write the operators PHrr'P 
in the form 

+~· 

PH.,.P = ~ /,(ii.)•(R..)-•, (16) 

where CRr)" denotes the operator which changes the 
number of particles in the r-th cell by v, leaving the 
number of particles in the other cells unchanged. 

In order to see the equivalence of the Hamiltonians 
(1) and (15); let us pass to a representatio.n where the 
operators Rr are diagonal. Let /q;)r = L;eHP"jv)r (the 
summation is over the integers v) denote the state of 
the r-th cell containing an indeterminate number of 
particles, but the phase q; of the condensate is fixed. If 
a state jcp.) =IT I<Pr) r is associated with each set of 
phases { ... , f/Jr, ... } = { cp.} , then the two sets of basis 
functions jq;.) and jv.) are unitarily equivalent, and 
since 

~ a . 
v,jcp) =- i acp, [cp), (Rr)'[cp.) = rr [cp.), (17) 

then (15) actually coincide~ with (1) for TJ = KNa· The 
quantity corresponding to J (see Eq. (3)) can be ex
pressed in terms of the parameters of a Bose liquid by 
using the f- sum rule 

~ ~ N 
,(N I [ [p., H] P-•ll N), = -;n li'k' 

[ 4 5J ~ "' ~ ik · r (see ' ), where Pk ~ LJ (Na + "r)e are the Fourier 
r 

components of the density, /N)o ~ (const)6jv.) is the 
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ground state (the summation extends over all vr such 
that-(.:lNa) :5c vr :5c (.:lNa), where .:lNa = O(Ka) denotes 
the fluctuations of the number of particles in a cell). 
This gives J = pn2/m, so that the parameters appearing 
in (13) are given by 

c = 1/ 1 = c,., 
V mx 

(18) 

For these values of the parameters, formulas (13) and 
(14) permit us to determine the asymptotic form of the 
average of any function of rPr and Dr. It is necessary to 

associate the operators PAf with the quantities A of the 
initial system; if As is a local operata! pe~taining to 
the neighborhood of the point rs, then PAsP is ex
pressed in terms of rPr and Vr , and since by virtue of 
(14) one can set vr ~ 0 ~n evalu~ting the correlations at 
widely separated points, then the averages of the prod
ucts II As in the initial system coincide (for widely 

s 
separated points rs) with the averages of products of 
the operators ds(4Jr ), where .cfs(Cf) is the Bogolyubov 

s ~ 
quasi-average of the operator As (see[ 6J), expressed as 
a function of the phase cp of the Bose condensate, that is, 
As ~.c¥s(rPr ), where ds(cp) is defined as s 

+oo 

.w.(ip)=lim ~ e'""<NIA.IN+v>=<<riA.I'P>. (19) 
..... ___...= ..:.....! 

In particular, according to this rule the operator if! ( r, t) 
corresponds to the expression -/po exp(i(jlr(t)), where Po 
denotes the density of the Bose condensate; for the 
asymptotic form of the average (1/!+(r, t)lj!(r', t')) (for 
t = t', when ur t· r' t' = jr- r'l) we have 

' ' ' 
('iJ+(r)'IJ(r'))~p,j(r-r')/r,j-a (ir-r'l~s). (20) 

This formula was previously derived in[7J and[BJ. 

Anisotropic Planar Magnetic Substances 

These systems are considered inC 9J where, in par
ticular, their equivalence with Bose systems is men
tioned. In the notation of[ 9J the rules giving the corre
spondences between the parameters, similar to (18), 
have the form: a = T/21Tp s and c = ( p s lx s)112 (the values 
of Ps and Xs are taken for T = 0). 

The Nature of the Corrections to (13) and the Nature of 
the Low-temperature Phase 

The following approximations were made in the 
derivation of the asymptotic expressions (13) for the 
correlation functions: In the first place, the contribu
tions from classes ,1) "'f:00 were neglected, i.e., quantized 
vortices were not considered; in the second place, in 
calculating the contributions from the class ::t0 the 
quadratic expansion of the Hamiltonian near the mini
mum was used. It is not difficult to take the corrections 
associated with the breakdown of the latter approxima
tion into account by using perturbation theory; here the 
usual diagram technique is applicable, in which the lines 
correspond to the correlation functions (cpr(t)cpr'(t'))o 
for a system of harmonic oscillators, and the vertices 
correspond to terms of the fourth-order and higher or
ders in the expansion of the Hamiltonian in powers of 
vr,O· Since the factors vk,O = i(k·O)<Pk + o(k) (the 

Fourier transforms of vr o) appear in the vertices, then 
ask~ 0 the "polarization operator" II(k) ~ k2 ; if p 0 

is introduced according to the equation s 

lim Il(k)/k' = (J- p,')/T, 

then ask ~ 0 the Fourier transform of the total corre
lation function (<Pk<P-k) ~ (T/p~)k-2 ; from here follow 
(11) and (13) with a = T/21Tp~. For example, for the 
two-point correlation function one will have 

(exp {i(ip,- ip,.)}) ~ C(T) lr- r'j-a(T) ( jr- r'l ~a), (21) 

Let us consider one more quantity .:l.T(A)-the change of 
the free energy due to the influence of an external vec
tor potential Ar 0 (the corresponding Hamiltonian is ob
tained from (1) by making the substituting Vr 0 ~ Vr 0 
+ Ar,ol· Let Ar,O = (A(r) · 0), where A(r) = ~Ai(r)} 'is 
a slowly varying vector function of the coordinates. The 
diagram technique described above gives 

(22) 

where Ps = p~ and (Akli is the Fourier transform of the 
function Ai(r). 

One can clarify the role of the corrections associa
ted with the classes 'YJ "'0o (i.e., with the vortices) in 
the example of a classical system (with the same Hamil
tonian (1)). For this system one is able to construct a 
systematic low-temperature expansion, which the author 
proposes to describe in a separate article. We shall, 
however, discuss some of the conclusions here. (It is 
clear that the behavior of the correlation functions at 
large distances is identical in the quantum and in the 
classical systems; we prove this below in Sec. 2 (see 
Eq. (34)). It turns out that the vortices are equivalent to 
the particles of a certain lattice gas (on the dual lattice, 
whose sites r * lie at the centers of the "faces" of the 
initial lattice). The states of the gas are specified by 
distributions of the "charges" Kr* (the vortex circula
tions), where each Kr* independently takes integer 
values 0, ± 1, ± 2, ... , and the energies of the states are 
given by 

E (, .. , Kr, •.. . ) = 4:rt2p,0 ~~ K,,K,,·G,,,,' 

(the sum goes over all pairs r *, r~), where Gr*r~ 
~ 27T-1 ln (R/ lr*- r~ I) for lr*- r~ I »a (R denotes the 
size of the lattice). One can prove that in such a gas at 
low temperatures all of the particles are bound into 
neutral "quasi- molecules" (i.e., groups of vortices 
having a total circulation equal to zero), and the decay 
of the latter is related to a certain phase transition (the 
situation does not resemble a gas with a Coulomb inter
action ~ lr*- r~l-\ where there is a non-vanishing con
centration of ions at any arbitrary temperature!). Upon 
taking the vortices into account we again have (21) and 
(22), where , 

1 ( T -) a=- -+4:rr'd' 
2:rt p,' 

4:rt'd' 
p,=p,'(1--T r.o) (23) 

(the mean-square "dipole moment of the molecules" is 
denoted by CP). The phase transition occurs at a tem
perature Tc such that 
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(24) 

In addition, it is evident in Eq. (21) that C(T) - 0 as 
T- Tc. 

The author ofUJ justified the necessity of a phase 
transition by the fact that at low temperatures the sus
ceptibility x = (8 ( m)loh)h =O is infinite (the average 
moment ( m) in the field h is given by formula ( 40), see 
below). The transition to the usual dependence ( m) ~ h 
occurs when a = 2. Although the value of a ( T cl is un
known, by taking the interaction with the external field 
in the form h cos mrp r> we obtain a similar transition 
when a = 21m2 (where m is an arbitrary integer). 
These transitions pertain to the system with h "'0, but 
not to the initial system with h = 0, and an infinite sus
ceptibility cannot be regarded as an indication of a 
separate phase (see footnote6 > below). 

The true nature of the low-temperature phase (as the 
author now understands it) consists in the fact that a 
two-dimensional Bose liquid is superfluid; the corre
sponding property can also be formulated in terms of 
magnetic substances. In this connection the quantity p s 
from (22) corresponds to the density of the superfluid 
component in the two-fluid hydrodynamics of the Bose 
liquid or the "coefficient of rigidity" for magnetic sub
stances, which was introduced in( 9 J. 

Formula (22) and the correlation function of the cur
rents corresponding to it, 

<i•. oi-•. ,.) = T(p- p,) (M') + Tp,(kb) (kl\') I k' (25) 

(jk 0 denotes the Fourier transform of the current 
, I 2 I 2 jr ~ =-oH avr 0 ; p =(a H (avr 0) )), express the fact 

,u ' ' 
that, as has been noted by many authors (seeC5 ' 10 ' 11 J), a 
"rigidity" with respect to transverse influences is the 
characteristic property of the superfluid state. Another 
characteristic property consists in the presence of 
spatially- inhomogeneous metastable states, described 
by an additional variable vs(r) ("states associated with 
the superfluid current") 6 >. Within the framework of the 
approximation which only takes the class (Do into con
sideration, these states are obtained from the states (7) 
by making the transformation <Pr- <Pr + 'CPr (a displace
ment of the coordinates of the oscillators), where 
'CPr'- q;r = (vs(r) · 0). The energy density t and the en
tropy density s for the states with v s "'0 are given by 

e =eo + 1l2p,v,', s (e) =so ( e- 1l2p,v,') f!!f So-· 'l,p,v,' IT. (26) 

From (26) one can infer two-fluid hydrodynamics and 
the corresponding theory for magnetic substances 
(seeC11 >9J), also including Eq. (25), in exactly the same 
way as for three-dimensional systems. Thus, as illus
trated by the two-dimensional systems under considera
tion, it is clear that, contrary to common opinion, a 
spontaneous violation of the phase symmetry is not 

6) According to Landau and Lifshitz (see [ 12], Sec. 81) a system has 
many phases if it has spatially-inhomogeneous equilibrium states. The 
critical point is best defined as the point at which a system of many 
phases becomes a single-phase system. This definition can be made 
completely rigorous by using the concept of "Gibbs states of infinite 
systems" which has been recently introduced (see [ 13 ] ). 

necessary for the existence of superfluidity. 7 > 

2. ISOTROPIC SYSTEMS OF QUANTUM SPINS. 
HEISENBERG FERROMAGNETS 

Let us show that the problem of calculating the long
range correlations for isotropic systems of quantum 
spins reduces to the corresponding problem for class
ical spins, which was solved inC1J (for low tempera
tures). 

First let us consider a single spin. As is well known, 
the components §(a) (a = x, y, z) are the generators of 
the representations .ct(u) of the group SU2 (.0(u) is the 
matrix which corresponds in a given representation to 
the element u of the rotation group). One can parame
trize the elements of the group su2, which is the univer
sal covering group of the rotations, in the same way as 
the elements of the rotation group,- that is, by the Euler 
angles ..J, q;>, 1/J, only the period with respect to the angle 
1/J will not be 2JT, but 41T. If the irreducible representa
tion corresponding to total spin S is considered, then the 
well-known orthogonality relations ( seeC14J) hold for the 
elements of the 2S +!-dimensional matrices of the 
representation D(u); these relations will be used below 
in the following form (which is equivalent to the usual 
formulation): For any operator F = FMM' acting on the 
2S +!-dimensional space of the representation, and for 
any normalized vector I·) of this space, the following 
identity is satisfied: 

+• 
SpF= L,FMM=(2S+ 1) J <·!.®+(u)Fi>(u) l·)(du), (27) 

where the integral is taken over the group su2, and (du) 
= sin ..J d<pdi/Jil61T2 is the volume element on the group. 

Now let us consider a lattice in which a spin sr is 
associated with each lattice site r (all of the spins have 
the same magnitude, (sr)2 = S(S + 1)). We associate its 
own independent SU2-transforma~ion ur with each site r, 
and the corresponding operator ']) (u ) , which operates 
only on the variables pertaining t<f th~ spin Sr. Then 
each lattice function u = {..J, <p, 1/J} (i.e., the triplet of 
functions "r' <Pr, 1/Jr) can be assigned an operator .0{U} 
= TI:.or(ur) (the product runs over all sites r) which 
transforms the states of the entire system. This trans
formation can be regarded as the same as a transforma
tion of operators whereby each operator 
F = F( ... , sr, ... ) , which acts on the space of states of 
the system, corresponds to a transformed operator 
given by 

F {u.} = 1:;+ {u.} Ff/J {u.} = F ( ... , s, (u,), .. . ). (28) 

If the operator F is expressed in terms of sr, then the 
transformed operator (28) is obtained from this expres-

sion by replacing each of the 8( a) by 
r 

(29) 

7>one can describe the properties of the "two-dimensional crystals" 
considered in [ 1 ] in a similar fashion. The components of the defor
mation tensor are the additional thermodynamical variables which 
serve to describe the metastable states. Transverse waves exist in the 
system, so that this model describes a solid, notwithstanding the 
absence of long-range crystalline order. 
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where Ras(u) = Ras(J, cp, 1/J) is the matrix for a finite 
rotation characterized by the Euler angles J, cp, and If 
(here and in what follows, summation over repeated 
Greek subscripts a, 8, ... = x, y, z is to be understood). 

We obtain the following result for the trace of an 
arbitrary operator F, acting on the states of the entire 
system (by taking successively the traces with respect 
to the variables pertaining to each site, and each time 
applying Eq. (27)): 

Sp F = (2S + 1)N S ... S (0 J F {u.} J 0) IJ (du,). (30) 

Here N denotes the total number of lattice sites, F{ u} 
is the operator given by Eq. (28), and 10) is any arbi
trary normalized vector from the space of states of the 
lattice. Our discussion will be based on the utilization 
of the identity (30). 

Let us consider a two-dimensional Heisenberg ferro
magnet. Let 

1 ~ ~AA 
H = 2 1 ~ ~s,s,. 

lr-r'l=a 

(31) 

denote the Hamiltonian of the system; we shall utilize 
the identity (30); having taken as 10) the ground state of 
(31) such that z\Z) JO) = + ~.JO) for all r. For the average 
of an arbitrary ~perator A we then obtain 

(A)= (2S + 1)N S. , . S ( 0 I A {u.} exp ( [f -: {u.} ) I 0) ry (du,), 

(32) 

where g·denotes the free energy, determined from the 
requirement ( 1) = 1. The integrand in Eq. (32) actually 
does not depend on the angles 1/Jr· In fact, from the 
identity 

!t> (tt, <p, "') = !t) ( t}, q>, 0) exp {i'll's<•>} 

it is clear that the states 0{u}JO) depend on 1/Jr only 
through the factors exp{ii/JrS}, which are cancelled in 
(32) by the conjugate factors coming from (Oio/{u}. 
Therefore, in Eq. (32) one can omit the integrations 
over dl/!r and by ur understand {Jr, 1/Jr, 0}, which sim
plifies the calculations. 

Now let us introduce the functional A .1' { u} defined by 
the equation 

( 0 I exp (- ~ fi (u.}) I 0) = exp (- ~) exp (- ~ !J.[f {u.}) (33) 

(Eo is the energy of the ground state). Furthermore, if 
'Ye calculate the average of a product of local operators 
As pertaining to widely separated points rs (such that 
Irs- rs' I »a) is calculated, then according to the prin
ciple of the decay of correlations (the ergodic property) 
we have in the present case (for the state 10)) 

( 0 I (]J A,(u,.)) exp (-; H{u.}) lo) 

a.: (II (OIA,(u,,) IO>) exp(-E0/T)exp (- ~ M"{u}). (34) 

Substituting this expression into ( 32), we see that the 
quantum- mechanical average of the product of local 
operators As, pertaining to widely separated points rs, 
coincides with the average over the equivalent classical 
system, in which the configurations are described by 

functions ur = { Jr, cp r• 0}, the energy of the configura
tions is given by the functional A.'T{u}, and the corre
spondence between physical quantities is realized ac
cording to the following rule: The quantum-mechanical 
quantity As is associated with the classical quantity 

.st. (tt,,, cp.,) = <O lA. (tt,,, <~'• •• o) 1 o>. 
In particluar, here the components s~a J of the spin are 

related to the classical quantities sn(a), where n is a 
r r 

unit vector having the direction "r• 'Pr- (n/2) in the 
spherical coordinate system: 

S.-+ Sn, = S {sin t}, sin <p,; -sin tt, cos q;,; cos tt,}. ( 3 5) 

In order to use the results of the investigation of the 
classical system carried out in Sec. 2 of articlEPJ, it is 
only necessary to determine the expression for the 
equivalent energy A.7{u}. In this connection it is very 
important that the entire investigation inC1J was only 
based on the expression for the energy of slowly varying 
configurations, that is, configurations in which the dif
ferences dour = ur +O - ur are sufficiently small for 
161 =a. 

One can find the expression for the equivalent energy 
of slowly varying configurations correct to within terms 
of second order in ctour by using the corresponding ex
pansion of the transformed Hamiltonian: 

H{u.} = ll + Hr{u,, d6u.} +If2 {u,, d6u.} + o((d6u.)'), (36) 

where H is the initial Hamiltonian (31), :HI{ ... } and 
H2{ ... } are the terms of first and second order in dour 
and o( ... ) are the terms of higher orders. Actually 
H{u} is obtained from (31) by making the substitution 
sr · Sr' - sr(ur) · Sr'(Ur') for each pair of neighboring 
sites r, r' = r + 6. The term of zero order in the expan
sion of sr(ur)sr+6(ur+O) in powers of dour is then 
equal to srsr +c5, because the scalar product does not 
change upon an identical rotation of both spins. Thus, 
the term of zero order in (36) coincides with the initial 
Hamiltonian (31) (which is simply a consequence of the 
invariance of H with respect to the simultaneous rota
tion of all the spins through identical angles). One can 
obtain explicit expressions for the terms of first and 
second order with respect to d6ur in Eq. (36) by using 
formula (29) and by calculating the expansion of 
Ray(u)Ri3Y (u + du) in powers of du based on the well
known expressions for RQI8(u) in terms of the Euler 

angles (see[14J). We shall not present these calculations 
here, and we shall not even write down the final expres
sions for HI{ ... } and H2 { ... }, limiting our attention to 
only a description of the method used to obtain these 
results. 

In virtue of (36) one can use perturbation theory to 
calculate the values of the functional A .T{u} for slowly 
varying configurations, regarding the first term on the 
right hand side of (36) as the major term and treating 
the terms H1 and H2 as perturbations. Thus, we arrive 
at an expansion of A.'T{u} in powers of the differences 
dour, where the first-order term vanishes and the 
second-order term is given by 

1/r 'I'' 

&2~{u.} = (OJH,IO>- ~ J d·t' J d"t(OIH,e-'<H-B•>H.jO). (37) 
~ 0 0 

The second term on the right-hand side of Eq. (37) can 
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be represented in the form of a summation over inter
mediate states, where only states corresponding to 
single spin waves with quasimomenta k give any contri
bution. The first term can also be represented in the 
form of a sum over k. Comparing these sums and taking 
into consideration that, as follows fromC1J, only wave
lengths in the region ln ( Jk Ja) :;:_ - 0(1IT) are important, 
one can see that the second term from (37) is negligible 
in this region in comparison with the first term, so that 
b.2'Y{u.} is given simply by the average value 
(OJH2{u., c~ou.} JO). Evaluating this average value with 
the aid of the explicit expression for H2{u., c~ou.} (which 
is not written down above), and replacing doJr and 
d0cpr by (o · V)Jr and (o · V)cpr, and also replacing the 
sum over r by an integral, we obtain the following result 
for the energy of the slowly changing configurations 

1\,.r{u.} ~ ';,JS' J (dr) {(V-&,)' +(Vcp,)'sin'-&,}. (38) 

This expression coincides with the corresponding ex
pression for the energy of the slowly varying classical 
configurations (seeC1J, formula (38)), on which the con
clusions reached inC1J were based. Therefore, one can 
immediately apply these conclusions to the present 
case. In particular, for the asymptotic form of the pair 
correlation function we obtain (taking (35) into consider
ation): 

(s,s,.)~S'J(r-r')/r,J-• (Jr-r'J>a), (39) 

and for the specific magnetic moment in a weak external 
field, h « J, we obtain 

(m) = (S<'>) = S(ChS I J)o!<•-•> + ... , (40) 

where C ~ a2lr~ is a certain constant, and in the present 
case a = TlrrJ. The magnitude of the cutoff parameter r0 
and the constant C of Eq. (40) can be found from the 
correspondence with the expressions given by the theory 
of spin waves (the regions of applicability of Eqs. (39) 
and (40) and the theory of spin waves overlap for distan
ces a ln ( Jr- r' II r 0) « 1 and for fields h ~ T), In this 
connection, for the cutoff parameter r0 we obtain r0 I a 
= (112) v'JS/T. 

Other isotropic spin systems can be treated in 
analogous fashion, but since in the general case the 
exact ground state and the low-lying excited states are 
unknown, the constant appearing in front of (38) cannot 
be explicitly expressed in terms of the parameters of 
the initial Hamiltonian, and must be treated as a 
phenomenological parameter. 

In conclusion I wish to thank A. I. Larkin, V. L. 
Pokrovski1, and Yu. N. Ovchinnikov for a discussion of 
the questions considered in Sec. 1. V, N, Popov has 
courteously informed me that he has arrived at similar 

results (in regard to the superfluidity of a two-dimen
sional Bose liquid and the power-law nature of the 
asymptotic behavior), by starting from the formalism[ 15J 
developed by him. 
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