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Editorial Foreword

Non-Euclidean Geometry in Modern Physics and Mathematics is a series
of biennial conferences, initiated by the Bogolyubov Institute for Theoretical
Physics of the National Academy of Science Ukraine. Its shorthand subtitle is
BGL, from the abbreviation of the names (in alphabetic order) - Bolyai, Gauss,
Lobachevskij - of the founders of the new geometry.

The first conference of this series was held in Uzhgorod (Ukraine) in 1997,
the second one - in Nyiregyha/za (Hungary), the third was scheduled such as to
match the 200-th anniversary of Jdnos Bolyai, and was held in Targu-Mures
(Marosvafsa{rhely) (Rumania) - hometown of the Bolyai family. The latest one,
BGL-4 (see: http://www.unn.ru/bgl4 ), was held between September 7 and 11,
2004 in Nizhny Novgorod - hometown of Nikolai Ivanovich Lobachevsky.

The present Proceedings contain contributions to BGL-4 that arrived
before the dead-line, November 15. To speed up the publication, we minimized
the editorial interference to the authors' originals.

The subject of the conference and the contributions, traditionally, can be
grouped in three categories: history of the non-Euclidean geometry, its
mathematical and physical applications. We thank the participants for their
contributions.

We acknowledge the help and support of the institutions and people
involved in the organization of BGL-4, namely the Nizhny Novgorod
Lobachevsky University, the Bogolyubov Institute for Theoretical Physics,
Hungarian Academy of Sciences and, in particular, permanent member of our
Organizing Committee Academician Istvan Lovas. We gratefully acknowledge
the support by the Russian Foundation of Fundamental Researches (grant 04-01-
10107-r) and the firm “TSS” (President V.B. Kosmachev).

The next conference, BGL-5, will be held in Minsk, Byelorussia in 2006.
Proposals, applications etc. should be sent to the principle organizer of BGL-5
Professor Yurii Andreevich Kurochkin:

yukuroch@dragon.bas-net.by
and/or to jenk@bitp.kiev.ua , polot@uic.nnov.ru.
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of the IV International Conference
'""Non-Euclidean Geometry in Modern Physics
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10:00 - 10:30 Opening of the Conference (R.G. Strongin, Rector of the
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Hungary; L.L. Jenkovszky, Kiev, Ukraine)

10:30-11:10 H. Terazawa (Tok}o, Japan). Special Non-Constancy in

Pregeometry

11:15-11:55 P. T.Nagy (Debrecen, Hungary). Riemannian Heisenberg
Manifolds.

12:30 - 13:10 G.M. Polotovskiy (Nizhny Novgorod, Russia). How did
Lobachevsky's biography study.

15:00 — 15:40 N.I. Zhukova (Nizhny Novgorod, Russia). Basic
automorphisms of Cartan foliations and Cartan orbifolds.

15:45 — 16:15 Yu.A. Kurochkin (Minsk, Belarus). Some pecularities of
the scattering problem in the Lobachevsky space.

16:15 - 16:45 V. Magas (Kiev, Ukraine). Continuation of the dual
amplitude with Mandelstam analyticity off mass shell.

17:15-17:35 A.V. Bagaev, N.I. Zhukova (Nizhny Novgorod, Russia).
Influence of curvature onto structure and the isometry
group of Riemannian orbifolds.

17:35 - 17:55 O.N. Pakhareva (Nizhny Novgorod, Russia). Lax
representation of nonlinear sigma-models with reducible
metrics.

17:55 -18:15 L.L. Jenkovszky (Kiev, Ukraine). Euclidean parallels in
perspective
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09:00 - 09:40 D.E. Burlankov (Nizhny Novgorod, Russia). The curved
space dynamics in the theory of gravity.

09:45-10:25 Yu.A. Sitenko (Kiev, Ukraine). Non-Euclidean geometry in
quantum field theory.

10:30 -11:00 N.Z.Iorgov (Kiev, Ukraine). Quantum Toda chain with
boundary interaction.

11:30-12:00 V.V. Koryukin (Yoshkar-Ola, Russia). The differential
geometry and the condensed description of Universe.

12:00 — 12:30 V.V. Kocharovskiy, V. Yu. Martyanov (Nizhny
Novgorod, Russia). Wave-mixing schemes revealing QED
vacuum nonlinearity.

September, 9, Thursday

09:00 - 09:40 Yu.G. Rudoy, A.D.Sukhanov (Moscow, Russia).
Geometrical ideas in statistical thermodynamics.

09:45 — 10:25 V.Z. Grines (Nizhny Novgorod, Russia). On interrelation
between properties of dynamical systems and foliations on
surfaces of negative curvature and geodesic laminations.

10:30 — 11:10 A.V. Borisov (Izhevsk, Russia). The 2- and 3-bodies
problem in spaces of constant curvature.

11:40 - 12:10 L.S. Mamaev (Izhevsk, Russia). Restricted 2-bodies
problem in spaces of constant curvature.

12:10 - 12:30  A. Sabry (Cairo, Egypt). Some investigations on the
quadrupole radiation of a double star.

12:30- 12:50 O.S. Germanov (Nizhny Novgorod, Russia). The first
integrals of geodesics.

12:50 - 13:20  P. Akhmetiev (Moscow, Russia). An integral formula for
a higher analog of the linking number of divergent free
vector fields.




15:00 — 15:40 L.M. Lerman (Nizhny Novgorod, Russia). Symplectic
geometry problems inspired by Hamiltonian dynamics.

15:45-16:15 V.D. Gershun (Kharkov, Ukraine). Nonlocal brackets and
integrable models.

16:15 — 16:35 Z.Kdsa (Cluj-Napoca, Romania). The cult of Janos Bolyai
in Romania.

17:05-17:35 T. Barbeot (France). Globally hyperbolic spacetimes with
constant curvature.

17:35—17:55 R. Lovas (Debrecen, Hungary). Affine and projective vector
fields on spray manifolds.

17:55-18:15 R. Olah-Gal (Cluj, Romania). Lobachevsky in Janos
Bolyai manuscript, Geodesics on pseudosphere.

September, 10, Friday

09:00 — 09:40 M. I. Kuznetsov (Nizhny Novgorod, Russia). Geometrical
structures in the theory of simple modular Lie algebras.

09:45 - 10:25 G.M. Polotovskiy (Nizhny Novgorod, Russia). What do we
know about the topology of plane real algebraic curves?

10:30 — 11:00 N.G. Fadeev (Dubna, Russia). Physics beyond
Lobachevskiy’s parallel lines.

11:00 - 11:20 D.E.Burlankov (Nizhny Novgorod, Russia). Inertial
systems in the Lobachevskiy Space.

11:45-12:25 E.I. Yakovlev (Nizhny Novgorod, Russia). Some
geometrical and topological methods in dynamics of
systems with gyroscopic forces.

12:30 — 13:00 A.V. Kukushkin (Nizhny Novgorod, Russia). Group theory
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USING THE LOBACHEVSKY PLANE TO STUDY
SURFACE FLOWS, FOLIATIONS AND 2-WEBS

S.Kh.Aranson, V.Z.Grines, E.V.Zhuzhoma

San Diego, USA,
Agriculture Academy of Nizhny Novgorod,
Nizhny Novgorod State Technical University

The paper is devoted to exposition of results connected with using Lobachevsky plane to
study flows, foliations and 2-webs on closed oriented surface of genus p > 1. In particular
we describe a complete classification of such objects in terms of asymptotic directions of
curves on the umiversal covering of surface (which is Lobachevsky plain) and in terms of

special geodesic laminations — frameworks.

1. Introduction

The idea to use the Lobachevsky geometry rises to classical works of G. Hedlund
[28] and M. Morse [34] who studied geodesics on surfaces of negative curvature.
J. Nilsen [35], [36] applied the Lobachevsky plane and its absolute to give the
homotopic classification of homeomorphisms of compact surfaces with negative Euler
characteristic. The using of the Lobachevsky plane is based on the fact that this
plane is a universal covering space for surfaces of negative Euler characteristic. This
surfaces endowed with the metric induced by the metric of the Lobachevsky plane
and covering maps is called hyperbolic.

To be precise, a hyperbolic surface M? = M is a Riemann surface whose universal
covering space is the Lobachevsky plane, which we’ll consider as the unit disk A =
{z € C : |z] < 1} endowed with the Poincare metric of the constant curvature
-1. The circle S = A = (|z| = 1) is called a circle at infinity or absolute. To
simplify matters, below we’ll consider a closed orientable hyperbolic surface M? . It is
known that given such M?, there exists a Fuchsian group I' of orientation-preserving
isometries acting freely on A such that A/I’ = M?. The natural projection  :
A — A/T is a universal covering map which induces a Riemann structure on M?2.
Geodesics of A are the circular arcs orthogonal to S, . We suppose that any geodesic
is complete and endpoints of geodesics belong to Sy -

The idea to study two-dimensional dynamical systems and surface foliations with
the use of nonlocal asymptotic properties of orbits and leaves is due to A. Weil and
D.V. Anosov (see the historical comments in [1] - [6], [5] [14], [37]). In the 1960s,
D.V. Anosov put forth the concept that the topological key to the n-onlocal theory
of dynamical systems and foliations on M? is the study of the arrangement of
“infinite" curves without self-intersections (i.e. simple) on M? and of the asymptotic
behavior of lifts of these curves to the universal covering plane A with the use of
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the absolute S, of this plane. Especially this approaching to study two-dimensional
dynamical systems turned up effective for dynamical systems with nontrivially
recurrent (in sense, chaotic) motions and nontrivially recurrent invariant manifolds
(the most known of such dynamical systems are pseudo-Anosov homeomorphisms,
and A -diffeomorphisms with nontrivial attrctors and repellers), and foliations with
nontrivially recurrent leaves, see 8] - [12], [23] - [27]. Such approach sometimes is
called the Anosov-Weil’s theory. The goal of this paper is a review of some aspects of
this theory, which generally considers asymptotic properties of simple curves lifted
to an universal covering, and their “deviation"from the lines of constant geodesic
curvature that have the same asymptotic direction.

It becomes clear that pure geometric methods allow to obtain a significant
“topological"information about surface dynamical systems with nontrivially recurrent
invariant manifolds, and foliations (in particular, about flows) with nontrivially
recurrent leaves (resp., trajectories) on the hyperbolic surfaces. This information is
hidden in the special geodesic laminations, so-called geodesic frameworks, built upon
such dynamical systems and foliations. Geodesics constituting these laminations
define the asymptotic directions which the invariant manifolds or leaves of a given
dynamical system or foliation can have. It turns out that geometric properties of such
a lamination encode the information on a topological structure of surface dynamical
system and foliation.

Let us give a formal definition of asymptotic direction for a curve which, on
the side, explains how geodesics appear. Let [ = {{(¢),t > 0} be a semi-infinite
continuous curve without self-intersections on M , and let [ be its lifting to A . We
assume that | endowed with an injective parametrization [0;0c) — 1, t — [(t).
Suppose that { tends to precisely one point ¢ of the absolute Soc as t — oc in
the Euclidean metric on the closed disk A U S, . In this case, we shall say that
the curve | has an asymptotic direction determined by the point ¢ (we also shall
sometimes say that ! has an asymptotic direction), and the point o is reached by
the curve . Now let | = {I(¢t),t € R} be an infinite continuous curve without self-
intersections on M , and let [ be its lifting to A . Here we assume that | endowed
with an injective parametrization (—oc;+oc) — I, t — I(t). Suppose that [ has
the asymptotic directions determined by the points ¢+ and ¢~ as t — +oco and
t — —oo respectively. If o # ¢~ there exists a geodesic G(I) with the ideal
endpoints ¢¥, ¢~ oriented from o~ to oF. This geodesic g(l) is said to be
coasymptotic for 1. The geodesic 7(g(1)) = g(1) is said to be coasymptotic for 1. It
can be shown that g(l) has no transversal self-intersections. Hence the topological
closure of ¢(l) is a geodesic lamination [21].

Aranson and Grines [9] and Markley [31] was first who fruitfully applied
properties of the Lobachevsky geometry to prove that a nontrivially recurrent
trajectory ! of any flow on M? has a coasymptotic geodesic. As a consequence, for
such flow one can construct a special geodesic lamination. This geodesic lamination
contains the most part of information about a global topological structure of the
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quasiminimal set clos [. Levitt [29] used special geodesic laminations to get the
Whitehead classification of surface foliations.

The main goal of this paper is to represent many old results on surface foliations
and flows from a new point of view based on special geodesic laminations, so-called
geodesic frameworks. The most results we revisit here belong to the authors, and
almost all of them are reformulated in a form different from original one. We suggest
that this representation from the common view point of purely geometrical nature
opens new investigations in the theory of surface foliations and flows.

Research partially supported by CNRS (France) and RFFI-02-01-00098 (Russia).
Most of topics of this survey have been discussed with D. V. Anosov, V. Kaimanovich,
F. Laudenbach, V. Medvedev and A. Zorich. It is our great pleasure to thank them
for their efficient help and assistance.

2. Main definitions

Rational and irrational points. As we mentioned above, A/T' = M? where
I" is a Fuchsian group of orientation-preserving isometries acting freely on A. The
group I' is isomorphic to the fundamental group of A72. Every isometry of I' can
be extended to a homeomorphism of the closed disk AU S, . Since M? is a closed
orientable surface, we have that everyisometry v € I' is a hyperbolic transformation
having two fixed points 7,7~ € So . A point o € Sy is called rational if o = v+
for some v €I', v % id. Any point of the set

Soo - U {7+:’\/‘_}

vyel

is called srrational.

Geodesic laminations. Recall that a geodesic lamination on a surface M is
a foliation of a closed subset of M byv geodesics with no self-intersections. Another
words, a geodesic lamination is a nonempty collection of mutually disjoint simple
geodesics the union of whose is a closed subset of M . Denote by £ the set of geodesic
laminations of M . Any union of simple pairwise disjoint closed geodesics forms a
trivial geodesic lamination. Let us denote the family of trivial geodesic laminations
by Atriy - A lamination is said to be nontrivial if it consists of non-closed geodesics.
A lamination is minimal if it contains no proper sub-laminations. A lamination G
on M is said to be irreducible if any closed geodesic on M intersects G .

Let G be a geodesic lamination on M . Consider an orientation on the geodesics
from G. This orientation is said to be compatible if, for any geodesic | € G and
any point m € [, there exists a transversal segment ¥ through m endowed with
a normal orientation such that the intersection indices of all geodesics from G
(intersecting ¥ ) with ¥ are equal. A geodesic lamination is called orientable if
its geodesics admit a compatible orientation.
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We use A, (Apon) to denote the set of nontrivial minimal orientable
(respectively, non-orientable) geodesic laminations on M . The families A, and
Apon form the set

A=Ay Uhpon

of nontrivial minimal geodesic laminations on M. Every G &€ A consists of
nontrivially recurrent geodesics (see definition below) with irrational asymptotic
directions and any geodesic from G is dense in G .

We distinguish the subset A”" C A of irreducible geodesic laminations and call
every G € A"" irrational geodesic lamination.

Let G be a geodesic lamination on M . Clearly, the preimage 7~}(G) =G is a
geodesic lamination on A . Denote by G(00) C Sy the set of points of the absolute
reached by geodesics from the lamination G . In other words, G(oo) is the set of
ideal endpoints of all geodesics from G .

Let the quotient

GM = Homeo (M)/Homeog (M)

be generalized mapping class group, where Homeo (M) is the group of
homeomorphisms of M and Homeop (M) is the subgroup of homeomorphisms
homotopic to the identity. Tt is known that any 7 € GAM induces a one-to-one map
7*: L - L (see, for example, [20], [21]. Given A € L, the family

AGM = {T*(A) |T S GM}

is called an orbit of the geodesic lamination M.

Surface flows. Let ft be a flow on M meaning that ft : M x R — M
is a one-parameter group of homeomorphisms f* of M . Denote by I(m) =1 a
trajectory passing through a point m € M and by fiz(f?) a set of all fixed points
of ft (m is a fized point if [(m)=m. ’

Let w(a)(l) be an w(a)-limit set of . A trajectory is w(a) -recurrent if it is
contained in its w(a)-limit set. A trajectory [ is recurrent if it is both w- and
o -recurrent. A recurrent trajectory is nontrivial if it is neither a fixed point nor
a periodic trajectory. The topological closure of nontrivially recurrent trajectory is
called a guasiminimal set. Due to the classical Maier’s paper [30], any nontrivially
recurrent trajectory belonging to a quasiminimal set @ is dense in @ (see the
modern proof in [7] and some generalizations in [18]).

According to [22], a low g¢° is called highly transitive if every one-dimensional
trajectory of g* is dense in M . A highly transitive flow is irrational if it has no fake
saddles.

Surface foliations. By a foliation F with a set of singularities S on a surface
M we mean a decomposition of M —S into pairwise disjoint curves {, (without self-
intersections) locally homeomorphic to a family of parallel straight lines. Any curve
lo is called a leaf. Any point of S is called a singularity. Let [ be a nonclosed
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leaf of a foliation F'. Any point x € [-divides | into two semileaves, say T
and 1= . A semileaf [() is called nontrivially recurrent if its intrinsic topology does
not coincide with the induced topology of 10) from the manifold M . A leaf [ is
said to be nontrivially recurrent if both its semileaves are nontrivially recurrent.
The topological closure of a nontrivially recurrent semileaf is called a quasiminimal
set. The definitions of highly transitive and irrational foliations are similar to the
corresponding definitions for flows.

Geodesic frameworks of quasiminimal sets. We give the definition of a
geodesic framework for a quasiminimal set of a flow (for a foliation, the construction
is similar). Let @ be a quasiminimal set of a flow f* and let [ be a nontrivially
recurrent trajectory that is dense in (. Aranson and Grines [9] proved that the
both positive and negative semitrajectories of [ have asymptotic directions and
this directions are different (i.e. a(l) # w(l)). We give the sketch of proof of this
fundamental result to demonstrate the using of the Lobachevsky geometry. Since I
is a nontrivially recurrent trajectory, there exists a simple closed transversal C' such
that INC # 0 and [ intersects C infinitely many times. Then [ intersects the
sequence of curves Cy, ..., Cp, ... € 77 }(C) as t — +oo. Since the group T is
discontinuous, the properties of the Lobachevsky plane A imply that the topological
limit of the sequence C, is a unique point, say o, of the absolute S . Hence,
w(l) = o . Similarly, a(l) € Sy . Since C' is a transversal, a(l) # w(l).

Hence there is the coasymptotic geodesic g(I). One can prove that g(l) has no
self-intersections. Therefore, the iopological closure clos[g(l)] of g(l) is a geodesic
lamination [21]. This geodesic lamination is independent on the choice of . So the
following definition is well defined. The geodesic lamination

clos[g(l)] & G(Q)

is called a geodesic framework of @ . One can prove that G(Q) is a minimal oriented

geodesic lamination consisting of the nontrivially recurrent geodesics each being
dense in G(Q) .
aef

If f* is transitive, then @ = M . In this case, G(M) = G(f*) is called a
geodesic framework of f'. If f* is highly transitive, then G(Q) is an irrational
geodesic lamination.

In general, a geodesic framework of flow is a topological closure of union of all
coasymptotic geodesics for trajectories and genealized trajectories (union of saddle
fixed points and trajectories that tend to these fixed points). One can prove that a
geodesic framework is always a geodesic lamination.

2-web (Fl, Fg) on a surface. 2-web (Fy,Fy) on surface is a pair of
foliations Fy, F» such that they have a common singular set and are topologically
transversal at all non-singular points. The web theory is a classical area of geometry
and is mainly devoted to solving local problems. However, 2-webs also naturally
appear in the theory of dynamical systems on surfaces as pairs of stable and
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unstable foliations of pseudo-Anosov homeomorphisms. The topological equivalence
of these webs is clearly a necessary condition for topological conjugacy of these
diffeomorphisms and homeomorphisms. 2-web is irrational if it consists of a pair
of irrational foliations. Two 2-webs (Fy,F») and (Fj,Fj) on M are topologically
equivalent if there is a homeomorphism f : M — M which maps foliations Fj,
i=1,2, to the corresponding foliations F, .

3. Topological classification of irrational flows,
foliations and 2-webs

Recall that two flows fI and fI on a surface M are topologically equivalent
if there exists a homeomorphism h of M which sends the trajectories of f{
into the trajectories of fI. It is impossible to classify all surface flows. But if we
restrict ourselves to the special classes this problem is manageable. In general, the
classification assumes the following (independent) steps.

1. Find a constructive topological invariant which takes the same values on the
topologically equivalent flows.

2. Describe all topological invariants which are admissible, i.e. may be realized in
the chosen class of flows.

3. Find a standard representative in each equivalence class, i.e. given any
admissible invariant, one constructs a flow whose invariant is the admissible
one.

An invariant is called complete if it takes the same value if and only if two flows
are topologically equivalent. The ‘if’ part only gives a relative invariant of flow.

Invariants fall into three major classes: homology (or cohomology), homotopy
and combinatorial. Poincaré rotation number is most familiar, which carries an
interesting arithmetic information, being at the same time homology and homotopy
invariant. Combinatorial invariants (Peixoto and Conley-Lyapunov graphs) are good
for description of flows without nontrivially recurrent trajectories. Homology and
homotopy invariants (fundamental class of Katok and homotopy rotation class of
Aranson—Grines) are convenient for description of flows with nontrivially recurrent
trajectories. A homotopy invariant that is most related to the Riemann structure
of surface is a geodesic framework. In terms of the geodesic frameworks we can
reformulate the Aranson-Grines’s [9] classification of irrational flows as follows.

Teopema 3.1. Let f!, f1 be two irrational flows on a closed orientable
hyperbolic ~ surface M. Then ff, f4 are topologically equivalent wvia a
homeomorphism M — M homotopic to identity if and only if their geodesic
frameworks coincide, G(ff) = G(f3).
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Teopema 3.2. Let f' be an irrational flow on a closed orientable hyperbolic
surface M . Then its geodesic framework G(f%) is an irrational orientable geodesic
lamination, G(f) € Agr NAYT.

Teopema 3.3. Given any irrational orientable geodesic lamination G on a
closed orientable hyperbolic surface M | there is an irrational flow f* on M such

that G(f*) =G.

It follows from these theorems and Nielsen theory [35], [36] that an irrational
orientable geodesic framework is a complete invariant for irrational flows (up to the
action of the generalized mapping class group GM ). Thus an irrational orientable
geodesic framework is similar to the Poincare rotation number. Below, we’ll see that
this similarity keeps for perturbations of a flow.

Remark that the same results is true for closed non-orientable surfaces of genus
>4 [16].

The theorems that are similar to Theorems 3.1-3.3 take place for 1rrat10nal
foliations but one omits the orientability of geodesic framework.

Teopema 3.4. Let Fi1, Fo be two irrational foliations on a closed
orientable hyperbolic surface M. Then Fi, Fo are topologically equivalent via
a homeomorphism M — M homotopic to identity i and only if their geodesic
frameworks coincide, G(F1) = G(F2).

Teopema 3.5. Let F be an irrational foliation on a closed orientable hyperbolic
surface M . Then 1ts geodesic framework G(F) 1is an irrational geodesic lamination,
G(F) e AV

Teopema  3.6. Given any irrational geodesic lamination G on a closed
orientable hyperbolic surface M , there is an irrational foliation F on M such
that G(F) =G.

Thus, an orbit of irrational orientable geodesic framework is a complete invariant
for irrational foliations. Let us consider the Aranson-Grines [10] classification of
minimal non-trivial sets.

A minimal set of a flow is called non-trivial (ezceptional) if it is neither a fixed
point, nor a closed trajectory, nor the whole surface M . An exceptional minimal
set is nowhere dense and consists of continuum nontrivially recurrent trajectories,
each being dense in the minimal set. Moreover, an exceptional minimal set is locally
homeomorphic to the product of the Cantor set and a segment. T'wo minimal sets
N1, N of the flows f}, fé respectively are topologically equivalent if there exists a
homeomorphlsm 0 : M — M such that ¢(N7) = Ny and ¢ maps the trajectories
of N7 onto the trajectories of Ny .

Let N be an exceptional minimal set. A pair of trajectories Iy, {o C N is called
special if there exists a simply connected component 2 of A4\ N such that the
accessible boundary of €) equals {3 Ul .
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The most familiar flow with an exceptional minimal set is the Denjoy flow (first
constructed by Poincare [38]) on the torus 7. Such a flow must have special pairs.
Conversely, the existence of special pairs on a hyperbolic surface is artificial. Any
flow f! having an exceptional minimal set with special pairs on M can be mapped
by a blow-down operation onto the flow with no special pairs. So the first step to
classify exceptional minimal sets on M is a classification of this sets with no special
pairs.

Teopema 3.7. Let Ny, Ny be exceptional minimal sets with no special pairs of
flows fi, fi respectively on a closed orientable hyperbolic surface M . Then N1, No
are topologically equivalent via a homeomorphism M — M homotopic to identity if
and only if their geodesic frameworks coincide, G(N,) = G(N3) . Furthermore, the
geodesic framework G(N) of any ezceptional minimal set N (possibly,with special
pairs) 1s an orientable nontrivial geodesic lamination, G(N) € A,y , and vise versa,
given any geodesic lamination G € Aoy , there is a flow f' with ezxceptional minimal
set N with no special pairs such that G(N) = G . Moreover, let N be an ezceptional
minimal set of flow f' on M which has no special pairs of trajectories. Then there
is a flow f§ on M with the following properties:

1. The geodesic lamination G(N) is an ezceptional minimal set of f§;

2. Minimal sets N and G(N) are topologically equivalent via a homeomorphism
homotopic to the identity.

We see that the orbit of nontrivial minimal orientable geodesic lamination
(framework) is a complete invariant for an exceptional minimal set with no special
pairs of trajectories. One can prove that the orbit of nontrivial minimal orientable
geodesic lamination with marked geodesics is a complete invariant for an exceptional
minimal set in general case.

Let us show how a “web"of geodesic frameworks helps to classify so-called
irrational 2-webs [15].

Teopema 3.8. Two irrational 2-webs {(Fy,F5) and (F|,F3) on u closed
orientable hyperbolic surface M are topologically equivalent via a homeomorphism

M — M homotopic to identity if and only if their geodesic frameworks coincide,
G(I) =G(Fy), G(F) =G(F) .

Let (Fi,F3) be an irrational 2-web. Then the pair of geodesic frameworks
(G(F1),G(Fz)) has the following properties:

1) The sets M \G(F;), © = 1,2, have the same number of connected components
which equal to the number of {common) singularities of the foliations F; .

2) For each connected component D C M\ G(F}) there is exactly one connected
component Dy C M \G(F3) such that onecanlift Dy and Dg to geodesic polygons

d1, do with alternating vertices on the absolute.
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Two transversal irrational geodesic frameworks (G(F1),G(Fy)) are called
compatible if conditions 1) and 2) above are satisfied.

Teopema  3.9. For any irrational 2-web (F1,F;) on M the geodesic
frameworks (G(F1), G(Fy)) are transversal and form a compatible pair. Conversely,
any such pair uniquely (up to a homeomorphism homotopic to identity) determines
an irrational 2 -web on M .

4. Deviations

One of the important aspect of the Anosov-Weil theory is a deviation of foliation
from its geodesic framework. This aspect is especially nutty for irrational foliations
(including flows) and exceptional minimal sets because its geodesic frameworks are
complete invariants. Let us give definitions.

Suppose a semi-infinite continuous curve I = {I(t),t > 0} has the asymptotic
direction ¢ € Soo . Take one of the oriented geodesics, say g, with the same positive
direction o (i.e. o is one of the ideal endpoints of §). Such geodesic 7 is called a
representative of o . Let d(t) = d(I(t),g) be the Poincare distance between [(¢) and

g . If there is a constant k > 0 such that d(t) < k for all ¢ > 0, we’ll say that [
has a restricted deviation property. The following theorems was proved in [13], [14].

Teopema 4.1. Let f' be a flow with finitely many fired points on a closed

hyperbolic surface M . Let 1 be a semitrajectory of the covering flow —ft on A.
Suppose that | has an asymptotic direction. Then | has the restricted deviation

property.

Teopema 4.2. Let F' te a foliation on a closed hyperbolic surface M . Suppose
that all singularities of F are topological saddles. Let L be either a generalized or
ordinary leaf of the covering foliation F . Then L has an asymptotic direction and
the restricted deviation property.

After Theorems 4.1, 4.2, it is natural to study the "width"of surface flows and
foliations with respect to its geodesic frameworks. Put by definition,

dg = supepd(m,5(L)).

Teopema 4.3. Let F' be a foliation on a closed hyperbolic surface M . Suppose
that all singularities of F' are topological saddles; then

sup{af} < 00,

where L _ranges over the set of all generalized and ordinary leaves of the covering
foliation F' .
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This theorem means the uniformity of deviations of leaves from a geodesic
framework of foliation. The supremum above is called a deviation of a foliation from
its geodesic framework. As a consequence, we see that the deviatior of irrational
foliation from its geodesic framework is finite. It is the interesting problem to study
the influence of this deviation on dynamical properties of foliation. One can prove
that a deviation of exceptional minimal set from its geodesic framework is also finite.

Note that an analytic How can have a continuum set of fixed points. Nevertheless
the strong smoothness allows to prove the following result [19].

Teopema 4.4. If f' is an analytic flow on a closed hyperbolic orientable surface
M, then any semitrajectory of ft with an asymptotic direction has the restricted
deviation property.

For plane closed surfaces (the torus and Klein bottle), a similar theorem was
proved by Anosov [2], [4].

5. Dynamics and absolute

In this section we show how some properties of points of S., influence on
dynamical properties of flows and foliations. In particular, the first theorem says
that if a foliation (or flow) with a finite set of singularities has a semi-leaf with
an irrational asymptotic direction, then the {oliation has a quasiminimal set. More
exactly, denote by A(co) C So the set of points reached by the laminations from
A . Another words, A(oco) are points reached by geodesics from minimal nontrivial
geodesic laminations. It is known that every point of A(oo) is irrational.

Teopema 5.1. If a foliation F with a finitely many singularities on M has a
semi-leaf with an irrational direction, then F has a quasiminimal set (in particular,
F has a nontrivially recurrent leaves). Vise versa, if F has a quasiminimal set, then
its geodesic framework reaches a point from A(oo) .

Denote by A¥"(c0) C S the set of points reached by the irrational geodesic
laminations.

Teopema 5.2. Let F be a foliation with a finitely many singularities on M .
If its geodesic framework G(F) reaches a point from A(oo) — A"7(c0), then F is
not highly transitive and there is a nontrivially homotopic closed curve that is not
intersected by any nontrivially recurrent leaf. If G(F) reaches a point from A" (o),
then F has an irreducible quasiminimal set (i.e. any nontrivially homotopic closed
curve on M intersects this quasiminimal set). Moreover, F 1is either highly transitive
or can be obtained from a highly transitive foliation by a blow-up operation of at least
countable set of leaves and by the Whitehead operation. In the last case, when F 1is
not highly transitive, F has a unique nowhere dense quasiminimal set.
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Take an irrational geodesic framework G. Then 7 !(G) = G is a geodesic
lamination on the Lobachevsky plane A. A point o € G(c0) is a point of first kind
if there is only one geodesic of G with the endpoint o . Otherwise, o is called a point
of second kind. One can prove that this definition does not depend on the choosing
of G € A" . The following theorem shows that the type of asymptotic direction
reflects certain “dynamicalproperties of foliation [18].

Teopema 5.3. Let F be an irrational foliation on M and let IT be a positive
semi-leaf of F such that its lifting I” to A has the asymptotical direction o € S -
Then o € A¥"(c0) . Moreover,

1. If o is a point of first kind then 1T belongs to a mnontrivially recurrent leaf.

2. If o is a point of second kind then 1T belongs to an o -separatriz of some
saddle singularity of F .

Denote by Agr(c0) C So the set of points reached by orientable minimal
nontrivial laminations. One can reformulate above theorems for flows replacing A(oo)
by Aor(c0) and A (00) by AZY(co).

Put by definition, A" (00) N Apen(c0) = AYT (c0). The set AU (co) is dense
and has zero Lebesgue measure on So, . One holds the following sufficient condition

of the existence of continuum fixed points set for flows.

Teopema 5.4. Suppose a flow f' on M reaches a point from AYT (co). Then
ft has a continual set of fired points. Furthermore, f' has neither nontrivially
recurrent semitrajectories nor closed transversals nonhomotopic to zero.

6. Absolute and smoothness

In this section we show that some points of S, achieved by C*° flows can not
be achieved by analytic flows. Recall that ¢ € S is called a point achieved by f° if
there is a positive {or negative) semitrajectory 1% of ft such that the some covering
= for I* has the asymptotic direction defined by o .

Denote by Ay, Ax, Aan C S the sets of points achieved by all topological,
C®, and analytic flows respectively. Due to the remarkable result of Anosov 2],
Afp = A . Obviously, Agn C As . It follows from the following theorem that
Ago — Agn # 0 [19].

Teopema 6.1. There exists a continual set U(M) C Ao such that given any
C>® flow f' that reaches a point from U(M) , is not analytic. The set U(M) is
dense and has zero Lebesque measure on So -

One can prove that Apin(00) C Agn C Aprip(00) U Agr(00), and Apon(co) C
Ao — Agn -
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7. On continuity and collapse of geodesic frameworks

A complete topological invariant of irrational flows on closed hyperbolic orientable
surfaces is represented by a homotopy rotation class introduced in 1973 by S. Aranson
and V. Grines [9]. On the other hand such an invariant can be represented in terms of
a geodesic framework as well. In many cases such a representation is more convenient
because the set of geodesic laminations can be endowed with a structure of the
topological space. Thus far one can study the parametric families of irrational Hows
in terms of their geodesic laminations.

Recall that a geodesic framework is #rrational if it consists of nontrivially
recurrent geodesics. A geodesic framework is called rational if it does not contain
nontrivially recurrent geodesics. Note that a rational geodesic framework contains
closed geodesics. A rational geodesic framework is called strongly rationalif it consists
of only closed geodesics. Actually, a strongly rational geodesic framework is a trivial
geodesic lamination.

As we saw above, the geodesic framework of highly transitive flow is irrational
and consists of nontrivially recurrent geodesics each being dense in the geodesic
framework. This irrational geodesic framework is an analog of irrational rotation
number of torus flows having nontrivial recurrent trajectories. The results of this
section was obtained in collaboration with V. Medvedev [17].

Teopema 7.1. Let ft be a highly transitive C* -flow induced by a vector field
v e XY(M) on a closed orientable hyperbolic surface M . Suppose that all fized points
of ft are hyperbolic saddles. Let U be a neighborhood of the geodesic framework
G(f*) of ft. Then there is a neighborhood O*(v) of v in the space X'(M) of all
C* -vector fields such that any flow g* generated by w € O'(v) has a non-empty
geodesic framework G(g') belonging to U .

Theorem 7.1 is similar to the assertion that an irrational rotation number of
transitive torus flow depends continuously on perturbations of the flow in the space
of C!-flows.

According to Pugh’s ' Closing lemma, given a torus vector field v with
nontrivially recurrent trajectories, there is a vector field w arbitrary close to v
in the space X'(M) such that w has a periodic trajectory nonhomotopic to zero.
As a consequence, given a torus vector field with irrational Poincaré rotation number,
there is an arbitrary close vector field with rational rotation number. This property
is called an instability of rotation number. The following theorem means that an
irrational geodesic framework has the similar ‘instability’.

Teopema 7.2. Let f' be a highly transitive C* -flow induced by a vector field
v e XYM) on a closed orientable hyperbolic surface M . Suppose that all fived points
of ft are hyperbolic saddles. Then for any neighborhood U of the geodesic framework
G(f) and any neighborhood O(v) of v in the space X'(M) of C* -vector fields
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there is a flow g* generated by w € O*(v) such that the geodesic framework G(gt)
18 strongly rational and belongs to U .

As far as rational geodesic frameworks is concerned, there are examples both
of continuous and discontinuous dependence on parameters of a flow. It is obvious
that Morse-Smale flow has rational geodesic framework which does not change under
small bifurcations of the flow because any Morse-Smale flow is structurally stable.
Two theorems in below describe virtual scenario of the destruction of a rational
geodesic framework.

Teopema 7.3. On a closed hyperbolic orientable surface M there is a one-
parameter family of C* flows fﬁ which depends continuously on the parameter
w € [0;1] and such that the following conditions are satisfied:

1. For all p € [0;1) the flow f, has an irrational geodesic framework G(f},) # 0
which does not depend on the parameter . .

2. The flow f} has a rational geodesic framework G(f?) .
8. There is a neighborhood U of G(f}) such that G(fﬁ) ¢U as pe0;1).

Teopema 7.4. On a closed hyperbolic orientable surface M there is a one-
parameter family of C* -flows fﬁ which depends continuously on the parameter
p € [0;1] such that the following conditions are satisfied:

1. For all p € [0;1] the flow f) has a rational geodesic framework G(f) # 0
which does not depend on the parameter p as p € [0;1).

2. There is a neighborhood U of G(f}) such that G(fl)¢U as pel0;1).

Discontinuity of a rational geodesic framework is not surprising, since there are
flows on torus (and the Klein bottle) with rational rotation number which varies in
a "jump-like"fashion under arbitrarily small perturbations (32], [33].

We formulate now a theorem on the existence of one bifurcation of a geodesic
framework which is similar to the ’blue-sky catastrophe’ bifurcation of flow and
corresponds to a certain family of flows.

Teopema 7.5. On a closed hyperbolic orientable surface M there is a one-
parameter family of C*° flows f}i which depends continuvously on the parameter
i € [0;1) such that the following conditions are satisfied:

. For all p € [071) the ﬂow”fﬁ has a rational geodesic framework G(fﬁ) #0
consisting only of closed geodesics.

e

to

The lengths of closed geodesics in G( L) tend uniformly to infinity as p — 1.
- G(f1)=0.

Ce
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A bifurcation described in Theorem 7.5 we will call a collapse of geodesic
framework.

The following theorem gives some information on a set of fixed points of a flow
under which a collapse of the geodesic framework takes place.

Teopema 7.6. Let fﬁ be a one-parameter family of C* -flows which depends
continuously on the parameter p € [0;1] on a closed hyperbolic orientable surface
M . Assume that:

1. For all p € [0;1) the flow f;i has a rational geodesic framework G(fﬁ) # 0
consisting only of closed geodesics.

2. The lengths of closed geodesics in G(f;) tend uniformly to infinity as p — 1.
3. G(f1) =0.

Then the flow f! has infinitely many fized points.
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O BEICHIEM MHTETPAJIE CIIMPAJILHOCTHU

II.M. AxMeTbeB

MI'Y, 9xonomuueckut paxyavmem
Mocxsea, Poccus

IIpmBoumTCa OTpHIIATEIIFHOE pelieHwe IpobJiembl ApHoiba-HOBHKOBa O IIOCTPOEHHH BbIC-
1IEro aHaJIora MHTErpaJia CHHPaIbHOCTH OE3IMBEPreH THOI0 BEKTODHOIO ITOJIF ITPU HEKOTO-
PBIX ECTECTBEHHBIX JONOJHHUTEIbHBIX Ipeanosiozkennsx. JokasarenscrBo caenyer uaee C.C.
IlogxopeiToBa. IIpeamaraerca rumore3a O 110JI0KUTEILHOM peuleHnH nepedopMy ImpoBaHHON

pobsiemp! AprHoibaa-HoBukoBa g ciiyuaiiHbIx 6e31MBEPreHTHBIX BEKTOPHBIX ITOJIEL.

1. BsegeHue

B cepeaune mozampomuioro crosietua K.D. Taycc mpemioxuin uHTErpasibHYIO
bopmyty asst KoacbdUIMeHTa 3aTlelIe kst ABYX 3aMKHYThIX KPUBBIX B R° (cm., Ha-
npumep, [A-Kh]). B cepeaune npomwioro crosierus uarerpan [aycca 6bu1 060061meH u
orpefesieH KaK MHBAPHMAHT 0€3/IMBEPreHTHOr0 BEKTOPHOTO I10JIsi B TPEXMEPHOM IIPO-
CTpaHCTBe, ObICTPO YOBIBAIOIIETO HA OECKOHEYHOCTH, OTHOCUTEJILHO AeMCTBUA I'PYII-
116l quddeoMopdrU3MOB ¢ KOMIAKTHBIM HOCHUTEJIEM, COXpaHAIIMX obbeM. B aToMm
KOHTEKCTe MHTEerpaJl ['aycca 4acTo Ha3bIBAETCS WHTErPaJIoM ClimpaJibHocTH. Kak mo-
kazal B.J. Aprosbn (em. [A-Kh] ¢ mocienyromeit ccbikoit), mETErpas CuupaibHO-
CTH WMEET CMBIC)I aCHUMIITOTMYECKOTrO CpeldHEero KoaddHIeHTOB 3aleljieHs HHTe-
IPasbHBIX TPaeKTOpHi BeKTopHoro mois. B.M. Apaosba cdopmynuposai B [Arn]
rpobitembr 1984-12, 1990-12, kacatoryecs: 06061enuit mHTerpaJia laycca Ha cotywai
ACHMIITOTMYECKHX BBICHINX MHBapuaHTOB y3ioB u 3auemnnenuit. C.II. HoBukor 3a-
TPOHYJT 3TOT KPYT BOIIPOCOB B JIOKJaJe, CIeSTAHHOM B DauHOypre B ceHTsiope 1998 T.
ITpobsiemy 11ocTpoeHUs BBICIIErO aHaJiora MHTErpaJa l'aycca amnsa 6e3IuBepreHTHBIX
BEKTOPHBIX I10JIeil OyaeM HalbiBaTh 1podsemoii Aprosbaa-Hosukosa. IlocTpoenue
WHTErpaJjioB, 3a/1a0iux perieHue upodieMbr ApHosibia-HoBukosa, 03Hauao Obl, B
YACTHOCTH, IIOCTPOEHHE MEPBbIX MHTEIDAJIOB /I BEKTOPA 3aBHXPEHHOCTH CKOPOCTH
[10JI7 B YPABHEHUM NBHKEHUS WU€aJIbHOW HECXKUMAEMOil XXHIAKOCTH, a TaKKe 1iep-
BBIX HHTCIPAJIOB [IJid PEIeHUs] CUCTEMBbI YPaBHEHHI B KMHEMATHYECKOH MarHUTHOM
TUIPOTMHAMUKE.

2. OcHoBHag TeopeMa

O603HaunM gepe3 R 1POCTPAHCTBO Ge3HBEPIeHTHBIX BEKTOPHBIX mojei B RS ¢
KOMITAaKTHBIM HocuTeseM. (JIJist npuiioxkeHuit MHTepecHee pacCMaTpiBaTh NPOCTPaH-
CTBO TIOJIef, YOBIBAOMINK Ha GecKoHegHOCTH Kak T 2 .) O6o3HaumM uepes R C R
IO IIDOCTPAHCTBO, COCTOSAIIEE M3 TOJIeH, MOAENUPYOIUX KOMIIAKTHbIE 3allellIeHKst




26 Proceedings of BGL-4

C 33 MKHYTBIMI KOMIIOHEHTaMH (110 MOBOAY 110Ji€il, MO, IEMPYIONIUX 3aIleTLIeHIs, CM.
[B-F]). s moseit mogupocTpaHCTBa Rk poBitema Aproussga-HoBikosa pemre-
Ha nosozkuresbHo B [Akh]. (Crporo rosops, B 3T0# pafore paccMarpuBaercs Ciry-
Tajt 1ojieif, MOJeMPYIOINMX TPeXKOMIOHeHTHble 3anemierus (cMm. [B-F| no mosomy
onpeaesterust 6e3IUBEPIreHTHOTO (MArHUTHOTO) 1107151, MOAEJHPYIOIIEro 3alellsleHne),
a o0wIMii ciryvail 3aliellJIeHHs C ITPOU3BOTbHBIM IHCJIOM KOMIIOHEHT, PACKPaIIeHHbIX
B TPHU 1[BETA, [0 HACTOSAILEr0 BPEMEHH TI0JTHOCTBIO He U3y UeH. )

CdopmynupyeM ecrecTBeHHbIE (C TOYKM 3pEHUSA BbIYUCJIEHHI) YCJI0BMS, IPH KO-
TOPBIX MOZHO ObLJIO ObI ITOITBITATHCSA HCKATh HHTETPA. ThHOE BbIPAKEHHA 7IA BBICIIIETO
YHCIa, CIUPATIBHOCTH.

VYea0Buss KOHEYHOTO mopaaka. CKaocem, “wmo 6euecmeentiodnaintl Gyrk-
yuoran I : X — R umeem nopadox n, ecau 3mMom GUHKUUOHAA 6bLPAIICAETNCA 6
sude Kpam1020 (803 MONCHO, HECODCMBEHI020 NPU BHPOAHCILTHUL KOHPULY PALUU TO-
“eK) UHIMEZPAAG 0T 3HAMEHUA NOAUHOMUGALIHOT GYHEYUY dukcuposarnot cmenehy
K00 DOUHAIN 6EXTOPOE TOAA, MPUAONCEHHHT 6 PACCMATPUCLEMOM HAOODE TNOYEK, TO
noONPOCNPAHCMEY MPOCTNPAHCINGA YNOPACOHEHHBIT Ti ~TNOUEHHMT KOHPU2YDAUUL.

Sameuyanwne. VaTerpat CUMpasibHOCTH MMEET MOPSAO0K 2 B CMBICJIE [PEIbLIY-
TIET0 ONPENesieH s, TPWYEM HHTETPUPOBAHHE IPOUCXOMT 110 ITPOCTPAHCTBY ABYXTO-
YeUHBIX KOHGUIrypanui. B MarHuTHOH T, IpoguHaAMHKe YCI0BHA KOHEYHOTO HOPAIKa
ABJIAIOTCS] CCTECTBEHHBIMH, T.K. HAIIPAMYIO CBSI33Hbl C KOPPEISHHOHHBIM TEH30POM
MaI'HUTHBIX [10JIef.

OcuoBx0il pe3yibTaT BbIpaKaeT 3alpeT Ha 110JI0KHUTE/IbHOE DELIEHHE 1PODIeMbI
Apnoanaa-HosHKOBa TP HEKOTOPbIX ECTECTBEHITBIX AOIIOJHUTEIBHBIX IPEII0I0XKe-
auax. Jror pedysbrar 6611 orkphiT C.C. ITonKopbITOBBIM M Hallle /T0Ka3aTeJbCTBO
OCHOBAHO Ha €ro Hiee.

Teopema. JTycms dynwyuonen xonewinozo nopadxa I onpedeaer na modnpo-
cmpancmee REF C R u seasemca uMGAPUAHTMOM OMMOCUMEABHO COTPANAIOULUT
obsem npeobpaszosaniidl (Mm.e. ne USMEHAEMCA NPU NPEOOPAZ0BAHUAT NPOCTPAHCINEA,
COTPAHAOUUT 00BEM U HENOOBUICHHL 6 HEKOMOPOT OKPECTNIHOCTY DECKOHEYHOCTNU).
Lpednosoocum, kKpome mozo, “mo amom GYHKYUOHAA YO08AEMBOPAEM CACOYrIULEMY
JONOAHUMENBHOMY YCAOGUIO:

(*) I(Bp) = 0, ecau By modeaupyem mroz0KOMNOKENTIHOE T PUBUAADIOE 30~
uenaenue.

Tozda I{B) = 0, ecau sexmopnoe nose B modesupyen. 06YyTKOMNOHEHMHOE
sauen.aenue Yatimzeda. (PUCYHKH BEKTOPHBIX HOJICH, MOTENUDYIOUINX 2ATIENIEHIe
Vaitrxema, muetorca 8 [A-Kh], [H-M]).

Hoxazameanvcrneo. Pacemorpum n + 1, n > 2 BeKTOpHBbIX no.eil, 0603HaIaeMbIX
vuepe3 By, By, ..., By, Kax/i0e 13 KOTOPBIX MOJEJXPYET HEKOTOPOEe 3allerIeHre (Ci.
3aliersienue Ha puc.l ciiesa).

KoatrronenTs! 3ameniennsa nepecekaroTcst MexK; 1y coboii mo Habopy oTpe3koB. Bek-
TOpHbBIE 110775 B OKPECTHOCTH KOMIIOHEHT 3alleTIeHHs (3T OKPECTHOCTH IIPUHATO




II.M. AxmerpeB 27

Ha3bIBaTh TPYOKaMM) BbIOPAHBI TaK, YTO II0JI Ha OBIIKX IPAMOJIMHERHBIX yIaCTKaX
COOTBETCTBYIOMMX TPYOOK IIPOTHBOIIOIOKHBI APYT APYTy. B 4acTHOCTH, TIOTOKH BEK-
TOPOB (KOTOpbIE TO ONpEIEIEHAI0 ABJIAIOTC I0JI0YKATETbHBIMA XaPaKTePUCTHKAMY
TpyGOK) BO BCex TpyOKax COBIIAJAIOT.

r 0 ) N

B.

B

/
/
\;v)B J N (\} /

Bg Bg+By+. .. +Bx

Puc. 1.

Kak npounsittocTpupoBaso Ha puc.l crnpaBa, paccMaTpHuBaeMblit HaOOp mosieit yao-
BJIETBOPSIET CJIELYIOIIEMY YCJIOBHIO: Kaxkmoe m3 277! BekTopHbIX mostelt agBg +
a1B1+...anBy,, roe Kaxaoe «; npuHuMaer 3uadenue 0 wnm 1, Moueaupyer 3aren-
JIeHUe, IpuyeM 3alensienne By, koTopoe nojiydaerca npu ag = L, o, = 0,1 <t < n,
MOJIeJTIpyeT 3alellieHre YaiiTxeqa, a KaxkJoe U3 OCTalbHbIX 2771 — 2 mostedt, mo-
JIYYaIOUXCS B CJIy4ae, eciiu XoTs Ob1 omuH 13 K0ahDUIIMEHTOB (v OTJIMYEH OT Hy-
JIs, MOIeJINPYET TPUBHAJIBHOE MHOIOKOMIIOHEHTHOe 3arjenieHue. I1peamnoioxum, 1To
paccMarpuBaeMblil dyHKiuonas I mMeer nopsanok n . OnpegesuM MocJie10BaTe b
HOCTD 3Havenuii (naBapumantos) I2(By,By), i1 =1,...,n, no dopmyste

I*(By, By,) = 1(Bo) + I(By,) — I(By + By)),

I3(Bo, Biy, Bi,) = I*(Bo, Biy )+ 1%(Bi,, Biy) —I*(Bo+ Biyy Biy) i #i1,i2 = 1,...,7n
¥ Jajiee, IPU PA3JIAYHBIX %1,...,%s, IPUHAMAIONIMX 3HAUEHUS 1,...,Nn , OIpPeLeuM
I*(Bo, Biys. .-, Bi,_,) = I*"Y(Bo, By, ..., Bi,_,)+
+I°"YBiy 1, Bigy -+, Bi,_) = I *(Bo + Bi, 1, Bir, ..., Bi,_,).

Ob6o3narimm depe3 Bj., o HEPBYI0 KOODJMHATY BEKTOpa I110J1g B; B Touke a €
R?. Anasoruunble 0603HaeHNs BBIEM s OCTAJIbHBIX IBYX KOOpJUHAT. HeTpyuHo
[IPOBEPUTD, YTO CyMMapHasd CTEIleHb BXOX/IEHUS KOOPAUMHAT BEKTOpa By B KaKIgoe
CJIATaeMoe IO IBIHTErPasIbHOTO SIIpa MOHMKaeTcs Ha 1 mpu nepexoge or I* k I+l
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JeicTBUTENBHO, €C/I B HEKOTOpO#H Touke (ai,...,Qr) KOHMHIIYpPAIMOHHOIO

ITPOCTPAHCTBA IIOABIHTErpaJIbHOE ,1p0 byHKIoHaTa [° COHEep:KHUT CJaraemMoe

Qg ) 0 . " P

Hijj,k Bo,-ai,a; O;QﬁyBO;ak%K, rome K — MOHOM, cofepXalifii KOMIIOHEHTBI II0JIeit
Bi,...,B,, To dyskuua IST! Gyner comep:kaTh ciaraemsle

- H(Bo;ai,x + Bis;ai,x)ai(BO;aj,y + Bis;aj,y)aj (BO;ak,z + BisS’lkyZ)ﬂ/kK_F
?:Jj)k

+ H (Bﬂ;az’,m)ai (Bosay‘ﬂ)ﬁj (Bo;akaz)%K + H (Bis;aum)ai (Bis;ajy)ﬁi <Bis;ak,z)ﬁﬂc K,
i.7.k 1,9,k
TIpHYeM cjlaraeMble, COAepaKalue CTapllne CTeleH KOMIIOHEHT By, moc.ie pacKpbi-
THS CKOOOK B3aHMHO yHUYTOXKAIOTCH.

IIo nmpeamosnoxenuto ©yukinoHa s ! umeer nopgaok n . CremoBaTesibHO, DYHK-
ipronan [ roxmecrsenHo paBHa Hymo. C Zpyroil CTOPOHBI, BEIUNCIIAT 9TOT BYyHK-
UOHAJL, TTOJIYIUM, ITO OH COXEPKHUT 3™ CjaraeMbIX, OHO M3 KOTOPHIX — CJAraeMoe
I(Byp), u apyrue ciaraemble, KOTOpble CyTh 3HaueHns (dyHKUHOHAJMA [ Ha TpUBH-

a/IbHBIX MHOTOKOMITOHEHTHBIX 3aueivieHuax aoBo + -+ + anBn, (ao,...,an) #
(1,0,...,0), u TO YCJIOBHIO TOXKJIECTBEHHO OOpAmmAOTCs B HyJb. Teopema ToKa3a-
Ha.

Crejryronad ruioTe3a eCTeCTBEHHO CBA3aHa ¢ 0000IIeHreM JOKA3aHHON TEOPEMBI.

T'unoresa (A.B.UepnaBckmii). IIpoussoavrdviti UHGAPUGHTY KOHEANHO20 NOPAJ-
KQ SBPAICAEMCS MHOZOUAEHOM O UHMEZPAAL CNUDPAALHOCTIU.

IIpobaemy Aprosbna-HoBUuKOBa MOXKHO TIEPE@OPMYJIIHPOBATE HHa CJIyYail yIops-
JIOYIEHHOIO CeMeRCTBa, 6e3AMBEPreHTHBIX BEKTOPHBIX TOJIEH, UTO [{OCTABIIAET A OI0JI-
HUTETbHbIE BO3MOAHOCTH IpH perreHrMn. Murepecen ciayuali aByx mojteit (0160 u3
110J1€fi — MarHATHOE, BTOPOe — I10JIe 3aBUXPEHHOCTH CKOPOCTH) M CJIyHail Tpex Io-
Jielt, KOTOpble MOXKHO HHTEPIIPETHPOBATH KaK KOMIIOHEHTHI 1101 depHa-Caitmona. C
TOIOJIOTHYECKON TOUKH 3penusi CIy4dail Tpex moseit paccmorpes B [H-M|. B manpas-
JIEHNH IOJIOKHUTEJIBHOrO peluenus npobiembl ApHosbia-HoBukosa chopmympyem
IUMOTE3y. KPpaTKO roBOps, yTBEP K 1aeTcs, 9to npobsema Apnosbaa-HoBukosa 1me-
€T TOJIOYKUTEIbHOE PEmerte B Cixydae ancambis caydaiiHbIX [0Jiel, KaK IPHHATO B
teopiu TypbymenTHocTH (cM. [Fr)).

O6o3maxnm depes R C R noampocrpaHCTBO MOl MOIEIHPYIONIMX 3AIEl-
nenus. Obozmaunm depes F : Dif fO (R3) x R — RN neiicTBue rpynns npeobpasoBa-
HUfl, COXpaHSIONMX 31eMeHT 06bema, Ha mpocTpaHcTBe R . OnpejgesieHo orpaHnde-
uue FUK . Dif fO(R3) x RE* — RE reiersus Foma mogmpocTpamcTo R
Ompe/Tes1eH0 TPOCTPAHCTBO N YIOPAL0UEHHBIX HAGOPOB U3 7. MOJeH H ero MOIIPO-
crpancTBo (RFMF)™ C R™ | cocrosuee 13 mosieii, MO,IEMPYIOMMX MEOIOKOMITOHEHT-
Hbl€ 3alellJIeHN s, KOMIOHEHTbI KOTOPBIX OKPAIIEeHbl B 71 IIBETOB (T.e. 110J1€ BHYTPHU
PEryaspHONl OKPECTHOCTH JII0B0H KOMIIOHEHTHI 3allellieHusI COBMABaeT C OrpaHuvIe-
HHEM OJJHOIO U3 33,JaHHBIX TI0JIE).
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T'unoresa o r10/10:kUTEJIBHOM pelreHnn npobsiembl ApHoJsibaa-HoBukoBa
[JiS CJIyYdallHbIX BEKTOPHBIX moJieit. Humezpasvhas Gopmy.aa, nocmpoerHan 6
([Akh]), ecmecmeennvim obpasom onpedeasem umeapuarm MU wa npocmpan-
cmee (RY™)3 mpoex eexmopuis noeti, MOOEAUPYIOWUT 30UENACHUA, KOMNOHEH-
MbL KOMOPHIT packpawtensi 6 3 ysema omuocumensto npeobpasosanuti Dif fO(R3) x
(RhnE)3 — (REEY3 npocmpancmea, cozpanaouuz 06seM.

[Ipu sToM dbopmysia mst uaTerpana MY umeer Bux:

MY = My + My, (1)

roe M; — dyHKIMOHA NOpsKa 12, OTpe Ie/IeHHbI Ha BCeM IpOCTpaHCTBe R3, yi0-
BJIETBOPSIIONIN I YCJIOBHMIO KOHEWHOTO TI0PSIKa IIPU MHTEIPUPOBAHUY TI0 IPOCTPAHCTBY
12 -Toueunbix KoHGUTypauuit (TOYKH KOH(PUTYPAIHMOHHOTO [IPOCTPAHCTBA Pa3bUThI
Ha 3 rpynmnbl mo 4 TOUKM B KaKJON TpyIMIe M 3HadeHue dapa dyHKIMOHATa My
mpeobpa3yercss HHBAPMAHTHO NIPU IL€PECTAHOBKE TOYEK BHYTPH KazKOH TPYNIbI),
My ~ byHKIHOHAJ, Olpeie/eH bl b Ha mpocrpancree (R4™)3 | npuaem ero
3HAYEHUs, YCDEJHEHHbIe 1o opbure meficteus Dif fO(R3) x (RHMF)3 —s (RENF)3
TOXAECTBEHHO 00palaioTCsa B HYJIb.

Bameuanue. [lockosieky rpynma Dif fo(R3) HexomnakTHa, TP yCpemTHEHUH
dyHKIIMOHAMa Mo BO3HHKAIOT TPYAHOCTH, KOTOPblE, BEPOATHO, TPedyIOT ytiera
JIMTIIHIIEBBIX KOHCTAHT 1M PEOMOPPU3MOB, OIPee/ITIONINX CTPATH(UKALIUIO TPO-
CTPAHCTBA TPYNIbl KOMIIAKTHBIMH II0IIPOCTPAHCTBAMH.

3. 3akJjrdeHue

Boipaxenue M1 B dopmyse (1) eCTECTBEHHO ITBITATHCS HOCTPOMTH, UCIOJIB3YSI
BEKTOP-OYHKIMH 3JIEMEHTAPHBIX AUIIOJIbHBIX UCTOUYHUKOB U KX BEKTOP-IIOTEHITHAJIBI.

C.A. Menuxos B pabore [Me] u3yumii cBs3b MMWIHODOBCKMX MHBADHAHTOB C HH-
BapuaHTamMu AJleKcauepa KpallleHHoro 3aneiutenns. 1losydeHHble B 91O pabore
PEe3yJIbTaThI II03BOJISIIOT HAJIESITHCHA, 9TO HajiaeHHbil B [Akh| nnrerpaibubiii uHBapU-
AHT B MAarHUTHOHN TH/IPOJWHAMUKE SBJISETCA OJHIUM U3 HHBADUAHTOB B DECKOHETHOIT
MEpapXyUH UHTET'PAJIOB, KOTOPad II0Ka He 1MOCTpoeHa. VIHBapMaHT i OJTHOTO BCK-
TOPEHOTO 110714 MOXKHO IIBITATHCS! 1TOCTPOMTH, Pa3/arasi 3TO N0JIe B CyMMY 1, 1 2> 3,
CJAYYARHBIX 110J1eH, j1JI KOTOPBIX 3aTE€M BBIUUCJ/IAIOTCSI aHOHCUPOBAHHBIN B I'HIIOTE3€
Y aHAJIOTUYHble UHBAPHAHTHI.
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AFFINELY CONNECTED ORBIFOLDS AND THEM
AUTOMORPHISMS

A.V. Bagaev , Zhukova N.I.

Lobachevsky Nizhny Novgorod University
Nizhny Novgorod, Russia

The automorphism group A(N) of a n-dimensional affinely connected orbifold N is proved
to admit a Lie group structure, and dim.4A(N) < n® + n. Estimates are established for
dimension of A(N) depending on the stratification of N.

1. Introduction

Orbifold can be regard as a manifold with singularities; it is a topological space which
is locally homeomorphic to a quotient space of manifold 2 by a finite group I' of
diffeomorphisms of €. The group ' is not fixed and can be changed by passing from
the one chart of an orbifold to an other chart. Orbifolds appear naturally in many branches
of mathematics and mathematical physics. For example, symplectic reduction often gives
rise to orbifolds. Orbifolds are used in string theory [1]. Orbifolds arise in foliation theory
as “good” spaces of leaves [2].

The problem of a finding of conditions guaranteeing existence of Lie structure for
transformation group is one of the central problems of differential geometry [3]. Nomizu [4]
proved that the group of all affine transformations of a complete affinely connected manifold
is a Lie group. Later Hano and Morimoto [5] have received this result without the assumption
of completeness.

We have proved that the automorphism group A(N) of an arbitrary n-dimensional
aflinely connected orbifold N admits a Lie group structure. The proof essentially uses
the construction of the frame bundle P over an orbifold N. We have shown that the
transformation group A(N) can be realized as an automorphism group of the natural e-
structure on P and have applied Kobayashi’s theorem [3].

We have investigated an influence of the existence of k-dimensional stratum Ay of N
on the dimension of the automorphism group A(V). The presence of orbifold points is shown
to sharply decrease the dimension of the transformation group A(N) of proper orbifold.
In general case dimA(N) < n? +n, and dimA(N) = n? +n if and only if N is the
ordinary affine space with the flat affine connection. We have observed that each connected
component A} of Ay formed by points of same orbifold type is invariant relatively the
counected component of the unit of the Lie group A(N). Using this observation we have
got some estimates of the dimension of the Lie group A(N).

2. The category of smooth orbifolds

Let N be a connected Hausdorff topological space with countable base. Let U be
an open connected subset of V. Fix natural numbers n and r. A C" -chart of N with
coordinate neighborhood U is a triple (Q,T,p) where § is a connected open subset of
the n-dimensional real vector space R™, T' is a finite group of C” -diffeomorphisms of
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and p: Q — U is a continuous map so that p is ['-invariant (i.e. poy =p,Vy €T') and
p induces a homeomorphism between the orbit space /T and U. Let (Q;,['1,p1) and
(Q2,T2,p2) are two C7 -charts with coordinate neighborhoods U; and Us respectively,
and U; C Uz. A C" -embedding ¢j2: 3 — € is called a C” -injection of the C” -chart
(Q1,T1,p1) into the CT-chart (2,2, p2) if the equality pi = pa o 12 is satisfied.

As it is known [6], if @12, ¢}, are two CT -injections of a C”-chart (£1,I'1,p1) into
a CT-chart (Q9,I'2,p2) then there exists a unique v2 € T’y such that @i, = 720 2.
In particular, since each y; € I'; can be viewed as a C7-injection of (4,11,p1) into
itself, for the two C7-injections ¢i2 and 12 o 7y; there exists a unique v, € 'y so
that @12 091 = 720 12. Thus the C7-injection (12 induces the monomorphism group
Pr2: 1 = Ta: = 7.

A C7-atlas on N is defined to be a family of C”-charts A = {(;,T4,p:), 7 € J}
such that: (i) the family {U;, 7 € J} is an open covering of N and (ii) every two charts
(94,14, p;) and (©;,;,p;) from A are C” -compatible in the following sense. If U; NU;
0, U; = pi(Q%), U; = p;j(;), then for any point = € U; N U; there exist a chart (Q,T,p)
not necessary belong to A such that 2 € U C U;NU; where U = p(?) and C7 -injections
i 8 —Q; and ¢;: Q—Q; of (Q,T,p) into charts (Q;, s, p;) and (2,15, ;).

Two CT-atlases A and B on N are said to be equivalent if the union AU B is a
C" -atlas. Applying lemma A.7 from [6] and lemma 4.1.1 from [7] it is not difficult to prove
the following.

Proposition 1. The defined relation is an equivalent relation at the set of indicated C” -
atlases on topological space N.

An equivalence class of the C™ -atlases on N is called a n -dimensional orbifold structure
on the topological space N. A (C7-atlas A is said to be maximal if for each C7-atlas B
such that B O A it is necessary A = B. It is easy to show that the union £ of the all
C" -atlases from the same equivalent class is a maximal C”-atlas on N. If A is a maximal
atlas then the chart (,T",p) of the definition of C” -compatible charts belongs to A.

The pair (N,A) where A is a maximal C"-atlas on N is called a n -dimensional
C™ -orbifold. The topological space N is called a underlying space of an orbifold (N, A).

A C" -mapping or morphism from an orbifold (N, A) into an orbifold (N/,A") is called
a continuous mapping f: N — N’ if for every point = € N there are charts (Q2,T,p) € A
and (¥,I'V,p') € A’ with coordinate neighborhoods U and U’ such that z € U and
f(U) C U’ and there isa C” -mapping f: Q — ' satisfying to the equality flirop = p/of.
The correctness of this definition, i.e. independence from a choice of charts follows from the
C7 -compatible condition of charts from atlas A. We call f the representative of f in
the charts (,T,p) and (Q,TV p"). As usually, if r > 1 then C”"-maps of orbifolds are
called smooth ones. We denote the category of orbifolds by Orb and the algebra of smooth
functions on an orbifold N by F(N).

It is well known, if z is an arbitrary point of an orbifold (IV, A) then there exists a
chart (Q,I',p) € A such that Q is the n-dimensional real vector space R", p(0)=1z,0=
(0,...,0) € R™*, and T" is a subgroup of the group of orthogonal transformations of R™.
Such chart (R™,T,p) is called a linearized chart at x and U is called a linearized coordinate
neighborhood of z. Further we usually deal with charts satisfying to these conditions.
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3. The stratification of smooth orbifolds

Orbifold type of points. A point z of an orbifold (N, A) is called regular if there is
a chart (2,I',p) € A with coordinate neighborhood U, z € U, such that I' = {idq}. A
nonregular point is called an orbifold point. An orbifold having an orbifold point is called a
proper orbifold. If there are charts at points z and y of N with coordinate neighborhoods
isomorphic in the category Orb, then z and y aresaid to have the same orbifold type.
Lemma 1. Let (N, A) be a n -dimensional C” -orbifold. The subspace Nq of points of the
same orbifold type with the induced topology has a natural C™ -manifold structure, with Ny
s in general disconnected.
Proof. Let z € Ny and (R™,T,p) € A be a linearized chart at z. The fixed-point set
Fizl = {y ¢ R™ | v(y) = y, ¥y € T’} of the group I' is some k-dimensional vector
subspace §)y of R™. Assume that 9 = R¥*x{0}. Themap pp := p|q, is a homeomorphism
of Qy onto the image Uy := po(§ly). As each point y = p(2), z € Fizl', has the same
orbifold type as the point z, so Uy C Ny. Denote by ¢ the inverse'homeomorphism
Dy 1. Uy — RF. Hence the set Ny with the induced topology becomes a topological
manifold, in general disconnected. The C” -compatible condition of charts from atlas A
implies that the so-defined pairs (Up, po) determine a differentiable C™ -manifold structure
on Ny. Since each two points z and y from Ny have linearized charts (R",I';,p;) and
(R™ T'j,p;) with coordinate neighborhoods U; and U; which are isomorphic in category
Orb, the fixed-point sets Flizl; and Fiz['; are diffeomorphic and so the points z and y
have homeomorphic neighborhoods p;(F'izI';) and p;(Fizl';) respectively. Therefore the
dimension of each connected component of Ny is equal to k. Thus Ny is a k-dimensional
(in general disconnected) C™-manifold.
Stratification. Observe that the manifolds of orbifold points of different types may have
the same dimension. Denote by Ay the union of manifolds of orbifold points of dimension
k (it is possible that Ay =0 ) and denote by A, the smooth n-dimensional manifold of
regular points. The family

A(N) ={Ak, k€ {0,...,n}}

is called the stratification of the orbifold N, and Ay themselves are called strata.

As it is known the following statement takes place.

Lemma 2. Let ¥ be a finite subgroup of the orthogonal group O(n,R) and p: R™ — R™*/¥
be a canonical projection onto the orbit space R™/V. Let V = {z € R" | ¥, = {idg~}}
be a subset of points with trivial stable subgroups. Then the image p(V) is a connected open
and everywhere dense subset of R™/¥.

Proposition 2. The stratification A(N) of n-dimensional CT -orbifold (N,A) satisfies
to the following conditions:

(i) the stratum Ay, k € {0,....n — 1} is union of k -dimensional C" -manifolds, and
each connected component A}, of stratum Ay is formed by orbifold points of same orbifold
type;

(i) the stratum A, is a connected open and everywhere dense n -dimensional C7 -

manifold consisting of the all reqular points of N.
" Proof. 1. Let A} =|],c;No be a disjoint union where N, is a set of points of the same
orbifold type. According to proof of lemma 1 each N, is an open subset of A} and hence
N, is also closed subset of A%. The connection of topological space Ay implies that Al
consists of points of the same orbifold type.
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2. Since for each regular point z € N there is a chart (Q,I",p) € A such that I =idg
then the stratum A, is an open set of N.

Demonstrate that the stratum A, is an everywhere dense subset of N. Let = be an
arbitrary point in N, let (R",I",p) € A be alinearized chart with coordinate neighborhood
U at z. The inverse image p~1(U N A,) coincides with subset V' C R™ which consists of
the set of points with trivial stable subgroups. Therefore according to lemma 2 the image
p(V) = UnN A, is a connected open and everywhere dense subset of U. So each z € N
is a limiting point of A,, i.e. the closure A, of A, coincides with N. Hence A, is an
everywhere dense subset of N.

Show that A, is a connected subset of N. Let z,y € A,. Since N is a connected
topological space, there is a path h: [0,1] — N connecting = and y. As the set A([0, 1])
is a compact connected subset of N there exists a finite chain {U;, i =1,...,m} covering
h([0,1]) where U; are coordinate neighborhoods of charts (Q;,T;,p;) € A, U;NU;41 # 0.
Since A, is an everywhere dense subset of N there are points z; € U;NU; .1 NA,, @ =
1,...,m-=1. Put zg .= z, 2z, = y. Thepoints z; and z;+; belongto U;NA,,i=0,...,m.
In accordance with lemma 2 the set U; N A, is connected, so there is a path g;: [0,1] —
U;NA, connecting z; and z;+1. Denote by ¢ the product of paths g;, i =0,...,m. Then
g is a path in A,, connecting z and y, i.e. the stratum A, is a connected subset of N.
The proposition 2 is proved.

The definition of orbifold type points implies that any automorphism f: N — N of an
orbifold N in category Orb keeps the orbifold type. So f(Ax) = Ay forall Ay € A(N).
Closures of connected components of strata.

Theorem 1. Let (N, A) be a CT -orbifold and A% be a connected component of a stratum
Ag. Then the closure A% of AY is naturally endowed by C" -orbifold structure for which
A} is a set of regular points.

Proof. Let =z be a boundary point of A};, ie. ¢ € BA}; = A_k\ Ag. Denote by Agn
the connected component of stratum containing z. Let (R™,I',p) be a linearized chart
with coordinate neighborhood U at the point z, W :=p~}(U N Ay). Take a point b €
p1(a),a € UN Ag. Denote by I'y the stable subgroup I', of group I' at b As Iy C
Iy # T, so m < k. Consider a decomposition of the group I on the contiguous classes
by subgroup I'y

F=T1Uy M U.. .Ul

where ~1,...,7s € '\ I';. Without loss of generality we may assume that Fizl' = R™ x
{0}, Fizl’; = R*x {0}, m < k. Show that v;|rrx {0} # idpxx{oy for j=1,...,s Suppose
opposite, Vi|rkx {0} = idRrrx{0}, then the group I'; contains ~;. This contradicts a choice
of the element ~;.

Note that the stable subgroup I'y of the group I' at the point y € R* x {0} coincides
with I'; if and only if ;(y) # y foreach j =1,...,s. Thusthesubset B = {y € R¥x{0} |
Ty =T1} coincides with set R* x {0} \ US_; Fizv;. As Fizy; is a k;-dimensional vector
subspace in RF x {0}, and as shown above k; < k, so B is an open and everywhere dense
subset of R* x {0}. Furthermore B = W i (R* x {0}), so p(B) C p(W) C Ay.

Let T be a subgroup of the group I' for which R* x {0} is invariant subspace, i.e. =
{7y €T | y(R* x {0}) = RF x {0}}. Put ¥: T — O(k,R): v+ Y|rrxso}, ¥ := imty. Then
1) is an epimorphism of the group T' onto the group V. Since Fiz['; = R¥x {0}, we have
'y C kery. Take v € kerb. Then v € T, =T’y and hence kery C 'y and I'y = ker.
This means that the group ¥ is isomorphic to the factor-group f’/ 't and ¥ is a finite
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subgroup of the orthogonal group O(k,R) which effectively acts on R* x {0}. Therefore
the set B coincides with set {y € R* x {0} | ¥} = {idrey(0y}}. Applying lemma 2 to the
group ¥ acted on RF x {0} and to the factor-map ¢: R* x {0} — (R* x {0})/¥, we see
that p(B) is an open and everywhere dense subset of R* x {0}, with ¢(B) is connected.
Observe that (R* x {0})/¥ = (R* x {0})/T" = p(R¥ x {0}) and ¢(B) is homeomorphic to
»(B). then p(B) is connected. Inclusmn R™ x {0} C B implies p(R™ x {0}) C p(B). B
continuously of map p we have p(B) C p(B) C Ak. As R™ x {0} C B = RF x {0}, so
p(R™x{0}) € p(B) C Ag. Hence I3 a connected set then B and p(B )_are also connected.
Recall that a € A} and a € p(B); therefore p(R™ x {0}) C p(B) C Ai. Thus the point

T belongs to A’ with the open neighborhood p(R™ x {0}) from A! . The set Al qu_i

[ YR

where C)Ai = Ai \ A% is openin Al . It is closed as the trace of closed set C)Ai in N.
The connection of the topological space Al implies the equality Al 8A’, = Al and
hence Al C 9A; C AL

Identify R* with R* x {0}, then the triple (R*, ¥, p|gs(e}) is a linearized chart for
Al at the point = € AL, For any point y € Al a chart is constructed by the manner
specified in lemma 1. A C7 -atlas defined by this a way determines the k-dimensional
C™ -orbifold structure on the closure A%. The theorem 1 is proved.
Examples. 1. Every C” -manifold is a an orbifold of the same class of smoothness.
2. Note that the domain U of a chart (2,T",p) which is homeomorhic to /T is in itself
orbifold. Such orhifolds are called elementary.
3. Suppose that a compact Lie group H acts smoothly on a manifold AM so that all
stationary subgroups of the action are discrete. Then the orbit space A{/H is a smooth
orbifold.
4. Recall that a group action is locally free if all stationary subgroups are discrete in induced
topology. If an isometry group locally free acts on a manifold then orbits form a Riemannian
foliation F. If ihere is an embedded orbit which has a point with a finite stable subgroup
then the orbit space is an orbifold. Really, this orbit is the proper leaf L € F with a finite
holonomy group, it is known [2] in this case the space of leaves which coincides with the
orbit space is an orbifold.

4. Bundles over orbifolds

Orbifeld bundles. Tet (N, A") and (N,A) be two C"-orbifolds. A C7-mapping
7: N' — N is called a submersion if each representative #: Q' —  of 7 in charts
(Q.T7,p") and (Q,T,p) with coordinate neighborhoods {7 and U such that m(U") C U is
a submersion from the manifold Q' onto the manifold . The correctness of this definition,
i.e. independence from a choice of charts follows from C” -compatible charts of atlas A.

Recall that the map A: G; — G2 of a group G4 into a group G» is called an anti-
homomorphism, if A(gg’) = A(g")A(g) for all g, ¢’ € G1. Let F be a smooth manifold and
H be a Lie group. An orbifold bundle with standard fiber F' and structure group H over
an orbifold (N, A) is said to be define if:

(1) for each chart (€;,T,,p.) € A the [ollowing objects are determined: (i) a bundle
w0 Py — €, with standard fiber F' and structure group H; (ii) an anti-homomorphism
by 'y — AutP; from the group T'; into the automorphism group of the above bundle which
satisfies to the equality v Lo = 7 0 hy(y), Vv € Ty
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(2) for injection 4;; from a chart (€2;,T;,p;) into a chart (£2;,I;,p;) with coordinate
neighborhoods U; and Uj, U; C Uy, there is an isomorphism 5ij: P 0,) — B
between bundles P;', .(q,) and P, which satisfies to the conditions: (i) hi(y) o ¢s =
@i 0 hi(ii(7)), Vy € Ty, where 9;;: I'; — I'; is the monomorphism group induced by ;;:
(i) if U; c U; € Ux and ¢;; and @ji are respectively injections then @k © Gg; = 55 0@ k.

Our agreement on charts implies that them coordinate neighborhoods are contractible.
Therefore we may presume that the bundles (P;,7;, ;) are trivial; i.e. P; = €; x F and
7; is the canonical projection onto the first factor.

For every chart (Q;,T;,p;) € A the anti-homomorphism h; gives rise to a smooth
action of the group I'; on the bundle space P;. Since T'; is a finite group the quotient space

P; ;= P/T"; is a C" -orbifold of dimension dim N + dim F, and the following diagram

J
L

|
!
.
. — U

is commutative where #;: P; — U; is a map translating an orbit z-I'; € £, z € F;, to
the point pi(7i(2)) € U; = pi(Q;). Denote by P the disjoint union of P; over all charts
(4,1, p;) € A. Endow the set P with the following equivalance relation. We will say that
two point z € P; and z; € P; are p-equivalent if: (i) 7;(2;) = 7;(2;) = z € U; N Uj;
(ii) there exist two points z; € (p;) ' (2;) and z; € (p;)~*(z;) and a chart (Q,Tk.px) € 4
with coordinate neighborhood Uy such that = € Uy C U; N U; and z; = (@kj)_] o Pri(zi)-
Demonstrate that the relation p is transitive. Let z; € Py, Z; € Pj, z; € By, with z; £

z; and z; £ %. Then #(%) = 7;(2;) = @(7) = ¢ € U; nU;NU; and there exist

points z; € (5:)7'(Z), z; € ;)7 (%) and 2} € (p;)7 (%), = € (;)"(z) and charts
(%, Thyok)s (Uny,Tonypm) € A with coordinate neighborhoods Uy and U, respectively
such that ¢ Uy ¢ U;NUj,z € Uy C U; NU; and z; = (iﬁkj)_l o Pki(2), &1 =
(Grmt)™? ogEmj(z»;). Put zx = Pri(z:) and z;m = @mu(z). Since zj,:;- € (pj)~1(z;), then
there exist v € I'; such that 2z} = li;(7)(25). SO zm = Pm;(2) = @mj © hj(¥)(25) = Pmj ©
hj(v)o(@k;) *(zk). Sincethe atlas A is maximal for = there exists a chart (Q,,I,,p,) € A
such that z € U, C UpNU,,, and we may assumed that the injection ¢, and @, satisfy
to the conditions g (2x) € ¢rk(§) and Tm(zm) € @rm(S%). The compositions g, © @k
and @m0 ¢, are injections the chart (., ), p,) into charts (8, Ty, p:) and (S0, 1, 1)
respectively. Define a homomorphism ¢,x by the equality @,k := @m0 Pmjoh;(y)o(Pr;)~t
where @, isan arbitrary homomorphism satisfying to the conditions of the orbifold bundle
definition. Then zpm = (Frm) o @ (zx). By condition (2) of the orbifold bundle definition
we have Tl 0 Prm = @rm © $pu and Pi; 0 Grk = Prk © P;. Therefore z; = Ty o @y, ©
(W»@—E)Ml (z;). Thus the points z; and z are p-equivalent and p is an equivalent
relation. The quotient space P = P/p is naturally endowed a C™ -orbifold structure. The
projection m;: P; -+ §; define a smooth map w: P -- N between the orbifolds which is a
submersion. Thus we have the following proposition.
Proposition 3. Each orbifold -bundle with a standard fiber F' and a structure group H
over a C7 -orbifold N naturally defines a C” -orbifold P of dimension dim N + dim F
and an orbifold submersion w: P — N.

The C7 -orbifold P is called the bundle space, the orbifold submersion 7: ® - N is
called the projection of the bundle.
The tangent bundle over orbifold. Let (N, A) be a n-dimensional orbifold, A(N) =
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{A;} be the stratification of N. Let (£;I;,p;) € A be a chart with coordinate
neighborhood U;. Denote by (F;,7;,$2;) the tangent bundle over manifold €2;. The
standard fiber of the tangent bundle P; is the n-dimensional real vector space F' = R"™,
the structure group of the tangent bundle P; is the linear group H = GL(n,R). Define
the anti-homomorphism h;: I'; — AutP; from the group I'; into the automorphism
group of P; by the equality h;(y) = (v 1., ¥y € Ty, where (v7!), is differential
of the transformation v~*. If ®;; is an injection from a chart (§;,I;,p;) into a chart
(9,,T;,p;) with coordinate neighborhoods U; and Uj;, U; C Uj, then we determine an
isomorphism @y;: Pjl,, (o) — Pi between bundles Pjl, (o, and P; by the equality
Bij = (tp;)*, where (c,a;j])* is differential of the map cpsz. We see that so-defined the anti-
homomorphisms h; and the maps @;; satisfy to the conditions (1) and (2) of the orbifold
bundle definition. Thus we have an orbifold bundle with the standard fiber £’ = R™ and the
structure group H = G L(n,R) which is called the tangent bundle over orbifold (N, A). We
denote by T'N the orbifold which is the bundle space and the tangent bundle over orbifold
N by (TN, r,N).

Let (R™,T,p) bealinearized chart at z € N\A,. Let (P,7,R"™) be the tangent bundle
over R™. Then (0) = 0, V- € T, and the fiber 771(0) C P over the point 0 € R" is kept
by each transformation hi(y) = (y7)., v € T. Therefore 7~1(z) = #(0)/T = R"/T.
This implies that the fiber 7~!(z) over a point z € N\ A, is not a vector space.

5. The tangent vector space to an orbifold

Let (N,A) be a n-dimensional C”-orbifold, » > 1, ¢: (—¢,€) —+ N bea C7-curvein
N, o(0) =gq. Let (R™,I',p) € A be a linearized chart at the point ¢. By the definition of
the smooth map there exists a C" -curve &: (—¢,¢) — R™ such that pod =0. Wecall § a
representative of the curve . Let f € F(N). The equality f:= fop defines T -invariant
C" function f: R® — R. We will designate the algebra of T -invariant CT -function on
R" by Fr(R"). Since fog = fo(pod) = (fop) od = fod, the composition foa
is & C" -function on interval (—e¢,€). Denote by %, the set of C” -curves o: (—¢,¢) — N
in orbifold N satisfying to the equality o(0) = ¢ Enter on the set ¥, an equivalence
relation. We will say that two curves o7 and oy from %, are equivalent if the following

equality
dfeo)®)| _ dfoo)®) (5.1)
;

dt V=0 dt t=0

takes place for any f € F(N). We may assume that any two curves from ¥, are defined
on the same interval (—&,¢). The class of curves containing a curve o is designated by {o].
Two functions f and g are said to have the same germ at g € N if there exists an open
set U, g € U, such that fl|y = g|y. Note that the value éﬁ_fidi_)ﬁl‘tzo, o € %4, depends
only from the germ of function f at point g. The equality (5.1) is equivalent the following
condition. For any linearized chart (R™ I',p) at the point ¢ and any representatives &1
and &9 of curves o7 and o, respectively in R™ the equality

d(g 0 51)(t) d(g 0 2)(t) (5.2)

dt =0 dt h—o

is carried out for all g € Fr(R™).
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Define an addition of two classes of curves and multiply of class of curves on real numbers
by the following way. Let &;: (—¢€,e) — R™ and &2: (—¢,6) — R™ be representatives of
curves 01 and o2 in a linearized chart (R™,I',p) at q. Then &; + 62 is a curve defined
by the equality (&1 + 02)(t) = &1(t) + d2(t),t € (—¢€,€), and - &1 is a curve defined
by the equality (a-&1)(t) = a(F1)(t)), t € (—¢,€), where the addition and multiply on
real numbers are made in 7 -dimensional vector space R™. Put by definition [o1] + [o2] i=
[po (61 + 62)] and aloy] = [po (a-d1)]. It is possible to show that [oi] + [o2] and
aloy] do not depend on a choice a linearized chart (R™ T,p) at the point g, on a choice
representatives &; and &, of the curves o7 and oo in R™ and on a choice curves o7 and
oy in classes [o1] and [o2].

Denote by T; N so-defined vector space of classes of curves. We call T;N the tangent

vector space to CT-orbifold N at the point ¢ € N where 7 > 1. If an orbifold N is
a manifold then the given definition of a tangent vector space coincides with well known
one [8].
Theorem 2. The tangent vector space TyN to C” -orbifold N, r > 1, at the point q € Ay
is naturally identified with the tangent vector space TyAr to manifold Ay at the point g.
Proof. Let (R™,T',p) € A be a linearized chart at ¢, (z!,...,z") be standard coordinates
of point z € R™. Without loss of generality we assume that the set of fixed points FizI’
coincides with R¥ x {0}. Let [¢7 € X, and o be a representative of ¢ in R™. The
curve ¢ in the coordinates of R™ looks like ( ,---,0™). Note that the the curve o* :=
po & where curve &* has coordinates ((6*)!,...,(6*)*,0...,0) belongs to the class [o].
Indeed, for any g € Fr(R™) we have goy = g, ¥y € I Fix an element v € I. We can
regard the diffeomorphism ~ of R™ as a coordinate transformation 3’ = y7(z!,..., z™).
Differentiating the identity g o vy(z) = g(z), z € R™, we receive

dg | Oyl ) .

—gj‘ yi‘ = gb ,Li=1....n

8y 1y=0 O lx=0 a lz=0
As 4(0) =0, ie. 7(0,...,0) =0 we have —i|y 0= ézi lz=0, = 1,...,n. Thus the vector
Y™ with coordinates ( 8‘11 |x:07--'7 e |x=0) is kept by each transformation <., v € I'.

Therefore Y belongs to the tangent vector space 7y(Fizl’) to manifold Fizl' = RF x {0}
at 0 € R™ which is identified with R x {0}. Hence gg‘l =0,7=k+1,...,n. Since

d(g o 5)(t)] @ | d&i(t‘)a *Z dg da—%t) _
dt M:o © Ozt! _, dt Lo Hacﬂ dt
k (kN1 | *
NN 9| dE) dlge ()]
{:; oz l,_, At I, dt lees

for all g € Fr(R™) then o* € [0]. From hereusing the the equivalence of the conditions (1)
and (2) we have

[oq] = | = 9itt) LA . 5.3
[o1] = [o2)] i it (5.3)

We will consider T,A as the vector space of equivalence classes (J) of curves § in Ag.
Define the map A\: T,N — T,A; by the formula A(lo]) := (o*). Applying the equivalence
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of conditions (1) and (2) we see that the condition (5.3) implies that |o1] = [o2] if and only
if {o7) = (o3) and hence map A iscorrectly defined and X is an injective map, and A does
not depend from a choice chart (R™ T',p) € A at the point g. It is not difficult to see that
A is a surjective homomorphism of vector spaces Ty N and T;Ai. Then A: TN — T A
is canonical isomorphism of vector spaces. Thus the tangent vector spaces TyN and T,Ay
are identified through A.

Corollary 1. Let N be a n -dimensional orbifold.

1 If g€ Ag then dimTyN = dimT,Ar = k.

2. The point q is a regular point of N if and only if dimTyN =n.

8. The point q is an isolated orbifold point if and only if dimT,N = 0.

Let f: N ~» N be an automorphism of an orbifold N in category Orb. By the natural

manner we define the differential f.q: TyN — TjyN of map f at a point g € N setting
feq(lo]) :=[fo0], 0] € TyN. Since f(Ax)= Ak and fla,: Ag — Ak is a diffeomorphism
of a manifold Ay, using theorem 2 it is easy to show that the map f.q is correctly defined
and f., is an isomorphism of tangent vector spaces T, N and Tyg)NV.
Vector fields on orbifolds. Further we will denote the elements of the tangent vector space
T,N ofanorbifold N at £ € N by X.,Y;,Z.,... Anelement X, z € N, is an equivalent
class [o] where o0 € &, 0(0) =z. Put X (f) := é(—f—c—’d—‘;—)@‘tzo forany f € F(N). A smooth
vector field on an orbifold N is called a correspondence X: x ++ X, € T,N, x € N, such
that for the all function f € F(N) on N the function Xf: N — R:z — X.(f), z € N,
belongs to F(N). Denote by X(IN) the set of the all smooth vector fields on N. The
operations of addition of two vector fields and multiply of a vector field on a real number
of R are defined by the point-wise manner: (X +Y), := X, +Y,, (aX); = aX;, X, Y €
X(N),a € R,z € N. If N is an orbifold of class C* then the vector space X(N) of
smooth vector fields on N is endowed with Lie algebra structure.

6. Affinely connected orbifolds

The frame bundle over an orbifold. A bundle P with standard fiber F' and structure
group H over an orbifold N is called principal if F = H and the group H acts by right
translations on F.

Let (€:,T%,p;) be a chart of a n-dimensional CT-orbifold N. Denote by F; the
principal GL(n,R)-bundle of frames over €2;. Define an anti-homomorphism h; from the
group I; into the automorphism group of bundle P; as h;(7)(2) = (v %), 02,7 € 'y,
where z: R™ — T, is a frame at z € Q;. If U; C U; and ¢;; is an injection of charts
(€2, T, p,) and (£2;,T';,p;) with coordinate neighborhoods U; and Uj; respectively then
define the homomorphism @;;: Pjly,.(0,) —> P; between bundles Pjl,. () and P; by the
equality 5;;(2) := ((p;;.l)*x oz for a frame z at z € ¢;;(§2;). The so-constructed h; and
©i; define a principal bundle with structure group GL(n,R). It is called the frame bundle
over the orbifold N and it is designated by (P, 7, N).

Proposition 4. Let (P,w,N) be a frame bundle over n -dimensional orbifold N. Then P
is a smooth (n® + n) -dimensional manifold and the connected components of the fibers of
7 are leaves of a n -codimensional smooth foliation F of If (S, T,p) is a chart at x € N
and the transformations of group T' keep orientation of 2 then the holonomy group of a
leaf L C = (x) is isomorphic to T.

Proof. For every chart (£;,T;,p;) € A of orbifold N the group T'; is finite. It is easy
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to see that the T'; freely acts through h; defined above on P;. Hence the quotient space
P, = P;/T; is a C" -manifold and the quotient map f;: P; — P; is a covering, with the
covering transformation group of f; is isomorphic to the group I'. Using the proof of
proposition 3 we receive that the bundle space P is a C" -manifold, and the connected
components of = 1(z), z € N, determine a C” -foliation F of codimension n on P. If
(Q;,T4,p;) is a linearized chart at z € N and the transformations of group I'; keep an
orientation of §; then P, consists of two connected components P} and 1_72.2. So the inverse
image 1(0) consists of two connected components K;, j = 1,2. The holonomy groups
of the leaves p;(K;) = L; C 7 *(z), j = 1,2, are isomorphic to T.
Affinely connected orbifolds. Let (P, 7, N) be the frame bundle over C7 -orbifold N.
On P is defined a smooth right action R: P x GL(n,R) — P of the group GL(n,R),
and GL(n,R) acts on P freely if only if the orbifold N is a manifold ([9]). The global
one-parameter group of transformationsin GL(n,R) generates the fundamental vector field
on P, tangent to the foliation F.

A connection in P is a smooth n-dimensional distribution H on P satisfying to the
equalities

H.¢T,F=T,P;

(Rg)«(Hz) = Hr

for all z € P,g € GL(n,R), where TF is a tangent distribution of F. Each vector
X € T,P can be uniquely written down as X = HX + VX, where HX ¢ H,, VX € T, F.
We call HX the horizontal component of X and VX the vertical component of X.

Each A from the Lie algebra gl := gl(n,R) of GL(n,R) defines the fundamental
vector field A* on P, and the mapping gl — T,F: A+ A7 is a vector space isomorphism.
Given an arbitrary vector X € T, P, define w(X) to be the only A € gl for which AZ is
equalto VX. The gl-valued 1-form w is called the connection formfor H. The connection
form w satisfies to the equalities: (i) w(X*) = A and (i) (R,)*w = Ad(¢"')w where Ad
is the adjoint representation of the Lie group GL(n,R) in the Lie algebra gl. Note that
if w is some gl-valued 1-form on P satisfying to these conditions then there is a unique
connection H whose connection form is w.

The orbifold N with a given connection H in the frame bundle P is called an affinely
connected orbifold. The following proposition holds.

Proposition 5. The connection H in the frame bundle P over an C" -orbifold N is given
if and only if there exists a mapping V: X(N) x X(N) — X(N) satisfying to the following
conditions:

g%

Vx{(Y+2Z)=VxY +VxZ, Vxivsd =Vx4 +VyZ,
VxfY = (XY +fVxY, VixY = fVxY,

where XY, Z € X(N), feF(N).

We also call a map V satisfying to the above conditions a connection or a covariant
differential operator on the orbifold N. Further an affine connected orbifold is denoted by
a pair (N, V).

Remark 1. A connection V can be viewed as a family {V* (Q;,T;,p;) € A} where
V? is a connection on a manifold €2; satisfying to the following conditions: (i) I'; is a
transformation group of the affine connected manifold (;,V?); 2) an injection ¢;; a chart
(€2, T4,p;) into chart (§2;,I';,p;) with coordinate neighborhood U; and Uj, U; C Uj;,
satisfies to the equality (¢;;).(V&Y) = V%%J‘)‘X(%j)*Y for all vector fields X,Y on €.
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Remark 2. Let (Q;,1';,p;) € A be achart, X and Y be I'; -invariant vector fields on Q;,
ie. X = X, %Y =Y, Vy € I';. The consequence of equalities .(V%Y) = Vi*xﬂ/*Y =
%Y implies that V%Y is I -invariant vector field on ;. The equality 'V4Y := VLY
where X,Y is vector fields on FizI'; defines a connection on FixI';. This means that the
connection V induces the connection 'V on each connected component A} of stratum Ay.
By analogy the connection V induces the connection ”V on the closure Afﬂ which is a
k -dimensional C7 -orbifold.
Absolute parallelism on the frame bundle. Let P be the frame bundle over an orbifeld
N. The canonical form 6 on P is the R™-valued 1-form defined by the following way.
For each X € T,P and every chart (€;,Ts,p;) at m(z) let X € T;P; be such that
(P:)«(X) = X where p,: P, — P, = P;/T'; is a quotient mapping and z: R™ — 7(2)Sk is
a frame at 7(Z) (see [10]). Then we put by definition #(X) := z71(m;)«(X). A direct check
shows that the value of 6 is independent of the choice of the chart (Q;,I';,p;) at 7(z) and
of the point z € P,.

Let H be a connection on F. Note that the canonical form # defines the linear
isomorphism between H, and R™ at every point z € P. For each £ € R™ we define a
horizontal vector field X (£) on P. Let X (£). be auniquely horizontal vector of H, C T, P
such that 8(X{¢).) = & The vector field X (&), we call a standard horizontal vector field
on P.

Let w be a connection form of connection H on the frame bundle P over a n-

dimensional orbifold N and ¢ be the canonical form. Denote by {B, k = 1,...,n}
the standard horizontal vector fields on P and designate by {£;;, i.j = 1,...,n} the
fundamental vector fields on P appropriated to standard basis {Eij, i,j = 1,...,n} of

the Lie algebra gl. Recall that a family {X;,...,X,} of vector fields on a n-dimensional
manifold M are defined an absolute parallelism on M if {(X1),...,(Xn),} is a basis
of the tangent vector space T,M at each point = € A. The absolute parallelism on a
manifold M is also called e-structure on M. The following holds:

Proposition 6. n® +n vector fields {Bx,E;;, k,i,j = 1,...,n} define a basis of T,P at
each point z € P . Thus they determine an absolute parallelism on P.

Proof. Since dim P = n? + n, it is enough to prove that these vector fields are linearly
independent. Let (€;,I';,p;) be a chart with coordinate neighborhood U at a point z € N.
Put U; == 771(U;). Note that the vector fields {Bk|é’z'EijilI'z} are projections of respective
vector fields {Bx, E;;} on P; determining an absolute parallelism on Pj, i.e. (5).(Bk) =
Bkﬁgz and (ﬁl)*(Eij) = Eij|g,. Since the factor-map p;: P, — P, /T; C P is a covering
map, the group I is an automorphism group of P, and {Bk, Eij} are linearly independent
then the vector fields {Bi|g,, Eislp,} are also linearly independent. Hence, the the vector
fields {Bg, Ey;} are linearly independent and the family { By, E;;} determines an absolute
parallelism on P.

7. The transformation groups of affinely connected
orbifolds

Automorphisms of (N,V). Let (N,V) be an affinely connected orbifold. An

automorphism f of N is said to be an automorphism of the affinely connected orbifold
(N, V) if fu(VxY) = Vs xf.Y forall X,Y € X(N) where f, is differential of the
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automorphism f. Denote by A(N) the group of the all automorphisms of (N, V).

Let (P,m,N) be frame bundle over the orbifold N. Let f;;: Q; — ; be a
representative of f in a charts (Q;,I;,p;) and (Q;,1;,p;) with coordinate neighborhoods
U; and Uj respectively, f(U;) C U;. Then it induces homomorphism fu P; — P; of the
frame bundles P, and P;. There exists an isomorphism ;;: I'; — I'; of groups. As the
equality ~ _

(i3 (7)) © fij = ha(y) © fij (7.4)
is satisfied then a smooth mapping f;;: P;/T; — P;/T; is defined. If fij: % — Qy is
other representative of f then there is a transformation v € I'; such that f; = vyo fi;.
Therefore fij and fZ’J coincide. We may identify P;/T’; and 7~ !(U;). Thus the morphism
fi; of the frame bundle ©~1(U;) into the frame bundle 7' (U;) is determined. Let fi
be a so-defined isomorphism of the frame bundle 7=1(Uy) into the frame bundle 7~ (U;)
where Uy and U; are coordinate neighborhoods of chart (Qx,Tk,px) and (82, pi),
f(Ux) Uy, with U;NUx # 0 and U; nU; # 0. Tt is possible to show that the morphisms
fij and fr coincide on 7~ }(U; N Ux). This manner the family { fw} correctly determines
the automorphism f of manifold P. Recall that a morphism f of a foliation (M, F1) into
a foliation (Mpz,F2) is a smooth map f: M7 — M- which displays leaves of F; into leaves
Fs. Since fij: P; — P; is a homomorphism of the frame bundles P; and P; for which
the equality (7.4) takes place then fij is a foliation morphism of (7~*(U;), ]—'}ﬂ‘l(U_i)) and
(W’]'(Uj),fl,r‘l((]j)). Thus f defines the automorphism f of the foliation (P,F), and
mof=fonm.

Lemma 3. The automorphism f of the foliation (P,F) induced by an automorphism f
of the affinely connected orbifold (N,V) keeps invariant the connection form w and the
canonical form 0. Conversely, let h be an automorphism of foliation (P,JF), and h*w =
w, h*0 = 0. Then h is induced by an automorphism f of (N, V).

Proof. Let f induce an automorphism f of the affinely connected orbifold (N,V). Let
{©;,Ti,p;) be an arbitrary chart of N with coordinate neighborhood U;, m;: P, — §; be
the frame bundle over ;. Denote by p;: P, — P;/T; = P, C P the map onto orbit space
P; of the group T';. Note that the connection form w determines a connection form w; on
the frame bundle P;, so that (p;)*w|,-1(y,) = w; where (p;)* is a codifferential of map p;.
Since f is an automorphism of the affinely connected orbifold (N, V), the representative
fi; of the automorphism f at the charts (£2;,Ts,p;) and (©4,1;,p5), f(0i()) = p; (25),
is an isomorphism of the affinely connected manifolds (;,V*) and (;,V?). Therefore
( f”) wj = w; where fzj P; — P; is the homomorphlsm of the frame bundles P, and
P; induced by f;;. Then the induced automorphism f keeps the connection form w on
P, ie. f*w = w. By analogy the equahty ( ﬂj) 6; = 0; where 6, is a canonical form on
B, pi0lx-1v,) = 0; implies that f keeps the canonical form 6 on P, i.e. f*0 =0.

A lie group structure in A(N).

Lemma 4. If two automorphisms f and g of an affinely conrected n -dimensional orbifold
(N, V) coincide on some open set U C N then f =g on the whole orbifold N.

Proof. Let f and g be two automorphisms of an affinely connected n -dimensional orbifold
(N,V). Let U be a open set of N, and f|y = gliy. By proposition 6 the forms w and 6
define an absolute parallelism {By, Eyj, k. i,j = 1,...,n} or e-structure on P. By lemma 3
the automorphisms f and § induced f and g keep invariant the connection form w and
the canonical form 6. Hence, f and § keep invariant the vector fields {By, Eyj, k, 4,5 =
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1,...,n}. Thus f and § arethe e-structure automorphisms of P. Since fly = g|y, the
induced automorphisms f and § coincide on the set V := x=1(U). It is well know that if
two automorphisms of e-structure on a manifold coincide at one point then they coincide
on the whole. Thus f=:§. So f =g and lemma 4 is proved.

Theorem 3. The automorphism group .A(N) of an affinely connected n -dimensional
orbifold (N,V) admits a Lie group structure, and dim A(N) < n? +n.

Proof. By lemma 1 each automorphism f € A(N) induces the e-structure automorphism
f of P, and the equality f = idp implies f = idy. Thus we have an isomorphism
n: f— f from the group .A(N) onto some subgroup G of the e-structure automorphism
group A(P) of P. Note that G := {h € .A(P) | h is a foliation automorphism of (P, F)}.
By Kobayashi’s theorem [3], the group .A(P) of all e-structure automorphism of P is a
Lie group with compact-open topology induced from diffeomorphism group Dif f(P), and
dim A(P) < dim P = n? + n. Demonstrate that G is a closed subgroup of .A(P). Let
{fn} € G be a consequence converging to f in compact-open topology of A(P). Then for
all z € P the sequence {f.(z)} convergesto f(z) in topology of P. Since f, € G there
is the sequence {gn} C A(N) such that o f,(z) = gpo7(z), z € P. As the map « is
continuous and N is a Hausdorff topological space, we have 7o f(z) = lim,_,c0(gn o 7(z)).
Take any y € L(z) € F. The uniquely of limit lim, o (gn o w(z)) implies 7 o f(y) =
limy o (gnom(y)) = limp—co(gnon(x)) = wof(z). Furthemore f(L(z)) = L(f(z)), i.e. f is
a foliation automorphism of (P,F). Hence, f € G and the group G is a closed subgroup of
A(P). Thus the group G is a Lie subgroup of A(P). Through the isomorphism 7 the group
A(N) is endowed by a Lie group structure, with dim A(N) = dim G < dim.A(P) < n? +n.
The theorem 3 is proved.

Good orbifolds. Let M be a C"-manifold and T" be a group properly disconnected
acting on M, then the factor-space M/I" is a C” -orbifold. An orbifold IV is called a good
orbifold, if there is an isomorphism of N to an orbifold A//T" where M is a manifold
and I' is a properly disconnected group of diffeomorphisms of M. If (N, V) is a good
affinely connected orbifold, N = M/T’, then the connection V induces a connection \Y
on manifold M such that the group I' becomes an automorphism group of the affinely
connected manifold (M, @).

Proposition 7. The automorphism group A(N) of a good affinely connected orbifold
(N.,V), N=M/I', is isomorphic to the factor-group N(I')/T" where N(I') is normalizer
of T in the automorphism group .A(M) of the affinely connected manifold (M, V).

8. Estimates of the dimension of A(N)

An influence of the stratification of N on dim.4(N). Let (N,V) be an affinely
connected orbifold, let A(NN) be the automorphism group of (N, V). According to theorem 3
the group A(N) is a Lie group. Denote by .4%(N) the connected component of unit of the
Lie group A(N). Note that dim.A(N) = dim.4%(N).

Proposition 8. Let AL be o connected component of a stratum Ay of an affinely connected
orbifold N. Then f(A}) = AL for each automorphism f € A%(N).

Proof. First of all, demonstrate that the action ®: A(N) x N -—» N given the equality
O(f,z) = f(z), (f,z) € .A(N) x N, is continuous. Fix z € N, f € A(N). Since f is a
continuous map, for any open set U’ in N, f(z) € U’, there exist an open set U, z € U,
such that f(U) C U’. There are a compact subset K with nonempty interior of 7 (U)
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and a openset Uy of N such that Uy C n(K) C U. Theset W :={g€ A(N) | §(K) C @}
where O := 7~}(U’) is an open set of A(N), and f € W (see the proof of theorem 3).
Then ®(W,Up) C U’. Thus the group A(N) continuously acts on V.

Fix f € A°(N). As the group A*(N) is connected there exists a continuous path
h:10,1] — A®(N) such that h(0) = idy, h(1) = f. Let = be a point of a connected
component A of a stratum Ay. Since the path h and the acting ® are continuous maps
the path A: [0,1] — N defined by the equality A(t) = &(h(t),z) is continuous. As idy
keeps invariant the connected component A% and f(Ax) = Ag, so A(t) € AL, Vt € [0,1].
Therefore, the automorphism h(1) = f keeps invariant the connected component A%, i.e.
F(8}) = A
Theorem 4. Let (N,V) be a n-dimensional affinely connected orbifold, A(N) = {Ag, k €
{0,...,n}} be the stratification of N.

1 If Ap #0, k #n, then

dimAN) <n?4n—(n—k)(k+1) <n®+n. (8.5)

2. The equality dim A(N) = n? +n is satisfied if and only if (N,V) is the ordinary
affine space with the flat affine connection.
Proof. 1. According to the equality dim.A(N) = dim.A%(V) it is enough to estimate the
dimension of A°(NV). Suppose that A # 0, k # n. Fix Al. By remark 2 the connection
V induced the connection 'V on Af. Thus (A%,/V) becomes a k-dimensional affinely
connected manifold. As it is known dim.A(A%) < k? + k. According to proposition 8 each
automorphism f € A®(N) satisfies to the equality f(A%) = Ai. So the map x: A%(N) —
AL f == f ai s correctly defined. From to the definitions of Lie group structure on
the groups A°(N) and A(A%Y) it follows that x is a Lie group homomorphism. From here
dim A¢(N) < dim A(A%) + dimker . Estimate the dimension of kery := {f € A%(N) |
fla; == ida;}. Take f € kery. Suppose that z € A, (R",I,p) and (R™,I,p’) are
linearized charts at = and f: R™ -—— R™ is a representative of f in these charts, f(0) = 0.
Without loss of generality, we may assume that I' =TI and I' trivially acts on R* x {0}
and fgiy(0} = idmrrx(o}. Then the differential f.o of f at 0 € R™ satisfies to the
equality ﬂOika{o} = idRrrx{0}- Therefore Jacobi matrix of f at 0 € R™ looks like

( b4 > (8.6)

where B € GL(n—k,R), A isa kx(n—k) matrix, E is the unit of group GL(k,R). Denote
by G the Lie subgroup of matrixes of the form (6). Remark that dim G = dim GL(n—k,R)+
k(n—k)=(n—k)2+k(n—k)=n(n—k). As f is anisomorphism of the affine connected
manifolds, so if f,o = idgr~, there exists an open set W 3 0 such that fly = idw.
As p is open map, then f is equal to id on the open set p(W) of N. By lemma 4
we have f = idy. So the map u: kery — G: f — f.o is isomorphism of Lie groups.
Furthermore dimkery = dimG = n(n — k). Thus we have dimA(N) = dimA%(N) <
dim A(AL) + dimker xy < k% +k +n(n—k) =n?+n—(n—k)(k+1).

2. The estimate (5) implies that validity of the equality dim.A(N) = n?+n necessitates
that only A, in nonempty, i. e. IV is a manifold. As it is well known, an affinely connected
n -dimensional manifold N has the automorphism group A(N) of (n? + n)-dimension if
and only if NV is the affine space R™ with the flat affine connection.

Corollary 2. Let (N,V) be a n-dimensional affinely connected orbifold.
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1. If N s a proper orbifold then dim A(N) < n2.

2. The equality dim A(N) =n? implies Ay =0 for all k€ {1,...,n—2}.

3. If dim A(N) > n? then N is an affinely connected n -dimensional manifold with
zero torsion.

4 If dimA(N) > n? and n > 4 then N is the ordinary affine space with affine

connection.
Proof. Given n and k € {0,...,n—1}, note that the function 7(k) = n>+n—(n—k)(k+1)
attains its maximum equal to n? at k= 0 and k = n—1. Therefore, for a proper orbifold N
we have the inequality dim.A(N) < n?; moreover, the equality dim.A(N) = n? necessitates
Ap =0 forall ke{l,...,n—2}.

According to item 1 the inequality dim.A(N) > n? implies Ay = 0, vk € {0,...,n—1}.
Hence, (N, V) isan affinely connected manifold. By theorem 1.3 of chapter 4 [3], we receive
that connection V has a zero torsion. Moreover, if n > 4 then theorem 1.4 of chapter 4
from [3] implies that N is the ordinary affine space R™ with the flat affine connection.
Some special estimates. Let N be a smooth orbifold, A(N) = {Ag, k € {0,...,n}},
be its stratification. We say that a connected component AL of a stratum Ay does not
adjoin to a stratum of a greater dimension, if the closure A,, of the stratum A,,, VA,, €
A(N), m < n, does not contain A{. Note that each connected component of A,_; satisfies
to this condition.

Proposition 9. Let (N,V) be a n-dimensional affinely connected orbifold.

1.If there exists a connected component AL of Ay which does not adjoin to a stratum

of a greater dimension, then

dim A(N) < n?-+n-—(n~k)(2k+1); (8.7)
moreover, if Al #—A_}; then
dim A(N) <n? +n—(n—k)(2k+1) — k. (8.8)

2. The estimates (8.7) and (8.8) are ezact.
Proof. 1. In the proof of theorem 4 we have defined the Lie group homomorphism
x: AS(N) — A(AL): f fiA.;-c. We have gotten dim A(N) = dim A%(N) < dim A(A}) +
dimker x. Estimate dimker x.

Let f ekeryx, z € AL. Let (R*,I,p) and (R",I",p') be linearized charts at = and
f: R® — R is a representative of f in these charts, f(0) = 0. Without loss of generality,
we may assume that I = I and Fizl' = R* x {0} and fkax{O} = idRky o). Jacobi
matrix of a transformation v € I' at 0 € R™ is an orthogonal matrix

(v ¢)

where F is the unit of orthogonal group O(k,R), C € O{n—k, R). According to the proof
of theorem 4, Jacobi matrix of f at 0 € R™ looks like (6). As for an element v € I' there
exists v/ € T such that fo~ =790 f, then f,go0.0=1+"g0 f.o. This implies

E A\(E 0\ _(E 0 E A

0 B 0o C ) 0o 0 B
where ', C’ € O(n — k, R). Hence we receive AC = A or C*At = At for all C € T :=
{C € O(n —k,R) | C is determined by ~.0, v € T}, where A!, C* are corresponding
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transposed matrixes. So the lines of the matrix A = (a;;) are formed by the vectors a; =
(ai1, ... @im—k) which are fixed by transformations of the group . Suppose that there are a
vector X ## 0 from the orthogonal complement V' to the tangent vector space Tp(FizI') for
manifold Fizl’ at 0 € R™ and a transformation v € I, 7o # idr~, such that ~v.o(X) == X.
Let 'y ¢ I' be the group generated by the element 5. As I'g C T, so Fizl' C Fialy.
Since X € V, wehave 'y # 1" and dim Fiz[" < dim Fizl"y. Then there exists a connected
component Alm of a stratum A,,, corresponding to I'g, where m = dim Fizly, k,m,n,
such that E D AL Itis opposite to the assumption of proposition 9: A% does not adjoin
to a stratum of a greater dimension. Hence X = 0. Then each element C &€ ' keeps only
zero vector. Therefore A = 0 and dimkery < dimGL(n — &k, R) = (n — k)2, So we have
dim A(N) = dim A*(N) < dim A(AL)+dimker x < k2+k+(n—k)? = n?+n—(2k-+1)(n-k).
Let A} # K—i_ By theorem 1 the subspace Zf of N isa k-dimensional C” -orbifold.
According to remark 2 the connection V induces the connection "V on the orbifold F
Thus (Ai V) is an affinely connected orbifold. Theorem 4 implies that the automorphism
group A(Aﬂ) of the affinely connected orbifold (A}c,’ ’V) is a Lie group, and dim A(A )
k% + k. Since Al s A;: then A is a proper orbifold and hence by corollary 2 it follows
dim A(AL) < k2. According to proposition 8 for each f & A°(N) the equality f(AL) =
Aj_is satisfied. By continuously of f we have f (A1) = Ay. So the map 7: A%(N) -+
A(AL): f — fJA‘ is correctly defined. Using the definitions of Lie group structure on

the groups Ae(Nj_ and A(A%) we receive that ¥ is a Lie group homomorphism. Let
x: A*(N) — A(A}) be the above defined homomorphism of the Lie groups. Denote by
An(A}) the image imy of homomorphism y and denote by A?\]( ¢) the image imy of
homomorphlsrn X. Since A% is the set of regular points of Az which is everywhere dense
in Az, then the homomorphism : Ax(A )-—> N(AL): frs flas P is an monomorphism.

Obviously ¥ is an epimorphism. Thus the groups Ax(A%L) and Ax(AL) are isomorphic.
A correspondmg check shows that %> is a Lie group isomorphism. Then dim Ay (A}) =
dim Apn (A{) < dim A(_V) < k®. Applying the estimate of the dimension of kerx and
the inequality dim A*(N} < dim#my + dimker x we have dim A(N) = dim A*(N) <
dim A (AL) +dimker x < k% + (n—k)? =n? +n— (2k+1)(n — k) ~ k.

2. The precision of the estimates (7) and (8) follows from the next examples.
Example 5. Let ~ be the reflection of R™ respective to the subspace R™** x {0} given
by the matrix

where E is the unit of the orthogonal group C(n—1,R), n > L. Let I be a group generated
by 7. Then the group I' = Zy acts on R™ and the quotient space Nj :== R™/T" is a n-
dimensional orbifold. Since the group I' fixed the points (xq,...,Zn_1. 0) ¢ R™ and only
them, the stratification of N1 looks like A(N;) = {An,An-1}. The structure of the affine
space R™ induces the flat affine structure on Ny. Thus N is an affine connected orbifold
with flat affine connection V"), Calculate the dimension of transformation group A(N;) of
(N],V“ ). According to proposition 7 the group A(XN7) is isomorphic to the factor-group
N(I')/T where N(I'} is normalizater of group of T in the group Aff(R™) of all affine
transformations of the affine space R™. The group Aff(R") is semidirect product of the
linear group G'L(n,R) and the shift group R™. Therefore a transformation of Aff(R")
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is demonstrated by a pair (A,a) where A € GL(n,R), a € R™, and

(4,a) - (B,b) := (AB, Ab+ a), (A,a),(B,b) € Aff(R").
Then the transformation -y can be submitted as (C,0) where 0 = (0,...,0) € R". Since
NI = {(4,a) € Aff(R™ | (4,a)-(C,0) = (C,0)-(A4,a)}, we receive that (4,a) € N(I")
if and only if

/
A:</(1) ao )’AIEGL'(TL—].,R)) a:(a15~'->an—170)€Rn'

As the group T is finite, we have dim A(N;) = dimN(T) =dimGL(n—-1,R)+1+n—-1=
n—1)2%+4+n=n?-n+1

Example 6. Put
-1 0 O 1 0 O
C’l = 0 -1 0 s Cg = 0 1 0 .
0 0

0 0 1 —1

The finite group I' generated by C; and C, actson R?® as a subgroup of GL(3,R). The
factor-space N, := R3/T is a 3 -dimensional orbifold. The subgroup I'y C I generated by
Cy fixes points of the axis Ogz; the subgroup 1"y C I' generated by C, fixes points of the
plane Ozy; the group I' fixes only point 0 = (0,0,0) € R3. Therefore the stratification
of Ny looks like A(Nj) = {As, Ay, A1,A¢}. The flat affine connection V& on N, is
induced by the affine connection of the affine space R®. Calculate the dimension of the
transformation group A(N) of the affine connected orbifold (N, V(?)). By proposition 7
A(Ng) = N([)/T'. A direct check shows that (A,a) € N(I') if and only if

’
A:(% ao >,A/EGL(2,R),CL33€R\{O}, a:(O,O,O)ERS.
33

So dim A(Ny) =dimN({) = dimGL(2,R} + dim(R \ {0}) = 5.
Thus examples 5 and 6 imply that the estimates (7) and (8) are exact.
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SOME PECULIARITIES OF QUANTUM-MECHANICAL
SCATTERING IN THE LOBACHEVSKY SPACE

A.A. Bogush, Yu.A. Kurochkin, V.S. Otchik and Dz.V. Shoukavy

Institute of Physics, National Academy of Sciences of Belarus
Minsk, Belarus

The formulation of the quantum-mechanical scattering problem in the three-dimensional
Lobachevsky space is presented. The quantum mechanical problem of the scattering by
spherical potential well in the Lobachevsky space is considered. The graphical solution of
the problem of bound s-states is given and the influence of curvature on the number of the
bound states is investigated. The scattering by the Coulomb center is treated on the basis
of exact solution of Schriédinger equation. An expression for the differential cross section is
obtained.

1. Introduction

Quantum-mechanical problems in the spaces of a constant positive and negative
curvature are the object of interest of researchers since 1940, when Schrédinger [1] was first
solved the quantum-mechanical problem about the atom on the three-dimensional sphere
(Einstein’s Universe). The analogous problem in the three-dimensional Lobachevsky space
was first solved by Infeld and Shild [2]. In recent years the quantum-mechanical models based
on the geometry of the spaces of constant curvature have attracted considerable attention
due to their interesting mathematical features [3, 4, 6] as well as the possibility of application
to the physical problems [5]. For example, these models are used for the description of the
bound states in nuclear and elementary particle physics [3]. Thus, Kepler problem on the
sphere S3 has been used as a model for description of quarkonium spectra [7]. Kepler —
Coulomb problem on the sphere S3 has been used as a model for description of excitations
in quantum dots [8, 9]. Many aspects of this problem in spaces of constant curvature, in
particular separation of variables and path integral formulation, have been investigated in
the papers [10]-[12]. However, until now,the problem of potential scattering in spaces of a
constant curvature was not formulated.

The important problem with the formulation of the scattering problem in the three-
dimensional Lobachevsky space was the choice of expression for the incident wave. The use of
plane wave of Shapirorelated to the representations of the group of motions of Lobachevsky’s
space, made it possible to formulate and to solve the scattering problem on the Coulomb
center [13|. In this paper the formulation of the quantum-mechanical scattering problem
in the three-dimensional Lobachevsky space is considered with potential well as the model
potential. The graphical solution of the problem of bound s-states is given. The influence of
curvature on the number of the bound states is investigated.
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2. The formulation of the problem

‘We use embedding of the Lobachevsky space in 4-dimensional pseudoeuclidean space
with coordinates z,, p = 1,2, 3,4, given by formulas

T,T, =X 425 =X~ 3f = —p?, X = {z1,72, T3}, T4 = 1Zg. (2.1)

Schrodinger equation is (A= m =1):
1
HY =EV, H = E;)EMWMW + U, My, =2,0, — ,0,, (2.2)

where U is a potential energy.

The scattering solution of the Schrédinger equation behaves at large distances like the
superposition of an incident wave and scattered spherical waves. In the flat space the plane
wave is considered as the incident wave. In the Lobachevsky space the Schrédinger equation
does not have plane wave solutions. The solution of the free equation of Schrodinger of the
form closest in its properties to the plane wave as (see [14, 15])

. —1--in
o = (222} g - VBB (23)

where n is a unit vector that defines the direction of wave propagation in the Lobachevsky
space.

The spherical wave is considered as the scattered wave. In flat space this is the outgoing
wave, having at large distances r from the center form f(6) exp(ikr)/r .In the Lobachevsky
space the Schrodinger equation also has solutions of the form of spherical wave. These
solutions can be found by using spherical coordinates

o = pcosh/3, z1 = psinh3sind cos ¢,
2y = psinh3sinfsin g, r3 = psinh 3 cos b, (2.4)
0<08<oc, 007, 0< <2

Separating in the solution of the Schrodinger equation dependence on the angles 6 and
¢ by the use of spherical harmonics in the form ¥ = R;(3)Y;™(0, ) , we obtain in the case
of U =0 the radial equation

d 1(z+1)> “FJ Ri(B) = 0. (2.5)

1 1 d 123
o5\ T RSt 5—
1202 \_ sinh?3d3 “df  sinh®3

The regular solution at 8 =0 of this equation is

. I
S,u(8) = / '7r 1“(11?.+ [+1) P_1%_~l (
\/ 2sinh 8 T(ip+1) ~ —2+

cosh ). (2.6)
The asymptotic form of the solution S,; for 5 — co is given by the expression

S () e 8 (2.7)

~ 1 ;in.ﬁ Tlin+1+1)I(1 —in)
2in sinh 8 Tl —in+ l'(in+1)
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The solution of equation (2.5) which outgoing spherical wave in the Lobachevsky space
is describes on

[ 7 1[Dn+i+1) 1y , Dlin—1) S+
Cni(3) = '\/2sinh,32 [ (cosh §) + =—=——=%P

1 h3)|. (2
P(1n+1) -%+in F(17’)+1) —%«)—17)((:08 3) ( 8)

When 8 — oo we have

1 .
R P 2.9
Cr(8) 2insinh 3 ¢ (29)
We choose vector n in (2.3) in the form n = (0,0,1). Then the incident wave can be
written as

(8, 0) = (cosh 3 — sinh 3 cos §) =171 (2.10)
The incident wave (2.10) can be expressed through the spherical waves (2.6) (see, for
example, [14, 15])

oo

£(8,0) = (20 +1)S,(8)Pi(cosb). (2.11)
1=0
The exact wave function which is the solution of the Schrodinger equation with the
potential energy U(8) takesfor 8 — oo the form

¥ ~ (cosh 3 ~sinh3cos§) 171 + —J:(—el—ei"ﬁ. (2.12)
’ psinh 3

Here the function f(6) plays the role of the scattering amplitude.

3. Scattering by spherical potential well

As an example let us consider particle scattering on the spherical symmetrical potential
well. Let us assign the potential of the well as follows

U= 0 for G>a, (3.1)
) =Uy for B<a, '

where constant a is the radius of the well.

As the incident wave we will consider the wave of form (2.3). Let (3, 6) to be wave for
B<a and x(7,n3) is a scattered wave.

We use for the incident wave expansion in series (2.11). The wave inside of the potential
well we can expressed as

9(8,0) = > AuS,1(8) Pi{cos b), (3.2)
=8

7 = /2E + Up)p? — 1. (3.3)

where

The scattered wave is

X(8,0) = > BiCyu(8)Py(cos ). (3.4)

=0




52 Proceedings of .. . BGL-4

The coeflicients of the expansion of A4; and B; can be determined from the continuity
condition of wave functions and their derivatives at the boundary of the well 8 = «, which
reduces to the fellowing system of linear equations:

pni(cosha) + gpi(cosha)B; = pyi(cosha)Ay,
pyi(cosha) + gy, (cosha)B; = pjy (cosha) Ay, (3.5)

where we introduce the following notation

2sinh 8

pi(cosh ) = St
/2 sinh 1
gni(cosh ) =\/ ~ B = 5 (s(cosh B) + 5,11 (cosh 3)),
, dpyi(cosh 3) , dgni(cosh 3)
pnl(COSh B) = %—”ﬂ qnz(COSh B) = ”LT

As a result, we obtain for the coefficients B; and A; expressions

pyi(cosh a)py,(cosh a) — pyi(cosh a)p], (cosha)

B = 3.6
! gni(cosh a)p;, (cosh a) — pyi(cosha)gy,(cosha)’ (3.6)
4 gni (cosh a)p;]l (cosha) — q;ﬂ(cosh a)pni(cosha) (3.7)
P gni(cosha)p;, (cosha) — pyi(cosha)gy,(cosha) ' !
Thus for the scattering amplitude we have an expression
oo
f(6) = 25" BiPy(cos8) (38)
2in =

The poles of B; in the range of negative energies determine the bound states in the well.

4. The case of the s-states

In particular, when I =0 we have

VE2 —Leot(avk? —1) = =/ A2+ 1= —/2p2U — k2 + 1, (4.1)
where
A=1/2p%k = /20?2 (Uy —€),& = —E. (4.2)

This equation are determines the energy levels of the system.

Let us introduce the variables { = avk? -1 >0 and 7 = av/A2-+1 > 0. Then we
obtain

T=—Ccotl, 7242 =2p2Uhat. (4.3)
The equations (4.3) can be solved is numerically or graphically. Values ¢ and <, which
satisfy equations (4.3) are determined by point of intersections of the curve v = —(cot ¢

with the circle of radius pay/2Uy .

The curves are represented on the figures 1, 2 (see Section 6). We see that there are
such values of curvature fer which no stationary states exist. But with increase of the radius
curvature p appear bound states, number of which rises with the increase of p. Also from
figures 1, 2 we can observe that with growth of the U, the number of bound states increases.
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5. Coulomb Scattering in the Lobachevsky space

The Coulomb potential in the Lobachevsky space is given by

U=_22 (5.1)
p x|
where « is a positive constant (we consider of the Coulomb attraction).
In order to find a solution of Schrédinger equation which behaves at large distances like
the superposition of an incident plane wave and scattered spherical waves, we use an analog
of a parabolic coordinate system [16]

2—t1—t
L2 Ty = pv i1ty cos p,

Tt h)

t1 -+ to — 2t1tp

Ty = py/—titasing, x3 = p , (5.2)
24/(1 —t1)(1 —t2)
0<t1 <1, —00 <t <0, 0L p <27,
Hamiltonian with the Coulomb potential (5.1) takes in these coordinates the form
1 [,1—t: O 4] 1—ty 0 5] 1 o
H==|2— " —t (1 —t1)=—+2 ol —to) s+ —— | —
p2 to —t1 8t1 1( 1) Oty a t1 —t2 Otg 2( 2)6152 2t1to 6@2
2 —1 —1
JEITATR (53)
p t1—t2

Due to the axial symmetry of the problem, it is sufficient to consider solution of the
Schrodinger equation with no dependence on ¢, that is solution of the form W(t1,t2) =
S1(t1)S2(t2) . Substituting this expression into the Schrodinger equation, we find equations
for S; and 5S>

d dSy Ep? —ap
L ty) e (L= g )ty ot — (22 2P — 0. ,
( l)du1< 1)t it ( 5 t14+K1 )5 =0 (5.4)
. d dSy  (Ep*+ap ,
)2 . . v 5 5
(1—t2) dtg( ta)ta dts ( 5 to + kg ) 51 =0, (5.5)

where separation constants x; and sz obey the relation «; — k2 = ap.

Choice of the vector n = {0,0,1} means that for z3 —.—cc (for t2 — —o0 ) solution
of Schrodinger equation with Coulomb potential must tend to solution of equation without
potential which describes an incident wave. It is possible if dependence on the coordinate
t, is taken in the form

S (tﬂ = (1 — tl)ﬁ iry“ul/?, (5.6)

where 74 = +/(Ep? & ap)/2 — 1 /4. This expression corresponds to #; = —iv_ —1/2. Then
Sa(ta) = (1 —to) ™= "Y2 x o F (s — by, —iyy — 1y Lito) (5.7)

is a solution of equation (5.5) with an appropriate behavior.
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Solution of the Schrédinger equation can be written in the form ¥ = AS;(t1)S2(t2),
where A is a constant. Using the known asymptotic behavior of the hypergeometric function
[17] we find that for t, — —oc

['(—2iv4) : iy—1)2 - in
U~ A L—t1)(1 = tg)] 7= V2 ()i i+ 4
(L~ iy + )D(—y — 7o) S (=) N
[(2i. 1=ty -T2 o
+A Ty 2 (~ty) T+ =71 (5.8)
@A+ + iy )D(Eye —iy) 1—t
Since

(1—t1)(1 - tr_))]_i'y——l/z = [(zg — m3)/p]—1~2i7_

we can conclude that the first term in (5.8) describes an incident wave distorted by Coulomb
interaction (for & = 0 we have v, = 7. = v and we arrive at expression (2.3) with
n={0,0,1}).

If we set constant A as

D1 =y + Iy Dy +iy-)

A= ,
[(2iv4)

then the incident wave will have a unity amplitude. The second term in (5.8) that describes
a scattered wave for 5 — oo can now be written in the form

1

217+5 £(9),
psinhﬁ€ £(8),

where ( i :
: p(Ve — v )DL —ive +i7-) i n o

9\ - - p -z 2 U+ /—) 1 — ¢ 1y iy 59

16 (s +v) T Fiye — v (1 —cosf) (5.9)

is the scattering amplitude. Finally we arrive at the expression for scattering cross section

o — Py =y ) dQ
(74 +7-)? 4sin*(/2)

For large p we have an approximate expression

do — ot n o +20°F ds)
O\ E2 2p%FE4 16sin*(6/2)

Partial wave expansion of the scattering amplitude (5.9) is given by

ﬁ(l — i’Y+ -+ i’Y_. -+ ”

N 14 i
)= ———— X 20+1 - - -
78) 2i(v+ +7-) Zl:( )P(l vy~ iy~ 1)

Pr{cos#). (5.10)

Scattering amplitude (5.9) has poles at the values of energy defined by relation —iv4+iy— =
—-n,n = 1,2,... . These values correspond to the discrete energy levels of a particle in an
attractive Coulomb field in Lobachevsky space.
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6. Figures and Tables

/

zefa

Fig 1. The graphical solution of equations 7 = —(cot ¢ and 72 + (2 = 2p?Upa?,
with a = 0.005,Uy = 10, p = 50,100, 250, 400, 1000.

Table 1. The number of bound states depend upon radius of space of curvature.

With] a = 0.005, Uy = 10.
| Value p Value

p =250 _

p =100 g1 = 1.8628

p =250 €1 = 1.5990, €2 = 7.7560

p =400 e1 = 1.4912, 9 = 6.0718, £3 = 9.0054

p=1000 | g1 = 1.35, g9 = 3.5775, €3 = 5.5154, €4 = T7.12, €5 = 8.3763
g€ = 9.2773, 7 = 9.8192
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120 1 [ !

00

zeta

Fig. 2. The graphical solution of equations 7 = —(cot ¢ and 72 + (2 = 2p?Upa?
with a = 0.005,Uq = 100, p = 50,100, 250, 400, 1000.

Table 2. The number of bound states depend upon radius of space of curvature.
With a = 0.005, U = 100.

Value p Value €

p =250 €1 = 54.0462

p =100 €1 = 41.4281, €9 = 84.9497

p =250 €1 = 2.6466, £2 = 30.6285, €3 = 55.1936, ¢4 = 74.6678
€5 = 97.1223

p =400 €1 = 8.8385, €2 = 27.3263, e3 = 44.1024, €4 = 71.3362
€5 = 81.6279, € = 89.6548, 7 = 95.3989, €5 = 98.8492
p = 1000 €1 = 7.98, g2 =15.983, g3 = 23.6908, ¢4 = 31.0612
g5 = 38.0774, g = 51.0143 e7 = 9.8192, eg = 56.9256
€9 = 62.4626, €10 = 67.6222, £1; = 72.4034, €12 = 76.8051
€13 = 80.8262, 14 = 84.4661, €15 = 87.7224, 14 = 90.5999
€17 = 93.093, €18 = 95.2029, €19 = 96.9264, 29 = 98.2728
E91 = 99.23237 E22 = 99.808
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OBOBIILIEHHAS 3AJAYA JABYX 1 YETBIPEX
HbIOTOHOBCKUX 1LIEHTPOB

A.B. Bopucos, 1.C. Mamaes

Hucmumym xomnvremeprnx uccaedosanuti, Yémypmerut 2ocydapcmeentbiti
yrnusepcumem, Howcesck, Poccus

B pabBore yka3aHD! MHTErpMpyemble aHA.IOrd Ha cdepe norenuuana lapby, BKIIIOIAIONIErO
B cebs 33,029y O OBIXKEHUH YaCTAUL B I10JIE ABYX M YeTBhIPEX HEIIOIBIDKHBIX HHIOTOHOBCKIX
[IeHTPOB Ha ILIOCKOCTH M ux 0006menua. Ilosyverinbie pe3yssrarbl MOryT OBITH MCIIOND-
30BaHbl IIPH 1IOCTPOEHWM TEOPHH IBVMIKEHHs CILyTHWKOB B II0JIe CILIIONIEHHOI'O cdepomia B

1IIDOCTPAHCTBAX IIOCTOHHOI KPHBI3HDI.

1. Kuaaccudeckas 3aJiada JABYX LEHTPOB U ee 0600mIe-
HU S

B xusaccutieckoit HeOecHOM MexaHHKE XOPOIIO M3BECTHA 3a7ata IBYX IIEHTPOB,
B KOTOPO#i [Ba HENOABHKHBIX LEHTPA C MACCaMH M;, 77, NPUTAIMBAIOT HEKOTO-
pyIo «6e3MacCOBYIO» YACTHILY, i{BUIKYIIIYIOCSI B HX IT0JI€, TI0O HHIOTOHOBOMY 3aKOHY.
WNuTerpupyemMocTs 3T0# 33ama4u Oblia 110Ka3aHa JIHJIEPOM C IIOMOIIBIO pa3aesienus
nepeveHHbIx [14].

KavecTBeHHBI aHAMIM3 ILTOCKON 33,4241 JIByX IIEHTPOB nMeeTcd B Kuure K. IL[ap-
abe [12] (eM. Takixe [18]); KaUeCTBEHHLIN aHAJM3 TPOCTPAHCTBEHHO 3a1a4H IBYX
WEeHTPOB coiep:xutTca B pabore B. M. Asiekceesa [2]. Ormernm Takxke, 9TO eine
Jlarparx 3aMeTHJI, 9TO 3aj1a4a ABYX [IEHTPOB OCTAETCHd MHTErPHUPYEMOIt, ecau noda-
BUTb K HEM TTOTEHIINAJ yIPYTroi IpyKUHbI, KOTOPAast 3aKPEIJIEHA B CEPETMHE OTPE3KA
IpAMOii, coelMHAIoNIed 00a UeHTpa. JlarpaHxk TaKXKe PACCMOTPEII IPEAEIbHBINA Cly-
“al 970N 3a7a4u, /189 KOTOPOI'0 OZUH H3 ABYX LEHTPOB M €ro MacCa yCTPEMJIATCH
B OECKOHEWHOCTh, B IIPE,IeJie TI0/IYIAETCH 33,Ja%a O jIBWYKEHMH YaCTHUITbl B CYIIEPIIO-
3UITHHK 110,15 HbIOTOHOBCKOIO Tien1pa (3amava Kerepa) n onmopoanoro mosa. Pas;ie-
JIEHI1E TIEPEMEHHbBIX W KaUeCTBEHHOE HCCJIeOBAHUE 3TOH 334a9u COTAEPKHUTCA B KHMIE
M. Bopaa [8] mo aroMHON MexaHWKe, H3y4aBIIero 9Ty 3ajady B CBSI3H C DACIIenJie-
HHEM CIIeKTPa/LHbIX JIMHHIT aTOMa BOJIOPOZA, TIOMENIEHHOI'0 B 9JIEKTPHYECKOE TIOJIE
(adbdexr Ilrapka).

Oguu u3 6ostee OOIIUX CJTyHA€B MHTETPUPYEMOCTH ITOTEHIMAJIbHON CHCTEMbI HA
JI0CKOCTH, 060bimaonuil 3a1a4y AByX LeHTpoB, Oblr Haiinen I'. Tapby (1901) [17]
METOOM pa3jlejIeHus nepeMeHHbIX. B 910it pabore [ap0y Tak:Ke MOy U YCIOBHA
CylUECTBOBAHHUA JJIs HATYPAJIbHOM CHCTEMB] Ha IJTOCKOCTH [OIIOJTHUTEILHOI'O KBa/Ipa-
THY{HOTO MHTErpasIa, KOTOpble BIIOCJIEICTBHH ObLIH TAK:Ke yKa3aHbl Y urrekepoM [11].

PaccMOTpHM YaCTHILY eIMHHYHOM MAcChl, ABIKYIIYIOCA IO ILTOCKoCTH R2 =
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{z,y} B HOTeHnMAIBLHOM IOJIE

A A B B B B
2 y2 or o

rae A, A, B, B', By, B}, C = const, upuueMm 7, 1’ HBISIOTCH LeHCTBUTEIHHbBI-
MH paCCTOAHHSMH 9YaCTHUIBI M OT ABYX OJMHAKOBBIX JEHCTBUTE/IBHBIX I}€HTPOB,
nomemeHHbIx B Toukn  (—c¢, 0), (¢, 0) Ha ocum abemumee, 1 = +/{z—c)2 + 42,
" =+/(z+c)® +y?, p — paccroguue or m mo uentpa O, ry, r} — «KOMDIEKC-
Hble PACCTOSHUA» 10 MHHMBIX II€HTpOB, 1omenteHHbIx B Toukd (0, di) u (0, —di),
=zt (y—id)?, ri =27+ (y +id)?

Jia BermecTBeHHOCTH T0TeHImana (1.1) Heobxo-
MO, 4T00bI B] OBL10 KOMILJIEKCHO COIPSIKEHO Bj :
Bi' = B; . Kax 1okazaHo B [17]) ecin d = ¢, cucrema
(1.1) momyckaeT pasziesieHHe IIEPEMEHHBIX B 3JLJIMII-
THYECKUX KOOP/AHHATAX

x = echwcosu, y = cshwvsinu

U 06J1a2€T JOIOJTHUTE/ILHBIM MePBbIM MHTETPAJIOM,
KBaIPATHIHBIM 10 HMITY.IbCAM.

OCTaHOBUMCS Ha YACTHBIX CJIydasdX MOTEHIHAIA
(1.1). Oaun cayuait cucrembr (1.1); st KOTOpPOroO

B, = B} = 0, 6b11 paccmorper 7K. Jluysuiem (kak Puc. 1
y2Ke YKa3bIBaJIOCh, emie boJiee 1acTHbIN ciaydait A =
A= B, = B} =0 6vu1 yxasan JlarpaxkeMm).

B pabore [1] mokaszaHo, 4ro 3azava O MABIXKEHWHM YaCTHI[BI B [0JI€ IBYX
KOMILIIEKCHO-COTIPSIXKEHHBIX 11eHTpoB, Te. g1 A=A =B=B'=C=0 B (1.1),
HHTETPUPYEMA B TPEXMEPHOM IIPOCTPAHCTBE M SBJISLETCS XOPOLIMM IIPUO/IMZKEHIEM
K 3aJa4e O JIBU2KCHUM CIYTHHKA B 110JIe CILIIOINEHHOTO cdepouna (HalmpaMep, 3TOT
[IOTEHTIHAJ XOPOITIO AIIPOKCUMHUPYET MOTEHIHaJ pea TbHOI 3eMiin).

B pa6ore 1. C. Kozsiosa [9] mponHTerpupoBata B KBagpaTypax U UCCIeJOBAHA 3a-
Jla9a O TUIOCKOM JIBHXKEHHH JACTHIIHI B 110J1€ Y€ThIpeX HEIIOIBMKHBIX ITEHTPOB (JIByX
BEIECTBEHHBIX U JABYX KOMILIEKCHBIX). B [9] TakKe 1IpeJI0KE€HO HECKOJILKO HHTEp-
[IpeTanyit 3TOR 3a At IPUMEHHTEILHO K PeaslbHBEIM BOLPOCAM IIPHKJIAJHON nebec-
HOW MEXaHUKH.

2. 3azmauya Kemnunepa, 3agada AByX 1eHTpPOB Ha cdepe
u ncesaocdepe. Vcropuieckuiit KoOMMeHTapuii

Cucremaruaeckoe 06006IeHMEe Pa3IMIHBIX 33,144 KJIACCUIECKOH 1 HebecHnoi Me-
XaHWK{A Ha [IPOCTPAHCTBA IIOCYOSHHON KDPUBHU3HBI (BKJIIOUAIOIMME KAK TPEXMEPHYIO
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chepy S°, rax u mcesmocdepy — L° -mpocrpancTo JI06ageBCKOro) CoaepKUTCS B
o6ImIpPHO#, HO, K COXKAJIEHUI0, To49TH 3abbiTolt pabore B. Kummnra [22].

Ykaxkem Takcke, 9T0 kKpome Kunuuara B XIX Beke HEEBKJIMIOBON MeXaHMU-
KO# B IIPOCTPAHCTBAX MOCTOSHHON KPUBU3HBI 3aHuMaJUCh P.Jlummun, @. I1lepusr,
I. JIubman. VInTepecto, 4to B yuebnuke I'. JIubmaHa 110 HeeBKJINI0BOI reomMeTpun [24)]
ieJias TJ1aBa 1I0CBAIIEHa 00001EeHNI0 HEIOTOHOBOTO 32KOHA MTPUTKEHHUSI, UCCIIETOBA~
uuio 3amayn Kemrepa u ¢hopmymmposku 3akoHoB Kemtepa Ha cdepe u ncesmocdepe,
TeM He MeHee B XX BEKe aHAJIOIUYHBIE PE3YJIbTATHl BHOBb U HE3aBUCUMO OBLIIHM TIOJTY-
9eHbl Cpady HeCKOJIbKuMHU aBTopamu [23, 15, 20, 8, 26, 21, 25, 16]. OrmeTuM Takxe
kJtaccudeckyto pabory 3. IIIpenunrepa [13], B KoTOpOi OH paccMaTpuBas KBAHTO-
BBl aHaJsor 330349 Kemiiepa B HCKDHBJIEHHOM IIPOCTPAHCTBE, HESABHO IIPEJIIIOJIArast
WHTErpupyeMOCTb COOTBETCTBYIONIEH KJIACCUIeCKOH 3amaun. KcraTu roBops, aHAJIor
3aKOHa HbIOTOHOBOrO mpuTsiKerns mist L3 6bu1 yaxe nssecren 1. Ceppe, 1. Bosbsin
n H. V. JlobageBckomy.

B. Kussinsr B [22] TakKe paccMaTpUBaJ BONPOCHI 7 -MEPHOM JHHAMUKH B IIPO-
CTPaHCTBaX IIOCTOAHHOM KPUBU3HBI, BKJIIOYasd UHAMHKY 7T -MEDHOTO TBEP,A0TO TEJIA.
CoBpemeHHBIN aHaIN3 MOXKHO Haiith B [19] (cMm. Takxke [5]).

O60b11eHre 33,4294 ABYX [IEHTPOB Ha IIPOCTPAHCTBE TIOCTOAHHON KPHUBU3HBI TaK-
ke ObuIo yKazauo B. KiyuIuHroM, mpOMHTErpUPOBABIIIMM 3TY 3339y METO IIOM pas3-
JeseHnst nepeMeHubIx. HesaBucumo sra 3amaya Obista perrteria B pabore (23], rie rak-
ke paccMmarpuBaerca Gosee obinas 3amada, aHaadoruyHas mobasienuio Jlarpamxem
MOTEHIIMAJIA YIIPYTOro B3aMMOMEHCTBYS B 33,424y ABYX [IEHTPOB HA IJIOCKOCTH. B pa-
6orax 7, 27| man 6udypKaIMOHHBIH aHAIN3 331a4UH [BYX [EHTPOB Ha cdepe U ILIoC-
koctu Jlobagesckoro. B kuure (5] aBTropaMu pa3obpasbl BOIPOCH! peAyKIIUE H HHTE-
IPUPYEMOCTH TTPOCTPAHCTBEHHOM 33a9M NBYX LIEHTPOB, & TaKXe IPYyrue HHTErpH-
pyemble U HEHHTErPHpYeMble 32124 MCKPHUBJIEHTION HeOeCHON MexXaHUuKH (BKIOYad
OrpaHWYEHHBIE 3343411 JBYX W TPEX TeJI, UCCJ/IEJOBAHHE TOYEK JIMOPAIMil, TUHAMHUKY
TBEP,IOT0 TEJIa).

lajee MbI IpuBeXeM FBHOE ajirebparmIecKoe BbIPA2KEHHE [1€PBOT0 MHTErPaIa A
060011I€HHON 3378491 ABYX LUEHTPOB, PACCMOTDEHHOH B [22, 23], a Takike yKaxem
HOBBIY aHAJIOT 337]a49K YeThIPEX HbIOTOHOBCKHX ITEHTPOB H 1 T'YKOBCKHUX LIEHTPOB. B
paboTe MBI OrpaHMLMCSH AHAJTM30M TBYMEpPHOH cdepsl S?, X0Td BCe pacCysKlieHHs
6e3 Tpysa MOryT GLITH TepeHecenb! Ha nceszocdepy L2 . Hekoropsie (Ho He Bce)
pe3yJbTaThl 0606IIaI0OTCs Ha, CIydaii TpexmepHoit cdepsr S° (nceBaocdepsr LP).

3. O60bmienne 3ama4n ABYX IeHTpoB Ha S°. Jlomoui-
HUTEJIbHBIN KBA/IPATUYHBIA MHTErpaJl

Ms! 6yaeM TpeinogaraTs, YTO euHMIHAS chepa S? 3a7aHA B TPEXMEPHOM
npocrpanctse K® = {q;, gy, g3} ypasmemuem [d* = ¢f + ¢+ ¢2 = 1, Bexropmn
q=(q1, 92, g3), P = (p1, P2, P3) OyayT 0603HATATE COOTBETCTBYIONMHE M3OBITOUHBIE
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KOODIMHATBI M MMITYJIbChI. EciM BBECTM BEKTOp yrJIOBOro Momenta M = p X q, u
II0JIOXKHUTh Y = , TO HECJOKHO 110Ka3aTh [5, 3, 4], 4To ypaBHeHMst {BUIKEHUSH B IIPO-
u3BoJIbHOM TIoTeHIHase V = V(q) = V(y) MoryT GbITh IpeACTaB/IeHbI KaK raMuIIb-
TOHOBA CHCTeMa CO cKOOKoi [Tyaccomna, ompeensemoit ayrebpoit e(3) = so(3) @, R?

{M;, Mj} = 5ijk1wk7 1M, Mj} = 5ijkMk7 {v 'Yj} =0 (3.1)

H I'aMHJIBTOHUAHOM

H= %(M, M) + V(7). (3.2)

YpaBHeHud, 3agaBaemble ¢ momonibio (3.1), (3.2), mmeoT BUA

: ov .
M=~ x—, Y=vxM
&y

M COBLIAJAI0T C yPAaBHEHUsAMH JBHZKEHNS IIaPOBOI0 BoJdKa B morerunase V(vy) [5, 3].
Ckobka (3.1) saBisieTca BBIPOXKIEHHONW M 00JiagaeT AByMsa DYHKIMAMH KasuMupa:
Fi=M,%), Fy=(v,v) =1. Jna 3amaqu o IBMKEHNN TOIKH Ha cepe HEOOXO-
mvo Fy = (M, v) = (px7,7) =0.

XopouIo M3BECTHO, YTO aHAJIOraMHU HHIOTOHOBCKOI'O M I'YKOBCKOI'O TIOTEHIIAAJIA HA
S? coorsercrBenno Apnserca U, = pctgh, Uy, = ctg?d, p, c = const, rae yroa
¢ oTcuMTBHIBAETCA OT HEKOTOPOro (PMKCHPOBAHHOIO I10JIEOCA Ha cdepe [22, 23).

Pacemorpum morermmas

V = —pyctg by — pg ctg by, (3.3)

rae fiy, flp — WHTEHCHBHOCTH HBIOTOHOBCKHX IIEHTPOB, ¢, — YIJIbI MEXIY pajuyc-
BEKTOPOM YaCTHIBI ¥ PaJRyC-BEKTOPOM % -T'0 TieHTpa. 1loMecTM HbIOTOHOBCKHE I1eH-
tphl B ToukH T, = (0, o 3), 19 = (0, —a, B), @®+ 32 =1, a Takxe g06asuM ATA
obryHOCTH K (3.3) HOTEHIMAn Tpex IYKOBCKHX IIEHTPOB, IIOMEIIEHHBIX HA B3AWMHO
HEPUEHUKYJIAPHBIX 0CAX %—E ci/72 (c; = const), M TOTOJHITETbHBIN KBa/[PATITI-
b1t norermuan C(a’y3—F%42), C # 0, aBisroNImics 9acTHBIM C/Ty9aeM IOTeH A
sa Heinmana. Ha yposre (M, v) = 0 HaxoauM /B€ KOMMYTHPYIOOIHE KBaAPATHIHbIE
no M dyrkuun {H, F} =0 [4, 10]:

2 VI + B + aPF — 2087,
By — ary 1 %+
T = ) = +§‘;12—2“§+
VAR B+ a?yg + 2087y n

1 2 2 1 2 4 2
+ 56271 _273 + 50371 272 + C(&Q’“‘/% - 52'73%)* (34)
2 73
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F =a®MZ2 — 3°M3 + 2a5(V, — Vy)—

. ,
— (8P — o) — 2827 + Bal? + 200785, (35)
M Y3 Y3

TAE by, Mo, €, B, ¢y, ¢y, ¢, C = const, a dysxuum Vy, V, onpeneismorcs
BBIPDAKEHHU MU

Lr — /‘l'l (3’72 + 0/73) . (36)
VA + 8% + 0?93 — 2087y,
to (B — ary3) (37)

V2 = .
VIt + 829 + 0?95 + 2087,

QOyuknus H apiasgerca raMHJIBTOHHAHOM, a I7 3a7aeT MOMOSHHTEJNbHBIA KBaJI-
paTWuHbIN HHTerpaj. Kak oTMeueHO B [5], BOSMOXKHOCTL J100aBJCHHA B 3a1a4y
JBYX 1eHTPOB (3.3) 0;1HOTO I'YKOBCKOI'O TIEHTpPa ¢/Y3 , IIOMEIIEHHOI® Ha JyTe MeyK Iy
HBLIOTOHOBCKWMH TI€HTPAMH, TECHO CBA3aHA C HHTETPAPYEMOCTBIO COOTBET@IBYIOUIEH
TpexMepHoit 3asa4n (T.e. Ha S3 ). JleficTBUTEIILHO, WIeH ¢/v3 , ¢ = const BO3HHKAET
B TPEXMEDPHOM CJIy4ae TpH PeAyKIIHH [0 PaycCy, ¥criosib3yomen MHKJINIecKUi HHTe-
I'PaJI, CBA3AHHBINA C MHBAPHAHTHOCTHIO YPaBHEHUH OTHOCHTEIBHO Bpalenuit (rpymma
SO(2) ), B ITOCKOCTH, IIEPIEHZUKYJIAPHON TIJTOCKOCTH ABYX I€HTPOBE.

Cucrema (3.4)-(3.5) mpHHAIEIKHUT K JTHYBULIEBCKOMY TUILY M MOXKET GbITh Tpo-
HHTErpUpOBaHa B CHePOKOHHYECKHX KOOPAMHATAX U;, Uy, (0 < uy < o, 0 < uy <
3), KOTOpbIE OTPENEeNsiiOTCS COOTHOTUEHIAMU

71 = Urp/(ef),

1= /(02 = uy)(a? + uy)/a, (35)

15 = (8 + 1) — w)/5.

OnHako 0TMETHM HETPHUBHAJIBHOCTD 33/Ja4H T110J1y 4eHHs UHTerpaJios (3.4)-(3.5) umeH-
HO B aareOpauvecKoi (bopmMe, [l pellleHns KOTOpoi HeobxomMo obpamars cgepo-
KOHI4YECKoe Tpeobpa3oBaime,

Kak wam cooburmn A. Ayibyw, 3amaga ABYX IIEHTPOB HA S? (LQ) IIpU TOMOINY
LEeHTPaIbHON (PHOMOHWYECKOH) NPOEKIMK U TI0AXO/AIIero mpeobpa3oBanst BpeMe-
HI MO2KeT ObITH TIpeobpa3oBaHa B OOBIUHYIO 3HJIEPOBCKYIO 337ay IBYX IIEHTDOB.
QnHako Mbl He 00.13,086M J0Ka3aTeI5CTBOM 9TOr0 dakra.
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4. 3ajaua “eTbIpex HbIOTOHOBCKHX II€HTPOB
Ha cepe S?

Paccmorpum morennman Ha cdepe Biga:

Vim = &1 ctg by + & ctg by =
Py TV Y3 B — W3
= 61 A +€2 - 3 (41)
R e e T e e

roe pu? —12 =1, &, &, = const .

OTOT II0TEHIHA COOTBETCTBYET 33,1a4€e ABYX [IEHTPOB Ha cepe, MMEIONIHMX «KOM-
IIJIEKCHbIE WHTEHCHBHOCTH» H DACIIOJIOKEHHBIX HAa PAaBHBIX YAAJIEHHAX OT II0JIFOCA C
KOMILIEKCHO COIPAKEHHBIMH paccTomHuamu (puc. 2). ng ero ne#cTBHTEIHHOCTH
meobxoaumo &, = & . Kak 1 p eBkymmmoBoM ciryuae, morenuuai (4.1) MoxkeT pac-
CMATPHBATHCA KAaK HEKOTODAd AlIPOKCHMANNI 330290 O JBHXKEHHH YaCTHUIBI B TI0JIE
CILTIOLIEHHOTO cheponga B MCKPHBIIEHHOM IIDOCTPAHCTBE.

Cucrema c norenruaiom (4.1) Takxke pasae-
ngercs B chepoKOHHUECKnX KoopauHaTax (3.8)
NPH ¥ CJIOBIH

/3 &« ﬁ

H=1" V7 1— &2’

(4.2)

B koopannarax (3.8) paszenserca Takise 10-
termman V + Vy, , KoToperit (mpu ¢; = 0) cooT-
BETCTBYeT 3ajjade “eThIPeX HElOJBUYKHbIX IIeH-
TPOB —— JABYX MHUMBIX ¥ JBYX BellleCTBEHHLIX,
PACIOJIOKEHHBIX B JIBYX B3aNMHO IIEPIEHIHNKY-
JSPIBIX ILJIOCKOCTAX, NPOXOAATINX depe3 II0JI0C
(cM. pHe. 2), UpH 9TOM, KaK W B CJIydae ILIOC-
KOCTH, IIpA (PUKCHPOBAHHOM PaCCTOAHHH MEZKLy
BEIECTBEHHBIMH I[eHTPAMH PACCTOAHHME MEXK [y

Pic. 2

KOMIUIEKCHBIMH T[eHTPAMH TAaKKe e fBJieTCsl TTPOM3BOJIBHBIM, a OTIpejejleHO Of-
HO3HAYHO C I10MOIIbIO(4.2).
JIerko 110Ka3ath, MTO II0TEHIHUAJIbI

1 .
Ve=5 (X a/i?),  Vw=Cla*d-843), o C=const. (43

MOTYT OBITh (MHTErpHpYeMbIM 00pa3oM) J100aBJIEHBI B 33724y UYeThIPEX LEHTPOB K
OpUBOIAT K OoJlee o0imeil cucreme, pasgenumoil B koopaunartax (3.6). Ilpueesem
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$BHBIN BiI moTeHnuanos V, Vi Vi, Vi B nepemenssix (3.6):

— (pq + #2)\/(01—2 - U1)(52 +ug) + (o — Mz)\/(a2 + uy) (52 — uy)

V )
V. = (& + &)/ ug (8% — ug) +i(€; — E)/u (B2 + uy)
Im Uy +u2 ,
1 _p@-uw) —(Ft+u)”
7 Uy + Uy ’
1 (et - (e )
7% Uy + Uy
T L O il
73 Uy + Uy U; + U

Hec10:xHO TOKa3aTh, 9TO HpH MPEAEILHOM HEPEXode K eBKJIMJOBOI ILIOCKO-
ctir (R — 00) cymmapssiit norennguan V + V5 + Vi + Viy nepexoauT B noTeHrma
Hap6y (1.1). OrmeTsM, 9TO 3TOT mOTeHNHaT, uan gaxe V + Vi, y:xe He MOxKeT
66ITH 060BIUEH O COOTBETCTBYIOUIETO HHTETPHPYEMOT0 IIOTEHIIHAJA 11 TPEXMEPHOH
sagaan (B S3) BeJleacTBHE OTCYTCTBHSA IHK/IHYCCKOTO MHTEIPAIA, XOTA KAz bl U3
rnoreHn#a’IoB V. u Vi, 1o OTIeNbHOCTH JOIIYCKaeT TakKoe obobmmeHue.

5. 3aJada n I'yKOBCKHUX IIEHTPOB Ha cdepe

VYKaxKeM eule OJWH MHTEIPHPYEMbIA BApPHAHT 33/a4 O IBMKEHUH MaTepPHaJIb-
HOM TOYKH B IIOJIE TYKOBCKHX IIOTEHUIMAJIOB ¢;/(7, ri)z, ¢; = const, Ipu KOTOPOM
IYKOBCKHE T€HTPhl IPUTSKEHust T, , ¢ = 1,2,...,n, IIOMEIeHbl He 110 B3AMMHO Op-

TOrOHABHBIM OCSIM, & MPOM3BOJILHO PacIo/aratorTcs Ha o 1HoM 3kBaTope [10] (puc.3).

Puc. 3.
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['aMMJIBTOHMAH U JIONOJIHUTE/bEBIH uHTerpat npn (M, ) = 0 mmeror Buf

H= Z (bf § 7 =+ U(7), (5.1)

F =M+ Z fn, pors (5.2)

B sbipaxenuu (5.1) npucyrcreyer npoussonbHag dyukiug U(7s) , KoTopas 060-
3Ha49aeT XobaBJienrie IPOU3BOJIBHOIO «IEHTPAJIBHOIOy I10J1s, IIEHTP KOTOPOI'0 PacIo-
JIOXKEH Ha TEePIeHIUKYIdpe K MJIOCKOCTH I'YKOBCKMX HOTeHnuasoB (puc. 3). B wacr-
HOCTH, Ha II0JII0C MOXKHO IIOMECTHUTD ellle OHH I'yKOBCKUHU eHTp. 13 aroro ciemyer
(cMm. [4]), uTo MHTErpEpyeMa Tak:ke IPOCTPAHCTBEHHAS 3a,1a4a O JBHKEHUH TOYKK
Ha TpexmepHOit cchepe S? Moy meficTBHEM T IYKOBCKHX IEHTPOB, PACIOJIOYKEHHBIX
Ha 9K BaTOPE.

OTMeTnM, UTO €BKJIM/OB aHAJIOI PACCMATPHBAEMON 337a4l TPHMBHAJEH — pas3-
JleJIeHre BO3MOXKHO y2Ke B TeKapTOBBIX KOOPAMHATAX (IMoJIydaercd n JIMHEHHBIX 0C-
nHLIATOPOB). IIpH 3TOM pacmoJioXkeHHe TYKOBCKHX LEHTPOB Ha IIOCKOCTH R? mpo-
U3BOJILHO. B KpUBOJIMMHENHON cuTyaluu, y>ke Ha IBYyXMepHOit cdepe, 3a1a<a O JIBU-
YKEHUU B II0JIe TPEX TPOU3BOJIBHO PACIIOJIOXKEHHBIX I'YKOBCKIX IIEHTPOB HE FBJISIETCS
WHTErpHpYeMOR. DTO II0Ka3bIBAIOT YUCJIEHHbIE 3KCIIEPHMEHTBI, AEMOHCTPHPYIOIINE
xaoruteckoe noeejenue. Kpagparnuneiis unrerpas F B (5.2) cBa3aH ¢ pasjejeHu-
eM 3a1a4M B chepHyuecKux KoopjmHarax (6, ¢) . JelcTBuTeNbHO, raMHUIIbTOHNAH H
MO>KHO 3aITHCaTh CIIEAYIONUM 00pa3oM:

2

1 p 1 ¢
H=g|pp+ -5 | +5) —5—0 +U(9) =
2 \P0T Gin%g Qé;sin“GCOSQ((p-—cpi) (6)
1 1" ” c
2 2 i ’
=pPht —5= + Y ———| +U(0), (53
PR ;cosz(so—%) o 153

rae 6, ¢ — KOOpAMHATBHI JABIDKYINEHCA MaTepHAJIbHON TOUKH, a (o, 3aJaeT I0JI0-
JKEHHMe i-I0 T'YKOBCKOIO IeHTpa Ha KkBaTope (puc. 3). BbipazkeHue B KBaJPaTHBIX
CKODKax mpeacTaBsisgeT co00il HOIIOJIHUTEIbHBIH HHTErpaJl JBHZKEHH 5.

ITocsie Hanmcaumsa »Toit paborsr HaM crago ussecTHO, uro C.T. CamaToB He3aBu-
CHMO TIOJTy 4TI 6osree OOIIIe pe3ysbTaThl IO WHTErPUPYEMOCTH 33aH INEeCTH IeH-
TpoB Ha S? (K ieTbIpeM yKa3aHHBIM HaMH IIeHTpaM J00aBJIEHb] JBa HOBBIX MHMMBIX
LIEHTDA).

Agrops Onarogapar A. Anbyn u B.B. KozstoBa 3a mosesubie obcyxnenus. Pa-
6oTa BBIITOJIHEHA B PAMKax ITporpaMMbl «I'ocyqapcTBeHHAS MOIePIKKA BETYIINX Ha-
y4uHBIX KOJi» (rpanT NeHIII-36.2003.1), npu noaaepxkke Poccuiickoro chorma dyn-
JaMEeHTa/IbHBIX HecnenoBanuii (rpamr Ne04-05-64367) u dporaa CRDF (rpant NeRU-
M1-2583-MO-04).
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Generalized problem of two and four Newtonian centers
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The paper considers integrable spherical analogs of the Darboux potential, which appears
in the problem of planar motion of a particle in a field of two and four Newtonian centers.
The obtained results can be useful in constructing a theory of motion of satellites in the
field of an oblate spheroid in constant curvature spaces.
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MHEPIMAJIBHBIE CUCTEMBI B COEPUYECKOM
[TIPOCTPAHCTBE

I.E. Bypiasukos

Huoicezopodexuti 2ocynusepcumem um. H.H. Jlobauescrozo
Huorcnuti Hoszopod, Poccus

Tpexmepras chepa gBiIsieeTCH METPIIECKAM MHOT006pa3nem rpynnst SUJ; 1 BEKTOPHBIE I10-
J1g Ha cdepe, OnpenessIOmye JeBble U IPaBble IPYIMIOBbIE CABUTH, OJ{THOBPEMEHHO FBIAIOTCH
nonssmu Kusumrara w reonesudeckumu IoTokamu (z2eomoxamu). 1IoTok cBOGOAHBIX TaCTHLL,
PaBHOMEDHO JBHKYIUMXCH BAOJb OOHOTO M3 3THX IIOJIEH, peal3yeT OBHXKYIILYy¥OCSH CHCTEMY
Ha TpexMmepHOH cdepe, COXPAHAIOIIYI0 METPHKY, OJHAKO B 3TOH CHCTeME BO3HHUKAET IIOJIE
BpamleHus, OTVIYalomee IBMXKYLUIYIOCsH CHCTEMY OT IroKoseiica. Iloctpoerrsie Ha reoToKax

OITHOPO/JHbIE 3 IEKTPHUYECKOE MM MAarHUTHOE IOJId OKa3sIBAX)TCA HECTanNHMOHADHBIMU.

1. NHepumajbHBIE CUCTEMBI

150 ster Hazazx B sieknuu 10 uroHa 1854 r. Puman (1) BeLABHHYII TOMyIIeHHE, HTO
Hallle TPOCTPAHCTBO He 0093aHO0 OBITH IIJIOCKHMM, a MOXET ObITh IIPOCTPAHCTBOM ITO-
CTOSIHHOW TIOJIOXKUTEJIBHON WM OTPHUIATEJIbHON KPUBU3HH. HeobX0MMMOCTh IOCTO-
SAHCTBA KPUBU3HLI OH 00OCHOBBIBAJI HEOOXOJMMOCTBIO IBUXKEHUS W II0BOPOTA B IIPO-
CTPAHCTBE MATEPUAIbHBIX TeJI, 00A3aHHBIX 00,131aTh TAaKOil K€ BHYTpPEHHENH KpH-
Bu3HOK. Ha cOBpeMEHHOM c3bIKe — OH BBIABHUHYJI TPeOOBAaHUE OJHOPOILHOCTH U H30-
TPOMHOCTY MPOCTPAHCTBA U II0KA3a,J1, ITO OHO MOXKET ObITH HE TOJIBKO €BKJIM/IOBBIM,
IUIOCKHM, HO I IIPOCTPAHCTBOM IIOCTOSIHHOM IT0/IOXKHMTEJILHONK HJIM OTPUIIATE/IBHON
KPHUBH3HEL.

Ho B TakoM mpOCTPAHCTBE HCUE3aeT KJIACCHIECKOE MOHATHE UHEPUUAALHBIT ClU-
cnesm KaK IBIKYIIUXCA APYT OTHOCHUTEIBHO APYTa PABHOMEDPHO M ITPSIMOJIMHENHO.
Omiako HEOOJIbIIIAS eCTeCTBEHHasT MOAMUKAIWUs IIOHITUSA “UHEPUUAALHAA CUCTNE-
Ma” 1103BOJISIET BOCCTAHOBUTH MHOI'000pa3ue MHEPIHUAJILHBIX CHCTEM B ChepUIecKOM
mupe Pumana. B npocTpaHcTBe, gBISIOMINMCA TpPeXMEPHO# cdepoii, Takke cCyiiie-
CTBYeT MHOXKECTBO IIPOCTPAHCTB, ABMXKYIIHMXCS IPYT OTHOCHUTEJILHO JIPYra WHEPIIIi-
AJIbHO 10 OTHOUIEHMIO K 3aKOHAM KJIaCCHYecKo¥ mexaHuki. OmHaKO0, XOTSd MEeTPHUKA
[IPOCTPAHCTBA B IBMXKYIUEHCA ¥ HEMOMBHXKHOM CHCTEMAX OMHAKOBA, 3aKOHBI M-
HAMWKWM B MHEPIMAJbHO IBMIKYIIENHCsi TPeXMEPHON cdepe OTINYaI0TCa OT 3aKOHOB
TMUHAMHKHK TIOKOSIIIIENCS, TO €CTh BBIAEJIHUTH aOCOJTIOTHO IIOKOAIIIEECH IPOCTPAHCTBO
MOXKHO TI0 MEXAHWIECKHUM SBJICHHSIM.

B kmaccuueckoit MexaHHKe CBOOOJIHOE ABHXKEHIle B PUMAHOBOM (TPEXMEDHOM )
IIPOCTPAHCTBE €CTh ABHXKEHHE I10 T'e0/Ie3UYeCKOM.
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ITpocTpaHCTBO MOACHO MAMEPUAAUZOBATML, TIOMECTHB B KAXKAYIO €r0 TOUKY IIbI-
muaKy (B mpegene — GeamaccoByio). Ilokosiumecss cBoGOgHBIE ITBLIMHKA OTMeYa-
I0T TOYKH IIPOCTPAHCTBA, a PACCTOAHHUS MexK)ly OECKOHEYHO OJIM3KMMH IIbLLIHMHKA-
MH OIPEREJISIOTCA METPUKON IPOCTPAHCTBA MJIHM, HA0O0POT, ONpedeastom Mempuxy
npocmparcmaa. ECiau B eBKIHIOBOM IIPOCTPAHCTBE 3TUM HaCTULAM IPHAATH OIUHA-
KOBbIE CKODOCTH, TO PACCTOAHUS MeKAY HACTHMI[AMU COXPAHSIOTCA M OHM B JIE0DOM
MOMEHT BPEMEHU Peann3dyioT eBKJIMI0BO TpocTpaHCcTBO. CucTeMa, CBI3aHHAS C ITU-
MH YaCTHIIAMH, U SBJISETCA UHEPUUAALHOU CUCTEMOU — BCE ee TOYKH IABHXKYTCS II0
WHEPIUH.

IIpuMeHHM 3TOT XKe MEXAHU3M MAMEPUAAUIAYUY NLPOCTPAHCTGEA K TPEXMEPHOH
cdepe. Ecnu moctpouts Kakoe-To 1o.J1e Kuiiunra i CIBUHYTH 9aCTHYIKH BI0JIb 9TOIO
110J11, TO PACCTOAHHSA MEXKY HMMH — METPHKA, peaJsn3dyeMad 110jIeM 3THX 4aCTUUeK,
— He U3MEHHUTCHA, OCTAHEeTCA TOH K€ B BbIOpaHHOI CHCTeMe KOOpIHHAT.

2. Iloaa KwuuHra TpexMepHOii cdepsl

Kak n3Bectro, Tpexmepuas cdepa sBIFETCS: METPUATIECKIIM MHOI000pa3neM rpyi-
st O(3), a ogHoNapamMeTpuyuecKue M0ArPyIIbi ABIAIOTCA TE013HIECKIUMI TIOIAMY
(2], o3TOMY CBOGOTHBIE YACTHYKH CO CKOPOCTSIMH, IPONOPLUAOHATBHBIMU KOMIOHEH-
TaM KaKoro-to mnojs Kuinmura, Oy ayT BCe BpeMs MEPEeMEIIaThCA B0JIb 9TOrO MOJI,
peasnsys B JTI000fi MOMEHT TPEXMEPHYIO Chepy.

Pacrumem meTpuky cdeprl B yriax Jiizepa:

?”2 . .
di? = Z(dﬁ2 + dp? + dip® + 2 cos ¥ dp di).

ITecTs BekTOpOB Kusimunra 3Toif MeTpUKH COOMPAIOTCA B ABE KOMMYTHPYIOIIHE
MeX 1y coDOIt IpyImbl II0 TPH BEKTOPA:

& 3 3
550 :ZaaXa+Zba77a:
qu/} a=1 a=1
sin @ cos Y 0
ax cos i ctg? +az | —sinpctgd | +as § 1 |+ (2.1)
—cosp/sind sin ¢/ sin o 0
sin - cos Y 0
by | —cos¥/sind | +by | sintyy/smd | +by | O
cos ¥ ctgd —sin ) ctgy 1

BekTopHbIe TIONISA X4, W Tl ; SBIAIOITHECT OTHOBPEMEHHO I1os1aMi KuiumHra u reo-
Je31YeCKIMY 110TOKaMil, Ha30BEM JIEBBIM H IIPABBIM 2€0TOKAMU.
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BekTopE! X}, Ha30BEM BEKTODAMU .A€80% 2PYNNbL, & 1), -~ BEKTOPAMH Nnpasoti 2pyn-
not. BeKTOpHI, pUHAIIEXKAIIME OIHON TIpymme, 6ymeM HAa3bIBATH 00HOCIMOPOHHUMU
260MOKAMU, & PABHBIM — PA3HOCTNOPOHHUMU 2€0MOKAML.

2.1. KomMmyTaTopbi m pOTOPBI

BHyTpu Ka:k a0t Tpynnbl KOMMYTAI[MOHHBIE COOTHOIIIEHHST TPeX 1oJ1eil n3oMopd-
HBI KOMMYTAITMOHHBIM COOTHONIEHUAM TpymlmHl Bpariernit. [losam Kumnnara corro-
craBisioTca gudgepeHiiHa/IbHbIE OIEPaTOpb! JIu, depe3 KoTopble yI00HG 3allHChI-
BaThb KOMMYTaIIMOHHbIE COOTHOIIIEHUS MEX Ay 1osiamu Kuimara:

i 9.
& i’

[Xar Xo] = €lapy X3 Yo, Yo = €lapy Vo

.0 .
KXo =X YaZﬁ&@; Xa, Yg] =0;

2 2
rotxs = ——Xxg; rotns=—_1g (2.2)
roe r — paidlnyc C(i)epI/I‘IeCKOFO IIPOCTPAaHCTBa, a E{QBA/] - 8,6CO.HIOTHI)II>1 AHTHCHMMET-

PHYHBIA TEH30D.

2.2. Teopemsbl 0 Cymnepno3uInNM

Ypaeuenusi Kuniunra JiuHeRHbBI 110 110J19M # Jiro6ast JiHeiiHad KOMOMHAIMS ToJIed
Krsummara ects Tak:ke nosie Kusurmara.
VpaBHEHHUSI T€0,1€3HYECKOr0 ITOTOKA,

wViul =0 (2.3)

He/1MHeHHEl 11 CYIepIIO3HIEA 1oJtell €3 y»Ke He SBJIAeTCA Te0/Ie3HYeCKHM IT0TOKOM.
[ycrb mverorca nBa reoroka ' u v*. FIx cymma ecTh BekTop Kummuara. Byzer Jin
CYMMAapHBI [TOTOK T€0e3UIECKAM

(' + Vi (W +07) =t Vi 0" Vil 40t Vil + 0t Viwd = ot Vil 4t V.

Tak Kak reoTOKy siBJIGEOTCH I01siMu KuiumnHra, T0 Ujgp = —Ug;; U
Vi =%y = = uip;
i Y ki / ik
Vi) + 0t Viwd = —* (@ v + vl uig) = =78 Vi (Wi ) = =8 8 (ui ).

Byner 1 cymMMa T€OTOKOB ABJIATHCA TEOTOKOM, ONPENE/IdeTCs MX CKAJIAPHBIM TIPO-
W3BEJIEHUEM:
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Teopema 2.1.. FEcau cxanaproe npoussederiue 08YT 2e0MoK08 NOCMOAHHO MG
8CEM MPOCTMPAHCNBE, MO UL CYMMA MAKNHCE ABAAEMLHA 2€0MOKOM.

CkajispHble IPOU3BEIeHU T€OTOKOB BHYTPHU Ka KON TPYIITBbI TIOCTOAHHBI:
i 5 . i _ 5
(Xt Xig) = baps (M6 Mig) = dap-

Orcroma u u3 Teopembr 2.1. BBITEKAET

Teopema 2.2.. Cynepnodutgus 00HOCTNOPOHHUL 2€0MOKOE ABAAETNCA 2E0MOKOM.

Ipsamoit mpoBepKoit y6exxgaeMcs, UTO CKAJIIPHOE 1IPOU3BE IeHNE JIFOOBIX JIEBBIX U
[IPABbIX F€OTOKOB HE 9BJISETCS KOHCTAHTOH. ITO CBA3aHO C TEM, YTO IIPH CyNEPIO3H-
IIMH F€OTOKOB MBI MOXKEM PaCIOPAKATHC JIHIIb LECTHI0 KOHCTAHTAMHU, 8 MHOXKECTEBO
3HAYEHUI! CKaJIAPHOrO IIpOK3BeTeHud Ha cdepe OecKoHeyHOMEPHO. VICKII01eHneM aB-
JISETCH TTOCTOSTHCTBO CKAJIAPHBIX IIPOU3BENEHHH O HOCTOPOHHUX MEOTOKOB.

Orcroma cremyer

Teopema 2.3.. Cymma A100WL 46020 U NPABO20 2E0MOKOE ABARLMCA NOACM
Kuaaunea, 10 He ABAAEMCA 2€00€3UNECKUM NOMOKOM.

3. /IBmxkyuiuecd cCUCTEMBbI

Ecrn B xaxmoit Touke cdeprtieckoro mpocTpaHCTBA TOMECTUTS IIBLIMHKY U KaXK-
JOH TaKO# IBUIMHKE IIpHUAaTh CKOPOCTD, IIPOIOPIMOHAJIBHYI0 OJHOMY M3 II10J1eH reo-
TOKOB, TO BCJIEACTBHE I'€0Ae3UIHOCTH TaKOr0 I10J1d, ABUraACh 10 HHEPIIUY, JACTITIKA
6y IyT ABUIATHCA BJIOJB 3TOTO IOMA M CAMO II0JIE CKOPOCTEN C TE'I€HHEM BpEMEHH
MEHATHCA He Oy geT.

Tak Kak Takoe 1oJie CKOpocTeit apiidercd 1oJieM KHMHra, To pacCTOAHNA MexK-
Iy TIBLIMHKAMU MEHATHCS He Oy HeT: B KaXKJ(bIif MOMEHT BpEMEHU MHOKECTBO IIbIJIMHOK
peasiu3yeT TpexMepHyio cdepy.

ITosTomy gJ1g peaim3ariuy UHEPILIMAJIBHON CHCTEMBI — ABH2KYIIlelicA B cebe Tpex-
MEPHOi1 cdepb! — HY2KHO OpaTh CYHNEPIIO3UNNI0 OTHOCTOPOHHHX T€OTOKOB.

OmHaKo MO CBOMM MEXaHNM49eCKHM CBONCTBAM TaKad IBHKYINAACH CUCTEMa, OTJIH-
JaeTcda OT 1oKodlleiica. B neit MeTpiika, onpesengemMas IBIKYIIHMUCA IIBLIMHKAMI,
Takad Ke, KAK U HEIIOHBIMKHAS — METPUKa TpexMepHO# cdepsl, U 1mojia Kunnusra
1103TOMY Te Ke caMble. OIHAKO B ABHXKYINEHCA CHCTEME TOJBKO TPH I'e0TOKA ABJIfA-
TOTCA OTHOCTOPOHHUMH €O CKOpOCThIO. BekTopsl Kuanunra Apyro#f rpymmbl y:ke He
ABJIAIOTCH T'€0Je3UIEeCKIIMH, ITO ONPELEJIUMO IKCIIEPUMEHTAJIBHO.
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4. DjekTpuyuecKoe M MAarHUTHOE MHOoJis Ha S3

3amedaTesbubie grddepernranbEbe 1 anredpaniecKie CBOMCTBA Mre0TOKOB 1103~
BOJIAIOT PACCMOTPETh HETPUBHAJIBHLIE 33Ja4d 9JIEKTPOIUHAMUKH C OZHOPOIHBIM
3JIEKTPHUYECKUM M MATHUTHBIM TOJISAMU. B €BKIMIOBOM IPOCTPAHCTBE OUEHb YACTO
HCII0JIB3YET JJId PACCMOTPEHUS TeX MJIX MHBIX 3JIEKTPOAMHAMUIECKUX IIPOTIECCOB NO-
CMOAHHBIE, 00HOPOOHbIE JTIEKTPHIECKOE HJIM MAaIHUTHOE II0JId. BO3MOKHBI M TaKue
T10J151, €CTH TTPOCTPAHCTBO ABJIAETCA TPeXMEPHOU cdepoit Sz 7

IToste, ITPOMOPITHOHA/TBHOE T€OTOKY, ABAeTca ogHopoaubiM (V= x* wm Vi =

n):

E(r,t) =e(t)V; H(r,t)=h(t) V.

VYpaBuenusi MakcBesljla B BaKyyMme

lf‘lﬂot}a:o, divH =0,
C

1.
SE-rotH=0, divE=0,
[

C y¥eToM COOTHoIIeHHs (2.2) jyuis poropa mosis Kuutnnra mpuBoaar K 3aBACKMOCTH
OT BPEMEHM aMILIUTY/J, 9/ IEKTPUIECKOrO U MAarHUTHOTO II0JIE:
. 2c . 2c
h+—e=0; eé——h=0.
T r
. 9 . 2c
htw?’h=0; é+uwle=0, w=—".
T
Bcsin B Haua/IbHBIH MOMEHT MbI 33/1aJ1i OJHOPOJHOE 3JIeKTpHUIecKoe mone Eqg, To ¢
TEYEHHEM BPEMEHM OHO TIEPEKAYMBAETCS B MATHUTHOE 110 TAPMOHUUECKOMY 3aKOHY
¢ 9actoToil w = 2 ¢/r . llpu 9TOM 3HEPrHA 9JIEKTPOMATHHUTHOTO I0JI HE MEHHACTCH:
E? + H? = Ey2.
TIpu crpemitenin pamityca cdepb! K 6eckonewHocTH mepuon kostebanuit 1' = 77 /c
CTPEMHATCH K GECKOHEUYHOCTH — HPOCTPAHCTBO CTAHOBHUTCA €BKJIMIOBBIM, & IIOJIFd CTa-
IIOBATCA CTATHICCKHMIL.
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Inertial systems in the spherical space

D.E. Burlankov
There are two three-parametric sets of the inertial systems, constructed on the Killing
fields, if the space is a three-dimensional sphere. These fields are the geodesic flows at the
same time. Their differential and algebraic properties are studied in this article. In the
moving system only one set (the one half of all Killing fields) are the geodesic flows. There
is the way to distinguish the absolutely quite system from moving ones.
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GLOBAL TIME AND RELATIVITY

D.E. Burlankov

Lobachevsky Nizhny Novgorod University
Nizhny Novgorod, Russia

The Global Time Theory (GTT) is a next step in the development of the General
Relativity (GR). The GTT differs from the GR conceptually, but preserves 90% of the GR
mathematical structure and reproduces its main results. The dynamics equations of the GTT
are derived from the Lagrangian with nonzero gravitation Hamiltonian. Detailed solutions
to the cosmic vortexes are presented. They satisfy a weak principle of superposition and do
not have an analog in the GR. The virial theorem of space is fermulated and proved. The
GTT allows to formulate a quantum theory of gravitation on the basis of the Schroedinger
equation, as it is done for other fields. The quantum model of the Big Bang based on the
GTT is demonstrated.

1. Introduction

The most recognized theory of space, time and gravity today is the General Theory of
Relativity (GR). It treats space and time as a four-dimensional repository which properties
can be modified according to the Einstein’s equations by the inserted matter. As in the times
of Mach, the basis of cosmic dynamics is here a “tangible matter”.

Astrophysical observations of XX century showed that dynamics of galaxies and heaps
of galaxies cannot be explained by theories based solely on gravitational interactions of
visible stars. In order to explain the observed anomalies such notions as “dark matter”, “dark
energy”, massive “dark holes”, etc. were introduced but current theories have not been able
to accommodate them yet adequately.

GR as the space-time theory suggests only small corrections to the Newtonian dynamics
(at its scale). An alternative theory of the space and time, the the Global Time Theory
(GTT), is introduced here. The GTT differs significantly from the GR in physical postulates
it is based on, but preserves 90% of the mathematical structure and main results of the
GR. Importantly, the description of the cosmos dynamics, and construction of the quantum
gravity are essentially different in the GTT from ones in the GR.

2. The Global Time Theory

In the GTT time is absolute. [t flows equally, always and everywhere, and is itself the
measure of an equality. The development of the Entire Universe occurs in this global time.
The space has three dimension, is Riemanian, and its metric tensor ( 7;; ) can depend on
space coordinates and time. Points of the space are linked with the global time absolutely.
The frame of reference in which coordinates of space points do not change is called the




76 Proceedings of  BGL-4

global inertial system. The inertial system allows arbitrary tree-dimensional transformations
of coordinates Z*(z7) (that do not depend on time).

The coordinate transformations that are time-dependent lead to the global non-inertial
system of observation. Meanwhile the time remain global. In the non-inertial system the
vector field of absolute velocities V* arises, although it vanish in the inertial system. In the
transformation of coordinates, the V*-field is transformed as a gauge field:

0%t 03 L O0xt ozl

= fYz,t); Vi= YT g'chk; Y = Ak (2.1)

2.1. The covariant derivative over the time

We will denote the time derivative in the inertial system as D, and call it the covariant
derivative over the time. By the rule of the composite function differentiation

OF OF 0zt OF _ . 0OF

p=d0 om0 07 , 2)
Dl =rtam o Y (2:2)

what determines the covariant derivative over the time of a scalar fleld (action, eikonal) in
an arbitrary frame with global time.

The structure of covariant derivatives over the time for tensors contains additional terms
in the form of the Lie-variation, that are generated by the transformation of coordinates

dz' = —V*dt - for returning to the inertial system.
For a tensor of an arbitrary rank
A 0 1 71 MyS 8,1 s s
Dy Q3 = ank ~ViQik + V3Q%k + ViiQjs + Vo Qs (2.3)

Especially important for the theory is the covariant derivative over time of the metric

tensor: 5
g;] + Vig + Vi (2.4)

Dy 75 =

2.2. Action and dynamical equations

In the GR, space plays a rather passive role. In contrast, in the GTT, the three-
dimensional space is the dynamic field, relative to which there exists an absolute motion, or,
on the contrary, there exists a field of space velocities in a given system of coordinates. The
equations of motion are derived from the variation principle. The Lagrangian is as usually
presented as the difference between the kinetic and potential energy. Introducing the tensor
of the space deformation velocity

1 1
pig = 5= Deyig = o (g + Vag + Vi), (2.5)

we can represent this action as preconcerted with the Hilbert action in the GR:

ct i g j )
S= m,/(ﬂg i = (1) + R)\/7 ds it + S, (2.6)
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where S,, is the action of enclosed matter, which adds to dynamic equations the energy-
momenta tensor components. The absolute velocities V¢ are present only in the kinetic
energy term.

By introducing momenta

™5 = Vs = 05 p),
and varying the action over the six components of the spatial metrlcs, we obtain six equations
for the dynamics of the system:

i =bk+ Y Gi + 7 (T~ V'), (2.7)

where bj- is what we call the self-tensor current
B = 3 L (bl — ) — 0,V ) + Ve g -V (28)

G;- is the Einstein’s tensor of the three-dimensional space, and 7§ are components of the
tensor energy-momenta of the enclosed matter, which determines the exterior tensor current.

The variation (only the kinetic part of action) by three components of the field of absolute
velocities gives three equations of constraints:

; 8k
Vim = Vi T} (2.9)

The Hamiltonian differs from the Lagrangian only by the sign in front of the potential

component of energy:
ct mind — (x8)?/2
H = J ¢ : —~R dsz. 2.10
67k / ( S By ) dse (2:10)

Its unique feature is the non-fixed sign, what leads in particular to the possibility of such a
phenomena as Friedman cosmological expansion.

2.3. The own time of the moving body

Similar to the GR, the GTT includes the special relativity. At the level of the global time,
at which the development of the Entire Universe occur, for the moving observer, there exist
its local frame of references and local time. All phenomena in the moving system develop in
this local time which can be expressed through the square of absolute velocity

dr = dt \/1 iy (@ = V4 (@ — V7). (2.11)

This expression can be represented in four-dimensions by combining the time and space
into a unified four-dimensional manifold with the metrics

goo =1 =5 V'VI gos =y V7 gi5 = —vij. (2.12)
The reverse metric tensor of this four-dimensional manifold is
00 _ 1.
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The first equation here )
g% = 1. (2.13)

is of great significance. This is the main structural relationship in the GTT, analogous to
the Minkowski metric, which is the main structural relationship in the special relativity.

2.4. General Relativity

If there is a four-dimensional metric g, in an arbitrary four-dimensional space with
coordinates %, a:= 0..3, the variable 7 must be determined for the reduction to the global
time, in order for the main structure relationship (2.13) to hold true. We must transfer the
metrics component ¢°° by rule of tensor transformation:

aB 07‘ 07’

00
= =1. 2.14)
g 9 G 5B (2.14)

This differential equation turns out to be the Hamilton-Jacoby differential equation for free-
falling bodies (laboratories), the common time for which is 7, which is the global time.
Thus the equivalence principle has a place, but, in contrast to the GR, the time of the
inertial system exists not only for a local frame, but also for an infinite number of frames in
entire space.
For example, the Kerr’s metric [4] in the global time has radial and angular components
of the absolute velocity field:

9 0 M S o2
Ve 2aMr VT__VZ;Wr(T + a?) (2.15)

—— 5 ,

W P

where
0* =12 +a%cos’);, w= (7’2 + a2)p2 + 2 M ra? sin® 1.

{(p7)* WL og . ‘ ,
L) i yog = pz; ~vaz = — sin® ¥; V= p2 sin o (2.16)

has singularity only at p*> =0.

2.5. The energy-momentum tensor of the space

The GTT differs mathematically from the GR only by one equation: since the main
structural relationship (2.13) ¢% = 1 prohibits variation of this component, the determined
by this component variation tenth Einstein’s equation is absent in the GTT . As a result,
the difference

T 4
-2 ;gfo = SF/Tk Goo ~ Too = p; (2.17)
is nonzero. In tensor terms we will denote this difference as the difference tensor:
ol
0z = P '3 —T[;, (2.18)
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and as a consequence of (2.17) _ '
00 = p; 0, =pV" (2.19)

Since G§ and T§ are subject to the Hilbert’s identities, the difference tensor 63 is

also subject to them:
Vb5 =0, (2.20)

thus (2.19) has the form of the energy-momenta tensor of a dust matter. But if we want
to model the GTT in the GR by means of dust, as a result of a non-fixed sign of energy
density, the possibility of a negative density of dust in the GR must also be considered.

3. Solutions

The most essential difference between the GTT and the GR is the nonzero Hamiltonian.
The dynamic equations conserve the Hamiltonian density, and due to its non-fixed sign,
partial solutions with all-around density of zero are possible. These exist also the GR
solutions, which comprise a subset of the GTT solutions.

Further we describe a small set of the GTT solutions, which illustrate a solving
methodology as well as the similarities and differences between the GTT and the GR.

3.1. The Spherical Universe dynamics

The simplest model is a three-dimensional sphere with time-depending radius:
di* = r*(t) ds3,

where ds3 is the metric of the three-dimensional sphere with a radius of equal to one.
For three-dimensional sphere with radius 7, the scalar curvature is

3
RZ_S’ ﬁ:TS.

r

The kinetic energy is proportional to

and the Hamiltonian has a negative sign:
H=-3r(#*+1). (3.1)
The Hamiitonian conservation leads to a differential equation of the first order:
~H =37 (% +1) = 3T

which is the Friedman’s equation, that has a cycloid solution. In contrast to the classical
formulation of the Friedman’s problem, this solution is a vacuum one, without matter, and
Tmag 1S an integration constant independent on the matter density.
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3.2. The field of the spherical mass

The inertial system is dynamical, but in global time there exist solutions, that are static
from the point of view of some noninertial system.
In a spherically symmetric case, the space metric can be transformed to

di? = dr? + R*(r)(d9? + sin® 9 dip?),

and the field of absolute velocities is radial: V"= V(r) . Only the radial constraint-equation
is nontrivial:

o2
Vi =-R" =0,
T

from which R ==, and the space turns out to the flat one.
In dynamical equations g}, g5 = g3 are non trivial, but if the first equation is satisfied,
then the second one is satisfied automatically as a result of the Hilbert identities.

VEervi+V) (rv?

1
q = —
1 2 72

(3.2)

In vacuum ¢} = 0, from which
rV2=const=2kM >0,

where k is the gravitational constant, and M is the constant of integration, which can be
treated as the mass of a central body. This constant must be positive, whereas in the GR
the positive sign of mass is a problem.

The field of radial velocities

2kM
r

VT‘:V::-

leads to the four-dimensional metric

ds® = (1 - ?-}‘}5/[—) ¢ dt? + 2V/M dtdr — dr? — r*(d9? + sin? 9 dp?). (3.3)
rc r
In 1921 this metric was obtained by Painlevé [3] by transformation of the time variable
in Schwarzschild [4] solution of the GR. Painlevé’s attention was attracted by the simplicity
of the space section t = const, which turned out to be a flat Euclidean space.
The reverse metric of this space have ¢ =1.

3.3. The Vortex field

The problem of space vortexes has no an analog in the GR and is the specific problem
of the GTT.
The metric is stationary, axially-symmetric, and thus can be transformed into

dI? = gw(r?) (dT‘2 472 d292) 472 sin? g d<,02. (3.4)
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The absolute velocities field is also dependent on 7 and ¢, and is the vortex field
V¥ = Q(r, z) . The kinetic energy is given by

2
,_ € 2, 1 42 4 ;.3
T = ok /(Q,,ﬂLp— Q,.@) r* sin® ddrdd dp (3.5)
is determined exclusively by the vortex field 2 and is independent of the metric function
w.
The unique nontrivial constraint for V¥ in the absence of current yields the equation
for V¥

4 1
err +; Qﬂ‘ +T_2 (Q:1919 +3 Ctg‘ﬁ Qﬂ9 ) =0. (36)

Note, that this second order linear differential equation is independent on the metric
function w(r,¥).
The equations for the metric determine the derivatives of the function w:

- g (5 -r2Q7 —2ctgdrQ, Q) sin®o;

2
Wy = TQ— (ctg? (r?9Q,2-Q3) —2rQ,, Q) sin* 2. (3.7)
The energy density now is expressed solely trough derivatives of €2:
r?c? oge 2y i3
N S (r Q.2 +Q,5) sin” ¥, (3.8)

and the kinetic energy is exactly four times smaller. This is the result of the space virial
theorem.
The full energy in a given region B without external sources

Ep =27 / e/ydrdd (3.9)
B

is positive and reaches a minima in the equation (3.6) solutions.

3.4. The space virial theorem

Denoting 7% = 7, the sum of equations (2.7), in absence of external sources (for proper
gravitation), gives

1
T+ 0,(Vom) = 3T ~ SR\F =37+ U, (3.10)

where T and U are the densities of the kinetic and the potential energy, respectively.
The space virial theorem can be applied to the almost stationary fields in space, on the
boundaries of which there is no current flow, V™ = 0. Averaging (3.10) over time, we obtain
the relationship between the average potential, kinetic, and total energies:

U=3T, E=T+U—4T. (3.11)

Under the aforementioned conditions, the kinetic and total energies are positive.

All conditions for application of this theorem to the given task are satisfied.

Determination of the kinetic energy requires knowledge about the field of absolute
velocities in a given region. This information may be obtained from visible stars. The virial
space theorem allows calculation of the full energy.
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3.5. The weak superposition principle

The main part of the vortex problem is to solve the linear differential equation (3.6).
Afterwards, equations (3.7) determine the metric function w(r,).

Although the overall problem is nonlinear, the first (main) part — determination of the
vortex field Q(r,9) — is linear and subject to the superposition principle.

Thus, any field Q can be represented as the superposition of some basic solutions.
However, equations (3.7) for finding the field w(r,?¥) contains the square of the field Q
derivatives. The solution as a whole is not a superposition of partial solutions.

3.6. Multipole solutions

The differential equation (3.6) is homogeneous along radius r , thus its common solutions
can be found in the form of a power series

o . B .
Q{r,9) = Z (Al 4+ ﬁ) Pi(cos ). (3.12)
1=0 '

The angular part is subject to the differential equation (where z = cos?):
(@2 - 1)P/ +4z P —1(1+3)P, =0. (3.13)

The solutions with integer ! are the Hegenbauer’s polynomials with a = 3/2 . They are
the base of spherical functions in a five-dimensional space. Particularly, at [ = -3 (as at
{ = 0) the solution of equation (3.13) is a constant — there is a monopole solution

Qo(r, 9) = ;15 (3.14)

3.7. The Energy

To get an idea about cosmic energies, we examine the following problem. A globe with
radius R isin constant rotation with angular velocity of 2 coherently. This means that the
globe velocity on the surface coincides with the velocities of space, i.e. the field of angular
velocities outside the globe are determined by a monopole solution

w(r) =0 —. (3.15)

The energy density outside the globe (inside the globe, the field is homogeneous and the
energy density is zero):
992 RS sin®§
€=
6

and the full energy of space is:

= =DMc? (3.16)

4 kg
E=-——902RS2r / sin® ddd | ——
R T 2k

/“ ridr R3Q2¢?
167k Je
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where M is the equivalent mass (not the mass of the globe)

392
M= R% . (3.17)

For example, we examine a globe with diameter 20 cm. (R = 0.1m ), that completes
one rotation per second ( =27wc™1). We obtain M = 300000000 kg. To force the space
outside the globe to rotate coherently with the globe requires as much energy as is released
upon annihilation of 300 000 tons of matter. Hence, laboratory experiments with space
vortexes are not realistic.

This example also explains why our space is Euclidean with high accuracy: in the energy
expression, there is a huge factor c¢*/(167 k) in front of the space curvature. This means
that the smallest deviation from Euclidean space require tremendous energy.

Our space is (almost) Euclidean not due to the beauty and elegance of Fuclidean
geometry, but because this space has minimum energy.

4. Big Bang in the GTT

Since the Hamiltonian in the GTT is not equal zero, the effective quantum theory of
gravitation can be built on the basis of the Schroedinger equation, as for other fields.

Further we will work in Plankean system of units where light velocity c=1, 87k =1
and A = 1. All physical values are dimensionless and the energy E is determined by the

dimensionless value e :

ct

E—e-S .
“81k

4.1. Classical solutions

Now we study the compact cosmological model of Friedman type with space as a three-
dimensional sphere with variable radius 7, depended on the time t. This Universe is filled
by ultra-relativistic matter with the state equation € =3p.

The Lagrangian of isoenthrophic gas is expressed by integral over space of pressure,
determined as function of the chemical potential [5] u. For ultrarelativistic matter the
pressure is proportional to u*, what together with Lagrangian of space yields the full
Lagrangian:

(72— 1) &
IL—_ 7,8 41
5 +po d (4.1)
and further the Hamiltonian
2, .2 2
H=—ip +6p,—L=-Prt1" 9 (4.2)
2r 2r

. where ¢? determines the conserved quantity of the ultrarelativistic matter.
The classical equation of motion can be derived from the energy conservation law:

1
f:;\/q2—2Er~r2. (4.3)
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This equation describes the radius oscillations between the maximal and minimal values,
which are determined by roots of the subroot expression: rmaz = v/€2+ ¢% — e, and the
second root is negative.

If ¢ # 0, the energy can be either negative or positive. At ¢ = 0 we have a pure
gravitational dynamics, the one without matter. In this case the energy can j,tain only
negative values,

4.2. Quantum model

The wave function is a function of the radius 7. By u’ we denote the derivative
of the wave function u(r) over r. By symmetryzation the product p®/r we obtain the
cosmological wave equations:

' ’ q2
- <—> + <——r+——> u=2Fu,
r r

4
u”—u?+(—r2+q2)u=27Eu. (4.4)

This equation has a regular special point » = 0 and irregular one r = oo, at that
vicinity the wave function behave as the one of the oscillator:

u(r) ~ A e /2L Ber 2,

At the some values of F, the coefficient B vanishes — there is normalized solutions of
the quantum equation. The function is equal zero at r = 0 and infinity, and hence it can
have n extremums.

At the vicinity of zero radius all solutions behave as 7. This means that probability
density at r — 0 in any state is zero.

The equation (4.4) have two parameters: ¢ and E.

At ¢ =1 for n =1, 18 the solutions are represented on the graphics:

5 2 /\//\MM}‘!/\JH
. = YR

T 2 3 % 5 n—=1 °* n=18

The self energy values for small n at ¢ =0, 1, 10 are represented in following table
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=0 =1]¢g=10
-1.3133 | -1.0202 | 2.6765
-1.9243 | -1.7122 | 0.564
-2.3863 | -2.2107 | -0.441
-2.773 | -2.6193 | -1.1208

=W N B

8 | -3.9599 | -3.8487 | -2.8153

The eigenvalues of the energy can be equal to zero (as in the GR), but only at the
q?> = 4n . This value of ¢ has only one wave function with n extrema.

This model demonstrates the difference of quantum and classical solutions. The solutions
of the classical equation (4.3) describes the radius oscillations between the positive maximal
and negative minimal radiuses. The point r = 0 in classical solution is usual point. In
quantum solutions the point r = 0 is special point and the value of the wave function
at this point is zero, so the quantum oscillations of radius are between zero and maximal
classical radius.

5. ADM-representation

The bridge between the GR and the GTT is the ADM representation of the four-
dimensional metric in the GR [6], where the time is explicitly separated from space
coordinates.

The ADM representation presents 10 components of the four-metrics through 6
components of the three-metrics ~;;, three-vector V* (in the GTT notations) and the
function of the time flow f(z,t):

goo = 2= VIV g0 =5V gi =~y (5.1)
The inverse metrical tensor components are

oo 0 Vi Az

T My 3 g¥ T ~4, (5.2)
The variations of the Hilbert action is
1 .
08 = — / <G00 0f + Go; 6V* + 5 ng (5’7”) ﬁf dax dt. (53)

The general covariance requires vanishing of all variations, what leads to 10 Einstein
equations.

In the GTT, the component g0 == 1 always and everywhere, and this component cannot
be a variable. The action variation by this function is not required to be zero but can be an
arbitrary function. This variation is the energy density.

This unique variation differ the GTT from the GR. If we consider the GTT solutions
with the energy density equal to zero everywhere, we obtain the GR solutions. In the GR we
have H =0 in any region, what is an obstacle for using the Shroedinger’s quantum theory
in a way similar to that applied for others fields.
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6. Conclusion

The GTT is valid competitor to the GR. All known phenomena can be described as
by the GR as by the GTT. But the GTT is the dynamical theory of the space with the
effective Hamiltonian, what allows to create the quantum gravity in a usual way. The nonzero
(and non positive determined) energy density also can explain the different cosmological
anomalies.
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PHYSICAL NATURE OF LOBACHEVSKY PARALLEL
LINES AND A NEW INERTIAL FRAME
TRANSFORMATION

N.G. Fadeev

Joint Institute for Nuclear Reseach Dubna, Russia

The synchronous process of particle motion and light beams propagation has been found to
reveal the physical foundation for violation of the V-th Euclidean postulate in the velocity
space. The process revealed also its fruitfulness in solving in a new way the main problem
in relativity - the problem of time synchronization for different space points [1]. The first
obvious consequences of the new solution - such as simultaneity, proper time, inertial frame
coordinate transformation and relativistic velocity summation law - are also presented in
this paper.

1. Introduction

The physical nature of Lobachevsky parallel lines (LPL) remains unknown despite of
the fact that the Lobachevsky velocity space is widely used to study particle scattering
processes in modern high energy physics. As the existence of LPL is based on the denial
of the Euclidean V-th postulate, then a physical foundation for its violation is also not
known. At present, LPL have only a geometrical interpretation - either as infinite lines on a
pseudospherical surface or as hordes on the Euclidean circle [2].

Further developments of the approach published earlier in [3] have been described in
this paper. We consider light propagation according to the Huygens principle and the
independency of the light beams. So, the phenomena of light diffraction and interference are
not considered. It is assumed that the time counting for a space point starts when a light
front comes to that point. This is also the moment of a secondary light hemisphere emission,
according to the Huygens principle. We accept the constant light velocity principle and we
use the same plane light fronts as widely used to explain the light reflection and refraction
phenomena. The basic knowledge of Lobachevsky geometry [2, 4] is assuming.

2. Physical nature of Lobachevsky parallel lines

Let us consider two inertial frames K and K. Each of the frames may be associated
with a particle. The space axises of both frames are parallel and K is moving with constant
velocity V along the X -axis of frame K . It is assumed that their origins, O and Oy,
coincide when the plane light front directed at the parallel angle 61 reaches the point O
(a lateral beam is moving from bottom to top in XY -plane as shown in Fig.l1a). At this
initial moment a light sphere (hemisphere to the falling front) starts to spread out from O .
The parallel angle 6, is defined as

cosfy, = cosll(p/k) =th(p/k) =V /c=85, (k=rc) (2.1)
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Fig. 1. a) Synchronization of the K -motion (V't) and the light rays (¢t and cts)
propagation by the side light beam. b) Lobachevsky parallel lines in the velocity
space plane corresponding to synchronous motions of ct, ct; and Vt in Euclidean
plane (¢ =1 is used for rapidities).

here [ is the velocity V in units of ¢, p/k is a value of rapidity p in units of &k = ¢,
[I(p/k) = 0y, is a parallel angle, & is the Lobachevsky constant, ¢ is the velocity of light.
The second equality 8 = th(p/c) in (1.1) is known from the Beltarami model [2] and used
to define a particle rapidity:

pfe=1/21n((1+B)/(1 - B)). (22)
The first equality in (1.1) can be rewritten as
01, =11(p/k) = 2arctg e /°, (2.3)

known as the Lobachevsky function. It is seen from (1.1) that for any rapidity (and its
velocity) there is a definite angle 6y, . For the negative argument of the Lobachevsky function
the parallel angle 6, changes to 7 — 6L [2], which corresponds to the same velocity but for
the opposite direction.

Let us consider a space-time point (z = V't¢,t) in frame K . The light ray from the
origin O will get to this point in time z/c (Einstein’s signal) but the lateral beam’s ray will
come there first with some delay (relatively to O) in the moment of time tp as

ctr =z cosfy, = Vitcosfy = ctcos® 0y, (2.4)

and then a new light sphere starts to spread out from the z-point. By the given moment
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of time ¢ a new sphere will spread out to the radius
cts=ct—ctp=ct—xcosly =ct—zV/c, te =t —aV/c2, (2.5)
and for z = Vt:
cty = ct — ctcos® O = ctsin® Oy, = ct (1 —V?/c?), (2.6)

where ct is the light sphere radius from origin O, so that cts < ct.

Let us choose two light rays from these two spheres: one, ct, emitted from O under the
angle 6; to the X -axis in some plane, and the other, cts, emitted from O; (located at
z ) perpendicular to the X -axis in the same plane (see Fig.1la). Three segments ct, V't
and cts; form a rectangular triangle. But two sides of triangle, ¢t and cts;, have no
common (intersection) point at no moment of time ¢, so they are parallel in any chosen
Euclidean plane. As rapidity (1.1) for the light velocity is the infinity, then the obtained
triangle transforms into the LPL or, more precisely, into the parallel lines in one side on the
Lobachevsky plane in the velocity space as it is illustrated in Fig.1b.

Thus, the LPL in a velocity space corresponds to the light rays ct and cts; emitted
(according to the Huygens principle) from different points and different times and
synchronized with particle motion V't by the side light beam. The physical reason for
the lack of intersection point is the time delay tp (see (3.)). This time delay is an obvious
physical foundation for the violation of the V-th postulate in the velocity space. As the value
of tp for given z defines by ¢ (with changing V' the 6; changes but not the c¢) then
one can conclude that the basic reason for the V-th postulate violation is the constant light
velocity principle.

To find out light rays corresponding to LPL in another side, one can consider a lateral
beam to another direction (from top to bottom) in the same plane (as shown in Fig.2a and
Fig.2b).

For light rays corresponding to the LPL (in both sides) for negative argument of
Lobachevsky function (for V' < 0), one should use a pair of lateral beams directed opposite
to X -axis, ie. from right to left (for V' > 0 the beams were directed from left to right),
as shown in Fig.2c and Fig.2d. A complete set of light rays synchronized with the particle
motion V¢ (both for V > 0 and V < 0) which corresponds to LPL in the velocity space
is presented in Fig.3.

Thus, the moving reference frame (for V' > 0 and/or V' < 0) can be associated with the
definite lateral light beams. The rest frame (V' = 0) is associated with the direct beams at
6;, = 7/2 (as shown in Fig.2). Lobachevsky function has the same form for the rest frame
and for the moving ones, i.e. it follows the principle of relativity. So, Lobachevsky function
expresses the constant light velocity principle at £k =c.

The synchronization method used to reveal the physical nature of Lobachevsky parallel
lines is also fruitful in solving the main difficulty of relativity - the problem of time
synchronization for different space points.

3. x and t- coordinate transformation and light ether
concept

Let us continue with the inertial frames K and K for V > 0. One can assume that
a pair of direct beams (from top and bottom) reaches X -axis at the same moment of time




90 Proceedings of = BGL-4

Fig. 2. a) Two lateral light beams (for V' > 0) give two pairs of light rays ct and
cts for both sides of the plane (top and bottom), synchronous with K -motion Vt.
b) Parallel lines in both sides on Lobachevsky plane, corresponding to synchronous
motions in a). The plots for V' <.0 are shown in ¢) and d).

as a pair of lateral beams (from left to right) reaches the point where both origins coincide.
All z-points (including O) are "exited"simultaneously, and this moment of time is usually
chosen as the initial one for K frame (the same for all coordinates). The initial moment of
time for any z -point is delayed by ¢z relative to the lateral beams (see (3.)) so that time t,
at a given moment of time ¢ (in K ) is defined by (3.1). Thus, due to the synchronization of
K and K frames (by the corresponding pairs of direct and lateral fronts) two moments of
time, ¢ and ts, can be defined at any z point. For the chosen event (z,t) time ts depends
only on the velocity of the moving frame K.

Let us define the time ¢t in the fixed frame via the distance ct passed by the light ray
emitted from the point O at the paraliel angle 85 to X -axis in some plane. It is seen from
Fig.1-Fig.4 that for any event (xz,t) the delay time ctp is just a projection of the given
z-point on the chosen light ray ct.

Obviously, the displacement of K origin Vit = ¢t cosfy, is just a projection of the light
ray ct on the X -axis. So, for any given coordinate x at a given time ¢ a value z; relative
to the origin Oy is

xs=x— Vt=2x—ctcosby,. (3.1)

For any event (z = Vt, t) arelative coordinateis z; = 0. It means that time t; (see (3.1)
and (3.2)) is the proper time of K ,i.e. the time "measured"by means of a "moving clock",
when one spectator observes the light sphere with the radius ¢t in K and in the same time
t a moving spectator observes another light sphere with the radius cts; (both spheres are
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Fig. 3. An illustration for synchronous propagation of the corresponding light rays
and particle motion (for V>0 or V <0) in K -frame.

triggered off by the lateral light beams). For the event (z,t) the corresponding moment of
time tg is the time "measured"by means of the "moving clock"located at the point z; of
K. Unlike of t in K, the time t; defined for O; is not all the same for the points on
X s -axis.

Indeed, from (3.) one can see that the initial moment of time (provoked by the lateral
light front) propagates along X -axis with the velocity vg :

vp = z/tp =c/cosf =c2/V =c/B > c. (3.2)

So, for 0 < V < ¢ any two events (z;,t) and (z2,t) have different time t, in K. For
V —» 0 (6, — /2 for side beams) the velocity vg — oo and one comes to the Newton
time ts; —+t, and for V =c¢ (07 =0) the proper time t; =0.

Thus, for any event (z,t) in K the corresponding coordinates in K are simple shifts
(see (3.1) and (3.3)). To obtain the values of shifts, one should make symmetrical projections
as described above. We have used this symmetry to find out the Lorentz coordinates z’
and t' for a moving frame. To get them, one has to find the crossing point O’ of two
perpendiculars producing the projections for any ( z,t) event (see Fig.4). Then the length
of the interval from O’ to z correspondsto z’:

' = (z —ctcosfr)/sinfy = (z — Vt)//1-V2/c2, T, = sinfg, (3.3)

and the distance from O’ to the ct corresponds to ct':

ct' = (ct —xzcosbr)/sinfr = (ct —zV/c)/+/1 —V2/c2, cty =ct'sin0p. (3.4)
/
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£ =Py = Py
e o, —
)

Fig. 4. a) An illustration of the inertial frame z and ¢ coordinate transformation
(including Lorentz transformation). b) A velocity space diagram corresponding to
x and t shifts. The z-coordinate is the z-position of a particle, moving with a
velocity of v =/t in K frame by the moment of time ¢.

Jt is seen from (3.5) and (3.6) that primed and shifted coordinates are related as the
corresponding projections. But the point O, which is always considered as the origin of the
moving frame, does not coincide in space with O; . It is also seen that the line O’z’ is not
parallel to the X -axis. So, it seems obvious that the primed values can not be regarded as
the coordinates in a moving frame.

The distance between the given points = and ct (dashed line in Fig.4) can be defined
via the primed and unprimed values:

l2

2,2
= 22

b 22 = 2ctzcoslf = At + 2% + 2ct'x cos b, = 12, (3.5)
or as a sum of two terms, either as 12 = s? + s3 (to get it one should add +z? to the left
part of (3.7) and 42" to its right part), or as {2 = —s7 + s3 (add +c?t? to the left part
of (3.7) and +c?t’? to the right part), where:

87 =2 —a? = P — 2 = AP - 2?), v=1/sinfp =1//1 -V?/c2  (3.6)
s3 = 2x(x—ctcosfr) = 2z’ (z' +ct’ cosfy), s3 = 2ct(ct—z cosfy) = 2ct’ (ct’ +-3" cos O).

(3.7)
Term s? is known as an invariant interval. Obviously, it is only a part of the full distance
and is a result of cancelling of two equal values, cither s3, or s3 in the expressions for
12 =1". Terms s and s may differ by sign: (+)/(-) corresponds to the point O’ located

12
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inside/outside the cone defined by the angle . For an event (z = Vt,t) term s3 is

equal to zero (as s =z’ = 0) and s3 = 2s?, so [? = s? = I"?. The Lorentz coordinate
transformations for this particular case have being usually presented in the manuals (e.g. [5]).
From (3.9) one can find (using the second formulae in (3.5, 3.6))

x = (x5 +ctscosOr)/sin 0 = (z, + Vi) /(1= VZ/c?), (3.8)

and
ct = (cts +xgc080y)/sin? 0 = (cts + Vag/c)/(1 - V?/c?), (3.9)

which are the reverse transformation from the moving frame to the rest frame. To check
that, one can solve (3.1) and (3.3) for z and ct (once the factor 1/sinfy is inserted into
the brackets then the terms in brackets became the lengths of perpendiculars corresponding
to the mentioned projection symmetry).

It is seen from (3.1),(3.3) and (3.10-3.) that the direct and reverse transformations are
different: the latter could not be obtained by changing V' to —V . This means that one
already knows that the frame either moves, or not. When changing V' on -V one should
also choose an appropriate lateral light beam direction for a moving frame. So, if K; moves
backward to X (V < 0) one should change the sign in (3.1), (3.3) and in nominators of the
reverse formulae (3.10-3.). Thus, for any two frames one frame can be regarded as a moving
frame and other one as the rest frame and vise versa by choosing the corresponding direct
and lateral light beams (according to the known parallel angles).

A possible way to realize these opportunities is to make an assumption about the presence
of many light streams of any directions. One may assume an ether, not a restful one, but
the moving light ether. The absence of the absolute frame testifies upon the absence restful
ether and does not contradict the presence of the moving light ether.

Thus, the relation between space and time coordinates expresses through the parallel
angle or through the corresponding velocities. So, this relation is generated by the presence
of the corresponding light streams and particles.

4. vy, z- coordinate transformation and invariants

Let us consider event (z,y,z = 0,t) in K frame. The lateral light beam is reaching
X -axis in XY -plane as shown in Fig.5, i.e. it spreads from bottom to top, first enters the
plane point (z,y) and then the point (z,y = 0) at the X -axis (if y-coordinate has an
opposite sign, then one can choose another lateral beam heading from top to bottom).

The secondary light sphere spreads out from the first point to the point (z,y = 0) at
the X -axis in a time of y/c. The lateral beam ray reaches this point in a moment of time
y sinfr /c (since the secondary sphere starts to spread out from the first point). So, the light
way difference is

cAt=Ay=y—ysinfy. (4.1)

To compensate for this difference and make the initial moment of time counting caused by
the lateral beam to be the same for z; and ys, the origin of K, frame should be shifted
along the Y -axis by the value of Ay (4.1). Then the y-coordinate in K, frame is

ys =y — Ay =ysinfy = y/1 - V2/c? (4.2)
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Fig. 5. a) An illustration of the Ay-shift origin due to the light way difference, and
b) a corresponding velocity space diagram (see note in Fig.4b).

and the transverse coordinate

2s=2z— Az =zsinfp = 2y/1 — V?2/c2. (4.3)

The reverse transformation is also obvious:

Yy =ys/sinfp = y,//1—V?2/c2, z=zs/5inlp = 25//1—V2/c2. (4.4)

Then for the non-invariant interval (see(3.8)) one can get

AP - a® - = = (P -2l -yl - 2D). (4.5)

The obtained coordinate transformation leads to the contracted interval but this does
not contradict to the relativistic velocity summation law.

So, for any event (z,y,z,t) in K there is the "parallel'event (zs,%s;2s:%s)
corresponding to the moving K, frame shifted in space and time in an appropriate way.
These two sets of coordinates are related by the equation (4.5).

As it is seen from Fig.4 the point O’ looks as a center of projectivity and the X -axis
with the chosen light ray ¢t may be considered as a projective lines [4]. Let us consider x
and ct values as corresponding projective coordinates. The projectivity, or the projective
transformation, establishes some definite correspondence or projective equivalence of the
point-like systems of 1, 2 and 3 - dimensions, namely, between the points of two projective
lines. The main invariant for projectivity is the complex fraction of any four elements of two
multitude, i.e. of any four corresponding points for two projective lines [4]:

T3 —T1 T4—T) cty —cty  cty —cty

(21, 2,23, T4) = = (t1,t2,13,14) (4.6)

To — I3 ’ T2 — Xg4 cto *Ctg ' cty — cty
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According to the main theorem of projective geometry the projectivity is determined when
any three pairs of corresponding elements are defined. In our case it means that, in this case
for any given z one can find the corresponding ¢ from (4.6) and vise versa.

Let us consider two simple cases:

- for three known events z; =0, t1 =0, 2o = Vi, to =t and z4 = 00, t4 = oc (4.6)
becomes [4]
T3 — T t3—t

L = (t1, 2, t3, o) (4.7)

y _
Z1,To,T3,00) = =
(21, Y mg—z3 ty—t3

and for any z3, t3 one can find corresponding
i3 = Z‘3t2/fL‘g = Zg/v, I3 = Vtg. (48)

Obviously, this result corresponds to the projection of the X -axis onto the ct ray and vise
versa, made by the beam of lines with the center at infinity (just like the direct light beam
used for the rest frame K).

-for 21 =0, t1 =0, z2 =z, to = zcoshr./c and x4 = 00, t4 = 00 one can get

ts = w3cosby /e, x3 = ct3/costy, . (4.9)

This result corresponds to the lateral projections with the center at infinity and with the
beam direction turned by 7/2 to that as it was used for the K frame.

The projectivity allows one to find the values of shifts. It follows from the comparison
of (3.1),(3.3) and (2.9-4.9), but needs more study.

Let us rewrite (4.6) as

(z1,22,23,T4) _ Baat e Bosk = Ty — T 7 (4.10)
(t1 tostats)  Bu2z Buoa c(ti — k)
and use reverse transformation (3.10-3.) for each event (z;,t;) . Then one can find:
Bt = ﬁalmk + V/C o Tsi— Tsk . (411)
T BV TR ot — tok)
One can carry through the same calculations for y and z coordinates:
Y~ Yk ﬁ';ikvl’—v2/62 ;o Ysi— bk
Byix = = , «, Byik = 77— (4.12)
C(ti - tk) 1+ rB;;;ikV/C ’ c(tsi - isk)
2z — 7k Bl 1-V2/c? y Zgi — tsk
Brik = = 4 e 2 (4.13)

aVie ' TEE T elter — k)
Relations (4.11-4.13) are known as the relativisic velocity summation law. From these
relations one can find the expressions for primed components and get for each of them:

Ba Ba _ B Pu _ (4.14)

B2z " Paa By Bhy
Thus, instead of a noninvariant interval (4.5) one may consider a well known invariant
(4.6), the main invariant in projective geometry which allows to establish the correspondence

between space and time coordinates if any three events are defined. The interval (4.5), which
is defined by two events, does not satisfy this requirement.

oty — tx) 1+ 4

€T
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5. Relativistic effects and wave character of the initial
moment of time propagation

Let us consider two events (z1,t1) and (z,t) in K frame and two events
(Ts1,ts1) and (zs2,ts2) corresponding to them in K, frame. Then, according to the new
transformation (V' > 0), one can get for shifted coordinates:

Azs = Az — cAteosty,, cAtg = cAt — Azcostr,, (5.1)
and for unshifted coordinates:
Az = WQ(Azs + cAt,cos0yp), cAt = ~? (cAts + Azscosfy,), (5.2)

where Azs = Tgo — Ts1, Ats = tgo —ts1, and Az = 29 — 37, At = to — t1 . Let us also
remind the relation between the primed and shifted values (see (3.5-3.6)):

Az’ = vAxs, eAt = yeAts. (5.3)

If Az is alength of some rod in the rest frame, then its length in the moving frame will be
the difference of its coordinates Az at the same moment of time At; = 0 (by definition).
Then one can find from (5.1) (using (5.3) for the primed values) that

Az =7 Az, = yAx'. (5.4)

So, for the new transformation, the length of a rod becomes shorter even in comparison with
the primed value.
But, it is seen from the second formula of (5.2) that the requirement Ats =0 gives

et = Axcosfr = N, (5.5)

i.e. At #0 (where Aty is the time delay difference for the points z; and x5 ). It means
that the moving frame has two identical moments of times t5; = ts2 in the two different
space points Vt; and Vi, corresponding to the ¢; and t, in K frame (see Fig.6a). So,
due to the definition of the rod length the measurements of two coordinates are performed
from two (shifted) locations of frame K.

The requirement of simuitaneity Ats; = 0 for the moving frame can also reveal a
wave character of the initial moment of time propagation along X -axis. Indeed, the wave
propagation is characterized by the fact that the value of excitation function (depending on
z and t) can be the same in different (z,t) points in two moments of time [6]. If time ¢,
(see (3.3)) is an argument of the function, then it may happen when

t—aV/c? = (t+At) - (z+ Az)V/c2 =  cAt= Azcosl, = cAtr, (5.6)
and if At =0, then Af = Atp (see Fig.6a). One can get from here:
Az/At = Az/Atp = ¢/ cosOr =vp > ¢, (5.7)

the same velocity vg as in (3.4). So, for V' # 0 the initial moment of time counting
propagates as a wave with the finite velocity vp along X -axis. It is known [6], that a
differential wave equation is defined by the structure of an argument of the excitation
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Fig. 6. Illustrations of the Lorentz contraction: a) for a length - two simultaneous
events (zg1,ts) and (zs9,ts) in a moving frame; b) for a time interval - two events
(zs,ts1) and (zs,ts2) in the same point in a moving frame.

function + = (z,t). As an argument of the light excitation function 3 has a form of
W(z,t) = ¥(t=zV/c?) , then this wave propagation (along X -axis) should follow an equation

52 2./,
1lov_199% (5.8)
c? ot2 32 Ox2
For 3 =1 {or vp = c¢) it is the same as the known wave equation for the light, ¢ =
P+ z/c). When 8 =0 (or vp = 00, i.e. when the lateral front becomes the direct one)
the excitation function 70 does not depend on z, and the initial moment of time counting
is the same for any z-point (Newton time): % = 9(t).

It is clear from the first equation of (5.1) that the rod’s length is the same for the both
frames: Azs = Az, if one takes two events (z1,t) and (z2,t) in thefixedframeat At=0.
In this case the corresponding coordinates zs1 and zs in a moving frame are measured at
different moments of time ¢s; and ¢, , but from the same position Vt of K, corresponding
to the choosen t. It is possible to choose t;; = —ts2 and then ct = (z7 + Az/2)cosfr .
This moment of time ¢ corresponds to the projection of the rod’s center onto the ct ray
(see dashed line on Fig.6a).

Now, let us consider two events in a moving frame located in the same place, Az, =0,
but separated by the time interval Aty = t4 — ts1 . The corresponding time interval in K
frame one can get from the second formula of (5.2):

At = y?At, = yAY (5.9)
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i.e. the new transformation again makes a time interval shorter for a moving frame. But
one can see from the first formula of (5.1) that Az = cAtcosf, = VAt for Azs =0,
iie. Az # 0 in K frame. It means, that the moving frame has two identical coordinates
Ts1 = Ty in two different space points ;3 and z, (in K, see Fig.6b). The time delay
difference for them, cAtg = cAtcos?6;, (see (3.)), is non-zero, so similar to (5.9) one has
cAts = cAt — cAp . Again, due to the Azs; = 0 requirement the measurements of two
moments of time are made from two K -frames shifted in space with cAtr # 0 in rest
frame.

It is clear from the second equation of (5.1) that an interval of time for the both frames
is the same ( Aty = At) if one considers two events (z,ty) and (z,t2) in the rest frame at

and tg in a moving frame are measured also from two different points zs5; and z, , but
cAtp = 0. One can choose 51 = —zs and find = = V(¢ + At/2) = c(t1 + At/2) cos b, .
This z-coordinate corresponds to the projection of a middle point of the time interval cAt
onto the X -axis (see dashed line in Fig.6b).

Thus, the nature of relativistic effects is not in changing the scales of space or time for
a moving frame, but in changing of the reference points for the space and time coordinates.
One can find the same values for the space or time intervals in the rest and moving frames
by changing the way of measurement.

6. Lorentz energy-momentum transformation

The Lorentz transformation for particle energy-momentum in this consideration is a
direct consequence of the relativistic velocity summation law or of the aditivity law for
particle rapidity:

P =p—po, p=p +po, (6.1)
where p’ is a particle rapidity in the moving frame and p - in the rest, p, is a rapidity
corresponding to the velocity 3, = V/c of a moving frame (we use ¢ = 1 units for all
rapidities). Then @ = thp’ and [ = thp are particle velocities in the moving and in the
rest frames. Hyperbolic tangent of (6.1) leads to the relativistic velocity summation law:

thyl = thp — thp, _ thp' +thp,

= , = ) 6.2
1 —thpthp' P=T + thp' thp, (62)

The particle velocity has to be transformed according to (6.2). This requirement can be
satisfied by defining energy and momentum of the particle through its velocity 8 = thp =
(mshp)/(mchp) = P/E, where m is a particle mass, P = mshp == mG/+/1— §? is the
momentum and E = mchp = m/+/1 — 32 is the particle energy. It is easy to find values
for sines and cosines from (6.1):

shp' = shp chpo — chp shp,, chp’ = chpchpo — shp shp, (6.3)

Multiplying (3.) by the particle mass m and taking into account the energy and momentum
definitions one can find the Lorentz transformation:

P = (P —-6,E)/v/1- 1, E'=(E~- (,P)/\/1- 2. (6.4)
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A reverse transformation can be found in the same way from the second equation of (6.1). In
general case, when direction of the particle velocity 5 does not coinside with the direction
of the moving frame, one should assume longitudinal rapidity in (6.1) and longitudinal
momentum in (6.4).

Thus, the requirement for the particle velocity expressed through its energy-momentum
to be transformed according to the (6.2), may consider as some condition for their
definition. As their relativistic definition is in agreement with (6.2), then the Lorentz energy-
momentum transformation is a straightforward consequence of the relativistic velocity
(rapidity) summation law.

7. Conclusions

e A complete correspondence has been established between Lobachevsky parallel lines in
the velocity space and the synchronous process of particle and light beams propagation in
the Euclidean space.

e The constant light velocity principle has been found as the physical reason for the violation
of the V-th postulate in the Lobachevsky velocity space.

e Lobachevsky function has been shown as a tool to express the constant light velocity
principle.

e A new method of time synchronization for different space points have been found and
a new contents of the simultaneity conception, common time and proper time, have been
formulated.

e A new inertial frame coordinate transformation, as the simple shifts, has been found. It
leads to the known relativistic velocity summation law and requires the existence of the light
(moving) "ether".

s It has been shown, that the initial moment of time counting for the moving frame
propagates in space in the same direction with a finite velocity greater than the velocity
of light.

e The relativistic effects have been shown to take place due to the coordinate and time
shifts of the origin point. One can find the values of space or time intervals to be the same
in the moving and the rest frames by changing the measurement way.

e It has been shown, that Lorentz energy-momentum transformation is a straightforward
consequence of the relativistic velocity summation law.

e The four elements complex fraction invariant and a possible wave equation have been
presented.
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IIEPBLIE UHTEI'PAJIBEI TEOJE3UYECKUX

O.C. I'epmaHOB

Huoscezopodexuti 2ocydapemeenindi nedazozuveckut ynueepcumem
Huotewuti Hoszopod, Poccus

CTpoaTCcs PUMaHOBBI MPOCTPAHCTBA H NPOCTPAHCTBA Beid, ypaBHEHHSI Treone3MYecKHX
VWA KOTOPBIX [IOITYCKalOT TePBbIA HHTErpaJl 2-ro mopAika (KBaJpaTHIHBIT M APOGHO-
KBaIPATHIHBIH COOTBETCTBEHHO ).

Hccneuyrorcsa puMaHOBBI IIPOCTPAHCTBA Vi, (gij (a:k)) (9i; — MeTpHYecKuit TeH30p I1po-

crpaHCTBA, TF - KOOpAMHATHI mpOCTpaHCTBA, 4,7,k = L,n, n = dimV}, ), momyckawomnme

CyIIIECTBOBAHUE TaK Ha3biBaeMoro [1] BeilyIeBO-reoqe3necKoro noJs KOHyCOB HATIPABIICHU .
OTH 110715 HanpaBJieHnit X® ONpeneaioTCs C ITOMOIIBIO HEBBIPOYK IEHHOT'O CHMMETPHIECKOTO
TEeH30pa Q;; ypaBHEHHEM
ai; X' X7 =0, (0.1)

IIpUYeM B JAHHOMN CBA3HOCTH TEH30D Gj; Y/OBIIETBOPSET BMeCTe C HEKOTOPBIMHU HOJAMU My
n Ry ycnosuio

Vi aig) = Mk aij) + Rk ij) (02)
(Vi — cumBonm xoBapuanTHOTO nud¢epeHInpoBaAHa B JAHHON CBA3HOCTH, CKOOKH, KaK
OOBITHO, 03HAYAIOT CHMME TPUPOBAHHE 110 WHIEKCAM, COIEPIKALTUMCS B HUX).

Ilpu Ry = 0 BeiieBo-reozesnyeckoe moze (0.1)—(0.2) siBasgercd reofe3nyecKuUM ToJieM
KOHYCOB HATIpABJIEHHUI (2], XapAKTEPH3YIOIUXCSA TEM, TITO BCE TE0IE3HIECKHIE JIMHUM, HAIIPAB-
JIEHHs KOTOPBIX COBIA,TA10T B HEKOTOPO# TOYKE C HaIpaBJeHreM, orpeaensembim (0.1)—(0.2)
npu Ry = 0, COXpaHSIOT 3TO CBOMCTBO Ha BCEM CBOEM MPOTSKEHHH.

K Tomy »xe Hasmmdme BeilneBo-reoqe3udeckoro mnons korycos (0.1)—(0.2) xors 6b1 B 0180M
PMMAHOBOM IIPOCTPAHCTBE FAPAHTHPYET CYMIECTBOBAHME TAKOI'O K€ I0/If BO BCEX MMPOCTPAH-
crax Beitna Wy(gij,wk) (gs; — OCHOBHO T€H30p, wy -— JAOMOJIHUTEIbHBIH BEKTOP IPO-
cTpaHCTBa), KOHDOPMHBIX daHHOMY V, [3], u cpeau sTux nmpoctpascTs Beitna cymiectsyer
OJHO3HATIHO OUPE/IeseMOe TTIPOCTPAHCTBO, B KOTOpoM momne KouycoB (0.1)—(0.2) apidgercs
reoie3naeckuM [3]. 310 06CTOATENBCTBO, KCTaTH, 1 00bACHAeT HasBaHme nostd (0.1)—(0.2).

Ee oaun meb0onbITHBINR GaKT CBA3aH C HCCIIELYEMBIMHE ITOJISIME KOHYCOB B IIPOCTPAHCTBE
Beiins: mmes peuterns ypasaenuii (0.2) B pumasoBoM mpocTpascTBe Vi (gi5) , py Herpain-
enTHOM 11001e My, ( My # Ox M ) MBI MOXKEM II0CTPOMTH CBSI3HOCTH Beiinig, OCHOBHOI! T€H30D
KOTOpOii COBIIAJAET C METPHYECKHM §;; , & AOIOJHUTEIIbHBIN BEKTOP wy CTpoMTCH (4] M0 Bek-
Topy My . Ilosydennas csssoctb Beitna Wi(g;,wk) mHTepecHa TeM, 4ro € addunras
[IOZBUKHOCTD (COXpAHEHHE CBA3HOCTH HEKOTOPO# rpynmoil Jlu nmpeoOGpa3oBaHuil) sSBIAETCS
cleCTBHEM e€ KOHGOPMHOH II0/[BHIKHOCTH (COXPAHEHHS TOU ke IpyHIoi mpeobpa3oBanuii
OCHOBHOT'O TE€H30pa CBA3HOCTH) [4].

Kax usBecrno [5], ecsm B (0.2) My = R =0, To CoOTHOmEHUE

B dz* dz?
g ds ds

(s — adbdunnniit mapamerp (myra) reoge3neckoil) SBIAETCS NEPBbIM KBa,IPATHYIHLIM (HIIK
2-ro nOpsAAKa) HHTErpajoM JuddepeHIHa IbHbIX Yy PABHEHUI T€0 163 IECKAX JIMHII JAHHOTO

= coust
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puMaHOBa pocTpascTBa Vi (g;;) . Ecau :xe nose (0.1)-(0.2) 3azaro B mpocrpaHcTBe Beits
Wa(gij,wi) 1 R =0, a My = 2wy, TO COOTHOLIEHHE

Gi; da® dz?
————— = const

ij da* dad
SIBJIFETCS TePBBIM TPOOHO-KBAAPATUYHBIM (M TAKXKE 2-IO IIOPAKA) MHTEPAJIOM YPABHEHHH
reojesnaeckux aunuit Wy [6].

Takum ob6pa3oMm, 3HaHHME pPHMAHOBBIX IIPOCTPAHCTB, MJOIYCKAIOUINX BeEHJIEBO-
reofe3H9ecKoe I10JIe KOHYCOB, IT03BOJISIET B KOHEYHOM c4eTe II0CTPOuTh adduHHO-CBI3HbIE
NIPOCTPAHCTBA, YPABHEHUA I'eOq€3M4eCKHX JIMHHE KOTODBIX JOMYCKAIOT IEPBBI HHTErpaJl
2-ro nopsKa (KBaJIpaTHYHbIH )i DPUMAHOBBIX U APOOHO-KBAIPATHYHBINA AJIS IIPOCTPAHCTB
Beitirs). IlocTpoeHue Takux IPOCTPAHCTB U SABJISAETCS LIEJIBIO UCCIIETOBAHH L

B ocHoBy mocTpoeHust mOM0XKEHO ClEAyIONIEe OOCTOATEIBCTBO.

IlepBoit u3BeCcTHON PUMAHOBON CBA3HOCTHIO, yPABHEHNM ST T€OAE3UIECKUX JIHHUE KOTOPBIX
JOIYCKAIOT TepPBbIM KBAa,IPATUHUHBIN HHTEIDAJI, ABJIFETCH, I10-BHIUMOMY, CBSI3HOCTh IIOBEDX-
HoctH JlmyBmiuns [7].

B nomxonsuieit cucreMe KOOpAMHAT (Z,y) METPUKY ITOH IIOBEPXHOCTH MOXKHO 3AITHCATD
TaK:

ds? = <Y(y) - X(x)) (da? + di?),
TOT1a TEH30D G5 , ONIPEIeJIAIONIHI IIePBbIH HHTETpaJl Te0Ae3HeCKHUX, IPHBOANTCA K BUILY
a1 = (}’—X)}’ a2 == (Y—X)X aip = 0.

3uecy z,y — koopaunHathl Ha Vo ; X(z), Y(y) — mpomssosbHbIe DYyHKIIUH yKA3AHHBIX
IepeMEHHbXK. ZICHO, UTO 3TH QYHKIHUH ABIAIOTCS (7€ACTBUTEIbHBIMU) KOPHSIMH TaK Ha3bl-
BaEMOro [8] XxapaKTEPHCTHIECKOTO yPABHCHHS 110J19 KOHYCOB

[aij — )\g¢j1 =0 (0.3)

M CJIy>KaT XapaKTEPUCTHKON MoBepXHOCTH. Hamprumep, ecim oaHa U3 3TuX GyHKIUH (0IuH
u3 Kopreii (0.3)) mOCTOAHHA, TO TaKas IIOBEPXHOCTD JIHyBHILIS ABIAETCH, KAK JIETKO BUI€Th,
[IOBGPXHOCTHIO BPAIIECHHUS.

ITosToMy 1IpH IIOCTPOEHMH pPUMAHOBBIX IIPOCTPAHCTB, JOMYyCKAMOUUX BeHIIEBO-
reofe3neCKOe J10JIe€ KOHYCOB, YUHTBIBAIOTCA CBOHCTBa KOpHeH ypaBHeHus (0.3). Dtu
KODHH MOT'YT ObITh KaK A€HCTBUTEIBHBIMH, TAK U KOMILIEKCHO-COIIPS2KEHHBIMU (DYHKIU M.

ITpesnonaraercs, 4TO 3TH KOPHH OB1aI2I0T CIEAYIOMHMMH CBOcTBaMu: (1) pasMEepHOCTH
BEKTOPHBIX TOIIPOCTPAHCTB, COOTBETCTBYIOMIMX [AeHCTBUTEIILHBIM KOPDHAM, DABHBI UX KPAT-
HOCTI;, Pa3MEPHOCTh BEKTOPHBIX IOANPOCTPAHCTB, HATSAHYTHIX Ha COOCTBEHHBIE BEKTODbI,
COOTBETCTBYIOIIHME Mape KOMILIEKCHO-COIIPSXKEHHBIX KOPHEH, paBHA Y/JIBOEHHOH KDATHOCTH
KopHe; (ii) IoAIIpOCTPaHCTBA ITH HEH30TPOUHBL (iii) 1Mo TOAMIPOCTPAHCTB — TOJOHOMHBL.

ITona konycos (0.1)—(0.2), xapakTeprcriyecioe ypaBHenue (0.3) KoTopbix 0671a,/18€T BbI-
IHENePeYUCIEHHBIME CBOMCTBAMH, HA3BIBAIOTCA CIIEIUAJIbHBIMH.

Amnanoru mosepxHocTei JIiyBHIIsT — PUMAHOBBI TIOBEPXHOCTH, JIOILYCKAOITHE CIIEITHAb-
HOe BejlIeBO-Te0Ie3UECKOe [10JIe KOHYCOB (ceTh), ypaBHeHHe (0.3) KOTOPhIX UMEET KaK 1apy
KOMILIEKCHO-COIIPS2KEHHBIX KOPHEH, TaK M OJMH JAeHCTBUTEIBHBIA KPATHOCTH 2, TIOCTPOEHbI
B [1]. Tam e 1IIOCTPOEHBI U IICEBIOJINYBAILIEBbI IIOBEPXHOCTH — JABYMEPHBIE IIPOCTPAHCTBA




0.C. I'epmanos 103

Beiins, ypaBHEHUA Fe01€3UTECKUX KOTOPBIX JOMYCKAIOT IePBbIi APOOHO-KBA JPATHYHBIH HH-
rerpaJ, a ypaBuenue (0.3) ob6lamaer TeMu yKe CBOACTBAMMU.

OTrMeTuM, 9TO MCEBL0JIMYBUILIEBB] HOBEPXHOCTH, ypaBHeHHd (0.3) KOTOPBIX UMEIOT [apy
JeHCTBUTEIIbHBIX PA3JIMYHBIX KOPHEH, IIOCTPOEHbI B [6]

B [3] xnaccuduiMpoBaHbl TpEXMEPHBIE PUMAHOBBI TPOCTPAHCTBA, AOMYCKAIOIIKE CyIiie-
CTBOBAHME CIIEIMAJBHOTO BEHJIEBO-Te0Ie3WYIEeCKOro Nojisa KoHycos. Ha ocHOBaHMH 3THX pe-
3yJIbTATOB IIOCTPOEHBI U TPEXMEPHBIE NPOCTPAHCTBA (Kak Beiliis, TaK ¥ PUMAHOBBI), ypaB-
HEHU S [e0E3UIECKUX KOTOPBIX JOIMYCKAIOT MEPBHIM MHTErpaJl 2-ro MopsIKa.

Pumanosb! mpocrpalcTBa V, , AOIyCKalomue CIENUAIbHOE BEHIEBO-TE€0I€3UIECKOe 10~
ne Kouycos Hanpasnensii (0.1)-(0.2), xapakrepuctutieckoe ypasrenuii (0.3) KOTOPOro umeeT
k <n=dimV, pa3mHIHbIX JEHCTBUTE;IbHBIX KOPHEHX COOTBETCTBYIOWEH KPATHOCTH, IIOJI-
HOCTBIO MCCIEOBAHbI B [9]. 31€Ch ¥Ke MOCTPOEHBI H MEPBbIE HHTETPAJIBI 2-TO MOPAIKA YPaB-
HEHU reo/Ie3NIeCKHX JIMHAH COOTBETCTBYIOIMHX MPOCTPAHCTB. 3aMETHM, HTO II0JIyIEHHbIE
Pe3yJbTaThl HE [103BOJISIIOT IOCTPOUTh 7l -MEepPHbIE PUMAHOBBI IIPOCTPAHCTBA, NOIIYCKAIONIKE
cretuaspioe nome kouycos (0.1)-(0.2), ypasrenue (0.3) KOTOPOro UMeeT e IHHCTBEHHBII meii-
CTBUTEJIbHBIIT KOPEHb, KPATHOCTh KOTOPOrO PaBHA PAa3MEPHOCTH MPOCTPAHCTEA.

Takie TPOCTPAHCTBA MOKHO MOJYYHTb, PACCMATPUBAS DPUMAHOBBI MPOCTPAHCTBA C
mosiem (0.1)-(0.2), ypapuerus (0.3) KOTOPBIX MMEIOT XOTA ObI OJHY Dapy KOMILIEKCHO-
COIIPA>XEHHBIX KOPHEH.

OkasbiBaercs, B TOM ClIydae, KOrJa Takas Napa KOpHel eJHHCTBEHHA, CTPOEHHE IIPO-
CTPAHCIBa, JOIyCKaiolnee M0oA00HOe mojie KOHYCOB, ypaBHenue (0.3) KOTOpOro MMeer n -
KDATHBIN TeHCTBUTENBHBIH KOPEHb, MTPAKTHIECKH HUYEM HE OTIMIAeTCS OT CTPOEHHS TPEX-
MEpPHBIX IIPOCTPAHCTB, JOIyCKAIOIIUX [0400He 0s1e KOHYCOB [3]. OcTasbHble BO3MOXKHOCTH
TIOJIEYKAT AAJIbHEHIIEMY U3yeHHIO.
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INTEGRABLE STRING AND HYDRODYNAMICAL TYPE
MODELS AND NONLOCAL BRACKETS

V.D. Gershun

A.I Akhieser Institute for Theoretical Physics, NSC Kharkiv Institute of Physics and
Technology
Academy of Sciences of Ukraine, Kharkiv, Ukraine

The closed string model in the background gravity field is considered as a bi-Hamiltonian
system in assumption that string model is the integrable model for particular kind of the
background fields. The dual nonlocal Poisson brackets (PB), depending of the background
fields and of their derivatives, are obtained. The integrability condition is formulated as the
compatibility of the bi-Hamiltonity condition and the Jacobi identity of the dual Poisson
bracket. It is shown that the dual brackets and dual Hamiltonians can be obtained from the
canonical PB and from the initial Hamiltonian by imposing the second kind constraints on
the initial dynamical system, on the closed string model in the constant background fields,
as example. The hydrodynamical type equation was obtained. Two types of the nonlocal
brackets are introduced. Constant curvature and time-dependent metrics are considered, as
examples. It is shown, that the Jacobi identities for the nonlocal brackets have particular
solution for the space-time coordinates, as matrix representation of the simple Lie group.

1. Introduction

The bi-Hamiltonian approach to the integrable systems was initiated by Magri [1] for
the investigation of the integrability of the KdV equation. This approach was generalized
by Das, Okubo [2].

Ounpenenenne 1.1.. A finite dimensional dynamical system with 2N degrees of
freedom z%a = 1,...,2N 1is integrable, if it is described by the set of the n integrals
of motion Fi,...,F, in involution under some Poisson bracket (PB)

{F;, Fy}pe = 0.

The dynamical system is completely solvable, if n = N . Any of the integral of motion (or
any linear combination of them) can be considered as the Hamiltonian Hjy = F} .

Oupenenenne 1.2.. The bi-Hamiltonity condition [2] has following form:

_ dz?
Tt

The hierarchy of new PB is arose in this connection:

{!}11{7}2a"'v{a}N-

The hierarchy of new dynamical systems arises under the new time coordinates %y :

dz?®

dtn-‘—k

el

={2%Hi}1 = .. = {2% Hn}n. (1.1)

={z% Hplx+1 = {2% Hi}nt1. (1.2)
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The new equations of motion describe the new dynamical systems, which are dual to
the original system, with the dual set of the integrals of motion.

There is another approach to the bi-Hamiltonian systems [1]. Two PB {, }; and {, }. are
called compatible if any linear combination of these PB ¢19{, }1 +¢2{, }2 is PB. It is possible
to find two corresponding Hamiltonians H; and Ho which are satisfy to bi-Hamiltonity
condition.

We used first approach to the closed string models as the bi-Hamiltonity systems. Second
approach was used to description of the hydrodynamical type models.

We consider the dynamical systems with constraints. In this case, first kind constraints
are generators of the gauge transformations and they are integrals of motion. First kind
constrains Fy(z%) ~ 0, k= 1,2... form the algebra of constraints under some PB.

{Fi,Fy}pp = CLF1 = 0.

The structure functions C!, may be functions of the phase space coordinates in general
case. The second kind constraints fx(z®) = 0 are the representations of the first kind
constraints algebra. The second kind constraints is defined by the condition

{fis fr} = Cax # 0.

The reversible matrix Cj; is not constraint and also it is a function of phase space
coordinates. The second kind constraints take part in deformation of the {, } pp to the Dirac
bracket {,}p . As rule, such deformation leads to nonlinear and to nonlocal brackets. The
bi-Hamiltonity condition leads to the dual PB that are nonlinear and nonlocal brackets as a
rule. We suppose, that the dual brackets can be obtained from the initial canonical bracket
under the imposition of the second kind constraints. We have applied [3, 4, 5, 6], [7, &, 9, 10]
bi-Hamiltonian approach to the investigation of the integrability of the closed string model
in the arbitrary background gravity field and antisymmetric B-field. The bi-Hamiltonity
condition and the Jacobi identities for the dual brackets were considered as the integrability
condition for a closed string model. They led to some restrictions on the background fields.

The plan of the paper is the following. In the second section we briefly considered
papers about hydrodynamical type nonlocal brackets. In the third section we considered
closed string model in the arbitrary background gravity field. We suppose that this model
is an integrable model for some configurations of the background fields. The bi-Hamiltonity
condition and the Jacobi identities for the dual PB resulted in to the integrability condition,
which restrict the possible configurations of the background fields. As examples we considered
constant curvature space and time-dependent metric space. In the fourth section we
considered closed string model in the constant background gravity field. We obtained
hydrodynamical type equation for the string model on the second kind constraints as
configuration subspace embedded in a phase space.

2. Hydrodynamical type models

Mokhov and Ferapontov-introduced the nonlocal PB [11]. The Ferapontov nonlocal PB
(or hydrodynamical type nonlocal PB ) [12] is:

1 1 0 7 ’ L s)t \ ] s
{u'(@),u* ()} = g™ (u) 5 -0(a—y)—g ik dla—y)+)_ el (@) udv(e—y)wi™* (uly))us,
=1

(2.1)
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here v(z —y) = sgn(z —y) = (£)726(z —y), u'(z) are local coordinates, ui(z) =
9zu*(z),i = 1...N . The coefficients gik(a:),l“;?l(z),w,(f)z(x) are smooth functions of local
coordinates. This nonlocal PB is satisfy the Jacoby identity if and only if ¢**(u) is the

pseudo-Riemannian metric without torsion and also the coefficients satisfy the following
relations:

1. T¥(w) is the Levi-Civita connection;
2. g* Y () = g7 (W (w);
3. kal(s)i(u) = Vlw,(f)i, where V,, is the covariant differential;

4, R}gl (u) = Zg’zl[wfs)iwis)j - wl(s)jwl(cs)i], where R, is Riemannian curvature tensor
of the metric g**;

w}(cs)iwl(t)k _ wl(ct)iwl(:)i'

(31

This nonlocal PB corresponds to an N-dimensional surface with flat normal bundle
embedded in a pseudo-Euclidean space EN*tL [13]. There metric ¢** is the first fundamental
form, w,(f)l is Weingarten operator of this embedded surface, which is define the second
fundamental form. The relations 2-4 are the Gauss-Peterson-Codazzi equations. The
relations 5 are correspond to the Ricci equations for this embedded surface.

Dubrovin and Novikov have considered the local dual PB of the similar type [14] in
the application to the Hamiltonian hydrodynamical models. Dubrovin-Novikov PB ( or the
hydrodynamical type local PB) can be obtained from the nonlocal PB (2.3) under condition
”1(:) =0,

The Jacobi identity for this PB is satisfied if g;; is the Riemann metric without torsion,
the curvature tensor is equal to zero. The metric tensor is constant, locally.

It need to consider the linear combination of the local and the nonlocal Poisson brackets
to obtain the hydrodynamical type equations [15]. There we consider Mokhov, Ferapontov,
nonlocal PB [11] for the metric space of constant Riemannian curvature K, as example:

3k i
() )} = e oa —y) + o (G + o~ Kuful) 26z )
0?h*
'F("“.,—
Ouidul
The Jacobi identity is satisfied on the following relations:
9%ht  9%RI 9%h  02%ht
oukdun Qurdul  Oukdum dunoul’
Or™  Ohi ?hF
( out + Jun Oud Qum
First of this equations is the WDVV [16, 17] consistence local condition. The system of
hydrodynamical type is a bi-Hamiltonian system with the PB {, }rp and {,}np if:

W (x) = {u'(x), Hi }ram = {u'(z), Ha}np-

Here Hamiltonians H; and H. are following:

— K&kl o(z — y) + Kutv(z — y)u’?j. (2.2)

— Ku'u™) ={i—j}.

H, = 5 /ui(aj)ui(x)dx, Hy = /[hl(u<m))uz($) _ %uiuiukuk]dx_
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3. Closed string in the background fields.

The string model in the background gravity field is described by the system of the
equations:

% — 2"+ g () (%30 — 270¢) = 0, gas(2)(3°3° + 2°2%) = 0, gap(2)2%2"" =0,

where 1% = %“”T—a , T %= %I; . We will consider the Hamiltonian formalism. The closed string
in the background gravity field is described by first kind constraints in the Hamiltonian
formalism:

1, 1 o / \
hi = 56" (@)Papy + 5 9ab(@)7 “2° 20, hy =paz® &0, (3-1)

where a,b = 0,1,..D — 1, z°%(7,0),pa(7,0) are the periodical functions on ¢ with the
period on 7 . The original PB are the symplectic PB:

{2(0), ps(0")h = 8§8(0 — 0'), {2%(0),2°(0 }1 = {pale), ps(0")}1 = 0.
The Hamiltonian equations of motion of the closed string, in the arbitrary background

gravity field under the Hamiltonian H; = [ hydo and PB {, }1, are
0

vy 10gh 10gs. . Og
.a _ _ab - b _ c ac
T =g Dby Pa = GabZ 2 e Ao PbPc — D) —81‘“ + Dzt

The dual PB are obtained from the bi-Hamiltonity condition

3 = (%, [ In(e)do'}s = {a, [ ateyie'ta
0

0

s ™
Do = {pa,/hl(a’)do’}l = {pa,/hg(cr’)dcr'}g. (3.2)
0 0
They have the following form:
Proposition 1.

0A OB
dxo Hzb

+1Q% () + Q% (c")]d(0 — o)) + =—

[6%(0) + 600" — o)+ [8%(0) + 8(0") 28(0" ~ o)
0A OB
Ope 8

{A(c),B(d")}2 =
wab(0) + wap(0)]¥(0” — o)+

+[®gp(0) + @ab(a’)]%d(a/ — )+ [Qap(0) + Qap(a)]é (0" — o))+

o 5 2 6g(0) + (o’ = o)+ [B(0) + B0 580" o)

] 0A OB (0A OB
Oz (9pb 5[)(, dze
The arbitrary functions A, B,w,®,Q are the functions of the 1%(c),p.(c) . The functions
W ey, B Doy are the symmetric functions on a,b and Q% Qg are the antisymmetric
functions to satisfy the condition {A, B}y = —{B, A},.

+

125 (o) + Q5 (0")]é(0” — o).
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The equations of motion under the Hamiltonian Hy = f ho(o")de’ and PB {, }» are

£% = —wiz? + 2w%hp, + 20%p, — 208z "? 4+ 208z° — 20%p, +

duwb doet . dde .,

dor’[wg:c“+ — pb]l/(o' 70‘)—% pb o ey

_+4

T~y

Pa = —wapz’ — 2@(11,33 + QQabCE + 2wapb + 29 pg + EQapb—{-

kg
, dw? dDap dod
’ b a I _ ab _'p a
+/d0 [wase do’ o' = o) do © do 7
0

The bi-Hamiltonity condition (3.2) is led to the two constraints

—wPz? 4+ 2w py + 20%p, — 288z P 4+ 20820 — 20%0p,+

— gabpl77

[ are dw® doet , by .,
/da[w;’fg:a_,‘_d/pby(a—a)Jr pb—dax
0

—wapz® — 2¢'abz + 2Qab:n + 2wapb + 2(I>apb + ZQapb+

T
n  dw? d®ap 1, dPE
» b b
+/d0'[wabx + dg‘,’pb}u(a'—a)—d—;z + 7 —2p
o
/" 1 E)g 1 agb b e, ag 1y
+gapz O "5 gga PoPe 25—z;$bl'cﬂ" a;bcsz e,

In really, there is the list of the constraints depending on the possible choice of the
unknown functions w,2, ®. In the general case, there are both the first kind constraints
and the second kind constraints. Also it is possible to solve the constraints equations as the
equations for the definition of the functions w,®,. We considered the latter possibility
and we obtained the following consistent solution of the bi-Hamiltonity condition:

ab
% =0, Q% =0, ¢ =0, Qg:o, e T 2w = g
X
1 §we 5w‘w
Wabh = 2 Bz aafbpcpda (*‘*b - 5‘:1"1’ 3 Pe
1 1,0%5. OPge. . Ow™®
Bop = —= Qap = = — )z ©, ={.
ab g Jaby3lab 2( oze  dzb’ Ope

Remark 1. In distinct from the PB of the hydrodynamical type, we need to introduce
the separate PB for the coordinates of the Minkowski space and for the momenta because,
the gravity field is not depend of the momenta. Although, this difference is vanished under

the such constraint as f(z*,ps) = 0.
Consequently, the dual PB for the phase space coordinates are

{z%(0),2"(0")}2 = [w*(0) + w(0")u(0’ — 7),
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’ 0 *wea (o) 2weq(o’) ;
{pa(0),pp(0") }2 = {———————azaaxb pcpd+ et —tp palv(o’ — o)
L 9 agac agbc ‘e ’
___2_[9(15(0') +gab(a')]5(;75(a' — O’) + [W — %]QJ (0')5(0 -— O’)

{xa(g)apb(Ul)}z _ _[gwaa;l()o')pc N B (o)

C]V(U - a),

b
Owbe(a) dwbe(a”)
by f _ ’r_
{p6(0)7x (U )}2 = [ Oz D+ BzC pc]V(U 0')- (33)
The function w?®(z) is satisfied on the equation:
dw® b b
2 a a X .
B °+ 2w =g (3.4)

The Jacobi identities for the PB {, }o are led to the nonlocal consistence conditions on the
unknown function w®(c). We can calculate unknown metric tensor g®®(c) by substitution
of the solution of the consistence condition for w® to the equation (3.4).

The Jacobi identity

{z%(0),2b(0") }2(0")} s = (3.5)
{CEQ(O'),LEb(O’/)}mC(O’/')} + {:L‘C(O'H>,:Ea(0)}l‘b(0',)} + {mb(o./>’ :EC(O‘”)}IG(O‘}) =0
is led to the following nonlocal analogy of the WDVV [16, 17] consistence condition:

Ow(a)

Bw (o
W[wdc(g) +Wdc(0ﬂ>jl - _»___(_‘Zl

Oz
Beb (o)
Ozd

[ (o) + W (0" ~ (0" — o)+

0uw®(a"), 4 o
220D () 4 (o) -

wee (o ' web (o'
0] ax(d )[wdb(gl/) +wdb(o—/)] - Qiaé&_l[wda(gu) —|—wda(0')]]l/(0'——O‘")I/(o" *0’”) -0 (3.6)

This equation has the particular solution of the following form:

[wi(o”) + w(a")Jv(0 — o0 — o)+

[

Ow® (o)
Oz

8*(0)
Oz lw
T8, TUr)1 (0, 0", 0" ufo” — oY{o’ — o),

where T% a = 0,1,...D — 1 is the matrix representation of the simple Lie algebra and
flo,o0’ cT”) is arbltrary function. The Jacobi identity is satisfied on the Jacobi identity of
the simple Lie algebra in this case: :

(o) 4+ ("] - (g) +w(o')] =

([T®, 78T + [T°, T°|T° + [T°, T°|T*) f (0,0, 0"} = 0

and we used the relation 1v?(¢’ — o) = 1. The local solution of the Jacobi identities leads to
the constant metric tensor. The rest Jacobi identities are cumbrous and we do not reduce
this expressions here. The symmetric factor of o,0’ of the antisymmetric functions v(o’ —
o), %6(0' —¢’) in the right side of the PB can be both sum of the functions of ¢ and o',
and production of them. Last possibility can be used in the vielbein formalism.
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Proposition 2. The bi-Hamiltonity condition can be solved in the terms PB {, }2 , which
have the following form:

{z%(0),2°(0")}2 = €(0)en (0" )w(o” — o),

L‘(a-

{2%(0), po(0"}2 = —€f(0) ——pelo’ (0" — 0),
des (o) ded (o)

(Palo) ()2 = (o) e pale (o' = ) = (o ef ) bl = o)
+[g:f’:e{,‘— giieé‘— gii € a etz (0)3(o" - o), (3.7)

where veilbein ej; 1is satisfied on the additional conditions:

v_a b
=n'eqe,, gab = Muvesey

and n* is the metric tensor of the flat space.

The particular solution of the Jacobi identity is

0e4(0) 4 G a(

dxd u(g) y( ) u( ”) -

e (0")el(o)el (o) =

[Tb,Tc]Tajf(U, 0.«) O'”)V(O'N _ O’)I/(O" . 0_)’

As example let me consider the the constant curvature space.
Example 1. The constant curvature space is described by the metric tensor gq.p(z(0))
and by it inverse tensor g;bl :

kﬁEa Ty ab
—kx 25

= Tlab + 3 =92y = Tab — kT,

Proposition 3. Dual (PB){, }2 are:
{za(0),26(0")} = ey — kzo(0)28(0")]V(0” ~ 0),

{za(0),p6(c")} = kza(o)pp(c" (0" — o),
{Pa(0),p5(0")} = ~kpq(0)pp (o’ )v(o" — 0)

1  kxaxy kzozy ., O , :caxg !,
= 2 N Y] — —_—2 ¢ . .

The Jacobi identity (3.5) is led to the equation
MabZe(0") = Naczo(0) (0" — )0 — 0”) + MbeTa(07) = Mpaz (o’ )V(o — ') (o’ — o)+

[Mcazt(0”) — Nepa(0) (0" — " (c" — o) = 0.

The particular solution of this equation is:

NavTe(0") = Nacte(0”) = [Ty, Te|Tal f (0, 0", 0 (0" — o)p(o’ — o). (3.9)
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Consequently, the space-time coordinate z,(o") is the matrix representation of the simple
Lie algebra.
The Jacobi identity {zq.(0),zp(0”)}pc(0”)}s is led to the equation

kN (0" (o’ — 0)[¥(o" = o) + v(o” — o) = 0. (3.10)

These results can be obtained from the veilbein formalism under the following ansatz
for the veilbein of the constant curvature space:

a(s)_n m(s) a_}_\/—m() a) 65(3):71“9 b( (s) b+\/‘~m(s) b)

where nj, = 1, m{"m{” = 1, m$Im$) = 1, m{ImS) = 0, nand = 69 and (s) is number
of the solutlon of the equations

eaeb _ab 1 = 52

ne, = 9%, ehey = gab, €}, tel = 6.

The following example is time-dependent metric space.
Example 2. The time-dependent metric in the light-cone variables has form:

ds® = g (z")de'da® + g (2 F)detdzT + 294 dxtdz.

We are used Poisson brackets (3.3) for the space coordinates z® = {z%,z7,z7}, i =

1,2,...,D — 2. We introduced the light-cone gauge as two first kind constraints:

Fl(a) ::il'f,+ ~ O: F2(0> :p/— ~ 07

and we imposed them on the equations of motion and on the Jacobi identities. The Jacobi
identities are reduced to the simple equation

ab ac
Ow w+c_8w ot — 0
+ St e
ox dx

We obtained following result from this equation and additional condition (3.4): there is
constant background gravity field only for the non-degenerate metric.

4. Constant background fields ( g, = const)

In this section we are supplemented the bi-Hamiltonity condition (3.2) by the mirror
transformations of the integrals of motion:

T

¢ = {:Ea,/ hido'}y = {zaa/ihzdgl}ﬁ-
0

0

The dual PB are
{2%(0),2%(0") }o2 = £9°°v(0’ — 7), {z%(0),Pp(0")}22 =0,

(2a(0),2(0") } 22 = Fan g0’ — ).
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The dual dynamical system
2'70’ = {:1:“, iHQ}l = {Za,Hl}:'EQ.

is the left(right) chiral string
i =419, P, = +p,.
Another way to obtain the dual brackets is the imposition of the second kind constraints
on the initial dynamical system, by such manner, that F; = Fj, for ¢ # k,¢4,k=1,2,... on
the constraints surface f(z*,p,) =0.

Example 3. The constraints £\ (z,p) = pa — gapz’® ~ 0 or
(do not simultaneously) are the second kind constraints.

fG(L+) = Pa +gabm,b ~ 0

f + ’ 9
{750), P (0 = €0 - o) = +29ab 5 0(0" ~ o).

The inverse matrix (C*))~? has following form C™)%¥(c — ') = £1g%y (0’ — o). There
is only one set of the constraints, because consistency condition

{FfE0), Hipr = F B (o) m0, .. {FHW (o), Hi}y = fH V(o) ~0.
is not produce the new sets of constraints. By using the standard definition of the Dirac
bracket, we are obtained following Dirac brackets for the phase space coordinates.

, ; 1, , . , 1 9., ,
{wakd)wb(a )}p = i‘gg b’/(f’ —0),{24(9),p5(c")}D = :Fggab?&(o —0a),

{z%(0),po(c’)}p = %5;5(0’ - o).

equation The equations of motion under the Hamiltonians Hy = hy, Hs = hy and Dirac
bracket
&% = {z“, Hy}p = {2 Ha}p = ¢°°py = +2'°,

Pa = {Pa, H1} D = {pa, H2}p = gupa™ = £p),.

are coincide on the constraints surface. The dual brackets {, }+2 are coincide with the Dirac
brackets also. The contraction of the algebra of the first kind constraints means that the
integrals of motion H;, = H, are coincide on the constraints surface too.

Example 4. Constraints f,(0) = p, — hect'®(c) ,where metric tensor of second
fundamental form hge = const., hgp = hpg , haph? = d¢ are the second kind constraints:

PIRNPIN )
{alo)s (0} = Cuslo — ') = 2has 800" — ).
Inverse matrix C%®(o — ') has form:
ab ! 1 ab !
C¥®o—-0c)= Eh v(o' — o).
Dirac bracket of arbitrary function A(o), B(o) is

{A(0), B(o")}p1 = {Al(o), B(o")} pa— / {A(0). falo”)C (0" 0" ) { fo(™"), B(o')}do" do”"
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Therefore, we obtained the only Dirac bracket
a by .t 1 ab 7
{2%(0),z°(0"}p1 = §h vic —o')
on the surface p, — hgpz ® = 0. The equations of motion under the Dirac bracket are

% (o) = /{:ca(cr),hl(cr'}dd'}Dl = hiz®, &%) = /{m“(o),hg(o'}mdal = z'%o),
where hy = g®h., is Weingarten operator. The equation of motion
i® = hiz"® (4.1)

under the Hamiltonian h; is the hydrodynamical type equation [18]. The equation (4.1)
for the diagonal operator h = dghy was considered as the Hamiltonian equation under the
local bracket for the sphere embedded in a pseudo-Euclidean space E . It has the following
form in the sphere-conic coordinates R* [13, 19]:

N—-1 N
R*=(2R*+ Y R*- ) h*)R"
k=1 K=1

The bi-Hamiltonity condition

3 = [{e* ()b hondo’ = [(a(0), o) b’

led to the following dual Dirac brackets:

(52(0), 240 ) b2 = 500" — o), {palo)mb(o )} 02 = ~Sgarnsdle’ —0)s  (42)

{2%(0), py(0”)} pa = %hgé(o — o).
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QUANTUM TODA CHAIN WITH BOUNDARY
INTERACTION

N.Z. Iorgov, V.N. Shadura

Bogolyubov Institute for Theoretical Physics
National Academy of Sciences of Ukraine, Kyiv, Ukraine

In this contribution, we give an integral representation of the wave functions of the quantum

" N -particle Toda chain with boundary interaction. In the case of the Toda chain with one-
boundary interaction, we obtain the wave function by an integral transformation from the
wave functions of the open Toda chain. The kernel of this transformation is given explicitly in
terms of I'-functions. The wave function of the Toda chain with two-boundary interaction
is obtained from the previous wave functions by an integral transformation. In this case,
the difference equation for the kernel of the integral transfermation admits separation of
variables. The separated difference equations coincide with the Baxter equation.

1. Introduction

Recently, some progress in the derivation of the eigenfunctions of the Hamiltonians of
some integrable quantum chains with finite number of particles has been achieved [1]-(7]. It
is connected with the development of the method of separation of variables [1] for quantum
integrable models. The first steps in the elaboration of this method were taken by Gutzwiller
[2], who has found a solution of the eigenvalue problem for N = 2, 3,4 -particle periodic Toda
chain.

Using the R-matrix formalism, Sklyanin [3] proposed an algebraic formulation of the
method of separation of variables applicable to a broader class of integrable quantum chains.
The next important step was taken by Kharchev and Lebedev [4], who combined the analytic
method of Gutzwiller and algebraic approach of Sklyanin. They obtained the eigenfunctions
of the IV -particle periodic Toda chain by some integral transformation of the eigenfunctions
of an auxiliary problem, the open ( N —1)-particle Toda chain. It turned out that the kernel
of this transformation admits separation of variables. The separated equations coincide with
the Baxter equation. A solution of this equation has been found in [8] (see also [4]).

Later Kharchev and Lebedev [5] have found a remarkable recurrence relation between
the eigenfunctions of the NN -particle and ( NV —1 )-particle open Toda chains. Understanding
these formulas from the viewpoint of the representation theory [6] made it possible to extend
their approach to other integrable systems [6, 7].

In this paper, we apply this method to the derivation of the eigenfunctions of the
commuting Hamiltonians of the NV -particle quantum Toda chain with boundary interaction.
We use the Sklyanin approach [9] to the boundary problems for the quantum integrable
models. The N -particle eigenfunctions of the quantum Toda chain in which the first and last
particles exponentially interact with the walls (the two-boundary interaction) is constructed
by means of an integral transformation of the eigenfunctions for the Toda chain with one-
boundary interaction (the auxiliary problem). These eigenfunctions, in turn, are constructed
using the eigenfunctions of the NN -particle open Toda chain. Such a complicated hierarchy
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allows one to separate the variables in the difference equation for the kernel of the mentioned
integral transformation reducing it to a version of the Baxter equation. We note that, for
the classical Toda chain with general boundary interaction, the separation of variables was
performed by Kuznetsov [10].

2. Integrals of motion of the open Toda chain

To describe the integrals of motion of the quantum N -particle open Toda chain, we use
the L -operators (one for each particle)

— —4q
Lk(u):<zieq1cpk © 8)7 k:172a---7]v»

where N is the number of particles in the chain, py and g are the operators of momentum
and position of the k-th particle, respectively. The monodromy matrix is defined as

T(w) = Liv(u)Ix—1(u) - Lo(u)Lx(u) = ( o o ) - (2.1)

The commutation relations for the matrix elements of T(u) follow from the canonical
commutation relations

ok, @) = —%&sz
and can be written as
Ru—v)(T(w)®1)(1®T(w)=1T(v))(T(uv)®1) R(u —v), (2.2)

where R(u) is the rational R -matrix:

+1

1I+2 0 0 0
i1
13
Rw~| ° L % 0 (2.3)
0 =2 1 0

U 1
0 0 0 1+2

From (2.1) it follows that A(u) is a polynomial of degree N in u:

N
A(w) = > (=1)™uN "™ Hpp (p1, 01502, @2 - - -3 PN, QN) =
m=0
=V — fi';,.’LLN_1 + HQUN—Q — e (—I)NHN.

In particular, relations (2.2) give

[A(u), A(v)] =0,
and, therefore, [H,,,H] = 0, that is, A(u) is a generating function for the commuting
operators H,, . Since

N-1

N
Hy=Y pe, Ho=) prp— ) e* %,
k=1 "

: k=1
k<l
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we get the Hamiltonian for the open Toda chain in the form
N o N-1
H=H22-Hy=% 2 1 § eomtnns,

2
k=1 k=1

Therefore, the operators H,, are Hamiltonians for the open Toda chain.

3. Wave functions for the open Toda chain

Let a wave function (q1,-..,qn) for the open Toda chain be a common eigenfunction
of the commuting Hamiltonians H,,

Hup(qy, .- an) = Emdb(qr, - qn)-

Then
N
A(“)’(JJ’YN (ql‘, ey QN) = H(’LL - ’YNl)w'YN (QI) oo 7QN)3
=1
where v = (yn1,7N2,...,7nN) are the quantum numbers of the N -particle system,
E. =emn(YN1, YN2,---5 YNN), and ey, is the m-th elementary symmetric polynomial.

Forevery set 7y , the space of eigenfunctions is N! dimensional. The physical eigenfunction
¥, is fixed by the requirement that 1., rapidly decreases in the classically forbidden
region, that is, for g, >> gy4+1 for some k. For g1 << g2 << -+ << gqn, Yy, i5a
superposition of plane waves.

Recently, Kharchev and Lebedev [5] have found a recursive procedure of constructing the
N -particle wave function v (q1,92;-..,qn) through the (N — 1) -particle wave functions
w'vN.,l(Ql, @2 - --;qN—1) - The recurrence relation is

Yy (G152, -+, AN) :/d?’N—W(’YN—l)Q(’/N—l|‘7N)7/)1N_1(QLQQ,---,QN—1)><

i N N-1
e‘%‘(Zj:i VNG T2 ket YN=1,k)GN

, (3.1)
where integration is carried out with respect to yn—1,4, k=1,2,...,N — 1, along any set
of the lines parallel to the real axis and such that

mkin Imyy_1k > max Imyy , 7=1,...,N, (3.2)
J
N-—1 N 1 TN— 1 k— 'YNJ
YN—-1,k = VN,j
QUyn_ilrn) = H 3 r <——1——J) ;
i1
k=1 j:l 2

_ IN—-1,k — YVN-1,1
p o) = [ (B )

, 2
ksl
In a similar way, the (N —1) -particle wave functions can be expressed through the (N —2)-
particle wave functions, and so on. The wave function for the 1-particle open Toda chain
is just a plane wave:
‘j;_"‘rum

Yoy (q1)
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In what follows, we use the notation ~ :=-yyN, Y = Ynx . As shown in [5], the wave
function 1), satisfies the relations

N

Ay = [ [ —7) (3.4)
=1
N —
B{u)yy = N1 I;l ll;!’ ,:; _?;l Yoptr, (3.5)
N
Clu)py =i~ N1 g (g %) Yys, (3.6)

where wa,:x:r = w71572,‘.4,'ypiih,m;7N .
In order to find the action of D(u) on 1)~ , we use the following property of the quantum
determinant of T(u) for the Toda chain:
D(u)A(u —ih) — C(u)B(u —-ih) = 1. (3.7)
The result is

N
u—mm 1 1 1 ) /
Dby =>_ (] = o = el K
)Py (#p ‘/p—’yl) ih <Hl¢p(”/p_’Yl‘Llh) Hz¢p('7p_’71 — ih) 7

p=1 /

1 1 U — Y
- -3 ¢7+Px~q . (38)
% Vg —Yp —ih Hl;ép(’?’p ) lgq Ye =N

4. Integrals of motion of the Toda chain with boundary
interaction

In this section, we give a sketch of the R-matrix formalism for the quantum Toda chain
with boundary interaction proposed by Sklyanin |9]. This formalism is important for the
construction of wave functions. The key object in this approach is the matrix

iz - u u
Ulu) = T(u)K (u— %)T(—u) = < “04((u)) ggug ) , (4.1)

where T(u) is the monodromy matrix (2.1) of the N -particle open Toda chain, and

T(~u) = 02T (~u)az = (02 Li (~u)oz) (02 L5 (~u)0s) - - - (02 Liy (—)o2).

Here, o, is the Pauli matrix. The matrix K (u — i1/2) is

KO (- = L4 % . 4.2)
( ) (—ﬁl(u—'—%) al) (

b |t~5_1;
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As shown in [9], the matrix U(u) satisfies the reflection equation

R(u—v) (U(w) © 1) Rlu+v —iz) (1 8 U(v)) =
1®UW)R(u+v— 1%) (U(u)® 1) R(u—v), (4.3)

where R(u) is given by (2.3).

This equation implies B(u)B(v) = B(v)B(u). Therefore, the expansion of B(u) in
powers of u gives commuting operators which, in fact, are the Hamiltonians of the one-
boundary Toda chain

1 5
Blu) = (-1)N (u — i>/2) (uN —u?2HE 4 N HE — o (-1)VHR) (4.4)
where
N N-1
HP = sz +92 Z Pl S 2(‘816—Q1 + ﬁlc—2q1.
k=1 k=1

Here the last two terms describe interaction of the first particle with the wall.
The Sklyanin’s transfer-matrix

t(u) = TrK(*)(u—H%/Q)U(u), (4.5)

where

K(+)(u+i_2%_): ( an - Bvlu —;_—) >?

satisfies the commutation relation [9]
t(u)t(v) = t(v)t(u). (4.6)

Hence, t#(u) is a generating function for commuting operators which, in fact, are the
Hamiltonians of the two-boundary Toda chain.

For simplicity, in what follows, we fix F; = 35 = 0 and use the notation e = —2a;,
e "N .= —2ay . In this case, we have

t(u) = ()N (u? + %2/4)><

(uN —u?N2EPB 4 2N gBE o (C)VHER) 4 2000, (4.7)
where
N N-1
HPP =3 "p +2) %% — 20167 — 2ane?.
k=1 k=1

In the case of the Teda chain, the matrix U(u) has some additional symmetry (unitarity)

[9]:

{A(—u) B(-u)\ 1 CilA(u) + 2uD(u)  —(2u+ib)B(u)
\ ¢ D(-u) ) T -3 ( 2outibe)  2uAw) - 13D > (48)
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In particular, this leads to

T

oy

i il
Alu) = % ((u — -2)D(~u) + %D(u)) : (4.9)

Therefore, using this equality and (4.5), we obtain

i3 u— 2 il
t(u) = ay ) Dlw) + an — ) D(w)— (u+ 2)B(u). (4.10)

Using (4.1), we obtain the following expressions for the matrix elements of U(u) in
terms of the matrix elements of the monodromy matrix T'(u) for the IV -particle open Toda
chain:

1
A(u) = & (A(u)D(—u) — B(u)C(—u)) — (u - 1%) A(u)C(—u), (4.11)
B(u) = —a; (A(u)B(—u) — B(u)A(—u)) + (u - 1%) A(u)A(—u), (4.12)

B ol

C(u) = oy (C(u)D(~u) — D(w)C(~u)) — (u —i ) C(u)C(—uw), (4.13)

t\j|t\JI)—l

D(u) = a3 (D(u)A(—u) — C(u)B(—u)) + (u —1i ) C(u)A(—u). (4.14)

We give some examples:
N’ =1:

Blw) = ~(u 15 /2) (u? — (5} + "),

12 .
t(u) = (u? + 3 /4 (uz —(p? +ef TR f ek )) + 2a0/;

.LV:23

.1
B(u) = (u_—1§/2) (u4 — uz(pf +P§ 4 2e1 79 4 MmN L (pypy — eth—qz)Z _ alpge‘% — 2017 ®

12
t(u) = —(u? + 3 /4) (u4 — u?(p? + P24 20T 4 M 4 TRy 4 .. ) +2a109.

5. Wave functions for the one-boundary Toda chain

We define the function ¥ = ¥y, A, as

_iry(yitbyn)

Ua(gq,. - qn) = /d”n - dyvp(7)Q(YA)e T Pylaneaw) (5.1)
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where e = —2q; and
giny = Tl C2) T (5 Aff)ﬂé g
Mo (-2)

Tk = .
:HFQLTQ.@m
k.1 1y
k#l

We show that this is a wave function for the quantum one-boundary Toda chain, and

B(u)Ua(q,. .- qn) = (=1)N( )H(u —2)TUa(q1,---,qn), (5.3)
=1

where the structure of the right-hand side corresponds to (4.4). The integration in (5.1) is
carried out along any set of lines parallel to the real axis and such that

m}?xlmfyk<—min1m)\j, k=1,2,...,N, j=1,...,N. (5.4)
; j
First, we prove the absolute convergence in (5.1). For this, we use the inequalities
. \ _rly]
Tz +iy)| < T(@)pe(lye™ 2, >0,

where p;(]y|) is some polynomial in |y| with degree linearly depending on z,

1 (1 -+ [—zl-> e
. ) >0,
Iz + iy)] Iz ‘
and also inequality
N } N-1
Z (f)\k = ANl + A + 7N,l|) + 1,k = Vrdl=
k=1 r=1 k|1l
N
2ZZ r,k_:)'r,l|_
r=2 k<l k<l
N - . ) )
> N SR+ 2 37 (A = Rl + e+ Auf) + }:Zlml (5.5)
k=1 k<l T—lk 1
which is valid for any set of real variables 5\,“ k=1,2...,N; 1, Il =1,2,...,r

r = 1,2,...,N. A proof of the last inequality is given in Appendix A of [11]. For our
purposes, we fix Ay (respectively, ¥.;) to be equal to ReAx (respectively, Revr; ).
Presenting (5.1) as

\IIA(QM . ’QN /H Hd/TkF ‘715727 --)7NaAaQI,"'7QN)

r=1k=1
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we obtain the following inequality for the dependence of the integrand on v, :

N

~ w . ~
|F(71a72a--‘77N1)‘; qla“w(JN)J < P({Vr,k}) €xp (”mzzrﬁ,kl) 3 (56)
2

r=1k=1

where P({#,x}) has polynomial dependence on the variables 4, ; and certain dependence
on the other variables. Estimate (5.6) leads to absolute convergence of the integral on the
right-hand side of (5.1). We would like to mention that integral (5.1) does not depend on the
values of the imaginary parts of v, (that is, lines of integration) provided the mentioned
inequalities (3.2) and (5.4) for them are satisfied. This follows from two facts. First, we
do not encounter poles as we shift the integration contour. Second, due to estimate (5.6),
the integrand is vanishing at the infinities of the integration contours. This justifies the
correctness of shifting of the integration contours which we use in what follows.

From the physical viewpoint, the function ¥x(qi,...,qn) given by (5.1) has correct
asymptotic behaviour rapidly decreasing in the classically forbidden region, that is, where
Gk >> qg41 for some k or where ¢ << 0. In the region 0 << g1 << g2 << -+ << ¢gnN,
the function ¥x(qi,-..,qn) is a superposition of plane waves.

The formulas for the action of the matrix elements of U(u) on ¥y, in particular (5.3),
are derived in Appendix B of [11]. Other action formulas proved there are

'D(u)\IIA:qu ]‘—‘I:)\Q——/\l2 X

p=1 \ls¢tp " P

il it N

Ap) (u— 2 ~ ) (u—2 A2 — 2
(u;;\ p) (u ?l) Uyp t (u2/\ p) (u igl) Ui | 4o <H 2 u ) T, (5.7)

P (Ap— ) (At F) =1 A+ (%)

t(u) — 200 N '

Hu)Ts = ()N gy = @ = 2)%x + (1) gy x

u? + (%) I==1
al 232 1 1 2

ST ;‘2 —3 Uy Uy — ————— s | (5.8)

p=1 \Ilzp P ! Ap(Ap — F) Ap(Ap + ) A2+ (-22—)

In particular, formula (5.7) gives
1
D()\T)‘P}\ == al\I/)\vr, D(’*Ar)\I’A = (X \I’)\+r, D(l'é/?)q/;\ = Oél\I’A. (59)
The action of A(u) and C(u) on ¥y can be derived using (4.9) and Sklyanin determinant
[9] for U(u), respectively.

Here we give some heuristic explanation of formulas (5.9). Let ¥x(q1,...,q~) be an
eigenfunction of B{u) satisfying (5.3). Then the commutation relation

<u2 - (v— i%)g) D(v)B(u) — (u® — v*)B(u)D(v) =
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which follows from (4.3), gives

N
BuDOE = (-1 (u— 2)(u? — (A, — i5)?) [T62 =2 -p)ws

2

at v = A, and, therefore, D(A.)¥ is an eigenfunction of B(u) with A, replaced by
(Ar —i2). Clearly, this argumentation is not sufficient to prove the relation D(A,)¥y =
a1V~ . As mentioned before, a proof of this relation is given in Appendix B of [11].

6. Wayve functions for the two-boundary Toda chain

Taking into account (4.7), it is useful to introduce

av )

Let ®,(q) be a wave function for the two-boundary Toda chain:

7
— 2o
(u) 1= (—~1)N 1 tu) — 2may W — y2N-2gBB  2N-4pBB . (_])NpgBB

o)

N
i) ®p(q) = [ (12 = £)®plq) = E(ulp)Bp(a);
k=1
where p = {p1,p2,...,pn} arethe quantum numbers of the corresponding state.

We look for ®,(q) in the form

Bo(@) = [ -+ dhy HNCNR)Ua(9), (61)
where
oI (52 (AP (52)r (22)

and the integration with respect to {Ax} is carried out along arbitrary lines parallel to the
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real axis. Using (5.8) and _L{_A—Z _Pilz_ s, “)\"j\%z)‘;\;\l we obtain

(1) 1H{ulp)®,(q) = / - dAy Talq)x

A+p)C'(A+pf ) / ud — )2
X |:041CtN Z i: kH oo i%)Ql_ /\l2> +

+i1) 0+ £) \i
INPYC(A"Pp 2 _ )2
" AATC( |i) H u-1 i‘z - -
o =D = 3) \igip Mo —12)* = A7
20N C(Xp W22\ .
_ ey (12[ ) - /\12) _H(/\il*‘uz):
M+4) P i=1

l#p

2 _ AZ
- / d\dAz - dhw (A)C(A|p)¥alg [MNZ (H ‘%‘P)Té—*ﬁ) *
2 1

N

1 C(A*Plp) 1 C‘(A“”Ip) 2 2 2
34 ~ <1 - 12 - AZ - -
- L,(,\p +12) ClAlp) i A(Ap — 2) C(AlP) 02 + 54_)} Ef w)

6.2)

Weset u = \,. Then the previous relation is satisfied if

DY lp) 3
PENI &
o 1L _Cp) 1 CA™p) 2
= /] N 7 .l — T3 R
MOp+2) CRAlo) 3 0, ) CAlP) (24 1

) V- 2 v . . g .
where t(ulp) = (—1)¥1(u? + 1°/4)[Til,(u® — p2) + 2a1ax . This multidimensional
difference equation admits separation of variables. Namely, we suppose the factorization
property

N
C(Aip) = [ clo)-
p:l
Then c(Alp) satisfies the Baxter equation
1 1 1 1 t(Alpe(X
L C(A+1§|p)+————;—rc()\_1§|p): ( lp) ( Ipl)z ;
AMA+3) AN —2) aran (A2 + )

or, equivalently,

A t(Alp) c(Alp)
ai1onN '

-

._..
[} }t\;h—é

it 1
)c(Aﬂ—!p) A+ %)C(A—iilph
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Solutions of this equation can be constructed in terms of ratios of infinite-dimensional
determinants as it was done in the case of the periodic Toda chain [8, 4]. We expect that,
similarly to the case of the periodic Toda chain (8, 4], the requirement of the analytical
properties of c(A|p) (which is important, in particularly, for the convergence of integral
(6.1)) restricts possible values of p to the discrete spectrum of the quantum two-boundary
Toda chain.
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THE CULT OF JANOS BOLYAI IN TRANSYLVANIA

Z. Kasa

Babes-Bolyai University
Cluj-Napoca, Romania

Jdnos Bolyai (1802-1860) is the greatest Hungarian mathematician who after recognizing
the impossibility to prove Euclid’s fifth (the so called parallel) postulate from Euclid’s
others, developed the absolute geometry (maybe the first non-Euclidian geometry) that is
independent of the fifth postulate. He was only 21 years old when in 1823 he reported his
finding to his father, Farkas Bolyai: “I have created a new, different world out of nothing.” His
discovery was published in 1832 as an appendix to his father’s book Tentamen, so generally
reffered to as Appendiz. For more than hundred years his mathematical activity was identified
with the Appendiz, but he was not only a geometer. He also developed in the unpublished
Responsto a rigorous geometric concept of complex numbers as ordered pairs of real numbers.
Although he never published more than the 26-page Appendiz, mainly because he was unable
to gain recognition for his work, he left more than 14080 pages of manuscript of mathematical
work when he died. Recently these have been thoroughly researched by Elemér Kiss with
surprising success: mathematical gems have been found, mainly results in number theory
and algebra which were new in Bolyai’s time [1].

1. Janos Bolyai’s life and activity

Janos Bolyal was born on December 15, 1802 in Kolozsvdr (now Cluj-Napoca) in the
middle of Transylvania (see Fig.1). Since 1804 the Bolyai family lives in Marosvasarhely (now

Fig. 1. The map of Romania.

Targu Mures) where Farkas Bolyai was invited as a teacher in the Reformed College. Here
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spent Janos Bolyai his childhood. Ir1 1818 he began his study at the Academy of Military
Engineers in Vienna. In 1823, after finishing his study, was nominated sub-lieutenant and
assigned to Temesvdr (now Timisoara). He wrote in November 3, 1823 in his famous letter to
his father: “I have so much to write you about my new findings... now I cannot say anything
else: I have created a new, different world out of nothing.” In 1832 his father published in
Latin his book Tentamen with the Appendiz: Scientia spatii absolute veram ezhibens of Janos
Bolyai. This Appendiz was published in 1831 as a preprint. This 26-page paper contains the
exposition of the absolute geometry, which is independent of the Euclid’s fifth postulate.
Farkas Belyai sent a copy to Gauss, his youthful friend. The Gauss’ reply on the Appendiz
was a crushing one: “If I praised it, I should praise myself since the whole content... coincide
almost entirely with my reflections over 30-35 years”. But in letter to his friend Gerling he
wrote: “I consider the young geometer Bolyai as a genius of first order.” In this letter he
recognizes that his ideas in 1798 were far from the maturity found in the work of Janos
Bolyai.

After retiring in 1833 Jdnos Bolyai lived in Doméld (now Viisoara) and in
Marosvasarhely, where he still worked mathematics as the remaining manuscripts attest.
Between 1835-1840 he clearly expressed the idea which later came to be known as the
“geometrization of physics”.

In 1848 he got Lobachevsky’s work on parallels published in 1840 in German. First, he
was suspicious that he had been stolen, but after reading the entire book he made enthusiastic
comments on it.

Jénos Bolyai died in 1860. In the Kolozsvdri Kdzlgny (Bulletin of Kolozsvar) has been
written: “It is our enormous loss, that the life of such a brilliant man and owner of deep
knowledge has passed almost with no use among us, and being by nature odd and avoiding
people, he lived exclusively being engaged in his wast ideas. May he rest in peace!l” [4]

2. The Cult of Janos Bolyai

His scientific activity was unrecognized in his life. Only after his death the scientific
world finds out his outstanding results in geometry. The Appendiz was translated in several
languages, as [talian and French (1867), English (1891), Hungarian (1897), Russian (1950),
Romanian (1654) etc.

The first who took note of the importance of the Appendiz was Richard Baltzer from
Drezda. Under his influence G.J. Hoiiel from Bordeaux started to study the gecmetry of
Bolyai. Gyula Vélyi (1855-1913) was the first professor at the new created university in
Kolozsvar (in 1872) who held lectures about the Appendiz in the second semester of the
academic year 1891-92, which lectures were repeated several times every four years. In order
to compare the absolute geometry with the hyperbolic geometry he sometimes borrowed
some of Lobachevsky’s results [2].

In the summer of the year 1896 George Bruce Halsted (1853-1922), professor at Texas
University in Austin, who have been published the Lobachesky’s treatis and the Bolyai’s
Appendix, made a trip to Marosvdsdrhely and after this to Kazan. In The University Of
Texas Magazine was published a paper by J. A. Lomax, the editor in chief, about this very
interesting summer trip [3| (see Fig. 2).

From this interesting paper let us point here only two facts on Bolyai and Lobachevsky:

“For many years Dr. Halsted, our professor in mathematics, has been interested in the
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Fig. 2. Lomax article’s magazine.

study of non-Euclidean geometry. In the pursuance of these study he has discovered to the
English-speaking world two great characters... Nicolai Ivanovich Lobachevsky, a Russian, and
Bolyai Janos, a Hungarian... ” [3] (see Fig. 3).

“Among the other interesting facts about his family life, unknown before, it was learned
that Lobachevsky had a son and daughter now living. The son is a political exile in Siberia,
and the daughter, poor in purse, lives in St. Petersburg.” Halsted became a benefactor,
because the Czar promptly awarded to the Lobachevsky’s daughter an annual pension, and
Halsted also ask the Czar to pardon the son [3] (see Fig. 4).

The house where Janos Bolyai was born (Fig.5) had been tracked down and marked by
a memorial plaque only in 1902, when 100 years since the birth was celebrated. This period
is the real beginning of the Bolyai-cult.

The Bolyai Prize was established by the Hungarian Academy of Sciences to be awarded to
an outstanding mathematician every five years by an international committee. In 1905 Henri
Poincaré, the great French mathematician was honored, and in 1910 the famous German
David Hilbert. For the third prize was recommended Albert Einstein, but because of the L.
World War the prize was not awarded. The Bolyai Prize was renewed in 1991 and awarded
again only in 2000 to S. Shelah for his monography Cardinal Arithmetic [5].

The first book on the two Bolyais’ life was published by P. Stéckel in German in 1913
and translated in Hungarian one year later.

After the II. World War, when Transylvania became again a part of Romania, in 1945
a Hungarian university was established in Cluj (actually this was the continuation of the
former Hungarian university), which later was named after the two Bolyais (Farkas, the
father and Janos, the son) Bolyai University. This university was merged by force in 1959
with the Victor Babes University in Romanian language. The new university got the name
Babes-Bolyai University (Fig.6), which still exists and now is one of the largest university
in Romania.
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The life and activity of Janos Bolyai has been studied in the last decades by several
researchers in Transylvania as Elemér Kiss, Tibor Weszely, Tibor Toré, Rébert Olah-Gal,
Samu Benké (the non-mathematical papers) and are studied further on.

In 2002 we celebrated 200 years since the birth of Janos Bolyai by a lot of commemorative
conferences held in Romania. The first one was the BGL-3 conference in Targu Mures on
July 3-6 (the first two editions had been held in Uzhgorod, Ucraine and in Nyiregyhdaza,
Hungary). The second conference of the year dedicated to Bolyai was on October 1-5 in
Cluj-Napoca {International Conference on Geometry and Topology) organized by Babes-
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Fig. 5. J. Bolyai’s birthhouse.

Fig. 6. Babes-Bolyai University.

Bolyai University with the cooperation a farkas Bolyai Highschool in Targu Mures. In
october an Bolyai-exposition was achieved by the university of Cluj-Napoca. The Romanian
Academy had organized a commemorative session on December 13 in Bucharest. The last
events in the Bolyai Year were a conference in Hungarian at Cluj-Napoca on December 14,
a remembrance spectacle at the Hungarian Opera in Cluj-Napoca on the same evening, and
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on December 15 in Targu Mures the inauguration of the so called Pseudosphere monument
(Fig.7) in front of the Bolyai Museum, projected by the mathematician Sdndor Horvath.
Every year on November 3 at noon, if the sun is shining, a mirror system lightens the
inscription I have created a new, different world out of nothing, written on the base of the
monument.

Fig. 7. The Pseudosphere monument.

In 2002 a great number of papers on Bolyai’s life and acticity in Hungarian, English and
Romanian have been appeared in different journals and nice books have been published. It
is worth to mention a book edited by Polis Publishing House with 27 poems dedicated to
Janos Bolyai by 8 Hungarian poets from Transylvania.

After a long slight, nowadays Janos Bolyai took his worthy place in the history of
sciences.
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JIVNOPEPEHIIUAJIEHAA 'EOMETPUA U CXKATOE
OIIMCAHUE BCEJIEHHOI

B.M. Kopiokun

Maputickut 2ocydapcmeentniili meTruveckul yHusepcumen
Howxap-Oaa, Poccus

ByzeMm npeamnosnaraTs, 1To 3Bosronus BeesrleHHOM onpenesnsercd gacTHiiaMu, 60J1b11as JaCThb
KOTODPBIX B HACTOSINEEe BPEMs HAXOAUTCH B CBI3aHHOM COCTOSIHUM H KOTODBIE IIPOSIBJISIOT
cebs b 110CPe,ICTBOM CJI1abblx B3auMoaeiicrBuit. g ormicanusa 6030HHBIX COCTOSHUN MBI
Gy,meM UCI10,1630BaTh Iankue mousa Bg . BeposarHo, padr MaTpumpbl IOTHOCTH o moseli B
pPaBeH 7, HO HeJIb3% HCKJIIOYHUTD, YITO JaHHOE PABEHCTBO €CTh CIieJICBUE APeHeOPesKeHust HEKO-
TOPRIMH KOMIIOHEHTAMHM MATPHIIbI IVIOTHOCTH. ¥ YNThIBas HEPA3IHIMMOCTD 0OIbIIEH YacTh
BO30HHKLIX COCTOSHMIL, MbI OyOeM HCII0Ib30BATE DeIyIHPOBAHHBIH HabOp IIoJeil {<I>§j ), Ag}
BMecTO 1oJHOro Habopa {Bf} . KoHe4dHO, HEOGX0AMMO YIMTHIBATE, 9T0 B JIArPAHKHMAHE II0-
ABATCA TOCTCAHHbBIE, HTPAIOLIe POJIb BECOBBIX MHOXUTeJeit — Takue, kKak 1/Gn (Gn —
rpaBHTAIRIOHHAN [OCTOsHHAMA). B pesyibrare ypaBHeHus no.7ei <Il(j) MOTYT OBITH 3aIrica-
HbI XKaK yPABHEHUS DUHMITEHHA. JTO 1103BOJIAET ONPE/IEJIUTh IIPOCTPAHCTBO-BpeMst M, Kaxk
PUMaHOBO MHOTO06pa31e, OCHOBHOM Ten3op 9;; KOTOpOrc MbI OyIeM BBOIMTH nocpe ICTBOM
PeAyIHPOBAHHOM MATPUIBI ILIOYHOCTH £ .

1. Bsenenmne

B Hosfpe 2003 rona Gbuia onybaukosasa cratsa B.B. Kanomnesa [1] mo marepuanam
ero Jeknuit 1997 roga, KoTopas 1mokasaJia, uTo auckyccus 30-x rogoB XX CTOJIETUS MEXKAY
Bopom 1 DffHInrreitHOM, Kacaton@ascst OCHOBOIIOIATAIOIIUX HPUHIIUIIOB KBAHTOBOK MEXaHUKY,
He II0TePsIJIa CBOETO 3HAEHUs U B HACTOsIIee BpeMs. Kak u3BeCTHO, DNUHINITEHH IPEIIoia-
raj, YTO BEPOSITHOCTHbIE 3aKOHbI KBAHTOBOIH MEXAHWKW SIBJISIOTCA CJIEACTBUEM HENOJIHOTHI
OIIMCAHUs (PU3UUECKUX cHcTeM. IIpu 3TOM HenoJsiHOTa MOKeT ObITh yCrpaHeHa MOCPEICTBOM
BBEJEHUS IOMOJIHHTEJbHBIX CKPBITHIX NMapaMeTpoB. TeMm cambIM HpPEINoJaraaoch HaJludue
KJIACCHYEeCKMX 3aKOHOMepHOCTeli Ha 6osee riiybokoM CyOKBAHTOBOM ypoBHe MaTepun. Ha-
npoTuB, Bop mpeamnosiarasl NpUHEMIHAJIBHYI0 HEBO3MOYKIOCTD JOCTHYD 3TOr0, TAK KaK MHO-
IHe XapaKTEePHCTHKNA MUKPOMHUPA MPOSIBIIAIOTCS UCKIIIOUNTEIIBIIO O/arcIapsa HaJIUYHIO MaK-
POCKOIIHYECKUX IpUOOPOB ¥ HE MOI'YT ObITh IIPHUIIMCAHbI 3MTEMEHTAPHbIM HaCTHUIAM B OTCYT-
CTBUH I3MEPEHU.

3ameTum, 1TO B XX BeKe OLIJIM CAEIaHBI MPOMAIHbBIE TTOITBITKH Pa3pPYIIUTh UILITIO3UIO
JeTepMUHM3MA, KOoTopasi yTBep/iniack B Hayke B Korre XIX Beka. KonetiHo, riaBHyio jenty
B 9TO BHECJ/IA KBAHTOBas MEXaHWKa, CO3TAHHE KOTOPOi ObLIO MHUIMMPOBAHO PE3Y.JIbTaTaMH
SKCIEPHMEHTOR B ATOMHOI U stjiepHOii u3uku. Ho 1 B OCHOBE OCHOB, Ha KOTOPOit 0a3upOBaII-
CH AeTepMHUHI3M — KJIACCUYECKOH MeXaHHKe — ObLIM OTMEtIeHbI “HeJOCTATKH ), IPUBOISAIINE
K yrpare nwunosnii [2]. HecmoTps Ha To, 4TO ¢ MiUII03UAME ObLIO IIOKOHYEHO, OT MEH JeTep-
MHHHU3MA TPYIHO OTKA3aThCs, TAK KAK ILIAHUPOBAHNE (DU3HIECKIX IKCIIEPUMEHTOB OCHOBAHO
Ha pactieTax, ONMPAaiOIIUXCsi Ha MeTOabl, HapabOTaHHbIE B HAYKe NTpu ero rocrnogctee. K aTum
METOIaM, B IEPBYI® OYepeab, HEOOXOAMMO OTHECTH HUCUUCIIEHNE DECKOHEYHO MaJIbIX. ¥ CIIeXi
B 3TO# 00JIaCTH TPYIHO NEpPeorieHUTs. MOKHO yKa3aTh Ha OJHy JiMUlb 00JacTh B MaTeMa-
THKEe — TEOpHIO Ipynn J1u, KoTopas OKa3aJia OTPOMHOE BIIMSI{HE Ha BCIO TEOPETUYECKYIO
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dusuky. KoHeuHO ke, 1M0JIe3HbIE Pe3yJIbTAThl MOIJIA ObITH 3/€Ch MOJIyYeHbI Oyiaronaps “xo-
poriiuM” CBORCTBaM IPOCTPAHCTBAa-BpeMeHU. B nepByro ouepe b 3T0 CBOMCTBO Xayc1opdoBo-
cTH (OT,JeIUMOCTH), KOTOPOE TOCTYJINPYETCs, HECMOTPsl Ha KBAHTOBBIA XapaKTep 3aKOHOB,
IefICTBYIOUINX B MHKpPOMUpE. BO—BTOPBIX, B TEOPHH Ipymnm JIu BasKHYIO pOJIb UIPAeT Ha-
JId9de MIAAKHX KOHTDYSHIH#, [T0JIy4aeMbIX KaK pelleHus nuddepeHnnabibIXx ypaBHEHHH.
B T0 ke BpeMs HeIb3s HE OTMETHUTh, ITO B KBAHTOBO# MEXaHHMKE OTDHUIIAETCSA CaMO CyIie-
CTBOBAaHNE TPAEKTOPUI 3JIEMEHTAPHBIX “aCTHIl. VIMEHHO 1103TOMYy BMECTO IPOU3BOIHBIX Jlu
CTaHOBUTCSI HEOOXO,TUMBIM HCII0JIb30BAThH H0Jiee ODIIHe OIepaTopbl, KOTOPbIe MHIYIIHPOBAJIN
651 1 60JIee 0OIITHe 110 CPABHEHHIO ¢ rpynnamu JIu ajiredOpaniyeckue CTPYKTYPbI, B YaCTHOCTH,
JioKaJbHbIe J1ynel JIu (3, 4], # KoTopbIe 110380 GbI y4ecTh OTCYTCTBHE JETEPMHHH3MA B
pPeaJIbHbIX (HU3HIECKUX IIPOIIECCAX. 3AMETHM, Y9TO HEaJEeKBATHOCTb ONHMCAHHA (DHU3UYECKUX
CHCTEM IIpH IIOMOIIH [NIaIKUX 110J1el B auddepeHIupyeMbIX MEHOrooOpa3uax BeJeT K HeoD-
XOZAUMOCTH JATh BEPOSITHOCTHYIO MHTEPIPETAIMio reomeTputieckiM obbektam. Beiencrsue
3TOro MbI OyZieM paccMaTpuBaTh pemreHus quddepeHInabHbIX YPABHEHMH JIMITb KaK HAHU-
6ouiee ipaBAONO,q00HbIE (DYHKIIUH, IPUMEHsIEMbIE JJIsI ONUCAHUS 3TUX cuCTeM. KOHe HO, Ipu
3TOM MbI yUHUTHIBAEM 3aKOMbI, NeiiCTBYOUIMe B MUKDOMHDE, U CHHTaeM ux OoJiee yH,)jaMeH-
TaJIbHBIMH, Y€M Te, KOTOPbIE TPHUMEHSIOTCS MJIs OIMCAHUS BUXKEHHUS MaKDPOCKOIIUMIECKUX
TeJI.

Msb1 Gynem ommpaThCs Ha TOAXOY, npeanorkenHslit [Ipemusrepom [5], KoTopblit BBEI
HabOp HEOPTOI'OHAJIBHBIX APYT APYTy BOJIHOBBIX (yHKIwmit U, OIMCHIBAIOLIMX HEPACILIbI-
BAIOMIMICS BOJHOBOM MaKeT Al KBAHTOBOIO ocumiliaropa. Ilozanee Tiay6ep [6] 1iokazan
BO3MOKHOCTb OITMCAHHMSI KOIEPEHTHbIX sIBJIEHHH B OIITHKE NDH 11IOMONIM BBejeHHbIX 1llpe-
JHMHI'€POM COCTOSIHUH, KOTODBIE Ha3BaJI KOrepeHTHbIMU. JIaHHBIH 110/1x01 1aJjee ObIJi pa3BUT
B paborax IlepesiomoBa (7], KOTOpPBIit BBeJI OmpeaeneHne 0G0BIIEHHBIX KOTEPEHTHBIX COCTO-
SIHUM KaK COCTOSIHWM, BO3HHKAIOIMX IIPU AEHCTBHM OIEPATOPA IPEACTABJIEHUS HEKOTODPO
rpynmnbl npeobpa3oBaHuil Ha KaKOR-JMO0 (bUKCUPOBAHHBIN BEKTOP B IIPOCTPAHCTBE 3TOI'0
npejicrapiieHus. [To HanleMy MHEHHTO, IMEHHO 3TO ¥ II03BOJISIeT AATh (DUIHMIECKYIO HHTEPIIpe-
TaINI0 KaJIHOPOBOYHBIM I1pe0bpa30BaHUsIM KaK IPeoOpa30BAHUAM, ITO3BOJISIONIHM OAYYATh
0000111€HHbIE KOTEPEHTHbIE COCTOSIHUSA, XapaKTepU3YIOIINeCs HENPEPbIBHBIMH ¥, BO3MOXHO,
CKPBITHIME IIapameTpaMu (8.

HUrak, paccmorpum BosiHOBbIe makersl {Y(w)} “ommuputueckux” ¢yskmmit T (w), aB-
JISIOIIAXCH AMIUINTY{AMHU BEPOSTHOCTH (DU3UTIECKOH CHCTEMBI, HAXOJIAIIEHCS B COCTOSIHUH,
KOTOPOE XapaKTepu3yeTcs napameTpamu w . Ilepexonpl Mexay cocTosiHusiMu OyeM 3aia-
BaTh IIPU ITOMOIIM HH(MDUHUTE3UMAJIBHBIX MOICTAHOBOK

T T+46T =" +6T(T) (1.1)

JIoKaJIbHOM symbt JIu, roe 87 sBisieTca MHPHHUTE3UMAJBHBIM ONIEPATOPOM Iepexosa. Bae-
JeHUe MaKPOCKOIIMYEeCKOr0 HaD/IIOIATENs 3aCTaBIseT HAC UCKATH IIPEJNCTABJIEHIE OMEPATO-
poB nepexona auddepeHnnaIbHbIMA OlepaTopaMu. B pe3ynbTaTe CTAHOBHUTCS JKeJIATellb-
HBIM HCI10JIb30BaHue TuddepennupyeMoro MEoroobpasus M, , B obuactu 2. koToporo 6y-
ZieM HCKaTh rinaakue “reoperiaeckne” o T(w) (w € £, C M, ) Kak pemnerus nucddepes-
OHaJIbHBIX ypaBHEHHH, YITO B OOINEM Cilydae #BJISETCH HepeaJbHOM 3amadeit (Kax HU3BECTHO,
JaXke B KJIACCUYECKOM UHAaMMKe HanboIee HHTePECHBIE TPOOJIEMbI HE CBOIATCS K HHTETPUPY-
embIM cuctemaM [9]). VimenHO 1103TOMY IIpeAcTaBiIseT HHTEpec Golee IPOCTasl 3a,1ata IIOUCKA
cyxenuil Y(z) “reoperutdeckux” nmoseit Ha MHOrOObpazuu M, (r € M, C M,,n <7).
11 3TOro yepes HEKOTOpPYIO TOUKY w € M, mpoBeleMm TiaJKue KPUBbIE, C IIOMOINIBIO
KOTODBIX ONPEJEIMM COOTBETCTBYIONIEE MHOKECTBO BEKTOPHBIX nostelt {4€(w)}, a ¢ ux no-
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MOIIIBIO OIIPEJEJINM OTKJIOHEHHe IoJieli T (w) B Touke w € M, B BuzE
06T =0X(T) =06T(Y) - §&(7). (1.2)

Ecmn §gT = 0, To MBI NOJIy4aeM aHAJIOT KMHETHYECKOrO ypaBHeHns BoJsibliMaHa, Lae 1i1eH
dT(Y) urpaer poub MHTerpaja CTOJKHOBeHMs. Tak Kak MbI He HaJeeMmcsl B OOIEM ciIydae
IIOJIy“IHTb IHTErPUPYEMYIO CHCTeMY, TO OyeM TpeboBaTh, 4TOObI 9TH OTKIIOHeHN: (1.2) XoTa
bt B "cpennem" Obum MurEMANBHBI [10].

HWrak, onpenesm kBaapar mosryHopmel | X(T) | B BEKTOPHOM IpOCTpaHCTIE C IOTYC-
KaJISIPHBIM IIPOM3BENEHNEM KaK MHTErpaJl

A= [ £d, V= [ 6X(T)oX(T)d,V (1.3)
el

(A — meticrue; £(Y) -— jarpan;kuaH; & - HOCTOAHHAsI, # — MATPHUA IJIOTHOCTH, YEPTA
CBEpPXy O3HAYAET AMPAKOBCKOE CONPSKEHHE fABJIAIONIEECs CyHepIO3UIell SPMHTOBOIO CO-
NPAXKEH¥s! ¥ IPOCTPAHCTBEHHON WHBEPCHH ), ABJISIONMHACA AHAJOTOM AMCHEPCHH Cy>KEHHUI
"reoperutieckux" mosieit Y(z) B obmactu Q, C M, . Pemenus T (z) (Bo3MOXHO, Haxe
OJ{HO peIleHKe) ypaBHEeHHit, KOTOPhIe MOJIy4aloTcsa H3 TpeboBaHMs MEHMMA/ILHOCTH HHTErpa-
na (1.3), moryT ObITb HCIIOJIB30BAHbI DIl TIOCTPOEHUs IoJHOro Habopa dymkwmit {Y(z)}
(reHEpUpPYEMbBIX ONEPATOPAMHU TIEPEXO0/1a), ONUCHIBAIONIMX BOJIHOBOH MAKET.

Koneuno, 115 3T0O# 1€ MOKHO HMCI0JIB30BATH aNaJior METOAd HaubOJbLIIero IpaBao-
nonobnsa, IpUMEHIEMbl B MaTeMaTuiecKoit crarucruke. Kak u3BecTHO, cormacHo rumorese
DefiHmana, aMILIATYLa BEPOATHOCTH I1€PEX0/1a CHCTEMbI U3 cocrosuud Y(r) B cocTosHHe
T'(z') paBHa cienyrouiemy uHTErpaJy

K(Y, T = / exp (iA) DY =
T, T

N-1
= lim IN/dTl.../di.../dTN_lexp i S L(T(zh)) AR (1.4)
N-so0 P

(ucuonb3yerca cucrema enuHur, h/(2m) = ¢ = 1, rnpe h — mocrosuHas Ilmaska, ¢ —
CKOpOCTb cBeTa; i° = —1; BesiMuuMHa Iy BLIOMpAeTCH Tak, 4ToObI IIpefes CyIIeCTBOBAJI).
Bcneacrsue sroro dyukmua Y (z), mosydaemble U3 TpeOOBAHUA MHHUMAJIBHOCTH NEHCTBUA
A ¥ ucronb3yemble ISl OMUCAHMS KBAHTOBBIX CHCTEM, TaKyKe ABJIAIOTCS JIMOIb Haubosee
npaBaonodobubIMU. B 9TOM mozxorfe nmarpankuan urpaer 0oJiee GpyHIAMEHTAJIBHYIO POJIb
IpH ONMCAHMH (PU3HUECKMX CHCTEM, ueM Juddepeniiaibible yPaBHEHH, KOTOPbIE U3 HEro

HOJ1y9aI0TCsE.

2. JlokaJjmbHble Jynsl JIn

JaJiee Mbi OyieM paccMaTpUBATh IPOCTPAHCTBO M, Kak MHOroobpasue, mapaMerpbr w?
(a,b,c,d,e =1,2,...,7) — KAK KOOPAUHATHI IPOM3BOJILHON TOUKH w € M, , a nonsa T (w)
Oyiem 3a7aBaTh B HEKOTOPOii obmactu (), JgaHHOro MHOroobpasus (w € Q. C M, ). ycrs
obJtactp €2, coxepakur 101006J1acTh ), C TOYKON w, mpH 3TOM 0bJjacTh ), IPUHATIIEKHUT
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onpeZenennomy AuddepenimpyemoMy MEOroobpasuio M, (x0T, BO3MOKHO, yX0OHO OIIpe-
nenaTh MHOrooOpasue M, oTIesbHO oT MHOroobpasus M, ). Bosee Toro, 1mycTh MHO>KECTBO
[VIaJIKHX KPUBBIX, IIPHHAIIEXKAIMUX MHOrooOpa3uio My , MMeeT oburyio Touky w . Omupene-
JIUM TaK»ke HabOp BEKTOPHbBIX Ioutel &(z) , SBIIAIOINXCS KACATEIbHBIMUA K 9THM KPHUBBIM, H
OyneM CIuTaTh, 4TO0 T € ), a Ha objiacTu §), ompejeieHa COOCTBEHHAs KOODZMHATHAM
cucTeMa.

Ilycrs €2, sBiIfeTCa HOCTATOYHO MaJIO OKPECTHOCTBIO TOUKH W , B CBA3H C 3THM 3a,0a-
€TCsl ¥ JOCTATOYHO MaJias OKPECTHOCTh 0€), Touku z (z =w € 6§, C 69 ). Koopauusare:
TO4YKH z 3anmmeM Kak z¢ (14,7, k ,p,q= 1,2 ...,n). Ucuons3ys BekTopHbIe 1oa 0&(x),
KOOD/IMHATBI cocesselt Touku ' = z + 0z € 0§, mepemunieM B BHIE

@'t = 2t + 5xt 2 ot S (2)Ek (2). (2.1)

CpasHuBag 3Havenns nojeit Y'(z') u Y(2'), roe
T (z')=T+ 6T =71+ 6T(T) X T+ dwT,(7T), (2.2)
Y(z') = T(z +6z) = T + 60T (2.3)

(8; — vacTHbIE IIPOU3BOIHBIE), MBI BUAUM, ITO OHU OTJIAYAIOTCS [I€DCMEHHBIMH
8, () = 6w Xo(T) = 0w [T,(Y) — £8,Y), (2.4)

KOTODbIE MOJKHO HHTEPIIPETHPOBATH KaK OTKJIOHEHUA 1oJiell () , II0JIy 9eHHbIX ¢ TIOMONIBIO
IIOACTaHOBOK (2.2).

Ianee Mbl Oyzem paccMmaTpuBaTh 0071acTh 0§), C M, Kak 00JacTb JIOKAJIbHOH JIYIIbI
JIu G, (xoropasi, B 4aCTHOCTH, MO?KET MMETb M CTPYKTypy JIOK&JbHOM TpyIibl J11, eciu
MBI II0TpebyeM AJIs Hee CBOMCTBO aCCONHATHBHOCTH ), MHAYIMPOBaHHOM MHOXKecTBOM {T}
IIp4 3TOM OyjieM pacCcMaTpUBaTh BbIparkenue (2.2) Kak WHOMUHHTE3UMAJIbHbIH 3aKOH IOJ-
CTAHOBOK JIOKaJIbHOIT siynbl Jlu nonmeir T(z) . OTMeTuM, 9TO CTPYKTypa JIOKAJILHOI JIyIIbI
JIu OyieT xapaKTepu30BaTL CTEIIEHb KOMEPEHTHOCTH PACCMATPUBAEMBIX KBAHTOBBIX CHUCTEM.
IIpu aTom MakcumaJsibHAs CTElleHb JOCTHIAaeTCs JJIA 1IPOCTON rpymniibl J1u1, a MUHMMAIbHAS
— nu1 abeseBoil. B mociteieM citytiae Mbl 6y1eM UMETb HEKOI'€PEHTHYIO CMECh.

Tak Kak HEBO3MOXKHO IpeHebOpedb B3aUMOAEHCTBUEM MEXKIY JACTHUAMM, Mbl JIOJI2KHbI
yMeTb OTORpaTh Te B3aMMOZEHCTBHS, KOTOpble HAC MHTEpecyroT. VIMeHHG 1103TOMy uMeeT
CMBICJT BbIOpATh MHO2KECTBO OIIEPATOPOB, KOTOPbIE B JaJbHENmieM Oy AyT UrpaTh POJIb CBA3-
HocTu. Koneyno, MbI IIpUHMMAEM BO BHMMAHHKE 3aBHCUMOCTDb CHCTEM OTCUETa 0T (DHU31IECKUX
CBOMCTB MHCTPYMEHTOB {BKJIIOUasf ITAJIOHBI) U, HOJI€e TOro, YTO YacCTh 11EPEXOI0B SABJIAIOTCS
He HabsogaembMu. Ilycrs

La(T) = To(T) + &INT. (2.5)
Torza dopmyna (2.4) pumer muj
6o = 6w Xy () = 8w (Lo () — ELV,Y), (2.6)
rne V; — KOBapHaHTHble IPOM3BOAHbIE B OTHOIIEHHM cBasHoctu [y(x). 3amernm, ec-
au La{T) = L, ¥, To JOIDKHBI MMETH MECTO CJIEAYIONHE COOTHOmeHH: [11]
& Vieh — & vk —2 5 & & = -Cg &, (2.7)

LoLy — LyLg — € VLo + €4 VL, + Ry; £ & = C% Lo, (2.8)
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rae Szkj(z) — KOMIIOHEHTBI KPy4eHHsT MHOroo6pasust My, a R;;(z) — KOMIIOHEHTHI KpH-
BU3HBI CBA3HOCTH [';(T), oupesensieMble Kak

Sty = (T —T5)/2, (2.9)
Rz’j = 82-1"5 - 8jl"i + FZFJ - FJFZ (210)
Baech u manee I';;¥(z) — xomIOHeHTHI BHyTpeHHelt cBA3HOCTM MHOrooGpasus M, . ITpu

sroM KoMIIOHeHTbI Cgy(Z) CTPYKTYPHOI'O TEH30pa JIOKAbHOM Jiynbl JIu Gy IOJLKHBI yA0-

BJIETBOPATH TOXKAECTBAM
Ce, + CL, =0, (2.11)

Chy Coa— & ViiCog + Ruja® & &) =0, (2.12)
rae R;jo®(Z) — KOMIIOHEHTBI KDHBHU3HBI CBA3HOCTH I L (), opeensembre B Bt e
Rip® = 0,18 — 0,18 + 13808 — Tyelag. (2.13)

Msr paccmaTpuBaeMm auddeperupyemMoe MHOroobpasue M, , He HHTEPIpPETUPYH
ero ¢usuyueckd. KoHewHo, MBI mpeamnojaraeM paccMaTpUBaTh MHoOrootpasme M, Kak
[IpOCTPAHCTBO-BpeMst My . B To 2xe BpeMsi HeJIb3s He yIUThIBATH BO3MOXXHOCTH (ha30BbIX IIe-
PEXOIIOB CUCTEMBI, B PE3YJIBTATE KOTOPHIX MOMKHO OXKHJIATh II0SBJIEHHSI KOTEPEHTHBIX COCTO-
sauit. BerreierBue aTroro y/106HO He GUKCUPOBATH Pa3MEPHOCTh MHOroobpasus M, . MoxkHo
CYHMTaTh, YITO TIPH KOJLIAIICE MAKDPOCKOIIMYECKAs CHUCTEMA JOCTUIAeT MMEHHO TAKOro COCTO-
saHus. B pe3ysbTaTe MbI MMeeM KJIACCHIECKHH aHAJIOr KOP€PEHTHOrO COCTOSIHWST KBAHTOBOM
cucrembl. Kpome Toro, Heo6X041MMO 3aMETHTH, UTO B KBAHTOBON TEOPHUM 110JII MMEETCH J0-
CTATOYHO Pa3BHUThIHM allapaT — pa3MepHas PEryJsapu3aliisi, HCII0JIb3yIoIas IPOCTPAHCTBA
C U3MEHSIOIIEHCS pa3MEPHOCTHIO.

3. KagubpoBotiHbIe MoJisd

Paccmorpum runoresy Bosbnmana porkneHus BcesieHHOI BCJie ZCTBUE TUTAHTCKOM BIIyK-
TyauuH, HO He B IIyCTOM IIPOCTPAHCTBE, & B Cpene, COCTOAMIEH u3 ci1abo B3auMOIeHCTBY IO
OIMX YaCTHUL, XapaKTepu3yIOIIUXCs HyJIeBOi TeMIIepaTypoit u obpasyromux 603e—KOH,IeHCAT.
KoneuHo, eciiu 4acCTHULbI ABJISIOTCA (EePMUOHAMHM, OHH JIOJIKHBI HAXOJIHTHCSA B CBS3aHHOM
cocTossHuM. J1JIs1 OIIMCaHUs TAKOrO COCTOSHIA MaTepuu BcesieHHol, koTopoe 6yieM CUuTaTh
THCTBIM, HEOOGXO (MO BBECTH AMILIUTYLY BepoaTHocTH B ¢ komionentamu BP u maTpuiy
wiotHoctu p(B) (ans wwmcroro cocrosuus rank p(B) = 1), KoTopas onpefeIseTcsa CTaH-
JAPTHBIM 00pa3oM:

BB = ptr(BB™) (3.1)

(trp=1, o~ = p, Bepxuuit u"ekc “+” eCTb CUMBOJI SPMHUTOBOTO CONPAYKEHHS ).

IlycTes B pe3ysibraTe KaKUX-J1MO0 IPUYKUE MPOM30HAET pacnan 603e—KoHZeHcaTa ¢ obpa-
30BanKeM “cBOBOIHBIX” HEPMUOHOB (1A MX ONMCAHUA BBEAEM AMILIMTYLy BeposTHOCTH V)
U C yBeJMYEHHEM JABJIEHUS B HEKOTOPOH JOKaJIbHOMN obstacti BceesenHoit (pu 3TOM Heko-
TOpOe BpeMs TeMIepaTypa (POHOBBIX YACTHIL HOJIKHA OCTABATHCS DPABHOU (wim GIIM3KOI)
HYJII0O — TaK Ha3bIBaeMbIH nepuol uHbiAuy). B pesysibTaTe paHr MarpHIibl IJIOTHOCTH P
HAYHET PACTH, UTO XapaKTepHU3yeT IOgBJIEHWE CMEUIaHHbX cocTosHuM. O6GpaTHBIM mpoIece
peJlaKcaliH, XapakTepu3yeMbIil 06pa3oBaHueM 603e—KOHI€HCATA ¥ YMEHBIIEHUEM JTABJIEHHUS,
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JIOJPKEH UATH C BbIOEJEHHeM 3HEPTHH, KOTopas IOfIeT Ha pa3orpeB (epMHU—KHUIKOCTU C
obpa3oBaHHEM BO30YKIEHHBIX COCTOSTHMN — H3BECTHBIX 3apsi’KeHHbIX (epMHOHOB (KBap-
KOB 1 JIeTOHOB). C 3TOr0 MOMEHTa MOYHO BBOJUTh METPHKY U HCIIOJIb30BATH PE3YJIbTATHL,
[oJTyyeHHbIe J1J1s1 ropsieii Mogein BeesieHHOi (C BO3MOYKHBIMHU HHMJIAIIHOHHBIMA MO,1U(HU-
KalMAMH), HHTEPIPETHPY 1 SBOJIOLIMIO BcesleHHOM KaK NpoIece, XapaKTepu3yeMblil pOCTOM
suTponud S = —tr(pln p) . B HacTosAmee Bpems maTepus Hab/I0/1aemoit obnact BeenernHnoit
HAXO/UTCSI HA TOM CTAIHM BOJTIONMHM, KOrja mpeobiiafaroliee 9MCII0 YaCTHUI], KOTopbie Oy-
JIeM OIIUCHIBATH CYKAThIM 0OPa30M, BEPHYJIOCH B H036—~KOHIIEHCATHOE COCTOSIHUE, IIPOSIBIISASICh
JIMIIB TIpU Ci1a60M B3aMMOIEHCTBUM C YACTHIIAMH BHIUMON MaTEpUH.

Bo3moykHO, paHr MATpHUIIBI ILIOTHOCTH p PaBEH M , HO HEJIB3s UCKJIFOYUTDb, YTO AAHHOE
PABEHCTBO BBIIIOJIHSIETCSA JIMIIIb HPUOJIMIKEHHO, KOT/@ HEKOTOPhIMU KOMIIOHEHTAMH MATPH-
UbI IJIOTHOCTH MOKHO IpeHebpedb. B mobom ciaydae 6yaeM CIHTATh, 4TO cpeau mojeit B2
BbLAEIMIIUCh cMecu IIY, ¢ HEHyTeBbIMH BaKyyMHBIMHU CPEIHHUMH h} , KOTODbIE OIPEIE/IsIOT
anddepernupyemble BeKTOpHBIE 1osia £L(z) s paccMaTpuBaeMoin obnacti ), B BHIe

I, = B% & (3.2)

(nona & (z) onpenensior nuddepennuan dn npoekuuu u3 ), C M, B Q). 910 MO3BO-
7iger ONpPEeAe/INTh PUMAHOBO IPOCTPAHCTBO-BpeMs M2, OCHOBHOM Te€H30p gij(T) KOTOPOTO
BBE,/IEM TIOCPEICTBOM PE/LyIHPOBAHHOMR MATPHILbI IIOTHOCTH p’(z) . B pesysbrare morkHO 6y-
J[eT BIIOCJIEACTBUH "COPATATSH" YACTh I10Ji€# TP IIOMOIIH HETPUBHAJILHON TE€OMETPHIecKOM
CTPYKTYDBL. )

Wrax, mycTh KOMIIOHEHTb 0] peXyIiMPOBAHHON MATPHIIbI IUIOTHOCTH p'(T) ompenens-

IOTCs CJIEIYIOIUM 00pa3oM:
j b rg be deky _ ; b1k
pl=ET 0l & [ (ETEpled) = TIHETL, / (TT73I5), (3.3)
U IIyCTh NOJIs
g7 = 0" pl) (g™ i) (34)
SABJISIIOTCS KOMIIOHEHTaMH TEH30pa 0OPATHOI'0 OCHOBHOMY TEH30DY MIPOCTPAHCTBA—BPEMEHHU

M7 . Tlpu 3TOM KOMIIOHEHTBI ¢;;(Z) OCHOBHOTO TEH30Da JOJKHBI SIBJISATHCA PEINEHMAMU
CJIeNYIOINMX yPaBHEHHUM:

i &7
99 gk = 5k (3'5)
(3mech 1 nasee 7);; — KOMIIOHEHTBI METPHYECKOI'O TEH30pa KaCATeJbHOTO MPOCTPAHCTBA K
Mg, a n'f onpezmensiorcs kak pemenust ypaBHeHuit 77y = 67 ; 6% — cumBosr Kpone-

Kepa).
Samiiem uaTerpad (1.3) ciaeayronum o6pasom

m:/aavaﬂ@@+awmw; (3.6)
rae — —
Ly = kX (W)pe X, (V) = kDSUD, ¥ / (BYSBY). (3.7)
IIycrs o
DU = ~BEX (V) = BS(EV, T — L. D). (3.8)

U2MEeHAIOTCA aHAJIOTHYIHO 1oJisiM ¥ (z) B Touke = € M, , TO ecTb

65D, ¥ = 6uw® (LyD¥ — LyS D ¥ — & VD, ¥) (3.9)




140 Proceedings of . BGL-4

(monmsa LpS(x) vAOBIETBOPSIOT COOTHOIIIEHUAM, aHAJOMYHbIM (2.8)). B pesyibrare namene-
Husg 0,B% 3amminyTca B BUAE:

6,82 = swb (C4 BE — LS BE — €l V;BY) + L V6w, (3.10)

YTO BCJIEACTBUE IIOSBJIEHUS TIOCJIETHETO CIaraeMoro B npasoil yactu dopmyssl (3.10) mos-
BOJIi€T Ha3bIBaTh m0asA B(r) KanubpOBOYHBIMU.

Tax xak neiicreue (3.6) MOJLKHO 6p1Th MHBAPHAHTHO MPHM WHDUHUTE3UMAJIBHBIX [I0ACTA-
HOBKaX JIOKaJIbHOM iyt Jlu G, | To narpanzkual L,(B) mOMKeH 3aBUCETH OT KATHOPOBOY-
HeIX (6030HHbBIX) noiteit B(z) ( [10, 12]) mocpescTBoM Hanpskersocrelt Fo,(B) , umeronyx
BHJ A _

Fop =05 (I, 8,85 — I} 9,87 +E3,), (3.11)

rue
= G5 - € I (B — B3), Ehy= (BS Lo§—B§ Leg) BY~BLBS CL. (3.12)
3aech u nasee Bpibop moqei I1¢ 11 8¢ orpaHu4eH COOTHOIIEHUSAMH
L9 I, = 6%, B2 €, =h. (3.13)

asee ymobHO BOCIIOJIb30BATHCA JIArPAHKHAAHOM
K. .
Lo(B) = Z"fgb}"d [to9(s2sY sp — ’L/Sij'c\ + tbe(sfs - "usgs?) + e (t2%%¢ — v1oP1de)]  (3.14)

(kL,v — nocrosimuble) [12]. Eciu s2 = 62, 1% = 7% wop = Map  (7ap — KOMIIOHEHTBI
METPIYECKOrO TEH30pa ILIOCKOrO IPOCTPAHCTBA, a 1%’ — KOMIIOHEHTHI TeH30pa 0GPATHOro
K OCHOBHOMY), TO HaHHBIH JIarpaH:KuaH HauboJIee MPUMEHUM [JIsi ONUCAHMS TOpsitiell cTa-
LUK 3BOJICIIMN MaTepHUM HabirozaeMoi obractm BceenenHol, Tak Kak sBjisieTcd Hambomee
CHMMETDHYHBIM OTHOCHUTEJIbHO HAIpAXeHHOCTell KaJubpoBouHbIX monelt Fg, . Bomee Toro,
MbI OyZieM TpeOOBATDH BBIIIOJIHEHMS] COOTHOIIIEHHUIT

Lol 1%+ Lo n®* =0, (3.15)

4T06B! OTIEpaTOpHI Mepexofa L,Y reHepHpoBAsH CHMMETDPHIO, KOTOPAd CJeTyeT U3 CIeTaH-
HBIX TIpeamonoxkenuit. B orcyrersuu moneit 1% (z) m ¥(r) Ha paHHe# CTa/ MU SBOJIONUH
MaTepun HabogaeMoil obiacru BceesenHoit momHbIi narpaHykuaH L; CTAHOBUTCS [aKe
Gonee cummerprarbiM ( Ly o B*), Tax 4ro obpasoBanue dbepMHOHOB (mosABJieHHE moJeit
U(z) B 110JHOM JarpanxKuane L;) U3 MEPBUYHBIX GO30HOB ABIAETCA HEOOXOIUMBIM (XO-
TA ¥ He TOCTATOYHBIM) yCJIOBHEM Iepexozia maTepuw Habmonaemoii obnactu Bcenennoit
COBPEMEHHOI! CTaIUM ee Pa3BUTHA CO CIOHTAHHBIM HapylleHneM cumMerpuu. Tospko obpa-
30BaHne 003e—KOHAEHCATA U3 TIap HEKOTOPOIO KJ1acca HEPMHUOHOB (BO3MOXKHO, U3 HEHTPUHO
Pa3JIMYHBIX ApPOMATOB) IIPUBEJIO K 3aMETHOMY POCTY MacC IOKOSI T€X BEKTOPHBIX GO30HOB
(W+, W™, Z°), KoTopble B3auMO,1eHCTBOBAIM C JaHHLIM KiaccoMm ¢depMuonos. [Tapantens-
HO MOT MJITH POCT MAcCC IIOKO# U IPYTruX (byHIaMEHTAIbHbIX 4aCTHIL, XOTs U He Bcex ((boToH,
HENoCPEeACTBEHHO C HEHTPUHO HE B3aUMOAEHCTBYIOINHI, HE UMEET MACChI TIOKO).

CasizxeM HeHyJIeBbIe BAKyyMHbIE cpeanne 3° KaaubpOoBO4HBIX oMl BY €O CIIOHTaHHBIM
HapyIIeHHEeM CUMMETPHUH, KOTOPOE IIPOM30LLIO B paHHell BceseH0i 1 KOTOpoe HeobX0ZuMO
paccMaTpuBaTh Kak (pa30BbIil mepexon ¢ obpa3oBaHreM 603e-KOHIEHCATa U3 (PEPMHOHHBIX
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nap. Ilepexoq x coBpeMeHHOli CTaauK 3BOJIOLMK MaTepuu Habiiogaemoii obnactu Bcenen-
HOIl, 1JIsI KOTOPOH Ipe,qII0JIaraercs Haaune KJIaCTEePHbIX COCTOSAHHI C1ab0 B3aHMOAEHCTBY-
IONIMX YACTHI, Oy/IeT BbIPAKAThCH B Cireayiomiell GopMyle IJisi TEH30poB S5, t%° | wqp u
a .
i b_ggl pb4gS e qab_pea b p()0) 4 go b ped
a [ a ~cr - (i)E(j)n LE_C_EQU )

o d

gy = u € & hd neg + €5 € nea,  hE =AY €l (3.16)
(@) (@) (k) (0),... = 1,2,...,n; a,b,c,die =n+1,n+2,....,n+71; 7/r < 1), rae nois
RY )( ) , TPUHIMAsA BO BHHMaIiMe COOTHONIeHns (3.16), 0AHO3HAYHO ONpeneasaioTCs H3 ypaB-

H:EHI/IH h$ hi = 67 . IlonobubiM 06pa3oM TeH30pBbI n®0G) | 728 onpenensiorcs U3 ypaBHeHHil
nO®niw = 6(] n%bng = 62, B TO BpeMs Kak TEH30DBI 7)(;)(j), Tlab ONPEAEIAIOTCS
crenyiomuM obpasoM:  7(;)(ky = Tab 5‘(‘1) El(’k), Nab = Ned €g eb Mb1 cBsiZKEM 110CTOsSIHHBIE
5‘(‘1») » €, € BbIOOPOM KaJIMOPOBOHEIX MOJIEi [1%(z) , nepemucbIBast KX B Bije

| ) .
e = o ¢y + P2 ef. (3.17)

U TIYCTb Eg = 0. Kpome Toro, mb1 6y/1eM OpuMeHATDh pa3/iokenue noeii BE(z) B Buae
= (¢ T+ ¢ AL, (3.18)

r1e Ay = Bf €. @TMerHM, 4TO MbI pa36uBaeM (pH3HIECKYIO CUCTEMY, OMHCHIBAGMYIO T10JI8-
mu B¢(z), Ha aBe nojcucrembl. O/1Ha U3 HUX, onucbiBaemas noasmu I14(z) , Gyner urpath
poJIb MeJmeHHou nojicucrembl. IIp1 9TOM KOMIIOHEHTBI IPOMEKYTOUHBIX TEH30PHBIX uoneu
£ (z), ga( x), {Mx), Co(m\ JI0JDKHBI ObITh CBSA3aHBI COOTHOWeEHHAMN (21 = 47, g’“fa =
0, C{f&] =0 éaCb = ¢0;. UmeHHO 3TO u OyaeT mepBbIM 1WArOM NPH TNOCTPOEHHH CHa-
Toro onucauus [13] s COBpEMeIIHOH CTa,AHMH 3BOJIOIMH MAaTEpHH HabJIOAaeMol 00.1aCTH
Beenennoit. Mtak, y4nTbiBas HEPA3JINYHMOCTb (PHU3HHUECKHX COCTOsIHHIT c1abo B3anM0,:1eu—
CTBYIOLINX YACTHII, MbI Oy 1€M HCII0JIb30BAaTh yMeHbIleHHbIH Habop noseit {1, A } BMECTO
no.tHoro Habopa {Bg(z)} . EcrectBeHHO, HEOOX04MMO YIHTHIBATH, UTO B JIArDAHKUAHE T10-
SIBSITCS1 ITOCTOSIHHbBIE, HCIIOJIHAIOLIME POJIb BECOBbIX MHOXKHUTE e, Takue kak 1/Gn ,rae Gy
— rpaBHTalIMONHAS 110cTOsiHHAA HbloTOHA.

4. Tlongpu3alnoHHbIE NOJA U IPONAraTOP BEKTOPHOIO
0030HAa

: i k ar (&
Hym, n = 4, v=2, tu=¢8, L = Liel, = Led), Lily) = CLafy) «

g ]) =L , TaK YTO MOJIHLIA Jlarpasxkuad (3.6) nepenunieTcs: cieayionmM o6pa3om:

= L%, DY)+ 10 56 B ) By 1 ot

(k) (n) ) (1) (k)
1 (FSL Fity 1m0y + 2 Filiy Ffm =4 Foitsy Fliyom))/ 4 (4.1)
rze
Ko = ki t%, Ky =K, ts°. (4.2)
b U (k) _ g(k) m
F( )(]) Fcb E(’l\ E( ) }LC h’l = ®l F (P ]) =
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k) t g (k) ! *) a (k (k)
= (2(0)' V10 — @) Vi®g) O + 80, Ligyy — By Lugy + A Ly — 4 Lays (43)
a k) g _ k) M _
B = B 017 @) = Fy. €5 < ey 27 #

= VAL — VA% + A} AS Cp + O AL — C%) AL+ CE, (4.4)

i _ i .a 6 4t FH)
Oy = I, efyy, A7 = A7) )7, (4.5)

Cop = CCHCo €5, CF, = (CX(ECss + 0:CE)ES, CF = (CXECE, + Vil = Vi¢HES.  (4.6)

B pesysibraTe ypaBHeHust noJsiei Q‘ ( ) MOKHO TOJIYYHTb CTaHAAPTHbIM 06pa3oM [14] B
BHA€ TPABUTALFOHHBIX yPaBHEHUI C)I/lHIHTePIHa

oL

a b 1 n \
50, Uk~ 9 LU D) + o s 87 (E5 B = 5 9uc 4™ By By =

D¢ ——
4

= &1 (2 R’ — gik ¢'™ Rjim”) (4.7)

(Ryjx' — TeH3sop KPMBM3HBI CBA3HOCTH ¥, pumanoBa npocTpancTBa-BpeMeHH M2 K, =
1/(4m), &1 = 1/(16xGy) ). EcTecTBentio, 4To ypaBHeHHs DRHINTEiHA OTPa’KaloT COBpE-
MeHHOe (PH3HYECKOe COCTOsIHME MaTepHH Bcesiennoit. Bce 9T0 moaTeep:kjaer BO3MOXKHOCTb
unreprperauny nostet ®f ) () nim onei @51)(@ KaK T'PaBUTAIMOHHBIX 1I0TEHIHAJIOB, HO
YyIUTbIBAas 3aBUCHMOCTb HX OT CBOMCTE Cpedbl (BaKyyMa), a TaK)Ke MCTOPHYECKH CJIOYKHB-
1eecst MHEHHE CHTATh KOMIIOHEHTbI @;;(T) METPHUECKOro TeH30pa IPOCTPAHCTBA—BPEMEHH
MOTEHIIHAIaMH TPABUTAIHOHIIONO I10J151, HIMEET CMbICJI Ha3bIBATh @Ej)(m) H <I>1(-j )(:n) 110J15IpH-
3aIHOHHBIMH MOJIsIMH. FIMEHHO JaHHbIE 1O0JIs1, OIMCHIBAIONIHE MEJIEHHYIO MOCUCTEMY, MOK-
HO CUDSHTaTb, BBOAS PMMAHOBY CTPYKTYPY NPOCTPAHCTBa—BPEMEHH, TEM CaMbIM IOJIy4as
BO3MO>KHOCTb 11IPHMEHATHL MeTOAbI AuddepeHHaNbHOM FeOMETPHH TIPH CKATOM OMUCAHHUH
PH3UYECKHX CHCTEM.

Paccmorpum l'IpHﬁJIPI)KeHIie,)B KOTOPOM IIPOCTPAHCTBO—BPEMS MOXKHO CYHTATh IPOCTPAH-
(k

cTBoM Munkosckoro, o &, , @‘('k) SIBJISIIOTCA [IOCTOSIHHBIMM M 1IYCTh T = 1, 4TO 1Ipen-

c o b o o
10J1IaraeT ~» = 0. Ilnsa nosyvennst ypaBHenuit nosia A;(x) B ¢efiHMaHOBCKON TeopHu
BO3MYILIEHUI Ka/IMOPOBKA JOJDKHA ObITb (PMKCHPOBAaHA, JIs ‘1ero fO0DABHM K JIArPAaH>KHAHY
(4.1) creayiomiee ciaraemoe:

Lo =to qu 97 g (8,42 — g, C; AL) (B AF — g, Ci AD)/2, (4.8)
rae go = Mpb/qes, Ci = Cig. Kpowme toro, nycrs
Ta&)) n@k) 4 Tagi)) pk) = b ty nDG), (4.9)
B pesysbTare ypaBHeHHs! BEKTOPHOI'O I10JIs1 A%’(:r) 3anMIIyTCsl B BUAE:
gjk{é)jakA?— —(1—1/g,)0:8; A% + (1 - qo)CiCjA 14+ m2A% = IF/k,, (4.10)
rae I = (9ij/Naa) (OL(Y))/(0AF) n

m? = (n—1)(n — 2)mt;/(2fiong£) — gjijC'k. (4.11)
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OrmMeTuM, uTO BCIeACcTBHE IOouspusauuu Bakyyma (C; # 0) mponaraTop BEKTOPHOIO
6030Ha MMeeT OBOJIBHO IPOMO3.iKuil Bua [15]

(pip; — CiCy) (PP — gom?) + (1 — q,)p*Ck (:C; + Cip;)
Dii(p) = [(1 = go -
3(p) = [(1 = 4o) (P'pr — gom?)? + (1 — go)%(P'C)?

—935)/ (P pm — m?), (4.12)

KOTODBII YTIPOITAETCS U IPUHIMAeT 3HaKoMyto dopmy ( —gi;/ (p*px—m?), p¥ — 4-ummyasc,
a ™m — Macca BeKTOPHOro 6030HA) JHIlb B (hefHMaHOBCKOH Kaubposke (g, = 1).

Urax, nepexol K ropsitieMy COCTOSIHHMIO marepun Bcenennoit 6bln CBfI3aH ¢ paspyiie-
aueM 603e—KOHIeHcaTa (IpU 3TOM HEKOTOpOE BpeMs TeMmIlepaTypa (pOHOBBIX dacTull Bce-
JIEHHOM MOrJIa OCTaBAaTbCH PABHOM WM OJIM3KOM K HyJ® — TaK HAa3bIBAEMBIil [1€PUO/ UH-
dasuum) ¥ yBelndenueM, COOTBETCTBEHHO, NaBieHus (epMH-Tasa. B pesyibraTe Macchl
nokos W, W™, Z° 6030HOB YMEHBIIMINCh TaK, “ITO Cjaboe B3aUMOJEHCTBHE IIEPECTAIO
GbITh C1a0BIM ¥ BCE {MJIM IIOYTH BCE) YACTHUI(bI M3 OCHOBHOTO (BAKYYMHOTO) COCTOSIHUS CTAIH
y9aC¢TBOBATh B YCTAHOBJIEHUM TEPMOJIMHAMUYECKOrO PABHOBeCHs. [JaHHOE sIBJIEHHE M CTAJIO
OPUYHUHON KaXKYUIErocs yBeJIMUEeHHs TUIOTHOCTH 4wacTHil. [Ipenmosaras, “ITO cpemHss ILIOT-
HOCTb M, YaCTHUIl BO BcesjeHHOI mpu 3TOM He MEHAIAach, & CUeHapuil rops4eil MOJEJIH ee
SBOJIIONHUH B 001IEM BEPEH, MbI IIPHXOIMUM K CIeLyIouieil ee oleHKe: no, ~ ma ~ 1073 ['3B 3
(m; — Macca ¥ -Me30Ha). ITOT Pe3yJIbTAT [103BOJIAET AaTh OO'bACHEHUE H3BECTHOMY COOTHO-
mrenmo [16] H,/Gn ~ m3 , ecnu cuurath, uTo nocrosnHas Xab6ma H, naeronesky 1/H,
amuebl | ~ 1/(ne0y,) cBoBomHOro mpobera 4acTunsl B “Bakyyme” Ha COBPEMEHHO CTaIuu
sposnouun Bceenennoit (o, - ceyeHue paccessHUA HEUTPUHO HA 3apsKEHHOM 9acTUue), u
y4ecTb OlEHKY, JAaHHYIO paHee [17] rpaBuranmonHoi nocrosusoll Gy (Gn ~ 0, G%Tf ,
G — nocrosinHaa ®epmu, T, — Temueparypa (HOHOBbIX HeHTpUHO Bcenenio).

Ha Gonpiryro 1m10THOCTS HacTHIy BO BceseHHOM, B3aUMOIEHCTBYIOMMX JIMIUD CIabbiM
00pa30M, yKa3HIBAET W 3HAYUTEJIbHAS BEJIMIMHA MACC LOKOS My U Mz, COOTBETCTBEH-
o, W% 1 Z° 6030HOB, reHEpUPYIOUIHX CJ1ab0e B3aNMOAeiCTBHE. 3/1eCh MBI MEeM AHAJIOT
CBEPXIPOBOIHUKA IIEPBOr0 POsa ¢ GOJIBIIOH JIIMHOK KOrepeHTHOCTH (ee POJIb MOJKET UIPaTh
1/H,) @ maJsoi JIOHJOHOBCKO!H IIyOMHON NPOHMKHOBEHHS C1aboro 1oss (ee poJb MOXKeT
urparb 1/myz ). Ilpumenss anajor ussecTHOR GoOpMyINIbl A JIOHJOHOBCKOM IJIyOMHbBI IIPO-
HHKHOBeHMS MarHuTHOro mnoisa (A2 = myc?/(4mn.q?), rme A\, — JIOHJOHOBCKas ruiy6uHA
TIPOHMKHOBEHHH, M, — MAacCa KyIepOBCKOH Iapbl, M, — IJIOTHOCTh KYIIEPOBCKUX Iiap, ¢
— 3PS/, KyIIEPOBCKOH TIaphl), MOXKHO CHEJIaTh IPybyIo OUEeHKY MACChI IOKOSA JAaCTHI] OCHOB-
HOIO COCTOSIHIS, SKPAHUPYIOMINX c1aboe mose: m ~ 1078 T'sB, 1ro mo nopsiaky 6sm3Ko K
. IIpeJiioJlaraeMoi Macce II0KOst 3JIEKTPOHHOIO HERTPHUHO.

5. 3akJjarueHue

Takum 06pa3om, MaTepusa B 603e—~KOHIEHCATHOM COCTOSIHMM JOJ>KHA HAMHOTO MPEBOC-
XOJUTb BCE OCTAJIbHbIE (POPMBI MATEPUH U MbI JOJKHBI I€PEOCMBICINTD HE TOJIBKO IIPUPO-
JIy TPAaBUTAITMOHHBIX SBJIEHUH U, B YACTHOCTH, TPABMTAIIMOHHbIX BOJIH, HO U 00OCYAUThH BO3-
MOXKHOCTbH JI€TEKTUPOBAHUA 3BYKOBBIX M TEMIIEPATYPHBIX BOJH B KOCMH'UECKUX MmacmiTabax.
Bcnencreue 3TOro, BO3MO2KHO, CJIe/1yeT IEPEOCMBICTIUTD U CTAHJAPTHYIO HHTEPIIPETAIHIO pe-
3yJIbTATOB HAOJIOMEHHH, BBIIOJHEHHBIX KocMudeckum anmaparoM WMAP. C rameit Touku
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3peHHs, 1I0BOJOB JJIig 3TOI'O IPEIOCTATOYHO Y, B YIACTHOCTH, 1O HAOMIIOJEHUAM KOrEepEeHT-
HBIX $IBJIEHWI B NMPWYIHHHO HECBs3aHHbIX objacrax Bcenennoit. OrMerum, uro Hecnocob-
HOCTh CTaHAaPTHOH KOCMOJIOTUHECKOH MOZEJIN OO'bSICHUTH 1I0BEJEHUE KOCMUYECKUX 00'beK-
TOB 33CTaB/IA€T BBOAUTh B TEOPHIO TAKKUE IK30TUHECKHE OO'bEKThI, KAK TEMHAsT MaTEPUsi HIIU
TEeMHas SHEPrHsi, & TAK¥Ke [PeII0NaraTh CBEPXCBETOBbIE CKOPOCTH M ToMy moaobHoe. Kpo-
Me TOrO, MHAYIIMPOBAaHHBIN XapaKTep rpaBUTALMOHHBIX B3aHUMOZEHCTBHII U UX 3aBUCHMOCTH
OT c1abbrx J1eJIaloT aKTyaJIbHbIM MOHHUTODHHI IPOIECCOB, TeHEpUPOBAHHbBIX CJAAObIMU B3au-

MOJEHCTBUSIMH, M NPEAIIOJaraloT II0OUMCK UX KODPpeJdluil ¢ IPDaBUTalJUOHHBIMH SIBJTEHHSIMHU,

HAJIM49He KOTOPbIX JeJaeT 3aBHCUMOCTb I'PABHTAIMOHHON "mocTosaHHON" G OT BpEMEHH He

BbI3bIBAIOIIEH COMHEHH.
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We shall assume that the Universe evolution is defined by particles the most of which is in
the bound state at present and which’s manifest oneself by weak interactions only. For the
description of boson states we shall use smooth fields B¢ . Probably the rank of the density
matrix p of flelds BS equals n, but it is impossible to eliminate that the generally given
cquality is satisfied only approximately when some components of a density matrix can be
neglected. Considering the indistinguishability of the most of boson states we shall use the
reduced set of fields {@1(»] ), AZQ} instead of the full set {Bg} . Naturally, it is necessary to take
into account that the constants performing the role of weighting coefficients such as 1/Gn
( Gy is the gravitational constant) appear in the Lagrangian. As a result of an equations of
fields <I>1(-’ ) can be written down as the Einstein equations. It allows to define a space-time
M7 as the Riemannian manifold, the basic tensor g;; of which we shall introduce by a
reduced density matrix p’.

E-mail address: koryukin@marstu.mari.ru
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A GROUP THEORETICAL APPROACH TO THE

PROBLEM OF SPACE-TIME DIMENSIONALITY.

POST-MAXWELLIAN AND POST-EINSTEINIAN
EFFECTS IN THE Ls GROUP

A.V. Kukushkin

Nizhny Nouvgorod State Technical University

Physical consequences of "splitting"of the single time co-ordinate of Minkovsky world into
two independent time-like co-ordinates are investigated. Within this approach, first, the
generalized Maxwell equations, unifying electric, magnetic, gravitational and scalar fields,
are derived. Second, their post—Maxwellian solutions are found, which correspond to the
longitudinal electrograviscalar waves, propagating in vacuum at the speed of light. Third,
an investigation of the newly discovered "dark matter"effects in cosmology is suggested on
this basis.

1. Introduction

We consider a non-compact extension of Minkovsky space-time by way of transition from
the single time co-ordinate to the 7 — plane of two Cartesian time-like co-ordinates, ¢4 and
ts . It is essential that the physical time, 7, in the theory suggested is not a co-ordinate of
the "flat"five dimensional space-time, but the parameter connected with the two time-like
co-ordinates invariantly (in a linear way (1.3)). By this we partly return to the principles of
the pre-relativistic physics where the physical time acts as a parameter not a co-ordinate.
However, as it is in the classical special relativistic theory (SRT), the general part is played
by the Cartesian co-ordinates, which are five in number here, and the metric signature is
the following (+++——) .

There are examples of conformally invariant unification theories of Kaluza-Klein’s type
where two and even more time co-ordinates were introduced; among those there are works by
Pavsic [1] and Ingraham [2]. Also A. D. Sakharov [3] introduced compact time co-ordinates
and explored cosmological inferences of such introduction. The main result of those attempts
is the renormalization of various masses at the Planck scale. But, as Yu. S. Vladimirov says
{4], to use his own words "one would rightly expect it to be not a formal calculation trick,
but a step discovering new aspects of the reality. This step should be seriously grounded."We
share this point of view and, moreover, show how the concept of two time axes may be used
for making more valuable phisical predictions. There has recently appeared a series of works
by Bars [5], where he does seriously ground the additional time dimension. He confronts
"1—T"and " 2—T physics"using the so-called M - theory, the non-commutative quantum
field theory, and the supergravitation concept. We are rather against "2 — T physics". We
make it a point here that any theory in its final expression must allow to reduce itself to the
1 —T physics with the single time variable as in the classical SRT.

The 7 - plane used in the present paper is shown in Fig. 1. The physical time parameter
is actually an algebraic length of the time-like vector T . This is shown in Fig. 1 in two
positions: T; and T, . The first takes place if t45 > 0, the second if ¢t45 < 0 . In the first
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T - line /
\ 0, -
\ \ 0 !
Tz

Fig. 1. 7 - plane of the R® space

case the 7y time is the T; vector length, in the second it is the Ty vector length with
minus. Mathematically it is expressed by usual scalar proportions:

ty = T - cos by, - (1.1)
ts = 7 - sinfy, (1.2)
T =t4c0804 + t5sin by, (1.3)

which will be used everywhere below, particularly when transitioning from the Lorentz-
Poincar# co-ordinate transformations of the ILj group to the generalized co-ordinate
transformations of the 5-dimensional Ls group. Conventionally it could be imagined that
Minkovsky space were embedded into the R® space. But in fact, and that is crucial, this
is not so. The fictitious co-ordinate 7 has nc unit vector. The basis of tensor algebra in
R are the five unit vectors of the corresponding five co-ordinates. In any other inertial 5-
dimensional reference frame, that is, moving relative to the K frame at velocity, V , shown
as K’ in Fig.2, the 7’ -plane, will look absolutely the same as in Fig.1, for we postulate
that the 6, parameter is invariant. This postulate is one of the main in the theory. Inversion
of the 0, parameter sign creates an additional R® space ( 7 -plane in Fig. 1 belongs to it)
which will act in the theory as well as R® . The following symbolic scheme of extension of
Minkovsky space-time satisties all the above said:

(3+1)=(3+1-cosfs+1-cosbs). (14)

where cosfs = sinfy . The realization of scheme (1.4) is a serious step: in the case of two time
co-ordinates in the frame, the electric and gravitational charge can mix in the relativistical
sense. As a result, the law of conservation of charge may not hold. Besides we distinguish
between the notions of the "gravitation mass"and the "inertial mass", and the weak principle
of cquivalence (WPE) is reconsidered for the case of the moving reference frames. As is well
known, the WPE has been experimentally tested under laboratory conditions only.

But the theoretical inferences of scheme (1.4) realization must not contradict the
experimentai data on the conservation of an elementary charge, e, in the moving reference

e e e &
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X
Fig. 2. Relative position of the K and K’ frames at the moment of time fixed by the
watch in the rest K frame. Along (in the general case) curved trajectory following
the origin of the K’ frame, the axes of the two frames remain parallel (only the
angles 6; and the length of V vector change their values).

frames. If we suppose for the sake of clearness that the parameter 84 equals the ratio of the
two constants of the gravitational and electromagnetic interactions:

04 = Kkmp,e/le] ~ 10717, 10720 (1.5)

(where my. is the proton (electron) gravitational mass, x the Newton gravitational
constant), the value of novel expected effects is suppressed by the extremely small value
of the ratio. Thus, the effects remains and will remain unobserved in near future, since the
energy necessary for this observation is unachievable at present.

The paper is devoted to the theoretical consequences of such generalization of Minkovsky
space—time. In particular, the latter give new interpretation of the substance, which is
conventionally called "dark matter"in astrophysics and cosmology. The point is that the
realization of scheme (1.4) makes one to put forward the hypothesis, that the stable
elementary particles of usual matter and anti-matter are manifestation of the interior
motions of some substance deprived of electric charge but not of gravitational charge.
We may (though not necessarily) identify this hypothetical substance as the known "dark
matter"and consider transformation of "dark matter elements"(DME) into "usual matter
elements"(UME). The group theoretical analysis of the DME physics shows that the WPE
does not hold for those. This matter possesses very low inertia, that is why its transformation
into UME (understood as the interior motion of DME) can take place at low energies.

One more important remark is the following. The group theoretical approach
distinguishes between the inertial mass and the gravitational mass. The inertial mass, unlike
gravitational, is not a charge, that is why it has nothing to mix with, whatever dimensionality
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of the world we would introduce. Thus, all the kinematic theorems of the Lorentz-Poincare
group should retain their standard 4-dimensional expression in the new R3 space-time.

2. Co-ordinate transformations equations for the new
Ls group and its 4-dimensional kinematics

First, let us consider the general 4-dimensional co-ordinate transformation from the
primed frame into the unprimed one (Fig. 2) in Poincare’s form [6]:

T, = + cosb; -y} + o, (1=1,2,3), (2.1)

zo =+ pr +05  (zo=cer), (22)

where o4, are constants fixed by initial conditions, cos#; the guiding cosines ( 8; is shown
in Fig. 2) of the velocity vector, V , and

g = (v — 1jrg + Byap, (2-3)
po= (v = Uzy + SByrl, (24)
s (s

Z 7 cos by, Zcos 6; = 1) (2.5)
1

= (187", B=IVi/e (2.6)

The first three equations for the new Ls group are deduced from Eqns. (2.1), (2.3) by
way of simple substitution the right—hand side of primed Eqn.(1.3) instead of 7/(zj). To
get two new equations from single Eqn. (2.2), we multiply Eqn. (2.2) first by coséy , then
by cosfs(= sinfy) . Using then primed and unprimed Eqns. (1.1) and (1.2), we get two time
co-ordinate transformation equations for i = 4,5. Thus we get five new equations for the
L5 group co-ordinate transformations:

) .

x; =z} + cosb; - { Hs (+ aj. (2.7)
B )

1t is supposed thai Eqns. (2.7) includes ), when ¢ =1,2,3, and g, , when i = . The

fundamental part in the following argument belongs henceforth to Eqns. (2.7), whxch is in

fact but a widened form of the Lorentz-Poincare classical transformations.

The 6, parameter’s invariance (due to which the 7-line does not rotate) conserves
all the group theory kinematics theorems for the L, group (time and space dilatation,
composition of velocities theorem) in the Lz group. The general and consistent proof of the
fact that the 4-dimensional kinematics remains valid in L is the following. Let us consider
the motion of a substance of arbitrary propagated inertial mass density or, in other words,
partially differentiable inertial mass density in the R® space. The relativistically invariant
in the R* space tensor method to get the left-hand side of the vortical motion equation
for such substance was offered by the author in [7]. To solve this problem in R® space we
should invariantly define the three 5-vectors: the velocity 5-vector, the momentum density
5-vector and the 5-dimensional Hamilton operator. It is evident that the invariantly defined
velocity 5-vector is

v =v{V,—ccosty, —csinby}. (2.8)



150 Proceedings of =~ BGL-4

The momentum density is easily deduced from this by multiplying (13) by the inertial mass
density scalar function p¢ . The co-ordinate expression for the operator V in the covariant

form is obvious:
V = {grad, 8/cdt4,0/cOts} .

Using henceforth this co-ordinate expression of V, we get the left-hand side of the motion
equation wherein there are partial derivatives by the time-like ¢4 and t5. Neither has any
physical sense, unlike the physical time 7, which is connected with the t45 by invariant
Eqn. (1.3). Using Eqn. (1.3) which leads to ‘

/
0/6%430 = ;7 -07/ Otq 5 = €OS 61-53;, (2.9)

where ¢ = 4,5, we can represent the 5-vector V in the parametric form:
V = {gred,cosfy - 8/cO7,sinby - 3/cO7}, (2.10)

which includes the 7 physical time as a parameter and does not the physically senseless
variables.

It is worth noting that this trick wiil be used on in the argument and in the field theory
as well. It enables one to represent the 5-dimensional equations in the 4-dimensional form,
not co-ordinate but parametric, as it took place in the pre-relativistic physics. This trick
helps to overcome that above spoken of fundamental difficulty, which all theories with two
time co-ordinates experienced.

Making operations with the three 5-vectors in the same way as was done in the R4
space 7], as a result we get the left-hand side of the substance motion equation in the R®
space:

dP . dP
¥ { o (cosz 64 + sin® 04) , —Vecesfy, —Vesin (94} = { —,—Vecosf,4,—Vesin 04} ,

ar
(2.11)

where JP
— =ce— [V x rotp],
dr :
e=c' (gredK + 8p/07),(p = p7V, K = urc®) .

There is no 6 parameter in the space-like part of 5-vector (2.11) (in the right-hand
member of Eqn. (2.11)), so this part is identical to the respective part of the 4-vector in R*
(see ref. [7]). In other words, the 64 parameter (an invariant additional to the speed of light

in the Ls group) does not influence the classical Lorentz-Poincare group kinematics, Q. E.
D.

3. Post—Maxwellian effects of the L; group: gravi—
electrical and electrogravitational inductions

Henceforth we suppose that electric and gravitational charges (along with corresponding
convection currents), or "electromagnetic units", are meant by the field sources.
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The use of the Lorentz form for co-ordinate transformations (2.7) will be sufficient to
describe local effects of the infinitesimal transformations:

S e
i = o, +cosb; - P (3.1)

e

Now we suppose that matter in the primed frame is characterized by either type of
charge density, the frame being co-moving with the substance element. In other words, the
contravariant hypercurrent density 5-vector possesses but two nonzero components, that is,
the two time-like components:

J'={0,0,0,—47p, —4m/kpg} . (3.2)

Ass the result of convection, in the K rest frame there appears the hypercurrent density
3-vector j. The unprimed hypercurrent density 5-vector will have all the five components:

J={4n/c-j,—4np, —4n\/kpy} (3.3)
where in accordance with Eqn. (3.1)

J = (Vi siny + p' cosbs) YV = o’ cos (04 — 84) YV, (3.4)

p = V&g (v —1)sinbscoss + p’ [L + (7 — 1) cos® 04 =
= ¢’ [cosf4 4 (v — 1) cos 4 cos (64— 54)] , (3.9)

Vipg = p' (v —1)sin@4cos s + Vg [14 (v — 1) sin® 04] =
=o' [sinfs + (v — 1)sinfscos (04 — 04)] . (3.6)

Here
o' = \[(kup)? + ()%, tg0s=+kmg/d,

m;,q’ are the gravitational mass and the electrical charge in the K’ frame. It is clear
from these formulae that in the general case neither the gravitational mass nor the electrical
charge are conserved. But if we grant 64 = 0,4, then from Eqns (3.5), (3.6) it follows that

p=p" g = Vi

This proves that in this particular case the electrical charge and the gravitational mass
are conserved, for the post-Maxwellian effects of gravi-electrical and elctrogravitational
induction are mutually compensated. This theorem seems to testify that the 64 parameter
could be measured experimentally in case it were possible to define what charge of what
elementary particle is conserved at however high energies.

‘We shall start however with the following approximation. Let us attribute such a volume
to the @4 parameter in the R® space that will provide for the electron charge and mass

conservation:
tgls = 04 = /kme fe ~ —107%0. (3.7)
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The effect of gravi—electrical induction shows itself in Eqn. (3.2) when p’ = 0. Then the
following formulae take place:

j = VK sinfyyV,) (3.8)
p = VK (7 — 1) sinfy cos by, (3.9)
129 = iy [1+ (v — 1) sin® 6] . (3.10)

Among the consequences of the Ls group the effect of the gravi-electrical induction
deserves the closest concern. Theoretically electricity may be a relativistical manifestation of
gravitation. For the "dark matter", where there are neither negative nor positive electricity,
Eqns. (3.8)-(3.10) are exact. As a first approximation we will consider that these formulae
are applied for neutral particles of usual matter.

However, here we are interested mainly in low energy effects expressed by Eqns. (3.9)
and (3.10). First we consider them for the usual matter, when the Lorentz factor v due to
the comparatively large initial inertia does not reach high volumes. Chargeless UMEs have
large inertia, that is why the Lorentz factor cannot be of a high value at low energies. Thus,
integration by volume in Eqns. (3.9) and (3.10) or (3.6) for 8 < 1 results in

g~ VEm}sinby - 5*/2, (3.11)

mg~my (1-5%/2). (3.12)

As follows from Eqn. (3.12) gravi-electrical induction is substantially suppressed by the
sinfy coefficient. This reduces to zero all the chances to observe the effect in the experiments
with elementary particles.

Eqn. (3.12) proves, that the group theoretical approach discloses it that the WPE does
not hold for the moving neutral usual matter objects, for

mifmg ~ (1+,32/2)/<1 —52/2) ~1+ 62

In experiments with elementary particles this cannot be observed as gravitation is greatly
suppressed by electrodynamics.

Let us suppose now that at the basis of low energy transformation of DME into UME
there lies the relativistic effect ¢f gravi-electrical induction. Let us put the question, what
qualities a DME should possess in order to become, say, an electron, that is, an element of
the elementary charge and its rest inertial mass equal to its gravitational mass, as a result
of such low energy transformation. Let us integrate Eqns. (3.9) and (3.10) by volume and
apply the relativistic formula on the inertial mass to the final expressions:

q =m0 (1 - 771, (3.13)
mg = my [y 465 (1-71], (3.14)
m; = ymg, (3.15)

where mj,m/} are respectively gravitational and inertial masses of DME at rest. Since in
Eqn. (3.14) 6% = 10~%° | then, supposing that in Eqn. (3.14) 4~ < 107%!, and equating
m; to the electron gravitational mass (in accordance with WPE for usual matter at rest),
it follows from (3.13) (or (3.14)) and (3.7) that

my &~ 10%,  m; <107%g. (3.16)
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The result is striking. It testifies to a gigantic discrepancy between the inertial mass
and gravitational mass values of the primary matter element. It is worth mentioning that
whatever value of the 64 parameter we choose, whether to preserve the electron gravitational
mass and charge or that of the proton or of the quark or anything else, the discrepancy will
remain gigantic.

Deducing (3.16) we have used WPE for usual matter at rest. It means that the ultra-
relativistic motion of the DME with parameters (3.16) must progress by laws of irregular
finite motion and by the present days evaluations within a volume of the radius less than
1016 cm.

The very evaluation (3.16) is related to the parameters of the substance at rest, an
element of which possesses a gigantic gravitational charge and negligible inertial mass
("starter"rest energy). By this it is possible to conclude that within the substance there is
gigantic primary tension (interior potential energy), which must dynamically manifest itself
as a practically momentary collapse since initial inertial mass is negligible. The supposition,
that this mighty factor exist, can make us change the habitual evaluations of the balance
between gravitational and electrical forces, and of the role which the balance plays in the
stability of charged UME (electron, proton, quark, ets).

To an observer it will seem that "dark matter"sub-elements different by mass reach
one and the same reversal point {there will be but two in a flat trajectory, where ~ =
1) at different moments of time. It is significant that the observer will register the sub-
elements of the substance stay still "for a moment"at those points, and therefore get the
qualities of the primary substance with negligible inertial mass, large gravitational charge
and zero electrical charge. Without those reversal points there is induced electric charge
in the substance sub-elements and thus the centrifugal acceleration appears that bars the
further collapse. Without going into detail we may suppose that dynamic balance between
centripetal and centrifugal forces may be reached in such a model, while in the old static
model gravitation (or surface tension as in Poincare’s model) was insufficient for holding the
charged matter within a finite volume.

Of course, the above expressed arguments are purely speculative and need grounding
by calculations before coming to so strong assertions. Nevertheless, this hypothesis may be
useful for the interpretation of the generalized Maxwell equations in the next section.

Formulae (3.15) and (3.16) testify to the purely mechanical genesis of the UME rest
energy. It should also be mentioned here that the Lorentz factor v may reach gigantic
values (v > 10*! at low energies of ~ 0.5 MeV) due to the primary environment tension
and to the negligible value of the DME inertial mass.

It is very important, that due to the irregular mass distribution along the trajectory
{which must appear due to the self-action of the substance along the current lines) and due
to the great range of the factor (7 € (1, 10*!]) the integrate effect of the dm/, and dm]
transformation will be different at different moments of time for all the system taken as a
whole. Therefore the full mass and charge of UME will be time dependent, periodicaliy
or quasi-periodically. This consequence of the hypothesis cannot be observed experimentally
nowadays and above all it should be considered when building up a field theory in the R®
space. Experimentally only average mass and charge values of a UME can be observed since
their radius is very small (7 < 10716 cm) and the velocity of the DME periodical motion is
virtually the speed of light. Therefore the T period can be evaluated as T = 27r/c < 10726
s, that is, much smaller than the integrating constant of any macroscopic instrument. Pulse
time dependences of the electron charge and its two masses are shown in Fig. 3. The plots,
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built with the help of the Gaussian function, show what one can expect the qualitative
aspects of the process to be.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

vT
Fig. 3. Pulse time dependences of the electron charge and its two masses
(qualitatively); logarithmic scale on the vertical axis for mg,m; and ¢ are not
the same.

The solution to the problem on anti-matter particles’ origin is contained in the symmetry
relative to the m; sign inversion in (3.9) and (3.10). That is, there is supposed to
be "dark matter"of negative gravitational charge. It follows from (3.9) and (3.10) that
the negatively charged gravitating particle and its respective anti—particle belong to the
R5(4 < 0). Vice versa, the positively charged particle and its respective anti-gravitating
anti-particle belong to the space R (0s > 0) . Therefore, all charged anti-particles must
have negative gravitational charge. Thus the Ls group’s qualities include the operation of
charge conjugation relative to the gravitational charge.

4. The generalized Maxwell equations

The Maxwell equations general form for any dimensionality space of arbitrary metrics
is well known [8]:

RotFy, =0 (VxF=0), (4.1)

DivFik = Jk (V -F= J) y (4.2)
where Jj are the components of hypercurrent density N-vector J, rotor and divergency
are supposed to be definite in N dimensions, Fj; bivector components of hyperfield F'.

‘In the R® flat space-time with metric signature (+ + + + —) the problem of the
Mazxwell equations generalization in vacuum was solved by Corben [9]. But it was not stated
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in a physically clear and self-sufficient way what the premises for introduction of the five-
dimensional space-time were. They were rather copied more or less formally from those that
were in Kaluza-Klein non-Euclidian 5-dimenssional space-time. Let us see now what this
new metric signature (+ + + — —) will grant us. Following in every detail the algebraic
scheme for field equation deduction, suggested by Minkovsky, we suppose that the field is
completely defined by the 5-potential

a={A,~Ay A5}, (4.3)

where A, 5 are respectively electric and gravitational potentials, A is the 3-vector
hyperfield potential. The F -field tensor is connected with the 5-potential (4.3) in the

usual way:
F=Vxaq, (4.4)

where the parametrical form for the operator V in the R® space is suggested above (in
Eqn.(2.10)). Therefore, the F' — tensor components are

E = —gradA, — cos 4,0A /cOT (Fi4) (4.5)
G = —gradAs + sinf,0A /cOT (Fis) (4.6)
H = rotA (Fa3, F31, F12) (4.7)
U =sin040A4/cOT + cos040A5/cOT  (Fys), (4.8)

where E, G, H, ¥ are the electric, gravitational, magnetic and scalar fields respectively (in
Corben theory the additional field is pseudoscalar). Putting the right-hand side of (4.2) in
(4.3) and using the potential Lorentz gauge

divA + 3¢ [cOT =0 (Diva = 0), (4.9)
where £ = —Agsinfy+ Ascosfy, we come to the standard wave equations:
OA = —4rn/c-j (4.10)
0Ay = —4mp, (4.11)
OAs = 47m/kipg. (4.12)

Let us mention it again (see Eqn. (2.9}) that the 5-dimensional form of equations is reduced
to 4-dimensional, as it was in kinematics, due to

&) ot; + 0% [ot; = 9 Jor’.

Now we put components of tensor (4.4) into (4.1) and (4.2) and come to the generalized
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form of the Maxwell equations in vacuum:

rotEl = _cos Oa —(—)—}-I
- c Or’
ot G — sinf, OH
¢ O
divH = 0,
cosfy OE  sinbs 0G 4w .
retH = —_— — —
" c Or ¢ o T (4.13)
1T — ?Eﬁgi?g _ sin 04 8_E_
gred¥ = A P
04 OF
divE = — EHI——%(?—— + 4dmp,
c Or
. cosl, 0¥
divG = =R

where j is the electrogravitational current density.

Relatively to the 7 physical time, Eqns. (4.13) are written down in parametrical not
co-ordinate form, as it is in the classical Maxwell equations of relativistic physics {(in the
same equations of pre-relativistic physics time was considered a parameter). However Equns.
(4.13) set is essentially 5-dimensional and invariant relatively to thenew Ls group. Since the
gravimagnetism in Eqns. (4.13) is significantly suppressed by the sinfs coefficient, in case of
il =0 and 8p/@r = 0 the system of Eqns. (4.13) is transformed under condition 84 — 0
into the Maxwell system. The first four equations of (4.13) are practically in Maxwellian
form, since cosf; = 1,sinf, = 0.

Using accessory expressions

Tr =Ecosy — Gsinby,

. - (4.14)
Lo =Esinf; + Gcosfy,

the system of Eqns. (4.13) is transformed into a more laconic, but a more particular form
of two independent sub-sets:

rotly = —0H/cH7,
divH = 0, (4.15)

rotdi = 0Tr/coT +47/c -],

grad¥ = —0Lg /cOT,
divLig = =00 /cOT + 410.,,

&l

where oo, = \/Ki1g cosby — psinfy . The major qualities of system (4.13) show themselves
most clearly in those two artificially deduced systems. Subsystem (4.15) is the Maxwell
system as it is, but wanting one equation which has transferred to (4.16). But the three
equations are sufficient to describe usual transverse waves (electrogravimagnetic as it is here
(see Eqns. (4.14)). Subset (4.18) on the contrary describes longitudinal tield of gravitation
and electricity (see Eqns. (4.14)) and their retarding propagation in vacuum. It is clearly
seen that the system is post--Maxwellian in structure. The sources of those time~dependent
waves are varying in time but rest gravitational and electric charges.
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Applying the energy conservation law for arbitrary wave processes in vacuum out of
sources together with the following equality (taken from vector analysis)

Lggrad¥ + VdivLg = div (¥ - Lg),
to Eqns. (4.16) the Pointing vector and longitudinal wave energy density are easily found:
M=c/dr- (¥ -Lg), W =1/8n-[L%&+¥?]. (4.17)

It follows from Eqns. (4.17) that the Ly ¥ field is a field of a longitudinal gravi-electroscalar
wave propagating in vacuum at the speed of light carrying away some interior energy of
the rest UME. Actually it is a post-Maxwellian and altogether post—Einsteinian effect
of the Ls group, which is not to be found in Corben’s theory. If we just integrate now
usual wave Eqns. (4.11) and (4.12) by volume (for instance, in case of electron) where in
their right-hand sides the charge densities are time-dependant (pulse functions) we will
get longitudinal electrogravitoscalar waves. If we calculate then the time average volumes
of the matter interacting E and G fields, we will get what is observed experimentally:
longitudinal electrostatic and gravistatic fields (of the electron). Now that we have studied
all the qualities of the Ls group we know there are retarding fast—oscillating processes
(electrograviscalar waves) underlying the static electric and gravitational processes; that
satisfies all the conditions of the classical SRT.

It is absolutely obvious that those waves carry away some of the interior energy of an
elementary particle at rest. If we take the hypothesis that the rest UME is the primary
substance interior motion manifestation, where there is a gigantic interior tension, evidently
the latter, and it alone, can play the part of the compensating mechanism, which replenishes
the energy loss (radiation friction).

In conclusion it should be said that this undoubtedly heuristic method by which set (4.16)
was deduced needs experimental tests of its consequences (gravimagnetism, for instance).
We believe, however, that a good argument for those equations is that they enable one to
view electro— and gravistatics as macroscopic manifestation of longitudinal electrograviscalar
dynamics, which satisfies all the conditions of the classical SRT.

5. Conclusions

From the methodological point of view it is denial to view the 7 co-ordinate as the fourth
co-ordinate of Minkovsky world. Introduction of two independent time-like co-ordinates
firmly bound with the 7 variable by the postulate of the 6, parameter invariability enabled
us to get a vector equation system for the unified field of the only one 7 variable (which is
present in the equations as a parameter) and to stay within the scope of 1-T physics.

The study of time-space (not gauge ones!) symmetries in the Ls group enables us to put
forward the hypothesis that clectricity is a special manifestation of some primary substance
gravitation (maybe "dark matter") which differs from the usual matter, in particular, the
WPE does not hold in the rest frames.

The analysis of structure of the unified field equations showes that there are solutions,
which correspond to the longitudinal waves of gravitation and electricity propagating in
vacuum at the speed of light.
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CONTINUATION OF THE DUAL AMPLITUDE WITH
MANDELSTAM ANALYTICITY OFF MASS SHELL

V.K. Magas

Departamento de Fisica Tedrica and IFIC, Centro Mizto
Institutos de Investigacion de Paterna - Universidad de Valencia-CSIC
Valencia, Spain

The off mass shell continuation of dual amplitude with Mandelstam analyticity (DAMA) is
proposed. The modified DAMA (M-DAMA) preserves all the attractive properties of DAMA,
such as its pole structure and Regge asymptotics, and leads to a generalized dual amplitude
A(s,t,Q%) . In such a way we complete a unified "two-dimensionally dual"picture of strong
interaction |1, 2, 3, 4] This generalized amplitude can be checked in the known kinematical
limits, i.e. it should reduce to the ordinary dual amplitude on mass shell, and to the nuclear
structure function when ¢t = 0. We fix the Q? -dependence in M-DAMA by comparing
the structure function F3 , resulting from it, with phenomenological parameterizations. The
results of M-DAMA are in qualitative agreement with the experiment in all studied regions,
i.e. in the large and low z limits as well as in the resonance region.

1. Introduction

This work is devoted to modeling of the scattering amplitude for inelastic electron-proton
scattering. The kinematics of inclusive ep scattering, applicable to both high energies,
typical of HERA, and low cnergies as at JLab, is shown in Fig. 1. We introduce virtuality

. € ej,

Fig. 1. Kinematics of inelastic electron-proton scattering.

Q?%, Q*=—¢*=—(k—k')? >0, and Bjorken variable z = Q2?/2p - q. These variables z,
Q? and Mandelstam variable s (of the v*p system), s = (p+ q)?, obey the relation:

s=Q%*1—z)/z+m?, (1.1)
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where m is the proton mass. And Fig. 2 shows how inelastic ¥*p scattering is related to
the forward elastic (t=0) v*p scattering, and then the latter is decomposed into a sum of
the s-channel resonance exchanges.

About thirty years ago Bloom and Gilman [5] observed that the prominent resonances
in inelastic e p scattering (see Fig. 1) do not disappear with increasing photon virtuality
Q? , but fall at roughly the same rate as background. Furthermore, the smooth scaling limit
proved to be an accurate average over resonance bumps seen at lower Q2 and s, this is
so called Bloom-Gilman or hadron-parton duality. Since the discovery, the hadron-parton
duality was studied in a number of papers [6] and the new supporting data has come from
the recent experiments [7, 8]. These studies were aimed mainly to answer the questions: in
which way a limited number of resonances can reproduce the smooth scaling behaviour? The
main theoretical tools in these studies were finite energy sum rules and perturbative QCD
calculations, whenever applicable. Our aim instead is the construction of an explicit dual
model combining direct channel resonances, Regge behaviour typical for hadrons and scaling
behaviour typical for the partonic picture. Some attempts in this direction have already been
done in Refs. [1, 2, 3, 4], which we will discuss in more details below.

o] = e K= K =

Unitarity Res

- Veneziano duality

Fig. 2. (From [2].) According to the Veneziano (or resonance-reggeon) duality a
proper sum of either ¢-channel or s-channel resonance exchanges accounts for the
whole amplitude.

The possibility that a limited (small) number of resonances can build up the smooth
Regge behaviour was demonstrated by means of finite energy sum rules [9]. Later it was
confised by the presence of an infinite number of narrow resonances in the Veneziano model
[10], which made its phenomenological application difficult, if not impossible. Similar to the
case of the resonance-reggeon duality [9], the hadron-parton duality was established [5] by
means of the finite energy sum rules, but it was not realized explicitly like the Veneziano
model (or its further modifications).

First attempts to combine rescnance (Regge) behaviour with Bjorken scaling were
made {11, 12, 13] at low energies (large z ), with the emphasis on the right choice of the
Q? -dependence, such as to satisfy the required behaviour of form factors, vector meson
dominance (the validity (or failure) of the (generalized) vector meson dominance is still
disputable) with the requirement of Bjorken scaling. Similar attempts in the high-energy
(low z) region became popular recently stimulated by the HERA data. These are discussed
in section 3.

Recently in a series of papers [1, 2, 3, 4] authors made attempts to build a generalized
Q? -dependent dual amplitude A(s,t, @2). This amplitude, a function of three variables,
should have correct known limits, i.e. it should reduce to the on shell hadronic scattering
amplitude on mass shell, and to the nuclear structure function (SF) when ¢t = 0. In such
a way we could complete a unified "two-dimensionally dual"picture of strong interaction
(1, 2, 3, 4] - see Fig. 3.
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Veneziano duality

Breit-Wigner Regge behavior
— ( on-shell ) resonances: A(st)~p(t) s
A(s,t)~f(t)/(n-u(s))
QCD HERA
Bloom-Gilman evolution (off-shell)
Partori-Hadron duality
0)+1
high \ @1, Fyl0 @)X 0,
(vin‘uality) large x small x
\v/
Duality of the SF (?!)

Fig. 3. Veneziano, or resonance-reggeon duality [10] and Bloom-Gilman, or hadron-
parton duality [5] in strong interactions. From |[2].

In Ref. [1, 2] the authors tried to introduce Q? -dependence in Veneziano amplitude [10]
or more advanced Dual Amplitude with Mandelstam Analyticity (DAMA) [14]. The Q?-
dependence can be introduced either through a Q?-dependent Regge trajectory [1], leading
to a problem of physical interpretation of such an object, or through the g parameter of
DAMA [1, 2]. This last way seems to be more realistic [2], but it is allowed only in the
limited range of @2 due to the DAMA model requirement g >1 [14] (see [2] for details).

In the papers [3, 4] the authors went in an opposite direction — they built a Regge-dual
model with Q? -dependent form factors, inspired by the pole series expansion of DAMA,
which fits the SF data in the resonance region’. The hope was to reconstruct later the
Q? -dependent dual amplitude, which would lead to such an expansion.

A consistent treatment of the problem requires the account for the spin dependence,
which we ignore in this paper for the sake of simplicity. Our goal is rather to check
qualitatively the proposed new way of constructing the "two-dimensionally dual"amplitude.

1t is impeortant that DAMA not only allows, but rather requires nonlinear complex Regge
trajectories [14]. Then the trajectory with restricted real part lead to a limited number of resonances.
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2. Modified DAMA model

The DAMA integral is a generalization of the integral representation of the B-function
used in the Veneziano model [14] 2:

1 - —as{s")-1 1—2 —a (t)~1
D(s,t :/ dz(—) < ) , 2.1
(s,t) ; 7 7 (2.1)

where o’ = a(l —2), o’ = az, and g is a free parameter, g > 1, and «;(s) and ay(t)
stand for the Regge trajectories in the s- and ?-channels.

In this paper we propose a modified definition of DAMA (M-DAMA) with Q?-
dependence [15]. It also can be considered as a next step in generalization of the Veneziano
model. M-DAMA preserves all the attractive features of DAMA, such as pole decompositions
in s and t, Regge asymptotics etc., yet it gains the @Q?-dependent form factors, correct
large and low z behaviour for ¢t =0 etc.

The proposed M-DAMA integral reads [15]:

—au(s)-BQ7)-1 ;1\ —e(t”)—B(Q%)-1
) () S
g g

D(s,t,Q%) = /1 dz

0

where ((Q?) is a smooth dimensionless function of Q?, which will be specified later on
from studying different regimes of the above integral.

The on mass shell limit, Q% = 0, leads to the shift of the s- and ¢-channel trajectories
by a constant factor B(0) (to be determined later), which can be simply absorbed by the
trajectories and, thus, M-DAMA reduces to DAMA. In the general case of the virtual particle
with mass M we have to replace Q2 by (Q? + M?) in the M-DAMA integral.

Now all the machinery developed for the DAMA model (see for example [14]) can be
applied to the M-DAMA integral. Below we shall report briefly only some of its properties,
relevant for the further discussion.

2.1. Singularities in M-DAMA

The dual amplitude D(s,t,Q?) is defined by the integral (2.2) in the domain
Re (as(s') + B(Q?")) < 0 and Re ((t”) + B(Q?)) < 0. For monotonically decreasing
function Re £(Q?) (or non-monotonic function with maximum at Q* = 0) and for
increasing or constant real parts of the trajectories these equations, applied for 0 < 2 <1,
mean Re (as(s)+06(0)) < 0 and Re (a(t)+3(0)) < 0. To enable us to study the properties
of M-DAMA in the domains Re (as(s') + 8(Q%")) > 0 and Re (a(t") + B(Q*)) > 0,
which are of the main interest, we have to make an analytical continuation of M-DAMA.
This leads to the appearance of two moving poles (s(1 ~ z,)) + 8(Q%2,) =n and
a(tzm)+B(Q%*(1—2zm)) =m, n,m = 0,1,2...polesThesingularitieso fthedualamplitudear
The collision of a moving pole z = z,, with the branch point z = 0 results in a pole
at s = s, , where s, is defined by

as{8n) + B(0) =n. (2.3)

*There are several integral representations of DAMA [14], here we shall use the most common
one.
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Please, notice the presence of an extra (in comparison to DAMA) term (3(0). It can
be considered as a shift of the trajectory. If 3(0) is an integer number, then the
modification is trivial. ‘

The collision of a moving pole z = z, with the branch point z =1 results in a pole
at Q% = Q2 , defined by

n?

as(0) + B(Q2) =n. (2.4)

In this sense we can think about B(Q?) as of a kind of trajectory, but we do not
mean that it describes real physical particles. Also we will see later that with a proper
choice of 5(Q?) we can avoid these unphysical poles, and 3(Q?) required by the low
z behaviour of the nucleon SF is exactly of this type.

Similarly, the collision of a moving pole z = z,, with the branch point z =1 results
in a pole at t = t,, , defined by

04 (tm) + B(0) = m. (2.5)

The collision of a moving pole z = z,, with the branch point z =0 results in a pole
at Q% = Q2 , defined by

a(0) + B(Qm) =m. (2.6)
Note that if as(0) = a;(0) the polesin Q? will be degenerate. For further discussion
we shall consider a non-degenerated case.

2.2. Pole decompositions

Similarly as for DAMA [14], case 1 from the above results into pole decomposition
of M-DAMA amplitude with the following expression for the pole term [15]:

2y _ n : [:@,(O)Q2 - Sa,s(s)]lcn—l(t7 Q2)
D, (s,1,Q%) = g"*! 12_% [n — ay(s) — BOYHT ) (2.7)
where (tz)- #(Q*(1-2))~1
R . dl _ —ag(tz)— 2(1—z))—
Ci(t, Q%) = %E [(1 - Z) } . (2.8)
) z=0

Formula (2.7) shows that our D(s,t,Q?) does not contain ancestors and that an
(n + 1) -fold pole emerge on the n-th level. The crossing-symmetric term can be
obtained in a similar way by considering the case 3 from the list above.

The modifications with respect to DAMA are A) the shift of the trajectory a,(s)
by the constant factor of B(0) (we can easily remove this shift including #(0)
into trajectory); B) the coefficients C; are now Q?-dependent and can be directly
associated with the form factors. The presence of the multipoles, eq. (2.7), does not
contradict the theoretical postulates. On the other hand, they can be removed without
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any harm to the dual model by means the so-called Van der Corput neutralizer®. This
procedure [14] seems to work for M-DAMA equally well as for DAMA and will result
in a "Veneziano-like"pole structure:

2y _ n+1__Cn(taQ2)__
D, (5,.Q%) = " ST (2.9)

The Q?-pole terms can be obtained by considering cases 2 and 4 from section 2.1.,
but, as we shall see later in section 4., with our choice of 3(Q?) we avoid Q? poles.

2.3. Asymptotic properties of M-DAMA

Let us now discuss the asymptotic properties of M-DAMA. Using exactly the same
method as in [14] it is possible to show that if the trajectory satisfies some restriction
on its increase, then we obtain the Regge asymptotic behaviour [15]:

D(s,t,Q%) ~ Sa‘“H'B(O)g'B(Qz) , §— 00.W08o0,intheReggelimitM —DAM Ahasthe.

58(0)).

It is more interesting to study the new regime, which does not exist in DAMA — the
limit Q2 — oo, with constant s, ¢. We assume that 3(Q?) » —oco for Q% — oo.
Then [15],

z 2
D(s,t, @)lgr-roo = (29)20@ /0 aste/Brecte/ 2, [, (2.10)

where W = 8yIn(Q?/Q2). For DIS, as we shall see below, if s and t are fixed
and Q% — oo then u = —2Q% — —o0, as it follows from the kinematic relation
s+t+u=2m? ~2Q?. So, we need also to study the D(u,t, @*) term in this limit.
If o, (—2Q?)| is growing slower than |3(Q?)| or terminates when @Q? — oo, then
the previous result (eq. (2.10), s to be changed to u = —2Q?) is still valid.

3. Nucleon structure function

The total cross section of v*p scattering is related to the SF by

Q2(1 - x) a'y*'p
dra(l +4m2z2/Q2) ¢

Fylz, Q%) = ; (3.10)

®In brief, the procedure [14] is to multiply the integrand of (2.2) by a function ¢(z), which has
the fellowing properties:

0(0)=0, ¢(1)=1, ¢"(1)=0, n=1,2,3,..

i—z

The function ¢(z) =1— exp(— - ), for example, satisfies the above conditions.
\
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where « is the fine structure constant. In eq. (3.) we neglected R(z,Q?%) =
o1 (z,Q?)/or(z,Q?), which is a reasonable approximation.

The total cross section is related to the imaginary part of the scattering amplitude

“ 8

where Pgops is the center of mass momentum of the reaction, Popy =

25(;1":) v/ 1+4m23x2/ Q" for DIS. Thus, we have

Im A(s(z,Q%),t =0,Q%) . (3.10)

\ 4Q2 1 — 2
P2, Q%) = o (1(+ 47;)362/@)3/2 Im A(s(z,@%),t=0,@).  (3.10)

The minimal model for the scattering amplitude is a sum [17]
A(5,0,Q%) = e(s — u)(D(s,0,Q%) — D(u,0,Q%)), (3.10)

providing the correct signature at high-energy limit, where ¢ is a normalization
coefficient. As it was said at the beginning, we disregard the symmetry properties
of the problem (spin and isospin), concentrating on its dynamics.

In the low z limit: z -0, t =0, Q? = const, s = Q%?/z — 00, u = —s we obtain
from eqs. (77,3.):

Tm A(s, 0, Qz)!s_m -~ Sat(t)+5(0)+lgﬂ(Q2)‘ (3.10)

Our philosophy in this section is the following: we specify a particular choice of 5(Q?)
in the low z limit and then we use M-DAMA integral (2.2) to calculate the dual
amplitude, and correspondingly SF, in all kinematical domains. We will see that the
resulting SF has qualitatively correct behaviour-in all regions. Even more — our choice
of B(Q?%) will automatically remove Q? poles.

According to the two-component duality picture [18], both the scattering amplitude
A and the structure function F, are the sums of the diffractive and non-diffractive
terms. At high energies both terms are of the Regge type. For v*p scattering only the
positive-signature exchanges are allowed. The dominant ones are the Pomeron and f
Reggeon, respectively. The relevant scattering amplitude is as follows:

B(s, Q%) = iRe(@)(=5) ", (3.10)

\m?
where a, and Rj are Regge trajectories and residues and k stands either for the
Pomeron or for the Reggeon. The residue is chosen to satisfy approximate Bjorken
scaling for the SF [19, 20]. From egs. (3.,3.) SF is given as:

Py @) ~ Q@) ()" (3.10)

Bjorken variable z = Q?/s for s — oo and thus, Regge asymptotics and scaling
behaviour require that

Re(Q%) ~ (Q%) ), (3.10)
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Actually, it could be more involved if we require the correct Q2 — 0 limit to be
respected and the observed scaling violation (the "HERA effect") to be included.
Various models to cope with the above requirements have been suggested [16, 19, 20].
At HERA, especially at large Q?, scaling is so badly violated that it may not be
explicit anymore.

In the phenomenological models which are used nowadays to fit £ data [19, 20, 7, 8,
24| (also [3, 4| were discussed in introduction) the Q2 -dependence is introduced "by
hands", via residue in the form (3.), parameters of which are then fitted to the data.
Now we have a model which contains @Q? -dependence from the very beginning and
automatically gives a correct behaviour of the residues.

Data show that the Pomeron exchange leads to a rising structure function at large
s (low z). To provide for this we have two options: either to assume supercritical
Pomeron with ap(0) > 1 or to assume a critical (ap(0) = 1) dipole (or higher
multipole) Pomeron [16, 21, 22]. The latter leads to the logarithmic behaviour of the
SF: 2
2y N2 217 5 1

Fo.p(2,Q%) ~ Q*Rp(Q*)n( 5 ), (3.10)
which proves to be equally efficient [16, 22!.
Let us now come back to M-DAMA results. Using eqs. (3.,3.) we obtain:

Fy ~ sat(0)+ﬁ<o‘)@29ﬁ(@2) . (3.10)
Choosing
p0) = -1 (3.10)

we restore the asymptotics (3.) and this allows us to use trajectories in their commonly
used form. Now we have to find such a 3(Q?), which can provide for Bjorken scaling.
If we choose ((Q?) in the form

B(Q%) =d—vIn(Q*/Q%), (3.10)
with
7= {(:(0) -+ 3(0) + 1j/Ing = {0}/ Ing, (3.10)
where d, Q? are some parameters, we get the exact Bjorken scaling.

Actually, the expression (3.) might cause problems in the @Q? -+ 0 limit. To avoid
this, it is better to use a modified expressions

Q2+Q%\) 0 Q7+ Q3

/ N
B(Q%) = B(0) - y1n \ 0z ng \ @z ) (3.10;
This choice ieads to
™ 2 1—ay / Q2 ae(0) :
Fo(z, Q%) ~ pl=ae(0) (m> (3.10)

2 a(0)
where slowly varying factor (m) is typical for the Bjorken scaling violation
[ t]

(for example {20]}.
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Now let us turn to the large x limit. In this regime = — 1, s is fixed, Q? =
oo and correspondingly u = —2Q? . Using eqgs. (2.10,3.,3.) we obtain:

2w -
Fy ~ (1 -2)°Q"gP @, [ (97075 — g2e=@Y) (3.10)

For Q% — oo factors (go‘s(s/Q) —go‘“(_Qz)> and W are slowly varying functions

of @? under our assumption about oy, (—Q?). Thus, we end up with qualitatively
correct behaviour

208 Zrin s 20:(0) in 2g/ 1
Let us now study F» given by M-DAMA in the resonance region. The existence of
resonances in SF at large z is not surprising by itself: as it follows from (3.) and (3.)
they are the same as in «*p total cross section, but in a different coordinate system.

For M-DAMA the resonances in s-channel are defined by the condition (2.3). For
simplicity let us assume that we performed the Van der Corput neutralization and,
thus, the pole terms appear in the form (2.9). In the vicinity of the resonance s = sges
only the resonance term Dpges(s,0,Q?) is important in the scattering amplitude and
correspondingly in the SF.

Using 3(Q?) in the form (3.), which gives Bjorken scaling at large s, we obtain from
eq. (2.8):

o (9@ O ) <Q2+Q8\ ~
C1(Q%) = <m> [at(0)+lngQ2+Q% " Tng In o )] . (3.10)

gives the typical @Q?-dependence for the form factor (the

@ a:(0)
The term (m)

rest is a slowly varying function of Q?).

If we calculate higher orders of C, for subleading resonances, we will see that the

:(0)
Zﬁ%%g) " Here comes the
important difference from the Regge-dual model [3, 4] motivated by introducing Q2 -
dependence through the parameter g. As we see from eq. (2.9), g enters with different

powers for different resonances on one trajectory — the powers are increasing with the

Q? -dependence is still defined by the same factor (

step 2. Thus, if g ~ (@—Sr—g%;)a , then the form factor for the first resonanceis (n =0)
@ \° o)t @2\

~ (m) , and for the second one (n=2) itis ~ <Q2—+Q?§/

in [4] the present accuracy of the data does not allow to discriminate between the

constant powers of form factor (for exampie Refs. [23, 7, 8, 24], and this work) and

increasing ones.

etc. As discussed

4. How to avoid Q? poles?

General study of the M-DAMA integral allows the existence of Q? poles (see cases

2, 4 in section 2.1.) which would be unphysical. The appearance and properties of
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these singularities depend on the particular choice of the function ((Q?), and for our
choice, given by eq. (3.), the Q? poles can be avoided.

We have chosen ((Q?) to be a decreasing function, then, according to conditions
(2.4,2.6), there are no Q? poles in M-DAMA in the physical domain Q2 >0, if

Re 5(0) < —as(0), Re B(0) < —a(0). (4.10)

We have already fixed B(0) = —1, eq. (3.), and, thus, we see-that indeed we do
not have @Q? poles, except for the case of supercritical Pomeron with the intercept
ap(0) > 1. Such a supercritical Pomeron would generate one unphysical pole at
Q? = onle defined by equation

a-P( )l <Q2+QO
Ing Q3

Therefore we can conclude that M-DAMA does not allow a supercritical trajectory
— what is good property from the theoretical point of view, since such a trajectory
violates the Froissart-Martin limit [25].

(0)—1

)-l—ap(O):O = Qf)ole QO( “P<°) —-1). (4.10)

.

As it was discussed above there are other phenomenological models which use dipole
Pomeron with the intercept ap(0) = 1 and also fit the data (see for example [16]).
This is a very interesting case — (@;(0) = 1) — for the proposed model. At the first
glance it seems that we should anyway have a pole at Q%> = 0. It should result
from the collision of the moving pole z = zg with the branch point z = 0, where
a¢(0) + B(Q3(1 — 29)) = 0 in our case. Then, checking the conditions for such a
collision:

—ou(0) - B{Q?)
tey(0) - Q26'(Q%)°
we see that for ¢ = 0 and for 5(Q?) given by eq. (3.) the collision is simply impossible,

because zo(Q?) doesnot tend to 0 for @Q? —» 0. Thus, for the Pomeron with ap(0) =
1 M-DAMA does not contain any unphysical singularity.

a(0) — t a(0)z0 + B(Q%) — B (QH)Q*2 =0 = 2 =

On the other hand, a Pomeron trajectory with ap(0) =1 does not produce rising SF
(3.), as required by the experiment. So, we need a harder singularity and the simplest
one is a dipole Pomeron. A dipole Pomeron produces poles of the second power
— Daipote(5, tm) o Tfn—”a%%))-r—l)z , see for example ref. [21] and references therein.

8 C(s)

Formally such a dipole Pomeron can be written as Far Tm—ar (OFD) - and generalizing

this — Dagipote(s,t) = D(a t), where D(s,t) can be given for example by DAMA
or M-DAMA. Applymg "this expresswn to the asymptotic formula of M-DAMA, eq.
(77), we obtain a term gA(@") s (M+3(0) In g which then leads to a logarithmically
rising SF (for ap(0) 4+ 5(0) = 0) — the one given by eq. (3.).

For 8(Q?) in the form (3.) M-DAMA will generate an infinite number of the Q?
poles concentrated near the "ionization point” @2 = —Q3 . Although these are in the
unphysical region of negative Q?, such a feature of the model

A) makes us think about B(Q?) as about a kind of trajectory, what is not the case,
as it was stressed above, and

B) might create a problem for a general theoretical treatment, for example for making
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analytical continuation in @2 . To avoid this we can redefine 5(Q?) in the nonphysical
Q? region, for example in the following way:

1 — @@y, Q—Z}ﬁ , for @*>0,
0

2y — lng Kk (4.10)
s —1—%221n Q%g@ , for Q2 <0.

This function has a maximum at Q2 =0, 3(0) = —1. M-DAMA with 3(Q?) given
by eq. (4.) preserves all its good properties, discussed above, and does not contain any
singularity in Q2 (except for the supercritical Pomeron case, which we do not allow).

5. Conclusions

A new model for the Q?-dependent dual amplitude with Mandelstam analyticity is
proposed. The M-DAMA preserves all the attractive properties of DAMA, such as its
pole structure and Regge asymptotics, but it also leads to generalized dual amplitude
A(s,t,Q?) and in this way realizes a unified "two-dimensionally dual"picture of strong
interaction [1, 2, 3, 4] (see Fig. 3). This amplitude, when ¢ = 0, can be related to
the nuclear SF, and in this way we fix the function 3(Q?), which introduces the Q? -
dependence in M-DAMA, eq. (2.2). Our analyzes shows that for both large and low
z limits as well as for the resonance region the results of M-DAMA are in qualitative
agreement with the experiment.

In the proposed formulation a @?-dependence is introduced into DAMA through
the additional function 3(Q?). Although in the integrand this function stands next
to Regge trajectories, this, as it was stressed already, does not mean that it also
corresponds to some physical particles. There is no qualitative difference between
two ways of introducing Q2-dependence into DAMA: through the @Q?-dependent
parameter g, i.e. function g(Q?) [1, 2] or through the function B(Q?). On the other
hand the second way, i.e. M-DAMA, is applicable for all range of Q? and it results
into physically correct behaviour in all tested limits.
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WAVE-MIXING SCHEMES REVEALING QED vACUUM
NONLINEARITY

V.Ju. Martianov, G.G. Denisov, V1.V. Kocharovsky

Institute of Applied Physics Russian Academy of Science, Nizhny Novgorad,

Mode coupling and combinative frequency generation due to quantum-electrodynamical non-

linearity of vacuum are considered for specially designed microwave-optical cavities.

1. Introduction

According to quantum electrodynamics (QED), there is photon-photon scattering
in vacuum; see, e.g., [1, 2, 3, 4, 5]. It is owing to virtual electron-positron pairs and
makes vacuunt a nonlinear medium. Nonlinear terms in Maxwell equations vanish in
the limit of parallel propagation of plane waves. However, observation of nonlinear
vacuum effects is possible when eigenmodes of a cavity or crossed beams are used
(some recent proposals are given in {6, 7, 8, 9}).

In the present paper, several new wave-mixing schemes revealing this nonlinear-
ity are considered, including third harmonic generation in high-Q microwave (MW)
cavities and quasi-optical resonators, and combinative frequency generation due to
coupling of MW fields with laser beams.

It is easy to understand why the electrodynamics in vacuum is nonlinear. First,
there is a well-known process of annihilation of a charged particle and its anti-particle,
for example, electron and positron, that produces a pair of photons. Consequently,
there must exist an inverse process in which two photons collide and produce an
electren-positron pair. This pair can immediately disappear, or be virtual, and in
turn produce two photons. The process as a whole can be thought of as scattering
of one photon on another (Fig.1), and since photons interact, the evolution of elec-
tromaguetic field cannot be described by linear equations. If such an interaction is
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Puc. 1. Photon-photon scattering due to virtual pairs.
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taken into account, it gives an additional term in the Lagrange function, which was
calculated by Heisenberg and Euler in 1936 [10]:
E2_B2 +
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Here the Planck’s constant A and the velocity of light ¢ are equal to unity, e
is the electron charge, m the electron mass, a = e?/hc = €? the fine structure
constant. We are taking only electrons and positrons into account because they have
the smallest mass and thus are most readily produced in vacuum by electromagnetic
fields E, B. Over the years, various authors have studied the feasibility of using
high-intensity radiation in vacuum to observe some nonlinear effects, such as four-
wave mixing [7], self-action [11], vacuum birefringence [12], etc.

2. Nonlinearity in low-frequency weak fields

Electron-positron pair creation is exponentially small if the work of electric ficld
over Compton’s wavelength is much smaller than the electron rest energy or, equiv-
alently, the field is smaller than the so-called critical field, E. = mc?/eX, where
X =h/mc.

Under laboratory conditions pair creation is hardly possible, with the exception
of some extreme cases such as collision of two nuclei with relativistic velocities or
x-rays focusing [3, 9, 13]. Hereafter we assume the fields to be much weaker than the
critical ones, and the frequencies to be not too high so that dispersive effects owing
to quantum nature of light can be neglected [4, 5, 11]:

E,B< E,=B.=m?%/eh=4.4-10"%G ~1.3-10%° V/cm,

A~ c/w>mc?/e(E + B), ie., hw < Xe(E + B).

Both assumptions are valid for modern powerful microwave and optical sources.
Then one can use perturbation theory and obtain the following well-known form of
the Lagrange function [1]

87l =E>-—B?+ [(E2 —B2)2+7(EB)2]7

a
457 B2

and come to the standard Maxwell equations, where polarization and magnetization
depend cubically on the electric and magnetic fields:

divB=0, div(E+ 47P) =0,
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_ 10B _ 19(E +47P)
rotE = o0 rot(B — 47M) = p En
P= 43 [2(E® - B*)E +7(E - B)B],

-

M= -2 [2(E? - B)B - 7(E-B)E] .

A

Nonlinear constant is defined by the electron charge and mass:

het

£

Enp ~ ¢ V220610 esu. ~ 2. 10'8 V/cm.

In all the processes we are going to discuss, no real electron-positron pairs are
produced, the pairs are virtual and manifest themselves only through the nonlin-
earity of Maxwell equations. In other words, there are no actual charge and current
sources in the equations. It is important to note again that the nonlinear terms are
exactly equal to zero for a plane electromagnetic wave, or for a group of plane waves
propagating in one direction.

In sections 3-6 we briefly discuss some of the predicted nonlinear vacuum effects
and proposed schemes for their experimental detection. In sections 7, 8 we discuss the
possibility of observing the vacuum-produced third harmonic of microwave radiation,
and in sections 9, 10 we present new combined MW-laser schemes, which are a
natural generalization of previously proposed schemes based on either MW or optical
radiative processes; cf., e.g., [7, 8, 11, 13].

3. Magnetized vacuum as an anisotropic medium

There are products of three electromagnetic fields in the expressions for vacuum
polarization and magnetization, and by fixing some of them to be constant external
fields we can obtain linear, quadratic, and cubic effects.

One of these linear effects is birefringence in magnetized vacuum. In the presence
of strong constant magnetic field, the two eigenmodes of Maxwell equations have
different indices of refraction. Dependence of ordinary and extraordinary indices of
refraction on external magnetic field may be easily calculated and is shown in Fig.2,
where 6 is the angle between a wave vector and the magnetic field, By. When
the field is much weaker then the critical value, By <« B, , and the wave frequency




174 Proceedings of ~ BGL-4

is not too high, hw < mc?|sin6| B./By, the correction to the phase velocity of
electromagnetic waves is quadratic on the external magnetic field (see, e.g., [14, 15]):

ne~1+(7/2)asin?6 _iB_g
no ~ 1+ 2asin?6 ’ a—457ch2.

Thus, vacuum in a strong magnetic field can influence the polarization of electro-
magnetic waves propagating through an inhomogeneous magnetoactive plasma. So,
observing polarization peculiarities of radiation coming from astrophysical sources
(e.g., neutron stars) with high magnetic fields may provide an indirect evidence of
nonlinearity of vacuum. However, there are no firm observations of this kind nowa-
days, though there were some observational attempts and many discussions on this
account; see, e.g., [14, 15, 16, 17, 18].

n*-1

tg*0 -1

osin’@
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Puc. 2. Birefringence in magnetized vacuum; n, and ng are refractive indices of z -
and o- modes, respectively.

4. Nonlinear phase shift

Phase shift leading to change of the wave polarization can also occur when a
radiation beam propagates through oscillating electromagnetic field. Consider the
setup depicted in Fig.3 (see [12]): a focused high power beam with electric field am-
plitude F and another probe beam are propagating in the opposite directions. Due
to nonlinear interaction the probe beam will experience a phase shift proportional
to the length of interaction region, [, and this shift will depend on the initial po-
larization of the probe beam: §® ~ a(!E2| JE2)(1/)) . According to estimates [12],
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for a wavelength A ~ lum, a powerful beam of cross-section S ~ (300pm)? and
length [ ~ (§/A) ~ 10cm , with energy € ~ 10kJ, produces a phase shift of about
6® ~ 10~ rad , which is very hard to detect. Many other well-known nonlinear opti-

V7

Puc. 3. Scheme for observation of nonlinear phase shift.

cal effects are possible in vacuum, including second harmonic generation, parametric
instabilities, self-focusing and channelling in counter-propagating beams, see, e.g.,
[6, 7]. In particlar, the critical power for self-focusing instability is of the order of
(7] Por ~103E2X% ~ 2.5-10% W.

Another interesting nonlinear effect is photon splitting in magnetized vacuum
[19]. An ordinary photon can decay into two extraordinary photons (Fig.4). This
3 -wave interaction process has also been widely studied; in particular, self-similar
solutions of photon transfer equations are found [19].

+Bo

ki
E ki
ke 0

Puc. 4. Photon splitting vy — Ye + Ye in magnetized vacuum.

5. 4-wave mixing in vacuum

Virtual electron-positron pair creation and annihilation leads to photon-photon
scattering y1 +vy2 — 7' ++" (Fig.1). Its effectiveness is characterized by well-known
cross-section, o , which is calculated by quantum electrodynamical methods and has
the following asymptotics [1, 2]

9 2 6

fuw

o ~ 0.0302 <~e——2> (—-—-2—) ) Fw < mc?;
mc me? ‘
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o~ 4.7 c/w)?, Fw > mc?.

A maximum, opee ~ 1073%m?, is found at Aw = 1.5mc?. This extremely small
value of gy,4, explains why the effects of vacuum nonlinearity are so hard to observe.

Generation of sum of three frequencies, w; = wi + ws + w3, is forbidden in
vacuum. In this case, to satisfy the phase matching condition together with the
vacuum dispersion relation, all three initial wavevectors and scattered wavevector
must be parallel, ks 1t k; 11 ko 1 ks, and for waves propagating in the same
direction vacuum nonlinearity vanishes.

However, for combinative frequency generation, ws; = wj + wo — w3, the phase
matching condition, ks = ki + ko — ks, can be met. It is illustrated in Fig.5 [11]. If

Puc. 5. Schematics of the phase matching for combinative frequency generation (after

[11)).

we fix the three initial frequencies, and therefore the lengths of all four wavevectors,
and if we fix vectors k; and ko, the two sphéres with radii k; and k3 intersect
each other. Then, taking any point in the intersection we would satisfy the phase
matching condition. The electric field of the scattered wave will be proportional to
nonlinear polarization, scattered differential frequency, wg, and grows linearly with
coordinate along the scattered wavevector, k,: Es(2) o iwsz(PYL + Msj\g’,’“)

6. Wave conjugation scheme

One special case of the four-wave mixing scheme is so-called wave conjugation.
It is realized when

k; =—k3, ki=-ky, wy=w=w=wz=w.

In this case the scattered wave goes exactly in the opposite direction to the third
wave, and that is where the name “conjugation” comes from (Fig.6). This scheme is
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widely used in nonlinear optics, and one finds for the scattered wave amplitude [11]
E,(1) ~ ié(lw/e)(3 + cos? ) E1 E2E3 , where & =~ (a/B.)?, and [ is the path of the
scattered wave along four wave overlapping region.

Puc. 6. Geometry of wave conjugation in vacuum.

For vacuum nonlinearity, it has been shown that if the intensities of the three
laser pulses are equal I; = Iy = I3 = £/S7, then the scattered energy, &, is
independent of pulse duration, 7, and an estimate of this energy has been obtained
[11]. In the case of small angle of conjugation, ¢ <« 1, the scattered energy &s ~
1074¢283 /(E,S)\)? . For X\ ~ lpym and S ~ (100um)? one would need laser pulse
energy £ > 1kJ to get a few scattered photons.

All of the optical manifestations of vacuum nonlinearity described above have
been analyzed theoretically, but none of them is anywhere near experimental real-
ization.

In the radio frequency and microwave radiation band, which we would denote MW
range, there have been proposals to detect vacuum nonlinearity by use of waveguides
[8]. As an eigenmode propagates along a waveguide, the nonlinear polarization in-
duced by it gradually excites the third harmonic, and theoretically the latter can be
measured, but estimates show that this would require vacuum tubes more than a
million kilometers in length. Therefore, it is more practical to use a cavity instead of
a waveguide.

7. Third harmonic generation in a high-Q cavity

If we take a cavity with high quality factor @, in which the fundamental cigen-
mode at frequency €2 is excited to sufficiently large amplitude, the nonlinear vacuum
polarization and magnetization will be oscillating at frequency 3. If this is also an
eigenfrequency of the cavity, then there is a resonance and this third mode will also
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grow, until it reaches some saturated level, Fsq . To detect the third harmonic more
easily, it is convenient to design the cavity in such a way that the fundamental mode
has negligible amplitude in some part of the cavity, and hence does not interfere with
measurements of the third harmonic. This can be accomplished by separating the
cavity into two parts and connecting the parts with a filter waveguide for which the
fundamental frequency of out cavity is below the cutoff (Fig.7 and also [8]).

Q 3Q
waveguide filter

pump wave_—>

main cavity probe cavity
Puc. 7. MW cavity for third harmonic detection.

For the sake of simplicity, let us consider a cavity with very simple geometry,
so all the computations can be carried out analytically. Namely, we choose a basic
mode mini0 of a rectangular cavity (Fig.8).

Puc. 8. Model rectangular cavity.

In this case it is also very simple to derive the condition that both fundamental
and triple frequencies are eigenfrequencies of the cavity:

2 2 2 2
m n m n
i )
a b a b2

Stationary amplitude of the excited third harmonic, owing to the nonlinear
sources P3 and M3, can be found by standard perturbation theory methods:

5 —47 - 3k, [3k1 [PsE~mqy k3fM3H*(m)dv}
30 = 3

Ok — &) | [ROIEGy  [HHmY
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where EU™ (r) and H(™)(r) are normalized fields of the excited mode. Taking into
account the finite quality factor, @, of the superconductive cavity at the frequency
32, one finds E3q ~ £E3Q. Here and in the following estimates we take into account
only the term with nonlinear polarization of vacuum, P3. The term with nonlinear
magnetization is of the same order, and this two effects can in principle partially
cancel each other, especially in paraxial schemes such as discussed below in sections
9 and 10.

This estimate obviously means that the more power we inject into the cavity
the easier it is to detect the third harmonic, but in practice, metallic walls cannot
withstand high electric fields, and the emitted electrons will spoil the vacuum. To
prevent this negative effects, the electromagnetic fields should be kept under about
0.4MV /cm, or, equivalently, 1300 e.s.u.. So, we arrive at an estimate for the third
harmonic amplitude which depends only on the quality factor:

E30 < 061072 esu. - Q.

What quality factor do we need to be able to detect the nonlinear field? At least,
this field should be above the thermal fluctuation level, which for typical cavity
volume V ~ 102 cm? at liquid helium temperatures is

SnrT

~0.8-1078 es.u..
G 0.8-107° e.s.u

Esqtherm ~ \/

And to exceed that, we need quality factor @ > 10'*, which can hardly be achieved
even in superconductive cavities, and demands unattainable stability of an MW
oscillator.

8. Third harmonic generation in quasi-optical mi-
crowave resonator

To overcome the principal limitation of the closed cavity scheme, we can use a
quasi-optical resonator, so the focusing of the beams gives much higher field ampli-
tudes in the interaction region than the walls can tolerate. The third harmonic we
are trying to detect will be excited in a smaller probe resonator aligned at an angle
to the high-power resonator (Fig.9).

This alignment is convenient fOr detection of nonlinear field components, since
the high-power radiation has no contact with cooled surfaces of the high-Q probe
resonator, and the harmonic field detector is away from the strong electric field.
To counter the positive effect of this geometry, note, however, that the interaction
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probe
interaction resonator

volume

high-power

resonator \
pump

wave

Pric. 9. Generation and detection of the third harmonic using quasi-optical res-
onators.

volume becomes much smaller than the resonator volume, while in the case of a
cavity they were comparable.

Assuming the beams to be Gaussian and neglecting their divergence, we can
obtain an analytical estimate of the saturated amplitude of the third harmonic. For
perpendicularly aligned resonators the third harmonic amplitude is

VT Qazaf . —4afk{
N VTR e
ESQ 8 Li a%g Q €XP 3 )

where ) and L3 are the quality factor and the length of the probe resonator, a;
and a3 radii of waists of quasi-optical beams at frequencies {2 and 3€2, respectively.
Decreasing the angle between resonator axes can improve the above estimate only
by a few times, mostly due to exp(...) — 1. This result is of similar nature to the
cavity estimate: the same third power of pump wave field, nonlinear constant and
quality factor, which in this case comes in a combination that is independent of the
length of resonator and characterizes the property of the material that the walls are
made of. The rest are gecmetrical factors of order unity, except for the exponent.
The latter reflects phase matching or mismatching between the modes of the two
resonators, and also can be made close to unity.

With sensible mirror sizes (about a meter) of quasi-optical resonator and wave-
length ~ 1 cm, the electric field in the interaction volume is bound by Eq ~
4-10* es.u.. For a?/a ~ 10, L3/az ~ 10? we obtain

Esq~Q-16-10"%exp(...) es.u..
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Thermal fluctuations in the probe resonator are

T
E ~ ~3-107% es.u..
3Qtherm \/ 9 Laag

To exceed thermal threshold we need the quality factor @ > 10'!, which can
in principle be realized in superconductive resonators, but the requirements for the
stability of an MW oscillator remain prohibitive.

9. Mixing of two MW waves with an optical wave

Since our chances for detection of vacuum nonlinearity in the radio or microwave
frequency band do not look optimistic, let us consider combining it with laser radi-
ation in the optical band. Suppose we have the same high-power quasi-optical MW
resonator and we shine a laser beam through it. Then, nonlinear polarization and
magnetization are induced in the interaction volume, and as they coherently oscil-
late, they produce radiation. The effect can be thought of as coherent scattering of
the laser pulse on MW radiation, with a corresponding shift in frequency ( 20 )
and in direction of propagation (¢, Fig.10).

interaction

volume photon

counter

MW pum;/

wave

laser

Puc. 10. Coherent scattering of a laser beam on an MW field in a quasi-optical
resonator.

For this process to be efficient, the phase matching condition must be satisfied.
If we think of it as four-wave mixing, the sum of wavevectors of three partial pump
waves must be equal to the scattered wavevector. Exact phase matching condition,
k+2 k.. = |k|+2|ka.|, can only be fulfilled if the laser radiation propagates along
the axis of the resonator, when vacuum polarization drops to zero. Competition
of these two effects determines the optimal angle between the laser pulse and the
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resonator axis, 6 =~ \/2/(KuwGmw), Where a, is the radius of the waist of MW
beam (see Figs. 10 and 11).

Puc. 11. Wavevector mismatch maximizing vacuum nonlinear effect for the geometry
of Fig.10.

Maximum scattered power turns out to be proportional to the power of optical
pump, P:
k _kmw mw 2 2
Pon | YEE cppp o SR (Kt /D17
]'6 k‘mw 2kn’xwa‘n’lw
For k/k.., ~ 104, ka,., ~ 7, B~ 4. 104 e.s.u. we obtain P, ~ 1.5-10738 P.

The scattered photon beam is of similar optical quality as the pump beam and is
deflected by a small angle, ¢ ~ k,,,./k.

To be experimentally measurable, the scattered radiation must contain at least
one photon (the energy of an optical photon is Aw ~- 2-1071% J). The latter requires
~ 10" J of energy of the pump wave. This is hardly possible in laboratory conditions.

10. Mixing of two optical waves with an MW wave

As an improvement of the previous scheme, we can use two laser pulses that
interact in the presence of an MW field. Again, this should produce scattered beams.

For the beam at frequency 2w — Q (Fig.12) we can fulfill the phase matching
condition k; + ko = k; + ki, by aligning the wavevectors as shown in the diagram
of Fig.13, where the following condition is assumed:

clkt + Kz — K] = 2 = 0 = e ([ka] + [ka| — K ).
In this scheme we have far greater freedom of choosing the angles, and for the

sake of computational simplicity we will assume kg 1] k., and 67 = 3 = 0 (see
Fig.12). Then the phase matching condition,

2k cos 0 + ko = 2k — ks
determines the angle 6 uniquely, 0 = \/2k,../k .




V.Ju. Martianov, G.G. Denisov, VI.V. Kocharovsky 183

interaction : 7
region photon
counter

Puc. 12. Interaction of two beams with a standing electromagnetic wave.

k
k—, kmw

ks

Puc. 13. Wavevector alignment for Fig.12.

Solving the corresponding electrodynamical problem we arrive at the following
scattered power at frequency 2w — Q2

k) i
P.o=r ({EQEM)Q (kmwaopt)Q (r) L 47T(§EQ)2 ck P

where both laser beams are assumed to have radius a,,, in the interaction region.

Now the scattered power is proportional to the second power of pump laser power,
so, for a given pump energy we should make the laser pulse as short as possible. But
it cannot be shorter than the period of MW oscillations or the bandwidth of the laser
pulse will be greater than the MW frequency, the coherent effect of this oscillations
will be lost, and the shift in the frequency and angle would be impossible to measure.

Finally, the constraint Py > Pymin ~ 21071 W should be fulfilled, which means
that during the action of the laser pulse (~ 1 ns) at least one photon is scattered.
Hence, with the same beam parameters as in the previous scenario (( k/kyw) ~ 104,
(27/k) ~ lpm, Eq ~ 4-10* es.u.), we obtain the following requirement for the
power of the optical pump:

r_Psmin ko
AT(EEq)? k3

1/2
] ~ 31016 W.

The improvement over the previous non-resonant scheme is due to the numerical
factor ~10%, and two large factors (k/km.) ~ 10* and (E,/Egq)? . Nevertheless, the
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required energy in one nanosecond laser pulse ~ 3-107 J, corresponding to electric
field B, > 3-107 es.u., is still beyond the capabilities of modern laser systems.
Nanosecond lasers available now have energies in the kilojoule range, so an increase
in energy of about three orders of magnitude is required.

However, the progress in laser optics and microwave electronics over the past two
decades has been tremendous, and if its rate remains the same in the future, vacuum
nonlinearity will probably be detected over the course of a few decades.
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(GEODESICS ON THE PSEUDOSPHERE
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In the present contribution we gave an elementary technology for drawing the geodesics,
paracycles and hypercycleson the pseudosphere.

1. Introduction

We have mentioned several times, that the Bolyai-Lobachevsky plane geometry
doesn’t materialize in the third dimensional space (theorem of D. Hilbert). A lot of
mathematicians submit that the Bolyai-Lobachevsky plane geometry can be easily
presented by the logical models (Pioncare-Klein, Cayley). Unfortunately this is not
so, and it seems that, physicists accept this information more easily than mathemati-
cians do.

It’s a well known fact that the pseudosphere is one of the local models where the
Bolyai-Lobachevsky plane geometry is materialized in little. But as we will see, right
here on the pseudosphere we can present, that the model is indeed local. One surface
is complete, if the geodesics are extendable in any orientation and in any length.
Well, this doesn’t materialize on the pseudosphere. Furthermore, we haven’t seen any
drawing that would present the hypercycle or the paracycle on the pseudosphere. We
know that the paracycles must be congruent, namely every paracycle is congruent
as well as the lines are. Consequently on the Bolyai-Lobachevsky plane geometry
there exist a line and a paracycle ruler. So we can see that the paracycles are not
congruent on the pseudosphere, so there isn’t a paracycle ruler on them, because of
this the way reproducing the Bolyai-Lobachevsky plane geometry is very distorted.

When we named as our target to draw the famed lines of the Bolyai-Lobachevsky
plane geometry, on the pseudosphere we first looked for some special literature. We
have found one remarkable book, whereof sure many don’t know. We have worked
from this book. We have calculated and illustrated these geodesics.

We can say that these geodesics haven’t been illustrated correctly, probably be-
cause nobody troubled himself to draw the paracycles and hypercycles with hands
and with the help of representative geometry design until now.
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The differential equations of geodetics are:

U — v + CHu’ + (C% — Ch) 40 — (2C) — C%) i — Che® = 0.

In case of pseudosphere:

Ccos 1 2 . 2
ds? = ( ) du® + sin? udv?,

sinu

1 -1 ;  —sindu _, cosu
011="‘“‘_- ,C22= Ol = = )
sinu cosu Ccos U sinu

-3
cosu .2. 1 . 2. S~ U .3

Uy — UV + 2——u v + — uv+ —1° = 0.
sinu sinu cos u cos u

This differential equation can be solved analytically, and the solutions can be
represented in the pseudosphere. However, the figures of the geodesics also depend
on the choise of two constants, and we don’t obtain nice looking figures. One of
the authors has already done the mathematical study of this in paper [3]. But the
analytical approach of the paracycles and hipercycles is very difficult.

The differentiable geometry’s equation of paracycle and hypercycle is very com-
plicated, and may not be given in a closed form.

An elementary technology for drawing the geodesics, paracycles, and hypercycles
is: In every case, first we represent the famed lines in the Poincare half-plane model,
then we transform these lines inside of a circle, and from here we project them on
the pseudosphere.

The steps of drawing the geodesics: First we draw the geodesic in the Poincare
half-plane model, what is defined in the following way. Let e be a line in the Eu-
clidean plane, and be named boundary line. For the points of the half-plane model we
consider one of the half-plane’s, which is defined by this boundary line. The geodesics
are the half-circles which are range (located) in this half-plane and intersect in right
angle the e boundary line, as well as the half-lines {figure 4.3) which are perpen-
dicular on the e boundary line. Without loss of generality we can presume that the
chosen e line is the ordinate and the center of the represented geodesic (half-circle)
is in origin. We take the band between the lines z = 7 and z = —7 (see figure 1).

If the radius of the half-circle’s is bigger then =, then we project the half-circle
symmetrically back regarding the lines £ = 7 and z = —m, until every part of the
half-circle will be in the [—=, 7] band (see figure 2).

This is the following:
ifr<-—-mthenz=-2x7—zx,
ifr >mthenz =2%7—z.
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Puc. 2. Geodesics in the [—m,n] band.

The next step is the transformation of the obtained curve inside of one circle. We
transform the strip between the lines y =0 and y = r+1 of the band given by the
Euclidean z = 7 and z = — lines (the rectangle obtained in this way contains the
whole curve) into one circle, where 7 is the radius of the half-circle. We shrink the
line segment between the points (—m,7+1) and (7,7 +1) of the obtained rectangle
into one point, which will be the center of the circle. We elongate the line segment
between (—m,0) and (m,0) to the length of 27(r+1) and we join the ends of them,
to obtain a circle (see figure 3).

Mathematical we obtain this with the

zo=(r+1—y)-cosz,
yo=(r+1—y) sinz

replacement, where the z,y are the drawing’s curve.

We only have to project the points of the curve inside the circle into the pseudo-
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sphere (see figure 4), knowing the formula of the pseudosphere

z = ru cos (v),
y = rusin(v),

/o2 (21 at —
z=rlogi—%/\/z_f—?;—{)—— Vr?— (y? + z?).

where wu is the height (altitude) of the parallel circles, and v is the angel inside of
these parallel circles which value is in [—7, 7] interval.

—10 —10 —20 —20 —1 —1

Puc. 4. Geodesic on the pseudosphere.

The course of drawing the paracycles is similar to that of the geodesics. The para-
cycles in the Poincare half-plane model are the circles which contact the boundary
line, respectively the parallel lines with the e boundary line. The drawing of the
paracycles which are parallel to the boundary line is not a problem because these
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are the parallel circles on the pseudosphere (figure 6.3). Thus, the drawing of others
paracycles: let consider those specific circles which have the center on the line that is
perpendicular on the boundary line in the origin. We wedge the paracycles into the
[-7, 7] band as same as in case of the drawing of geodesics. Henceforth we proceed
the same way as we have described above (see figures 5, 6).

1= 12r—-‘ s

e U 1 = -

s 5 a b - =2 —
& s - a}~ B

N ]

N b
o
\

N b

T T

:

| |

b N

T T

] L

-5
=3 o s —1 o o 10

]

) O
-5 s

Puc. 6. Paracycle on the pseudosphere.

—a’ s -s _s

The drawing of the hypercycle. Let be one line in the Poincare half-plane and we
draw the curve which is at distance 1. In the course of this draft we take the lines
(half-circles) in sense of Poincare which are perpendicular to our line (half-circle).
The points in these lines which are at distance 1 at the given line constitute the
wanted curve. In this logical model the distance, metrics is defined by

D(A,B) = klog(ABVU)

formula. Here k is one arbitrary positive constant, A, B are two points on the half-
circle (line) and V,U are the intersection points of the half-circles and the boundary
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line, with (ABVU) we sign the cross ratio

AV BU
(ABVU) = 2 -~

The algorithm for finding the points which are at distance 1 to the given line:

rad = rtan(o — 3%);

kp = —+/r% 4+ rad?;

rad is the radius and (0, kp) is the center of the half-circle which is perpendicular
on the given line (half-circle) at point which location is in angel o.

T =TTy = TY;

dist = 0;

while (dist —1 <=0) do

begin

dist — %log ((kp—rad—z)2+y2)((lcp+rad—rz)2+ry2) )

((kp+rad—ac)2+y2)((kp—rad»rx)2+ry2) ’
fi=Ffi— 13655

z = kp+ rad * sin(fi);

y = rad * cos(f1);

end
sT =
sT =1y.

Here (rx,7y) is the point of the given half-circle at the angle o, the (z,y) is
the point of the half-circle which is perpendicular on the given half-circle at point
(rz,ry), and the (sz,sy) is the point at distance 1 at (rz,ry).

Henceforward the wedge in [—, n] band, the transformation into the circle and
the projection on the pseudosphere are the same as in the previous cases. The ob-
tained curve is on figure 8.

2. Conclusions

We can assure about the correctness of the geodesic’s drawings by the evocation
of theorem of Clairaut. (A. Clairaut (1713-1765) wrote the first study about space
curve’s: Traité des courbes ¢ a la double courbure, 1731). According Clairaut’s the-
orem the product of the radius of parallel circle and the cosine of angle between
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Puc. 7. Hypercycle in the Poincare half-plane.
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Puc. 8 Hypercycle on the pseudosphere.

geodesics and parallel circles is constant in case of surface of revolution. Based on
this theorem every meridian curve is geodesic, since the meridian curves are perpen-
dicular to the parallel circles, so this way the cosine of angle is zero and the constant
in the theorem is zero too and independent of the radius. It’s easy to educe that
in case of the cylinder the parallel circles are geodesics. So in the case of the pseu-
dosphere the meridian curves are geodesics, moreover even those curves that satisfy
Clairaut’s theorem are geodesics too. Namely they wrap gradually around the pseu-
dosphere until they reach oscillatory one parallel circle, because then cos0 =1 so
the prescribed constant is the radius of the reached parallel circle.

With the exemplification of the famed lines on the pseudosphere we wanted to
prove, that the Bolyai-Lobachevsky plane geometry in the 3-dimensional Euclidean
space doesn’t materialize physically.
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PyKoOMucH fAHOIIA Bodan O JIOBAUEBCKOM

P. Onax-Tan

Ynusepcumem um. Babew-Bosu, 2.Kayoc-Hanoxa?

Koanedorc ungopmamuxu, 2. Muepxypea Yyx®

Paccka3pisaercsa 0 Masion3BecTHbIx B Poccun pykomucax fxoia Bosu.

MHorue pycckue ydéHble yBepeHbl (CM., Hatpumep, [1]), uro Anom Bosu pesHosasn k Jloba-
eBCKOMY. B pycckoit HaytiHOil JiuTepaType ake pacnpocTpaHEeHO MHeHue, 1To boau 06Bu-
Hsin [aycca B mepepaboTKe ¥ U3DaHUH ero Tpyaa nou ncesaonumoM "Jlobauesckuit". BepHo,
fnomn Bosiu mepexxkui1 U TakKoe BOJIHEHHE, HO 3TO ObIJIO JO TOro, KAK OH MpoUuTal PaboThbl
JlobaueBckoro 1a HeMenKoM si3bike. K corkaseHHio, 3T0 eMy yaajioch O'ie€Hb [03JHO, TOJIbKO
B 1848 rony. Ilocsie 3HaKkomceTBa ¢ paboramu Jlobatuesckoro Auom Bosin MOJIHOCTHIO U3MEHMIT
CBO& MHEHHE U CTaJ AyMaThb M IHcaTh O JI06auCBCKOM TOJIBKO C BEJIHYAAIINM TIPH3HAHHEM
M yBajkeHueM. IIpuBejieM J0Ka3aTesIbCTBa 3TOrO.

Bosn Hanucan iipekpacuyio pabory "3ameuanust o pabore Jlobayerckoro” (40 pyKOMUCHBIX
crpanun B [2]). Kpome 3Toro, ects Mioro MajieHbKHX 3aliCOK, B KOTOpPbIX Bosn nuier o
Jlobar1eBCKOM C BesTH4YailIMM ITOuTeHHeM U CTaBUT cebe nesib npuobpecTu Bee paboTst Jloba-
gyeBckoro. Ha puc. 1 npusejieHa KOsl II0AJIMHHOIO JIOKYMEHTa, TEKCT KOTOPOro CJIe LY OIIMIi:
"{Ipuobpectu Bce paborsi JIobayesckoro uz Kazauu'.

Fig. 1. "Tipuobpecru Bce pabore Jlobauerckoro u3 Kasauu"
fmomr Bosu nucasr cBou 3aMeTKH ¥ Tpyabl B 0671aCTH MATEMATHKH Ha BEHTEPCKOM, JIaTHH-
CKOM MJId HeMellKoM s3blKaX. VIuTepecHo, 4To Haubosiee TPyAHO pa3bupaioTCs ero pyKOIIUCH

“Benrepexoe naspanne - Konexsap.
“Benrepckoe nHa3Banme - Inkcepena.
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Ha BEHI'EPCKOM sI3bIKe, [TOCKOJIBKY OH CO3/aJjl ¥ MCII0JIb30BaJl ClIelHaJIbHbIe 3HAKH U HYKBBI.
Ero Hemenkue pyKOIMUCH HAIIMCAHbI TOTHYECKHUMH M JIATUHCKIIMU OyKBaMHu, a Haubo.nee J1erko
YUTAIOTCS PYKOIIMCH HA JIATBIHH, [IOCKOJIbKY OHM SIBJISIFOTCSI YUCTOBBIMH 3K3EMILISIDAMHU TO-
TOBBIX MaTeMaTuHieckux pabor. ¥ Bosi ecTb MHOIO NOXBaJIbHBIX 3aMetaHuit 0 JIo6a4eBcKoM,
CaMbIM BbIpa3UTeJIbHbIM M3 HUX IpeacraBisiercs cienytoinee: "Iloka B Poccun :xuByT Takue
KpacuBble, 100pble U CTpeMsilide K 0J1aropoACTBY AYIUH, Kak JlobaueBCcKuii, €CTb 110BOJ H
OCHOBaHHE HaJeATbCH Ha BbIciee npocseiennd Poccun."(BJ-93/1; em. Puc.2).

Fig. 2. JIecrnoe muenne Anoma Bosiu o JlobarieBckoM

Hy>xHo 3naTh, uto B Mapoumsamapxe e¥ coxpanensr 14000 pyKOmucHBIX cTpakHl HnolIa

Bosin, KoTopble COAEPXKAIOT ero caMble NHYHbIE HCIIOBeAM: y ZIHOma He ObLTO COYYBCTBEH-
HOI1 JKEHbI WJIM APYra, 1103TOMY OOBIMHO eMy OCTaBaJlach TOJIbKO Oymara, 9wrobbl I"OBOPUTH O
CBOMX CaMbIX JIMYHBIX MBICJIIX U udyBcTBax. B MHTepHere 3] mocTymHa mosHas mepenncka
®apkana Bosau’ ¢ [ayccom, KOTopas CBU,IeTESLCTBYET O TOM, KaK IT03AHO y3Ha i oba Bosu
o JlobaueBckoM. 3 mecb 0OpaTM BHUMaHME TOJIbKO Ha IBa IMCbMa. [lepBoe M3 HUX - ITMCHMO
laycca @apkamy Bosiu, Bropoe - ot ®apkawma Bosau k [ayccy. ITucemo ®apkaiua Bosun un-
TepecHo TeM, uto OH nuiuer: "B apudpmeruke s onupalics Ha HbloToHa, reoMeTpuio Havall ¢
JlobauyesckuM. He 6b110 y MeHsI cuacThbsi, YTOOb! CraTh OTKpbIBaTEEM Aopor. .. "Tak 4ro u
®apkam Bosu noHsu u npunsaa Tpya JlobayeBckoro B MmoJHOM €ro riybiitie. ITO ABJIAETCA
M OTBCTOM Ha MHEHMe, coryiacHo koropomy @apkai Bosiu He 110HsJ1 TKOObI CYI1IIHOCTb HEEB-
KJIMIOBO T€OMETPHH H e€ 3110XaJIbHY10 poJib. Ecom on "reomerpuio Hauyas ¢ JIobavesckim",
TO y Hero J0JDKHbI ObLiH ObITh IOBOJIBHO COBpeMeHHble B3rJistApl M o npoBén mapannens
¢ HoioronoM! B 1853 o4eHb MaJI0 MaTEMaTHKOB CTPOHJIH CBOIO F€OMETPHUUMECKYI0 Y4eOHYIO
cucremy Ha JlobadeBckoM. Bo3morkHo, Tosibko 0auH Papkaiu Bosin? Mb1 xoresu 6561, t100bI
HAllIM PYCCKHE KOJIIerH U JpY3bsi 1TOHsLIH, 4yTo fIHoti Bosi ObL1 e AMHOMBILINEHHHUK, 1YXOB-
HbII IpYr H 110KJIOHHUK JlobauyeBckoro. B Huxknem HoBropose mMbr nouyscTBOBaJIM 60JIBIIOMN
HHTEPEC K CEPAEYHOCTb CO CTOPOHBI PYCCKHMX KOJLJIEr TIPH HAIIKMX AOKJaax o Bosiu, mosTtomy
MbI IIOCTaBUJIH TIepe]; coboii ek pa30bpaTh 1 apyrue pykonucu fHoma Bosiu, kacatomuecst
JlobaueBckoro, ¥ U31aTh UX B MEPEBOJE HA PYCCKHIl 53bIK.

®Oduumasnoe (pymeHckoe) nassanne - Toipry Mypem.

"®apkam Boau (oren fAnowa Bosn) 6bur ToXe MAaTeMATHK, Mpenoxosatesib B Pedopmarckom
JInuee r.Mapowsaiapxeit. JnoxaabpHas pabora dHoma Bosin 1109BUIIACH KAK MPUIIOZKEHHE K KHIY'C
Tenramen (Tentamen) ®@apkama Bosi
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IITPEJCTABJIEHUE JIAKCA HEJUHENHBIX
0-MOJEJIEN C MMPUBOJUMBIMU METPUKAMU

O.H. ITaxapesBa

Huorcezopoderuti 2ocydapemeennniti yrusepcumem um. H.H. Jlobouescrozo

Tlpennomxken C€rocol, TMO3BOIAMMI ACCOUAMPOBATL C KAXKILIM  CHMMETPHYIECKHM
npocrpaactBom G/H unpencrasienie Jlakca HekoTopoil cucreMsl audeepeRImaIbHBIX
ypasHeHui. IlonyyeHb! JOCTATOYHBIE YCIOBUH, IIPH KOTOPHIX JAHHAS KOHCTPYKIHS IIPUBOAUT
K JarpaHxeBpiM cuctemaM. Oco60 BelAesieH Ciiydal CHMMETPHYECKAX IIPDOCTPAHCTB BHIA
G/(H, x H,). PaccMoTpeHb! mpHMepHI JIONyCKAIOMUX IIpeicTaBiaeHue Jlakca cucrem c

TIPUBO/TUMBIMH METPHKaMIH.

1. Bsenenwue

PaccmarprBatorca  cucrembl  nuddepeHIMAbHBIX YPABHEHHH B  YACTHBIX
IIPOM3BOAHBIX
Ug, +Te.UUs + Q% =0, (1.1)
re X,y — He3aBUCHMbIe epeMeHHble; ['p,, Q% — HekoTopsble riajkne QYHKIHH OT
U, U?,..,U"; wunmgexcs IPHHUMAIOT 2HaveHud oT 1 70 n. CucTeMbl TAKOro BHIOA
HA3bIBAIOTCA OOMIMMM HEJIMHEAHBIMY ¢ ~-MOJEJIAMHI MJIM CUCTEMaMU KUPAJIbHOTO THIIR,
€CJI OHH IIPMHAJJIEXAT KJIACCY JIATDAHXKEBBIX CHCTEM, T.. HABJIAIOTCH CHCTEMaMH
ypaBHeHuit Jiinepa-JlarpaHxa niH JarpaHKUaHOB

L = pUSU. + Q, (1.2)

rie Pap, @ — rmagkume dyskmum or UL U?,... U™ u cuMMeTpudecKad dacTh
MaTpuubl ||pgy|| HeBbipokAenmad. Ecmu prgy = 0, TO pey MOXHO paccMaTpMBATH
KaK METPUYECKMIl TEeH30p HEKOTOPOTrO pHMaHOBa MHOI'0o0Opasus V™, 3ajaHHbIA B
JIOKaJIbHOM cucteme Koopauuar Ul, ..., U™. TIpu 3T0M K03@bHIMEHTH I'y. B cucreme
(2.1) comagaior ¢ cumposiamu Kpucrobdens ceasnoctun vHa V™, corsiacoBaHHOH ¢
METPUKOHU Dgp.

Bynem Ha3biBaTh cucremy (2.1) cucTeMoil ¢ TPHBOJUMON METPUKOM, €CIH B
HEKOTOPOi JIOKAJIBHOUW CHCTEME KOODAMHT KOOPAMHATBHI MOXXHO DPa3fie/IUTh Ha JiBe
rpymb (U2, UO‘I) TaK, 4YTO JIATPAH)XXUAH IIPUMET BUJ

L = pog(U")dU®dUP + parg (U7 )dU® dUP + Q.

37ech 1 Janee He IPE/ALOIATAIOTCS BBIIOJIHEHHPIMA YCIOBHE Plog) = 0, plarg) = 0.
Ilycte ©' -— JeBouHBapuaHTHBle auddeperuaIbHble GHOPMbI HEKOTOPOH
rpynimbi Jdu G, yAOBJIETBOPSAIOINNE CTPYKTYPHBIM ypasHeHusM Maypepa-Kaprana

e’ = %C’;k@k Iy (1.3)
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roe C! *k — CTPYKTYDHbIE KOHCTAaHTbI anreOps! Jlu g rpymmsl G, unzekcel 14,7,k
MPUHAMAIOT 3Hauenuda oT 1 1o r, (r > n). Losopart, uro cucrema (2.1) momyckaer
[pefCTaBjieHHe HYJIEBOI KpPWUBW3HbLI WJIM NpejcTaBjenue Jlakca ¢ rpynnoit Jlu
G, ecnu cymectByoT ¢byrkumn AY, BY| zaBucamume or U®, MX IPOU3BOZHBIX
Uz, Uy, Ugy, ... ¥ HEKOTOPOTO MapameTpa A, TaKHe, YTO CHCTeMa yDaBHeHuit

©! = Aldz + Bldy (1.4)

SBJISIETCSL BIIOJIHE MHTErpupyemoii (B cmbicsie @pobenuyca) Ha PEMIEHUAX CHCTEMbI
(2.1), me., ecim moxcraHoBka coorHomenwmit (1.4) B ypashenus (1.3) mpuBomuT K
TOXJECTBAM B CHJIy CHCTeMHl (2.1).

B [1] ykazan xaacc cucrem, JOMyCKArOmuX NpeICTaBJeHME Jlakca C rpymmnamu
JIu, CTPYKTYPHbIE YpAaBHEHHS KOTOPLIX MOIYT ObITh 3aNMCAHbI B BUAE

dw? = D3,0° N WP, (1.5)
d6® = CLH° AB° + R ow® A WP (1.6)
rie a,b,c = 1,n, AB = n+ln+r 6% wA - JIEBOMHBAPHUAHTHBIE

gudpepennuanbhbie opmbi rpynnbl G . M3 toxkgects Axobu mus rpynmer G
CIEAYET, YTO CTPYKTYDPHbIE KOHCTAHTBI y/IOBJIETBOPSIIOT YCITOBUAM

DCA'a l?c_*_Dg[bDllac} =0, (17)
CpRBp + RFBICIDg]b =0, (1.8)
Dfgjo B = 0. (1.9)

Ypapuenug (2.4), (2.5) MOXKHO Tak>ke HHTEPIPETUPOBATH KaK CTPYKTYPHBIE
yPaBHEHHS HEKOTOPOro JIOKAJbHO CHMMeTputieckoro npocrpancrsa G/H , rge Cp.
— CTPYKTYpPHbIE KOHCTaHThI rpynmb u3orpormi H . Copaseyiusa Teopema (cu. [1]):

Teopema 1.1.. IIycmv Cf, — cmpysmyprvie KOHCMAHMDL 2DYNNDL U0 PONUL
H mnexomopozo aoxkeavro curmempuueckozo npocmpancmea G/H | cmpyxmyphbie
ypashenua Komopozo umetom eud (2.4), (2.5). [Ipednoaosicum, wmo cyusecmsyrom

mampuys [T 81, |1To8]| u dynxyuu M2, N4 | ydosaemeop.meusue YCAOBUAM
T o = Ca.T#Te (i =1,2), (1.10)
det|Thy — Topl| # 0, (1.11)
M} = DM, (112)
N3 =Dg,T\iN5. (1.13)

Toeda cucmema (2.1) donyckaem npedcmaeaenue Jdaxca, ecau dymwwyuu Iy, Q°
uMmeIom 6ud
d
Tg. = B3[P} ) + 205,51 8¢ — 24, PESh,

C t {r b)
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Qa - _ ~}2R£BNBMA’

2de Sy = %( T, Pe= %(Tlg— 1), P — obosnavenue mampuyst, o6pammot
x P.

Sameuanme. C KaxAbIM JIOKAJILHO CHMMETPHYECKMM mpocTpaHcTBoM G/H
MO>KHO aCCOIMHMPOBATH cuCTeMy Buza (2.1), HOMyCKArou[yio IIpeCTaBJIeHHe JlaKca.
HeticrBuresibio, mycts Cff, — CTPYKTypPHble KOHCTAHTBI IPyIIbl H OTHOCHTEIBHO
6asuca JieBOMHBapuaHTHbIX auddepeninaibabix dopm ¥ = Tg‘dUb. Bribepem

1w =T¢, Ty =0 (wnm Ty = 0, Tof =T, ). Torga yciosus (2.8), (2.9) BbI1oIHEHE
u cucrems! (1.12), (2.10) coBmectrb! B cuity (2.8), (1.7). Tosaras

w = AMAdx + —i—NAdy, (1.14)
0% = T\gULdz + T U dy, (1.15)

11oJ1y1uM TipejicTasiienue Jlakca cucremsr (2.1), KoadduimeHTb KOTOPO MMEIOT BUT,
yKa3aHHbIA B Teopeme. OmHako, He BCerla IOJIyYeHHasd TaKuM 0Opa3oM CHCTEMa
IIPHHAJIEZKHT KJIACCY JIaI'PaH@#<€BbIX CHCTEM.

2. IlpeacraBaenue Jlakca jlarpaH>KeBbIX CUCTEM

Kak wm3mecTHO (cM., Hampumep, [2]), Kaxk10e CHMMETPHUECKOE IIPOCTPAHCTBO
G/H nopoxaaer cummerpudeckyto airebpy Jlu (g, h, &), rme g,h — anrebpor
JIu rpynm G u H cOOTBETCTBEHHO, £ — WHBOJIIOTUBHBIN aBTOMOPGU3M Ijd & .
Bceerpa cymectByer paziioxenue

g=h®m

Ha COOCTBEHHBIE IIOJIIPOCTPAHCTBA HMHBOJIOTHBHOIO aBTOMOpduama &, KOTOpPOE
Ha3bIBAETCS KaHOHWYECKMM Dpa3JjI0’KEeHHeM CHMMETpUudeckoit ajrebpbl (g, h, £),
pUYeM BBINOJHSIOTCS CJIEAYIONINe BKJIIOUEHUH

(h,h]Ch, [hym]Cm, [m,m]Ch.

B chopmynupoBaHHO# HIKE TEOpEME YKA3bIBETCA YCJIOBHE HA h ¥ m , BBIIIOJIHEHME
KOTOPOI'0 TapaHTHpPYeT, ITO C JAHHBIM CHMMETPAYECKHM IIPOCTPAHCTBOM MOXKHO
aCCOIIMMPOBATDH IIpeACTaB/IeHe JIaKca JIarPAHXKEBON CACTEMBI.
Ilasiee UCIIOJIB3YIOTCS CIeAyIOMEE 0003HAEHMS:

1) (U%) - jokaJjibHash KOOpAMHATHAA cUCTeMa Ha rpymme H ;

2) h. — CTDYKTYPHbIE KOHCTaHThl TIpynnbl Jlm H oTHOocHTenbHO Oasuca
JIEBOMHBaPHaHTHBIX Auddeperiuaibipix popm V¢ = TdU b.

3) hgb — dopma Kuyuiunra anarebpsr h, 3agannas B gBoiticTBeHHOM 0a3MuCE;
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4) g — merpuka Kumnunra rpynner H | Te.
Gab = h(c)dT;TI;i )
5) 0 = agdU% A dU® — 2-cbopma, yIOBIIETBOPSIIONIAs YCIOBHIO
do = ~h0,,c Te AT AT

Teopema 2.1.. [Tycmo G/H — A0KGABHO CUMMEMPUNECKOE NPOCTNPAHCMEO C
noaynpocmot epynnot Jlu H u cmpyxmyprvtmu ypasreruasu (2.4), (2.5). Hycmo
g = h®m — xenoruueckoe passosicenue u daa mobwx saemernmos hy € h, m; €
m (i =1,2) cnpasedauso pasencmso

([[ma1, hal, mal, ha) = ([fm2, ho), ma], k),

20e xpyeavie CKOOKU 0603HAUAOM CKaAAPHOE Npousdsedenue 6 h ommocumenvho
mempuxu Kuanunea hY .

Tozda cyuwecmsyem ¢ynrxyus  makas, “mo cucmema ypaswenul Flnepa-
Jazpanoica 0Aa Aa2PAHIHCUAHA

L = gopULUL + aggUSUL + Q(U®)
donyckaem npedcmassenue Jlaxca.

Bameuanune. HernocpescTeeHnas rmpoeepka TOKA3bIBAET, YTO CHUMMETDUIECKHUE
npocrpanctea Al SU(n)/SO(n), DHI: SO(2n)/U(n), CL  Sp(n)/U(n)

YJIOBJIETBOPSIIOT YCJOBHSIM TEOPEMBbI.

3. IIpexcraBiaenune Jlakca cucreM ¢ HTPHUBOJAUMBbIMU
MeTPUKaAMU

Yrobbl  moIyuMTh  IpencTaB)ieHMs Jlakca  HeJMHEHHBIX ¢ -MOJeNed ¢
MPUBOIMMBIMH  MCTPHKAMH, PACCMOTPUM CHMMETPUYECKHE INPOCTPAHCTBA BUA
G/(Hy x Hj). Paspgemm koopamuatsl (U%) wa gee rpynumbr (U@, U¥) s
COOTBETCTBHUU C pasiyoxkenueM rpymtsl H = Hy x Hy . Ilycts

1) C’gv,,Cg,/ﬂ/, — CTPYKTYpHble KOHCraHThI rpynn Hj, Hy orHOocuTennHo 6a3mcoB
JIEBOMHBAPUAHTHBIX Auddepenunanbubix dopm P = Zi}?dUﬁ, P = Tg‘!l dU*’;

2) haﬁ, hg, g — $opmbl Knnmuara aredp JIu hy, hy;

3) 908, 9o/p — MeTpuky Knmiumnra rpynn Hy, Hp ;

4) § = aagdU® A dUP, 8 = aalg/dUa' A dU®  — 2.¢bopmsl, yaoBseTBOpsOmTHE
YCJIOBUSIM

ds = haﬁca(;@a/\@ AT, dif = 3h g Cog® ADT A DY
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Teopema 3.1.. IlTyemv G/H — A0KQABHO CUMMEMPUUECKOE TPOCTPAHCTNEO,
H = H; x Hy, Hi,Hy — noaynpocmwe zpynnw Ju. H nycmv das mobwx
' .
saemenmos by, hi" € hy, m;y € m (i =1,2) cnpasedausn pasercmea

" 1

1) ([[7n1’h;]7m2]7hi) = ([[vahi]vml]’h;)7

2) Rq[mlah,l}m?]ah;) = S([[mg,h;],ml],h;),

2de R, S — durcuposantvie HeHYAEEBIE KOHCMAKMIbL, & KPY2able CKOOKU 0003HaMaI10M,
cranaproe npoussedenue 6 h ommocumenvro mempury Kuaaunza h° .
4 (%
Tozda cywecmeyem dynwyua Q(U,UY) maxas, wmo cucmemdi ypaerenud
Sinepa-Jlazpansica 0as A02PAHHCUGHOS

L = Slgag(U") + aap(UNULUL + Rlgap (U”) + eaw (UWUF U +Q,

€= =1,
donycraiom npedcmaesienus Jlaxca.

3ameuaHue. HemocpeacTBeHHas MPOBEPKA MOKA3BIBAET, UTO CHMMETPHIECKUE
IIPOCTPAHCTBA

BDI: SO(p+4q)/(SO(p) x SO(q)), p,q >3, CII: Sp(p+q)/(Sp(p) x Sp(q)),
G: G2/(SO(3) x SO(3)) yiOBIETBOPSIOT YCJIOBHSIM TE€OPEMEL.

4. Ilpumepsl

Paccmorpum  mpuMepb!  mocTpoeHuit  mpeacTaBiaeHmit  Jlakca  cucrewm,
ACCOLMPOBAHHBIX C CHMMEeTpUiecKuMu rpocrpancteamit Buga SO(p+q)/(SO(p) x

50(q)) (p,a > 3).

Hpumep 1.(S0(6)/(SO(3) x SO(3)) )

BriGepeM B KauecTBe I0Kasblbx Koopaumar UL, U?,U3 wa rpymme Hi = SO(3)
yriabl dfiJiepa. Toraa

0! = — cosU%dU® — sinU?sinU3dU?,
62 = sin U cos U?dU" — sin U%dU?,
03 = — cos U3dU" — dU?
— 0a3HC JIEBOMHBAPHAHTHBIX JAu(depeniinaibibix GHopM 1
o' = 0> A6%, 07 =0'N0%, 60 =0°A0".

— cTpyKTypHble ypasHenud rpymmbl SO(3). Jlokassrble kKoopaumaTer U4, U® US
1 JeponHBapuanTHele dopmbr 0% 6% 6% wa Hy = SO(3) BbIGepeM amamorutHbM
obpazoM.
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3anuimeM ~ CTPYKTYPHble  YpaBHEHMS  CHMMETPHUYECKOTO  MPOCTPAHCTBA

SO(6)/(SO(3) x SO(3)) B Buge

I 13 wa}
dQ:Q/\Q,Q:‘ s B, (4.1)
| Y3 Ya
roe ,
05 = —05,0% =07, w§ =-u’ (a,f=1,3, o,f =16).
TTostoxxum

wh = AMSdz + %N(g’,dy,
63 = (—cos Ui, — Uyz)dy, 03 = (—sinU® cosU?U, + sinU>U)dy,
63 = (— cosU?U — sinU?sin U3V, )dy, 63 = (— cos UU; — U2)d, (4.2)
0 = (—sinU® cos USUE + sinUSUS)dz, 63 = (= cos USUS — sin U sin USU?) dx.

HosacraBnaa Belpaxenuss (4.2) B (4.1), 1OJyYuM CUCTEMY ypaBHEHHN s
onpeuenenuss dbynknuit MS,NS. B mpocreftmmem citydae 3Tu GYHKIHMH MOXKHO

BbIODATh B CJIEOYIOIIEM BHIE: M,s1 = sinU?sin U3, M62 = —cosU?sin U3,
M@ = cosU®, N} = nsinU?sinU3, N2 = —ncosU’sinUS, N2 = ncosUS,
n = const, a OCTaJbHblE IIOJIOXKUTb DPaBHbIMU HYJI0. Torga BbiparkeHus (4.2)

OIIPEeNEJIAIOT IIpeICTaBieHre Jlakca cucTeMbl ypaBHEeHU Jifjiepa g JIarpaHKUaHa

3 6
Ly =Y USUS+2cosUULUZ + Y US UL +
a'=4

a=1

+cosUS(ULUS + U, US) + e cos US(USUS — UUS) + 2ncos U® cos U,

roe € = —1.
ITpumep 2.(JpoitHoit KomitiekcrbIi sin-Gordon)
CucreMa ypaBHeHwil Ditjiepa ;15 JiarpaH>KHaHa,

2 4
Ly = Vleyltgzl/Q— + VI2V;/2 + Vz3Vy3tg2V7 + I/;4Vy4 +2ncosVZcos V* (n = const)
1IOJIyYeHa IIpU TOMOIIM penyKIuu ¥ Ipeobpa3oBaHuil DBakiyHza u3 cucrembr c
JarpamxuaioM I; . Ee MoxHO paccMarpmBaTh Kak "IBOWHOW KOMILJIEKCHBI Sin-
Gordon", mockoseky mnozcrasopka V! = V3 V2?2 = V* npusomur K 06bI9HOMY
koMiniekcHoMy sin-Gordon. [laHHas cucTema TakK:Ke HOIYCKaeT IIpeJICTaBJIEHUE
Jlakca Buga (4.1), rae

1 sin L2
—— (Vdz +V, dy), 6; = — 2

65 = 2
- 2
2 cos 5 2cos? L=

(@@—ﬁ@%
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1
0% = §(Vm2da: - I;JQdyL Hé (ngl' + Vsdy)
2 cos Y- 5
0% = _i(vi”dm — Vidy), 63 3(V4dx — V,'dy)
07 2c0s2 Y 2°°° y 90

= AMSdz + %Ng,dy,

MY =ML =0, Nf=NL =0,

. 2 V4 V2 V4
M2 = sinTSin =5 M = —sin7cos PR
V2 V4 V2 V4
M3 = —cos Tsin TR M@ = cos o oS5
: v? %% 1% %%
N;znsinysin?, N6—n81n—2—cos 7
V2 . V4 V2 V4
N53:ncos7sm7, Ng = T.C0S —- C0S =

Mpumep 3.(SO(p +3)/(SO(p) x SO(3)) )

Hokazasno (cM. [3]), 9T0 ¢ KaxKIbiM cuMMeTpHuecknM mpocrpancreom SO(p +
3)/(SO(p) x SO(3)) MoXHO accoIMHpOBaTL IpeiacTabienne Jlakca cucTeMb
ypaBHeH:il Jitnepa [Jig JIaTPaHKHAHA

. 1 vz oo T op—1)
Ly = guUz Uy + 0abUz Uy — 2(p = 2) (Vi Vtg> 5 + V2V) + Q, a,bzl,p—(pg )

rre () — Hekoropas riajxasi @ymknms or U, V! VZ .

Ipumep 4.(SO(p +2)/(SO(p) x SO(2)) )

Hns kaxxzoro u3 cummerpudeckux mpocrpadcTe SO(p + 2)/(SO(p) x SO(2))
cymecrsyer dyukuug QU V) rakas, aro cucrema ypasrennit Ditnepa-Jlarpatka
I AaTpaH)KHAaHA

Ly = gopUSU + awpULUL — 2(p — 2)k*V,Vy + Q (k = const)

Jlorryckaer npeacrasienue Jlakca (cm. [3]).
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SOME INVESTIGATIONS ON THE QUADRUPOLE
RADIATION OF A DOUBLE STAR

Afaf A.Sabry

Faculty of Women, Ain Shams University Cairo, Eqypt

The trajectory of a double star is obtained by applying the special theory of relativity
equations of motion, and that in the center of mass frame. Similar to the original Bohr-
Sommerfeld quantum mechanical application of the one electron atom, the excited energy
levels of the double star can be obtained. Gravitation waves are then emitted during the
passage to the ground state, when the two stars collide.

1. Introduction

The application of the general theory of relativity has already been applied to the mo-
tion of a double star, to explain the slowing of the orbital motion period. The emission
of gravitational waves is causing the Earth to slowly spiral towards the Sun, but it would
take , according to the application of general relativity 1027 years for them to collide. In
1975 Russel Hulse and Joseph Taylor [2| discovered the binary pulsar PSR 1963+16 in a
system of two neutron stars, orbiting each other with a maximum separation of only one
solar radius. The change predicted by general relativity is in excellent agreement with careful
observations by Hulse and Taylor of the orbital parameters, indicates that since 1975, the
period has shortened by only 10 seconds in 1993. They were awarded the Noble Prize for
this confirmation of the general relativity.

In the case when the pair of double stars approach each other, leading to very high
orbiting velocity, the trajectories can no longer be approximated by Kepler ellipses. Before
the collapse, the application of quantum mechanics to the system becomes quite essential.
This can be approximated by applying the Bohr-Sommerfeld quantum conditions to the tra-
jectories, similar to what happened in the beginning of the discovery of quantum mechanics.
As it was known that the Sommerfeld quantum conditions already explained roughly the
energy levels of the one electron atom, as later verified by the exact solution of Dirac rela-
tivistic equation, the present application of the relativistic Sommerfeld quantum conditions
can lead roughly to the excited energy levels of the double star.

2. Relativistic Two Body Trajectories in the Center of
Mass Frame

The momenta and energies p;, mic? (i = 1,2) of two bodies of rest masses mo;

(i =1,2), measured in a system O, where
P tp = ﬁ, (my +mg)c® = Mc?, (2.1)

P , Mc? are their total momentum and energy in the system.
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These can simply be expressed in their center of mass frame O', moving at velocity 1%
with respect to O

. P
|% i (2.2)
by the momenta and energies respectively
p,mi % —p, mhc?, (2.3)
where " ) o ) N
! M +;nj$[1’ - m027 m), = M _;n]‘e/_;, + mw’ (2.4)
p? = [MI (Mo + mo2)*[[M"? — (mo; — mo2)?). (2.5)

4]\1’2

The total momentum in the center of mass system vanishes and M'c? is the total energy
in the center of mass system, given by

M'c? = e/ M2e2 — P2, (2.6)

If m—’; \ m—é denote the particle positions in the center of mass frame, then we can express
the momenta p’, —p' in this frame by

- d;r dm
T -1 —pl = (2.7
p Vg P mo2—— dr’ (2.7)
where d’f‘( =4/dt? — GWQ) is the element of proper time. In terms of their relative position

T = ;vl - xq in their center of mass frame, we can then express

- 7402 - - moi -
= ————, th=—————f (2.8)
Moy + Mo2 Moy + Mo2
and hence .
- mopiMo2 dl”
p= (2.9)

mo1 + mog dT°

The equation of constant total energy E’' in the center of mass system is given

2 YMo1TMo2
T'I

(M" = mq = mg2)c =FE, (2.10)

where r’ = |z/| is the magnitude of z' . Using Egs. (2.9) and (2.5), we get

do’ Mo1 + Mo2 o 49
o1 T Moz 92,02 2.11)
(d'r) ( mMo1™Mo2 ) ( )

where p'? as function of M' is given by Eq. (2.5).
Let the orbital angular momentum vector in the center of mass frame be m—";?—‘ﬁn%;L,
then we can express

_Motmoz_ (2.12)

S¥

=z X
mo1 + Moz
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satisfies, according to Eq. (2.9),

moimgy d = - d -
ST T =gl x —p . (2.13
mo; + Mmoo dT v dTp ’ )

For a central force acting along Z', it follows

d

il 2.14
dTL 0 ( )

showing that the orbital angular momentum remains constant. Using polar coordinates 7', 6
in the plane of motion, we then find

r’? 9

=L 2.15
Z-L (215)

where L is the constant angular momentum per unit rest mass in the center of mass frame.
Also the left hand side of Eq. (2.11) becomes

o' dr', o485
CR Goli Y I )2, 2.16
(dr) (d'r) r (dT) ( )

Thus substituting for p'? from Eq. (2.5) into Eq. (2.11), we get for (%)2 :

i 2 2 2
', ¢ (mo1 + mo2)* . 0, L

(E/ - 4m’817n(2)2j\/1112 »M’[} - 2(m§1 + m32)]\ll2 + (771(2)1 - m(z)2) = TTQ (2~17)
Using further Eq. (2.10) to substitute M’ for
2 /
~L—, - Le [M' —mo1 — mo2 — %]a (2.18)
r YMo1Moe2 c
we get
dr'ys ¢ AM™ + BM™ — CM" + D) (2.19)
&) T g ’ |
where =
A = (mor +me2)® —mi, B =2mZ{mo +moz+ ZQ—), (2.20)
t
C =2(mo + m02)2(m(2)1 —+ m32) + m?',(mOI + Moz + 3)2‘ D = (mo1 + mo2)* (m§; ~m§,)?,
(2.21)
— (2.22)
v
Using Eg. (2.15) and noticing that from Eq. (2.18) that
— Lc?
Lo X _aw, (2.23)
r YMo1Mo2
we finally obtain
!
db__ m, M (2.24)

dM' ~  JAM®+BM?® —CM?+ D
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The polar equation of the trajectory between r', 6 is then obtained, by integrating
Eq. (2.24) to give the relation between 6 and M’

o / m, M'dM’
- VAMT Y BM? —CM2+ D’

and then using the relation between M' and ¢’ given by Eq. (2.10). The above integral
represents an elliptic integral [1], whose value depends on the roots of the fourth order
polynomial under the square root. When the four roots of the biquadratic equation are all
real, the value of the integral is given as a simple sum of elliptic integrals F(p, k) of the
first kind and TI(p,a?,k) of the third kind, where the modulus k and a? are given as
functions of the four real roots, also the angle ¢ is expressed as function of M’ and the
four roots [1]. When there are two, or four complex roots of the biquadratic equation, the
value of the integral is expressed apart from elliptic integrals of the first and third kinds, an
additional contribution depending on a logarithmic or arctangent function of an expression
depending on the values of the roots. The evaluation of the roots of the biquadratic equation
as is well known, depends on obtaining the three roots of the cubic equation

A%y3 4+ A%2Cy? — 44Dy — 4D(AC + B?) = 0. (2.26)

(2.25)

3. The Simple Case of Two Equal Masses

Instead of going through the complicated expression of the value of the integral in the
general case, the behaviour of the trajectory can simply be found by considering the special
case when the masses of the pair of stars are equal:

mo1 = Moz = Mo. (3.1)

In this simple case, as the value of the coefficient D vanishes, the value of the integral
simplifies to

AN
6= / Ty , (32)
J VAsM? + B;M' - C,
where now
' 5 ! !
A =4mi - mfﬂ B, =2m3(2mg + 22—), Cs = 16mg + m?r(2mo + 6—2)2. (3.3)
The integral can then be readily evaluated, giving (for 4, < 0)
v (M' + B,
- = ml} arccos —=— QA;) . (3.4)
o (27 + )
On using Eq. (3.3), we find
B? C, 16m} s , E" E'
= =221 (= +4mo—)] 3.5
4A§+44s 4A£ [6m0+m’y( c4 + mocz)J ( )
Further using Eq. (2.10) and Eq. (2.22), we find
B, 4m3 E'.  ym}
M+ 94, = ———————4m% — m% (27710 + C_2) + _627" . (36)
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Thus from Eq. (3.4), we find the equation of the trajectory for A; < 0

m 1 E E'
g;a;%— = m[2m0(2m0 + 'g“) + m7¢(2m0 + 22—)2 - 4777,(2))\2COS(}\G)]J (37)
Y

wherefor 0 < A < 1

and for A; > 0 we find in a similar way, for 0 < A’ < oo,

ym. 1 E' E' .
2(;2:’ = m[~2mg(2mo + 0—2) + m7¢(2m0 + Ez—)z + 4m3N2cosh(N'6)], (3.9)

where, for 0 < X < o0,
MNE = )%, (3.10)

The equation of the trajectory in polar coordinates 7/,8, as given by Eq. (3.7) and
Eq. (3.9).for A; < 0,and A, > 0, respectively, shows that the double star spiral, lowering

their distance 7’ apart, until they collide. One notices that the expression gz on the

left side of Eq. (3.7), or Eq. (3.9) is a measure of the ratio of the potential energy %ﬁ to
the total rest energy 2mqgc? of the double star. In the applications of the general theory of

relativity, this ratio is known as the gravitational parameter.

4. Application of Quantum Mechanics in the Form of
Bohr-Sommerfeld Quantum Conditions
In the case of neglecting the small deviation from a closed path during one complete

rotation of the double star, we apply the original form of the Bohr-Sommerfeld quantum
conditions in the form

L fp'wdr’ =n, A, L %pgdt? = nyA, (4.1}
27 27
where the momenta p;, , pj are given according to Eq. (2.9) and Eq. (2.15)
) mo1Mmoz dr’
y = —(— 4.2
P o +mog 7 (42)
0102 df Mo1M 02
pp=—— —1*(5) = ————L. (4.3)
v mo1 + Moz dr mo; + m02
Restricting now to the simple case, when the two masses are equal, we get
1 /M1 dr'. ., 1
— - —\dy = } — = t44
p £2 Qmo( dT)d’ 711}7, 2moL ngh, { )
where from Eq. (2.19) and Eq. (2.21)
Ay _ _C  JAME B - C (4.5)
dr’ 2mi "’ 7 ° °

SN N
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Substituting for M’ in terms of v’ from Eq. (3.6)

E'  ymo
M’ —2m0+—+w (4.6)
the expression in Eq. (4.4) for nyh becomes
cK [T dr! 2’)m E' ¥m?2
nih = / \/ 2K2 (2mo + ZZ—)T’ - 4c4K02 (m2 —4m}), (4.7)
where
2 2 E',
K* =4m§ — (2mo + c_2) . (4.8)
On using the standard integral
™ dr 1
—/{r=r){r1—71) = 5(7”1 +72) = /TiT2 (4.9)
expression in Eq. (4.7), then becomes
2
. _ 1Mo ’Yme
Using Eq. (2.22) and Eq. (4.4), one can express m., as
4
My = —cfmz (4.11)
mo?Yy

Hence the eigen values of energy E', following Eq. (4.9) and Eq. (4.11), can finally be
expressed

! 2 N2
% + omg = 2ol £ V3 — V) , (4.12)
VN + (- /aE — NP2
where the number N is given by
ymj
=10 (4.13)

2ch
For a fixed value of n, > N, the value of £ 2 +2m0 , as function of n, , starts with the value

KL
l; for n, = 0, then increases to a maximum, followed by a continuous decrease

to zero as ny — oo . The maximum value E!, of E’, as function of n; (for given ny ), is
given
4 3N?2
E!. = 2mo(~1 \/_ﬁz_m) (4.14)
N
at m; , given by

ny = M (4.15)
2¢/n% — N2
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Theory of scattering of a quantum-mechanical particle on a cosmic string is developed. S-
matrix and scattering amplitude are determined as functions of the flux and the tension of
the string. We reveal that, in the case of the nonvanishing tension, the high-frequency limit
of the differential scattering cross section does not coincide with the differential cross section
for scattering of a classical pointlike particle on a string.

1. Introduction

Usually, the effects of non-Euclidean geometry are identified with the effects which are
due to the curvature of space. It can be immediately shown that this is not the case and
there are spaces which are flat but non-Euclidean.

A simplest example is given by a twodimensional space (surface) which is obtained from a
plane by cutting a segment of a certain angular size and then sewing together the edges. The
resulting surface is the conical surface which is flat but has a singular point corresponding to
the apex of the cone. To be more precise, the intrinsic (Gauss) curvature of the conical surface
is proportional to the twodimensional delta-function placed at the apex; the coefficient of
proportionality is the deficit angle. Usual cones correspond to positive values of the deficit
angle, i.e. to the situation when a segment is deleted from the plane. But one can imagine a
situation when a segment is added to the plane; then the deficit angle is negative, and the
resulting flat surface can be denoted as a saddle-like cone. The deleted segment is bound by
the value of 27, whereas the added segment is unbounded. Thus, deficit angles for possible
conical surfaces range from —oo to 27.

It is evident that an apex of the conical surface with the positive deficit angle can play a
role of the convex lens, whereas an apex of the conical surface with the negative deficit angle
can play a role of the concave lens. Really. two parallel trajectories coming from infinity
towards the apex from different sides of it, after bypassing it, converge (and intersect) in the
case of the positive deficit angle, and diverge in the case of the negative deficit angle. This
demonstrates the non-Euclidean nature of conical surfaces. It is interesting that this item
provides a basis for understanding such physical objects as cosmic strings. In the present
paper we shall discuss peculiarities of quantum theory and its quasiclassical limit, which are
due to non-Euclidean geometry of locally flat space-times.

2. Space-time in the presence of a cosmic string

Cosmic strings are topological defects which are formed as a result of phase transitions
with spontaneous breakdown of symmetries at early stages of evolution of the universe, see,
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e.g., reviews in Refs.[1, 2]. In general, a cosmic string is characterized by two quantities: flux

® = /de\@Bs, (2.1)

core

and tension

1 —
ke / dz/gR; (2.2)
core

here the integration is over the transverse section of the core of the string, B® is the
field strength which is directed along the string axis, R is the scalar curvature, G is the
gravitational constant, and units 2 = ¢ = 1 are used. The space-time metric outside the
string core is

2 ~2 ~2 ~2
ds® =dit* — (1 —4Gp)~4dT — (1 —4Gp) r dp? —dz* = dt* —dr? —r2d ¢ —dz*, (2.3)

where

F=ry/1—4Gp. 0<p<2r, 0<¢<2n(l—4Gp). (2.4)
A surface which is transverse to the axis of the string is isometric to the surface of a cone
with a deficit angle equal to 87G . Such space-times were known a long time ago (M. Fierz,
unpublished, see footnote in Ref.[3]) and were studied in detail by Marder [4]. In the present
context, as cosmological objects and under the name of cosmic strings, they were introduced
in seminal works of Kibble [5] and Vilenkin [6]. A cosmic string resulting from a phase
transition at the scale of the grand unification of all interactions is characterized by the

values of tension
p~ (1077 = 10796 (2.5)

The nonvanishing of the string tension leads to various cosmological consequences and,
among them, to a very distinctive gravitational lensing effect. A possible observation of such
an effect has been reported recently [7], and this has revived an interest towards cosmic
strings.

The flux parameter (2.1) is nonvanishing for the so-called gauge cosmic strings, i.e.
strings corresponding to spontaneous breakdown of local symmetries. If tension vanishes
(12 =0), then a gauge cosmic string becomes a magnetic string, i.e. a tube of the magnetic
flux lines in Euclidean space. If the tube is impenetrable for quantum-mechanical charged
particles, then scattering of the latter on the magnetic string depends on flux ® periodically
with period 27e~! (e is the coupling constant — charge of the particle). This is known as
the Bohm-Aharonov effect [8], which has no analogue in classical physics, since the classical
motion of charged particles cannot be affected by the magnetic flux from the impenetrable for
the particles region. The natural question is, how the nonvanishing string tension { u # 0)
influences scattering of quantum-mechanical particles on the string. Thus, the subject of
cosmic strings, in addition to tantalizing phenomenological applications, acquires a certain
conceptual importance.

3. Quantum scattering on a cosmic string

Due to nonvanishing flux ® and tension g, the quantum scattering of a test particle
by a cosmic string is a highly nontrivial problem. It is impossible to choose a plane wave
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as the incident wave, because of the long-range nature of the interaction inherent in this
problem. A general approach to quantum scattering in the case of long-range interactions
was elaborated by Hormander [9]. This approach covers the cases of scattering on a Coulomb
center and on a magnetic string (4 = 0), but is not applicable to the case of scattering on a
cosmic string ( u 7 0). Therefore the last case needs a special consideration and a thorough
substantiation.

When the effects of the core structure of a cosmic string are neglected and the transverse
size of the core is negligible, the field strength and the scalar curvature are presented by
twodimensional delta-functions. Scattering of a quantum-mechanical particle on an idealized
(without structure) cosmic string was considered in Refs.[10, 11, 12, 13]. A general theory of
quantum-mechanical scattering on a cosmic string, permitting to take into account the effects
of the core structure, was elaborated in Ref.[14]. According to this theory, the S -matrix in
the momentum representation is

Lo _lé(k_kl) ’ 4G[L7T 1ed
S(ka(f’ak;(p)—z e {A((p ¢+1_4G“)exp 21— 4GH) +

, 4Guw ied , i ,
+A(<P”<P—ﬁE)eXP[m}}*'fs(k“k)\/ﬂf(ka90—‘}0): (3.1)

where the initial (k) and final (k') twodimensional momenta of the particle are written

[ee)
in polar variables, f(k, ¢ —¢') is the scattering amplitude, and A(p) = 5= > €™ is
n=-—00

the angular part of the twodimensional delta-function. Note that in the case of short-range
interaction one has 2A(yp — ¢') instead of the figure brackets in Eq.(3.1}. Thus, one can
see that, due to the long-range nature of interaction, even the conventional relation between
S -matrix and scattering amplitude is changed, involving now a distorted unity matrix (first
term in Eq.(3.1)) instead of the usual one, &(k — k")A(p — ') (kk')~1/2.

In view of the comparison with the Bohm-Aharonov effect [8], we shall be interested in
the situation when the string core is impenetrable for the particle. The scattering amplitude
in this case takes form:

Fks ) = folk, ¥) \/ Z expling —i(a, — |n|)7] HZ;)((ZTC>) (3.2)

where r. is the radius of the string core, J, (u) and HY (u) arethe Besseland the first-kind
Hankel functions of order v,

ed :
Qn = ln - —2——7;! (1—4Gp)™t, (3.3)
and
[, ; i i
1 [ e I8 + 29 - o ]
folk,p) = T Con -
T\ e (o0 ]

. 1 i ied
_ exp Z[[“,?J] ((‘0 - 1—4Gu) + 2(1—546'#)} 3 4)

e [ (o~ 285
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is the amplitude of scattering on an idealized (without structure) cosmic string, [[u]] is
the integer part of u. Sum over n in Eq.(3.2) describes the core structure effects. In the
low-frequency limit (k — 0) these effects die out, and the differential cross section (i. e. the
square of the absolute value of the amplitude) takes form

do 1 1 1
doo ATk | gsin? [ (p+ 2G| 2en? [4 (o - 2945 )]
Ccos [1—6qu - (2“%“ + 1) 1451;”]

: 1 (. 4G : 1 4Gurw
sin [§ (o + 7557 ) i [# (o - 2965

(3.5)

4. Differential cross section in the limit of high
frequency of scattered particle

In the high-frequency limit (k — oco) the first term in Eq.(3.2) dies out, and the differ-
ential cross section takes form

1
Y= tr(l- 4G

dyp (1 —4Gu)(p = 7 + 217)]x

RO =

cos|
=y
2
x  exp{ie®l — 2ikr, cos[%(l —4Gp)(p — 7+ 2m))}| (4.1)

where the summation is over integer ! satisfying condition

® 2Gu p 2Gu
z__TE <-Z el
o 1—acn << T T TGk

(4.2)

Note that results (3.5) and (4.1) are periodic in the value of flux & with period equal to
2me~1 . This feature is common with the scattering on a purely magnetic string (2 = 0).
The difference is that the Bohm-Aharonov differential cross section in the low frequency
limit (k¥ — 0) diverges in the forward direction, ¢ = 0, while Eq.(3.5) diverges in two
symmetric directions, p = +£4Gu(l — 4Gu)~! . The difference becomes much more crucial
in the high-frequency limit (k — oo).In the u = 0 case one gets

Z—; = %rc sin g, (4.3)
which is the cross section for scattering of a classical pointlike particle by an impenetrable
cylindrical shell of radius r. ; evidently, the dependence on fractional part of e®(27)~! dis-
appears in this limit. In the g # 0 case the dependence survives, see Eq.(4.1). In particular,
if 0 < p < (8G)7!, which is most interesting from the phenomenological point of view,
then the cross section at k£ — oo takes the following form in the region of the cosmic string




216 Proceedings of BGL-4

shadow, —fﬁ‘gp << 14—G4‘gu :
do 9 1 .
o =r.(1—-4Gp) cos[§(1 — 4G )] sin(2G pw)+

1
+ 4/sin®(2Gpum) — sinz[ﬁ(l —4Gp)y] x

1
cos {e@ + 4kr, sin[§(1 —4Gp)y) cos(2Gmr)} . (4.4)

Integrating Eq.(4.4) over the region of the shadow and the appropriate expression (which is
independent of @) over the region out of the shadow, we obtain the total cross section in
the k — oo limit:

Osot = 2rc(1 — 4Gp). (4.5)

The high-frequency limit is usually identified with the quasiclassical limit. Although this
identification is valid for the total cross section, it is found to be invalid for the differential
cross section, see Egs.(4.1) and (4.4) revealing the periodic dependence on the flux, which
is a purely quantum effect.

These results are generalized to the case of scattering of a particle with spin.
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A theory of special inconstancy, in which some fundamental physical constants such as the
fine-structure and gravitational constants may vary, is proposed in pregeometry. In the the-
ory, the alpha-G relation of a = 37/[16 In(4w/5GMZ,)] between the varying fine-structure
and gravitational constants (where My is the charged weak boson mass) is derived from
the hypothesis that both of these constants are related to the same fundamental length scale
in nature. Furthermore, it leads to the prediction of G/G = (0.4 &+ 0.4) x 10”'?yr~" from
the recent observation of &/a = (5 £ 5) X 107 "°yr~! by Webb et al., which is not only
consistent with the most precise limit of G‘/G = (=0.6 +£2.0) x 10~ *2yr~! by Thorsett but
also feasible for future experimental tests. In special inconstancy, the past and present of the
Univese are explained and the future of it is predicted, which is quite different from that in
the Einsein theory of gravitation. The contents of this talk include the following:

1. Introduction

2. Pregeometry

3. Special Inconstancy

4. Further Discussions and Future Prospects.

1. Introduction

Is a physical constant really constant? In 1937, Dirac [1] discussed possible time varia-
tion in the fundamental constants of nature. He made not only the large number hypothesis
(LNH) but also, as a consequences of the LNH, the astonishing prediction that the gravi-
tational constant G varies as a function of time. Since then, Jordan [2] and many others
[3,4] have tried to construct new theories of gravitation or general relativity in order to
accomodate such a time-varying G . Although the LNH has been inspiring many theoretical
developments and has recently led myself 5] to many new large number relations, the pre-
diction of the varying G has not yet received any experimental evidence. Recently, Thorsett
[6] has shown that measurements of the masses of young and old neutron stars in pulsar
binaries lead to the most precise limit of

G/G = (=0.6 +£2.0) x 1071 2yr~!

at the 68% confidence level.

More recently, on the other hand, Webb et al. [7] have investigated possible time variation
in the fine structure constant « by using quasar spectra over a wide range of epochs,
spanning redshifts 0.2 < z < 3.7, in the history of our Universe, and derived the remarkable
result of

&/a = (6.40 + 1.35) x 107 16yr~!
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for 0.2 < z < 3.7, which is consistent with a time-varying « . Note, however, that in 1976
Shylakhter [8] obtained the very restrictive limit of |Aa/a| < 1077 or, more precisely,

Aa/alt = (—0.2£0.8) x 1071 7yr~?

for z ~ 0.16 (but over a narrower and latest range of epochs between now and about 1.8
billion years ago) from the “Oklo natural reactor”. Very lately, Srianand et al. [9] have made
a detailed many-multiplet analysis performed on a new sample of Mg II systems observed in
high quality quasar spectra obtained using the Very Large Telescope and found a null result
of Aa/a = (—0.06 £ 0.06) x 10~° for the fractional changein « or a 3¢ constraint of

—2.5 x 1070yr~ < (Aa/alt) < +1.2 x 107 16yp—2

for 0.4 < z < 2.3, which seems to be inconsistent with the result of Webb et al. [7]. However,
a careful comparison of these different results [7-9] indicates that they are all consistent with
a time-varying a as

dfa=(5+5) x 107 yr!

for 22 <2< 3.7.

In this talk, I am going to propose a theory of special inconstancy, in which some
fundamental physical constants such as the fine-structure and gravitational constants may
vary. In the theory, the alpha-G relation of

a = 3n/[161n(47 /5G M)

(where My is the charged weak boson mass) is derived from the hypothesis that both of
a and G are related to the same fundamental length scale in nature. Furthermore, from
the above result on @, it leads to the prediction of

G/G = (0.4 4 0.4) x 107 2yr~1

which is not only consistent with the limit on G by Thorsett [6] but also feasible for future
experimental tests. I will organize this talk as follows: in Section II, I will briefly review
pregeometry in which a theory of special inconstancy is constructed. In Section III, T will
present the theory and its predictions. Finally in Section IV, I will present further discussions
and future prospects. In addition, in special inconstancy I will explain the history of our
Universe and predict the future of it, which is quite different from that in the conventional
Einstein theory of gravitation.

2. Pregeometry

Pregeometry is a theory in which Einstein’s geometrical theory of gravity in general
relativity can be derived from a more fundamental principle as an effective and approximate
theory at low energies (or at long distances). In 1967, Sakharov [10] suggested possible ap-
proximate derivation of the Einstein-Hilbert action from quantum fructuations of matter.
A decade later, we [11] demonstrated that not only Einstein’s theory of gravity in general
relativity but also the standard model of strong and electroweak interactions in quantum
chromodynamics and in the unified gauge theory can be derived as an effective and ap-
proximate theory at low energies from the more fundamental unified composite model of all
fundamental particles and forces [12].
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Let us explain what pregeometry means more explicitly in a simple model of

So = / 2/ =G L0 (g (2), Ay (), 94(5))

where g, is the space-time metric, g = det(gu.), A, is an Abelian gauge field, and ¢;
(i =1~ n) are n complex scalar fields of matter with the charge e. The fundamental
Lagrangian Lg consists of the gauge-invariant kinetic terms of the matter fields only as

Lo = g [(8, +iAu)el)(0y — idy)pi — F7!
(where F' is an arbitrary constant) but does not contain either the kinetic term of the space-
time metric or that of the gauge field so that both of g,, and A4, are auxiliary fields. The

effective action for the space-time metric and gauge field can be defined by the path-integral
over the matter fields as

esp(iSess) = [ [Ldelideleaptiso)
and it can be expressed formally as
Seps = —iTrin[(8, — 14, )v/=gg"” (O, + 1A,)] — /d4z\/’:§F_1

after the path-integration over ¢; . For small scalar curvature R and Ricci curvature tensor
R, , the effective action can be calculated to be

Seif = / d*z/=g[2A + (1/167G) R + ¢(R? + dR* Ry,) + (1/4e®) F* Fppy + ...]

with
2) = [nA%Y/8(4m)?) — F 1,
(1/167G) = nA? /24(47)?,
¢ = ninA?/240(47)?,
d=2,
and

(1/4€?) = ninA?/3(47)?,

where A and A are the cosmological constant and the momentum cut-off of the Pauli-
Villars type, respectively. Note that the arbitrary constant F'~! plays a role of counter
term so that the cosmological constant may become as small as it is observed. Note also
that the momentum cut-off A must be of order of the Planck mass G~1/2 (~ 10°GeV ).
Furthermore, not only the R? and R*“R,, terms but also the remaining terms in the
expansion of Sc¢; are practically negligible. This completes a simple demonstration that not
only the Einstein-Hilbert action of gravity but also the Maxwell action of electromagnetism
in general relativity can be derived as an effective and approximate theory at low energies
from the simple model in pregeometry, provided that there exists a natural momentum
cut-off at around the Planck mass in nature [13].
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One of the most remarkable consequences of pregeometry is the alpha-G relation, a
simple relation between the fine-structure and gravitaional constant, which can be easily
derived from the results for a and for G' by eliminating the momentum cut-off A. In our
unified quark-lepton model of all fundamental forces [14,15], the alpha-G relation is given
by [16]

a=3n/Y Qn(12x/nGm}),
2

where @Q; and m; are the charge and mass of quarks and leptons, respectively. For three
generations of quarks and leptons and their mirror- or super-partners, the alpha-G relation

simply becomes
a = 37/16In (41 /5GME,)

where My, is the charged weak boson mass. Note that this alpha-G relation is very well
satisfied by the experimental data of a = 1/137, G~1/? = 1.22 x 10'%GeV , and My =
80.4GeV .

3. Special Inconstancy

Special inconstancy is a principle in which some fundamental physical constants such as
the fine-structure and gravitational constants may vary. Let us first make it clear that in this
talk we use the natural unit system of h/2xr = ¢ =1 (where h is the Planck constant and ¢
is the speed of light in vacuum). Note, however, that it does not mean that, in discussing the
relevant possibility of the varying fine-structure and gravitational constants [17], we exclude
another intriguing possibility of the varying light velocity recently discussed by some authors
[18] since varying either h or ¢ is inevitably related to varying the fine-structure constant
a (= €2/2hc) (if the unit charge e stays constant). It simply means that we must set up
a certain reference frame on which we can discuss whether physical quantities such as the
fine-structure, gravitational, and cosmological [19] constants be really constant. Our basic
hypothesis is that both of the fine-structure and gravitational constants are related to the
more fundamental length scale of nature as in the unified (pregauge (20| and) pregeometric
[10-12] theory (or “pregaugeometry” in short) of all fundamental forces[14,15] reviewed in
the last Section.

To be more explicit, in the simple model of pregaugeometry discussed in the last Section,
assert that

(O +1A,)vV—99"" (0, — 14L)p; >a=0,
G = F < [(&L +iAu>(Pi](8V —14,)9; A,

and
= (i/2) < [l 0uips — (8,9])pil/ (0heps) >,

where <>, denotes the expectation value in the space-time with the fundamental length
scale parameter of A™!. The first equation is the usual field equation for ; while the
last two can be taken either as the “equations of motion” for g,, and A, , which can be
derived from the fundamental action Sy, or as the “fundamental field equations”, which can
reproduce the effective Einstein-Hilbert-Maxwell action S.¢; at low energies(< A) or at
long distances(>> A™1).
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The most important consequence of special inconstancy in pregaugeometry is the & — G
relation for the varying fine-structure and gravitational constant of

(G/G) + 2(Mw [Mw) = (3/16)(c/a?),

which can bederived from differentiating both hand sides of the alpha-G relation with respect
to any parameter for varying fundamental physical constants. This immediately leads to the
remarkable predictions of

G/G = (0.4+0.4) x 107 12yr~1

for constant My and )
Myw /My = (0.240.2) x 107 2yr~1

for constant G fromthe experimental data of &/a = (5£5) x 10~ ®yr=1 by Webb et al. [7].
The first prediction is not only consistent with the limit of G/G = (—0.6+ 2.0) x 10~ 12y 1
by Thorsett [6] but also feasible for future experimental tests. The second prediction, how-
ever, seems too small to be feasible for experimental tests in the near future although such
prediction for the possible varying particle masses seems extremely interesting at least the-
oretically. Note that the varying My is perfectly possible through the varying electroweak
gauge coupling constant g (which is related to the fine-structure constant in the standard
unified electroweak gauge theory of Glashow-Salam-Weinberg [21]) and/or the varying vac-
uum expectation value of the Higgs scalar v (which is related to the momentum cut-off A
in the unified composite model of the Nambu-Jona-Lasinio type for all fundamental forces
[22]) since Mw = gv/2.

4. Further Discussions and Future Prospects

In this talk, I have proposed a theory of special inconstancy in which some fundamental
physical constants such as the fine-structure and gravitational constants may vary, based on
the hypothesis that these constants are related to the fundamental length scale in nature. In
the pregaugeometric theory, I have derived the simple relation between the varying o« and
G, predicted the value of G/G from the -G relation and the experimental data on &/a,
and found that the prediction is not only consistent with the present experimental limit on
G /G but also feasible for future experimental tests.

Let us first add that in some pregaugeometric model [23] the alpha-G relation is not of
the type of a ~ 1/In(1/G) but of the type of @ ~ GM? (where M is a parameter of mass
dimension) so that the ¢ -G relation becomes

(G)G) +2(M /M) = &/a.
This type of relation predicts
G/G = (5+ 5) x 10~ Pyr~1

for constant M and
M/M = (2.5+2.5) x 107 Pyr~?

for constant G from the experimental data by Webb et al. [7]. We suspect that either one of
these predicted values for G/G and M /M seems too small to be feasible for experimental
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tests in the near future although the first prediction is consistent with the limit by Thorsett
[6].

Next, remember that in the principle of special inconstancy we do not assert that physical
constants may vary as a function of time but do that they may vary in general, depending
on any parameters including the cosmological time, temperature, etc.. What is the origin of
varying the physical constants? The answer to this question may be related to the answer
to another fundamental question: What is the origin of the fundamental length scale A~?!
in nature? It can be spontaneous breakdown of scale-invariance in the Universe, which has
been proposed by myself [5] for the last quarter century. It can be the natural, dynamical,
automatic, a priori, but somewhat “wishful-thinking ” cut-off at around the Planck length
G'Y? where gravity would become as strong as electromagnetism, which was suggested by
Landau (13] in 1955. It can also be due to the Kaluza-Klein extra dimension [24], which is
supposed to be compactified at an extremely small length scale of the order of G'/2 or at a
relatively large length scale of the order of 1/TeV recently emphasized by Arkani-Hamed
et al. [25). It seems, however, the most natural and likely that the origin of the fundamental
length comes from the substructure of fundamental particles including quarks, leptons, gauge
bosons, Higgs scalars, etc. [26,27]. In the unified composite model of all fundamental particles
and forces [27], the fundamental energy scale A in pregaugeometry can be related to some
even more fundamental parameters such as the masses of subquarks, the more fundamental
constituents of quarks and leptons, and the energy scale in quantum subchromodynamics,
the more fundamental dynamics confining subquarks into a quark or a lepton. In either way,
the fundamental length scale A~! can be idetified with the size of quarks and leptons, the
fundamental particles.

In pregeometric special inconstancy, let us briefly explain the past and present of the
Universe and predict the future of it, which may differ from that in the conventional Ein-
stein theory of gravitation [28]. The history of our Universe goes as follows: Long, long
time ago, there was no physical space-time, in which the space-time metric was finite and
non-vanishing so that the distance was well defined, but the only matter “existed” in the
mathematical space-time. Suddenly, there appeared the big bang of our Universe as a phase
transition of the space-time from the pregeometric phase to the geometric one due to quan-
tum fluctuations of matter, as suggested by us [29] in the early nineteen eighties, and our
Universe had happened to be either flat or open. Then, not only all fundamental particles
but also all fundamental forces between them were created and they started obeying the ef-
fective theory of all fundamental particles and forces including the Einstein theory of gravity
with the ncen-vanishing and varying cosmological constant. In the eariest era during which
the matter density had been extremely small, our Universe had been expanding almost ex-
ponentially. It had been the “almost inflationary Universe”. In the next era of the radiation
dominated Universe, our Universe was expanding less fast. Furthermore, in the last era of
the matter dominated Universe, our Universe has still been expanding even faster. This
history of our Universe is well simulated by a simple model of (Q,,,Qx,—¢) = (0,1,1),
(1/3,2/3,1/3), or (1/3,2/3,1/2) for the early inflationary era, for the radiation domi-
nated era, or for the matter dominated era, respectively, where €,,, ), and ¢ are the
“pressureless-matter-density”, “scaled cosmological constant”, and deceleration parameter of
the Universe, respectively. Note that there must be another “phase transition” in which €
changed from 1 to 2/3 in between the early inflationary era and the radiation dominated
era. Concerning the cosmological constant, I have been most impressed by the recent obser-
vation of the “farthest supernova ever seen” by Hubble Space Telescope [30]. “This supernova
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shows us the universe is behaving like a driver who slows down approaching a red stoplight
and then hits the accelerator when the light turns green.” Note that this behavior of the
Universe is what our model simulates. Note also that our model of the Universe is consistent
with the recent measurement of the cosmological mass density from clustering in the Two-
Degree-Field Galaxy Redshift Survey [31] which strongly favors a low density Universe with
QU =2 0.3. Very lately, The CBI Collaboration {32] has found Q,, = 0.64+0.11/-0.14 and
Qm + Q5 =099+ 0.12. More lately, the Wilkinson Microwave Anisotropy Probe (WMAP)
team [33] has found 1) the first generation of stars to shine in the Universe first ignited only
200 million years after the big bang, 2) the age of the Universe is 13.7 £ 0.2 years old, and
3) 0, =0.27+£0.04 and Q) =0.73+0.04.

The future of the Universe in our special inconstant picture can be quite different from
that expected in the Einstein-Friedmann picture: 1) Since the cosmological constant may
vary in special inconstancy, the space-time of our Universe which is almost flat and expanding
faster and faster may not continue to be flat and accelerating forever. Our Universe may
even encounter a “topological phase transition”, which was first discussed by Wheeler [34] in
1959, from the open Universe to the closed one. 2) If the gravitational constant increases, the
expansion of the space-time may not contitue forever. The Universe may well stop expanding,
start contracting, and even be bouncing forever. If G decreases, it will be more accelerated
ever. 3) If the fine-structure constant (and/or other fundamental coupling constants such as
the strong and weak coupling constants) varies, our Universe may encounter an “obsolete
phase transition” from the matter-dominated Universe to the radiation-dominated one. In
short, we can expect anything about the future of our Universe or, in other words, we can
predict nothing definite on the destiny of our Universe.

In conclusion, let us point out that not only continuous physical constants such as o and
G but also discrete physical numbers such as the number of the space-time dimensions n ,
the number of quark colors NV, , the number of quark-lepton generations N, , etc. may vary.
In fact, an astonishing “dimensional phase transition”, which was discussed by myself [35]
about two decades ago, may be possible in the history of our Universe. If n is related to N,
as in the “space-color corespondence”, which was proposed by myself about three decades ago
{36], both of these fundamental physical natural numbers must vary simultaneously. Before
concluding this talk, let me ask the following question: Are no constants of nature constant?
After all, it may be that nothing is constant or permanent in the Unverse as emphasized by
the Greek and Indian philosophers about two and a half millennia ago!
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IV-th International Conference
“Non-Euclidean geometry in modern physics and mathematics”
Nizhny Novgorod, September 7-11, 2004

Pexrenne
IV Mexnynapoanoii kondepenunu «HeeBkiinaoBa reomeTpusi B

coBpeMeHHOI pu3nke 1 MmaTtemaTuke» (BGL-4)
Huxaunit HoBropox, 7 — 11 cents6ps 2004 r.

1. 12 deBpans 2006 roga ucnonaHutes 150 neT co AHA CMEPTH BBIAAIOILETOCs PYCCKOTO
Y4EHOro, OJHOIO U3 IIepBOOTKpbIBaTeNed HeeBKJINAOBOH reomerpun  Hukouas
VBaHoBHya JloGaueBckoro. VyactHukd IV MexaysapoaHoli  KoHQepeHUMH
«HeeBxiiumoBa reoMeTpHss B COBpeMEHHOH (H3MKe M MaTeMaTHKe» CYHUTaIOT
HeoOxoanMbIM yBekoBeueHye naMatu H.k1. JlobaueBckoro Ha ero pogwse B r. HivkHem
Hosropogae.

B cBs3u ¢ BBIIEH3I0KEHHBIM YdacTHUKH [V MextyHaponHo# KoHdepeHIMH
«HeeBKJIHIOBa reoMeTpHs B COBpeMEHHOH H3HKE H MaTEeMaTHKE» IPOCAT PEeKTOpaT
Hwxeropoackoro rocyzapcTeeHHoro yHueepcurera uMm. H.M. Jlobauesckoro
BO300HOBHTB yCHJIMS, HallpaBJIeHHble Ha yBekobeueHue namatye H.U. JlobGauesckoro B
Hwkuem Hosropoge, B 4acTHOCTH, BHOBb OOpaTUTBCA B MECTHbIE OpPraHbl BJIAaCTH C
HHULIMAaTHBON 00 ycraHoBke B HipkHem Hosropoie B 2006 romy mamstHuka H.H.
Jlo6aueBckoMy Ha MecTe [IoMa, I'ie oH ponwics 1 mexabps 1792 rona.

CrpaBka: ¢ MHHLMaTHBOH 006 yBekoBeueHMH namsatu H.M. Jlobauesckoro B
Huwxuem HoBropome ©Oonee momyBeka HasaJ  BBICTYN — akafeMHK A.A.
AdapoHoB. B pe3ynbraTe ero nesaTelbHOCTH B 3TOM HampaBieHud B 1956 r. (k crosieTHro
co aat cmepru H.M. JlobaueBckoro) HikeropoackoMy rocyaapcTBEHHOMY
yHHUBepcHuTeTy Obino mpucBoeHo ums H.M. JloGaueBckoro, Ho BOIpOC ¢ YCTaHOBKOH
NMaMATHMKA TaK ¥ OCTaeTcs HepeuieHHbIM. B HacTodiliee BpeMs Ha MecTe AoMa, rie
ponwics H.M. JlobaueBckuil (mepeceuenne ynun AnekceeBckod M OKTsaOpbCckoH, B
HCTOPHYECKOM ileHTpe ropoja, Hezaneko oT Kpemiis) QyHKUHOHHPYET BelLleBOH phIHOK,
TEPPUTOPHUS ApXUTEKTYPHO HeOIaroyCcTpoeHHa.

2. IIposecty cremyromyro, V MexayHapondyio koHbepeHuuio «HeeBkinposa
reoMeTpus B COBpeMeHHOH ¢m3uke u MateMaTHke» (BGL-5), B 2006 rony B MuHcke,
Pecny6inka benapyce.

3am. npedcedamenst Opexomumema
Kongpepenyuu BG1.-4 JIJI. Enxosckuil

Yyenwiii cexpemape Opexomumema
Kouneepenyuu BGL-4 M. Ilonomoeckuii

Hixauit Horopoz, 11 cents6ps 2004 r.
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