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Editorial Foreword 

Non-Euclidean Geometry in Modern Physics and Mathematics is a series 
of biennial conferences, initiated by the Bogolyubov Institute for Theoretical 
Physics of the National Academy of Science Ukraine. Its shorthand subtitle is 
B GL, from the abbreviation of the names (in alphabetic order) - Bolyai, Gauss, 
Lobachevskij - of the founders of the new geometry. 

The first conference of this series was held in Uzhgorod (Ukraine) in 1997, 
the second one - in Nyiregyhi°za (Hungary), the third was scheduled such as to 
match the 200-th anniversary of Ja'nos Bolyai, and was held in Targu-Mures 
(Marosvi'sa'rhely) (Rumania) - hometown of the Bolyai family. The latest one, 
B GL-4 (see: http://www.unn.ru/bgl4 ), was held between September 7 and 11, 
2004 in Nizhny Novgorod - hometown of Nikolai Ivanovich Lobachevsky. 

The present Proceedings contain contributions to BGL-4 that arrived 
before the dead-line, November 15. To speed up the publication, we minimized 
the editorial interference to the authors' originals. 

The subject of the conference and the contributions, traditionally, can be 
grouped in three categories: history of the non-Euclidean geometry, its 
mathematical and physical applications. We thank the participants for their 
contributions. 

\Ve acknowledge the help and support of the institutions and people 
involved in the organization of BGL-4, namely the Nizhny Novgorod 
Lobachevsky University, the Bogolyubov Institute for Theoretical Physics, 
Hungarian Academy of Sciences and, in particular, permanent member of our 
Organizing Committee Academician Istvan Lovas. We gratefully acknowledge 
the support by the Russian Foundation of Fundamental Researches (grant 04-01-
10107-r) and the firm "TSS" (President V.B. Kosmachev). 

The next conference, B GL-5, will be held in Minsk, Byelorussia in 2006. 
Proposals, applications etc. should be sent to the principle organizer of B GL-5 
Professor Yurii Andreevich Kurochkin: 

yukuroch @ dragon.bas-net.by 
and/or to jenk @bitp.kiev.ua , polot @ uic.nnov.ru. 
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SCIENTIFIC PROGRAM 
of the IV International Conference 

"Non-Euclidean Geometry in Modern Physics 
and Mathematics'' 

September, 7, Tuesday 
10:00 - 10:30 Opening of the Conference (R.G. Strongin, Rector of the 
Lobachevskiy Nizhny Novgorod University; P. T. Nagy, Debrecen, 
Hungary; L.L. Jenkovszky, Kiev, Ukraine) 

10:30- 11:10 H. Terazawa (Tokyo, Japan). Special Non-Constancy in 

Pre geometry 

11:15 -11:55 P. T. Nagy (Debrecen, Hungary). Riemannian Heisenberg 
Manifolds. 

12:30- 13:10 G.M. Polotovskiy (Nizhny Novgorod, Russia). How did 
Lobachevsky's biography study. 

15:00- 15:40 N.I. Zhukova (Nizhny Novgorod, Russia) . B asic 
automorphisms of Cartan foliations and Cartan orbifolds. 
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15:45 - 16:15 Yu.A. Kurochkin (Minsk, Belarus). Some pecularities of 
the scattering problem in the Lobachevsky space. 

16:15 - 16:45 V. Magas (Kiev, Ukraine). Continuation of the dual 
amplitude with Mandelstam analyticity off mass shell. 

17: 15 -17:35 A.V. Bagaev, N.I. Zhukova (Nizhny Novgorod, Russia). 
Influence of curvature onto structure and the isometry 
group of Riemannian orbifolds. 

17:35 -17:55 O.N. Pakhareva (Nizhny Novgorod, Russia).  Lax 
representation of nonlinear sigma-models with reducible 
metrics. 

17:55-18:15 L.L. Jenkovszky (Kiev, Ukraine). Euclidean parallels in 
perspective 
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September, 8, Wednesday 

09:00 - 09:40 D.E. Burlankov (Nizhny Novgorod, Russia). The curved 
space dynamics in the theory of gravity. 

09:45 - 10:25 Yu.A. Sitenko (Kiev, Ukraine). Non-Euclidean geometry in 
quantum field theory. 

10:30- 11:00 N.Z. Iorgov (Kiev, Ukraine). Quantum Toda chain with 
boundary interaction. 

11 :30 -12:00 V.V. Koryukin (Yoshkar-Ola, Russia). The differential 
geometry and the condensed description of Universe. 

12:00- 12:30 V.V. Kocharovskiy, V. Yu. Martyanov (Nizhny 
Novgorod, Russia). Wave-mixing schemes revealing QED 
vacuum nonlinearity. 

September, 9, Thursday 

09:00 - 09:40 Yu.G. Rudoy, A.D. Sukhanov (Moscow, Russia) .  
Geometrical ideas in  statistical thermodynamics. 

09:45 - 10:25 V.Z. Grines (Nizhny Novgorod, Russia). On interrelation 
between properties of dynamical systems and foliations on 
surfaces of negative curvature and geodesic laminations. 

10:30 - 11: 10 A.V. Borisov (Izhevsk, Russia). The 2- and 3-bodies 
problem in spaces of constant curvature. 

11 :40 - 12: 10 I.S. Mamaev (Izhevsk, Russia) .  Restricted 2-bodies 
problem in spaces of constant curvature. 

12: 10 - 12:30 A. Sabry (Cairo, Egypt). Some investigations on the 
quadrupole radiation of a double star. 

12:30- 12:50 O.S. Germanov (Nizhny Novgorod, Russia) .  The first 
integrals of geodesics. 

12:50- 13:20 P. Akhmetiev (Moscow, Russia).  An integral formula for 
a higher analog of the linking number of divergent free 
vector fields. 



15:00-15:40 L.M. Lerman (Nizhny Novgorod, Russia). Symplectic 
geometry problems inspired by Hamiltonian dynamics. 

15:45 - 16: 15 V.D. Gershun (Kharkov, Ukraine). Nonlocal brackets and 
integrable models. 
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16: 15 - 16:35 Z. Ka'sa (Cluj-Napoca, Romania). The cult of Janos Bolyai 
in Romania. 

17:05 - 17:35 T. Barbot (France). Globally hyperbolic spacetimes with 
constant curvature. 

17:35 - 17:55 R. Lovas (Debrecen, Hungary). Affine and projective vector 
fields on spray manifolds. 

17:55- 18:15 R. Ol�h-G�l (Cluj, Romania). Lobachevsky in Janos 
Bolyai manuscript, Geodesics on pseudosphere. 

September, 10, Friday 

09:00 - 09:40 M. I. Kuznetsov (Nizhny Novgorod, Russia). Geometrical 
structures in the theory of simple modular Lie algebras . 

09:45 -10:25 G.M. Polotovskiy (Nizhny Novgorod, Russia). What do we 
know about the topology of plane real algebraic curves? 

10:30 - 11:00 N.G. Fadeev (Dubna, Russia). Physics beyond 
Lobachevskiy' s parallel lines. 

11:00 -11:20 D.E.Burlankov (Nizhny Novgorod, Russia). Inertial 
systems in the Lobachevskiy Space. 

11:45 -12:25 E. I. Yakovlev (Nizhny Novgorod, Russia). Some 
geometrical and topological methods in dynamics of 
systems with gyroscopic forces. 

12:30-13:00 A.V. Kukushkin (Nizhny Novgorod, Russia) .  Group theory 
approach to the problem of space-time's dimension: post­
Maxwellian and post-Einsteinian effects of 5-dimensional 
group (longitudinal waves of gravitation). 
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USING THE LOBACHEVSKY PLANE TO STUDY 
SURFACE FLOWS, FOLIATIONS AND 2-WEBS 

S.Kh.Aranson, V.Z.Grines, E.V.Zhuzhoma 

San Diego, USA, 

Agriculture Academy of Nizhny Novgorod, 

Nizhny Novgorod State Technical University 

The paper is devoted to exposition of results connected with using Lobachevsky plane to 

study flows, foliations and 2 -webs on closed oriented surface of genus p ;::: 1 . In particular 

we describe a complete classification of such objects in terms of asymptotic directions of 

curves on the universal covering of surface (which is Lobachevsky plain) and in terms of 

special geodesic laminations � frameworks. 

1 .  Introduction 

The idea to use the Lobachevsky geometry rises to classical works of G. Hedlund 
[28] and M. Morse [34] who studied geodesics on surfaces of negative curvature. 
J. Nilsen [35], [36] applied the Lobachevsky plane and its absolute to give the 
homotopic classification of homeomorphisms of compact surfaces with negative Euler 
characteristic. The using of the Lobachevsky plane is based on the fact that this 
plane is a universal covering space for surfaces of negative Euler characteristic. This 
surfaces endowed with the metric induced by the metric of the Lobachevsky plane 
and covering maps is called hyperbolic. 

To be precise, a hyperbolic surface M2 = Jvf is a Riemann surface whose universal 
covering space is the Lobachevsky plane, which we'll consider as the unit disk .6.. = 
{z E C : lzl < 1} endowed with the Poincare metric of the constant curvature 
-1. The circle S00 = 8.6... = (lzl = 1 )  is called a circle at infinity or absolute. To 
simplify matters, below we'll consider a closed orientable hyperbolic surface Jvl2 • It is 
known that given such M2, there exists a Fuchsian group r of orientation-preserving 
isometries acting freely on .6... such that .6.../r � 1vf2 . The natural projection n : 
.6... -+ .6../r is a universal covering map which induces a Riemann structure on JvI2. 
Geodesics of .6... are the circular arcs orthogonal to 800. We suppose that any geodesic 
is complete and endpoints of geodesics belong to 500 . 

The idea to study two-dimensional dynamical systems and surface foliations with 
the use of nonlocal asymptotic properties of orbits and leaves is due to /;�·. Weil and 
D.V. Anosov (see the historical comments in [ 1] - [6], [5] [ 14], [37]). In the 1960s, 
D.V. Anosov put forth the concept that the topological key to the n-onlocal theory 
of dynamical systems and foliations on M2 is the study of the arrangement of 
"infinite11curves without self-intersections (i .e .  simple) on Jv12 and of the asymptotic 
behavior of lifts of these curves to the universal covering plane .6.. with the use of 
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the absolute S00 of this plane. Especially this approaching to study two-dimensional 
dynamical systems turned up effective for dynamical systems with nontrivially 
recurrent (in sense, chaotic) motions and nontrivially recurrent invariant manifolds 
(the most known of such dynamical systems are pseudo-Anosov homeomorphisms,  
and A -diffeomorphisms with nontrivial attrctors and repellers) ,  and foliations with 
nontrivially recurrent leaves, see [8] - [12], [23] - [27] . Such approach sometimes is 
called the Anosov-Weil's theory. The goal of this paper is a review of some aspects of 
this theory, which generally considers asymptotic properties of simple curves lifted 
to an universal covering, and their "deviation"from the lines of constant geodesic 
curvature that have the same asymptotic direction. 

It becomes clear that pure geometric methods allow to obtain a significant 
"topological"information about surface dynamical systems with nontrivially recurrent 
invariant manifolds, and foliations (in particular, about flows) with nontrivially 
recurrent leaves (resp. ,  trajectories) on the hyperbolic surfaces .  This information is 
hidden in the special geodesic laminations, so-called geodesic frameworks, built upon 
such dynamical systems and foliations . Geodesics constituting these laminations 
define the asymptotic directions which the invariant manifolds or leaves of a given 
dynamical system or foliation can have. It turns oat that geometric properties of such 
a lamination encode the information on a topological structure of surface dynamical 
system and foliation. 

Let us give a formal definition of asymptotic direction for a curve which, on 
the side, explains how geodesics appear . Let l = {l(t), t � O} be a semi-infinite 
continuous curve without self-intersections on ]\/[, and let I be its lifting to fl . \iVe 
assume that l endowed with an injective parametrization [O; oc·) --t l, t --t l(t). 
Suppose that I tends to precisely one point <Y of the absolute 800 as t --t oo in 
the Euclidean metric on the closed disk fl U S00 . In this case, we shall say that 
the curve I has an asymptotic direction determined by the point O' (we also shall 
sometimes say that l has an asymptotic direction), and the point O' is reached by 
the curve I. Now let l = {l(t), t E IR} be an infinite continuous curve without self­
intersections on NI , and let I be its lifting to fl . Here we assume that l endowed 
with an injective parametrization (-oo; +oo) --t l, t --t l(t). Suppose that I has 
the asymptotic directions determined by the points J+ and J- as t --t +oo and 
t --t -oo respectively. If <Y+ =I <Y-, there exists a geodesic g(l) with the ideal 
endpoints a+ , <Y- oriented from O'- to a+ . This geodesic g(l) is said to be 
coasymptotic for I. The geodesic 7r(?J(l)) = g(l) i s  said to be coasymptotic for l . It 
can be shown that g(Z) has no transversal self-intersections. Hence the topological 
closure of g(l) is a geodesic lamination [21 ] .  

Aranson and Grines [9 ]  and Markley [31] was first who fruitfully applied 
properties of the Lobachevsky geometry to prove that a nontrivially recurrent 
trajectory l of any flow on M2 has a coasymptotic geodesic. As a consequence, for 
such flow one can construct a special geodesic lamination. This geodesic lamination 
contains the most part of information about a global topological structure of the 
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quasiminimal set clos l . Levitt [29] used special geodesic laminations to get the 
Whitehead classification of surface foliations. 

The main goal of this paper is to represent many old results on surface foliations 
and flows from a new point of view based on special geodesic laminations , so-called 
geodesic frameworks. The most results we revisit here belong to the authors, and 
almost all of them are reformulated in a form different from original one. We suggest 
that this representation from the common view point of purely geometrical nature 
opens new investigations in the theory of surface foliations and flows. 

Research partially supported by CNRS (France) and RFFI-02-01-00098 (Russia) . 
Most of topics of this survey have been discussed with D. V. Anosov, V. Kaimanovich. 
F .  Laudenbach. V .  Medvedev and A.  Zorich. It is our great pleasure to  thank them 
for their efficient help and assistance. 

2. Main definitions 

Rational and irrational points. As we mentioned above, .6./I' � NI2 where 
r is a Fuchsian group of orientation-preserving isometries acting freely on .6.. The 
group r is isomorphic to the fundamental group of A12 . Every isometry of r can 
be extended to a homeomorphism of the closed disk .6. U 800 . Since lv12 is a closed 
orientable surface, we have that every isometry �/ E I' is a hyperbolic transformation 
having two fixed points 1+, I- E 800. A point a- E B00 is called rational if a- =  I± 
for some 1 E I' , 1 j id . Any point of the set 

Boo - LJ {r+, 1-} 
/Er 

is called irrational. 

Geodesic laminations. Recall that a geodesic lamination on a surface Jvl is 
a fol iation of a closed subset of M by geodesics with no self-intersections . Another 
words, a geodesic lamination is a nonempty collection of mutually disjoint simple 
geodesics the union of whose is a closed subset of M . Denote by L the set of geodesic 
laminations of Jvf . Any union of simple pairwise disjoint closed geodesics forms a 
trivial geodesic lamination. Let us denote the family of trivial geodesic laminations 
by Atriv . A lamination is said to be nontrivial if it consists of non-closed geodesics . 
A lamination is minimal if it contains no proper sub-laminations. A lamination G 
on A1 is said to be irreducible if any closed geodesic on 1\II intersects G . 

Let G be a geodesic lamination on A1 . Consider an orientation on the geodesics 
from G . This orientation is said to be compatible if, for any geodesic l E G and 
any point rn E l , there exists a transversal segment I; through m endowed with 
a normal orientation such that the intersection indices of all geodesics from G 
(intersecting I;) with I; are equal. A geodesic lamination is called orientable if 
its geodesics admit a compatible orientation. 
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We use A0r ( Anon ) t o  denote the set of nontrivial minimal orientable 
(respectively, non-orientable) geodesic laminations on M. The families Aar and 
Anon form the set 

A= Aor U Anon 

of nontrivial minimal geodesic laminations on 1'v1 . Every G E A consists of 
nontrivially recurrent geodesics (see definition below) with irrational asymptotic 
directions and any geodesic from G is dense in G . 

vVe distinguish the subset Airr c A of irreducible geodesic laminations and call 
every G E A irr irrational geodesic lamination. 

Let G be a geodesic lamination on M. Clearly, the preimage r.-1(G) = G is a 
geodesic lamination on b. . Denote by G ( oo) C 800 the set of points of the absolute 
reached by geodesics from the lamination G . In other words, G ( oo) is the set of 
ideal endpoints of all geodesics from G . 

Let the quotient 
GAf = Homeo (M)/Homeoo (M) 

be generalized mapping class group, where H omeo ( IVI) is the group of 
homeomorphisms of 1'v1 and H omeoo (NI) is the subgroup of homeomorphisms 
homotopic to the identity. It is known that any T E  GJ\,f induces a one-to-one map 
T* : £----+ £ (see, for example, [20], [21] . Given ,\ E £, the family 

is called an orbit of the geodesic lamination >.. . 
Surface flows. Let ft be a fl.ow on Jvf meaning that ft : M x R ----+ J.'vl 

is a one-parameter group of homeomorphisms r of ]1,;f. Denote by l(m) = l a 
trajectory passing through a point m E M and by f ix(Jf) a set of all fixed points 
of P ( m is a fixed point if l(m) = m. 

Let w(a)(l) be an w(a)-limit set of l. A trajectory is w(a) -recurrent if it is 
contained in its w (a) -limit set . A trajectory l is rewrrent if it is both w- and 
u -recurrent . A recurrent trajectory is nontrivial if it is neither a fixed point nor 
a periodic trajectory. The topological closure of nontrivially recurrent trajectory is 
called a qnasiminimal set. Due to the classical Maier's paper [30], any nontrivially 
recurrent trajectory belonging to a quasirninirnal set Q is dense in Q (see the 
modern proof in [7] and some generalizations in [ 18]). 

According to [22], a fl.ow gt is called highly transitive if every one-dimensional 
trajectory of gt is dense in M . A highly transitive fl.ow is irrational if it has no fake 
saddles. 

Surface foliations. By a folfotion F with a set of singularities S on a surface 
M we mean a decomposition of lvf - S into pairwise disjoint curves la (without self­
intersections) locally homeomorphic to a family of parallel straight lines . Any curve 
lry is called a leaf. Any point of S is called a singularity. Let l be a nonclosed 
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leaf of a foliation F. Any point x E l, divides l into two semileaves, say z+ 
and z- . A semileaf zU is called nontrivially recurrent if its intrinsic topology does 
not coincide with the induced topology of zU from the manifold M. A leaf l is 
said to be nontrivially recurrent if both its semileaves are nontrivially recurrent . 
The topological closure of a nontrivially recurrent semileaf is called a quasiminimal 
set. The definitions of highly transitive and irrational foliations are similar to the 
corresponding definitions for flows . 

Geodesic frameworks of quasiminirnal sets. We give the definition of a 
geodesic framework for a quasiminimal set of a flow (for a foliation, the construction 
is similar) . Let Q be a quasiminimal set of a flow ff and let l be a non trivially 
recurrent trajectory that is dense in Q . Aranson and Grines [9] proved that the 
both positive and negative semitrajectories of l have asymptotic directions and 
this directions are different (i .e. a(I) i= w(l) ) .  We give the sketch of proof of this 
fundamental result to demonstrate the using of the Lobachevsky geometry. Since l 
is a nontrivially recurrent trajectory, there exists a simple closed transversal C such 
that l n C f. 0 and l intersects C infinitely many times. Then I intersects the 
sequence of curves C)i, . . .  , Cn, . . .  E 1r-1(C) as t----+ +oo. Since the group r is 
discontinuous , the properties of the Lobachevsky plane b. imply that the topological 
limit of the sequence Cn is a unique point , say O", of the absolute S=. Hence, 
w(Z) = (J" .  Similarly, a(l) E s=. Since c is a transversal, a(I) i= w(Z). 

Hence there is the coasymptotic geodesic g(l). One can prove that g(l) has no 
self-intersections. Therefore, the topological closure clos[g(l)] of g(l) is a geodesic 
lamination (21] . This geodesic lamination is independent on the choice of l . So the 
following definition is well defined. The geodesic lamination 

clos[g(l)] � G(Q) 
is called a geodesic framework of Q .  One can prove that G(Q) is a minimal oriented 
geodesic lamination consisting of the nontrivially recurrent geodesics each being 
dense in G( Q) . 

If ft is transitive, then Q = M. In this case, G(l'vf) �f G(jl) is called a 
geodesic framework of ft . If ft is highly transitive, then G( Q) is an irrational 
geodesic lamination. 

In general, a geodesic framework of flow is a topological closure of union of all 
coasymptotic geodesics for trajectories and genealized trajectories (union of saddle 
fixed points and trajectories that tend to these fixed points) . One can prove that a 
geodesic framework is always a geodesic lamination. 

2-web (F1,F2) on a surface. 2-web (F1,F2) on surface is a pair of 
foliations F1 , F2 such that they have a common singular set and are topologically 
transversal at all non-singular points. The web theory is a classical area of geometry 
and is mainly devoted to solving local problems . However, 2-webs also naturally 
appear in the theory of dynamical systems on surfaces as pairs of stable and 

,. ___ ___J 
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unstable foliations of pseudo-Anosov homeomorphisms. The topological equivalence 
of these webs is clearly a necessary condition for topological conjugacy of these 
diffeomorphisms and homeomorphisms. 2 -web is irrational if it consists of a pair 
of irrational foliations .  Two 2 -webs (F1, F2) and (F{, F�) on M are topologically 
equivalent if there is a homeomorphism f : A1 ----> M which maps foliations Fi , 
i = 1, 2 , to the corresponding foliations Ff . 

3. Topological classification 

foliations and 2-webs 

of irrational flows, 

Recall that two flows Ji and f� on a surface M are topologically equivalent 
if there exists a homeomorphism h of lv1 which sends the trajectories of ff 
into the trajectories of f� . It is impossible to classify all surface flows. But if we 
restrict ourselves to the special classes this problem is manageable. In general, the 
classification assumes the following (independent) steps. 

1. Find a constructive topological invariant which takes the same values on the 
topologically equivalent flows. 

2. Describe all topological invariants which are admissible, i.e. may be realized in 
the chosen class of flows. 

3. Find a standard representative m each equivalence class, i .e .  given any 
admissible invariant , one constructs a fl.ow whose invariant is the admissible 
one. 

An invariant is called complete if it takes the same value if and only if two flows 
are topologically equivalent. The 'if' part only gives a relative invariant of flow. 

Invariants fall into three major classes: homology (or cohomology) , homotopy 
and combinatorial. Poincare rotation number is most familiar, which carries an 
interesting arithmetic information, being at the same time homology and homotopy 
invariant . Combinatorial invariants (Peixoto and Conley-Lyapunov graphs) are good 
for description of flows without nontrivially recurrent trajectories . Homology and 
homotopy invariants (fundamental class of Katok and homotopy rotation class of 
Aranson-Grines) are convenient for description of flows with nontrivially recurrent 
trajectories. A homotopy invariant that is most related to the Riemann structure 
of surface is a geodesic framework. In terms of the geodesic frameworks we can 
reformulate the Aranson-Grines 's [9] classification of irrational flows as follows. 

TeopeMa 3.1. Let Ji, f� be two irrational flows on a closed orientable 
hyperbolic S'urface M . Then ff , f� are topologically equivalent via a 
homeomorphism M ----> M homotopic to identity if and only if their geodesic 
frameworks coincide, G(fi) = G(f�) . 
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TeopeMa 3.2. Let ft be an irrational flow on a closed orientable hyperbolic 
surface lvl. Then its geodesic framework G(ft) is an irrational orientable geodesic 
lamination, G(Jf) E A0r n Airr. 

TeopeMa 3.3. Given any irrational orientable geodesic lamination G on a 
closed orientable hyperbolic surface M, there is an irrational flow p on M such 
that G(ft ) = G. 

It follows from these theorems and Nielsen theory [35], [36] that an irrational 
orientable geodesic framework is a complete invariant for irrational flows (up to the 
action of the generalized mapping class group G A1). Thus an irrational orientable 
geodesic framework is similar to the Poincare rotation number. Below, we'll see that 
this similarity keeps for perturbations of a flow. 

Remark that the same results is true for closed non-orientable surfaces of genus 
� 4 [16] . 

The theorems that are similar to Theorems 3 . 1 -3 .3  take place for irrational 
foliations but one omits the orientability of geodesic framework. 

TeopeMa 3.4. Let F1, F2 be two irrational foliations on a closed 
orientable hyperbolic sv.rface 1\.1. Then F1 , F2 are topologically equivalent via 
a homeomorphism 11.1 -+ 1'v[ homotopic to identity ·if and only if their geodesic 
frameworks coincide, G(F1) = G(F2) . 

TeopeMa 3.5. Let F be an irrational foliation on a closed orientable hyperbolic 
surface 11.1. Then its geodesic framework G(F) is an irrational geodesic lamination, 
G(F) E Airr. 

TeopeMa 3.6. Given any irrational geodesic lamination G on a c losed 
orientable hyperbolic surface 111, there is an irrational foliation F on M such 
that G(F) = G. 

Thus, an orbit of irrational orientable geodesic framework is a complete invariant 
for irrational foliations. Let us consider the Aranson-Grines [10] classification of 
minimal non-trivial sets. 

A minimal set of a flow is called non-trivial (exceptional) if it is neither a fixed 
point, nor a closed trajectory, nor the whole surface M . An exceptional minimal 
set is nowhere dense and consists of continuum nontrivially recurrent trajectories, 
each being dense in the minimal set. Moreover, an exceptional minimal set is locally 
homeomorphic to the product of the Cantor set and a segment. Two minimal sets 
N1 , N2 of the flows Ji , f� respectively are topologically equivalent if there exists a 
homeomorphism cp : lvl -+ M such that cp (N1) = N2 and cp maps the trajectories 
of N1 onto the trajectories of N2. 

Let N be an exceptional minimal set . A pair of trajectories Zi , l2 C N is called 
special if there exists a simply connected component D of }v[ \ N snch that the 
accessible boundary of D equals li U l2 . 
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The most familiar flow with an exceptional minimal set is  the Denjoy flow (first 
constructed by Poincare [38]) on the torus T2 . Such a flow must have special pairs. 
Conversely, the existence of special pairs on a hyperbolic surface is artificial. Any 
flow ft having an exceptional minimal set with special pairs on M can be mapped 
by a blow-down operation onto the flow with no special pairs. So the first step to 
classify exceptional minimal sets on M is a classification of this sets with no special 
pairs. 

TeopeMa 3. 7. Let N1, N2 be exceptional minimal sets with no special pairs of 
flows ff, f� respectively on a closed orientable hyperbolic surface lvf . Then N1 , N2 
are topologically equivalent via a homeomorphism M -+ 1\11 homotopic to identity if 
and only if their geodesic frameworks coincide, G(N1) = G(N2) . Furthermore, the 
geodesic framework G(N) of any exceptional minimal set N (possibly,with special 
pairs) is an orientable nontrivial geodesic lamination, G(N) E Aor, and vise versa, 
given any geodesic lamination G E Aor , there is a flow P with exceptional minimal 
set N with no special pairs sz•ch that G(N) = G. Moreover, let N be an exceptional 
minimal set of flow P on M which has no special pairs of trajectories. Then there 
is a flow f8 on NI with the following properties: 

1. The geodesic lamination G(N) 'ts an exceptional minimal set of f8 ; 
2- Minimal sets N and G(N) are topologically equivalent via a homeomorphism 

homotopic to the identity. 

We see that the orbit of nontrivial minimal orientable geodesic lamination 
(framework) is a complete invariant for an exceptional minimal set with no special 
pairs of trajectories. One can prove that the orbit of nontrivial minimal orientable 
geodesic lamination with marked geodesics is a complete invariant for an exceptional 
minimal set in general case. 

Let us show how a "weh'1of geodesic frameworks helps to classify so-called 
irrational 2 -webs [15]. 

TeopeMa 3.8. Two irrational 2 -webs (F1, F2) and (F;, F�) on a closed 
orientable hyperbolic surface A1 are topologically equivalent via a homeomorphism 
NI -+ 1\!l homotopic to identity if and only if their geodesic frameworks coincide, 
G(F1) = G(F{), G(F2) = G(F�). 

Let (F1, F2) be an irrational 2-web_ Then the pair of geodesic frameworks 
(G(F1), G(F2)) has the following properties: 

1 ) The sets lvl\ G(Fi), i = 1 ,  2, have the same number of connected components 
·Nhich equal to the number of (common) singularities of the foliations Fi. 

2) For each connected component D1 c Jvf\ G(Fi) there is exactly one connected 
component D2 c A1\ G(F2) such that one can lift D1 and D2 to geodesic polygons 
d1 , rlz with alternating vertices on the absolute. 
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Two transversal irrational geodesic frameworks (G(Fl), G(F2)) are called 
compatible if conditions 1) and 2) above are satisfied. 

TeopeMa 3.9. For any irrational 2 -web (F1, F2) on M the geodesic 
frameworks ( G(F1), G(F2)) are transversal and form a compatible pair. Conversely, 
any such pair uniq1tely {up to a homeomorphism homotopic to identity) determines 
an irrational 2 -web on Af . 

4. Deviations 

One of the important aspect of the Anosov-Weil theory is a deviation of foliation 
from its geodesic framework. This aspect is especially nutty for irrational foliations 
(including flows) and exceptional minimal sets because its geodesic frameworks are 
complete invariants. Let us give definitions. 

Suppose a semi-infinite continuous curve I= {I(t), t � O} has the asymptotic 
direction CT E 800 . Take one of the oriented geodesics , say g, with the same positive 
direction CT (i .e. CT is one of the ideal endpoints of g). Such geodesic g is called a 
representative of CT .  Let d(t) = d(l(t ), g) be the Poincare distance between I(t) and 
g. If there is a constant k > 0 such that d(t) :::;: k for all t � 0, we'll say that I 
has a restricted deviation property. The following theorems was proved in [ 13] ,  [14] . 

TeopeMa 4.1. Let P be a flow with finitely many fixed points on a closed 
hyperbolic surface M . Let I be a semitrajectory of the covering flow yt on D. . 
Snppose that I has an asymptotic direction. Then I has the restricted deviation 
property. 

TeopeMa 4.2. Let F be a foliation on a closed hyperbolic surface M . Suppose 
that all singularities of F are topological saddles. Let I be either a generalized or 
ordinary leaf of the covering foliation F . Then I has an asymptotic direction and 
the restricted deviation property. 

After Theorems 4.1, 4.2, it is natural to study the "width11of surface flows and 
foliations with respect to its geodesic frameworks. Put by definition, 

· 

TeopeMa 4.3. Let F be a foliation on a closed hyperbolic surface 1\11 . Suppose 
that all sing·ularities of F are topological saddles; then 

sup{dy} < oo, 

where L ranges over the set of all generalized and ordinary leaves of the covering 
foliation F . 
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This theorem means the uniformity of deviations of leaves from a geodesic 
framework of foliation. The supremum above is called a deviation of a foliation from 
its geodesic framework. As a consequence, we see that the deviatiorc of irrational 
foliation from its geodesic framework is finite. It is the interesting problem to study 
the influence of this deviation on dynamical properties of foliation. One can prove 
that a deviation of exceptional minimal set from its geodesic framework is also finite. 

Note that an analytic flow can have a continuum set of fixed points. Nevertheless 
the strong smoothness allows to prove the following result [19]. 

TeopeMa 4.4. If P is an analytic flow on a closed hyperbolic orientable surface 
111", then any semitrajectory of P with an asymptotic direction has the restricted 
deviation property. 

For plane closed surfaces (the torus and Klein bottle), a similar theorem was 
proved by Anosov [2] , [4] . 

5 .  Dynamics and absolute 

In this section we show how some properties of points of 800 influence on 
dynamical properties of flows and foliations. In particular, the first theorem says 
that if a foliation (or fluw) with a finite set of singularities has a semi-leaf with 
an irrational asymptotic direction, then the foliation has a quasiminimal set . More 
exactly, denote by A( oo) C 800 the set of points reached by the laminations from 
A. Another words, A( oo) are points reached by geodesics from minimal nontrivial 
geodesic laminations. It is known that every point of A( oo) is irrational. 

TeopeMa 5.1. If a foliation :F with a finitely many singularities on ]\;[ has a 
semi-leaf with an irrat'ional direction, then :F has a quasiminimal set {in particular, 
:F has a nontrivially recurrent leaves). Vise versa, if :F has a quasiminimal set, then 
its geodesic framework reaches a. point from A( oo) . 

Denote by Airr ( oo) C Soc the set of points reached by the irrational geodesic 
laminations. 

TeopeMa 5.2. Let :F be a foliation with a finitely many singularities on 1VI. 
If its geodesic framework G(:F) reaches a point from A(oo) - AiTr (oo), then :F is 
not highly transitive and there is a nontrivially homotopic closed curve that is not 
intersected by any nontrivially recurrent leaf. If G(:F) reaches a point from AiTr ( oo) , 
then :F has an irreducible quasiminimal set {i.e. any nontrivially homotopic closed 
wrve on A1 intersects this quasiminimal set). Moreover, :F is either highly transitive 
or can be obtained from a highly transitive foliation by a blow-up operation of at least 
countable set of leaves and by the Whitehead operation. In the last case, when :F is 
not highly transitive, :F has a unique nowhere dense quasiminimal set. 
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Take an irrational geodesic framework G .  Then 7r-1(G) = G is a geodesic 
lamination on the Lobachevsky plane �. A point CT E G( oo) is a point of first kind 
if there is only one geodesic of G with the endpoint CT • Otherwise, CT is called a point 
of second kind. One can prove that this definition does not depend on the choosing 
of G E Airr . The following theorem shows that the type of asymptotic direction 
reflects certain "dynamical"properties of foliation [ 18] . 

Teopel\rn 5.3. Let :F be an irrc:tional foliation on 1\1 and let z+ be a positive 
semi-leaf of :F such that its lifting I' to � has the asymptotical direction CT E B00 . 
Then u E Airr(oo). Moreover, 

1. If CT is a point of first kind then z+ belongs to a nontrivially recurrent leaf. 

2. If CT is a point of second kind then z+ belongs to an a -separatrix of some 
saddle singularity of :F. 

Denote by Aor ( oo) C B00 the set of points reached by orientable minimal 
nontrivial laminations. One can reformulate above theorems for flows replacing A( oo) 
by A0r(oo) and Airr(oo) by A�;(oo). 

Put by definition, Airr (oo) n Anan(oo) = A�,;-n(oo). The set A�,;-n(oo) is dense 
and has zero Lebesgue measure on B00 . One holds the following sufficient condition 
of the existence of continuum fixed points set for flows. 

TeopeMa 5.4. Sv,ppose a flow P on 111 reaches a point from A�,;-n ( oo) . Then 
ft has a continual set of fixed points. Furthermore, ft has neither nontrivially 
recurrent semitrajectories nor closed transversals nonhomotopic to zero. 

6 .  Absolute and smoothness 

In this section we show that some points of B00 achieved by C00 flows can not 
be achieved by analytic Hows. Recall that CT E B00 is called a point achieved by ft if 
there is a positive (or negative) semitrajectory z± of P such that the some covering 
y± for z± has the asymptotic direction defined by CT .  

Denote by A11, A00, Aan C B00 the sets of points achieved by all topological, 
C00 , and analytic flows respectively. Due to the remarkable result of Anosov [2], 
A11 = A00. Obviously, Aan C A00. It follows from the following theorem that 
Aoo - Aan #- 0 [191. 

TeopeMa 6.1. There exists a continual set U(M) C A00 such that given any 
C00 flow ft that reaches a point from U(lv1), 'is not analytic. The set U(1VI) is 
dense and has zero Lebesgue measure on 800 . 

One can prove that Atri1J ( oo) C Aan C Atriv ( oo) U Aor ( oo) , and Anon ( oo) C 
Aoo - Aan · 
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7. On continuity and collapse of geodesic frameworks 

A complete topological invariant of irrational flows on closed hyperbolic orientable 
surfaces is represented by a homotopy rotation class introduced in 1973 by S .  Arnnson 
and V. Grines [9]. On the other hand such an invariant can be represented in terms of 
a geodesic framework as well . In many cases such a representation is more convenient 
because the set of geodesic laminations can be endowed with a structure of the 
topological space. Thus far one can study the parametric families of irrational :flows 
in terms of their geodesic laminations. 

Recall that a geodesic framework is irrational if it consists of nontrivially 
recurrent geodesics. A geodesic framework is called rational if it does not contain 
nontrivially recurrent geodesics. �ote that a rational geodesic framework contains 
closed geodesics. A rational geodesic framework is called strongly rational if it consists 
of only closed geodesics. Actually, a strongly rational geodesic framework is a trivial 
geodesic lamination. 

As we saw above, the geodesic framework of highly transitive fl.mv is irrational 
and consists of nontrivially recurrent geodesics each being dense in the geodesic 
framework. This irrational geodesic framework is an analog of irrational rotation 
number of torus flows having nontrivial recurrent trajectories. The results of this 
section was obtained in collaboration with V. Medvedev [17]. 

TeopeMa 7.1. Let ft be a highly transitive 01 -flow induced by a vector field 
v E X1 (A1) on a closed orientable hyperbolic surface M. Suppose that all fixed points 
of ft are hyperbolic saddles. Let U be a neighborhood of the geodesic framework 
G(jl) of P. Then there is a neighborhood 01(v) of v in the space X1("".1) of all 
01 -vector fields such that any flow l generated by w E 01 ( v) has a non-empty 
geodesic framework G(yl) belonging to U. 

Theorem 7. 1 is similar to the assertion that an irrational rotation number of 
transitive torus flow depends continuously on perturbations of the fiow in the space 
of 01 -flows. 

According to Pugh's C1 Closing lemma, given a torus vector field v with 
noutrivially recurrent trajectories, there is a vector field w arbitrary close to v 
in the space X1(JvI) such that w has a periodic trajectory nonhomotopic to zero. 
As a consequence, given a torus vector field with irrational Poincare rotation number, 
there is an arbitrary close vector field with rational rotation number. This property 
is called an instability of rotation number. The following theorem means that an 
irrational geodesic framework has the similar 'instability'. 

TeopeMa 7.2. Let ft be a highly transitive 01 -flow indu.ced by a vector field 
v E X1 (Af) on a closed orientable hyperbolic surface M. Suppose that all fixed points 
of _ff are hyperbolic saddles. Then for any neighborhood U of the geodesic framework 
G(ft) and any neighborhood 01(v) of v in the space X1 OW) of 01 -vector fields 
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there is a flow gt generated by w E 01 (v) such that the geodesic framework G(l) 
is strongly rational and belongs to U . 

As far as rational geodesic frameworks is concerned, there are examples both 
of continuous and discontinuous dependence on parameters of a flow. It is obvious 
that Morse-Smale flow has rational geodesic framework which does not change under 
small bifurcations of the flow because any Morse-Smale flow is structurally stable. 
Two theorems in below describe virtual scenario of the destruction of a rational 
geodesic framework. 

TeopeMa 7.3.  On a closed hyperbolic orientable surface M there is a one­
parameter family of C00 flows f,: which depends continuously on the parameter 
µ E [O; 1] and such that the following conditions are satisfied: 

1. For all µ E [O; 1) the flow fi has an irrational geodesic framework G(.f!) # 0 
which does not depend on the parameter µ, . 

2. The flow f{ has a rational geodesic framework G(fi) . 

3. There is a neighborhood U of G(f{) such that G(fi) tj:_ U as µ E [O; 1 )  . 

TeopeMa 7.4. On a closed hyperbolic orientable surface M there is a one­
parameter family of C00 -flows f� which depends continuously on the parameter 
µ E [O; l] such that the following conditions are satisfied: 

1. For all µ E [O; l] the flow f� has a rational geodesic framework G(f�) # 0 
which does not depend on the parameter µ as µ E [O; 1 )  . 

2. There is a neighborhood U of G(ff) such that G(f,:) ¢:. U as µ E [O; 1 ).  

Discontinuity of a rational geodesic framework is  not surprising, since there are 
flows on torus (and the Klein bottle) with rational rotation number which varies in 
a Hjump-like11fashion under arbitrarily small perturbations (32], [33]. 

We formulate now a theorem on the existence of one bifurcation of a geodesic 
framework which is similar to the 'blue-sky catastrophe' bifurcation of flow and 
corresponds to a certain family of flows. 

TeopeMa 7.5. On a closed hyperbolic orientable surface M there is a one­
parameter family of C00 flows f� which depends continv.ously on the parameter 
/L E [O; 1 )  such that the following conditions are satis,fied: 

1. For all µ E [O;-t) the flow J� has a rational geodesic framework G(f,:) # 0 
consisting only of closed geodesics. 

2. The lengths of closed geodesics in G(f1: ) tend v.niformly to in.finity as µ ---+ 1 . 

3. CUD = 0 . 
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A bifurcation described in Theorem 7 . 5  we will call a collapse of geodesic 
framework. 

The following theorem gives some information on a set of fixed points of a flow 
under which a collapse of the geodesic framework takes place. 

TeopeMa 7.6. Let f! be a one-parameter family of C00 -flows which depends 
continuously on the parameter µ E [O; 1] on a closed hyperbolic orientable surface 
1-W . Assume that: 

1. For all µ E [O; 1) the flow J! has a rational geodesic framework G(f!) #- 0 
consisting only of closed geodesics. 

2. The lengths of closed geodesics in GU!) tend uniformly to infinity as µ --; 1 . 

3. G(Ji) = 0 .  
Then the flow Ji has in.finitely many fixed points. 
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ripIIBO,Ll;iiTCn OTpHIJ,aTeJihHoe pelI!eHIIe npo6JieMI>r ApHOJib,!l,a-HoB:aKoBa o nocTpoeHHH BhIC­

Illero aHaJiora liHTerpaJia crrnpMbHOCTH 6e3,ll;HBeprewrHoro BeKTopHoro rroJIB rrpn HeKoTo­

pbIX ecTeCTBeHHbIX ,[l,OTIOJIHllT€JlbHbIX npe,[J,IIOJIO)Kemrnx. ,LJ:oKa3aTeJibCTBO CJie,[l,yeT n,n:ee c . c .  
rio,!1,KOphlTOBa. IIpe,n:JiaraeTCll rnnoTe3a o rroJIO)KHTeJibHOM peureHHH nepecj;>opMyJIHpOBaHHoli 

npo6neMI>r ApHOJih,[l,a-HoBnKoBa AJin cny'lail:Hhlx 6e3,[l,HBepreHTHbrx BeKTopHbIX nonefr. 

B cepe,n;1rne II03arrponmoro CTOJienrn: K.  <I> .  raycc rrpe,n;Jio:tKIIJI llHTerpaJibHYIO 

¢opMyJry ,n;mr Koa¢¢mweHTa 3a:o;errneHH5I ,n;Byx 3aMKHYThIX KpMBhIX B R3 (CM . ,  Ha­

rrpnMep, [A-Kh]) .  B cepe,n;1rne npOIIIJIOl'O CTOJieTII5I ITHTerpa.rr raycca 6bm o6o6ui;eH II 
orrpe,n;eJieH KaK lIHBapIIaHT 6e3,D;HBepreHTHOro BeKTOpHoro IIOJI5I B TpexMepHOM npo­
CTpaHCTBe, 6bICTp0 y6bIBaIOIII,ero Ha 6eCKOHe'IHOCTII, OTHOCHTeJibHO ,n;ell:CTBM5I rpyrr­

IlbI ,n;II¢¢eoMop¢H3MOB c KOMrraKTHhIM HOCIITeJieM, coxpaHBIOIII,IIX ofrJ:>eM. B aToM 

KOHTeKCTe HHTerpaJI faycca '-IaCTO Ha3bIBaeTC5I IIHTerpaJIOM CIIMpaJibHOCTII. KaK IIO­
Ka3a.TI B.li. ApHOJih,iJ; (cM. [A-Kh] c rrocne,n;yrorn,ell: cchmKoll:) , MHTerpan crrrrpa.nhHO­

cTrr MMeeT CMbICJI aCMMHTOTWICCKOrO cpe,n;Hero Koa¢¢II:o;rreHTOB 3a:o;errJieHII5I IIHTe­

rpMbHhIX TpaeKTOpull: BeKTOpHoro IIOJI5I. B .H.  ApHOJJh,iJ; c¢opMyJiupoBaJI B [Arn] 

npo6JieMbl 1984-12, 1990-12, KaCaIOIII,lleC2.! 0606rn,em1ll: IIHTerpa.Jia faycca Ha CJiy<Iall 

acIIMIITOTw1eCKIIX BhICIIIIIX MHBap1rnHTOB y3noB II 3a:o;en.rreHIIH. C .II. HoBMKOB 3a­

TpoHyn 3TOT Kpyr BOIIpOCOB B ,n;oKna,n;e, c,n;eJTaHHOM B 9,n;uH6ypre B ceHT5I6pe 1998 r. 
Ilpo6neMy IIOCTpOeHM5I BbICIIIero aHaJIOra IIHTerpana faycca ,iJ;.Tl5I 6e3,IJ;MBepreHTHbIX 

BeKTOpHhrx uonell: 6y,n;eM Ha3hIBaTh npo6neMoli ApHOJih,n;a-Hom1KOBa. IIocTpoeHIIe 

mITerpa.noB, 3a,n,a10rn,11x perueHIIe npo6J1eMbI ApHoJih,n;a-HoBIIKOBa, 03Ha'Iano 6hI , B 
qaCTHOCTII, IIOCTpOeHIIe rrepBblX HHTerpa.rroB f:\JUI BeKTopa 3aBI1xpeHHOCTII CKOpOCTII 

ITO.TIS B ypaBHCHIIH ,IJ;BIDKCHII5I rr,n;ea.TihHOll: HeOKIIMaeMOll :tKH,iJ;KOCTII, a TaKiKe rrep­

BbIX IIHTerpaJIOB ,IJ;.TI5I peme1nrn: CIICTeMh! ypa.BHeHIIiI B KHHeMaTII'IeCKOll ::vrarHIITHOH 

rII,llpO,iJ;IIHaMIIKe. 

2. OcttoBHa� TeopeMa 

06o3Ha":l:rrM qepe3 R npocTpaHCTBO 6e3,1lIIBepreHTHhIX BeKTOpHhIX rronell: B R3 c 

KOMIIaKTHblM HOCHTeJTeM.  (,ILm:r npmro:tKeHIIH IIHTepecHee paccMaTprrBaTh rrpocTpaH­

CTBO rro.Tiell:, y6hIBarorn,rrx Ha 6ecKoHeqttocTII KaK r-2 . )  0603na'IIIM 'Iepe3 Rlink C R 
II0,1lIIpOCTpaHCTBO, COCT05IIII,ee II3 rroneH:, MOfl,e.TIHpyror:o;rrx KOMIIaKTHbie 3a:o;errnemu.r 
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c 33MKHYTbIMII KOMnOHeHTaMH (no noBo;i;y IIOJieli, M01':(eo"IHpywn:i;11x 3aIJ,em1eHII5I, CM. 

[B-F] ) . ,Il;JI5I noJieil nop:npoccrpaHCTBa Rlink npo6JieMa ApHOJib,Ila-HoBIIKOBa peme­

Ha IIO.TIO:lIUTTeJibHO B [Akh] . (CTporo rOBOpR, B 9TOII pa6oTe paccMaTprrnaeTCR CJiy­

LJ:ali rro.11eli, \10;::1,eJI11pyron:i;rrx TpexKOMIIOHenTHbie 3aIJ,errJiem·rn (CM . [B-F] no noBo;:i;y 

orrpe,L1eJiem·rn 6e3,IJ;IIBepreHTHoro ( MarHHTHoro) nonn, 1vro;:i;em1pyro11Tero 3aI.J,erwemte) , 

a o6mnll: CJI,}''-Iall 3aIJ,enJieHII5I c rrpOII3B0.1IbHbIM 'IHCJIOM KOMIIOHeHT, paCKpameHHbIX 

B TPH IJ,BeTa, ,1],0 HaCT05II1Tero BpeMeHH TI0.1IHOCTbIO He H3yLJ:eH. ) 
C¢opMyJrnpyeM ecTeCTBeHHbie ( c TO'-IKH 3peHIIR BbILJ:HCJieH11ll:) ycnomrn , npII KO­

TOpbIX MO:ll{HO 6bIJIO 6hr IIOITbITaTbC5I IICKaTb IIHTerpa.,11bHOe BbipaMeHII5I ):\v112I BbICrnero 

1:JHC1Ia cnnpa,!IbHOCT11 . 

"YcJIOBIUI KOHe'-I:noro rrop.H!J,Ka. Cr.:aY.Ce.M, "-lmo eew,ecmeem-t03'J-1,a"m'btU ifiywr,;­

v,·uo'J-1,aJt I : R ---.; R u.Meem nop.f{,oor.; n ,  ec.llu 3mom ifiynx;v,umw.ll eupa;;1caemc.f{, e 

euoe x;pam'H020 ( 6 03.MOY.C'J-1,01 J-teco6cmee'l-!,'J-l020 npu 6'blpOY.COe'J-lUU ·1wu,ifiu2ypav,uu mo­

"te'K) uume2pa,,rw om 3Ha"le1-m.fl no.llU'l-i0.MUa.llMi01'J, ifiyHx;v,uu ifim·;;cupoeart'HOU cmeneuu 

x;oopouuam eeKmopoe no.fl.fl, np1uw:>1ceU'J-l,'bt.:r e pacc.Mamp·ueae.MOM na6ope mo"-ler.:, no 

noonpocmpaucmey npocmpancmaa ynop.fl00'ieHU1JtX n -mOQle"-lrtblX 'KOUrjm2ypaV,UU . 

3aMe'faHJIC. llffrerpa.11 CIIIIpaJibHOCTII H.YieeT nopn)J,OK 2 B CMbICJie rrpe,1],bip;y­

IlTero onpe,ri;eneHIIn: , npnqeM IIHTerpnpoBamre rrponcxo,n;nT no rrpocTpaHCTBY ,llB}'XTO­

LJ:eLJ:HbIX KOHqrnrypa11,IIil. B ;vrarHIITHOH rH,ri;po;:i:11HaMIIKe ycnoBII5I KOHe'-IHOro nop5I,ri;Ka 

5IB.JI5IIDTC5·1 CCTCCTBeHHblMII, T.K .  HaIIp5IMYIO CBH3aHbI c KOppenRUIIOHHbIM T8H30pOM 

MarmrrHblX rroJreli. 

OcuonHoli pe3yJrhTaT BbipaMaer 3anpeT na 110JIOMIIT8.JJbHOe pernemrn npoforeMhI 

ApHOJih;J:a-HonIIKOBa rrpH HeKOTOpb1 x ccTeCTBennJorx JJ,OIIOJIHIITeJ"IbHb1x npe,LJ,IIOJIOMe­

HII.s:x. chOT pe3JJlbTaT 6r,IJI OTKphIT C . C  fIO/J,KOpbITOBbIM H Harne /J;OKa3aT€J"IbCTBO 

ocHonano Ha ero Ir,Liee. 

TeopeMa. flycm'b ifiyu:�'lfUO'/-WJt 'KOH('."-l?iO'ZO nop.Rd'Ka I onpeOe.lleH Ha noonpo­

cmpancmae �link C � u .ft6Jt.flemc.fl unaapuaHmo.M omnocume.ll'brto coxpaH.fl'IOW,UX 

o6oe.M npeo6pasoBaimii ( m. e.  He U3.M e'!-u1.ern.c.ft nvu npeo6pa3oeanu.flx npocmpau.cmea, 

coxpart.ftWW,11.X o6?Je.M u uenooeu:J1cm,1.x B Her.;omopou ox;pecm'l-wcmti 6ecx;one"-lrtocmu) . 

IIpeonoJio;;1cu.M, r.:pwvte mo20, ''trn.o .7mom ifiy'J-1,x;v,uoHa.ll ydoe.llemeop.Rem cJteoyw·w,eMy 

oono./l,J-l'UmeJi'bit.O.A-LY yc,,rwau10: 

(* ) I(Bo) = 0 ,  ecJiu Bo ,. .. wde.11.upyem Mrw2ox;o.Mn0He1mmoe mpuBuaJi'b'!-lOe 3a-

1�enJteuue. 

To2iJa I ( B) = 0 ) eCJtU eex;mop1we no.11.e B .uode.mtpyerr;. oeyxx;o.unouenmHoe 

sav,en.11.em.te Yaumxeoa. (P11cyHKII neKTOpHbIX rroJieli, Mo,.a;em1py10uJ,HX 3auerrne1me 

Yai1Txeri;a, HCc1eIOTCR B [A-Kh], [H-M] ) . 

,l.(or.:a3ame.ll'bcrneo. PaccMoTpIIM n + 1 , n 2 2 BeKTOpHbIX rroJ"reli, o6o3HaLJ:aeMbIX 

'Iepe3 Bo , Bi , . . .  , En , Ka:ll;:;roe 113 KOTopux Moµ:enrrpyeT neKOTopoe 3aIJ,errJieHIIe ( c1.r. 

3 a1:\errJieHne Ha pIIc . l  c.nena) . 

KmmoHeHTbI 3ar:i;e1rnemrn ncpeceKaTOTC5T :>.re:>K,J;Y co6oa no Ha6opy urpe3KOB . BeK­

TOpHnre IIOJrn B OKpeCTHOCTII KOMTIOHeHT 3ar:i;ernI8HII5I ( 9TII OKpeCTHOCTII rrpIIH.HTO 
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Ha3bIBaTb Tpy6KaMH) BbI6paHbI TaK, 'ITO IIOJI5I Ha o6IIJ,HX l1p5IMOJIHH€HHbIX yqaCTKax 
COOTB€TCTBYIOIIJ,HX Tpy6oK npOTHBOIIOJIO)KHhI ,n;pyr ,n;pyry. B qaCTHOCTH, IIOTOKH BeK­
TOpOB (KOTOpbie ITO orrpe,n;eJieHHIO 5IBJI5IIOTC5I IIOJIO)KHT€JibHbIMH xapaKTepncnLKaMH 
Tpy6oK) BO BCex Tpy6Kax COBIIap;aroT. 

B 

B 

-----� Boo-B1 + . . •  +B, 

PHC. 1 .  

KaK rrponJIJIIOCTpMpoBano na pMc. 1 crrpaBa, paccMaTpIIBaeMhIH Ha6op rroneii y,n;o­
BJieTBOpHeT CJie,n;yroIIJ,eMy yc.JIOBHIO: K:aMp;oe H3 2n+i BeKTOpHbIX IlOJieil: aoBo + 
aiBi + . . .  cx.nBn , r,n;e KaMp;oe IY.i rrpMHHMaeT 3naqenne 0 HJIH 1, MO,IJ;e.JI11pyeT 3a:o;err­
JieHHe, rrpnqeM 3a:o;errJienHe Bo , KOTopoe rroJiyqaeTC5I rrpH cx.0 = 1, ai = 0, 1 :::; i :::; n ,  
Mo,ri;eJinpyeT 3a:o;err.JieHHe Yail:Txe,n;a, a KaMp;oe H3 ocTaJihHhIX 2n+i - 2 rroJieli, rro­
J1yqa:roI11,Hxc5I B CJiyqae, eCJIH XOT5I 6bI O,IJ;lIH ll3 K09cPcPHIJ,HeHTOB IY.i OTJil1'leH OT Hy­
Jrn, Mo,n;eJIHpyeT TpHBHaJibHoe MnoroKOMIIOHeHTHoe 3au,enJieHne. IIpe,n;rroJIOMHM, 'ITO 
paccMaTpnBaeMhIH ¢yHKu,n:onaJI J HMeeT nopa,n;oK n . Onpe,ri;eJin:M rrocJie,n;oBaTeJih­
HOCTh 3Haqennii (1rnBapn:aHTOB) J2 (Bo, Bii ) ,  ii = 1 ,  . . . , n ,  no ¢opMyJie 

J2 (Bo ,  Bi1 ) = I(Bo) + I(Bi1 ) - I(Bo + Bi1 ) ,  

J3 (Bo , Bil ) Bi2 ) = I2 (Bo , Bi1 ) + J2 (Bi2 , Bi1 ) - J2 (Bo + Bi2 , Bi1 ) , i2 =/= ii , i2 = 1 ,  . . .  , n 

H ,n;anee, rrp11 pa3JIII'IHbIX ii , . . .  ' is ' rrpHHHMaIOIIJ,lIX 3Ha'leHH5I 1 ,  . . .  ' n '  orrpe,n;eJIHM 

+ Js-i (Bi8_ 1 , Bh , · · · ,  Bi8_1 )  - Js-i (Bo + Bis-1 '  Bi1 ,  · · · , Bin-2 ) ·  
06o3na'IHM qepe3 Bi;a,x nepByro Koop,n;nnaTy BeKTopa IIOJI5I Bi B TO'IKe a E 

R3 . AHaJiornqHbie 0603na'leHH5I BBe,n;eM ,IJ;JI5I OCTaJihHhIX ,n;Byx Koop,n;nHaT. HeTpy,r\HO 
npoBepHTh, qTO cyMMapHa5I CTerreHh BXOM,IJ;eHH5I KOOpp;1rnaT B€KTOpa Bo B Ka)K,n;Oe 
CJiaraeJl.,rne rro,n;hrnTerpanbnoro H,n;pa rrOirnMaeTca Ha 1 rrpn nepexo,n;e OT Ji K Ji+ i . 
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,II,encTBIITe.JibHO, eCJIII B HeKOTopon TO"LKe ( a1 ' . . .  ' ar) KOH¢:rrrypan;HOHHOro 
rrpOCTpaHCTBa IIOD;bIHTerpaJibHOe H,IIPO ¢ynKn;IIOHa.Jia I8 con;ep.IKIIT cnarael'.10e 
IT Bai Bf3i B1 T.( K .. .. 

i,j,k O;ai ,X O;aj,Y O;ak (Yk I' ' rn;e - MOHOM, co,n;ep.1Karn:rrrr KOMIIOHeHTbl IIOJieII 
Bi , . . . , Bn , TO cPYHKIIIIH J8+1 6y11eT co,L1ep.1KaTI> cnaraeMI>re 

- Il (B . H .  )°'i (B . . H .  ) 6i (B . H .  ) 'tkK O,a; ,x + i8 , a; ,x O,a1 ,y + i5 ,aj,y O,ak ,Z + is ,ak,Z + 
i,j,k 

i,,j,k i,j,k 
rrprrcreM cnaraeMhre, con;ep.1Kaui;11e cTaprnne cTerremr KOMIIOHeHT Bo , rroc.ne pacKpI>r­
TIIs CK060K B3aIIMHO JHlI':!TO./KaIOTCH. 

Ilo rrpen;rrono.1Keirnro <PYHKn;noHan I IIMeeT rropsn;oK n .  Cnen;oBaTeJibHO , cPYHK­
r�noHaJI 1n+l TO.IK,Il8CTBeHHO paBHa Hy.mo . c ppyron CTOpOHbI, BbI'IllCJIHH 8TOT cPYHK­
I�IlOHaJI, nony'TIIM , 'ITO OH co,n;ep.IKIIT 3n c;raraeMhIX, O,i],HO l.13 KOTOpbIX -· cnaraeMoe 
I(Bo) , II ,IJ;pyrne cnaraeMhre, KOTOpble cyTh 3Ha'!emrn cPYHKn;noHana I Ha TPIIBII­
a.TibHI>rx MHOrOKOMIIOHeHTHbIX 3aIIeIIJieHIHIX o:oBo + . . . + CYnBn ' (ao , . . .  ' an) i­
(1 ,  0 ,  . . .  , 0) , II no ycnoBIIIO TO.IK,IJ;eCTBeHHO o6parn:aroTcs B HYJih . TeopeJ\.rn ,n;oKa3a­
na. 

Cnen;yrorn:a.a runoTe3a ecreCTBeHHO cB.a3aHa c o6o6qenrreM _JJ;oKa3am-roli TeopeMbI. 

rlIIIOTe3a ( A.B. qepHaBCKIIM) . llpOH360Jl'b'Ji,bb'U wwapuamn '/W'HP"l'HOC.O nopJla­

'X:a 6'blpa:HCaemcR .M'J-l020"lAei-wJvt om u'Hme2pa.11,a cnupaA'b'J-locmu. 

I1po6neMy ApHOJib,II,a-HoBrrKoBa MO.I.KHO rrepecj_)opMyJmpoBaTh na cny•rali ynop.a­
,JJ;O'IeHHoro C8:\1ellCTBa 6e3,D;IIBepreHTHbIX BeKTOpHbIX rroneli' 'ITO i'J:OCTaBJIHeT f\OIIOJI­
HIITen:bHhie B03MO)KHOCTH rrpII perneHITH. I1wrepeceH cny-qa1J ,iJ,BYX IIOJieH ( O?J.I-10 H3 
IIOJieI'l - MaI'HIITHOe, BTOpoe - IIOJie 3aBHXpeIIHOCTll CKOpOCTH) H CJiy'Iali Tpex TIO­
Jieil, KOTOpbie MO:IKHO IIHTepnpeni:poBaTb KaK KOMIIOHeHTbl IIOJISf 'iepHa-CanMOHa. c 
TononorII'ICCKOil TO'IKII 3peBmr cJIY'WH Tpex noneli paccMoTpeH B [H-Mj. B Hanpan­
neHMII rroJI02KIITeJibHoro pememrn rrpoforeMhI ApnonbD;a-HoBHKOBa c¢opMyJrnpyeM 
rnrroTe3y. KpaTKO roBopa, yTBep2K7�aeTc.a, 'ITO npo6ne:\rn ApnoJihf]:a-HoBITKOBa IIMe­
eT rroJI02KHTeJihHOe perrreH:rre B c·1y'Iae ancaM6m-r urycra:linhIX none.fl, KaK npnn.aTO B 
TeOpIIII Typ6y.'IeHTHOCTH (CM. [Fr]) .  

06o3Ha'IHM qepe3 !!(link C !R noµrrpocrpaHCTBO rroneH:, MOf\e.rrnpyrorn;Hx 3an;en­
nemrn:. 06o3HaqIIM qepe3 F : Di f J0 ( R3) x !R -> !R ,n,eH:cTBHe rpyrrrrhr rrpeo6pa3oBa­
nn:H, coxpan.arou�ux 8.n:eMeHT o6'beMa, na npocTpaHCTBe !R . Onpe;:i;eneno orpanwrn­
HHe plink : Dif J0 (R:i ) x !!(Zink -> !!(link /J;eilcTBIIR F Ha IIO,Il,rrpoCTpaHCTBO !!(link . 
Orrpe;:i;eJretto rrpocTpaHcTBO -wn yrrnp.an;o'IeHHhrx Ha6opoB H3 n rrone11: n ero no,n;rrpo­
CTpaHCTBO (!Rlinkr c !Rn ) COCTO.arn:ce II3 rroneii, MO,I(em-rpymrn:rrx MHOI'OKOMIIOHeHT­
Hhie 3an;ennerrn.a, KOM110HeHTbI KOTOpbIX OKparneHbl B n rweTOB (T.e. IIOJie BHYTPII 
peryn.apHOH OKpeCTHOCTH JII06o:H KOMIIOHeHTl>I 3a[\erniemrn: COBrra,n;aeT c orpanwre­
HIIeM o,ri;noro H3 3a,I(aHHbIX IIOJieH) . 
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r1u10Te3a 0 fIOJIO:auueJihHOM perneHHH npo6JieMhl ApHOJib,D;a-HoBHKOBa 

,D;JI.51 CJiy<iaihihIX BeKTOpHhIX noJieii. HHme2paJ1.'bHa.fi rf!op.M.yJia, nocmpoeHHa.fi e 

( [Akh] ) ,  ecmecmeeHH'btM o6paso.M. onpeae.i.flem u'l-teapua'l-tm Mlink 'I-ta npocmpaH­

cmee (Rlink )3 mpoer.; eer.;mopH'btX noAeu, .M.oaeJ1.upy10w,ux sav,enAe'l-tu.fi, 'IWMnoHeH­

m'bt r.;omop'btX pacr.;paweH'bt e 3 v,eema omHocumeJ1.'bl-tO npeo6pasoeaHuu Dif J0 (R3) x 
(R1ink ) 3  ---* (R1ink )3 npocmpaHcmea, coxpau.<i10w,ux o675e.M.. 

IlpII 3TOM ¢opMyJia ll,Jrn HHTerpaJia Mlink HMeeT BIIA: 

( 1 )  

rll,e M1 - cPYHKWIOHaJI nop5Ill,Ka 12,  orrpell,eJieHHhIH Ha BceM rrpocTpaHCTBe R3 , YAO­

BJieTBOp.moIII,Hil ycJIOBIIID KOH€'IHOPO IIOp5I,IJ;Ka IIPII IIHTerpIIpOBamrn ITO npOCTpaHCTBy 
12 -TO'I€'IHbIX KOHcPIIrypan;II:H (TO'IKH KOHcPIIrypan;IIOHHOPO npocTpaHCTBa pa36IIThI 

Ha 3 rpyrrrrhI rro 4 TO'IKII B Ka:lKll,Oil rpyrrrre II 3Ha'IeHIIe 2Ill,pa cPYHKIJ;IIOHa.rra M1 
rrpeo6paayeTrn HHBapIIaHTHO rrpII nepecTaHOBKe ToqeK BHYTPII Ka:lK,n;oil rpynnbJ) , 

M2 - cPYHKIJ;HOHaJI, onpell,eJieHHbI:ll JIIIUib Ha rrpocTpaHCTBe (R1ink)3 , npn'IeM ero 

3Ha'rnmrn, ycpell,H€HHbie rro op6H're ,n;eilCTBHH Dif j0(R3 )  x (Rlinky3 ---* (Rlink)3 , 
TO:iKll,€CTBeHHO o6paru;aroTC2I B HYJih. 

3aMel'.famrn. IIocKOJibKY rpynrra Dif j°(R3) HeKoMnaKTHa, rrpII ycpe,n;HeHIIII 

cPYHKIJ;IIOHaJia M2 B03HHKaroT TPYAHOCTH, KOTOpbre, Bep05ITHO, Tpe6yroT y'IeTa 

JIIIIIUIHIJ;€BbIX KOHCTawr AllcPcP€0MOp¢II3MOB, orrpell,€JI2IID1IIIIX CTpaTIIcPIIKan;nro rrpo­

CTpancrBa rpynnhI KOMIIaKTHhIMII IIOll,IIpOCTpaHCTBaMII. 

3. 3aKJnoqeHtte 

Bb1pa:1KeHne Jvf1 B ¢opMyne (1) ecTeCTBeHHO IIbITaTbC5I rrocTpOIITb, ncnonb3YH 
B€KTOP-cPYHKI1IIII 3JI€M€HTapHbIX ll,IIIIOJibHblX IICTO'IHHKOB !!I I1X B€KTOp-IIOT€HII;llaJibI . 

C.A.  MemrxoB B pa6oTe [Me] H3Y'IHJI CB5I3b MIIJIHOpOBCKIIX IIHBapHaHTOB c IIH­

BaprraHTaMII AJieKCaH,ll;epa Kparnemrnro 3an;e1memrn. IIony'IeHHhie B aToil pa6oTe 

pe3yJihTaTbI II03BOJI5IIOT Ha,11;€5ITbC2I, '-ITO H(:1,llll,€HHblll B [Akh] HIITerpa.TibHbIH llHBapM­

aHT B MarHIITHOH nr,n;po,n;m·IaMHK€ 5lB.TI5I8TC5I O,Ll;HHM H3 llHBapnaHTOB B 6eCKOHeqHOH 
IIepapx1rn: HHTerpaJIOB, KOTOpag IIOKa He IIOCTpoeHa. lIHBapIIaHT ll,JI5I 0,Ll;HOI'O BCK­

TOpIIOI'O IJOJI5l MO:iKHO IlbITaTbC51 IIOCTpOIITb, pa3J:rara5I 3TO none B cyMMY n '  n � 3 '  
cnyqaitHLIX IIOJieH, ,LI,JI5I KOTOpbIX 3aTeM BbI'IIICJI5IIDTC5I aHOHCHpOBaHHblll B T'HIIOT83€ 

II ananorn'IHhre rr1rnap1rnHThI. 
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3 1  

The automorphism group A(N) of a n -dimensional affinely connected orbifold N is proved 
to admit a Lie group structure, and dim A(N) :::; n2 + n. Estimates are established for 

dimension of A(N) depending on the stratification of N. 

1 .  Introduction 

Orbifold can be regard as a manifold with singularities; it is a topological space which 
is locally homeomorphic to a quotient space of manifold D by a finite group r of 
diffeomorphisms of SI. The group r is not fixed and can be changed by passing from 
the one chart of an orbifold to an other chart. Orbifolds appear naturally in many branches 
of mathematics and mathematical physics. For exa.mple, symplectic reduction often gives 
rise to orbifolds. Orbifolds are used in string theory [I] . Orbifolds arise in foliation theory 
as "good" spaces of leaves [2] . 

The problem of a finding of conditions guaranteeing existence of Lie structure for 
transformation group is one of the central problems of differential geometry [3] . Nomizu [4] 
proved that the group of all affine transformations of a complete affinely connected manifold 
is a Lie group. Later Hano and Morimoto [5] have received this result without the assumption 
of completeness. 

We have proved that the automorphism group A(N) of an arbitrary n -dimensional 
affinely connected orbifold N admits a Lie group structure. The proof essentially uses 
the construction of the frame bundle P over an orbifold N. We have shown that the 
transformation group A(N) can be realized as an automorphism group of the natural e -
structure on P and have applied Kobayashi's theorem [3] . 

We have investigated an influence of the existence of k -dimensional stratum 6.k of N 
on the dimension of the automorphism group A(N) . The presence of orbifold points is shown 
to sharply decrease the dimension of the transformation group A(N) of proper orbifold. 
In general case dim A(N) ::; n2 + n, and dim A(N) = n2 + n if and only if N is the 
ordinary affine space with the flat affine connection. We have observed that each connected 
component 6.k of 6.k formed by points of same orbifold type is invariant relatively the 
connected component of the unit of the Lie group A(N) . Using this observation we have 
got some estimates of the dimension of the Lie group A(N). 

2. The category of smooth orbifolds 

Let N be a connected Hausdorff topological space with countable base. Let U be 
an open connected subset of N. Fix natural numbers n and r. A er -chart of N with 
coordinate neighborhood U is a triple (D, f ,p) where D is a connected open subset of 
the n -dimensional real vector space Rn, f is a finite group of er -diffeornorphisms of D 
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and p :  n ___, U is a continuous map so that p is r -invariant (i.e. p o r = p, Vr E r )  and 
p induces a homeomorphism between the orbit space fl/r and U. Let (r21 , f1 , p1 )  and 
(fl2 , f2 , p2) are two er -charts with coordinate neighborhoods U1 and U2 respectively, 
and U1 c U2 . A er -embedding tp12 : n1 ___, flz is called a er -injection of the CT -chart 
(fl1 , f1 , P1 )  into the er -chart (02, f2 , P2 )  if the equality Pl = pz o tp12 is satisfied. 

As it is known [6] , if tp12, tp�2 are two CT -injections of a CT -chart (fl1 , f1 , p1 )  into 
a Cr -chart (fl2 , f2 , p2 )  then there exists a unique /2 E f2 such that tp�2 = }'2 o cp12 . 
In particular, since each 11 E f1 can be viewed as a CT -injection of (fl1 , f1 , p1 )  into 
itself, for the two Cr -injections cp12 and cp12 o r1 there exists a unique /2 E f 2 so 
that tp12 o 11 = 12 o cp12 . Thus the er -injection cp12 induces the monomorphism group 
1/J12 : f1 ___, f2 : /l ,.__, /2 ·  

A er -atlas on N is defined t o  b e  a family of er -charts A =  { (ni , r i ,Pi ) ,  i E J} 
such that: (i) the family {Ui ,  i E J} is an open covering of N and (ii) every two charts 
(Di , fi , Pi )  and (flj , fj , Pj )  from A are er -compatible in the following sense. If Ui n Uj /; 
0, Ui = Pi (Oi) ,  Uj = Pj (Oj ) ,  then for any point x E Ui n Uj there exist a chart (fl, f ,p) 
not necessary belong to A such that x E U  C U;, n Uj where U = p(fl) and er -injections 
cpi : 0 ___, fl;, and cpj : n ___, fl.i of (fl, f ,p) into charts (Oi , ri , pi )  and (Dj , rj , PJ ) ·  

Two er -atlases A and B on N are said t o  b e  equivalent if the union A U B is a 
er -atlas. Applying lemma A .7  from [6] and lemma 4.1 . 1  from [7] it is not difficult to prove 
the following. 
Proposition 1 .  The defined relation is an equivalent relation at the set of indicated er -
atlases on topological space I'r 

An equivalence class of the er -atlases on N is called a n -dimensional orbifold structure 
on the topological space N. A er -atlas A is said to be maximal if for each er -atlas B 
such that B � A it is necessary A = B. It is easy to show that the union D of the all 
er -atlases from the same equivalent class is a maximal er -atlas on N. If A is a maximal 
atlas then the chart (0, f' , p) of the definition of er -compatible charts belongs to A. 

The pair (N,  A) where A is a maximal er -atlas on N i s  called a n -dimensional 
C'" - orbifold. The topological space N is called a underlying space of an orbifold (N, A) . 

A C' -mapp·ing or morphism from an orbifold (N, A) into an orbifold (N' , A' ) is called 
a continuous mapping f : N ___, N' if for every point x E N  there are charts (flT, p) E: A 
and (O' , r' ,p') E A' with coordinate neighborhoods U and U' such that x E U and 
f (U) c U' and there is a er -mapping /: fl -----+ fl' satisfying to the equality f lu  op =  p' of, 
The correctness of this definition, i.e. independence from a choice of charts follmvs from the 
er -compatible condition of charts from atlas A. \Ve call J the representative of j in 
the charts (n, r ,p) and (0', f' , pl As usually, if r � 1 then er -maps of orbifolds are 
called smooth ones. We denote the category of orbifolds by Orb and the algebra of smooth 
functions on an orbifold N by F(N) . 

It is well known, if x is an arbitrary point of an orbifold (N, A) then there exists a 
chart (D, f ,p) E A  such that D is the n -dimensional real vector space Rn , p(O) = x, 0 =  
(0, . . .  , 0) E Rn, and r is a subgroup of the group of orthogonal transformations of Rn. 
Such chart (Rn , r,  p) is called a linearized chart at x and U is called a linearized coordinate 
neighborhood of x. Further we usually deal with charts satisfying to these conditions. 
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Orbifold type of points.  A point x of an orbifold (N, A) i s  called regular i f  there is  
a chart (D ,  r,p)  E A with coordinate neighborhood U, x E U, such that r = {idn} .  A 
nonregular point is called an orbifold point. An orbifold having an orbifold point is called a 
proper orbifold. If there are charts at points x and y of N with coordinate neighborhoods 
isomorphic in the category Orb, then x and y are said to have the same orbifold type. 
Lemma 1 .  Let (N, A) be a n -dimensional er -orbifold. The subspace N0 of points of the 
same orbifold type with the induced topology has a natural er -manifold structure, with No 
is in general disconnected. 
Proof. Let x E N0 and (Rn , r, p) E A  be a linearized chart at x. The fixed-point set 
Fixr : == {y E Rn I �((y) = y, \11 E r} of the group r is some k -dimensional vector 
subspace Ho of Rn. Assume that Do = Rk x {O} . The map Po := Pino is a homeomorphism 
of Do onto the image U0 := Po(Do) .  As each point y = p(z) , z E FixI', has the same 
orbifold type as the point x ,  so U0 c N0. Denote by cp0 the inverse homeomorphism 
p01 : U0 ___, Rk . Hence the set N0 with the induced topology becomes a topological 
manifold, in genera1 disconnected. The er -compatible condition of charts from atlas A 
implies that the so-defined pairs (U0 ,  cp0) determine a differentiable er -manifold structure 
on N0 . Since each two points x and y from N0 have linearized charts (Rn , I\ , pi) and 
(Rn, rJ , PJ) with coordinate neighborhoods Ui and Uj which are isomorphic in category 
Orb, the fixed-point sets Fixri and FixI'j are diffeomorphic and so the points x and y 
have homeomorphic neighborhoods Pi (Fixri) and pj (Fixrj ) respectively. Therefore the 
dimension of each connected component of No is equal to k. Thus No is a k -dimensional 
(in general disconnected) er -manifold. 
Stratification. Observe that the manifolds of orbifold points of different types may have 
the same dimension. Denote by t:-..k the union of manifolds of orbifold points of dimension 
k (it is possible that f:...k = 0 ) and denote by l:-..n the smooth n -dimensional manifold of 
regular points. The family 

t:-..(N) = {t:-..k i k E {O ,  . . . , n}} 

is  called the stratification of the orbifold N, and t:-..k themselves are called strata. 
As it is known the following statement takes place. 

Lemma 2. Let \II be a finite subgroup of the orthogonal group O(n, R) and p :  Rn --+ R71"f\II 
be a canonical projection onto the orbit space Rn /\II . Let V := { x E Rn I iir x = {idRn } }  
be a subset of points with trivial stable subgroups. Then the image p(V) is a connected open 
and everywhere dense sv,bset of Rn /iJi. 
Proposition 2 .  The stratification t:-..(N) of n -dimensional er -orbifold (N, A) satisfies 
to the following conditions: 

{i) the stratum f:...k ,  k E {0, . . . , n - 1} is union of k -dimensional er -manifolds, and 
each conneded component f:...:k of stratum t:-..k is formed by orbifold points of same orb if old 
type; 

{ii) the stratum l:-..n is a connected open and everywhere dense n -dimensional er -
manifold consisting of the all regular points of N. 
Proof. l .  Let f:...:k = lJa:u Na be a disjoint union where Na is a set of points of the same 
orbifold type. According to proof of lemma 1 each Na is an open subset of t:-..i and hence 
Na is also closed subset of f:...:k .  The connection of topological space f:...k implies that t:-..i 
consists of points of the same orbifold type. 
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2. Since for each regular point x E N  there is a chart (D, r ,p) E A  such that r = idn 
then the stratum .6.n is an open set of N. 

Demonstrate that the stratum .6.n is an everywhere dense subset of N. Let x be an 
arbitrary point in N, let (Rn , r ,p) E A  be a linearized chart with coordinate neighborhood 
U at x. The inverse image p-1 (U n Lin) coincides with subset V c Rn which consists of 
the set of points with trivial stable subgroups. Therefore according to lemma 2 the image 
p(V) = U n .6.n is a connected open and everywhere dense subset of U. So each x E N 
is a limiting point of .6.n, i .e. the closure .6..n of .6.n coincides with N. Hence .6.n is an 
everywhere dense subset of N. 

Show that .6.n is a connected subset of N. Let x, y E .6.n.  Since N is a connected 
topological space, there is a path h :  [O, 1] __, N connecting x and y. As the set h( [O, 1]) 
is a compact connected subset of N there exists a finite chain { Ui ,  i = 1, . . .  , m} covering 
h( [O ,  1 ] )  where Ui are coordinate neighborhoods of charts (Di , ri , Pi )  E A, Ui n Ui+1 =/= 0 .  
Since .6.n is an everywhere dense subset of N there are points Zi E ui n ui+l n .6.n , i = 
1, . . .  ' m-1 .  Put zo := x, Zm := y. The points Zi and Zi+l belong to uin.6.n, i = 0, . . . ' m. 
In accordance with lemma 2 the set Ui n .6.n is connected, so there is a path 9i : [O, l] __, 
Ui n .6.n connecting zi and zi+l ·  Denote by g the product of paths gi , i = 0, . . .  , m. Then 
g is a path in .6.n connecting x and y, i.e. the stratum .6.n is a connected subset of N. 
The proposition 2 is proved. 

The definition of orbifold type points implies that any automorphism f :  N __, N of an 
orbifold N in category Orb keeps the orbifold type. So f (.6.k) = .6.k for all .6.k E .6.(N) . 
Closures of connected components of strata. 
Theorem 1. Let (N, A) 

_
be a er- -orbifold and .6..i be a connected component of a stratum 

.6.k . Then the closure .6..1, of .6..1, is naturally endowed by er -orbifold structure for which 
.6.i is a set of regular points. 
Proof. Let x be a boundary point of .6.1, , i.e. x E 3.6.i = .6.k \ .6.k. Denote by .6.� 
the connected component of stratum containing x. Let (Rn, r , p) be a linearized chart 
with coordinate neighborhood U at the point x, W : = p-1 (U  n .6.k) ·  Take a point b E 
p-1 (a) , a E U n  .6.k . Denote by r1 the stable subgroup rb of group r at b. As ri C 
r, f1 i r, so m < k. Consider a decomposition of the group r on the contiguous classes 
by subgroup r 1 

r = r1  u -11r1 u . . . u /srl 
where -11 , . . . , /s E r \ I\ .  Without loss of generality we may assume that Fixr = Rm x 
{O}, Fi:x:I\ = Rk x {O} ,  m < k. Show that /J IRk x {O} -/= idRk x {o} for j = 1 ,  . . .  , s. Suppose 
opposite, /:i lRk x {o} = idRk x {O} i then the group f1 contains /:i · This contradicts a choice 
of the element /j · 

Note that the stable subgroup r y of the group r at the point y E R k x { 0} coincides 
with f1 if and only if IJ (Y) -f. y for each j = 1 ,  . . .  , s . Thus the subset B := {y E Rk x {O} I 
r y = r i }  coincides with set R k x { 0} \ U.f =1 Fix-(j . As Fix-fj is a kj -dimensional vector 
subspace in Rk x {O} , and as shown above kj < k, so B is an open and everywhere dense 
subset of Rk x {O} . Furthermore B = W n (Rk x {O} ) ,  so p(B) c p(W) c .6..k . 

Let f' be a subgroup of the group r for which Rk x {O} is invariant subspace, i.e. f = 
{! E r  I 1(Rk x {O}) = Rk x {O} } .  Put 1/J : f __, O(k, R) : I H llRk x {o} , \(/ : =  irn1/J. Then 

1/J is an epimorphism of the group f' onto the group 1}f .  Since Fixr 1 = Rk x { 0} ,  we have 
[ i C ken jJ .  Take / E ker ip.  Then / E [b = [ i and hence ker 'lj! C [ i and 1'1 = ker 1/J .  
This means that the group 1}f i s  isomorphic to  the factor-group f/r 1 and 1}f i s  a finite 
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subgroup of the orthogonal group O(k,  R) which effectively acts on Rk x {O} . Therefore 
the set B coincides with set {y E Rk x {O} I Wy = {idRk x {o }}  } .  Applying lemma 2 to the 
group \If acted on Rk x {O} and to the factor-map q :  Rk x {O} _, (Rk x {O}) /w , we see 
that p (B) is an open and everywhere dense subset of Rk x {O}, with q(B) is connected. 
Observe that (Rk x {O})/w = (Rk x {O} )/f = p(Rk x {O}) and q(B) is homeomorphic to 
p(B) ,  then p(B) is connected. Inclusion Rm x {O} C B  implies p (Rm x {O}) C p(B) .  By 
continuously of map p we have p(B ) c p(B) C t:.k . As Rm x {O} c B = Rk x {O}, so 
p(Rm x {O}) c p(B) c t:.k . Hence JJ a connected set then B and p(B)_!!:!e also connected. 
Recall that a E t:.i and a E p(B) ; therefore p(Rm x {O}) c p(B) C !::.k .  Thus the point 
x belongs to t:.i with the open neighborhood p(Rm x {O}) from .6.�1 . The set .6.�n n 86.t 
where 86.1 : =  .6.1 \ .6.1 is open in t:.;n - It is closed as the trace of closed set 8.6.1 in N. 

The connection of the topological space 6.�, implies the equality .6.� !1 ot:.t = !::.� and 
hence i:'."..� C 3.6.k C .6.1 . 

Identify Rk with Rk x {O},  then thr� triple (Rk , W, p [Rk x {o} ) is a linearized cha:'i for 
.6.1 at the point x E 8.6.1 . For any point y E .6.), a chart is constructed by the maimer 
specified in lemma 1 .  A er -atlas defined by this a way determines the k -dimensional 
er -orbifold structure on the closure 6.t . The theorem 1 is proved. 
Examples. 1 .  Every er -manifold is a an orbifold of Lhe same class of smoothness. 
2. :-..Jote that the domain U of a chart (D , f , p) which is homeomorhic to D/r is in itself 
orbifold. Such orhifolds are called elementary. 
3. Suppose that a compact Lie group H acts smoothly on a manifold I'vf so that all 
stationary subgroups of the action are discrete. Then the orbit space A1 /I-I is a smooth 
orbifold. 
4. Recall that a group action is locally free if all stationary subgroups are discrete in induced 
topology. If an isometry group locally free acts on a manifold then orbits form a Riernannian 
foliation F. If there is an embedded orbit which has a point with a finite stabl(� subgroup 
then the orbit space is an orbifold. Really, this orbit is the proper leaf L E: :F with a finite 
holonomy group, it is known [2] in this case the space of leaves which coincides with the 
orbit space is an orbifold. 

4. Bundles over orbifolds 

Orbifold bundles. Let (N', A') and (N, A) be two er -orbifolds. A er -mapping 
" : JV' ____, N is called a submersion if each representative r. :  D' -+ D of " in charts 
(D1T1 , p') and (O, f , p) with coordinate neighborhoods lJ1 and U such that 7r(U') c U is 
a submersion from the manifold D' onto the manifold D. The correctness of this definition, 
i.e. indepr"ndcnce from a choice of charts follows from er -compatible charts of atlas A. 

Recall that the map A :  G1 ----> G2 of a group G1 into a group G2 is called an anti­
homomorphism, if >- (gg') = >-(g')>-(g) for all g, g' E G1 . Let F be a smooth manifold and 
H be a Lie group. An orbifold bundle with standard fiber F and structure group H over 
an orbifold (N, A) is said to be define if: 

( 1 )  for each chart (D., , f, , p.i) E A  the following objects are determined: (i) a bundle 
Ti; : P; _, ni with standard fiber F and structure group H; (ii) an anti-homomorphism 
h; : ri ----> AutP; from the group f; into the automorphism group of the above bundle which 
natisfies to the equality ;-1 0 Tri = 71"; 0 hi b) , t/-y E: r., ;  
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(2) for injection !fij from a chart (fli , ri , Pi )  into a chart (flj , rj , Pj )  with coordinate 
neighborhoods ui and uj , ui c uj , there is an isomorphism :Pij : Pj l<p ;j (D;) --; pi 
between bundles PJ l'f' ;j (D;) and Pi which satisfies to the conditions : (i) hi (r) o rp;_i = 
cp- o h (1f, . .  ('"Y)) V"' E f ·  where 10 · · · f · --; r · is the monomorphism group induced by (;')· · ·  2J J "t'2) \ , J I i l ' 2) · i J r iJ : 
(ii) if Ui c UJ c Uk and cp;j and cpjk are respectively injections then cpJk o l.f!iJ = rpij ocpJk · 

Our agreement on charts implies that them coordinate neighborhoods are contractible. 
Therefore we may presume that the bundles (Pi , 1ri , fli) are trivial; i .e .  P; = Iii x F and 
7r; is the canonical projection onto the first factor. 

For every chart (O;, ri , Pi )  E A the anti-homomorphism hi gives rise to a smooth 
action of the group ri on the bundle space Pi . Since ri is a finite group the quotient space 
Pi := Pi/I\ is a er -orbifold of dimension dim N + dim F, and the following diagram 

pi p; P, ----+ 
1 Ki 

ni Pi U; ----+ 

is commutative where ifi : Pi --; Ui is a map translating an orbit .z · I\ E P; ,  z E Pi , to 
the point Pi(7ri (z) ) E Ui c= Pi (D.;) .  Denote by P the disjoint union of Pi over all charts 
(fl; , ri , Pi )  E A. Endow the set P with the following equivalence relation. \Ve wili say that 
two point z; E Pi and z.7 E Pj are p -equivalent if: (i) fi\ (z;) = 1fJ (zj )  = x E Ui n Uj ; 
(ii) there exist two points z; E (f5it 1 (z,) and Zj E (f5J )- 1 (zj )  and a chart (flk , I"k , Pk )  E A. 
with coordinate neighborhood Uk such that x E Uk c U, n Uj and ZJ = (rpkj )- 1 o tf5ki (zi ) · 
Demonstrate that the relation p is transitive. Let zi E P; , Zj E Pj , z1 E P1 , with zi ,!!_, 
Zj and ZJ ,!!_, z1 . Then Tii(.zi)  = T.J (zj) = 1r'1 (z1 )  '= x E Ui fl [Ji 11. Uz and there exist 
points z; E (.P;t 1  (zi ) ,  Zj E (f5J ) -1 (zj )  and zj E (PJ ) -1 (zJ ) ,  z1 E (f51t·1 (z1 ) and charts 
(Ok, fk , Pk ) ,  (rim , fm , Pm )  E A  with coordinate neighborhoods Uk and Um respectively 
such that x c Uk (_ U; n uj , x E Um c uj n Uz and Zj = (rpkj) - 1  0 <l5ki(zi ) ,  Zz = 
(rpmi ) ·- l o rfmJ (z_j ) .  Put Zk = rpk; (zi )  and Zm = <Pmz (zz ) .  Since Zj , zj E (.Pj ) - 1 (zJ ) ,  then 
there exist I � rj such that zj = hj (r) (zj ) ·  So Zm = <Pmj (zj ) = <Pmj 0 hj (r) (z1)  = 0mj 0 
hj b) o (rpkjt 1 (z1c ) .  Sincc i.he atlas A. is maximal for x there exists a chart (Qr , fr , Pr) E A  
such that x E Ur C [h 11 Urni and we may assumed that the injection cprk and 1.f!nn satisfy 
to the conditions 7rk (zk) E 1Prk (r2r) and 1Tm(zm)  E: 1.f!rm (r2r ) ·  The compositions l.Pki o cprk 
and cpmz o cp,.m are injections the chart (�lr , rn Pr) into charts (lli , fi , Pi )  and (11 1 ,  f'1 , pz )  
respectively. Define a homomorphism !frk by  the equality 0rk :=  rfrm o 0mj o hj ( /)  o ( :Pkj ) - 1  
where 0nn i s  an arbitrary homomorphism satisfying to the conditions of the orbifold bundle 
definition. Then Zm cc•· - l 0 <Prk (zk ) .  By condition (2) of the orbifold bundle definition 
we have cprnz. o IPrm = 0nn o rf5mz and 'Pki o l(irk = :Prk o 'Pki · Therefore Zz = l.Pml o i.{Jrm o 
('Pki o-cprk)-1 (zi ) · Thus the points z; and zz are p -equivalent and p is an equiva.lent 
relation. The quotient space p = p Ip is naturally endowed a er -orbifold structure. The 
projection 7r; : P; --; D.; define a smooth map 7r :  P --; 1V between the orbifolds which is a 
submersion. Thus we have the following proposition. 
Proposition 3. Each orbifold bundle with a standard fiber F and a structure group H 
over a er - orbifold N naturally defines a er -orbifold P of dimension dim N + dim F 
and an orbifold submersion 7r :  P --; .LV. 

The er -orbifold P is called the bundle space, the orbifold submersion 7r :  P --; N is 
called the projection of the b1mdle. 
The tangent bundle over orbifold. Let (N, A) be a n -dimensional orbifold, 6.(N) •c. 
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{.6.k} be the stratification of N. Let (Di , ri , Pi )  E A be a chart with coordinate 
neighborhood Ui · Denote by (Pi ,  1ri , Di) the tangent bundle over manifold Di . The 
standard fiber of the tangent bundle Pi is the n -dimensional real vector space F = Rn, 
the structure group of the tangent bundle Pi is the linear group H = GL(n, R) . Define 
the anti-homomorphism hi : ri _, AutPi from the group fi into the automorphism 
group of Pi by the equality hi (r) := (r-1 )* ,  \fry E f;, where (r-1 )* is differential 
of the transformation ry-1 . If C,Oij is an injection from a chart (ni , ri , Pi )  into a chart 
( Dj , r j , Pj ) with coordinate neighborhoods Ui and Uh Ui c Uj , then we determine an 
isomorphism cpij : PJ l'P,j (ST; )  _, Pi between bundles PJ l'Pij (n,) and Pi by the equality 
rp;j := ( r,oij1 )* , where ( r,oij1 ) * is differential of the map r,oi/ . We see that so-defined the anti­
homomorphisms hi and the maps ({5;j satisfy to the conditions (1)  and (2) of the orbifold 
bundle definition. Thus we have an orbifold bundle with the standard fiber F = Rn and the 
structure group H = GL(n, R) which is called the tangent bundle over orbifold (N, A) . We 
denote by TN the orbifold which is the bundle space and the tangent bundle over orbifold 
N by (TN, rr, N).  

Let (Rn, r ,  p) be a linearized chart at x E N\ .6.n . Let ( P, ft, Rn) be the tangent bundle 
over Rn. Then ry(O) = 0, \l�f E f, and the fiber ft-1 (0) c P over the point 0 E Rn is kept 
by each transformation hi(r) = (r-1 ) * ,  ry E r. Therefore rr-1 (x) � ri-1 (0) /f = Rn/r . 
This implies that the fiber ?T-1 (x) over a point x E N \ .6.n is not a vector space. 

5 .  The tangent vector space to an orbifold 

Let (N, A) be a n -dimensional er -orbifold, r ;:::: 1 ,  er :  (-s, c:) _, N be a er -curve in 
N, cr(O) = q .  Let (Rn , r, p) E A  be a linearized chart at the point q. By the definition of 
the smooth map there exists a er -curve CT :  ( -E, E) -) Rn such that p 0 CT = (]". We call CT a 
representative of the curve <Y. Let f E F(N). The equality J := f o p defines f -invariant 
er -function f :  Rn _, R. We will designate the algebra of r -invariant er -function on 
Rn by Fr(Rn) .  Since f o O" = f o (p o er) = (f o p) o er = f o er, the composition f o er 
is a er -function on interval ( -E, E) . Denote by L;q the set of er -curves er :  ( -c, E) -) N 
in orbifold N satisfying to the equality <Y(O) = q. Enter on the set �q an equivalence 
relation. We will say that two curves cr1 and er2 from �q are equivalent if the following 
equality 

d(f o er1) (t) \ = d(f o er2) (t) I 
dt l l=O dt i t=O 

(5 . 1) 

takes place for any f E F(N) . \Ve may assume that any two curves from �q are defined 
on the same interval (-c:, c:) . The class of curves containing a curve <Y is designated by [er] . 
Two functions f and g are said to have the same germ at q E N if there exists an open 
set U, q E U, such that f lu  = g ju .  Note that the value d(f:�)(tl l t=o , <Y E �q , depends 
only from the germ of function f at point q.  The equality (5 .1) is equivalent the following 
condition. For any linearized chart (Rn , r, p) at the point q and any representatives <Y1 
and cr2 of curves cr1 and 0"2 respectively in Rn the equality 

d(g o cr1) (t) I = d(g o cr2) (t) 1I dt t=O dt ' t=O 

is carried out for all g E Fr (Rn) .  

(5.2) 
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Define an addition of two classes of curves and multiply of class of curves on real numbers 
by the following way. Let 0-1 : (- E, E) _, Rn and 0-2 : (-E, E) _, Rn be representatives of 
curves J1 and J2 in a linearized chart (Rn , r, p) at q. Then 0-1 + 0-2 is a curve defined 
by the equality (0-1 + 0-2) (t )  := 0-1 (t) + 0-2 (t) ,  t E (-E, E) , and a ·  0-1 is a curve defined 
by the equality (a · 0-1) (t) := a(0-1 ) (t) ) ,  t E (-E, c) , where the addition and multiply on 
real numbers are made in n -dimensional vector space Rn. Put by definition [J1 ] + [J2j := 
[p o (0-1 + 0-2)] and a[J1] := [p o (a · 0-1 )] . It is possible to show that [J1] + [J2] and 
a[J1] do not depend on a choice a linearized chart (Rn , r, p) at the point q, on a choice 
representatives 0-1 and 0-2 of the curves J1 and J2 in Rn and on a choice curves J1 and 
J2 in classes lJ1] and [J2 ] . 

Denote by TqN so-defined vector space of classes of curves. We call TqN the tangent 
vector space to er -orbifold N at the point q E N where r 2: 1. If an orbifold N is 
a manifold then the given definition of a tangent vector space coincides with well known 
one [8] . 
Theorem 2 .  The tangent vector space TqN to er -orbifold N, r 2: 1 ,  at the point q E £j__k 
is naturally identified with the tangent vector space 1�£j__k to manifold £j__k at the point q .  
Proof. Let (Rn , f, p) E A  be a linearized chart at q,  (x1 , . . .  , xn) be standard coordinates 
of point x E Rn . V!ithout loss of generality we assume that the set of fixed points Fixf 
coincides with Rk x {O} . Let [a-' E I:q and 0- be a representative of a- in Rn . The 
curve a in the coordinates of Rn looks like ( 0-1 , . . . , o-n) .  Note that the the curve a-* := 
p o  0-* where curve 0-* has coordinates ( (0-*) 1 , . . . , ( 

0-* )k
, 0 . . .  , 0) belongs to the class [o-]. 

Indeed, for any g E Fr (Rn) we have g o /' =  g, V; E f. Fix an element ; E f. We can 
regard the diffeomorphism ; of Rn as a coordinate transformation yj = yj ( x1 , . . .  , xn) . 
Differentiating the identity g o ;( x) = g (  x) , x E Rn, we receive 

a9 1 ayJ I oyj I y=O ox" i x=O 
_0L I  :::. ·i ; , i, j = 1, . . . , n .  uX l x=O 

A (0) 0 . j (0 Cl) 0 h _§_g_ I - _§_g_ I . - 1 . T·h t" b ' t s ; = , i .e. y , . . .  , == we ave &yi y=O - &xi . x=O , J - .1. ,  • . •  , n . us · ,e \ ec or 
Y. " th d·� � (_§_g_I _E.E__ I ) . k t b ' h t f t• ' E l' w1 coor lHaces , ax' x=o ,  . . .  , &xn x=O is ep , y eac rans,orma 10n /*o '  ; . 

Therefore Y belongs to the tangent vector space T(J (Fixf) to manifold Fix[ = Rk x {O} 
at 0 E Rn which is identified with Rk x {O}. Hence fJ-;, = 0, j = k + 1, . . .  , n . Since 

d(g o o-) (t)_ i = t ag I dQ-i(t) 
dt I l=O i=l ox' ! x=O dt 

� og I d(a-* ) i (t) I 
L_., " i I dt i=l ax l x=O l t=O 

d(g o a-* ) (t) I dt l t=O 

for all g E Fr (Rn) then a-* E [a-] . From here using the the equivalence of the conditions (1) 
and (2) we have 

d(j]_( i) I =cc dQ-2( t) I . dt ! t=O dt t=O 
(5 .3) 

We will consider Tq£j__k as the vector space of equivalence classes (5) of curves S in 6k . 
Define the map .A :  TqN _, Tq6k by the formula .A( [o-] ) := (a-* ) .  Applying the equivalence 
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of conditions (1 )  and (2) we see that the condition (5.3) implies that [cr1 ] = [cr2] if and only 
if (cri ) = (u2 ) and hence map >. is correctly defined and >. is an injective map, and >. does 
not depend from a choice chart (Rn, r, p) E A at the point q.  It is not difficult to see that 
>. is a surjective homomorphism of vector spaces TqN and Tqb..k .  Then >. :  TqN --+ Tqb..k 
is canonical isomorphism of vector spaces. Thus the tangent vector spaces TqN and Tqb...k 
are identified through >.. 
Corollary 1. Let N be a n -dimensional orbifold. 

1. If q E b..k then dim TqN = dim Tqb..k = k .  
2 .  The point q is  a regular point of N if and only if dim TqN = n.  
3 .  The point q is  an isolated orbifold point if and only if dim TqN = 0. 
Let f :  N --+ N be an automorphism of an orbifold N in category Orb. By the natural 

manner we define the differential f*q : TqN --+ Tf(q)N of map f at a point q E N  setting 
f*q ( [cr] ) := [f o u] , [o-] E TqN· Since f (b..k )  = b..k and fbk : b..k --+ b..k is a diffeomorphism 
of a manifold b..k , using theorem 2 it is easy to show that the map f*q is correctly defined 
and f*q is an isomorphism of tangent vector spaces l�N and Tf(q)N. 
Vector fields on orbifolds. :Further we will denote the elements of the tangent vector space 
Tx1Y- of an orbifold N at x E 1V by Xx, Yx , Zx , . . . An element Xx, x E N, is an equivalent 
class [u] where O" E �x , u(O) = x .  Put Xx (!) := d(f��) (t) l t=O for any f E F(N) . A smooth 
vector field on an orbifold N is called a correspondence X :  x 1--) Xx E TxN, x E N, such 
that for the all function f E F(N) on N the function Xf : N --+ R :  x 1--? Xx(!) , x E N, 
belongs to F (N) . Denote by X(N) the set of the all smooth vector fields on N. The 
operations of addition of two vector fields and multiply of a vector field on a real number 
of R are defined by the point-wise manner: (X + Y)x := Xx +  Yx , (aX)x := aXx , X, Y E  
X(N) , a E R, x E N. If N is an orbifold of class 000 then the vector space X(N) of 
smooth vector fields on N is endowed with Lie algebra structure. 

6 .  Affinely connected orbifolds 

The frame bundle over an orbifold. A bundle P with standard fiber F and structure 
group H over an orbifold N is called principal if F = JI and the group H acts by right 
translations on F. 

Let (l.li , ri , Pi ) be a chart of a n -dimensional er -orbifold N. Denote by Pi the 
principal GL(n, R) -bundle of frames over Oi . Define an anti-homomorphism hi from the 
group ri into the automorphism group of bundle Pi as hi (r) (z) := (r-1)*x o z , /  E ri , 
where z :  Rn --+ Txl.li is a frame at x E Oi . If Ui c Uj and cp;j is an injection of charts 
(l.1; , r; , p; )  and ( f2j , rj , Pj )  with coordinate neighborhoods Ui and Uj respectively then 
define the homomorphism rfJij :  PJ l'P ,; (ll,) --+ P; between bundles PJ /'P,J (ni) and P; by the 
equality rp;j (z) : = (cpi;/) *x o z  for a frame z at x E cp;j (l.1;) . The so-constructed hi and 
(/Jij define a principal bundle with structure group GL(n, R) . It is called the frame bundle 
over the orbifold N and it is designated by (P, Jr, N). 
Proposition 4. Let (P, Jr ,  N) be a frame bundle over n -dimensional orbifold N. Then P 
is a smooth (n2 + n) -dimensional manifold and the connected components of the fibers of 
Jr are leaves of a n -codimensional smooth foliation F of If (fl, r , p) is a chart at x E N  
and the transformations of gmup r keep orientation of n then the holonomy group of a 
leaf L c x-1 (x) is isomorphic to r.  
Proof. For every chart (rti , fi , p; ) E A of orbifold N the group ri i s  finite. It  is  easy 
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to see that the ri freely acts through hi defined above on Pi . Hence the quotient space 
Pi = Pi/fi is a er -manifold and the quotient map Pi : Pi __, Pi is a covering, with the 
covering transformation group of Pi is isomorphic to the group r. Using the proof of 
proposition 3 we receive that the bundle space p is a er -manifold, and the connected 
components of 7r--1 (x) ,  x E N, determine a er -foliation :F of codimension n on P. If 
(Di , ri , Pi )  is a linearized chart at x E N and the transformations of group ri keep an 
orientation of Di then Pi consists of two connected components P/ and Pl . So the inverse 
image 7rj1 (0) consists of two connected components Kj , j = 1 ,  2 .  The holonomy groups 
of the leaves Pi(Kj )  = L; c 7r-1 (x ) ,  j = 1 , 2 ,  are isomorphic to r. 
Affinely connected orbifolds. Let (P, 7r ,  N) be the frame bundle over er -orbifold N. 
On P is defined a smooth right action R :  P x GL(n, R) __, P of the group GL(n, R) , 
and GL(n, R) acts on P freely if only if the orbifold N is a manifold ([9] ) .  The global 
one-parameter group of transformations in GL(n, R) generates the fundamental vector field 
on P, tangent to the foliation :F. 

A connection in P is a smooth n -dimensional distribution 'H on P satisfying to the 
equalities 

( Rg) * (nz) = 'HR9z ,  
for all z E P, g E G L (  n ,  R) , where T :F is a tangent distribution of :F. Each vector 
X E  TzP can be uniquely written down as X = HX + VX, where HX E Hz , VX E Tz:F. 
We call HX the horizontal component of X and V X the vertical component of X. 

Each A from the Lie algebra gl := gl(n, R) of GL(n, R) defines the fundamental 
vector field A* on P, and the mapping gl __, Tz:F:  A ,__, A� is a vector space isomorphism. 
Given an arbitrary vector X E TzP, define w(X)  to be the only A E gl for which A; is 
equal to V X. The gl -valued 1 -form w is called the connection form for H. The connection 
form w satisfies to the equalities: (i) w (X*) = A  and (ii) (Rg) *w = Ad(g-1 )w where Ad 
is the adjoint representation of the Lie group GL(n, R) in the Lie algebra gl . Note that 
if w is some gl -valued 1 -form on P satisfying to these conditions then there is a unique 
connection H whose connection form is w. 

The orbifold N with a given connection H in the frame bundle P is called an affinely 
connected orbifold. The following proposition holds. 
Proposition 5. The connection H in the frame bundle P over an er -orbifold N is given 
if and only if there exists a mapping \7 : X(N) x X(N) __, X(N) satisfying to the following 
conditiom: 

\7 x (Y + Z) = \7 x Y + \7 x Z, \7 x + y Z = v x Z -i- Vy Z, 

\7xfY = (Xf)Y + f\7 xY, \71xY = f\7xY, 
where X, Y, Z E X(N) , f E F(N) . 

We also call a map \7 satisfying to the above conditions a connection or a covariant 
differential operator on the orbifold N. Further an affine connected orbifold is denoted by 
a pair (N, \7) .  
Remark 1.  A connection \7 can b e  viewed as a family {Vi, (Di , ri , Pi )  E A} where 
'Vi is a connection on a manifold Di satisfying to the following conditions: (i) f; is a 
transformation group of the affine connected manifold (ni, 'Vi) ;  2) an injection ifij a chart 
(U; , f; , pi )  into chart (nj , rj , Pj )  with coordinate neighborhood Ui and Uj , U; c Uj , 
satisfies to the equality (!fi] ) * ('V�yY) = V{cp;, ) .x (ifi] )*Y for all vector fields X, Y on D; . 
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Remark 2 .  Let ( Oi,  f i ,  Pi) E A be a chart, X and Y be f i -invariant vector fields on Oi , 
i .e . r*X = X, r*Y = Y� V1 E fi . The consequence of equalities /* (V"XY) = \7�.x�f*Y = 
\7�Y implies that VX-Y is ri -invariant vector field on Oi . The equality 'V�Y : =  \7�Y 
where X, Y is vector fields on Fixr; defines a connection on Fixfi . This means that the 
connection \7 induces the connection 'V on each connected component .6.� of stratum .6.k . 
By analogy the connection \7 induces the connection "V on the closure .6.i which is a 
k -dimensional er -orbifold. 
Absolute parallelism on the frame bundle. Let P be the frame bundle over an orbifold 
N. The canonical form e on P is the Rn -valued 1 -form defined by the following way. 
For each X E TzP and every chart (O; , ri , Pi )  at 7r (z) let X E T2P; be such that 
(p; ) * (X) = X where p; : P; -+ F; = Pi/fi is a quotient mapping and z �  Rn -+ Tir(z) Oi is 
a frame at n(z) (see [10] ) .  Then we put by definition B(X) : =  z-1 (7r; ) * (X). A direct check 
shows that the value of e is independent of the choice of the chart (Oi , f; , p;) at 7r(z) and 
of the point z E I'; .  

Let H b e  a connection on P. Note that the canonical form e defines the linear 
isomorphism between Hz and Rn at every point z E P. For each e E Rn we define a 
horizontal vector field X(e) on P. Let X(e)z be a uniquely horizontal vector of Hz c TzP 
such that B(X(Oz) = e. The vector field x(e)z we call a standard horizontal vector field 
on P. 

Let w be a connection form of connection H on the frame bundle P over a n -
dimensional orbifold N and (I be the canonical form. Denote by {Bki k = 1 ,  . . . , n} 
the standard horizontal vector fields on P and designate by {ElJ , i, j = 1 ,  . . .  , n} the 
fundamental vector fields on P appropriated to standard basis { Eij , i, j = 1, . . .  , n} of 
the Lie algebra gl. Recall that a family {X1 , . . .  , Xn} of vector fields on a n -dimensional 
manifold NI are defined an absolute parallelism on M if { (X1)x ,  . . .  , (Xn)x}  is a basis 
of the tangent vector space Txl\1 at each point x E 1\1. The absolute parallelism on a 
manifold hf is also called e -structure on M. The following holds: 
Proposition 6. n2 + n vector ,nelds {Bk , E;j , k, i, j = 1, . . . , n} define a basis of TzP at 
each point z E P . Thus they determine an absolute parallelism on P. 
Pro of. Since dim P = n2 + n, it is enough to prove that these vector fields are linearly 
independent. Let (Oz , fz , pz) be a chart with coordinate neighborhood U at a point x E N. 
Put Uz := 7r-1 (Uz ) .  Kote that the vector fields { Bk lu, , E;j l uJ are projections of respective 

vector fields {ih, E;j } on P1 determining an absolute parallelism on P1 , i.e. (pz ) * (Eh) = 
Bk i [r, and (J5z ) * (Eij ) = E;j l u1 • Since the factor-map pz : Pz -+ Pz/fz C P is a covering 

map, the group fz is an automorphism group of P1 and {Bk , E;j } are linearly independent 
then the vector fields {Bk l u, , E;j l u) are also linearly independent.  Hence, the the vector 
fields {Bk , Ei.d are linearly independent and the family { Bk i Eij } determines an absolute 
parallelism on P. 

7. The transformation groups of affinely connected 

orbifolds 

Automorphisms of (N, \7) . Let (N, \7) be an affinely connected orbifold.  An 
automorphism f of N is said to  be an automorphism of the affinely connected orbifold 
(N, \7) if f* (\7 x Y) = \7 f. X f*Y for all X, Y E X (N) where f* is differential of the 
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automorphism f. Denote by A(N) the group of the all automorphisms of (N, V).  
Let (P, K ,  N) be frame bundle over the orbifold N. Let fiJ : ni  --t nJ be a 

representative of f in a charts (rli , ri , Pi )  and (OJ , rj , pj) with coordinate neighborhoods 
Ui and UJ respectively, f(Ui)  c UJ · Then it induces homomorphism jiJ : Pi ____, PJ of the 
frame bundles Pi and PJ . There exists an isomorphism 1/JiJ : ri ____, rJ of groups. As the 
equality 

(7.4) 

is satisfied then a smooth mapping jiJ : P;jri ____, PJ /r J is defined. If fiJ : ni ____, nj is 
other representative of f then there is a transformation / E r J such that f [j = r o fij . 
Therefore Jij and J:j coincide. We may identify Pi/fi and 7r-· 1 (Ui ) · Thus the morphism 

Jij of the frame bundle 7r-l (Ui )  into the frame bundle K-1 (UJ )  is determined. Let Jkz 
be a so-defined isomorphism of the frame bundle 7r-1 (Uk )  into the frame bundle 7r-1 (U1) 
where Uk and Uz are coordinate neighborhoods of chart (0.k , fk i Pk )  and (flz , fz ,pz) , 
f (Uk )  c U1 , with Ui n Uk cl 0 and Uj n Uz cl 0. It is possible to show that the morphisms 
Jij and Az coincide on K-1  (Ui n Uk) .  This manner the family {jij } correctly determines 
the automorphism J of manifold P. Recall that a morphism f of a foliation (M1 , F1) into 
a foliation (M2 , :F2 )  is a smooth map f :  };Ji ____, M2 which displays leaves of :F1 into leaves 
F2 . Since Jij : Pi ____, Pj is a homomorphism of the frame bundles Pi and Pj for which 
the equality (7.4) takes place then Jij is a foliation morphism of (7r-1 (Ui ) , Fl1f-1 (U,J ) and 

(7r- 1 (UJ ) , Fln - 1 cuj ) ) · Thus f defines the automorphism J of the foliation (P, :F) , and 

1f 0 j = f 0 'If. 
Lemma 3. The automorphism J of the foliation (P, :F) induced by an automorphism f 
of the affinely connected orbifold (N, V) keeps in'Uariant the connection form w and the 
canonical form e. Conversely, let h be an automorphism of foliation (P, :F) , and h*w = 
w, h*B = B .  Then h is induced by an automorphism f of (N, V) . 
Proof. Let J induce an automorphism f of the affinely connected orbifold (N, V) .  Let 
(Oi , ri , Pi )  be an arbitrary chart of N with coordinate neighborhood ui , Ki : pi -----; ni be 
the frame bundle over ni . Denote by Pi :  Pi ____, Pi/fi = Pi c_ P the map onto orbit space 
Pi of the group ri ·  Note that the connection form w determines a connection form wi on • 
the frame bundle Pi , so that (f5i )*w l1f-1 (U,) = wi where (f5i ) *  is a codifferential of map Pi · 
Since f is an automorphism of the affinely connected orbifold (N, V) , the representative 
fij of the automorphism f at the charts (Oi , fi , Pi ) and (0.j ,  fj , Pj ) ,  f(Pi (Oi) )  = Pj (OJ) , 
is an isomorphism of the affinely connected manifolds (Oi , Vi) and (nj , VJ ) .  Therefore 
(jij ) * Wj = W i where Jij : Pi ____, Pj is the homomorphism of the frame bundles Pi and 

Pj induced by fij . Then the induced automorphism j keeps the connection form w on 

P, i .e. f*w = w .  By analogy the equality (fiJ ) *Bj = Bi where B; is a canonical form on 
Pi , P;"Bln-' (U;) = Bi implies that j keeps the canonical form B on P, i.e. f*B = B.  
A lie group structure in A(N) . 
Lemma 4 .  If two automorphisms f and g of an affinely connected n -dimensional orbifold 
(N, V) coincide on some open set U C N then f = g on the whole orbifold N. 
Proof. Let f and g be two automorphisms of an affinely connected n -dimensional orbifold 
(I'{, V) . Let U be a open set of N, and f l u = g ju .  By proposition 6 the forms w and e 
define an absolute parallelism {Bk> Eij , k, i, j = 1, . . . , n} or e -structure on P. By lemma 3 
the automorphisms j and g induced f and g keep invariant the connection form w and 
the canonical form B. Hence, J and g keep invariant the vector fields { B k i  Eij , k, i ,  j = 
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1, . . .  , n} .  Thus J and fj are the e -structure automorphisms of P. Since f I u = g I u, the 
induced automorphisms j and fj coincide on the set V := n-1 (U) .  It is well know that if 
two automorphisms of e -structure on a manifold coincide at one point then they coincide 
on the whole. Thus J == fj. So f = g and lemma 4 is proved. 
Theorem 3 .  The automorphism group .A(N) of an affinely connected n -dimensional 
orbifold (N, v) admits a Lie group structure, and dim .A(N) :::; n2 + n. 
Proof. By lemma 1 each automorphism f E .A(N) induces the e -structure automorphism 
J of P, and the equality J = idp implies f = idN . Thus we have an isomorphism 
7) :  f r-+ J from the group .A(N) onto some subgroup G of the e -structure automorphism 
group .A(P) of P. Note that G := {h E .A(P) I h is a foliation automorphism of (P, F)} .  
By Kobayashi's theorem [3] , the group .A(P) of all e -structure automorphism of P i s  a 
Lie group with compact-open topology induced from diffeomorphism group Dif f (P) ,  and 
dim .A(P) :::; dirn P = n2 + n. Demonstrate that G is a closed subgroup of .A(P) . Let 

Un} c G be a consequence converging to f in compact-open topology of .A(P) . Then for 
all x E P the sequence {f n ( x)} converges to f ( x) in topology of P. Since f n E G there 
is the sequence {gn} C .A(N) such that 1f o .f n (:r) = 9n o n(x),  x E P. As the map 1f is 
continuous and N is a Hausdorff topological space, we have 1f o f ( x) = limn___,00 (gn o 11( x) ) .  
Take any y E L(x)  E F. The uniquely of limit limn___,00 (gn o n(x) ) implies Ji o f(y)  == 
limn-+= (gno11(y)) = limn-,= (gno7r(x)) = nof(x). Furthemore J(L(x)) cc·. L(f(x) ) ,  i .e. f is 
a foliation automorphism of (P, F) . Hence, .f E G and the group G is a closed subgroup of 
.A(P) . Thus the group G is a Lie subgroup of .A(P) . Through the isomorphism 7) the group 
.A(N) is endowed by a Lie group structure, with dim .A(N) = dim G :::; dim .A(P) <:'. n2 + n. 
The theorem 3 is proved. 
Good orbifolds. Let }.1 be a er -manifold and r be a group properly disconnected 
acting on M, then the factor-space M/r is a er -orbifold. An orbifold N is called a good 
orbifold, if there is an isomorphism of N to an orbifold 1'v1 /r where M is a manifold 
and r is a properly disconnected group of diffeomorphisms of M. If (N, \7) is a good 
affinely connected orbifold, N = 1\!J /r, then the connection \7 induces a connection V 
on manifold lvf such that the group r becomes an automorphism group of the affinely 
connected manifold ( M, V) . 
Proposition 7. The automorphism group .A (N) of a good affinely connected orbfold 
(N, \7) , N = NI/r ,  is isomorphic to the factvr-group N(r)/f where N(r) is normalizer 
of r in the automorphism group .A(A1) of the affinely connected manifold (Al, V) .  

8 .  Estimates of the dimension of A( �N) 
An influence of the stratification of N on dirn .A(N) . Let (N, \7) be an affinely 
connected orbifold, let .A(N) be the automorphism group of (N, \7) . According to theorem 3 
the group A(N) is a Lie group. Denote by .Ae (N) the connected component of unit of the 
Lie group .A(N) . Note that dim .A(N) = dim .Ae (N) . 
Proposition 8. Let .6.t be a connected component of a stratum .6.k of an affinely connected 
orbifold N. Then J(.6.k) = .6.k for each automorphism f E .Ae (N) . 
Proof. First of all, demonstrate that the action <l? :  .A(N) x N ---'> N given the equality 
i!>(f, x) := f (x) , (f, x) E .A(N) x N, is continuous. Fix x E N, f E .A(N) . Since f is a 
continuous map, for any open set U' in N, f ( x) E U' , there exist an open set U, x E U, 
such that f (U) C U'. There are a compact subset K with nonempty interior of IT-1 (U) 
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and a open set U0 of N such that U0 C 7r(K) C U. The set W := {g E A(N) I f)(K) c O} 
where 0 := 7r-1 (U') is an open set of A(N) , and f E W (see the proof of theorem 3) . 
Then <I>(W, Uo) c U'. Thus the group A(N) continuously acts on N. 

Fix f E Ae(N) . As the group Ae (N) is connected there exists a continuous path 
h :  [O, 1] -+ Ae(N) such that h(O) = idN , h(l) = f. Let x be a point of a connected 
component .6.i of a stratum .6.k . Since the path h and the acting <I> are continuous maps 
the path h :  [O, 1] -+ N defined by the equality h(t) := <I>(h(t) , x) is continuous. As idN 
keeps invariant the connected component .6.i and f(.6.k) = .6.k,  so h(t) E .6.t, \It E [O, l] . 
Therefore, the automorphism h(l) = f keeps invariant the connected component .6.k , i .e .  
f(.6.k) = .6.t . 
Theorem 4. Let (N, V') be a n -dimensional affinely connected orbifold, .6.(N) = { .6.ki  k E 
{O, . .  . ,  n}} be the stratification of N. 

1. If .6.k =/= 0, k =/= n, then 

dim A(N) ::; n2 + n - (n - k)(k + 1) < n2 + n.  (8 .5) 

2. The equality dim A(N) = n2 + n is satisfied if and only if (N, V') is the ordinary 
affine space with the fiat affine connection. 
Proof. 1. According to the equality dim A(N) = dim Ae(N) it is enough to estimate the 
dimension of Ae (N) . Suppose that .6.k =/= 0, k =/= n. Fix .6.k . By remark 2 the connection 
V' induced the connection 'V' on .6.A, . Thus (.6.i ,' V') becomes a k -dimensional affinely 
connected manifold. As it is known dim A(.6.k) ::; k2 + k. According to proposition 8 each 
automorphism f E Ae(N) satisfies to the equality f(.6.k) = .6.k .  So the map x :  Ae pv) ---+ 
A(.6.k) : f 1---1 Jl6, is correctly defined. From to the definitions of Lie group structure on k 
the groups Ae (N) and A(.6.k) it follows that x is a Lie group homomorphism. From here 
dim Ae (N) ::; dim A(.6.k) + dim ker x.  Estimate the dimension of ker x : =  { f  E Ae(N) I 
f lL'.t :cc : id61 } .  Take f E ker x.  Suppose that x E .6.i , (R" , r ,p) and (R", r', p') are 
linearized charts at x and f: Rn -+ Rn is a representative of f in these charts, f(o) = 0. 
Without loss of generality, we may assume that r = r' and r trivially acts on Rk x {O} 
and flR' x {O} = idRk x {O} · Then the differential J*o of J at 0 E Rn satisfies to the 
equality J*o iRk x {o} = idRk x {O} ·  Therefore Jacobi matri.x of J at 0 E Rn looks like 

(8.6) 

where B E  GL(n-k, R) , A. is a k x (n-k) matrix, E is the unit of group GL(k , R) .  Denote 
by G the Lie subgroup ofmatrixes of the form (6) . Remark that dim G = dim GL(n-k, R)+ 
k (n - k) = (n - k ) 2 + k(n - k) =-� n(n - k) . As J is an isomorphism of the affine connected 
manifolds, so if f*o = idRn , there exists an open set W ::i 0 such that flw = idw . 
As p is open ma.p ,  then f is equal to id on the open set p(W) of N. By lemma 4 
we have f = idN . So the map µ :  ker x -+ G :  f -+ J*o is isomorphism of Lie groups . 
Furthermore dimker x = dim G = n(n - k) .  Thus we have dim A(N) = dim Ae(N) _::=; 
dim A(.6.k) + dim ker x _::=; k2 +k + n(n - k) = n2 + n - (n - k) (k + 1) .  

2 .  The estimate (5)  implies that validity of the equality dim A(N) = n2 + n necessitates 
that only .6.n in nonempty, i. e. N is a manifold .  As it is well known, an affinely connected 
n -dimensional manifold N has the automorphism group A(N) of (n2 + n) -dimension if 
and only if N is the affine space Rn with the flat affine connection . 
Corollary 2 .  Let (N, V') be a n -dimensional affinely connected orbifold. 
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1 .  If N is a proper orbifold then dim A(N) s; n2 . 
2. The equality dim A(N) = n2 implies Ilk = 0 for all k E {1 , . . . , n - 2} . 
3. If dim A(N) > n2 then N is an affinely connected n -dimensional manifold with 

zero torsion. 
4. If dim A(N) > n2 and n ?'.". 4 then N is the ordinary affine space with affine 

connection. 
Proof. Given n and k E {O, . . . , n - 1 } ,  note that the function T(k) = n2+n- (n-- k) (k+l) 
attains its maximum equal to n2 at k = 0 and k = n-1. Therefore, for a proper orbifold N 
we have the inequality dim A(N) s; n2; moreover, the equality dimA(N) = n2 necessitates 
Ilk = 0 for all k E {1 , . . .  , n - 2} . 

According to  item 1 the inequality dim A(lV) > n2 implies Ilk = 0,  l;/k E {O , . . .  , n - 1  } .  
Hence, (N, V) i s  an affinely connected manifold. By theorem 1 . 3  of chapter 4 [3] , we receive 
that connection V has a zero torsion. Moreover, if n ?'.". 4 then theorem 1 .4  of chapter 4 
from [3] implies that N is the ordinary affine space Rn with the fiat affine connection. 
Some special estimates. Let N be a smooth orbifold, /l (N) = {Ilk,  k E {O, . . . , n }} , 
be its stratification. We say that a connected component flt of a stratum Ilk does not 
adjoin to a stratum of a greater dimension, if the closure llm of the stratum llm, I;/ llm E 
ll(N) , m < n, does not contain llf, .  Note that each connected component of lln-l satisfies 
to this condition. 
Proposition 9. Let (N, V) be a n - dimensional affinely connected orbifold. 

1 .If there exists a connected component Ill,, of Ilk which does not adjoin to a strafom 
of a greater dimension, then 

dim A(N) s; n2 -� n -- (n -- k) (2k + l) ;  (8 .7) 

moreover, if flt I- Ill,, , then 

dim A(N) s; n2 + n - (n - k) (2k + 1) - k. (8.8) 

2. The est·imates (8. 1) and (8. 8) are exact. 
Proof. 1 .  In the proof of theorem 4 we have defined the Lie group homomorphism 
x :  Ae(N) _, A(llk ) : f r-+ f l.ci.' . We have gotten dim A(N) = dirn Ae (N) <:; dim A( Ilk) + k 
dim ker x. Estimate dim ker x .  

Let f E ker X, x E fl k . Let (Rn , r, p) and (Rn , f', p') be linearized charts at x and 
f: Rn _, Rn is a representative of .f in these charts ,  f(O) = 0. Without loss of generality, 
we may assume that r = r' and Pix[ = Rk x {O} and f/Rk x {O} = idRkx {O} · .Jacobi 
matrix of a transformation �/ E r at 0 E Rn is an orthogonal matrix 

where E is the unit of orthogonal group O(k, R) , C E O(n- k, R) .  According to the proof 
of theorem 4, Jacobi matrix of f at 0 E Rn looks like (6) . As for an element / E f there 
exists /1 E r such that f o / = 1' o f, then J�o o /*o = /�o o f*o · This implies 

( E A ) ( E o ) = ( E o ) ( E A ) 0 B 0 C 0 C1 0 B 

where C:, C1 E O(n - k, R) . Hence we receive AC cc: A or ct At = At for all C E f : =  
{ c E O(n - k, R) I c i s  determined by 'l*o ' I E r} , where At ' ct are corresponding 

__ , 
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transposed matrixes. So the lines of the matrix A =c- ( aij ) are formed by the vectors ai = 
(a; 1 ,  . . .  , ain - k ) which are fixed by transformations of the group f'. Suppose that there are a 
vector X i  0 from the orthogonal complement V to the tangent vector space T0 (Fixr) for 
manifold Fixf at 0 E Rn and a transformation /o E r, �ro i idRn , such that % o (X )  =-= X. 
Let fo c r b e  the group generated by the clement 'YO · As f0 c [ ,  so Fix[ c �Vi:rf0 . 
Since X E V, we have r 0 i I.' and dim Fix[ < dim Fixf o .  Then there exists a connected 
component 6�. of a stratum 6m , corresponding to fo , where m := dim Fixf0 , k, rn, n,  
such that 6in :J 6/c . It  is  opposite to the assumption of proposition 9: 6i does not adjoin 

to a stratum of a greater dimension. Hence X = 0. Then each element C E f keeps only 
zero vector. Therefore A = 0 and dim ker x S dim G L(n - k, R) = ( n -- k ) 2 .  So we have 
dim A(N) = d�m Ae(N) S dim A(6k) +dim ker x S k2+k+(n-k)2 = n2+n- (2k+l) (n--k) .  

L et  61 i 6i . By theorem 1 the subspace 6i o f  N i s  a k -dimensional C'" -orbifold. 

According to remark 2 the connection V induces the connection "V on the orbifold 6i. 
Thus (6l� V) is an affinely connected orbifold. Theorem 4 implies that the automorphism 

group A(6k) of the affinely connected orbifold (6/c,'' V) is a Lie group, and dim A(D.k) S 
k2 + k. Since 6i :f D.h, then 6),, is a proper orbifold and hence by corollary 2 it follows 

dirn A(6lJ S k2 .  According to proposition 8 for each f E Ae(N) the equality f (6"1J "' 
6i� satisfied. By continuously of f we have f (6k ) = 6),, . So the map ;'( : Ae (N) -+ 
A(6k) : f >---+ f j 6f is correctly defined. using the definitions of Lie group structure on 

the groups A'°(N) and A(6k) we receive that x is a Lie group homomorphism. Let 
x :  A8 (N) ---+ A(6k) be the above defined homomorphism of the Lie groups. Denote by 

AN(6k) the image imx of homomorphism x and denote by A¥(6k) the image imx of 

homo�orphism ;'(. Since 61 is the set of regular points of .6.i which is everywhere dense 

in 6),, , then the homomorphism ?Ji :  AN (6i) -t AN(D.k) : f ,__, f !s' is an rnonomorphism. k -
Obviously 1f; is an epimorphism. Thus the groups Av(6AJ and Av (6k) are isomorphic. 
A corresponding check shows that �1 is a Lie group isomorphism. Then dim Av(D.k) = 
dim AN(61) S dim A(6k ) S k2 . Applying the estimate of the dimension of ker x and 
the inequality dirn Ae(N) S dim imx + dim ker x we have dirn AOV) = dim Ae OV) < 
dim A1': (6k) -t- dim ker x � k2 + (n - k)2 = n2 + n - (2k + l ) (n - k) k .  

2 .  The precision o f  the estimates (7) and (8) follows from the next examples. 
Example 5. Let , be the reflection of Rn respective to the subspace Rn-l x {O} giYen 
by the matrix 

C = ( E O ;J 
' 0 - 1 

where E is the unit of the orthogonal group O (n --- 1 ,  R) , n > l .  Let r be a group generated 
by T Then the group r � Z2 acts on Rn and the quotient space N1 :=� R71' /f is a n ­
dimensional orbifold. Since the group r fixed the points (:r 1 ,  . . .  ' Xn- ] ,  0) E: Rn and only 
them, the stratification of N1 looks like .6.(N1) = {6n , .6.n_ 1 } .  The structure of the affine 
space Rn induces the fiat affine structure on N1 .  Thus N1 is an affine connected orbifold 
with Hat affine connection vCll . Calculate the dimension of transformation group A(N1 )  of 
(N1 , VCl l ) .  According to proposition 7 the group A(JV1) is isomorphic to the factor-group 
N (f) /f where N(f) i::; normalizater of group of r in the group Aj f(Rn) of all affine 
transformations of the affine space Rn . The group Af f (Rn) is semidirect product of the 
linear group GL(n, R) and the shift group Rn . Therefore a transformation of Af f (Rn) 
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is demonstrated by a pair (A, a) where A E GL(n, R) , a E Rn, and 

(A, a) · (B, b) : =  (AB, Ab + a) ,  (A, a) , (B, b) E Af f(Rn) . 
Then the transformation 'Y can be submitted as (C, 0 )  where 0 = (0, . . .  , 0) E Rn . Since 
N(f) := { (A, a) E Af f(Rn) I (A, a) · (C, 0) = (C, 0) · (A, a) } ,  we receive that (A, a) E N(r) 
if and only if 

( A' 0 ) 1 A =  O ann 
, A  E GL(n - 1 , R) ,  

A s  the group r is finite, we have dim A(N1 ) = dim N(f) = dim GL(n - 1 , R) + 1 + n - 1  = 
(n - 1)2 + n = n2 - n + 1. 
Example 6.  Put 

� 1 � ) , C2 : �- ( � � � ) . 
0 1 0 0 - 1 

The finite group r generated by  C1 and C2 acts on  R3 as a subgroup of  GL(3, R) .  The 
factor-space N2 := R3 /f is a 3 -dimensional orbifold. The subgroup f1 c r generated by 
C1 fixes points of the axis Oz; the subgroup r2 c r generated by C2 fixes points of the 
plane Oxy; the group r fixes only point 0 �'' (0, 0, 0) E R 3 . Therefore the stratification 
of N2 looks like 6(N2) = {63 , 62 , 61 , 60} . The flat affine connection yr(2) on N2 is 
induced by the affine connection of the affine space R3 . Calculate the dimension of the 
transformation group A(N2 )  of the affine connected orbifold (N2 ,  VC2l ) .  By proposition 7 
A(N2) '="' N(f)/f. A direct check shows that (A, a) E N(r) if and only if 

( A' 0 ) 1 A =  O a33 , A E GL(2 , R) ,  a33 E R \ {O} , 

So dim A(N2) = dim N(f) = dimGL(2, R) + dim(R \ {O}) = 5 . 

a =  (0, 0, 0) E R3 . 

Thus examples 5 and 6 imply that the estimates (7) and (8) are exact . 
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SOME PECULIARITIES OF  QUANTUM-MECHANICAL 
SCATTERING IN  THE LOBACHEVSKY SPACE 

A.A. Bogush, Yu.A. Kurochkin, V.S.  Otchik and Dz.V. Shoukavy 

Institute of Physics, National Academy of Sciences of Belarus 
Minsk, Belarus 

The formulation of the quantum-mechanical scattering problem in the three-dimensional 
Lobachevsky space is presented. The quantum mechanical problem of the scattering by 

spherical potential well in the Lobachevsky space is considered. The graphical solution of 
the problem of bound s-states is given and the influence of curvature on the number of the 
bound states is investigated. The scattering by the Coulomb center is treated on the basis 
of exact solution of Schrodinger equation. An expression for the differential cross section is 
obtained. 

1 .  Introduction 

Quantum-mechanical problems in the spaces of a constant positive and negative 
curvature are the object of interest of researchers since 1940, when Schrodinger [l] was first 
solved the quantum-mechanical problem about the atom on the three-dimensional sphere 
(Einstein's Universe) . The analogous problem in the three-dimensional Lobachevsky space 
was first solved by Infeld and Shild [2] . In recent years the quantum-mechanical models based 
on the geometry of the spaces of constant curvature have attracted considerable attention 
due to their interesting mathematical features [3, 4, 6] as well as the possibility of application 
to the physical problems [5] . For example, these models are used for the description of the 
bound states in nuclear and elementary particle physics [3] . Thus, Kepler problem on the 
sphere 83 has been used as a model for description of quarkonium spectra [7] . Kepler -
Coulomb problem on the sphere 83 has been used as a model for description of excitations 
in quantum dots [8, 9] . Many aspects of this problem in spaces of constant curvature, in 
particular separation of variables and path integral formulation, have been investigated in 
the papers [ 10]-[12] . However, until now,the problem of potential scattering in spaces of a 
constant curvature was not formulated. 

The important problem with the formulation of the scattering problem in the three­
dimensional Lobachevsky space was the choice of expression for the incident wave. The use of 
plane wave of Shapiro related to the representations of the group of motions of Lobachevsky's 
space, made it possible to formulate and to solve the scattering problem on the Coulomb 
center (13] . In this paper the formulation of the quantum-mechanical scattering problem 
in the three-dimensional Lobachevsky space is considered with potential well as the model 
potential. The graphical solution of the problem of bound s-states is given. The influence of 
curvature on the number of the bound states is investigated. 
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2. The formulation of the problem 

Vie use embedding of the Lobachevsky space in 4-dimensional pseudoeuclidean space 
with coordinates Xµ , µ = 1 ,  2 , 3, 4 ,  given by formulas 

(2 . 1 )  

Schri:idinger equation is  (h = m =--� 1)  : 

(2 .2) 

where U is a potential energy. 
The scattering solution of the Schri:idinger equation behaves at large distances like the 

superposition of an incident wave and scattered spherical waves.  In the flat space the plane 
wave is considered as the incident wave. In the Lobachevsky space the Schri:idinger equation 
does not have plane wave solutions. The solution of the free equation of Schrodinger of the 
form closest in its properties to the plane wave as (see [14, 15]) 

x0 - xn .,-.. --( ) -1 - iry 
� (x, n) cc. 

p 
, T/ = ,f2Ep� - 1 ,  (2.3) 

where n is a unit vector that defines the direction of wave propagation in the Lobachevsky 
space. 

The spherical wave is considered as the scattered vmve. In flat space this is the outgoing 
wave, having at large distances r from the center form f ( B) exp(ikr ) /r . In the Lobachevsky 
space the Schrodinger equation also has solutions of the form of spherical wave . These 
solutions can be found by using spherical coordinates 

Xo = pcoshp, X1 = psin_._'1;3 sin B COS ip ,  
X2 = psinhp sin B sin ip, X 3  = psinh/3 COS B ,  

o :::; _B < x ,  o :::; e :::; Jr ,  o :s:. cp < 2Jr. 

(2 .4) 

Separating in the solution of the Schrodinger equation dependence on the angles e and 
cp by the use of spherical harmonics in the form \Ji = R1 (,8) Yzm ( e, cp) , we obtain in the case 
of U = 0 the radial equation 

I 1 ( 1 d . 2 d Z ( l + l) ) 1 I - ---.. - -_ smh 3- + - Ej R1 (;3) = 0 .  
L 2p2 \ sinh"',3 d;3 ' d/3 sinh2 p 

" 

The regular solution at ;3 = 0 of this equation is 

I Jr f(iri + Z + l) _ Lz S77z (P) = y' . 
;3 

r · · ) P_i+ (cosh ;3) . 2 srnh (IT) + 1 2 . 1'f/ 
The asymptotic form of the solution 8771 for /3 ---* CXJ is given by the expression 

S (p) � 1 l"eir1B - f(iri + l + l)f(l - i71) e-ir1/3J . 771 
2iri sinh ;3 f(Z - iri + l)l' (ir1 + l) 

(2 .5) 

(2.6) 

(2. 7) 
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The solution of equation (2.5) which outgoing spherical wave i n  the Lobachevsky space 
is describes on 

C .8) _ / 11 1 [r(i77 + z + l ) p-!-z ( ·h f3) r(i77 - Z) p!+z ( h fJ)J 
'lz (, - y 2 sinh ,B 2 f (i77 + l) -!+i7J cos + r(i7] + l) -!+i'l cos · 

\Vhen (3 ----+ oo we have 

C ({3) 1 i7]{3 7Jl ::::: 2· . h (3 e . l'r/ Slll · 

(2. 8) 

(2 .9) 
We choose vector n in (2.3) in the form n = (0, 0, 1 ) . Then the incident wave can be 

written as 
�({3, 8) = ( cosh f3 - sinh f3 cos 8)-l-i7] . (2 . 10) 

The incident wave (2.10) can be expressed through the spherical waves (2.6) (see, for 
example, [14, 15]) 

CXl 
�(,6, 8) = L(2l + l)Sr11 (f3)Pz (cos 8) . ( 2 . 1 1 )  

l=O 
The exact wave function which is the solution of the Schrodinger equation with the 

potential energy U(f3) takes for f3 ----+ oo the form 

1 . f ( 8) . f3 \If ::::: ( cosh 8 - sinh 8 cos 8)- -i7J + e''l . · ' ' p sinh f3 
Here the function f(8) plays the role of the scattering amplitude. 

3. Scattering by spherical potential well 

(2 , 12) 

As an example let us consider particle scattering on the spherical symmetrical potential 
well. Let us assign the potential of the well as follows 

U _ { 0 for f3 :'.'.: a ,  
- Uo for f3 < a, 

(3 . 1 )  

where constant a is the radius of the well. 
As the incident wave we will consider the wave of form (2 .3) .  Let cp(,6, 8) to be wave for 

(1 :s; a and x(X',  78) is a scattered wave. 
We use for the incident wave expansion in series (2.11 ) . The wave inside of the potential 

well we can expressed as 
CXl 

cp({3, B) = l: A1S7J'l (l:l)P1 (cos 8), (3.2) 
l=O 

where 
17' = ./2(E + Uo)p2 - 1 .  (3.3) 

The scattered wave is 
CXl 

x (f3 , 8) = L B1C7J1 (/3)Pz (cos 9) . (3A) 
l=O 

1 
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The coefficients of the expansion of Az and Bz can be determined from the continuity 
condition of wave functions and their derivatives at the boundary of the well f3 = a , which 
reduces to the following system of linear equations: 

pryz ( cosh a) + qryz (  cosh a)Bz = Pry'l (  cosh a)Az , 
p�1 (cosh a) + q�1 (cosh a)Bz = p�1 1 ( cosh a)Az , 

where we introduce the following notation 

� Pryl ( cosh /3) = y ---;--- Sryz , 

V 2 sinh /3 1 qTJz ( cosh /3) = Cryl = - (  sryz ( cosh p) + sTJ -l-l ( cosh /3) ) , 7r 2 ' 
, ( h (3) _ dpTJz ( cosh 13) 

, ( h /3) _ dqryz ( cosh /3) Pryz cos . , - dp , qTJl cos - d/3 . 
As a result, we obtain for the coefficients Bz and A1 expressions 

PTJ' l ( cosh a )p�1 ( cosh a) - PTJZ ( cosh a )p�, 1 ( cosh a) Bz - ����---'������������ - qTJz ( cosh a)p�,1 ( cosh a) - pry1 z (  cosh a)q�1 ( cosh a) ' 

qTJz ( cosh a )P�z ( cosh a) - q�1 ( cosh a )Pryl ( cosh a) Ai = q7J1 (cosh a)p�,1 (cosh a) - PTJ'z (cosh a)q�1 (cosh a) · 

Thus for the scattering amplitude we have an expression 
CX) 

f (B)  = _;;__ L BzPz (cos B) 
2ITJ £=O 

(3.5) 

(3.6) 

(3 .7) 

(3.8) 

The poles of Bz in the range of negative energies determine the bound states in the well . 

4 .  The case of the s-states 

In particular, when l = 0 we have 
Jk2 - l cot(av'k2=1) = -J>..2 + 1 = - J2p2U0 - k2 + 1 ,  

where 

This equation are determines the energy levels of the system . 

(4. 1) 

(4.2) 

Let us introduce the variables ( = a)k2 - 1 � 0 and T = a)>..2 + 1 ;:::: 0 .  Then we 
obtain 

T = -( cot (,  (4.3) 
The equations (4.3) can be solved is numerically or graphically. Values ( and / ,  which 
satisfy equations ( 4.3) are determined by p oint of intersections of the curve / = -( cot ( 
with the circle of radius pa� . 

The curves are represented on the figures 1 ,  2 (see Section 6) . We see that there are 
such values of curvature for which no stationary states exist . But with increase of the radius 
curvature p appear bound states, number of which rises with the increase of p . Also from 
figures 1 ,  2 we can observe that with growth of the U0 the number of bound states increases. 
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5 .  Coulomb Scattering in the Lobachevsky space 

The Coulomb potential in the Lobachevsky space is given by 

U - -� xo -
P lx l ' 

(5 .1) 

where a is  a positive constant (we consider of the Coulomb attraction) . 
In order to find a solution of Schri:idinger equation which behaves at large distances like 

the superposition of an incident plane wave and scattered spherical waves, we use an analog 
of a parabolic coordinate system [16] 

2 - t1 - t2 
xo = p , xi =  pv-tit2 cos tp, 

2-J(l - ti) ( l  - t2) 
. ti + t2 - 2t1 t2 

X2 = pv-tit2 sm tp, X3 = p I ' 2 ( 1  - ti ) (l - t2) 
0 < ti < 1 ,  -00 < t2 < 0, 0 :::; 1P < 21r. 

Hamiltonian with the Coulomb potential (5 .1) takes in these coordinates the form 

1 [ 1 - t1 8 () ' 1 - t2 8 8 1 82 ] 
H = - 2-- - t1 (l - t1 ) - -t- 2-- -. -t2 ( l  - t2) - + -- -, - -

p2 tz - t1 8t1 Ot1 ti - t2 8t2 8t2 2tit2 8tp2 

0: 2 - t1 - t2 
p ti - ·t2 

(5 .2) 

(5 .3) 

Due to the axial symmetry of the problem, it is sufficient to consider solution of the 
Schri:idinger equation with no dependence on tp , that is solution of the form \Ji(t1 , t2) = 
81 ( t1 )S2 ( t2) . Substituting this expression into the Schri:idinger equation, we find equations 
for S1 and S2 

(5 .4) 

( ,.. ,.. , J . J ;  

where separation constants Ki and K2 obey the relation K1 - K2 = o:p . 
Choice of the vector n = {O, 0, 1} means that for x3 --+ -oo (for t2 --+ -oo ) solution 

of Schrodinger equation with Coulomb potential must tend to solution of equation without 
potential which describes an incident wave. It is possible if dependence on the coordinate 
ti is taken in the form 

(5.6) 

where /:+. = -j(Ep2 ± cv.p)/2 - 1/4 . This expression corresponds to K1 = -i1- - 1/2 . Then 

(5 .7) 

is a solution of equation (5.5) with an appropriate behavior . 
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Solution of the Schrodinger equation can be written in the form \[! = AS1 (t1 ) S2 (t2) ,  
where A is a constant . Using the known asymptotic behavior of the hypergeometric function 
[17] we find that for t2 --" - oo  

w ""' A  
r(-2ir+) 

x [ ( 1 - t ) ( 1 - t ) J- -ii- -112 (-t,, )h- -h+ + 
r' (l 

. + . )r( . . ) 1 I 2 � ,  - I/+ 1/- -1/+ - 1/-- . 

Since 

r(2 . ) , ) i/- +1/2 
A i�f+ . ( 1 - t2 ( ) i� - i�_ - 1 + " . . . . x -- \ --t2 ,+ , . 

.L (1 + i�1+ + i1_ )r(11+ - r1- ) 1 - t1 

[( 1 - t1 ) (l - t2 )] -h- -
1/2 = [(xo - x3) /  p] -1-2i"1-

(5 .8) 

we can conclude that the first term in (5.8) describes an incident wave distorted by Coulomb 
interaction (for o: = 0 we have I+ = /- = / and we arrive at expression (2.3) with 
n = {0, 0 , 1} ) . 

If we set constant A as 

then the incident wave will have a unity amplitude. The second term in (5.8) that describes 
a scattered wave for /3 --" oo can now be written in the form 

_ 1 e2h+f3 f(e) , 
p smh /3 

where 
f ( B) = Pb+ - /- )  f( l - ir+ + i/- )  x ribv1- l (1 - cos O)h '- '1- - 1 (5.9) (I+ + nf- ) I'(l + i{7 - i1- ) 

is the scattering amplitude. Finally we arrive at the expression for scattering cross section 

For large p we have an approximate expression 

do -- - + ----
- - ( o:4 + 20:2 E) E2 2p2E4 16 sin4 (0/2) · 

Partial wave expansion of the scattering amplitude (5.9) is given by 

(5 .10) 

Scattering amplitude (5.9) has poles at the values of energy defined by relation -h+ +ir- = 
-n, n = 1 ,  2 ,  . . . . These values correspond to the discrete energy levels of a particle in an 
attractive Coulomb field in Lobachevsky space. 
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6 .  Figures and Tables 

zeta 

Fig. 1 .  The graphical solution of equations T = -( cot ( and T
2 + (2 = 2p2U0a2 , 

with a =  0 .005 ,  Uo = 10 ,  p = 50, 100, 250, 400, 1000 . 

Table 1 .  The number of bound states depend upon radius of space of curvature .  
vVith a = 0.005, Uo = 10 .  

I 
I Value p Value c 

p =  50 

p =  100 c1 = 1 .8628 

p =  250 c1 = 1 . 5990, c2 = 7.7560 

p = 400 E1 = 1 .4912, c2 = 6.0718, c3 = 9.0054 

I p = 1000 c1 = 1 .35 ,  c2 = 3 .5775, c3 = 5.5154, c4 = 7. 12 ,  cs = 8 .3763 

I c5 = 9 .2773, c7 = 9 .8192 

55 



56 Proceedings of _ BGL-4 

zeta 

Fig. 2 .  The graphical solution of equations T = -( cot ( and T2 + (2 
= 2p2U0a2 , 

with a = 0.005, Uo = 100, p = 50, 100, 250, 400, 1000. 

Table 2. The number of bound states depend upon radim; of space of curvature. 
With a = 0 .005, U0 = 100. 

\lalue p [ 1l alue E 

p = 50 E I = 54.0462 

p = 100 EI = 41 .4281 ,  E2 = 84.9497 

p = 250 I E1 = 2 .6466 ,  E2  = 30.6285, E3  = 55. 1936, € 4  = 74.6678 

I p � 4DO 

E5 = 97. 1223 

El = 8.8385, E2 = 27.3263 ,  €3 = 44. 1024, E4 = 71 .3362 

E 5  = 81 .6279 , €5 = 89 .6548 , E7 = 95 .3989, ES = 98 .8492 

p = 1 000 E l  = 7.98, E2 = 15 .983, E3 = 23. 6908, €4 = 3 1 .0612 

€5 = 38.0774, E 5  = 51 .0143 E7 = 9.8192,  Es = 56 .9256 

Eg = 62.4626, E l Q  = 67.6222, E l l  = 72.4034, E 1 2  = 76 .8051 
E 13 = 80.8262, EJ4 = 84.4661 ,  E 1 5  = 87.7224, E16 = 90. 5999 

E17 = 93 .093, EIS = 95.2029, E19 = 96.9264, E20 = 98.2728 
E21 = 99.2323, E22 = 99.808 
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0 BOB�EHHA51 3A�A "LIA �BYX M "lJETbIPEX 
HbIOTOHOBCKMX IJ;EHTPOB 

A.B. BopttcoB, II .C .  MaMaeB 

liu,cmumym 'KOMn'biornepH'blX uccfiedoeaHuu, YoMypmcnuu 2ocyiJapcmeeHH'btU 

yHueepcumern, Ji:JtCeBc'K, Poccwi 

B pa6oTe yKa3aHbr liHTerpnpyeMbre aHa.JJorn Ha ccpepe rroTeHI\IIana ,U:ap6y, BKJIIO"IaIOII\ero 

B ce6R 3a,D,acry 0 ,[\BIDK8HHli cracTIIIl;bl B IIOJie ,L\BYX II LfeTbipex HeIIO,[\BII)KHb!X HbIOTOHOBCKliX 

r�eHTPOll Ha IIJIOCKOCTII II liX 0606m;emu.1. IIonycreIIB:bie pe3yJILTaThl MOryT 6b!Tb IICIIOJib-

30BaHhI IIpII nocrpoeHirn T80pIIII ,llBli)K8HliR cnyTHHKOB B IIOJie CIIJIIOII\8HHOI'O c¢epoII,n;a B 

rrpocTpaHCTBax IIOCT05IHHOM KpHBII3Hh!. 

1 .  KJiaccII-.:iecKa>J: 3a,n;aqa ,n;Byx u;eHTpOB II ee 0606:rn;e­

HII>1: 

B KJracorLJ:ecKoli ne6ecuorr ),rexaHIIKe xoporno II3BeCTHa 3a,uaLJ:a ,uByx :o;eHTpOB , 
B KOTOpoil: D,Ba H8Il0t.J;BII:>KHhlX µerTTpa c MaccaMII m1 ' rn2 rrpIIT�IrITBaIOT H8KOTO­

PYKJ «6e3MaccoByIO» LJ:aCTII:o;y, ,D;BIDKYIIJYIOCH B IIX rroJie, rro HhIDTOHOBOMY 3aKoHy. 
M1nerpnpyeMOCTh 3TOil 3ati;aLJ:n 6brna 110Ka3aHa 9il:JiepoM c uoMor:u;hm pa3,zi;eJierrn.11 
nepeMeHHhIX [14] . 

Kaci ecrBeHHbIH ana.nII3 m:rocKoli 3a,uaLJ:II pByx µenTpOB HMeeTCH B KHHre K .  Illap­
Jihe [12 ]  (CM . TaK:tKe [18] ) ;  Ka"IeCTB8HIIIoIIT aHaJIII3 rrpocTpaFICTB8HHOH 3a,uaLJ:II ,il;BYX 
:u;enTpoB co,rr.ep:tKIITC5I B pa6oTe B .  M. AJieKceeBa [2] . 0TMeTHM TaKLKe, "'ITO eu\e 
Jiarpan:>K :�aMeTIIJI , "'ITO 3a):\a'ra ,D;Byx u;eHTpOB OCTaeTCH lIHTerpIIpyeMOH, eCJrn ,n,o6a­
BIITh K Hen IIOT8HI\IIan ynpyron npy:tKIIHhL KOTOpa.a 3aKpenJieHa B cepe,ZJ;IIHe u:rpe3Ka 

npsMok coe,.u;IIHHIDr:u;e.H o6a :u;eHTpa. JiarpaH:tK TaK2Ke paccMOTpeJI npe,n;eJihHLIIi: cny­
'Iall 9TOM 3aµ,aLJ:n: , ,J];JISI KOTOporo O . .LJ:IIH II3 ,L\BYX l_\eIITpOB II ero Macca ycTpeMJI5IKJTC5I 

B 6ecKOH8"IHOCTh, B npe,n;eJre JIOJiyLJ:aeTC5I 3a,.u;a'Ia 0 1(Bl'f)K6HIIH LJ:aCTHI\hl B cyuepno-
3IIIII1Il 110.;r.H HhKJTOHOBCKoro ri;em:pa (3a,IJ,aLJ:a Kern1epa) n O,II,IrnpoµHoro rromr. Pa3;i,e­

JieHIIe nepeMeHHhIX II Ka'-I8CTB8HHOe HCCJI8,IJ,OBaHne 3TOH 3a,zi;aLJ:Lf co,.u;ep2KHTC5I B KHllre 
M. Boptta [6] no aTO�Ho:li MexaHnKc, II3yLJ:anrnero aTy 3a;::i,aLJ:y n CB5I3II c pacn�erwe­
HIIeM CIICK'rpa.n:r,HhIX JIHHHII aTOMa BO/ropO,[la, IIOMer:u;eHHOI'O B 3JI8KTpII"I8CKOe IIOJie 
(acpcpeKT IllrnpKa) . 

0,II,IIH H3 6ojree o6r:u;nx CJiyLJ:aeB HHTerpnpyeMOCTII IIOT6H1\YlMhHOM CHCT8Mbl Ha 

1WOCKOCTI11 o6o6u�aIDr:u;n:li 3a,LJ,a"<Iy ):IBYX I18HTpOB, 6m1 HaH,[\6H f. ,l];ap6y (1901) [17] 
MeTO,[IOM pa3p;eJiemrn rrepeMeHHhrx. B 3TO.li pa6oTe )Iap6y TaK>Ke nonrrnn ycJron11a 
cyw,eCTBOBaHII5I ,n;m·T HaTypa.1IbHOM CIICT8Mbl na ITJIOCKOCTI1 ,IJ;OIIOJIHHTeJibHOro KBa,[\pa­

TII"IHOro .HHTerpa.rra, KOTOpbre Brroc"11ef:(CTBHII 6hUIH TaKMe yKa3aHhI YnTTeKepm,r [ 1 1 ) .  
PaccMOTpIIM LJ:aCTIITI;Y e,.r�HHII"IHOM MaCChI , ;JBIDKyr:u;ymcs n o  II"lJOCI{OCTH IR.2 = 
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{ x' y} B IIOT8H1\11aJ!bHOM none 

A A' B B' B B' 
V 1 1 c 2 = - + - + - + - + - + - +  p '  x2 1y2 r r' r r' 1 1 
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( 1 . 1) 

rµ,e A, A' , B,  B' , B1 , B� , C = canst , npwi:eM r ,  r' HBmnoTca ,IJ,eilcTBIITeJibHbI­

MII paCC'f05IHI15IMII qacTII1\bI m OT ,IJ,BYX O,Il,IIHaKOBbIX ,IJ,8HCTBHT8JibHbIX ll,€HTpOB, 

IIOM8II!€HHbIX B TO'!KH (-c, 0) ' (c , 0) Ha OCH a6cwccc, r = J(x - c)2 + y2 ' 
r' = J(x + c) 2 + y2 ' p -- paCCT05!HIIe OT m ,Il,O ll,8HTpa 0 '  r1 ' r� - «KOMDJ1€KC-

Hbie paCCT05!HI1£» ,Il,O MHIIMbIX 11,8HTpOB , IIOM8IIWHHbIX B TO'IKII 

r1 = \/x2 + (y - id) 2 , r� = Jx2 + (y + id)2 . 
(O, di) II (0, -d·i) , 

,Il,Jrn B8IIJ8CTBCHHOCTII IIOT8HI!IIa.n:a ( 1 . 1) Heo6xo­

,I\IIMO, 'IT06br B� 6bvIO KOMILJieKcHo corrpmKeHo B1 : 
- I B1 = B1 . Km<: rroKa3aHo B [17] ecn11 d = c ,  CIICTe:tvra 

( 1 . 1 )  ,I\OIIYCKaeT pa3,TJ;8JI8HHe rrepeMeHHblX B 3JIJIIIII-

TIILJ:eCKITX KOOp,IJ;IIHaTax 

x = c ch v cos u, y = c sh v sin u 

II o6na,D,aeT ,I\OIIOJIHIIT8JILHbIM nepBbIM IIHTerpanoM ,  

KBa,IlpaTII'IHbIM ITO IIMlIY,TibCaM. 

OcTaHOBHMCa Ha LJ:acTHhIX cny'Ia5Ix noTemrIIa.na 

( 1 . 1 ) .  0 ,UIIH rny'IaH CIICT8MbI ( 1 . 1 ) '  ,II,Jiil KOTOporo 

B1 = B� = 0 ,  6brn paCCMOTpeH )K .  JhryBlurneM (KaK 

y2Ke yKa3bIBaJIOCb , enre 6onee '!aCTHbTH cny'Iafi: A =  
A' = B1 = B� = 0 fa,rn yrrn3aH JiarpamKeM) . 

y 

di 2:1 m 

�---�F-�/----1����·2��:>-
- c c :r 

Puc. 1 

B pa6oTe [1] noKa3aHo, 'ITO 3a!J,a"la o .llB1DKeH11II L£aCTH1\bI B noJre ,iJ,Byx 

KOMn.rreKcHo-conpmKeHnhIX IJ,eHTpOB, T.e. ,D;Jrn A =  A' = B = B' = C = 0 B ( 1 . 1 ) ,  
HHTerpn:pyeMa B Tpex::v1epHOM rrpOCTpaHCTBe 11 iIBJrneTca xopCJIIIII::VI rrpn6JrnfKeHHeM 

K 3a,IJ;a'!e 0 ,[(BIIfKCHIIll cnyTHIIKa B IIOJie CII.JUOIIJCHHOro ccpepOH,IJ,a (Hanp11Mep, 3TOT 

IIOTeHU.IIaJI xoporno arrrrpOKCIIMIIpyeT IIOT€HI!ll3JI pea.TibHOH 3eMJIH) . 

B pa60're H. C .  Ko3JIOBa [9] rrpOIIHTerpnpOBaHa B KBa.zi,paTypax II IICCJie,I\oBaHa 3a­

;:i:a'!a 0 TIJIOCKOM 2J;BlDK8HHH 'IaCTH1\LI B IIOJie "I8Tbipex H8IIO,IJ,BI:IfKHbIX IJ,8HTpOB (.IIBYX 

BeIIJeCTBCHHbIX II ,Il,By:x KOMrrneKCHb1x) . B [9] TaK.J.Ke rrpe,JJ,JIOfKeHo HecKOJILKO HHTep­

npeTawrtt 3TOil 3a,Il,a'IH npIIMeHIITeJibHO K peanbHhll\f nonpocaM rrp:imna;.i:Hoil ne6ec-

HOH MexanIIKII. 

2 .  3a,n;a'Y:a KerrJiepa, 3a,n;a'Y:a ,n;nyx :u;eHTpOB H a  c<Pepe 

M rrcen,n;oc<Pepe. McTopM'Y:ecKMH KOMMeHTapMli 

CIIcTeMaTnLJ:ecKoe o6o6menrre pa3JIH'IHbIX 3a;la'I KJiaCCII"IecKoii: II He6ecnoli Me­

xanttKH Ha npOCTpaHCTBa IIOCT05IHHOH KpIIBH3Hbl (BKJUO'IaIOrrrI:Ie KaK TpexMepnyIO 

1 
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ctj::iepy S3 , TaK n rrceB,n;octj::iepy - L3 -rrpocTpaHCTBO Jio6acreBcKoro) co,n:ep1KHTC5I B 
o6rrrnpHoil, HO , K C01KaJieHnro, rrocrTn 3a6hITOll pa6oTe B .  KrrmrnHra [22] . 

YKa1KeM TaK)Ke, LJ:TO KpOMe KnmrnHra B XIX BeKe HeeBKJIH,II.OBOH MexaHn­
KOH B rrpocTpaHCTBax nocTORHHOH KpHBH3HbI 3aHHM3JIHCh P. Jfo:mrrnn;, cD .  lllepnHr, 
I'. Jln6MaH. I1HTepeCHO, LJ:TO B yqe6HIIKe I'. Jln6MaHa ITO H88BKJIH,Il.OBOH reOMeTpHH [24] 
n;eJiaR rJiaBa IlOCBRill,eHa o6o6rn;eHHIO HbIOTOHOBOro 3aKOHa npHTR)KeHHZI, HCCJie,Il.OBa­
HHIO 3a,n.acrn KerrJiepa n tj::iopMynnpoBKH 3aKOHOB K ernrepa Ha ctj::iepe n nceB,n;octj::iepe, 
TeM He MeHee B xx BeKe aHaJIOI'HLJ:IIhie pe3yJihTaTbI BHOBb H He3aBHCHMO 6hIJIH IIOJiy­
Lf8Hbl cpa3y H8CKOJibKHMH aBTOpaMH [23 ,  15 ,  20, 8 ,  26, 21 ,  25 ,  16] . 0TM€THM 'raK2Ke 
KJiaccncrecKyIO pa60Ty 8 .  lllpe,n.rrnrepa [13] , B KOTOpOll OH paccMaTpIIBaJI KBaHTO­
BbIH aHanor 3a,n.acrn KerrJiepa B rrcKpIIBJieHHOM rrpocTpaHCTBe, HeRBHO npe,n.rroJiarazr 
HHTerpnpyeMOCTh cooTBeTCTBYIOilieil KJ:raccncrecKorr 3a,n;acrn. KcTaTII roBopa, aHaJior 
3aKOHa HhIOTOHOBoro rrp:rrTR1KeHHa ,II.JIR L3 6bIJI y1Ke H3BecTeH II. Ceppe, 5I. BOJihRII 
u H .  II. Jio6acreBcKoMy. 

B .  Knn.mrnr B [22] TaK1Ke paccMaTpIIBaJI Bonpoci,1 n -MepHoil ,[\IrnaMHKH B rrpo­
CTpaHCTBax TIOCT05IHHOH KpHBH3HhI , BKJHOLJ:aa ,[\HHaMIIKY n -MepHoro TBep,n.oro TeJia. 
CoBpeMeHIIbIH aHami:3 MO)KHO HailT:rr B [19] (CM . TaK*e [5] ) .  

06o6ilieHIIe 3a,[\aqrr .[IBYX n;eHTpOB H a  rrpocTpaHCTBe IIOCT05IHHOll KpIIBH3HbI TaK­
)KC 6bIJIO yKa3aHo B .  K1111m11troM , rrporrHTerpnpoBaBIIIIIM aTy 3a,[\a'Iy MeTO.L\OM pa3-
.[(eneHns rrepeMeHHhIX. He3aBHCHMO aTa 3a,[\a'l:a 6hma peIIIerra B pa6oTe [23] , r,[\e TaK­
*e paccMaTpHBaeTcs 6onee o6Ill,aa 3a.ri,aqa, aHa.norHcrHaa .ri,o6aBnemno JiarpamKeM 
rroTeHn;naJia yrrpyroro B3aH:vro,n;eilcTBH.H B 3ap,aqy .IJ,Byx n;eHTpoB na IIJlOCKOCTH. B pa-
6omx [7, 27] ,n;aH 6Htj::iypKan;HOHHblll am1JIII3 3a,n;acrn ,Il.BYX n;eHTpOB Ha ctj::iepe II IIJIOC­
KOCTH Jlo6acreBcKoro. B KHHre [5] aBTOpaMH p<:no6paHhI Borrpocnr pe,n.yKn;rnr II HHTe­
rpIIpye:vi:ocTII rrpOCTpaHCTB8HHOll 3a.n;acrH .f\BYX IIeHTpOB , a TaK2Ke ,n.pyrne IIHTerpII­
pyeMhie II HeIIHTerpIIpyeMble 3a,n.aqII IICKpIIBJI8HI10ll He6ecHOll :vi:exaHIIKII (BKJUO'Ia.H 
orpaHHLJ:eHHbie 3a.zrn'UI .IJ.BYX H Tpex Ten, IICCJ18.IJ.OBaHIIe TO'l:eK JIII6pan;IIII , .IJ.HHaMHKY 
TBep.ri.oro Tena) . 

,Uanee MhI rrpnBe,n.eM 5IBHoe rurre6paw:recKoe Bhipa*eHIIe rrepBoro nrITerpa.na .[(Jrn 
o6o6Ill,eHHOH 3a,n;aqn ,L\BYX n;eHTpOB, p aCCMOTpeHHOH B [22, 23] , a TaK1Ke yKa?KeM 
HOBhIH aHa.i1or 3a,[\aqII "Y:eTbrpex HhIOTOHOBCKIIx I!eHTpOB II n ryKOBCKIIX n;e1ITpOB. B 
pa6oTe MbI orpamFilIMC.H aHa.JIII30:V1 ,n;ByMepHOH ctj::iepbl 52 , XOT5I BCe paccy?K,n;eHII5I 
6e3 Tpy,n;a MoryT fo,IT:b rrepeHeceHhI Ha rrceB.ri.octj::iepy L2 . HeKOTOpLJe (rrn He Bee) 
pe3yJinTaT:bI o6o6Ill,aIOTC5I Ha cnycrail TpexMepnoil ctj::iepnr 83 (rrceB;10c¢epn1 L3 ) . 

3. 0 6o6rn;eHHe 3a,n;a"CJH ,ll;BYX u;eHTpOB Ha S2 • �OilOJI­

HHTeJihHhIM :K:B-a;n,:paTH"CJHhIM HHTerpaJI 

Mnr 6y,n;eM rrpe;rrroJ:raraT:b , qTo e,n.IIHII'IHa5I ctj::iepa 82 3a.IJ.aHa B Tpex:vrepHOM 
rrpOCTpaHCTBe .!R3 = {ql , q2 , q3} ypaBHeHIIeM lqJ2 = qi + q� + q� = 1 '  BeKTOpbl 
q = ( q1 , q2 , q3 ) , p = (p1 ,  p2 , p3) 6y,n.yT o6o3Ha'-ra::ri, cooTBeTcTByrorr�IIe rl36hrTo'rnhre 
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KOop,n:1rnaThI II IIMIIYJihChI . ECJur BBecTn BeKTOp yrJioBoro MOMeHTa M = p x q , n 

IIOJIO::>KHTh I = q ' TO HeCJIO::>KHO IIOKa3aTh [5 , 3 ,  4] , 'ITO ypaBH€HlI51 ,D:BII:IK€HllSf B rrpo­

il3BOJihHOM rroTeHu>IaJie V = V ( q) = V ( /) MoryT 6hITh rrpe,n:cTaBJieHhI KaK raMIIJih­

TOHOBa cncTeMa co CK06Koll: IlyaccoHa, orrpeµ:eJIHeMoil aJire6poil e(3) = so(3) EB8 R3 : 

lI raMH.lihTOHU:aHOM 
1 

H = 2 (M, M) + V(1) . 

YpaBHeHu:a, 3aµ:aBaeMhJe c rroMOIIIhIO ( 3 . 1 ) ,  (3 .2) , u:MeIOT BHA 

. av 
M = 1  x 

81 ' 

(3 .2) 

II comra,n:aroT c ypaBH€HII51MH .LJ:BH:IKeHnsr mapoBoro BOJI<rKa B rroTeHrr.IIane V( r) [5, 3] . 
CKo6Ka (3 . 1 )  srn;rneTrn BhipOLK,IJ:eI-rnoil: n o6Jiaµ:aeT ABJMH cpyHKIJ,II.HMII Ka3IIM:rrpa:  

F1 = (M, /) , F2 = (�f, /) = 1 . ,Ll/ra 3a,IJ,a<rII o ABII::>KeH:rrII TO<rKII Ha ccpepe Heo6xo­

AHMO Fl =  (M, 1) = (p x , , 1) = 0 .  
XopoIIIo II3BeCTHO,  LJ:To anaJioraMII HhI-OTOHOBCKoro II ryKoBcKoro rroTemr:rraJia Ha 

S2 COOTBCTCTB€RHO .HBJ15Il:OTC.H U1 = µ ctg e ' U2 = c tg2 e ' µ, c = canst ' r,IJ,e yroJI 

8 OTC'IIITbIBaCTC.H OT H€KOTOpOrO cpIIKCIIpOBaHHOrO IIOJIIOCa Ha Ccpepe [22 , 23] . 
PaccMoTpnM rroTen11,:rraJr 

(3 .3 )  

I)],€ µ1 , µ2 - IIHTeHCIIBHOCTH HhIOTOHOBCKIIX IJ,€HTpOB, ei - yrJihI M€:1K,IJ;Y pa;J,IIJC­

J:leKTOpOM '!aCTIIIJ,bl II paµ:HyC-BeKTOpOM i -ro 1(€HTpa. IloMeCTIIM HhIOTOHOBCKHe 11,CH­

Tphl l3 TOLJ:KH rl = (0, CY, /3) ' r2 = (0, -a, (3) ' cv2 + ;32 = 1 ' a TaK)KC ,n;o6aJ:lIIM ,I(JI.H 

o6UJ,HOCTH K (3 .3) IIOTeHIJ,HM Tpex ryKOBCKHX Il,CHTpOB, IIOMeI1IeHHhIX Ha B3aIIMHO 

neprreH,n:IIKyJispHbIX oc.ax � � cd IT ( ci = canst ) , n AOno1rnwreJ1bHbr:H KBalJ:paTHLJ:­

Hbiil IIOT€HIJ,HCh7I c ( a21i-;321�) ' c #- 0 ' .HBJISfl:OI1IHMC5f i:.raCTHhIM CJrycraeM IIOT€HII,Ha­

.ua He:H}..IaHa. Ha ypoBHe (M, 1) = 0 Haxo,n::rrM ,rr,Be KOMMYTHPYJ:OI1IHe KBaµpaTHCJ:Hbre 

no M cpyHKIJ,HH {H, F} = 0 [4, 10] :  

1 
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F = o:2 l\1'd - {32 Mt + 2o:{J(V1 - \/2)-

Bhipa2K8HlI5IMII 

c1 2 2 2 2 C2 2 2 C3 2 2 2 2 2 - 2 (f3 12 - a rs ) - 2f3 11 + 20: 11 + 2Co: ,8 11 , (3 .5) 
11 12 13 

µl (f312 + 0:(3) v; = -;::::;;====::==;;;:=::=====;;::========== 
J�rr + f321? + 0:211 - 20:/h21s ' 

v - µ2 (f312 - 0:13) 
2 

- v 1r + /J21i + 0:215 + 2o:fJr2�/3 

(3 .6) 

(3 .7) 

<DynKrrlls H sB.rrneTCH raMHJihTOirnarrnM, a F 3a,n;aeT ,.o;ononHnTeJihHhIH rrna,u:­
paTW:IHhrfr HHTerpa.rr. K aK OTM8"IeHo B [5] , B03M02KHOCTh ,u:o6aBnenns B 3a,.o;aLJ:y 
flBYX rr8HTpOB (3.3) o,u:noro ryKOBCKOI'O IJ,8HTpa c/11 ' IlOM8liJCHHOro Ha ,TJ;yre M8)K,U:Y 
HblOTOHOBCKlIMil I18HTpaMH, T8CHO CBS3aHa C HHTerpnpyeMOCThIO COOTBeTec.rByIOllJ8H 
TpexMepHOH 3a,n;aLJ:II (T.e.  Ha 53 ) . )J;eii:CTBHT8JihHO, L[JleH c/11 '  c = const B03HIIKaeT 

B TpexMepHOM cJiyLJ:ae npI1 pe,n;yKIIIIII no Paycy, ucrroJin3YIOllJeH rrIIKJIIILJ:eCKIIH IIHTe­
rpa.n, CB5I3aHHhIH c lIHBapnaHTHOCThlO ypaBH8HIIH OTHOClIT8JihHO BpallJeHHH (rpyrrrra 
50(2) ) , B IIJIOCKOCTII, rrepneH,IJ;lIKy.rrnpHOH IIJIOCKOCTlI ,.D;BYX rwrrrpOB. 

CncTeMa (3 .4)- (3 . 5) rrp1rnaµJ1e:tKIIT K JIIIYBIIJIJI8BCKOMY Trrrry II M02KeT farTh npo­

lIHTerpHpOBaHa B ccj::iepOKOHIILJ:8CKilX KOOp,IJ:HHaTax U1 ' U2 ' ( 0 < U1 < a ' 0 < U2 < 
{3 ) ' KOTOphre onpe,.o;emHOTC5I COOTHomemrnMII 

fl = fi]U2/(o:{J) , 

12 = V(o:2 - u1 ) (0:2 + ·u2)/o:,  

(3 = V ( ,82 + u1 )  (,82 - u2) / {3. 

(3 .8 )  

02waKO OTM8THM H8TpIIBHaJihHOCTh 3a,n;aLJ:II 110JIYLJ:8HII5I lIHTerpanoB (�-3 .4)- (3 .5) IlMeH­
HO B aJ1re6paIILJ:ecKoi1 cj::iop.Me, /Vrn peIIIeHn:s KOTopoii: neo6xo,u:11Mo o6parrraTb ccj::iepo­
KOHIILJ:ecKoe npeo6pa3oBmrne. 

KaK HaM coo6llJrur A. AJI6yn, 3a,n;aLJ:a µByx rreHTpOB na 52 ( L2 ) rrpII rrm1orrrrr 
U8HTpaJihHOII (rHOMOHJJ'-IeCKOH) rrpoeKrrllll lI IIO):\XO,IJ;SllJero npeo6pa30Bamrn BpeMe­
HII M02K8T 6bITh npeo6pa30BaHa B 06:01'-l:HJ'IO 3H.TI8pOBCKYIO 3a,IJ;a'Iy ,IJ;BYX I18HTpOB. 

0,rr,HaKO lvfbI He o6Jra,n:aeM lJOKa3aTe.'IbCTBOM 3TOrO cj::iaKra. 
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4 .  3a,.a;aqa -.:ieThipex HhlOTOHOBCKHX :a;eHTpOB 

Ha ccpepe S2 

PaccMoTpII:Yr rroTettuna.n Ha c¢epe BII,I\a: 

Vim = �1 ctg 81 + �2 ctg B2 = 
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= � WYi+iv/3 +� µ11 - iv/3 . (4. 1 )  1 
y'(µ2 - v2)2 - (Wf1 + iv13)2 2 J(µ2 - v2)2 - (µ11 - iv13) 2 , 

r,I\e µ2 - v2 = 1 ,  �1 , �2 = canst . 

8TOT IIOT8HIJ,IIa.n COOTB8TCTBY8T 3 a,IJ,a':Ie ABYX D,8HTpOB Ha c¢epe, IIM8IOIIJ;HX «KOM­

IIJI8KCHhie 1IHT8HCIIBHOCTII» II paCIIOJI02K8HHbTX Ha paBHhlX y,n:a.nemurx OT lIOJIIOCa c 

KOMIIJI8KCHO COIIp5I2K8HHhIMII paCCT05IH1I5IMll (pIIC. 2) . ,Il)rn ero ,J:\8llCTBllT8JihHOCTII 

Heo6xo,I\IIMO �1 = �2 . KaK II n eBKJIII,I\OBOM cJiyqae, rroTeHll,IIaJI ( 4 . 1 ) M02:KeT pac­

cMaT·pnnaThCR KaK H8KOTOpasr arrrrpOKCHMaIJ;II5I 3 a,IJ;a':III 0 ,I\BII2K8HIIII ':IaCTIIUhI B IIOJie 

crrmoru;eRROrO c¢epOH,I\a B IICKpIIBJI8HHOM rrpocTpaHCTBe. 

CIIcTeMa c rroTeRUIIaJIOM ( 4. 1) TaKMe p a3,IJ,e­

JIHeTC5I B c¢epOKOHIIqecKHX KOOpp:IIHaTax (3 .8)  
npn ycJIOBHII 

(3 µ =  -1--2 , - a  
0:(3 v = ---

1- a2 · 
( 4.2) 

B KOOp,I\IIHaTax (3.8) pa3p:en5:reTcsr TaK:w;:e no­

TeHmrnJr v + Vrm ' KOTOpbill ( rrpll Ci = 0 ) COOT­

B8TCTByeT 3aµ;aqe '18Tbipex H8IIO,J:\BIDKHhIX I!8H­

Tp0B -- ,I\BYX MHllMhIX ll µnyx neru;eCTBeHHbTX, 

pacrrOJI())K8HHhIX B ;1,BYX B3aH�rno rreprreHAIIKy­

JI.RpIIbIX IIJIOCKOCTax , npox011,5IJl\IIX ':Iepe3 IIOJIIOC 

(cM. pnc. 2) , npn 3TOM, KaK II B CJiy':Iae IIJIOC­

KOC'IH, npn <PIIKCIIpOBaHHOM p aCCTOSIHIIII Me:lKP:Y 

B8ff(8CTB8HHhU.1II u;e1ITpaMH paCCT05IHIIe M8?K,JJ;Y 

7r/2 
(IL, 0, -iv) \ \ 

It 
(µ, 0, iv) 

\(;3, -a, 0) 
I - f - - _  
I 

Pnc. 2 

KOMIIJieKCHhT�vlll n;eHTpaMII TaK2:Ke He RBJrneTCSI np01I3BOJihHhIM, a onpe):\eJieHO o,n;­

H03Ha':IHO C IIOMOJI\bI0 (4.2) . 

nerKO IIOKa3aTI,, 'iTO IIOT8HI!l13JihI 

V Cf 2 2 32 2 ) N = ·· \a /2 - , /3 ' ci , C = canst . (4.3) 

MoryT 6hITh (rrnTerp:u:pyeMhIM o6pa3oM) A06aBJieHhI B 3a11atry -Y:eThipex ueHTpon II 
np1IBO,D:5.!T K 60J1ee o6m,ell: CIICTeMe , pa3,I\8JIIIMOH B KOOp,D;IJHaTaX (3 .6) . Ilp1rne;:i;eM 
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HBHhIH Bn,n: rroTeHI.I,HaJIOB V, VJ:m , Va , V:w B rrepeMeHHhIX (3 .6) : 

HecJIO.IKHO rroKa3aTh , qTo rrpu rrpe,n:eJihHOM rrepexo,n:e K eBK)IIlfl:OBOli IIJIOCKO­

CTII ( R ___, oo )  cyMMapHhIH rroTeHu;nan V + -V:cs + Va + V:w rrepexo,n:IIT B rroTeHu;IIaJI 

)J.,ap6y ( 1 . 1 ) . Onv1eTHM, qTo aTOT rroTeHu;IIa,rr ,  imu ,n:a.1Ke V + Vim , y.IKe He MO.IKeT 

6bITh o6o6ilieH AO COOTBeTCTBYIDiliero IlHTerpupyeMoro IIOTemi;nana ,n:mr TpeX1<1epHOH 

3a,n:aTJ:H (B S3 ) BC.Jie,II,CTBIIe 0TCYTCTBII5£ IJ;IIKJIIITJ:8CKoro IIHTerpaJia, XOT5£ KaJI{,UbIH II3 

ITOTeHI.I,II3,.,'IOB v Il Vim no OT,II;CJibHOCTil ,n:orrycKaeT TaKoe o6o6ilieHH8. 

5 .  3a,n;a"CJa n ryKOBCKIIX n;eHTpOB H a  c<Pepe 

YKa.1KeM ern,e o,n;nH HHTerpnpyeMbIH BapIIaHT 3 a,n:aqrr o ,IJ;Bil.IKeHHII MaTepna.Jih­

HOH TO'-IKH B none ryKOBCKHX IIOT8HD;!Ia.JIOB cj ( ,, ri)2 ' Ci = canst , rrpH KOTOpOM 

ryKOBCKile 11;e1rrpbl rrpHT5£.IKeHII5f ri ' i = 1 ,  2, . . .  ' n '  ITOMeilieHhl He no B3a.MMHO op­

TOrOHaJibHhI M OC5£M, a rrpOII3BOJibHO pacrrmrararoTC5£ Ha O,IJ;HOM 3KBaTope [ Hl] (pIIc.3) . 

y 

PHc. 3 .  



A.B. BopHCOB, H.C. MaMaeB 

I'aMliJibTOHIIaH II ,IJ;OIIOJIHHTeJibHbill llHTerpan rrpII (M,  I) = 0 IIMeIOT BII,Il; 

n 2 . 2 """"' Ci F = lY13 -t- ( 1 - �(3 ) L., (bf . )2 .  i=l ri , I 
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(5 . 1 )  

(5 .2 ) 

B Bbipa)KeHliII ( .5 . 1 )  rrp:rrcyTcTByeT rrpoII3BOJihHa.a ¢YHKIJ;H.H U(13) ,  KOTopa.a o6o-

3HaLiaeT ,n;o6aBJICUIIe rrpOli3BOJibHOro «u;eHTp3JibHOrO» IIOJI.H, u;eHTp KOTOporo p acrro­

JIO)KeH Ha rrepneH,n;nKyJI.ape K rrJiocKocTH ryKOBCKHx rroTem:i;nanoB (pIIc. 3) . B LiaCT­

nocTII, Ha IIOJIIOC MO)KHO rro:rvrecTnTh eiu;e o,n:IIH ryKoBCKIIll :o;eHTp. Ifa 3Toro cJiefzyeT 

(CM. [4] ) ,  'ITO IIHTerpnpye:rvra TaK?Ke rrpocTpaHCTB8HHa.a 3a,n;a'Ia () ,IJ;BII)KeHIIII TO'IKH 

Ha Tpex:rvrepHOll ctj_)epe 83 rro,n; ,n;eilCTBIIeM n ryKOBCKIIX :o;eHTpOB, pacrrOJIQ)KeHHbIX 

Ha 3KBaTope. 

0TMeTnM, 'ITO CBKJIII,IJ,OB aHanor paccMaTpIIBae:rvroil 3a,IJ;a'III TpIIBIIa.neH - pa3-

,n;eJieHHe B03M0)KH0 y)Ke B ,n;eKapTOBbIX KOOp,n;mrnTax (rroJiy'IaeTC.'zI n JIIIHCHHhIX oc­

II;IIJIJI.'zITOpOB) .  II pII 3TOM pacrroJIO)KeHIIe ryKOBCKnx :o;eHTpOB Ha IIJIOCKOCTII JR. 2 rrpo­

H3BOJibHO. B KpHBOJIIIHeilHoil c:i:ITyau;nn, y)Ke Ha ,n;Byx:rvrepHoil ccpepe, 3a,n;a'Ia o ,n;Bn­

)KeHHII B IIOJie Tpex rrpOII3BOJibHO pacnO.JIO:tKCHHhIX ryKOBCKILX u;eHTpOB He .'zIBJI.HeTC5I 

IIHTerprrpyeMOll. cho IIOKa3bIBaIOT 'IHCJICHHhie 3KCIIepIIMeHTbI1 ,IJ;CMOHCTpIIpyIOilI,IIC 

xaoTn'IecKoe rroBe,n;eHHe. KBa,n;paTII'IHhIH HHTerpan F B (5 . 2) CBR3aH c pa3,n;eJieHH­

e:rvr 3a,n;a'III B ccpepII'ICCKIIX KOOp,n;1rnaTax ( e' <p) . ,Il;eilCTBIITCJihHO, raMIIJibTOHIIaH H 
MO:tKHO 3aIIIIcaTb cnep,yrorn,n:rvr o6pa3oM: 

H = - p� + _'P_ + - """"' i + U(B) = 
1 ( p2 ) l n C -
2 sin2 8 2 � sin2 B cos2 (<p - <pi) 

1 2  1 rl 2 � Ci l ( .  
= 2Pe + �e Pep + L.. 2 ( ) + u B) , 

- sm i=l cos <p - 'Pi 
(5 .3) 

r,n;e 8 , <p - KOOp,IJ;IIH3TbI ,UBII:tK}'IlI,eiicR :VIaTepIIaJibHOH TO'IKll1 a <p1: 3a,n;aeT IIOJIO­

?KeHIIe i -ro ryKoBcKoro u;eHTpa Ha 3KBaTope (pIIc. 3) . Bhrpa2IrnHne B KBa,n;paTHhIX 

CK06Kax rrpe,n;cTaB;rneT co6on ,IJ;OIIOJIHIITCJibHbill IIHTerpaJI ,IJ;BII)KeHII5I. 

IIocJie HarrIIcamrn: 8Toii: p a6oThI HaM era.no H3BeCTHO , 'ITO C .T. C a,n;3TOB He3amr­

CIIMO IIOJIY'IHJI 6o;ree o6iu;ile pe3yJihTaThI no IlHTerpnpyeMOCTil 3a,n;a'III IIICCTII :o;eH­

TpOB Ha 82 ( K 'leTbipeM yKa3aHHhIM HaMII :o;e:inpa:rvr ,n;o6aBJICHbI .IJ:Ba HOBbIX MHIIMbIX 

I�CHTpa) . 

ABTOpbI 6Jiaro,n;ap5IT A .  AJI6yil il B.B .  Ko3JIOBa 3a rrone3Hbie o6cy:tK,n;emrn. Pa-

6oTa BhIITO,'IHeHa B pa:rvrKax rrporpaMMbI «I'ocy,n;apCTBCHHa.51 rro,IJJJ.ep:tKKa ne,n:yiu;nx Ha­

Y'IHhIX IIIKOJI» (rpaHT NQHIII-36 .2003 . 1 ) ,  rrpn rro,n:,n:ep)KKe Poccnil:cKOro cpoH,n;a cpyH­

,n;a:rvreHTaJ'IbHhIX IIccne,n;oBaHnil (rpar·IT NQ 04-05-64367) n cpoH,n;a CRDF (rpaHT NQ RU­

Ml-2583-M0-04) . 
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TpexMepRa.a ccpepa .HBJrneeTC.H MeTpIT'IeCKllM MHoroo6pa3rreM rpyilllhr S['2 u BeKTOpHhre rro­

= Ha ccpepe, orrpe,ri;en.aroJ.IVIe neBnre H rrpaBnre rpyrrrrOBbre C,D;BHrH, O,D;HOBpeMeHHo .aBJI.HIOTC.a 

IIOJI.HMH K.1:1o'IJIHHI'a .1:1 reo,ri;e3H'!eCKHMH IIOTOKaMH ( 2eomo1wMu) . IIoTOK CBo6o,D;HbIX <raCTHIJ;, 

paBHOMepHO ,D;Bll2KYII\IIXC.H B,D;OJib 0,D;HOro H3 3TllX rroneli, peaJrn3yeT ,D;BH2KYJI\Y!OC:H CllCTeMy 

Ha TpexMepHOH ccpepe, coxparr.arom;yro MeTpHKy, o,ri;HaKO B 3TOH CllCTeMe B03HUKaeT IIOJie 

npani;eHlI.a, OTJIB'!a!On�ee ,ll,BU2KYJI\YIOCR CHCTeMy OT IIOKO.Hrn;elic.a. IIocTpOeHHhre na reOTOKax 

0,D;HOpO.LJ;HbI€ 3.JieKTpll'!eCKOe UJIU MarHUTHOe IIOJI.H OKa3bIBaKJTC.H necTau;HOHapHhIMU. 

1 .  MHepu;MaJihHhie CMCTeMhI 

150 JieT Ha3a,zi; B JieKIJ:IUI 1 0  HJOH5I 1854 r. PHMaH [1 ]  BhI,Ll;BirnyJI ,n;orryliieHHe, T'ITO 

Harne rrpOCTpaHCTBO He ofa1.3aHO 6bITb IIJIOCKIIM, a M02KeT 6hITb rrpocTpaHCTBOM IIO­

CT05IHHOH noJI02KIITeJILHOH HJrn OTPIIIIaTeJILHOH KpIIBH3HhI . Heo6xo.II;IIMOCTL nocTo-

5IHCTBa KpIIBII3HbI OH o60CHOBbIBaJI Heo6xo,n;IIMOCTbIO ,[\BH2KeHH5I II IIOBOpOTa B rrpo­

CTpaHCTBe MaTepIIa.n:bHbIX TeJI, o65I3aHHbIX oforn,II,aTb TaKOll )Ke BHyTpeHHeH KpII­

BII3HOH. Ha COBpeMeHHOM 5I3bIKe - OH BbI,'J;BIIHYJI Tpe6oBaHHe o;wopO,Il,HOCTII II II30-

TpOIIHOCTH rrpocTpaHCTBa II IIOKa3a.n, "'ITO OHO M02KeT 6hITb He TOJihKO eBKJIII,IJ,OBhIM, 

IIJIOCKHM, HO II rrpocTpaHCTBOM IIOCT05IHHOH IIOJIO)KIITeJihHOH HJIH OTPHIIaTeJibHOH 

KpIIBII3HhI . 

Ho B ci·aKOM npocTpaHCTBe nc-qe3aer KJiaccuqecKoe rrOH5ITIIe uHe1n�ua.1i'bH'biX cu­

cme.At KaK fl,BII£KYIII,IIXC5I ,l.lpyr OTHOCIITeJihHO ,n;pyra paBHOMepHO II IIp5IMOJIIIHeHHO. 

() ,ll):taKO He60JihIIIa5I ecTeCTBeHHa5I MO,Ll;IIcPIIKaIIIrn IIOH5ITH5I " UHepv,ua.!t'b'H,(J,.ft cucme­

.Ma" II03BOJI5IeT BOCCTaHOBIITb MHOroo6pa3He :rrnepIIIIaJihHhIX CIICTeM B c¢epH"'IeCKOM 

Mnpe P:rrMaHa. B npocTpaHcTBe, 5IBJrnIOI1J;HMC5I TpexMepHoli c¢epoH., TaK)Ke cyliie­

CTByeT MH02KeCTBO IIpOCTpaHCTB , ,Il,Bll2KYliIIIXC5I ,l.lpyr OTHOCIITeJibHO ,n;pyra IIHepwr­

aJibHO no OTHorneHIIJO K 3aKoHaM KJraccn-qecKoli MexannKII. O,n;naKo, XOT5I MeTpIIKa 

npocTpaHCTBa B ,Il,BII:t:KYIII8HC5I II nerrO!(BII)KHOH CIICTeMax O,IJ;IIHaKOBa, 3aKOHhI /J,II­

HaMIIKII B IIHepwrn.JibHO ,I\BII:EKYIII8HC5I TpexMepHOH c¢epe OTJinqaIOTC5I OT 3aKOHOB 

l),IIHaMIIKII IlOK05IliieHC5I , TO eCTb BbI,IJ;eJIIITb a6COJIJOTHO TIOK05IIIIeeC5I rrpOCTpaHCTBO 

M02KHO TIO MexaHII"'IeCKIIM 5IBJI8HII5IM. 

B K.iraccII"'IeCKOH MexaHIIKe cBo6o;:i,Hoe ABII:EKemre B pIIManoBo::vr (TpexMepHoM) 
rrpocTpaHCTBe ecn, ,IJ,BII:t:KeHIIe no reo,n;e3n"'IeCKOH. 
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IlpocTpaHCTBO MWI<HO .MamepuaAU306am'b, IIOMeCTilB B KafK,IJ;YIO ero TO"IKY IIhI­

JUIHKy ( B rrpe,n;eJie - 6e3MaCCOBYIO) . IloK05III:t;HeC5r CB060,IJ;Hhie ITbUll1HKII OTMe-.:ra­

IOT TO"LJ:KII rrpocTpaHCTBa, a paCCTO.HHII5I MefK;.J,y 6eCKOHe"<IHO 6J1H3KilMII IlbIJUIHKa­

MII orrpe,n;eJI5IIOTC5I MeTpIIKOH npOCTpaHCTBa HJIH, Hao6opoT, onpedeA.fl'IOm Mempu'K:y 

npocmpaHcmaa. ECJrn B eBKJIII,U:OBOM rrpocrpaHCTBe 9THM T.Jacrn:u;a:rvr rrpn,n;aTh oµrrna­

KOBhie CKOpOCTII, TO p acCT05IHII'iI Me?K;.IY '1aCTIIIJ;aJ\rn coxpam1IOTC5I II OHil B nro6on 

:rvro:rvreHT Bpe:rvrenn peanH3YIOT eBKJIII,IJ;OBO rrpocTpaHCTBO. CrrcTeMa, cmr3amra5I c 9TII­

MII -.:raCTIIIJ;aMH ,  II 5IBJI5I8TC5I U'Hep'll;UaA'b'HOU cucme.MOU - BCe ee TOLJ:KII l-l.BII)KYTC5I ITO 

rrnep:u;nrr . 

IIpnMeHIIM 9TOT fKe :rvrexaHH3M .MamepuaJiusau,uu npocmpa'Hcmaa K Tpex:rvrepHoli 

ccjJepe. EcJnr rrocTpOHTh KaKoe-To rro.rre KnnnrrHra II Cfl:BHH)'Th T.JaCTH"<IKII B,U:OJih 9Toro 

II0.7I5I, TO paCCT0.5IHil.5I MefKl-IY HilMII - MeTpIIKa, peaJrn3yeMa5I IIOJieM 9TIIX qaCTHLJ:eK, 

- He II3M8HHTC.a, OCTaHeTc.a TOH :iKe B BbI6paHHOii: CIICTeMe KOOPfl:IIHaT« 

2. II0Jn1 KMJIJIIIHra TpexMepHOH ccpephI 

KaK H3BecTno , TpexMeptta5I cqiepa .aBJI5IeTC5I M8Tpn11ecKIIM MHoroo6pa3ne:rvr rpyrr­

ITLI 0 ( 3) '  a o;.rnonapa:rvrerpH'18CKHe no;.rrpymJbl Z!BJI.aIOTC.a reoµ;e3II"I8CKIIMil ITOJI.5IMil 

[2] , Il09TOMY CB06oµ;Hbie -.:raCTJIT.JKII co CKOpOCT5IMII, nporrop:u;noHaJibHbI::VlII KO::VIIIOHeH­

TaM KaKoro-To non.a KHJIJIHHra, 6y;.ryT Bce Bpe:rvr.a nepe:rvre:r:u;aTbC5I B;.:t;OJih 9Toro noJrn, 

peaJIH3)'5I B JII06on MOMeHT TpexMepHyIO ccjJepy. 

Pacnnrne:rvr MeTpHKY ccjJephr B yrnax 8.Hnepa: 

2 dl2 = r4 ( d?J2 + &cp2 + d1/J2 + 2 cos 19 dcp d'ljJ) . 
IIIecTh BeKTOpoB K1u1mrnra 9TOH :rvreTpHKII co6rrparoTc.a B µ;Be KOMMyTnpyromHe 

:rvrefK;.ry co6o.H rpyrrrrhI no TPII BeKTopa: 

3 
= L aa Xa + L ba 7)cx = 

a=l a=l 

cos cp 
- sin cp ctgv 
sin cp/ sin ii 

cos 1jJ 

sin '¢/ sin iJ 
- sin 1/J ctgv 

(2 .1 ) 

BeKTOpHbie non.a x� II T/� l 5IBJI.aJOIIJ;Hec.a Oi:t;HOBpeMeHHO IIOJI.5IMII KnJIJ1HHra II rco­

/J;83II'I8CKHMH I10TOKa!V1Il ,  Ha30B8M JI8BbIM Il npaBhL\'1 2eom0Ka.MU. 
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BeKTOpbI x� Ha30BeM BeI<::ropaMII Ae60U zpynn'bl, a 7]� . BeKTOpaMII npasou zpyn­

n'bl. BeKTopu, rrp11Ha,n;,i-reJKalll,IIe O,ll,HOil rpyrrrre, 6y,IJ,eM Ha3bIBaTb oihwcmop01i'HUMU 

2eomo·x;a.'vtu, a pa3HbIM - pasHocmopo'H'HU.AiU 2eomor;;aMtl. 

2 . 1 .  KoMMyTaTopbI H poTopbI 

BHyTpII Ka:/K,ll,OH rpyrrrrhI KOMMyTa1IIIOHHhl8 COOTHOill8HII5I Tpex IIOJieH II30MOpcp­

HhI KOMMyTa1IIIOHHhIM COOTfJOIDeHII5IM rpyrrrrhI Bpalll,eHHH. IlOJI5IM KIIJIJUIHra COIIO­

CTaBJI5IlDTC5I ,zi;ncp¢epeHIJ;HaJihHhie orrepaTOpbI Jlrr, 'Iepe3 KOTOpbI8 y,n;o6HO 3aIIHChI­

BaTb KOMMyTaIIIIOHHhI8 COOTHOill8HII5I :\18:>K,ll,Y IIOJI5IMII KIIJIJIIIID"a: 

. a 
X - xi . a - a axi ' 

. a y; - rii . a - · 1 a  Bxi ' 

2 
rot Xf3 = - - Xf3 i r 

2 
rot 173 = - T/f3 

r (2 .2) 

r,n;e r - pa,n;11yc ccpepII'I8CKOro rrpoCTpaHCTBa, a E[af3�r] - a6coJIIOTHhIH aHTIICIIMM8T­

p:WIHbIH T8H30p . 

2.2 .  TeopeMbI o cyrreprro3HD;HH 

YpaBHeHII.H Kmuunrra JIIIHeIIHhI rro IIOJI5IM 11 Jiro6aH JIIIHeilHa.H KOM6nHal.l,II5I rroJieli 

KK'IJIIIHra eCTh :raKiKe rroJie KnJWIIHra. 

YpaBHeHnsr reo,n;e3H'I8CKoro rroTOKa 

(2 .3 )  

H8Jl.lIH8HHhl I I  cyrreprr03IIWI5I IIOJI8Il (3 yJKe H e  5IBJI5!8TC5I reo,n;e3II'I8CKIIM ITOTOKOM. 

IIyc:rh II:\18.IOTCH ,n;Ba reoTOKa ui II vi . 1-Ix cyMMa eCTh BeK:rop K:u:mrnHra. By,zi;eT JIII 

CJMMapHhIH ITOTOK reO,IJ,83II'I8CKIIM'? 

TaK KaK reoTOKH 5IBJI5I.IOTC5I IIOJl5IMll KIIJIJIHHra, TO Ui;k = -uk;i II 

V Uj - <'"\/jk u - "Yjk 
u . i - I k;i - - i;k i 

. . . . 'k . . k . 'k . 
U1 Vi VJ + U2 Vi UJ = -�y.7 (ui Vi;k + V2 Ui;k)  = _1J Vk (u2 Vi ) = _1J ak (u1 ViJ ·  

By,[\eT JIU cyMMa reoTOKOB 5IBJrnThC5I reo:roKoM, orrpe,IJ,eJIHeTCH nx CKaJIHpHbIM rrpo­

II3Be,[\eHneM : 
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TeopeMa 2. 1 . .  Ec;/,U C'IW.1tJ1,p1-we npou36ede'tme d6yx 2eomo'/\:06 nocmo.R'Hino '/-1,a 

6CeM npocmpmtcm6e, mo ux cyMMa ma'/\::HCe J1,6.ftJ1,emcJ1, 2eomo'/\:OM. 

CKaJurpHbie npon3Be,[1,emu1 reOTOKOB BHYTPII Ka:tK,I\OH rpynnbl nocT05UIHbI : 

0TCI0,2J,a II n3 TeopeMbI 2 . 1 .  BbrTeKaeT 

TeopeMa 2.2 . .  Cynepno3UV,U.R oiJ'/-1,ocmopommx 2eomo'/\:06 J1,6JlJ1,emcJ1, 2eomo'/\:0M . 

Ilp5IMOH rrpoBepKOH y6e:t:K,[\aeMC5I, 'ITO CKaJrnpHOe IIpOII3Be,[1,eHIIe mo6bIX J1eBblX II 

npaBbIX reOTOKOB He 5IBJ15IeTC5I KOHCTaHTOH. cho CB5I3aHO C TeM, 'ITO npn cynepII03II­

IJ;IIII reOTOKOB MbI MO:t:KeM pacnop5I:t:KaTbC5I JIIIIIIb rneCTblO KOHCTaHTaMn, a MHO:t:KeCTBO 

3Ha'Iemrn: cKaJIRpHoro rrporr3Be,2J,eHnR Ha ccpepe 6ecKoHeLIHOMepHo. HcKJIIO'IeHrreM YrB­

JIReTcR IIOCT05IHCTBO CKaJI5IpHbIX IIpOII3Bef(eHIIH O,ll;HOCTOpOHHIIX reOTOKOB . 

0TCI0,2J,a CJiepyeT 

TeopeMa 2.3 . . CyMMa mo6'btX .1ie6020 u npa6020 2eomo'/\:06 Jl,6Jl.flemc.R noJte.M 

K'u.1tJlUH2a, 'H,O '/-1,e .R6Jl.RemcJ1, 2eoiJeaw-1,ec'/\:UM nomo1wJvt. 

3. ,Il;BIDKY:rrt;MeC.H CIICTeMbl 

EcJin B Ka:t:K,.o;oli TO'!Ke c¢epH'!ecKoro npocTpaHCTBa rroMeCTHTh IIbL"IIIHKY n Ka:t:K­

,.o;o:IT TaKOH IIbIJilIHKe npIIp;aTb CKOpOCTb, rrporrop:o;IIOHaJIMIYIO 0,lJ,HOMY lI3 IIOJ"Ieil: reo­

TOKOB, TO BCJie,IJ,CTBIIe reoµ,e311'IHOC'l'11 TaKoro IIOJIR, ,I\BIIraRCb TIO IIHep:o;uII, '-IaCTlI'IKM 

6y,II,yT ,.o;mrraTbCH B,[\OJih 9TOI'O nomr II CaMO IIOJie CKOpOCTeH c Te'!eHHeM BpeMeHII 
MeHRThC5I n:e 6y,L\eT. 

TaK KaK Ta.Koe noJie cKopocre:IT RBJI.HeTCR rroJieM KrrmmHra, TO paccTORHIIR MeJK­

,IJ;y IIhI.JIIIHKaMH MeH5IThC5I n:e 6y,IJ,eT: B Ka:tK,IJ,hIH MOMeHT BpeMeHII MHO)KeCTBO IIhIJIIIHOK 

peaJin3yeT TpexMepn:yro c¢epy. 

Ilo9TOMY ,I\JI5I p eaJI.H3aL\lll1 .irnepI\liaJibHOH CIICT8MhI - ;:I;BII.lKYIT\eHC5I B ce6e Tpex­

MepHOH ccpepbr --- HY:tKHO 6paTh cynep1ro3n:o;1110 0,2J,HOCTopoHHIIX reoTOKOB . 

0,IJ,HaKO no CBOIIM Mexanrr qeCKHM CBOHCTB3.M TaKaR ,Il;BII:t.KYIT\aHC5I ClICTeMa OTJilI­

'!aeTC5I OT noKORru,eil:cR. B neil: MeTpIIKa, onpe,II,eJIReMaR ,I\BII2KYIT\IIMIICR nhvmn:KaMII, 

TaKaR :tKe, KaK II HeTIO,ll,BII:tKHa5I - MeTpIIKa TpexMepn:oli c¢ephr, n IIOJIR Kmrn1rnra 

IT09TOMY Te )Ke caMbie. 0,D,HaKe B ,LIBH:tKyr:o;eiIC5I CllCTeMe TOJibKO TPII reOTOKa 5IB.IT5I­

IOTC5I 0/1,HOCTopon:n:mvrn co CKOpOCThIO. BeKTOpbI Ku.11mrnra ,IJ,pyroli rpyrrrrbI y2Ke n:e 

5IBJI5IIOTC5I reo,I1e3Il'-IeCKilMil , 'ITO orrpe,ri;eJIHMO 9KCrrepIIMeHTaJihHO. 
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3aMe'IaTeJibHbie ,n;:r:rcjxpepeHI:rIIa.TibHbie II aJ:rre6paII'I8CKII8 CBOHCTBa reOTOKOB II03-
BOJI5IIOT pacc::vroTpeTh HeTpIIBIIaJibHLie 3a,n;a'IH 3JieKTp0,Li;IIHaMHKH c O,IJ,HOpO,[!,HbIM 
aneKTpII'IeCKHM n MarHHTHhIM rroJrnMII. B eBKJIII,IJ,OBOM rrpocTpaHCTBe O'IeHb cracTo 
HCHOJib3Y8T ,ll,JI5l paCCMOTpeHH5l Tex IIJIIl IIHbIX 3JieKTp0,Il,I:IHaMII'-I8CKHX rrpo:rrecCOB no­

cmOJliH'Hibte, ooi;,opoihtNe aneKTpII'I8CKoe IIJIII MarHnTHOe rrona. Bo3MOJKHhI JIII Ta:rnrn 
rroJrs, ecmr rrpocTpaHCTBO 5IBJmeTC5l TpexMepHoli c¢epoi1 S3 ? 

Ilone, IIpOrrOpIJIIOHa.TihHOe reOTOKy, 5IBJI.H8TC5I OlJ;HOpO,IJ,HbIM ( Vi = Xi IIJIII Vi = 
rn: 

E(r, t) = e(t) V ;  H (r, t )  = h(t) V. 

YpaBHemLa MaKcBenna B BaKyy:vrn 

1 . 
- H + rot E = 0 ,  div H = 0,  
c 

1 . 
-;; E - rot H = 0, div E = 0,  

c yqeTOM cooTHOIIIeHII.H (2 .2)  ,n,na poTopa rrona Kmmmrra np:rrBo,n,aT K saBHCHMOCTII 
OT BpeMeHH a;vrrrJIHTYA 3.JI8KTpw:recKoro H MarHHTHOro IIOJICH: 

· 2 c  
h + - e  = O;  

r 
. 2 c  
e - - h =  0.  

r 

h + w2 h = O ;  e + w2 e = O;  
2 c  w ==  - .  
r 

Ecnn B Hai:raJibHbiil MOMeHT MhI 3a,n,ann O,Il,HOpOAHOe aneKTprI'IeCKoe none Eo , TO c 
Tei:renHCM Bpe1I8HH OHO rrepeKai:rnBaeTC5I B MarmITHOe ITO rapMOHII1'!8CKOMy 3aIWHY 
c 'IaCTOTOH w = 2 c/r . IlpII 3TOM 3HeprH5l 3JI8KTpOMarHilTHOro IIOJI5l He MeHSCTC5I: 
E2 + H2 = Eo2 .  

IT p11 CTpeMJieHII:rr pa,n;IIyca c¢epb:r K 6ecKonecruocTII rrepno,IJ, :rrnne6aHilli T = 1r r / c 
CTp8MIITC5I K 6eCKOH8'IHOCTII -- rrpOCTpaHCTBO CTaHOBilTC5l eBKJIIl,LJ;OBbIM, a IIOJI5l CTa­
IIOB5ITC21 CTaTIF!8CKilMll. 

[1] B.  Riemann . Nachrichten K Gesselschaft Wiss. ,  Gottingen (1868) , Bd. 13 ,  133 ,  
[PycCKIIH nepeBO,Il, B c6. 06 OC'H06a'HUJl,X 2e0Mempuu, M . ,  rIITTJI , 1956 ,  c .  309-
324] 

[2] B . A .  ;J,y6pomrn, c.rr.  HoBIIKOB, A.T. WOM8HKO. Co6peMe'H'Hax 2eoMempUJI,. M . :  

Hayrrn, 1979 . 
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Inertial systems in the spherical space 

D .E. Burlankov 
There are two three-parametric sets of the inertial systems, constructed on the Killing 

fields, if the space is a three-dimensional sphere. These fields are the geodesic flows at the 
same time. Their differential and algebraic properties are studied in this article. In the 
moving system only one set (the one half of all Killing fields) are the geodesic flows. There 
is the way to distinguish the absolutely quite system from moving ones. 

E-mail address: bur@phys .unn.runnet .ru 
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The Global Time Theory (GTT) is a next step in the development of the General 
Relativity (GR) . The GTT differs from the GR conceptually, but preserves 903 of the GR 
mathematical structure and reproduces its main results. The dynamics equations of the G TT 
are derived from the Lagrangian with nonzero gravitation Hamiltonian. Detailed solutions 
to the cosmic vortexes are presented. They satisfy a weak principle of superposition and do 
not have an analog in the GR. The virial theorem of space is formulated and proved. The 
GTT allows to formulate a quantum theory of gravitation on the basis of the Schroedinger 
equation, as it is done for other fields. The quantum model of the Big Bang based on the 
GTT is demonstrated. 

1 .  Introduction 

The most recognized theory of space, time and gravity today is the General Theory of 
Relativity (GR) . It treats space and time as a four-dimensional repository which properties 
can be modified according to the Einstein's equations by the inserted matter. As in the times 
of Mach, the basis of cosmic dynamics is here a "tangible matter". 

Astrophysical observations of XX century showed that dynamics of galaxies and heaps 
of galaxies cannot be explained by theories based solely on gravitational interactions of 
visible stars. In order to explain the observed anomalies such notions as "dark matter", "dark 
energy", massive "dark holes", etc. were introduced but current theories have not been able 
to accommodate them yet adequately. 

GR as the space-time theory suggests only small corrections to the Newtonian dynamics 
(at its scale) . An alternative theory of the space and time, the the Global Time Theory 
(GTT) , is introduced here. The GTT differs significantly from the GR in physical postulates 
it is based on, but preserves 903 of the mathematical structure and main results of the 
GR. Importantly, the description of the cosmos dynamics, and construction of the quantum 
gravity are essentially different in the GTT from ones in the GR. 

2. The Global Time Theory 

In the GTT time is absolute . It flows equally, always and everywhere, and is itself the 
measure of an equality. The development of the Entire Universe occurs in this global time. 

The space has three dimension, is Riemanian, and its metric tensor ( '/ij ) can depend on 
space coordinates and time. Points of the space are linked with the global time absolutely. 
The frame of reference in which coordinates of space points do not change is called the 
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global inertial system. The inertial system allows arbitrary tree-dimensional transformations 
of coordinates xi(xj) (that do not depend on time) . 

The coordinate transformations that are time-dependent lead to the global non-inertial 
system of observation. Meanwhile the time remain global. In the non-inertial system the 

vector field of absolute velocities Vi arises, although it vanish in the inertial system. In the 

transformation of coordinates, the vi -field is transformed as a gauge field: 

-ij - axi axJ kl 
r - axk 8x11 

2.1. The covariant derivative over the time 

(2.1) 

We will denote the time derivative in the inertial system as Dt and call it the covariant 
derivative over the time. By the rule of the composite function differentiation 

aF aF axi aF i aF Dt F = ---;:;--- + � --;.:;--- = ---;:;--- + V � ' ut ux" ut ut ux" (2.2) 

what determines the covariant derivative over the time of a scalar field (action, eikonal) in 
an arbitrary frame with global time. 

The structure of covariant derivatives over the time for tensors contains additional terms 
in the form of the Lie-variation, that are generated by the transformation of coordinates 

5xi 
= -Vi dt - for returning to the inertial system. 

For a tensor of an arbitrary rank 

D Qi - [)Qi lTiQs + vsQi + vsQi + vsQi 
t jk - at jk -- �;s jk ;j sk ;k js jk;s· (2.3) 

Especially important for the theory is the covariant derivative over time of the metric 
tensor: 

(2.4) 

2.2. Action and dynamical equations 

In the GR, space plays a rather passive role. In contrast, in the GTT, the three­

dimensional space is the dynamic field, relative to which there exists an absolute motion, or, 

on the contrary, there exists a field of space velocities in a given system of coordinates. The 
equations of motion are derived from the variation principle. The Lagrangian is as usually 
presented as the difference between the kinetic and potential energy. Introducing the tensor 
of the space deformation velocity 

(2.5) 

we can represent this action as preconcerted with the Hilbert action in the GR: 

(2.6) 
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where Sm is the action of enclosed matter, which adds to dynamic equations the energy­
momenta tensor components . The absolute velocities Vi are present only in the kinetic 
energy term. 

By introducing momenta i ;;:::;( i ;:i " ) Jrj = V I  µj - uj µ,s ' 
and varying the action over the six components of the spatial metrics, we obtain six equations 
for the dynamics of the system: 

. i bi + ;;:::; G; + ;;:::; (Ti Vi To) Jrj = J v i  J v i  j - J ' 
where bj is what we call the self-tensor current 

(2 .7) 

(2 .8) 

G� is the Einstein's tensor of the three-dimensional space, and T/J are components of the 
tensor energy-momenta of the enclosed matter, which determines the exterior tensor c11rrent. 

The variation (only the kinetic part of action) by three components of the field of absolute 
velocities gives three equations of constraints: 

i 8Jrk 0 \7; Jrj = v0 7TJ ,  (2 .9) 

The Hamiltonian differs from the Lagrangian only by the sign in front of the potential 
component of energy: 

(2 .10) 

Its unique feature is the non-fixed sign, what leads in particular to the possibility of such a 
phenomena as Friedman cosmological expansion. 

2.3 .  The own time of the moving body 

Similar to the GR, the GTT includes the special relativity. At the level of the global time, 
at which the development of the Entire Universe occur, for the moving observer, there exist 
its local frame of references and local time. All phenomena in the moving system develop in 
this local time which can be expressed through the square of absolute velocity 

(2 .11 ) 

This expression can be  represented in four-dimensions by combining the time and space 
into a unified four-dimensional manifold with the metrics 

(2 .12) 

The reverse metric tensor of this four-dimensional manifold is 
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The first equation here 00 g = 1 .  (2 . 13) 

is of great significance. This is the main structural relationship in the GTT, analogous to 
the Minkowski metric, which is the main structural relationship in the special relativity. 

2.4.  General Relativity 

If there is a four-dimensional metric gaf3 in an arbitrary four-dimensional space with 
coordinates x°' ,  O'. = 0 . . 3 ,  the variable T must be determined for the reduction to the global 
time, in order for the main structure relationship (2 . 1 3) to hold true. \Ve must transfer the 
metrics component g00 by rule of tensor transformation: 

_00 _ af3 DT DT _ a - g  -�- D  q - l . � (JJ;o: - xP 
(2 . 14) 

This differential equation turns out to be the Hamilton-Jacoby differential equation for free­
falling bodies (laboratories) , the common time for which is 1 , which is the global time. 

Thus thr. eq'uivalencc principle has a place, but , in contrast to the GR, the time of the 
inertial system exists not only for a local frame, but also for an infinite number of frames in 
entire space. 

For example, the Kerr 's metric [4] in the global time has radial and angular components 
of the absolute velocity field: 

where 

2 a M r V"' -" - ---
11) 

7 y'2 I'v1 r (r2 + a2 )  v = 2 ' 
p 

p2 = r2 + a2 cos2 19; w = (r2 + a2 )p2 + 2 NI r a2 sin2 19 . 

The space metrics 

has singularity only at p2 = 0 . 

w . 
2 

0 �/.33 = 2 sm 11 :  
p 

v0 = p2 sin rJ 

2 .5 .  The energy-momentum tensor of  the space 

(2 . 15) 

(2 . 16) 

The GTT differs mathematically from the GR only by one equation: since the main 
structural relationship (2 .13) g00 = 1 prohibits variation of this component , the determined 
by this component variation tenth Einstein's equation is absent in the GTT . As a result, 
the difference 

5 S c4 
-2 -- = -- Goo �- Too = p; (5 gOO 81ik 

is nonzero. In tensor terms we will denote this difference as the difference tensor: 

4 ea - _c_ ca - Ta 
f3 

- Sr. k 8 f3 ' 

(2 . 17) 

(2 .18) 
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and as a consequence of (2 .17) 
(2 .19) 

Since Ge and TjJ are subject to the Hilbert's identities, the difference tensor B$ is 
also subject to them: 

'VaB.6 = 0, (2 .20) 

thus (2.19) has the form of the energy-momenta tensor of a dust matter. But if we want 
to model the GTT in the GR by means of dust, as a result of a non-fixed sign of energy 
density, the possibility of a negative density of dust in the GR must also be considered. 

3. Solutions 

The most essential difference between the GTT and the GR is the nonzero Hamiltonian. 
The dynamic equations conserve the Hamiltonian density, and due to its non-fixed sign, 
partial solutions with all-around density of zero are possible. These exist also the GR 
solutions, which comprise a subset of the GTT solutions . 

Further we describe a small set of the GTT solutions, which illustrate a solving 
methodology as well as the similarities and differences between the GTT and the GR. 

3 .1 .  The Spherical Universe dynamics 

The simplest model is a three-dimensional sphere with timc'-depending radius: 

where ds� is the metric of the three-dimensional sphere with a radius of equal to one. 
For three-dimensional sphere with radius r , the scalar curvature is 

3 
R = z- ,  V'Y = r3 .  

r 
The kinetic energy is proportional to 

T = -3 (�) 2 r3 

and the Hamiltonian has a negative sign: 

H = -3 r (i2 + 1). 

The Hamiitonian conservation leads to a differential equation of the first order : 

-H = 3 r (i2 + 1) = 3 rmao: i 

(3 .1) 

which is the Friedman's equation, that has a cycloid solution. In contrast to the classical 
formulation of the Friedman's problem, this solution is a vacuum one, without matter, and 

?"max is an integration constant independent on the matter density. 
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3.2 .  The field of the spherical mass 

BGL-4 

The inertial system is dynamical, but in global time there exist solutions, that are static 
from the point of view of some noninertial system. 

In a spherically symmetric case, the space metric can be transformed to 

and the field of absolute velocities is radial: V,.. = V(r) . Only the radial constraint-equation 
is nontrivial: 

from which R �" r , and the space turns out to the fiat one. 
In dynamical equations qf , q� = q� are non trivial, but if the first equation is satisfied, 

then the second one is satisfied automatically as a result of the Hilbert identities. 

1 V (2 r V' + V) ql = r2 

In vacuum qr = 0 , from which 

r V2 = canst :::.= 2 k M  � 0, 

(3 .2) 

where k is the gravitational constant, and i\1 is the constant of integration, which can be 
treated as the mass of a central body. This constant must be positive, whereas in the GR 
the positive sign of mass is a problem. 

The field of radial velocities 

leads to the four-dimensional metric 

2 ( 2kM ) 2 2 /f 2kM 2 .., . 2 2 2 . ds = 1 - r c2 c dt + 2\r -r- dt dr - dr - r- ldiJ + sin i) drp ) .  (3.3) 

In 1921 this metric was obtained by Painlcve (3) by transformation of the time variable 
in Schwarzschild (4] solution of the GR. Painleve's attention was attracted by the simplicity 
of the space section t = canst , which turned out to be a fiat Euclidean space. 

The reverse metric of this space have g00 = 1 . 

3 .3 .  The Vortex field 

The problem of space vortexes has no an analog in the GR and is the specific problem 
of the GTT. 

The metric is stationary, axially-symmetric, and thus can be transformed into 

(3.4) 
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The absolute velocities field i s  also dependent on r and {} , and i s  the vortex field 
V\O = D(r, z) . The kinetic energy is given by 

c2 j ( 2 1 2 ) 4 . 3 
( T = 321ik 

D,r + 
r2 

D,19 r sm {} dr d{} drp 3 .5 )  

is determined exclusively by the vortex field D and is  independent of  the metric function 
w .  

The unique nontrivial constraint for V'P in the absence of current yields the equation 
for V'P : 

4 1 
D,rr + - D,r +-

2 
(D,M +3 ctg{} D,19 )  = 0 .  (3.6) 

r r 
Note, that this second order linear differential equation is independent on the metric 

function w (r, 1f) . 
The equations for the metric determine the derivatives of the function w : 

r (" 2 2 n 2 ,. D , · 4 W,r = 2 " " 'fJ - r  ,r -2 ctg1f r o i,r ,fJ ) sin {}; 

2 
W,fJ = 

r

2 
( ctg{} (r2 12,; -D,� ) - 2r D,r D,fJ ) sin4 19. (3 .7) 

The energy density now is expressed solely trough derivatives of D :  

r2 c2 . E ;;;;y = -- (r2 Sl 2 +n 2a )  sin3 {} V I 81ik ,,. >v ' (3.8) 

and the kinetic energy is exactly four times smaller. This is the result of the space virial 
theorem. 

The full energy in a given region B without external sources 

EB = 27f l Ey"Y dr d{} 

is positive and reaches a minima in the equation (3.6) solutions .  

3.4. The space virial theorem 

(3.9) 

Denoting r.j = 7f , the sum of equations (2 .  7) ,  in absence of external sources (for proper 
gravitation) ,  gives 

(3. 10) 

where T and U are the densities of the kinetic and the potential energy, respectively. 
The space virial theorem can be applied to the almost stationary fields in space, on the 
boundaries of which there is no current flow, vn = 0 .  Averaging (3 .10) over time, we obtain 
the relationship between the average potential, kinetic, and total energies: 

U = 3 T; E = T + U = 4 T. (3 . 11 )  

Under the aforementioned conditions , the kinetic and total energies are positive. 
All conditions for application of this theorem to the given task are satisfied. 
Determination of the kinetic energy requires knowledge about the field of absolute 

velocities in a given region. This information may be obtained from visible stars. The virial 
space theorem allows calculation of the full energy. 
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3 . 5 .  The weak superposition principle 

The main part of the vortex problem is to solve the linear differential equation (3.6) . 

Afterwards, equations (3 .7) determine the metric function w (r, 79) . 
Although the overall problem is nonlinear, the first (main) part - determination of the 

vortex field D(r, 73) - is linear and subject to the superposition principle. 
Thus, any field D can be represented as the superposition of some basic solutions. 

However,  equations (3 .7) for finding the field w (r, 73) contains the square of the field D 
derivatives. The solution as a whole is not a superposition of partial solutions. 

3 . 6 .  Multipole solutions 

The differential equation (3.6) is homogeneous along radius r , thus its common solutions 
can be found in the form of a power series 

Pz (cos !9) .  (3.12) 

The angular part is subject to the differential equation (where x = cos 73 ) : 
(x2 - l)P(' + 4 x P{ - l (l + 3)Pz = 0. (3. 13) 

The solutions with integer l are the Hegenbauer 's polynomials with a = 3/2 . They are 
the base of spherical functions in a five-dimensional space. Particularly, at l = -3 (as at 
l = 0 )  the solution of equation (3 .13) is a constant - there is a monopole solution 

3.7. The Energy 

1 
Do (r, 73) = 3 .  

r 
(3. 14) 

To get an idea about cosmic energies, we examine the following problem. A globe with 
radius R is in constant rotation with angular velocity of n coherently. This means that the 
globe velocity on the surface coincides with the velocities of space, i .e . the field of angular 
velocities outside the globe are determined by a monopole solution 

(3.15 )  

The energy density outside the globe (inside the globe, the field is homogeneous and the 
energy density is zero) :  

and the full energy of space is :  

E = ----­
r6 

c4 

. !.,,- 1= r2 dr R3 D2 c2 E = -- 9 D2 R6 2n sin3 73 d73 -6- = = lVI c2 , 
l6nk J O  R r 2 k  

(3.1 6) 
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where M is the equivalent mass (not the mass of the globe) 

(3 . 1 7) 

For example, we examine a globe with diameter 20 cm. ( R = 0 . 1  m ) , that completes 
one rotation per second ( n = 2 Jr c -1 ) . We obtain M = 300 000 000 kg. To force the space 
outside the globe to rotate coherently with the globe requires as much energy as is released 
upon annihilation of 300 000 tons of matter. Hence, laboratory experiments with space 
vortexes are not realistic. 

This example also explains why our space is Euclidean with high accuracy: in the energy 
expression, there is a huge factor c4 / (16 K k) in front of the space curvature. This means 
that the smallest deviation from Euclidean space require tremendous energy. 

Our space is (almost) Euclidean not due to the beauty and elegance of Euclidean 
geometry, but because this space has minimum energy. 

4 .  Big Bang in the GTT 

Since the Hamiltonian in the GTT is not equal zero, the effective quantum theory of 
gravitation can be built on the basis of the Schroedinger equation, as for other fields. 

Further we will work in Plankean system of units where light velocity c = 1 ,  8 Jr k = 1 
and n = 1 . All physical values are dimensionless and the energy E is determined by the 
dimensionless value e : 

4. 1 .  Classical solutions 

c4 
E = e -- . 

8 Jr k 

Now we study the compact cosmological model of Friedman type with space as a three­
dimensional sphere with variable radius r ,  depended on the time t .  This Universe is filled 
by ultra-relativistic matter with the state equation E = 3 p . 

The Lagrangian of isoenthrophic gas is expressed by integral over space of pressure, 
determined as function of the chemical potential [5] µ . For ultrarelativistic matter the 
pressure is proportional to µ4 , what together with Lagrangian of space yields the full 
Lagrangian: 

L =  

and further the Hamiltonian 

. . p; + ,2 q2 H = -r p + up - L = - -- + -T a 
2 r  2 1 '  

where q2 determines the conserved quantity of the ultrarelativistic matter. 
The classical equation of motion can be derived from the energy conservation law: 

1 r = - V q2 - 2E r - ,2 . r 

(4 .1)  

(4.2) 

(4.3) 
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This equation describes the radius oscillations between the maximal and minimal values, 
which are determined by roots of the subroot expression: rmax = Je2 + q2 - e ,  and the 
second root is negative. 

If q2 cJ 0 , the energy can be either negative or positive. At q2 = 0 we have a pure 
gravitational dynamics, the one without matter. In this case the energy can j ,tain only 
negative values, 

4.2.  Quantum model 

The wave function is a function of the radius r . By u' we denote the derivative 
of the wave function u(r) over r .  By symmetryzation the product p2 /r we obtain the 
cosmological wave equations: 

- ( � ) ' + (-·r + q:) u = 2 E u, 

u' 
u" - - + ( -r2 + q2 )  u = 2 r Eu. 

r 
This equation has a regular special point r = 0 and irregular one r 

vicinity the wave function behave as the one of the oscillator: 

( 4.4) 

oo ,  at that 

At the some values of E , the coefficient B vanishes - there is normalized solutions of 
the quantum equation. The function is equal zero at r = 0 and infinity, and hence it can 
have n extremums. 

At the vicinity of zero radius all solutions behave as r2 . This means that probability 
density at r -+  0 in any state is zero. 

The equation (4.4) have two parameters: q and E .  
At q2 = 1 for n = 1 ,  18 the solutions are represented on the graphics: 

0 6 1 o . s f uf 0 . 3 f 

:11  

[) .  6 � 

: :� A  1\A. 1� !� �1 : r1nrUlf v � v -�\ I ,�2 14 ���-s n=l -: . : t n=18 

The self energy values for small n at q2 = 0, 1, 10 are represented in following table 
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n 
1 

2 
3 
4 

. . . 
8 
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q"2 = 0 

- 1 . 3 133 
- 1 .9243 
-2.3863 
-2.773 

. . . 

-3 .9599 

q"' = 1 
-1 .0202 
-1 .7122 
-2.2107 
-2.6193 

. . .  

-3.8487 

q"2 = 10 

2.6765 

0 .564 
-0.441 

- 1 . 1208 

. . .  
-2.8153 
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The eigenvalues of the energy can be equal to zero (as in the GR) , but only at the 
q2 = 4 n . This value of q has only one wave function with n extrema. 

This model demonstrates the difference of quantum and classical solutions. The solutions 
of the classical equation ( 4 .3) describes the radius oscillations between the positive maximal 
and negative minimal radiuses. The point r = 0 in classical solution is usual point. In 
quantum solutions the point r = 0 is special point and the value of the wave function 
at this point is zero, so the quantum oscillations of radius are between zero and maximal 
classical radius . 

5 .  ADM-representation 

The bridge between the GR and the GTT is the ADM representation of the four­
dirnensional metric in the GR [6) , where the time is explicitly separated from space 
coordinates. 

The ADM representation presents 10 components of the four-metrics through 6 

components of the three-metrics 'liJ , three-vector Vi (in the GTT notations) and the 
function of the time fiow f (x, t) : 

(5 . 1 )  

The inverse metrical tensor components are 

(5 .2) 

The variations of the Hilbert action is 

(5.3) 

The general covariance requires vanishing of all variations, what leads to 10 Einstein 
equations. 

In the GTT, the component g00 =-c= 1 always and everywhere, and this component cannot 
be a variable .  The action variation by this function is not required to be zero but can be an 
arbitrary function. This variation is the energy density. 

This unique variation differ the GTT from the GR. If we consider the GTT solutions 
with the energy density equal to zero everywhere, we obtain the GR solutions. In the GR we 
have H = 0 in any region, what is an obstacle for using the Shroedinger's quantum theory 
in a way similar to that applied for others fields. 
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6 .  Conclusion 

The GTT is valid competitor to the GR. All known phenomena can be described as 
by the GR as by the GTT. But the GTT is the dynamical theory of the space with the 
effective Hamiltonian, what allows to create the quantum gravity in a usual way. The nonzero 
(and non positive determined) energy density also can explain the different cosmological 
anomalies. 
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The synchronous process o f  particle motion and light beams propagation has been found to 

reveal the physical foundation for violation of the V-th Euclidean postulate in the velocity 

space. The process revealed also its fruitfulness in solving in a new way the main problem 

in relativity - the problem of time synchronization for different space points [l] . The first 

obvious consequences of the new solution - such as simultaneity, proper time, inertial frame 

coordinate transformation and relativistic velocity summation law - are also presented in 

this paper. 

1 .  Introduction 

The physical nature of Lobachevsky parallel lines (LPL) remains unknown despite of 
the fact that the Lobachevsky velocity space is widely used to study particle scattering 
processes in modern high energy physics. As the existence of LPL is based on the denial 
of the Euclidean V-th postulate, then a physical foundation for its violation is also not 
known. At present, LPL have only a geometrical interpretation - either as infinite lines on a 
pseudospherical surface or as hordes on the Euclidean circle [2] . 

Further developments of the approach published earlier in [3] have been described in 
this paper. We consider light propagation according to the Huygens principle and the 
independency of the light beams. So, the phenomena of light diffraction and interference are 
not considered. It is assumed that the time counting for a space point starts when a light 
front comes to that point. This is also the moment of a secondary light hemisphere emission, 
according to the Huygens principle. We accept the constant light velocity principle and we 
use the same plane light fronts as widely used to explain the light reflection and refraction 
phenomena. The basic knowledge of Lobachevsky geometry [2, 4] is assuming. 

2. Physical nature of Lobachevsky parallel lines 

Let us consider two inertial frames K and Ks . Each of the frames may be associated 
with a particle. The space axises of both frames are parallel and Ks is moving with constant 
velocity V along the X -axis of frame K .  It is assumed that their origins, 0 and Os , 
coincide when the plane light front directed at the parallel angle BL reaches the point 0 
(a lateral beam is moving from bottom to top in XY -plane as shown in Fig.la) . At this 
initial moment a light sphere (hemisphere to the falling front) starts to spread out from 0 . 
The parallel angle eL is defined as 

cos BL = cos II(p/k) = th(p/k) = V/c = /3 ,  ( k  = c) (2 .1) 
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a)  b) 

Fig. L a) Synchronization of the K8 -motion ( Vt )  and the light rays ( ct and ct8 ) 
propagation by the side light beam. b) Lobachevsky parallel lines in the velocity 
space plane corresponding to synchronous motions of ct , ct8 and Vt in Euclidean 
plane ( c = 1 is used for rapidities) . 

here /3 is the velocity V in units of c , p/k is a value of rapidity p in units of k = c ,  
II(p/k) = BL is a parallel angle, k is the Lobachevsky constant, c is the velocity of light . 
The second equality /3 = th(p/c) in (1 . 1) is known from the Beltarami model [2] and used 
to define a particle rapidity: 

p/c = 1/2 ln ( ( 1  + /3)/(1 - /3)) .  (2.2) 

The first equality in ( 1 . 1 )  can be rewritten as 

eL = II(p/k) = 2arctg e· p/c '  (2.3) 

known as the Lobachevsky function. It is seen from (Ll) that for any rapidity (and its 
velocity) there is a definite angle eL . For the negative argument of the Lobachevsky function 
the parallel angle BL changes to 7f - BL [2] , which corresponds to the same velocity but for 
the opposite direction. 

Let us consider a space-time point (x = Vt, t) in frame K .  The light ray from the 
origin 0 will get to this point iri time x/c (Einstein's signal) but the lateral beam's ray will 
come there first with some delay (relatively to 0) in the moment of time tp as 

ct F = X COS 8 L = Vt cos 8 L = ct cos2 8 L , (2.4) 

and then a new light sphere starts to spread out from the x -point. By the given moment 
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of time t a new sphere will spread out to the radius 

ct8 = ct - ctp = ct - x cos BL = ct - xV/c , 

and for x = Vt : 

t8 = t - xV/c2 , 

Cts = ct - ct cos2 BL = ct sin2 fh = ct (1 - V2 /c2) ,  

where ct is the light sphere radius from origin 0 , so that cts < ct . 
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(2 .5) 

(2 .6) 

Let us choose two light rays from these two spheres: one, ct , emitted from 0 under the 
angle BL to the X -axis in some plane, and the other, cts , emitted from Os (located at 
x )  perpendicular to the X -axis in the same plane (see Fig. la) . Three segments ct, Vt 
and cts form a rectangular triangle. But two sides of triangle, ct and ct8 , have no 
common (intersection) point at no moment of time t ,  so they are parallel in any chosen 
Euclidean plane. As rapidity (l.1) for the light velocity is the infinity, then the obtained 
triangle transforms into the LPL or, more precisely, into the parallel lines in one side on the 
Lobachevsky plane in the velocity space as it is illustrated in Fig .lb .  

Thus , the LPL in a velocity space corresponds to the light rays ct and cts emitted 
(according to the Huygens principle) from different points and different times and 
synchronized with particle motion Vt by the side light beam. The physical reason for 
the lack of intersection point is the time delay tp (see (3.) ) .  This time delay is an obvious 
physical foundation for the violation of the V-th postulate in the velocity space. As the value 
of tp for given x defines by c (with changing V the BL changes but not the c )  then 
one can conclude that the basic reason for the V-th postulate violation is the constant light 
velocity principle. 

To find out light rays corresponding to LPL in another side, one can consider a lateral 
beam to another direction (from top to bottom) in the same plane (as shown in Fig.2a and 
Fig.2b) .  

For light rays corresponding to the LPL (in both sides) for negative argument of 
Lobachevsky function (for V < 0 ) , one should use a pair of lateral beams directed opposite 
to X -axis, i.e. from right to left (for V > 0 the beams were directed from left to right) , 
as shown in Fig.2c and Fig.2d. A complete set of light rays synchronized with the particle 
motion Vt (both for V > 0 and V < 0 ) which corresponds to LPL in the velocity space 
is presented in Fig.3. 

Thus , the moving reference frame (for V > 0 and/or V < 0 )  can be associated with the 
definite lateral light beams. The rest frame ( V = 0 )  is associated with the direct beams at 
BL = r./2 (as shown in Fig.2 ) .  Lobachevsky function has the same form for the rest frame 
and for the moving ones, i.e. it follows the principle of relativity. So, Lobachevsky function 
expresses the constant light velocity principle at k = c . 

The synchronization method used to reveal the physical nature of Lobachevsky parallel 
lines is also fruitful in solving the main difficulty of relativity - the problem of time 
synchronization for different space points. 

3. x and t - coordinate transformation and light ether 

concept 

Let us continue with the inertial frames K and Ks for V > 0 .  One can assume that 
a pair of direct beams (from top and bottom) reaches X -axis at the same moment of time 
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o� 
a)  b) 

c )  d )  

Fig. 2.  a)  Two lateral light beams (for V > 0 )  give two pairs of light rays ct and 
cts for both sides of the plane (top and bottom) , synchronous with Ks -motion Vt . 
b) Parallel lines in both sides on Lobachevsky plane, corresponding to  synchronous 
motions in a) . The plots for V < 0 are shown in c) and d) . 

as a pair of lateral beams (from left to right) reaches the point where both origins coincide. 
All x -points (including 0 )  are 11exited"simultaneously, and this moment of time is usually 
chosen as the initial one for K frame (the same for all coordinates) . The initial moment of 
time for any x -point is delayed by tp relative to the lateral beams (see (3. ) )  so that time t8 
at a given moment of time t (in K )  is defined by (3. 1 ) .  Thus, due to the synchronization of 
K and Ks frames (by the corresponding pairs of direct and lateral fronts) two moments of 
time, t and ts , can be defined at any x point. For the chosen event (x, t) time ts depends 
only on the velocity of the moving frame Ks . 

Let us define the time t in the fixed frame via the distance ct passed by the light ray 
emitted from the point 0 at the parallel angle BL to X -axis in some plane. It is seen from 
Fig. 1-Fig.4 that for any event (x ,  t) the delay time ctp is just a projection of the given 
x �point on the chosen light ray ct . 

Obviously, the displacement of Ks origin Vt = ct cosBL is just a projection of the light 
ray ct on the X -axis. So, for any given coordinate x at a given time t a value x8 relative 
to the origin 0 s is 

X s = X - Vt = X - ct COS 8 L . (3 .1)  

For any event (x = Vt, t)  a relative coordinate is X 8  = 0 .  It means that time ts (see (3 .1 )  
and (3 .2) )  is  the proper time of Ks , i .e .  the time 11measured"by means of a "moving clock" ,  
when one spectator observes the light sphere with the radius ct  in K and in  the same time 
t a moving spectator observes another light sphere with the radius ct8 (both spheres are 
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Fig. 3. An illustration for synchronous propagation of the corresponding light rays 
and particle motion (for V > 0 or V < 0 )  in K -frame. 

triggered off by the lateral light beams) . For the event (x, t) the corresponding moment of 
time ts is the time "measured"by means of the "moving clock"located at the point Xs of 
Ks . Unlike of t in K ,  the time ts defined for Os is not all the same for the points on 
Xs -axis. 

Indeed, from (3 . )  one can see that the initial moment of time (provoked by the lateral 
light front) propagates along X -axis with the velocity v F : 

vp = x/tp = c/ cos &L = c2 /V = c/(3 > c .  (3.2) 

So, for 0 < V < c any two events (x1 , t) and (x2 , t) have different time ts in Ks . For 
V ----+ 0 ( fh ----+ 7r/2 for side beams) the velocity Vp ----+ oo and one comes to the Newton 
time ts ----+ t ,  and for V = C ( &L = 0 )  the proper time ts = 0 .  

Thus, for any event (x,  t) in K the corresponding coordinates in Ks are simple shifts 
(see (3. 1) and (3.3) ) .  To obtain the values of shifts, one should make symmetrical projections 
as described above. We have used this symmetry to find out the Lorentz coordinates x' 
and t' for a moving frame. To get them, one has to find the crossing point 0' of two 
perpendiculars producing the projections for any ( x, t )  event (see Fig.4) . Then the length 
of the interval from O' to x corresponds to x' : 

x' = (x - ct cos OL) /  sin OL = (x - Vt)/ Ji -- V2/c2 , X s = X1 sin 0 L , (3.3) 

and the distance from 0' to the ct corresponds to ct' : 

ct' = (ct - :x; cos e L)  I sin e L = (ct - x 1l / c) I J 1 - V2 I c2 ) cts = ct' sin OL . (3.4) 
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Fig. 4. a) An illustration of the inertial frame x and t coordinate transformation 
(including Lorentz transformation) . b) A velocity space diagram corresponding to 
x and t shifts .  The x -coordinate is the :r -position of a particle, moving with a 
velocity of v = x/t in K frame by the moment of time t .  

It is seen from (3.5) and (3.6) that primed and shifted coordinates are related as the 
corresponding projections. But the point O' , which is always considered as the origin of the 
moving frame, does not coincide in space with Os . It is also seen that the line 01 x' is not 
parallel to the X -axis. So, it seems obvious that the primed values can not be regarded as 
the coordinates in a moving frame. 

The distance between the given points x and ct (dashed line in Fig.4) can be defined 
via the primed and unprimed values: 

l2 c2t2 r x2 - 2ctx COS G L = c2t'2 + x'2 + 2ct1 X1 COS () L := 1'2 , (3.5) 

or as a sum of two terms, either as 12 = si + s§ (to get it one should add ±x2 to the left 
part of (3 .7) and ±x'2 to its right part ) ,  or as 12 = - si + s� (add ±c2t2 to the left part 
of (3 .7) and ±c2t'2 to the right part) , where: 

/ = l/sinBL = l/Jl - V2/c2 , (3 .6) 

s� = 2x(x - ct cos BL ) = 2x' (x' ±ct' cos BL) , s� = 2ct(ct - x  cos BL) = 2ct' (ct' ±x' cos BL) . 
(3 .7) 

Term si is known as an invariant interval. Obviously, it is only a part of the full distance 
12 and is a result of cancelling of two equal values, either s� , or s§ in the expressions for 
l2 = l'2 . Terms s§ and s§ may differ by sign: ( +) / (-) corresponds to the point 01 located 
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inside/outside the cone defined by the angle eL . For an event (x = Vt, t) term s� is 
equal to zero (as Xs = x' = 0 )  and s§ = 2si ' so l2 = si = l'2 .  The Lorentz coordinate 
transformations for this pa.rticular case have being usually presented in the manuals (e.g. [ 5] ) .  

From (3.9) one can find (using the second formulae in (3.5, 3 .6)) 

(3.8) 

and 
(3.9) 

which are the reverse transformation from the moving frame to the rest frame. To check 
that, one can solve (3 .1 )  and (3.3) for x and ct (once the factor l/sinBL is inserted into 
the brackets then the terms in brackets became the lengths of perpendiculars corresponding 
to the mentioned projection symmetry) . 

It is seen from (3. 1 ) , (3 .3) and (3. 10-3.) that the direct and reverse transformations are 
different: the latter could not be obtained by changing V to -V . This means that one 
already knows that the frame either moves, or not. When changing V on --V one should 
also choose an appropriate lateral light beam direction for a moving frame. So, if Ks moves 
backward to X ( V < 0 )  one should change the sign in (3 . 1 ) ,  (3 .3) and in nominators of the 
reverse formulae (3. 10-3 . ) . Thus, for any two frames one frame can be regarded as a moving 
frame and other one as the rest frame and vise versa by choosing the corresponding direct 
and lateral light beams (according to the known parallel angles) .  

A possible way to realize these opportunities is to make an assumption about the presence 
of many light streams of any directions. One may assume an ether, not a restful one, but 
the moving light ether. The absence of the absolute frame testifies upon the absence restful 
ether and does not contradict the presence of the moving light ether. 

Thus, the relation between space and time coordinates expresses through the parallel 
angle or through the corresponding velocities. So, this relation is generated by the presence 
of the corresponding light streams and particles. 

4. y, z - coordinate transformation and invariants 

Let us consider event (x, y, z = 0, t) in K frame. The lateral light beam is reaching 
X -axis in XY -plane as shown in Fig.5 ,  i .e. it spreads from bottom to top, first enters the 
plane point (x, y) and then the point (x, y = 0) at the X -axis (if y -coordinate has an 
opposite sign, then one can choose another lateral beam heading from top to bottom) . 

The secondary light sphere spreads out from the first point to the point (x, y = 0) at 
the X -a.xis in a time of y / c . The lateral beam ray reaches this point in a moment of time 
y sinBL /c (since the secondary sphere starts to spread out from the first point ) .  So, the light 
way difference is 

cf:-:i.t ==: f:-:i.y = y - y sin BL . ( 4 .1 )  
To compensate for this difference and make the initial moment of time counting caused by 
the lateral beam to be the same for x8 and Ys , the origin of Ks frame should be shifted 
along the Y -axis by the value of 1:-:i.y (4. 1 ) .  Then the y -coordinate in Ks frame is 

Ys = y - 1:-:i.y = y sin fh = yyl l  - V2/c2 (4.2) 

·--- 1 
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Fig. 5.  a) An illustration of the 6.y -shift origin due to the light way difference, and 
b) a corresponding velocity space diagram (see note in Fig.4b) . 

and the transverse coordinate 

Zs = z - liz = z sin e L = zy'l - V2 I c2 . (4.3) 

The reverse transformation is also obvious: 

( 4.4) 

Then for the non-invariant interval (see(3.8)) one can get 

c2t2 -- x2 - y2 - z2 = ry2 (c2t; - x; - y; - z; ) . ( 4.5) 

The obtained coordinate transformation leads to the contracted interval but this does 
not contradict to the relativistic velocity summation law. 

So, for any event (x, y, z, t) in K there is the "parallel" event (xs , Ys , Zs , ts ) 
corresponding to the moving Ks frame shifted in space and time in an appropriate way. 
These two sets of coordinates are related by the equation ( 4.5) . 

As it is seen from Fig.4 the point O' looks as a center of projectivity and the X -axis 
with the chosen light ray ct may be considered as a projective lines [4] . Let us consider x 
and ct values as corresponding projective coordinates. The projectivity, or the projective 
transformation, establishes some definite correspondence or projective equivalence of the 
point-like systems of 1 ,  2 and 3 - dimensions, namely, between the points of two projective 
lines. The main invariant for projectivity is the complex fraction of any four elements of two 
multitude, i.e. of any four corresponding points for two projective lines [4] : 

X3 - X1 X4 - X1 (x1, x2 , .x3 , x4) = ---x2 - X3 X2 -- X4 
(4.6) 
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According to the main theorem of projective geometry the projectivity is determined when 
any three pairs of corresponding elements are defined. In our case it means that, in this case 
for any given x one can find the corresponding t from ( 4.6) and vise versa. 

Let us consider two simple cases: 
- for three known events xi = 0 ,  ti = 0 ,  x2 = Vt ,  t2 = t and X4 = oo ,  t4 = oc: (4.6) 

becomes [4] 
\ _ X3 - XI _ t3 - ti _ ( (xi , X2 , X3 , 00; - - --- - ti , t2 , t3 , oc:) X2 - X3 t2 - t3 

and for any x3 , t3 one can find corresponding 

(4.7) 

(4.8) 

Obviously, this result corresponds to the projection of the X -axis onto the ct ray and vise 
versa, made by the beam of lines with the center at infinity (just like the direct light beam 
used for the rest frame K ) . 

- for x1 = 0 ,  t1 = 0 ,  x2 = x ,  t2 = xcoseL/c and x4 = oc: ,  t4 = oo one can get 

(4.9) 

This result corresponds to the lateral projections with the center at infinity and with the 
beam direction turned by Jr /2 to that as it was used for the Ks frame. 

The projectivity allows one to find the values of shifts. It follows from the comparison 
of (3 . 1 ) , (3 .3) and (2.9-4 .9) , but needs more study. 

Let us rewrite ( 4.6) as 

(x1 , X2 , X3 , X4) = f3x3i . ,6x41 = l 
(ti ,  t2 ,  t3 , t4) f3x23 . ,Bx24 ' 

and use reverse transformation (3.10-3.) for each event (xi , ti ) . Then one can find: 

fJI _ Xsi .... Xsk . xik - ( ) · C tsi - tsk 
One can carry through the same calculations for y and z coordinates: 

B' . - 11 -- v2;c2 Yi - Yk _ , yik V f3vik = c(ti - tk) �l_+_f3_�--ik_V_/c-

(3�ik vi - vz I c2 
1 + (3�ik Vjc 

B' _ Ysi - isk . yik - (t ·t ) ' C si ·· sk 
(31 _ Zsi - tsk 

zik - ft t \ · C\ si - sk) 

(4. 10) 

(4. 1 1 )  

( 4 .12)  

( 4 .13)  

Relations (4. 1 1-4.13) are known as the relativisic velocity summation law. From these 
relations one can find the expressions for primed components and get for each of them: 

(331 . fJ41 - f3h . f341 - 1 
(323 . /324 - ,6�3 . {3�4 - . (4.14) 

Thus , instead of a noninvariant interval ( 4.5) one may consider a well known invariant 
( 4.6) , the main invariant in projective geometry which allows to establish the correspondence 
between space and time coordinates if any three events are defined. The interval ( 4.5) , which 
is defined by two events, does not satisfy this requirement . 
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5 .  Relativistic effects and wave character o f  the initial 

moment of time propagation 

Let us consider two events (x1 , t1) and (x2 , t2) in K frame and two events 
(xsi , ts1 )  and (xs2 , l82 ) corresponding to them in Ks frame. Then, according to the new 
transformation ( V > 0 ) , one can get for shifted coordinates: 

Llx8 = �x - cD..tcosBL , 

and for unshifted coordinates : 

(5 .1 )  

(5 .2) 

where Llxs = Xs2 - Xs1 , Llts = t82 - ts1 , and D..x = X2 - X1 , D..t = t2 - ti . Let us also 
remind the relation between the primed and shifted values (see (3.5-3.6) ) :  

(5.3) 

If D..x is a length of some rod in the rest frame, then its length in the moving frame will be 
the difference of its coordinates Llxs at the same moment of time D..t8 = 0 (by definition) .  
Then one can find from (5 .1 )  (using (5.3) for the primed values) that 

(5.4) 

So, for the new transformation, the length of a rod becomes shorter even in comparison with 
the primed value. 

But, it is seen from the second formula of (5.2) that the requirement D..t8 = 0 gives 

(5 .5) 

i.e. D..t =/= 0 (where Lltp is the time delay difference for the points x1 and x2 ) . It means 
that the moving frame has two identical moments of times t81 = ts2 in the two different 
space points Vt1 and Vt2 corresponding to the t1 and t2 in K frame (see Fig.6a) . So, 
due to the definition of the rod length the measurements of two coordinates are performed 
from two (shifted) locations of frame Ks . 

The requirement of simultaneity D..t8 = 0 for the moving frame can also reveal a 
wave character of the initial moment of time propagation along X -axis. Indeed, the wave 
propagation is characterized by the fact that the value of excitation function (depending on 
x and t )  can be the same in different (x, t) points in two moments of time [6] . If time ts 
(see (3 .3)) is an argument of the function, then it may happen when 

t - xV/c2 = (t + D..t) - (x + D..x)V/c2 =? cD.t = D..x cos Or, = ciltp , (5.6) 

and if Llts = 0 ,  then D..t = Lltp (see Fig.6a) . One can get from here: 

ilx/ D.t = ilx/ iltp = cj COS BL :::= Vp > C ,  ( .5 .7) 

the same velocity vp as in (3.4) . So, for V =/= 0 the initial moment of time counting 
propagates as a wave with the finite velocity vp along X -axis. It is known [6] , that a 
differential wave equation is defined by the structure of an argument of the excitation 
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Fig. 6 .  Illustrations of the Lorentz contraction: a) for a length - two simultaneous 
events (x81 , t8 ) and (.1:82 ,  t8 ) in a moving frame; b) for a time interval - two events 
(xs , ts1 )  and (xs , t82) in the same point in a moving frame. 

function 1/J = lj;(x, t) . As an argument of the light excitation function lj; has a form of 
'lfJ (x, t) = 1/J(t±xV/ c2 ) , then this wave propagation (along X -axis) should follow an equation 

1 EJ21/; 1 821/J 
c2 8t2 {32 8x2 . (5.8) 

For (3 = 1 (or vp = c) it is the same as the known wave equation for the light, V' = 
1/J(t ± x/c) . When (3 = 0 (or vp = oo ,  i .e . when the lateral front becomes the direct one) 
the excitation function 1/J does not depend on x , and the initial moment of time counting 
is the same for any x -point (Newton time) : 7/! = VJ(t) . 

It is clear from the first equation of ( 5 .1 )  that the rod's length is the same for the both 
frames: .0..xs = bx ,  if one takes two events (x1 , t) and (x2 , t) in the fixed frame at bt = 0 .  

In this case the corresponding coordinates x81 and x82 in a moving frame arc measured at 
different moments of time t81 and t82 , but from the same position Vt of Ks corresponding 
to the choosen t . It is possible to choose t81 = -t82 and then ct = (x1 + bx/2) COS 8L . 
This moment of time /; corresponds to the projection of the rod's center onto the ct ray 
(see dashed line on Fig.6a) . 

Now, let us consider two events in a moving frame located in the same place, bxs = 0 ,  
but separated by the time interval .0,/;3 = /;82 - t81 • The corresponding time interval in K 
frame one can get from the second formula of (fi.2) : 

(5.9) 
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i.e. the new transformation again makes a time interval shorter for a moving frame. But 
one can see from the first formula of ( 5 . 1 )  that .6.x = c.6. t cos e L = V .6.t for .6.x s = 0 , 
i .e. .6.x cl 0 in K frame. It means, that the moving frame has two identical coordinates 
x81 = X82 in two different space points x1 and x2 (in K ,  see Fig.6b ) .  The time delay 
difference for them, c.6.tp = c.6.t cos2 BL (see (3.) ) ,  is non-zero, so similar to (5 .9) one has 
c.6.ts = c.6.t - c.6.p . Again, due to the .6.x8 = 0 requirement the measurements of two 
moments of time are made from two Ks -frames shifted in space with c.6.tp cl 0 in rest 
frame. 

It is clear from the second equation of (5 .1) that an interval of time for the both frames 
is the same ( .6.t8 = .6.t ) if one considers two events (x, t1 ) and (x, t2 ) in the rest frame at 
.6.:r 0 ,  i .e . in the same space point. In this case the two corresponding moments of time ts1 
and t82 in a moving frame are measured also from two different points x81 and x82 , but 
c.6.tp = 0 .  One can choose Xs1 = -;rs2 and find x = V(t1 + .6.t/2) = c(t1 + .6.t/2) cos eL . 
This x -coordinate corresponds to the projection of a middle point of the time interval c.6.t 
onto the X -axis (see dashed line in Fig.6b) . 

Thus, the nature of relativistic effects is not in changing the scales of space or time for 
a moving frame, but in changing of the reference points for the space and time coordinates. 
One can find the same values for the space or time intervals in the rest and moving frames 
by changing the way of measurement . 

6 .  Lorentz energy-momentum transformation 

The Lorentz transformation for particle energy-momentum in this consideration is a 
direct consequence of the relativistic velocity summation law or of the aditivity law for 
particle rapidity: 

I P = p - Po , P = P1 + Po ,  (6.1) 

where p' is a particle rapidity in the moving frame and p - in the rest, p0 is a rapidity 
corresponding to the velocity /30 =-� V / c of a moving frame (we use c = 1 units for all 
rapidities) .  Then /3' = thp' and /3 = thp are particle velocities in the moving and in the 
rest frames. Hyperbolic tangent of (6 .1)  leads to the relativistic velocity summation law: 

'h 1 _ thp - thp0 
" p - 1 - thpthp' ' h thp' + ihp0 t p - ----­- 1 + thp' thpo . (6 .2) 

The particle velocity has to be transformed according to (6 .2) . This requirement can be 
satisfied by defining energy and momentum of the particle through its velocity (3 = thp = 
(mshp)/(mchp) = P/E , where m is a particle mass, P '"' mshp ''' m .B/Jl - (32 is the 
momentum and E = rnchp = m/ Jl - (32 is the particle energy. It is easy to find values 
for sines and cosines from (6. 1) : 

shp' = shp chp0 - chp shp0 , chp' = chp chp0 - shp shp0 , (6 .3) 

Multiplying (3 . )  by the particle mass m and taking into account the energy and momentum 
definitions one can find the Lorentz transformation: 

P' = (P - 80E)/Jl - (3; ,  E' = ( E  - (30P)/Jl - f3; . (6.4) 
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A reverse transformation can be found in the same way from the second equation of (6 . 1 ) .  In 
general case, when direction of the particle velocity ,8 does not coinside with the direction 
of the moving frame, one should assume longitudinal rapidity in (6 .1)  and longitudinal 
momentum in (6 .4) . 

Thus, the requirement for the particle velocity expressed through its energy-momentum 
to be transformed according to the (6 .2) , may consider as some condition for their 
definition. As their relativistic definition is in agreement with (6.2) , then the Lorentz energy­
momentum transformation is a straightforward consequence of the relativistic velocity 
(rapidity) summation law. 

7. Conclusions 

• A complete correspondence has been established between Lobachevsky parallel lines in 
the velocity space and the synchronous process of particle and light beams propagation in 
the Euclidean space. 

• The constant light velocity principle has been found as the physical reason for the violation 
of the V-th postulate in the Lobachevsky velocity space. 

• Lobachevsky function has been shown as a tool to express the constant light velocity 
principle. 

• A new method of time synchronization for different space points have been found and 
a new contents of the simultaneity conception, common time and proper time, have been 
formulated. 

• A new inertial frame coordinate transformation, as the simple shifts, has been found. It 
leads to the known relativistic velocity summation law and requires the existence of the light 
(moving) "ether " .  
• It has been shown, that the initial moment of time counting for the moving frame 
propagates in space in the same direction with a finite velocity greater than the velocity 
of light . 
• The relativistic effects have been shown to take place due to the coordinate and time 
shifts of the origin point . One can find the values of space or time intervals to be the same 
in the moving and the rest frames by changing the measurement way. 
• It has been shown, that Lorentz energy-momentum transformation is a straightforward 
consequence of the relativistic velocity summation law. 
• The four elements complex fraction invariant and a possible wave equation have been 
presented. 
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CTp05!TC5! pHMaHOBhI rrpocTpaHCTBa II rrpocTpaHCTBa Be:il:Jrn, ypaBHemur reo,I1e3II"'leCKIIX 

.illIElil.li KOTOpbIX ,I\OIIyCKaIOT rrepBbrH HHTerpa.JI 2-ro rrop5!,I1Ka (KBa,I1paTJT'!HhII1: H ,n;po6HO­

KBa,I1paTH'il!hIH COOTBeTCTBeHHO). 

HccJieµyIOTC.H pnMaHOBbI npocTpaHCTBa Vn (9iJ (xk)) ( g;j - MeTpIIqecKnfr TeH30p rrpo­

CTpaHCTBa, xk --- Koop,n;nHaTbI npocTpaHCTBa, i, j, k = 1, n ,  n = dim Vn ) , ,uorrycKa10ru:ne 
cyIIJ,eCTBOBamrn TaK Ha3&rnaeMoro [l] BeiiJieBo-reo,IJ,e3H'IecKoro nomr KOHycoB HarrpaBJieHnii. 
chn 110JI5I HanpaBJiemrii Xi orrpen;e.rr5IIOTC5I C IIOMOIIJ,bIO HeBblpO)K,ll,eHHOrO CHMMeTpIFieCKOrO 
T8H30pa aij ypaBH8HHeM 

(0.1) 

npnqeM B ,IJ,aHHOH CB5I3HOCTM TeH30p aij YAOBJieTBOp5IeT BM8CT8 c HeKOTOpbIMH IIOJI5IMll 1vh 
H Rk YCJIOBHIO 

(0.2) 

( v k - CHMBOJl: KOBapHaIITIIOro ,un¢¢epenu:npoBaHH5I B ,uaHHOH CB5I3HOCTH, CK06KH, KaK 
o6bJ'IHO, 03Ha"IaIOT CHMMe'rpnpoBaHHe no HH,IJ,eKcaM, co,n;eplKaIIJ,HMC5I B HHX) . 

IlpH Rk = 0 BeiiJieBo-reo,IJ,e3WI8CKoe none (0. 1)-(0.2) 5IBJ1:5IeTC5f reo,n;e3H'I8CKHM rroJieM 
KonycoB nanpaBJiemrii [2] , xapaKTepH3YIOIIO'fXC5I TeM, 'ITO Bee reo,n;e3wrecKHe mnrnn, nanpaB­
nemrn KOTOpbIX COBrra,uaJ:OT B H8KOTOpoii TO'l:Ke c HarrpaBJieHHeM, orrpe,n:eJI5IeMbIM (0.1)-(0 .2) 
rrpn Rk = 0 , coxpaH5IJ:OT 3TO CBOHCTBO Ha BceM CBOeM npoT7.IlKeHHH. 

K TOMy lKe HaJIHqlfe Beli.rreBo-reo,n;e3rrqecKoro IIOJI5I KOHJCOB (0.1)-(0.2) XOT5I 6hr B 0,.'J,HOM 
pHMaHOBOM rrpOCTpaHCTBe rapaHTrrpyeT cyIIJ,eCTBOBanrre TaKoro lKe ITO.Tm BO BCex npocTpan­
CTBax Beiirur Wn(9;j , wk) ( 9iJ - OCHOBHOii T8H30p, Wk -- ,n:orroJIHrrT8JihHhIM B8KTOP rrpo­
CTpaHCTBa) , Kon¢opMHbIX ,n;aHHOMY Vn [3] , rr cpe,n;n 3THX npocTpaHCTB BeiiJI5I cyIIJ,eCTByeT 
0,[\H03Ha"IHO orrpe,n;eJI5IeMoe rrpOCTpaHCTBO, B KOTOpOM rro.rre KOHJCOB (0.1)-(0.2) 5IBJI5IeTC5I 
reo,n;e3H'I8CKHM [3] . 9To o6CT05IT8JibCTBO, KCTaTH, ll o6'b5ICH5IeT Ha3BaHrre IIOJI5I (0.1)-(0.2) . 

EIIJ,e o,n;rrH mo6onbrTHhrli ¢aKT CBH3aH c rrccJie;::(yeMhrMrr rrOJI5IMrr KOHycoB B npocTpaHCTBe 
BeiiJrn: rrMe7I pellI8HH5I ypaBHeHrrii (0.2) B prrMaHOBOM rrpocTpaHCTBe Vn (9;J ) , nprr Herpa11rr­
eHTHOM IIOJie lvlk ( Mk =F f.Alvl ) MbI MOlK8M IIOCTpOHTb CB5I3HOCTb Be.ii.Tm, OCHOBHOH TeH30p 
KOTOpOH COBna,n;aeT c MeTpll'IeCKIIM 9ij ' a  JJ;OIIOJIHHTeJibHblll BeKTOp Wk CTpOHTC5I [4) no BeK­
TOpy Mk . IJoj1yqeHHa5I CB5I3HOCTb BeiiJI5I Wn(9;j , Wk)  IIHTepecHa TeM, qTO ee a¢¢rrmra5I 
IlO,Il;BIIlKHOCTb ( coxpaHeHne CB5I3HOCTII H8KOTopoll: rpyrrrroii Jlrr rrpeo6pa30BaHrrii) 5IBJI5I8TC5I 
CJie,D;CTBIIeM ee KOH¢opMROll IIO,IJ,BIIlKHOCTH ( COXpaHeHIDI TOH lK8 rpyrrIIOll npeo6pa30BaHlfll 
OCHOBHOrO TeH3opa CBH3HOCTH) [4] . 

KaK H3B8CTHO [5] , ecJrn B (0.2) Mk = Rk = 0 ,  TO cooTnorrrenne 

dxi dxJ 
a · · -- -- = const 

i; ds ds • 

( s - a¢¢nHHbIH napaMeTp (,n;yra) reo,n;e3H'I8CKOii) HBJI5I8TC5f nepBbIM KBap,paTH'IHbIM (HJIH 
2-ro IIOpS!,D,Ka) IIHTerpaJIOM ,n,n¢¢epeHu:na.1JbHbIX ypaBH8Hrrll reo,n;e3II'IeCKRX JIIIHHH 11,aHnoro 
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pIIMaHoBa rrpocTpaHCTBa Vn(gij ) . EcnII )Ke none (0 .1)-(0 .2) 3a,n;aHo B rrpocTpaHCTBe Belirur 
Wn(gij ,  Wk) H Rk = 0 ,  a Mk = 2wk , TO COOTHOIII8HH8 

.HBJI.H8TC5! nepBbIM ,n:po6HO-KBa,n:paTH'-IHbIM (H TaKMe 2-ro rrop.a,n:Ka) HHTerpaJIOM ypaBH8HHll 
reo,n:e3II'-IeCKIIX JIIIHHH Wn [6] .  

TaKHM o6pa3oM, 3HaHIIe pIIMaHOBhrx rrpocTpaHCTB, ,n;orrycKarorrrux BelineBo-
reo,.u;e3w1ecKoe none KOHYCOB , II03BOIDI8T B KOHWIHOM C'-I8T8 IIOCTpOIITb a¢¢aHHO-CB5!3HhI8 
rrpOCTpaHCTBa, ypaBH8HH.H reo,n;e3H'-I8CKIIX JIHHHH KOTOpbIX ,n;orrycKaIOT rrepBbrll HHTerpaJI 
2-ro IIOp5!,n;Ka (KBa,n;paTII'-IHbIH ,l];JI.H pHMaHOBbIX H ,n;po6HO-KBa,.u;paTff'IHbIH ,n;m.r rrpocTpaHCTB 
Belirur) . IIocTpoeHHe TaKHx rrpocTpaHCTB H 5!BJI.ae'l'C.a 11e.JibIO nccne,n;onaHII5I. 

B ocnony nocTpoettH5! rro.noMeHo cne,n:yrorrree o6cTO.HTeJibCTBO. 
Ilepnoii: H3B8CTHOH pnMauoBoli CBH3HOCThIO, ypanHeHIDI reo,n:e3H'-I8CKHX JIIIHHH KOTOphrx 

,n;orrycKaIOT rrepBhIH KBa;:i,paTH'-IHbIH HHTerpan, 5IBJIB8TC5!, IIO-BII,[\HY!OMy, CB5l3HOCTb IIOBepx­
HOCTII JfayBHJIJIH [7] . 

B no,n;xo,n;Hrrreli CHCTeMe KOOp,iJ;HHaT (x, y) M8TPIIKY 3TOH IIOBepxHOCTII MOMHO JarrncaTh 

ds2 = (Y(y) - X(x)) (d.r,2 + dy2 ) , 
TOr,n;a T8H30p aij ' orrpe,n;eJIHIOII\IIM rrepBbIH HHTerpaJI reo,n;e3HT-I8CKHX, npIIBO,l];IlTCH K BH,n:y 

an = (Y - X)Y, a22 = (Y - X)X, a12 = 0 .  

3,n;ecb x,  y - Koopn,nHaThI na V2 ; X (x) , Y(y) - rrpoII3BOJibHbre cpyHKI\HH yKa3aHHhrx 
rrepeMeHHhIX. 5IcHO, '-ITO 3TII ¢YHKIJ,IIII 5!BJI5!IOTC5! (/1,8HCTBHT8JibHbIMH) KOpH5!MH TaK Ha3bI­
BaeMoro [8] xapaKTepIICTII'l8CKOro ypaBHCHII5! IIOJIB KOHyCOB 

(0.3) 

II CJryMaT xapaKTepIICTIIKOli rroBepXHOCTH. HarrpIIMep, ecnrr O,[\Ha II3 3TIIX ¢YHKI\IIH ( o,n:IIH 
II3 KOpHeli (0 .3)) 110CT05!HHa, TO TaKaH IIOBepXHOCTb .JlIIyBIImrn liBJIBeTC.H, KaK nerKO BHll,8Tb, 
l!OBCpXHOCTbIO Bparrremrn. 

Il03TOMY IIpII IIOCTp08HHII pm,rnHOBbIX rrpOCTpaHCTB, ,n;orrycKaIOrrrHX B8HJI8BO­
reo,n:e3W-IeCKOe IIOJie KOHyCOB ' Y'-IHTblBaIOTC5! CBOMCTBa KO pH en ypaBH8HH5! ( 0 .3) . 9TII 
KOpHI1 MOryT 6bITb KaK ,IJ,eHCTBHT8JihHbIMII, TaK H KOMIIJieKCHO-COIIp5IM8HHbIMII ¢yHKUH5!MH. 

Ilpe,IJ,IIOJiaraeTC5!, '-ITO 3TII KOpHM 06.rra,IJ,aIOT CJie,D;yIOrrrIIMII CBOHCTBaI.rn: (i) pa3MepHOCTH 
B6KTOpHbIX TIOlJ,IlpOCTpaHCTB, COOTBeTCTB,YIOilIIIX n,eliCTBIITeJibHbIM KOpH.HM, paBHbI HX KpaT­
HOCTir; pa3:viepHOCTb B8KT0pHbIX rro,n;npOCTpaHCTB, naTHHYTbIX Ha co6CTB8HHbre B8KT0phr, 
COOTBeTCTBYIOrrrne nape KOMIIJieKCHO-COIIp5DK8HHbIX KOpHeli, paBHa YIIB06HHOH KpaTHOCTH 
KOpHeli; (ii) IIOlJ,IIpOCTpaHCTBa 3TII H8H30Tp0III-Ibr; (iii) nomi: rron,rrpocTpaHCTB - rOJIOHOMHhI. 

IlolliI KOHYCOB (0 .1)-(0.2) , xapaKTepIICTH'IeCime ypaBHeHIIe (0.3) KOTOpbIX o6na,n;aeT BbI­
merrepe'IHUieHHbr:\fll CBOHCTBaMII, Ha3bIBaIOTC5l CIIeIJ,HaJibHbIMH. 

AHa,rrorH rronepxHOCTeli .JI11yBmurn - pIIMaHOBhr rroBepxnocTII, ,n:orrycKaIOmIIe crreIJ,IIaJJb­
uoe BeD:neBo-reO,LJ:63H'leCKOe IIOJie KOHyCOB ( cen,) ' ypaBH8HIIe (0.3) KOTOphIX HMeeT KaK rrapy 
KOMII.JieKCHO-COIIp5.IMeHHbIX KOpHeli, TaK II Oll,IIH ll,6HCTBHTeJibHhIH KpaTHOCTII 2 ,  IIOCTpOeHhI 
B [1] . TaM )KC IIOCTpOeHbI H IIC6B,[\OJIHYBIIJIJieBbI IIOBepXHOCTH - ,n:uy1v1epHbie rrpocTpancTBa 
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Be:ITmr, ypaBHemrn reo,n;e3n:<IeCKHX KOTOpbrx ,n;onycKaIOT nepBbIM ,n;po6HO-KBa,n;paTwrnhill HH­
Terparr, a ypaBI:IeHHe (0.3) 06.rra,n;aeT TeMH )Ke CBOMCTBaMH. 

0TMeTHM, 'ITO nceB,IJ;OilliYBHJ!JleBbI IIOBepxHOCTH, ypaBH8HH.H (0.3) KOTOpbIX HMeIOT napy 
,n;e:iICTBHTeJlbHbIX pa3Jlli'IHbIX KOpHeM, nocTpOeHbI B [6] . 

B [3] K.rraccmj:mrJ,HpOBaHhI TpexMepHbie pmvraHOBbI npocTpaHCTBa, ,n;onycKaJOIIIHe cynre­
CTBOBaHHe cnerrHaJibHOro Be:iI.rreBo-reo,n;e3H'leCKOrO nom1 KOHJCOB. Ha OCHOBaHHII 3THX pe-
3JJlbTaTOB nocTpoeHbI H TpexMepHbie npocTpattcTBa (KaK Be:ITmi, TaK H pHMaHOBbr) , ypaB­
Hemu:r reo,n;e3HTieCKHX KOTOpbrx ,n;onycKaIOT nepBbIM HHTerpaJr 2-ro nopz,n;Ka. 

PHMaHOBbI npocTpaHCTBa Vn , ,n;onycKarorrrHe cnerrHa.rrbHOe Be:iI.rreBo-reo,n;e3wiecKoe no­
Jie KOHJCOB HanpaBnemr:IT (0 .1) --(0 .2) , xapaKTepHCTH'leCKOe ypaBHeHHM (0.3) KOTOporo HMeeT 
k :::; n = dim Vn pa3JTli"IHbIX ,n;eMCTBHTCJibHbIX KOpHeM COOTBCTCTByIOrrreli KpaTHOCTII, IIOJI­
HOCTbIO IICC.rre,n;oBaHbI B [9] . 3,n;ecb 2Ke nocTpOeHbI li nepBbie IIHTerpaJibI 2-ro nopz,n;Ka ypaB­
HeHHM reo,n;e3H'ICCKIIX JIHHIIM COOTBCTCTBYIOIIIliX npOCTpaHCTB . 3aMeTHM, 'ITO IIOJiy'IeHHbie 
pe3yJibTaTbI He II03BOJrnIOT nOCTpOHTb n -MepHbie pIIMaHOBbI npOCTpaHCTBa, ,IIOIIJCKaIOIIJ,He 
cneI].Ha.JibHOe no.rre KOHYCOB (0 .1)-(0.2) , ypaBHeHHe (0.3) KOTOporo HMeeT e,n;IIHCTBCHHbIM ,n;e:IT­
CTBHT8JibHbIH KOpCHb, KpaTHOCTb KOTOporo paBHa pa3MepHOCTH npocTpaHCTBa. 

TaKue npocTpaHCTBa M01KHO nony'-IBTb, paccMaTpHBaz pHMaHOBhI npocTpaHCTBa c 
Il0J1eM (0 .1)-(0.2 ) ,  ypaBIIeHH.H (0.3)  KOTOpbIX liMeIOT XOT.H 6bI 0,I\Hy rrapy KOMIIJ!CKCHO­
conpi!)KeHHbIX KOpHeil. 

0Ka3bIBaeTCi!, B TOM cnyL£ae, rmr,n;a TaKaz napa KOpHell e,n;IIHCTB8HHa, CTpOCHIIe npo·­
CTpaHC'rBa, ,zi;onycKaroIIIee no,zi;o6uoe none KOHYCOB, ypaBHe1rne (0. 3) KOTOporo nMeeT n -
KpaTHbill ,zi;e:iICTBHTenhHbill Kopenh , npaKTH'leCKII HH'I8M He 0TJ1H'laeTCi! OT CTp08Hlli! Tpex­
MepHbIX npocTpaHCTB, ,zi;onycKa101rrnx rro,n;o6HCJe none KOHJCOB (3] . OcTcwl:bHbre B03M01KHOCTH 
no,n;Jre1KaT ,zi;anbHe:fimeMy H3J'IeHHIO. 
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INTEGRABLE STRING AND HYDRODYNAMICAL TYPE 
M ODELS AND NONLOCAL BRACKETS 

V .D.  Gershun 

A.I. Akhieser Institute for Theoretical Physics, NSC Kharkiv Institute of Physics and 
Technology 

Academy of Sciences of Ukraine, Kharkiv, Ukraine 

The closed string model in the background gravity field is considered as a bi-Hamiltonian 
system in assumption that string model is the integrable model for particular kind of the 
background fields. The dual nonlocal Poisson brackets (PB) , depending of the background 
fields and of their derivatives, are obtained. The integrability condition is formulated as the 

compatibility of the bi-Hamiltonity condition and the Jacobi identity of the dual Poisson 
bracket. It is shown that the dual brackets and dual Hamiltonians can be obtained from the 
canonical PB and from the initial Hamiltonian by imposing the second kind constraints on 
the initial dynamical system, on the closed string model in the constant background fields, 
as example. The hydrodynamical type equation was obtained. Two types of the nonlocal 
brackets are introduced. Constant curvature and time-dependent metrics are considered, as 
examples. It is shown, that the Jacobi identities for the nonlocal brackets have particular 
solution for the space-time coordinates, as matrix representation of the simple Lie group. 

1 .  Introduction 

The bi-Hamiltonian approach to the integrable systems was initiated by Magri [I] for 
the investigation of the integrability of the KdV equation. This approach was generalized 
by Das ,  Okubo [2] . 

Onpe,IJ;eJiemrn 1 . 1 . .  A finite dimensional dynamical system with 2N degrees of 
freedom xa, a = 1 ,  . . . , 2N is integrable, if it is described by the set of the n integrals 
of motion F1 , . . .  , Fn in involution under some Poisson bracket (PB) 

The dynamical system is completely solvable, if n = N . Any of the integral of motion (or 
any linear combination of them) can be considered as the Hamiltonian lh = Fk 

Onpe,r:i;eJiemre 1 . 2  . .  The bi-Hamiltonity condition [2] has following form: 

. a dxa 
{ a H } { a H } X = dt = X ' 1 1 = . . .  = X ' N N · 

The hierarchy of new PB is arose in this connection: 

{ , }i , { , } 2 ,  . . .  , { , }N · 

(I .I)  

The hierarchy of new dynamical systems arises under the new time coordinates tk : 

d
dxa = {xa , Hnh+1 = {xa , Hk}n+l · tn+k 

(1.2) 
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The new equations of motion describe the new dynamical systems, which are dual to 
the original system, with the dual set of the integrals of motion. 

There is another approach to the bi-Hamiltonian systems (1) . Two PB {, h and { ,  }2 are 
called compatible if any linear combination of these PB c1 { ,  h + c2 { ,  h is PB. It is possible 
to find two corresponding Hamiltonians H1 and H2 which are satisfy to bi-Hamiltonity 
condition. 

We used first approach to the closed string models as the bi-Hamiltonity systems. Second 
approach was used to description of the hydrodynamical type models. 

We consider the dynamical systems with constraints. In this case, first kind constraints 
are generators of the gauge transformations and they are integrals of motion. First kind 
constrains Fk (xa) � 0 ,  k = 1, 2 . . .  form the algebra of constraints under some PB. 

{Fi , Fk }PB = C}kFz � 0. 

The structure functions CJk ·may be functions of the phase space coordinates in general 
case. The second kind constraints fk (xa) � 0 are the representations of the first kind 
constraints algebra. The second kind constraints is defined by the condition 

The reversible matrix Cik is not constraint and also it is a function of phase space 
coordinates. The second kind constraints take part in deformation of the {, } p B to the Dirac 
bracket { , }  D . As rule, such deformation leads to nonlinear and to nonlocal brackets. The 
bi-Hamiltonity condition leads to the dual PB that are nonlinear and nonlocal brackets as a 
rule. We suppose, that the dual brackets can be obtained from the initial canonical bracket 
under the imposition of the second kind constraints. We have applied [3, 4, 5 ,  6) , (7, 8, 9 ,  10] 
bi-Hamiltonian approach to the investigation of the integrability of the closed string model 
in the arbitrary background gravity field and antisymmetric B-field. The bi-Hamiltonity 
condition and the Jacobi identities for the dual brackets were considered as the integrability 
condition for a closed string model. They led to some restrictions on the background fields. 

The plan of the paper is the following. In the second section we briefly considered 
papers about hydrodynamical type nonlocal brackets. In the third section we considered 
closed string model in the arbitrary background gravity field. We suppose that this model 
is an integrable model for some configurations of the background fields. The bi-Hamiltonity 
condition and the Jacobi identities for the dual PB resulted in to the integrability condition, 
which restrict the possible configurations of the background fields. As examples we considered 
constant curvature space and time-dependent metric space. In the fourth section we 
considered closed string model in the constant background gravity field. \Ve obtained 
hydrodynamical type equation for the string model on the second kind constraints as 
configuration subspace embedded in a phase space. 

2 .  Hydrodynamical type models 

Mokhov and Ferapontov introduced the nonlocal PB [11] .  The Ferapontov nonlocal PB 
(or hydrodynamical type nonlocal PB ) [12) is: 

� L 
· k 'k u · · k l "'"" (s) i  · (s )k l { u" (x) , u (y) } = g" ( u) ox 15

(;;;-y )-g'7f'j111.,cl5(x-y)+ � wj ( u(x ) )u{v(x-y)w1 ( u(y) )uy ,  s=l 
(2 .1) 

--·--- -� 
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here v(x - y) = sgn(x - y) = ( d� )-io(x - y) , ui(x) are local coordinates, u� (x) = 
Oxui (x) , i  = 1 . . .N . The coefficients gik (x) , fJ1 (x) , wks)i (x) are smooth functions of local 

coordinates. This nonlocal PB is satisfy the Jacoby identity if and only if gik ( u) is the 
pseudo-Riemannian metric without torsion and also the coefficients satisfy the following 
relations : 

1 .  rJ1 (u) is the Levi-Civita connection; 

2. gik (u)wks)j (u) = gik (u)wks)i (u) ; 
3. \Jkwz(s) i (u) =-= \lzwks)i , where \Jk is the covariant differential; 

4 Rij (u) = "'L . [w(s) iw(s)j -- js)jw(s)i] where RkiJl. is Riemannian curvature tensor · kl Lts=l l k l k ' 
of the metric gik ; 

(s) i (t) k _ (t)i , (s)i 5 . wk w1 - wk wk . 
This nonlocal PB corresponds to an N-dimensional surface with flat normal bundle 

embedded in a pseudo-Euclidean space EN+L (13] . There metric gik is the first fundamental 

form, Wks)i is Weingarten operator of this embedded surface, which is define the second 
fundamental form. The relations 2-4 are the Gauss-Peterson-Codazzi equations . The 
relations 5 are correspond to the Ricci equations for this embedded surface. 

Dubrovin and Novikov have considered the local dual PB of the similar type [14) in 
the application to the Hamiltonian hydrodynamical models. Dubrovin-Novikov PB ( or the 
hydrodynamical type local PB) can be obtained from the nonlocal PB (2.3) under condition js)i = O  k . 

The Jacobi identity for this PB is satisfied if 9ik is the Riemann metric without torsion, 
the curvature tensor is equal to zero. The metric tensor is constant, locally. 

It need to consider the linear combination of the local and the nonlocal Poisson brackets 
to obtain the hydrodynamical type equations [15] . There we consider Mokhov, Ferapontov, 
nonlocal PB [11) for the metric space of constant Riemannian curvature K, as example: 

{ i ( ) k ( )} ik d ··c ) ( fJhk oh'; i k ' d " ( ) u x , <L y = C11J -d 6 x - y + C2 � + "-' k - Ku u ; - u X - y x u112 uu dx 
[}2hk 

+( 0ui[}ul - Kofuk)u�o(x - y) + Ku�v(x - y)u� . (2 .2) 

The Jacobi identity is satisfied on the following relations: 

[}2hi fJ2hj fJ2h) fJ2hi 
fJuk[}un 811nou1 fJukfJun fJv,nfJu1 ' 

fJhn ()hi . fJ2hk 
( � + � - Ku"un) 0 .0  = {i +---+ j} .  

uu" uun uJ un 
First of this equations is the WDVV [16, 1 7] consistence local condition. The system of 
hydrodynamical type is a bi-Hamiltonian system with the PB { ,  }FM and { ,  } ND if: 

ui (x) = { 1[,i (x) , Hi}FM = { ui (x) , H2} ND ·  

Here Hamiltonians Hi and H2 are following: 

Hi = � J ui (x)ui (x)dx, H2 = J [hi (u(x))ui (x) - � uiuiukuk]dx. 
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3. Closed string in the background fields. 

The string model in the background gravity field is described by the system of the 
equations: 

xa - x"a + rgc (x) (i:bi:c - x' bx' c) = 0, 9ab (x) (xaxb + x'ax1 b) = 0, 9ab (x)xax' b = 0,  
d a I d a. 

where xa = d"'-r , x a = d
xr; . vVe will consider the Hamiltonian formalism. The closed string 

in the background gravity field is described by first kind constraints in the Hamiltonian 
formalism: 

(3.1) 

where a, b = 0, 1 , . . .  D - l ,  xa (T, <Y) , Pa (T, <Y) are the periodical functions on CY with the 
period on 11 .  The original PB are the symplectic PB: 

The Hamiltonian equations of motion of the closed string, in the arbitrary background 
1f 

gravity field under the Hamiltonian H1 = J h1d<Y and PB { , h ,  are 
0 

• a ab . "b l EJgbC l 
agbc . 09ac X = g Pb , Pa = 9abX - 2 EJxa PbPc - 2 EJxa -r EJxb · 

The dual PB are obtained from the bi-Hamiltonity condition 

1f 1f 
xa = {xa , J h1 (<Y')d<Y'h = {xa , J h2 (<Y')d<Y' h, 

0 0 
7r 1f 

Pa = {pa , J h1 (<Y')dO''}i = {pa , J h2 (0'')d0''}2 . 
0 0 

They have the following form: 
Proposition 1 .  

(3.2) 

{A(O') , B(<Y')h = �A a?Bb [[wab (O') + wab (u')] v(u' - O') + [<I>ab (O') + <I>ab (O"')] "'fJ 5(0'' - O') u� x · · u� 
+ [nab ( O') + nab ( 0'1)] 5( 0'1 - O') l + �A �B [ [wab ( O') + Wab ( 0'1)] v( 0'1 - !Y )+ UPa UPb 

+[<I>ab (O') + <I>ab (0'')] "'0 5(0'1 - O') + [nab (O') + nab(0'')] 5(0'' - O')]+ uO'' + [ '�A �B + �.A �B ] [ [wg (O') + wb' (O'') ]v (O'' - O') + [<I>b' (O') + <I>b' (O'' )] "'fJ 5(u' - O')] uxa UPb upb uxa _ u0'1 

+[�A a?B - �A �B [ng (O') + ng (0'')] 5(0'' - u) . uxa Pb upb uxa 
The arbitrary functions A, B , w ,  <I>, n are the functions of the xa ( O') , Pa ( u) . The functions 
wab ' Wab ) <I>ab ' <I> ab are the symmetric functions on a ,  b and nab ' Dab are the antisymmetric 
functions to satisfy the condition {A, Bh = -{B, A}2 . 
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1C 
The equations of motion under the Hamiltonian H2 = J h2(1J')drT' and PB { ,  }2 are 

0 

' b "b 1 b b b I I  b I Pa = -WabX - 2<PabX + 2nabX + 2WaPb + 2<PaPb + 25:1aPb+ 
!1' I ' b dw� l I d<Pab 'b d<P� I + d1J [wabX + d1J' Pb v(IJ - IJ') - �x + d1J Pb · 
0 

The bi-Hamiltonity condition (3.2) is led to the two constraints 

1C 

J ' [ ' b , dw� 1 ( 1 ) d<Pab ' b d<P� 1 
+ dlJ W bX T --pb·V  IJ - IJ - -- X  + --pb = a d1J' J , dlJ . dlJ 

0 
" b 1 ogbc 1 ogbc 'b ' c , 8gac 'b ' c +gabX · ·· - --PbPc - ---X X I --X X . 2 axa 2 axa oxb 

In really, there is the list of the constraints depending on the possible choice of the 
unknown functions w, n , <P . In the general case, there are both the first kind constraints 
and the second kind constraints. Also it is possible to solve the constraints equations as the 
equations for the definition of the functions w , <P , n . We considered the latter possibility 
and we obtained the following consistent solution of the bi-Hamiltonity condition: 

Remark 1 .  In distinct from the PB of the hydrodynamical type, we need to introduce 
the separate PB for the coordinates of the Minkowski space and for the momenta because, 
the gravity field is not depend of the momenta. Although, this difference is vanished under 
the such constraint as f ( xa , Pa) ""' 0 . 

Consequently, the dual PB for the phase space coordinates are 



·---- " - - ·"····--- � 

llO Proceedings of BGL-4 

(3.3) 

The function wab ( x) is satisfied on the equation: 

(3.4) 

The Jacobi identities for the PB { ,  h are led to the nonlocal consistence conditions on the 
unknown function wab(er) . We can calculate unknown metric tensor gab( er) by substitution 
of the solution of the consistence condition for wab to the equation (3 .4) . 

The Jacobi identity 
{xa (er) ,  xb (er') }xc(er") }  J = (3.5) 

{xa (er) , xb (er' ) }xc (o-") }  + {xc(a-") , xa (o-)}xb(er' ) }  + {xb(er' ) , xc(o-") }xa (er}) = 0 

is led to the following nonlocal analogy of the \VDVV (16, 17] consistence condition: 

aw ab (O') (} .ac (a-) [ CJxd [wdc (cr) + wdc(er")] - wiJxd 
[wdb(o-) + wdb (a-')] ] v(a-' - cr)v (o-" - a-)+ 

awcb (a-'') awab (er') [ iJxd [wda (er') + wda (a)1 -- CJxd 
[wdc(er') + wdc(o-")] ] v(er - er')v(er" - er' )+ 

awac (o-") owcb (er") [ . iJxd [wdb (o-") +wdb (er')] -- iJxd 
[wda(a-") +wda (a-)] ] v(a- - a-")v(a-' - o-") = 0. (3.6) 

This equation has the particular solution of the following form: 

[Tb, Tc]Ta]f (er, IJ1 , a-") v( er" -- a-) v( a-' - IJ), 
where Ta , a = 0, 1 ,  . . .  D - 1 is the matrix representation of the simple Lie algebra and 
f(<J, a-' ,  <J11) is arbitrary function . The Jacobi identity is satisfied on the Jacobi identity of 
the simple Lie algebra in this case: 

and we used the relation v2 (0-' =- er)= 1 .  The local solution of the Jacobi identities leads to 
the constant metric tensor. The rest Jacobi identities are cumbrous and we do not reduce 
this expressions here. The symmetric factor of <J, er' of the antisymmetric functions v( er' -
a-) , !/IT 15 (er - er') in the right side of the PB can be both sum of the functions of er and er' , 
and production of them. Last possibility can be used in the vielbein formalism. 
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Proposition 2.  The bi-Hamiltonity condition can be solved in the terms PB { ,  h ,  which 
have the fallowing form: 

I ae�(cr' I I {xa (er) ,  Pb ( er }2 = -e�(er)�Pc(er )v(er - er) , 

I ae�(er) ae� (er') I I I a I {Pa (er) , pb (er ) }2 = �Pc(er) Bxb Pd (er )v(er - er) - e� (er)e� (er ) Ber' 5(er - er)+ 

[
De� µ, ae� µ, De� µ, ae� µ,] I c( ) ;; ( I ) (3 .7) + -a > eb - -D ea - -D eb + -a b ea x er u er - er ' 
Xe Xe Xa X 

where veilbein e� is satisfied on the additional conditions: 

and T/µ,v is the metr·ic tensor of the fiat space. 

The particular solution of the Jacobi identity is 

[Tb , Tc]Ta :J(a, a' ,  a11 ) v(er11 - a)v(er' - a) . 
As example let me consider the the constant curvature space. 

Example 1 .  The constant curvature space is described by the metric tensor 9ab(x(a)) 
and by it inverse tensor g;;b1 : 

kxaXb ab - -1 k 9ab = T/ab + l _ kx2 ,  9 = 9ab = T/ab - XaXb · 

Proposition 3 .  Dual (PB) { , }2 are: 

{ Xa ( er) , Xb( a') } = [T/ab - kxa ( er )xb( er')] v( er' -- CT) , 

{xa (a) , Pb(er')} = kxa (er)pb (er')v(er' - CT) , 
{pa (er) , Pb (CT' )}  = -kpa (CT)Pb (a')v(er' - a) 

1 r2 kXa.Xb ( ) 
kXaXb ( 

') ] D 
5( 

r ) XaXb - XbX� 5( 1 ) - :z l  T/ab +  l - kx2 CT + l - kx2 er Der' CT - a +  2(1 - kx2) a - CT · 

The Jacobi identity (3 .5) is led to the equation 

(3.8) 

[T/GbXc (a") - T]acXb (a' ) ]v(a' - CT)v(a - CT11 ) + [T/bcXa(er) - T]baXc(er")]v(er - a')v(a' - a")+ 

[TJcaXb (a') - T/cbXa (CT)]v(a' - CT11)v(a11 - CT) = 0. 

The particular solution of this equation is: 
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Consequently, the space-time coordinate Xa (a-) is the matrix representation of the simple 
Lie algebra. 

The Jacobi identity {xa (a-) , xb (a-') }pc(a-") }J is led to the equation 

k'f/abPc (a-")v(a-' - a-) [v(a-" - a-) + v(a-" - a-')] = 0. (3.10) 

These results can be obtained from the veilbein formalism under the following ansatz 
for the veilbein of the constant curvature space: 

where n� = 1, mis)mis) = 1, m�s)m�s) = 1, mi8)m�s) = 0, nanb = 5ab and (s) is number 
of the solution of the equations 

The following example is time-dependent metric space. 
Example 2 .  The time-dependent metric in the light-cone variables has form: 

We are used Poisson brackets (3.3) for the space coordinates xa = {xi , x+ , x-} , i = 
1 ,  2, . . .  , D - 2. We introduced the light-cone gauge as two first kind constraints :  

and we imposed them on the equations of motion and on the Jacobi identities. The Jacobi 
identities are reduced to the simple equation 

aw ab awac +c +b _ 0 -;:;-::;:- w - "' _,_ w  - . 
uX · uX 

We obtained following result from this equation and additional condition (3 .4) : there is 
constant background gravity field only for the non-degenerate metric. 

4 .  Constant background fields ( gab = canst ) 
In this section we are supplemented the bi-Hamiltonity condition (3 .2) by the mirror 

transformations of the integrals of motion: 

The dual PB are 

1r 7r 
xa = {xa , / hida-'h = {xa , / ±h2da-'}±2 · 

0 0 

{ xa ( a-) , xb ( a-') }±2 = ±gabv( a-' - a-) , { xa (a-) ,  Pb ( a-') }±2 = 0, 

{Pa (a-) , pb (a-') }±2 = =F9ab 0�1 5(c/ - o-). 
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Another way to obtain the dual brackets is the imposition of the second kind constraints 
on the initial dynamical system, by such manner, that Fi = Fk for i =/= k, i, k = 1, 2, . . .  on 
the constraints surface f(xa , Pa) = 0 .  

Example 3 .  The constraints Jl-) (x , p) = Pa - gabX1b ;:::;:; 0 or Jl+) = Pa + gabX1b ;:::;:; 0 
(do not simultaneously) are the second kind constraints. 

{fl±l ( O' ), f�±l ( 0"1) h = c��l ( O' - O"') = ±2gab 8�, 15( 0"1 - O') .  

The inverse matrix (CC±l )-1 has following form cC±)ab(O" - O"')  = ±�gabv(O"' - O") . There 
is only one set of the constraints, because consistency condition 

is not produce the new sets of constraints. By using the standard definition of the Dirac 
bracket, we are obtained following Dirac brackets for the phase space coordinates. 

{xa ( O') , xb( a') }  D = ±�gabu( 0"1 - O') , {Pa ( O' ) ,  Pb( a') }  D = =t= -2
1 
gab 

8
, 15( a' - a) , 

2 O' 

{xa (O') , Pb(0'1 ) }D = �151,'15(0'1 - O') . 

equation The equations of motion under the Hamiltonians H1 = hi , H2 = h2 and Dirac 
bracket 

Xa = {x" ,  H1 }D = {xa , H2}D = gabPb = ±x'a, 

Pa = {Pa , Hi}D  = {Pa , H2}D = 9abX1b = ±p� . 
are coincide on the constraints surface. The dual brackets { , }±2 are coincide with the Dirac 
brackets also. The contraction of the algebra of the first kind constraints means that the 
integrals of motion H1 = H2 are coincide on the constraints surface too. 

Example 4. Constraints fa (O') = Pa - hacX'c(O') ,where metric tensor of second 
fundamental form hac = canst . ,  hab = hba , habhbc = 15� are the second kind constraints: 

Inverse matrix cab (O' - O"') has form: 

Dirac bracket of arbitrary function A(O") , B (O") is 
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Therefore, we obtained the only Dirac bracket 

on the surface Pa - habx' b = 0 . The equations of motion under the Dirac bracket are 

where hf; = gachcb is Weingarten operator. The equation of motion 

( 4 . 1 )  
under the Hamiltonian h1  i s  the hydrodynamical type equation [18]. The equation (4 . 1 )  
for the diagonal operator hf; c:c c5g hb was considered as the Hamiltonian equation under the 
local bracket for the sphere embedded in a pseudo-Euclidean space EN . It has the following 
form in the sphere-conic coordinates Ra [13, 19] : 

N-1 N 
R,a = (2Ra + L Rk - L ha)R'a .  

The bi-Hamiltonity condition 

led to the following dual Dirac brackets: 

k=l K=l 

{ xa (O" ), xb (a' ) } m = �gabv(O"' - O") , {Pa (a ) , pb (O"' ) } m = - �9ab 0�, c5(a' - O"), ( 4.2) 

{ xa ( a) , Pb ( a' ) } D2 = �hb c5( a ·- a') . 

5 .  Acknowledgments 

The author should like to thank G. M. Polotovskiy and L. L.  Jenkovszky for the kind 
hospitality during the Bolyai-Gauss-Lobachevsky Conference. 

References 

[l ]  F.A. Magri. Leet. Notes Phys. (1980) ,  120, 233. 

[2] S.Okubo, A .  Das. Phys. Lett . B (1988) , 209, 31 1 .  

[3] V . D .  Gershun. Nucl. Phys. B (Proc. Suppl.) (2001) ,  102&103, 71; arXiv: hep-th/0103097. 

[4] V.D.  Gershun. arXiv: hep-th/0112234 (2001) .  

[ 5 ]  V . D .  Gershun. Gravitation, cosmology and relativistic astrophysics, KNU, Kharkov (2001) ,  
69 .  



------------j 

V.D. Gershun 1 15  

[6] V.D . Gershun. Problems of atomic science and technology, KIPT, Kharkov (2001) ,  b f  6(1 ) ,  65 .  

[7] V.D. Gershun. Proc. Non-Euclid Geometry in Modern Physics (BGL) (Tirgu-Mures, Romania, 
2002); Debrecen, Budapest, Hungary, (2003) , 51 .  

[8] V .D .  Gershun. Proc. of  the XVI Max Born Symposium "Supersymmetry and Quantum 
Symmetries", Karpacz, Poland, 2001, Dubna (2002) ,  37. 

[9] V.D. Gershun. Proc. of Fifth International Conference "Symmetry in Nonlinear Mathematical 
Physics", Kiev, Ukraine, 2003. Part 1 (2004) , 396. 

[10] V.D. Gershun. arXiv: nlin.SI/0403055 (2004) . 

[11] O.I. Mokhov, E.V. Ferapontov. Russian Math. Surveyes (1990) , 45, No.3, 218. 

[12] E.V. Ferapontov. Functional Anal. Appl. (1991) ,  25,  No 3, 195. 

[13] E.V. Ferapontov, l:<unctional AnaL and Its Applications (1992), 26, No.4, 298. 

[14] B.A. Dubrovin and S.P. Novikov. Soviet Math. Dokl. ( 1983) , 27, 665. 

[15] A.Ya. Maltsev and S.P. Novikov, Physica D (2001) ,  1-2, 53; arXiv: nlin.SI/0006030 (2001) .  

[16] R. Dijkgraaf, E. Witten. Nucl. Phys. B (1990), 342, 486. 

[17] R. Dijkgraaf, E. Verlinde, H.  Verlinde. Nucl. Phys. B (1991) , 352, 59 

[18] 0.I. Mokhov arXiv: math.DG/0406292 (2004) 

[19] M.V. Pavlov. Russian Acad. Sci. Dokl. Math. (1995) , 59, No. 3, 374. 

E-mail address: gershun@kipt.kharkov.ua 



1 16  Proceedings of BGL-4 

QUANTUM TODA CHAIN WITH BOUNDARY 
INTERACTION 

N.Z. lorgov, V.N. Shadura 

Bogolyttbov Institute for Theoretical Physics 
National Academy of Sciences of Ukraine, Kyiv, Ukraine 

In this contribution, we give an integral representation of the wave functions of the quantum 
N -particle Toda chain with boundary interaction. In the case of the Toda chain with one­
boundary interaction, we obtain the wave function by an integral transformation from the 
wave functions of the open Toda chain. The kernel of this transformation is given explicitly in 
terms of l' -functions. The wave function of the Toda chain with two-boundary interaction 
is obtaiD.ed from the previous wave functions by an integral transformation. In this case, 
the difference equation for the kernel of the integral transformation admits separation of 
variables. The separated difference equations coincide with the Baxter equation. 

1 .  Introduction 

Recently, some progress in the derivation of the eigenfunctions of the Hamiltonians of 
some integrable quantum chains with finite number of particles has been achieved [lj-[7] .  It 
is connected with the development of the method of separation of variables [1] for quantum 
integrable models. The first steps in the elaboration of this method were taken by Gutzwiller 
[2] , who has found a solution of the eigenvalue problem for N = 2 ,  3, 4 -particle periodic Toda 
chain. 

Using the R -matrix formalism, Sklyanin [3] proposed an algebraic formulation of the 
method of separation of variables applicable to a broader class of integrable quantum chains .  
The next important step was taken by Kharchev and Lebedev [4] , who combined the analytic 
method of Gutzwiller and algebraic approach of Sklyanin. They obtained the eigenfunctions 
of the N -particle periodic Toda chain by some integral transformation of the eigenfunctions 
of an auxiliary problem, the open ( N - I ) -particle Toda chain. It turned out that the kernel 
of this transformation admits separation of variables. The separated equations coincide with 
the Baxter equation. A solution of this equation has been found in [8] (see also [4] ) .  

Later Kharchev and Lebedev [5] have found a remarkable recurrence relation between 
the eigenfunctions of the N -particle and ( N - I )-particle open Toda chains. Understanding 
these formulas from the viewpoint of the representation theory [6] made it possible to extend 
their approach to other integrable systems [6, 7] . 

In this paper, we apply this method to the derivation of the eigenfunctions of the 
commuting Hamiltonians of the N -particle quantum Toda chain with boundary interaction. 
We use the Sklyanin approach [9] to the boundary problems for the quantum integrable 
models. The N -particle eigenfunctions of the quantum Toda chain in which the first and last 
particles exponentially interact with the walls (the two-boundary interaction) is constructed 
by means of an integral transformation of the eigenfunctions for the Toda chain with one­
boundary interaction (the auxiliary problem) . These eigenfunctions, in turn, are constructed 
using the eigenfunctions of the N -particle open Toda chain. Such a complicated hierarchy 
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allows one to separate the variables in the difference equation for the kernel of the mentioned 
integral transformation reducing it to a version of the Baxter equation. We note that ,  for 
the classical Toda chain with general boundary interaction, the separation of variables was 
performed by Kuznetsov [10] . 

2.  Integrals of motion of the open Toda chain 

To describe the integrals of motion of the quantum N -particle open Toda chain, we use 
the L -operators (one for each particle) 

k = 1 , 2 , . . .  , N, 

where N is the number of particles in the chain, Pk and Qk are the operators of momentum 
and position of the k -th particle, respectively. The monodromy matrix is defined as 

( A(u) B(u) ) T(u) := LN (u)LN-1 (u) · · · L2 (u)L1 (u) = C(u) D(u) · (2 . 1) 

The commutation relations for the matrix elements of T( u) follow from the canonical 
commutation relations 

and can be written as 

R(u - v) (T(u) 0 1) (1 0 T(v)) = (1 0 T(v)) (T(u) 0 1) R(u - v) , (2 .2) 

where R(u) is the rational R -rnatrix: 

( ' l 
l + � 0 0 0 

R(u) c � • 1 i i  0 . 1 u 
' 2  1 0 u • 1  
0 0 l + � u 

From (2 .1)  it follows that A(u) is a polynomial of degree N in u : 
N 

A(u) = L (-lyr'uN-m Hm (P1 , q1 ; p2 , Q2 ; . .  · i PN , QN) = 
m=O 
N H N-1 . H N-2 · ( l)NH = U  - lU -t- 2U - . .  · -t- - , N· 

In particular, relations (2 .2) give 

[A(u) , A(v)] = 0, 

( 2.3) 

and, therefore, [Hm , Hk] = 0 ,  that is, A(u) is a generating function for the commuting 
operators Hm . Since 

N-1 
H2 = LPkPl - L e% -1k+1 , 

k , l  k=l k < l  
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we get the Hamiltonian for the open Toda chain in the form 

N 2 N-l 
H = H2/2 - H2 = """"' Pk + ) eqk-qk+1 . 1 L.. 2 £......J k=l k=l 

Therefore, the operators Hm are Hamiltonians for the open Toda chain. 

3. Wave functions for the open Toda chain 

Let a wave function 1/J(q1 , . . .  , QN) for the open Toda chain be a common eigenfunction 
of the commuting Hamiltonians Hm : 

Then N 
A( u)1/J1N (q1 , . . .  , QN) = IT ( u - 'YNZ )1/J1N (q1 , . . .  , QN ) ,  

l=l 
where "IN = C'YN1 , 'YN2 , . . .  , 'YNN) are the quantum numbers of the N -particle system, 
Em = emC'YN1 , 'YN2 , . . .  , 'YNN) , and em, is the m -th elementary symmetric polynomial. 
For every set "( N , the space of eigenfunctions is N! dimensional. The physical eigenfunction 

'lj;1N is fixed by the requirement that 'lj;1N rapidly decreases in the classically forbidden 
region, that is, for Qk >> Qk+l for some k .  For q1 << Q2 < <  · · · << QN ,  1/J1N is a 
superposition of plane waves.  

Recently, Kharchev and Lebedev [5] have found a recursive procedure of constructing the 
N -particle wave function 'lj;1N (q1 , q2 , . . . , QN) through the (N -- 1 )  -particle wave functions 
1/J1 N 1 ( Q1 , q2, . . .  , QN -1)  . The recurrence relation is 

'lj;IN (q1 , Q2 , . . . , QN) = / d"f N-lµhN-l)QhN-l irN )1/JIN-l (q1 , Q2 ,  . . . , QN-1 )  X 

fCLf=1 IN,j -'L {;'�/ IN-i , k )qN e 2 (3 .1) 

where integration is carried out with respect to 'YN-l,k ,  k = 1 , 2 , . . . , N  - I ,  along any set 
of the lines parallel to the real axis and such that 

min Im "'N-1 k > max ImAtN J· ,  k I ' j ' j = l , . . . , N, (3.2) 

(3.3) 

In a similar way, the ( N - I) -particle wave functions can be expressed through the ( N - 2) -
particle wave functions , and so on. The wave function for the I -particle open Toda chain 
is just a plane wave: 

----1 
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In what follows ,  we use the notation / : =  rN , 'Yk : =  'YN,k .  As shown in (5], the wave 
function '¢-y satisfies the relations 

N 
A(u)'¢-y =

II (u - 'Yz) '¢1 , (3.4) 

l=l 

(3 .5) 

(3.6) 

where '¢-y±P := 'lf·n ,12, . . .  ,1p±il'i, . . .  ,1N · 
In order to find the action of D ( u) on '¢-y , we use the following property of the quantum 

determinant of T( u) for the Toda chain: 

D (u)A(u - iii) - C(u)B(u - iii) = l .  

The result is 

" II u - 'Yl 1 1 1 I 
N 

( ) ( ) D(u)'¢ = L., -- - - 11' -
'"Y p=l l#p "/p - 'Yl iii I1z#p('YP - 'Yl + in) I11#pbP - 'Yl - iii)

, 
Y'"'f 

" i i II u - 'Yl 
- L., . I1 ( , ) 

-- '¢-y+p, - q  . 
p,q "/q - "(p - Ih l#p "(p - "/l ,  [....t.p q "(q - "fl 
p#q -r 1 

(3.7) 

(3.8) 

4 .  Integrals o f  motion o f  the Toda chain with boundary 

int eraction 

In this section, we give a sketch of the R -matrix formalism for the quantum Toda chain 
with boundary interaction proposed by Sklyanin [9]. This formalism is important for the 
construction of wave functions. The key object in this approach is the matrix 

U(u) := T(u)K(-, (u - -2)T( -u) = ' , i l - ( A(u) B(u) ) 
2 ' C(u) 1J(u) ' 

where T(u) is the monodromy matrix (2 .1 )  of the N -particle open Toda chain, and 

Here, u2 is the Pauli matrix. The matrix K(-l (u - i�/2) is 

(4. 1) 

(4.2) 
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As shown in [9], the matrix U(u) satisfies the reflection equation 

R(u - v) (U(u) ® 1) R(u + v - i� ) (1 ® U(v)) = 
. 1 (1 ® U(v)) R(u + v - 12) (U(u) ® 1) R(u - v) ,  (4.3) 

where R(u) is given by (2.3) . 
This equation implies B(u)B(v) = B(v)B(u) . Therefore, the expansion of B(u) in 

powers of u gives commuting operators which, in fact, are the Hamiltonians of the one­
boundary Toda chain 

where N N-1 
H� = LP% + 2 L eqk -qk+1 - 20:1e-q1 + /31e-2q1 . 

k=l k=l 
Here the last two terms describe interaction of the first particle with the wall. 

The Sklyanin 's transfer-matrix 

where 

t(u) := Tr K(+l (u + i� /2)U(u) , 2 (4.5) 

satisfies the commutation relation [9] 

t (u)t(v) = t (v)t(u) . (4.6) 

Hence, t( u) is a generating function for commuting operators which, in fact, are the 
Hamiltonians of the two-boundary Toda chain. 

For simplicity, in what follows ,  we fix {31 = f3N = 0 and use the notation e"1 := -2a1 , 
e-"N := -2a:N . In this case, we have 

1 2  t(u) = (-l)N-1 (u2 + 2 /4) x 

where 

(u2N _ u2N-2 H�B + u2N-4H�B _ . . . + (-l )N H�B) + 2a:iaN , (4.7) 

N N-1 
H�B = L P% + 2 L eq, -q,+i - 2a1e-q1 - 2aNeqN . 

k=l k=l 
In the case of the Toda chain, the matrix U ( ?L) has some additional symmetry ( unitarity) 

[9] : 

( A(-u) 
\ C(-u) 

B(-u) \ _ 1 ( -i�A(u) + 2uD(u) - (2u + i� )B(u) ) 
D(-u) ) - 2u - i� - (2u + i�)C(u) 2uA(u) - i�D(u) · (4.8) 
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In particular, this leads to 

1 ( · l · 1 ) A(u) = ;: (u - 1g )v(-·u) + 1g v(u) . (4.9) 

Therefore, using this equality and (4.5 ) ,  we obtain 

(u + i! ) (u - �) il 
t(u) = ON 2 D(u) + ON 2 V(-u) - (u + ..2 )E(u) . (4. 10) u u 2 

Using ( 4 . 1 ) ,  we obtain the following expressions for the matrix elements of U ( u) in 
terms of the matrix elements of the monodromy matrix T ( u) for the N -particle open Toda 
chain: 

A(u) = a1 (A(u)D(-u) - B(u)C(-u)) - ( u - i�) A(u)C(-u) , (4. 11 )  

E(u) = -o1 (A(u,)B(-u) - B(u)A(-u)) + ( u - i�) A(u)A(-u),  (4.12) 

C(u) = o1 (C(u)D(-u) - D(u)C(-u)) - ( u - i�) C(u)C(-u), (4. 13) 

V(u) = o1 (D(u)A(-u) - C(u)B(-u)) + ( u - it) C(u)A(-u) . (4. 14) 

We give some examples: 
N = l :  

1 B(u) = - (u - i'.2 /2) (u2 - (Pi + etc-qi ) ) , 

1 2 ' t(u) = (u2 + 2 /4) ( u2 - (p2 + ei<-qi + eq1-"' )) + 2aa' ; 

N = 2 :  
1 B( u) = ( u-i2 /2) ( u4 - u2 (Pi + p� + 2eq1 -q2 + e"'1 -q1 ) + (P1P2 - eq1 -q2 )2 - a1p�e-q1 - 20:1e-q2 

t(u) = -(u2 + � 2 /4) (u4 - u2 (pi + p� + 2eq1-q2 + e"'1-q1 + eq>-"'2 ) + · · · )  + 20:10:2 . 

5 .  Wave functions for the one-boundary Toda chain 

We define the function '1r,i.. = W>.1 , .. . , >.N as 

ix1 ('"'11 +· ·-+-"YN) 
! 'l/J"f (qi , . · · , qN) , (5 . 1 )  
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where e"'1 = -2a1 and 

IT r ( Ai.--.;'k ) r ( -.A:-;-1k ) _ <N+?.,.k 
Q(ll.A) = k,l ., ' 2  

rr � ' 2  , IT k , i  r (-�) k 2 
k < l  1 2  

We show that this is  a wave function for the quantum one-boundary Toda chain, and 

· l  N 
B(u)W>.(Q1 ,  . . .  ' QN )  = (-l)N (u - li ) rr (u2 - .Af) W>. (Q1 , . . .  ' QN ) ,  (5 .3) 

l=l 
where the structure of the right-hand side corresponds to (4.4) . The integration in (5 . 1) is 
carried out along any set of lines parallel to the real axis and such that 

m
k
ax Im "fk < - min Im >.1 , " J 

k = 1 ,  2, . . .  , N, j = 1 ,  . . .  , N. 

First, we prove the absolute convergence in (5 . 1) . For this, we use the inequalities 

x > 0, 

where Px ( I Y I ) is some polynomial in I Y I  with degree linearly depending on x ,  

and also inequality 

N N-l 
L ( i .\k - .:YN,l l + l .\k + iN,1 1) + L L  l.:Yr+i,k - .:Yr,z l-

k,l=l r=1 k,l 
N 

x > 0, 

2 "° "° 1 - - I "° I - + - I >  - L., L.._, Or,k - 'Yr,l - L., 'YN,k )N,l _ 
r=2 k<l k<l 

(5 .4) 

N N r 
:'.". -2N L l .\k i + 2 L ( i .\k - .\1 1 + l.\k + .\z !) + � L L  l .:Yr,k l , (5 .5) 

k=l k<l r=l k=l 

which is valid for any set of real variables .\k , k = 1, 2, . . . , N ;  .:Yr,l , l = 1 ,  2 ,  . . .  , r ,  
r = 1 , 2 ,  . . .  , N .  A proof of the last inequality is given in Appendix A of [11]. For our 
purposes, we fix .\k (respectively, .:Yr,l ) to be equal to Re .\k (respectively, Re "fr,l ) . 

Presenting (5 . 1) as 

N r 
'1F>. (Q1 , . . .  , qN)  = / IT I1 d.:Yr,kF(/1 , "'f2 , . . .  , -yN , A.; q1 ,  . . .  , qN) ,  

r=l k=l 
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we obtain the following inequality for the dependence of the integrand on !'r,k : 

1 23 

IF(r1,  /2 , · · · , /N, .\; q1 , · · · , qN ) I :S P( fir,k}) exp (- l� f, t lir,k l) , (5 .6) 
2 r=l k=l 

where P( { ir,d) has polynomial dependence on the variables ir,k and certain dependence 
on the other variables. Estimate (5 .6) leads to absolute convergence of the integral on the 
right-hand side of (5 . 1 ) .  We would like to mention that integral (5 .1) does not depend on the 
values of the imaginary parts of 'Yr,k (that is, lines of integration) provided the mentioned 
inequalities (3.2) and (5 .4) for them are satisfied. This follows from two facts. First, we 
do not encounter poles as we shift the integration contour. Second, due to estimate (5 .6) ,  
the integrand is vanishing at the infinities of the integration contours .  This justifies the 
correctness of shifting of the integration contours which we use in what follows. 

From the physical viewpoint, the function W>.(q1 , . . .  , qN) given by (5 .1) has correct 
asymptotic behaviour rapidly decreasing in the classically forbidden region, that is, where 
qk >> qk+l for some k or where qi << 0 .  In the region 0 << Qi << Q2 <<  · · · << qN , 
the function W >. (qi , . . .  , QN) is a superposition of plane waves. 

The formulas for the action of the matrix elements of U(u) on W>. , in particular (5 .3) ,  
are derived in Appendix B of [11] . Other action formulas proved there are 

N ( 2 ;\2 ) 
D(u)W>. = a1 L fl �2 = ;\� x 

p=i lofp p l 

[ (u + .:\p) (u - �) ff, (u - .:\p) (u - �) ff, 
l (rrN >-f - u2 ) 'T' 

\ · 1 '±' ).-p + \ · 1 '±'). +P + CYi 1 '±' A l  2/\p (.:\ - 12 ) 2/\p ( .:\ + 1 2 ) \ 2 + ( -2 )2 p 2 p 2 l=i /\l 2 

In particular, formula (5.7) gives 

(5 .7) 

(5 . 8) 

( 5 .9) 

The action of A(u) and C(u) on W>. can be derived using (4.9) and Sklyanin determinant 
[9] for U ( u) , respectively. 

Here we give some heuristic explanation of formulas (5.9) . Let W>.(Qi , . . . , QN) be an 
eigenfunction of B(u) satisfying (5.3) . Then the commutation relation 

(u2 - (v - i� )2) D(v)B(u) - (u2 - v2 )B(u)D(v) = 
. 1 . 1 . 1 = i2 (u + v - 12)D(u)B(v) + i2 (u - v)A(u)B(v) , (5 .10) 
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which follows from (4.3) , gives 

at v = ,\. , and, therefore, V(>.r)WA. is an eigenfunction of B(u) with Ar replaced by 
(>..r - i� ) . Clearly, this argumentation is not sufficient to prove the relation V(>..r)WA. = 
a1 \Ji A.-r . As mentioned before, a proof of this relation is given in Appendix B of [11] . 

6 .  Wave functions for the two-boundary Toda chain 

Taking into account ( 4. 7) , it is useful to introduce 

Let <I>p(q) be a wave function for the two-boundary Toda chain: 

N 
t(u)<I>p(q) = fI (u2 - pD<I>p(q) =: t(u/p)<l)p (q) ,  

k=l 

where p = {Pi , P2 , . . .  , p N} are the quantum numbers of the corresponding state. 
We look for <I>p(q) in the form 

(6 .1)  

where 

and the integration with respect to { >.k} is carried out along arbitrary lines parallel to the 
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1 . u . 
(5 8) d il(.\ +P) (>-p+it) TI (>-p+it )2-,\f b . rea axis . smg . an - r.x) = >- l#p >-2 - >-2 , we o tam µ , p p z 

We set u = Ap . Then the previous relation is satisfied if 

[ 1 cc.x+P IP) 1 C(.x+P lp) 2 l = 
CXiCXN 

>. (>. + i� ) C(.Xlp) 
+ 

>. (>. - +, C(.Xip) - (>.2 + L) ' p p 2 p p 2 1  p 4 
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2 N where t(uJp) = (-1)N-1 (u2 + � /4) llk=1 (u2 - p�) + 2cx1ow . This multidimensional 
difference equation admits separation of variables. Namely, we suppose the factorization 
property 

N 
C(.Xjp) = IT c(>.p ip) . 

p=l 
Then c(>.ip) satisfies the Baxter equation 

or, equivalently, 

(>. -
i� )c(>. + i� IP) + (>. + 

i� )c(>. - i� IP) = >. t(>. ip) c(>. ip) . 
2 2 2 2 CX1CXN 
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Solutions of this equation can be constructed in terms of ratios of infinite-dimensional 
determinants as it was done in the case of the periodic Toda chain [8, 4] . We expect that, 
similarly to the case of the periodic Toda chain [8, 4] , the requirement of the analytical 
properties of c(>.. ip) (which is important, in particularly, for the convergence of integral 
(6 .1) )  restricts possible values of p to the discrete spectrum of the quantum two-boundary 
Toda chain. 
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THE C U LT OF JANOS BOLYAI IN  TRANSYLVANIA 

Z.  Kasa 

Babes-Bolyai University 
Cluj-N apoca, Romania 

Janos Bolyai ( 1802-1860) is the greatest Hungarian mathematician who after recognizing 

the impossibility to prove Euclid's fifth (the so called parallel) postulate from Euclid's 

others, developed the absolute geometry (maybe the first non-Euclidian geometry) that is 

independent of the fifth postulate. He was only 21 years old when in 1823 he reported his 

finding to his father, Farkas Bolyai: "I have created a new, different world out of nothing." His 

discovery was published in 1832 as an appendix to his father's book Tentamen, so generally 

reffered to as Appendix. For more than hundred years his mathematical activity was identified 

with the Appendix, but he was not only a geometer. He also developed in the unpublished 

Responsio a rigorous geometric concept of complex numbers as ordered pairs of real numbers. 

Although he never published more than the 26-page Appendix, mainly because he was unable 

to gain recognition for his work , he left more than 14000 pages of manuscript of mathematical 

work when he died. Recently these have been thoroughly researched by Elemer Kiss with 

surprising success: mathematical gems have been found, mainly results in number theory 

and algebra which were new in Bolyai's time (1] .  

1. Janos Bolyai's  life and activity 

Janos Bolyai was born on December 15, 1802 in Kolozsvar (now Cluj-Napoca) in the 
middle of Transylvania (see Fig. 1 ) .  Since 1804 the Bolyai family lives in Marosvasarhely (now 

Fig. 1 .  The map of Romania. 

Targu Mures) where Farkas Bolyai was invited as a teacher in the Reformed College. Here 
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spent Janos Bolyai his childhood. In 1818 he began his study at the Academy of Military 
Engineers in Vienna. In 1823, after finishing his study, was nominated sub-lieutenant and 
assigned to Temesvar (now Timisoara) . He wrote in November 3, 1823 in his famous letter to 
his father: "I have so m1J,ch to write yo1J, abo1J,t my new findings . . .  now I cannot say anything 
else: I have created a new, different world out of nothing." In 1832 his father published in 
Latin his book Tentamen with the Appendix: Scientia spatii absol1J,te veram exhibens of Janos 
Bolyai. This Appendix was published in 1831 as a preprint. This 26-page paper contains the 
exposition of the absolute geometry, which is independent of the Euclid's fifth postulate. 
Farkas Bolyai sent a copy to Gauss, his youthful friend. The Gauss' reply on the Appendix 
was a crushing one: "If I praised it, I should praise myself since the whole content . . .  coincide 
almost entirely with my reflections over 30-35 years". But in letter to his friend Gerling he 
wrote: "I consider the yo1J,ng geometer Bolyai as a genius of first order." In this letter he 
recognizes that his ideas in 1798 were far from the maturity found in the work of Janos 
Bolyai. 

After retiring in 1833 Janos Bolyai lived in Domald (now Viisoara) and in 
Marosvasarhcly, where he still worked mathematics as the remaining manuscripts attest . 
Between 1835-1840 he clearly expressed the idea which later came to be known as the 
"geometrization of physics". 

In 1848 he got Lobachevsky's work on parallels published in 1840 in German. First, he 
was suspicious that he had been stolen, but after reading the entire book he made enthusiastic 
comments on it. 

Janos Bolyai died in 1860. In the Kolozsvari KozlOny (Bulletin of Kolozsvar) has been 
written: "It is o·ur enormous loss, that the life of such a brilliant man and owner of deep 
knowledge has passed almost with no 11,Se among us, and being by nature odd and avoiding 
people, he lived exclusively being engaged in his vast ideas. May he rest in peace!" [4] 

2 .  The Cult of Janos Bolyai 

His scientific activity was unrecognized in his life. Only after his death the scientific 
world finds out his outstanding results in geometry. The Appendix was translated in several 
languages, as Italian and French ( 1867) , English ( 1891) ,  Hungarian (1897) , Russian (1950) , 
Romanian ( 1954) etc. 

The first who took note of the importance of the Appendix was Richard Baltzer from 
Drezda. Under his influence G.J .  Hoiiel from Bordeaux started to study the geometry of 
Bolyai. Gyula V alyi (1855-1913) was the first professor at the new created university in 
Kolozsvar (in 1872) who held lectures about the Appendix in the second semester of the 
academic year 1891-92, which lectures were repeated several times every four years. In order 
to compare the absolute geometry with the hyperbolic geometry he sometimes borrowed 
some of Lobachevsky's results [2] . 

In the summer of the year 1896 George Bruce Halsted (1853-1922 ) ,  professor at Texas 
University in Austin, who have been published the Lobachesky's treatis and the Bolyai's 
Appendix, made a trip to Marosvasarhely and after this to Kazan. In The University Of 
Texas Magazine was published a paper by J .  A.  Lomax, the editor in chief, about this very 
interesting summer trip [3] (see Fig. 2 ) . 

From this interesting paper let us point here only two facts on Bolyai and Lobachevsky: 
"For many years Dr. Halsted, our professor in mathematics, has been interested in the 
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Fig. 2 .  Lomax article's magazine. 
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study of non-Euclidean geometry. In the pursuance of these study he  has discovered to  the 
English-speaking world two great characters . . .  Nicolai Ivanovich Lobachevsky, a Russian, and 
Bolyai Janos, a Hungarian . . . " [3] (see Fig. 3) . 

"Among the other interesting facts about his family life, unknown before, it was learned 
that Lobachevsky had a son and daughter now living. The son is a political exile in Siberia, 
and the daughter, poor in purse, lives in St. Petersburg." Halsted became a benefactor, 
because the Czar promptly awarded to the Lobachevsky's daughter an annual pension, and 
Halsted also ask the Czar to pardon the son [3] (see Fig. 4) . 

The house where Janos Bolyai was born (Fig.5) had been tracked down and marked by 
a memorial plaque only in 1902, when 100 years since the birth was celebrated. This period 
is the real beginning of the Bolyai-cult. 

The Bolyai Prize was established by the Hungarian Academy of Sciences to be awarded to 
an outstanding mathematician every five years by an international committee. In 1905 Henri 
Poincare, the great French mathematician was honored, and in 1910 the famous German 
David Hilbert. For the third prize was recommended Albert Einstein, but because of the I. 
World War the prize was not awarded. The Bolyai Prize was renewed in 1991 and awarded 
again only in 2000 to S. Shelah for his monography Cardinal Arithmetic (5]. 

The first book on the two Bolyais' life was published by P. Stackel in German in 1913 
and translated in Hungarian one year later. 

After the II. World War, when Transylvania became again a part of Romania, in 1945 
a Hungarian university was established in Cluj (actually this was the continuation of the 
former Hungarian university) ,  which later was named after the two Bolya.is (Farkas, the 
father and Janos, the son) Bolyai University. This university was merged by force in 1959 
with the Victor Babes University in Romanian language. The new university got the name 
Babes-Bolyai University (Fig.6) , which still exists and now is one of the largest university 
in Romania. 
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THE UNIVllRSl'rV OF TEXAS MAOAZIN'&, 91 

DR. HALSTED AND HIS SUMMER TRIP. 

For many y�ra Dr. Jia.lsted, o.ut J>.r<>fi.:>1>'l0r of muthom,aµcs, 
ha.& been interested iu the st•uly uf n<fi),·l·:i1elidcnn !tl?Oinetry; · . !'n 
the pnnnU!in:� ,qf tbci<e studi"s he 1111� cli"!-""'cred to �he Engli&h� 
ape&Kin#(\V. · J\\•o gl'ellt ehnn.cters: ; Tl:w11e Hw> men, of dif· 
:.#el'Gnt llati \'n to en.:b <•ther, lidng �hou�da of 
fuile.. apm' . • . .  tli�\'er)' thut,. a.� (int c>t lbeft1 an� 
••From nothmg . . . . . th4,1r wholly new world.'' ·'Striltlger 
still, the slinie conolmdonti 'Wete hit upon nlmu><t at the �e 
PlOIJlent. . NioolAt Ivanovich l;q�c.hewsky, a Rn<1&fan, •nil 
}3pl.f�.;:.f""1� . a Hunp.rla:n� h11.v•·.·�nQ. liack of Euclid, and 
evolved' frl�m pure �n & oonceptfon · of Jhe universe, 80 new 
and eo r.trange that � alctne cnn enn.ble · us ti> . full 
import. The age!J. '}illVe been blin<lly tn11>tinp: an·:· ·oa. 
. Dr. Halsted is bringing in light the work;i of the t\ "hill 
the world who were hrave and· in<lependent enongh to demand 
the proofs. Thi11 not forthcoming; they boldly created 11 new 
world oouo.llv valid with the old. 

Fig. 3 .  

A�in wns Dr. Hulsted �trcces�ful in !indin)t out mnch that is 
new to the work! almnt this now fampni:; charoc!er. Among 
other interesting facts ahont his family life, unknown before, 
i� .�r�J.fil\r!l},JitJhJlt I..oha?l1�,Y.!'..�Y .. h��L� ... Sl!n n11<l. �.!'12ghJer: .n(}\\'. 
ltr!l!g'. .Th� .. �!l!U!L�. p!JliJjsiu! oxij� 1E.§��r:!��1 .o!l:l. fu�5l_a1:ghtcr, 
poo dn purse, lives in St Peterslmrg. 'i'o hel' 1>r. Hu.lsted had 
&lreiidy nnooniic10'11sl�y·beeil'ii 'b-Onef1ictor. Th1·onJlh some of his 
work on Lobatchevsky, the attention of the minister of edncatfon 
was called to the p:rent Russian. He in tnrn i•eporte.1 tho mnt· 
ter to the Q�l'.· who became interested, traced the daughter und 

awarde;l her an 11.nu1ml nsion for life of ais. lrnmlred 
lJr�:li��11}J�IilJ�milll:���uY. :'P&:�m.�1·ii ··: Fii�i!!.� .. i1,1.t,1;;11 :f1fili� �!l.·".%".t�J .he th��!�.h�!:tJ!.�!1-EL:.lgfle f>O· An unpublfahcd 

history of 1mn·Enelidean Geometry up to his time, writ.ten by 
Lobachevsky him11elf, was fonnd, i>nd is now heing trunshit.ed 
in Anstin, to be shtwtly uinm to the l'teientiffo wo.rl<l. 

Fig. 4. 

The life and activity of Janos Bolyai has been studied in the last decades by several 
researchers in Transylvania as Elemer Kiss, Tibor Weszely, Tibor Tor6, Robert Olah-Gal, 
Samu Benko (the non-mathematical papers) and are studied further on. 

In 2002 we celebrated 200 years since the birth of Janos Bolyai by a lot of commemorative 
conferences held in Romania. The first one was the BGL-3 conference in Targu Mures on 
July 3-6 (the first two editions had been held in Uzhgorod, Ucraine and in Nyiregyhaza, 
Hungary) . The second conference of the year dedicated to Bolyai was on October 1-5 in 
Cluj-Napoca (International Conference on Geometry and Topology) organized by Babes-
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Fig. 5 .  J .  Bolyai 's  birthhouse. 

Fig. 6. Babes-Bolyai University. 

Bolyai University with the cooperation a Farkas Bolyai Highschool in Targu Mures . In 
october an Bolyai-exposition was achieved by the university of Cluj-Napoca. The Romanian 
Academy had organized a commemorative session on December 13 in Bucharest. The last 
events in the Bolyai Year were a conference in Hungarian at Cluj-Napoca on December 14,  
a remembrance spectacle at the Hungarian Opera in Cluj-Napoca on the same evening, and 
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on December 15 in Targu Mures the inauguration of the so called Pseudosphere monument 
(Fig.7) in front of the Bolyai Museum, projected by the mathematician Sandor Horvath. 
Every year on November 3 at noon, if the sun is shining, a mirror system lightens the 
inscription I have created a new, different world out of nothing, written on the base of the 
monument. 

Fig. 7. The Pseudosphere monument . 

In 2002 a great number of papers on Bolyai 's life and acticity in Hungarian, English and 
Romanian have been appeared in different journals and nice books have been published. It 
is worth to mention a book edited by Polis Publishing House with 27 poems dedicated to 
Janos Bolyai by 8 Hungarian poets from Transylvania. 

After a long slight, nowadays Janos Bolyai took his worthy place in the history of 
sciences. 
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�l1<P<PEPEHIJ,l1AJlbHASI rEOMETPI1SI l1 C:>KATOE 
OTII1CAHI1E BCEJlEHHOH 

B.M. KoproKHH 

lvfapuuc'X;uu 2ocyaapcmee1-l1-l'btU mexmi"lecnuu yHueepcumem 
Hownap-0.1ta, Poccu.n 

By,IJ;eM rrpe.n;rroliaraTh , 'ITO 3BOJIIOD;WI BceJieHHOH orrpe.n;emreTcsr 'lacTm::i;aMn, 6oJibIIIasr '-IaCTh 

KOTOpbIX B HaCTOHJI\ee BpeMH uaXO,ll;llTCH B CBH3aHHOM COCTOHHllll ll KOTOpbre rrpOHBJIHIOT 

ce6H IDP.Jlh nocpe.n;CTBOM CJia6bIX B3aHMO.n;e:ti:cTBHH. ,IJ;= onncaHHH 6030IillhIX COCTOf!HHH MhI 

6y.n;eM HCIIOJib30BaTh rJia.n;Kne rroJisr B� . BeposrTno, paHr MaTpnu;hr mJOTHOCTH p rroJiefr B� 
paneH n , HO HC.Jib32! llCKlIIO'IlITb , 'ITO .n;aHHoe panenCTBO CCTb CJieflCBllC npeHe6pe2KeHHH HCKO­

TOpbIMH KOMIIOHeHTaMII MaTpHIJ;hI IIJIOTHOCTH. Y•mThIBasr Hepa3.Jill'lllMOCTh 60JihIII€fr 'laCTH 

6030HHhIX COCTOHHMfr, MbJ 6y.n;eM HCilOJih30BaTb pe.n;yu;n:ponaHHhrfr Ha6op IIOJiefr { <P}j) ,  Af} 
BMecTo mrnnoro Ha6opa {Bb'} . KoHe'IHo, Heo6xo,L(HMO Y'lllTbIBaTh, qTo B JiarpanMIIaHe rro­

HBHTnr rrocTOHHHhre , IIrpa!Oll.\IIe poJih neconbrx MH02KIITeJiefr -- TaKIIe, KaK 1 / G N ( G N -
rpan1uau;noHHaH rroCTOHHHaH) . B pe3yJihTaTe ypanneHHH no.rrefr <Pij) MoryT 6bITb 3annca­

Hhr KaK ypaBneHHH 8frnrrITefrHa. 8TO II03BOJUl€T orrpe;\eJTHTh IlpOCTJmHCTBO-npeM�I 1\d� KaK 

pHMaHOBO MHOroo6pa3ne, OCHOBHOll TeJI30p 9ij KOToporo Mb! 6y.n;eM BBO,ll;HTh rrocpe.n;CTBOM 

pe.n;yu;n:ponaHHOfr MaTpIDJpI II.JIOTHOCTH p' . 

1 .  BBe,D,eHne 

B H05.!6pe 2003 ro,n,a 6bura ony6mrKOBaHa CTaTMI B . B .  K a,n,oMueBa [1] no ivrnTepna.rraM 
ero .JieKil,IIll 1997 ro,n,a, KOTOpa5r IIOKa3a.na, 'ITO ,D,IICKyCCHH 30-x ro,n,oB xx CTO.JieTHH MeJK,D,Y 

BopOM II 9liHIIITeil:HOM, Kacarorn;azcz OCHOBOIIO.JiaraIOIIl,HX rrpHHIJ;HIIOB KBaHTOBOll MexaHIIKH, 
He IIOTepmia CBOero 3Ha<J:emrn H B HaCTOHII�ee BpeM5!. K aK H3BeCTHO, 9liHIIITeMH rrpe,n,rro.rra­

ra.rr, 'ITO BepOHTHOCTHbI8 3aKOHbI KBaHTOBOH MexamIKH HBJUIIOTC5I c.rre,n,CTBHeM HeIIO.JIHOTbI 
OIIHCaHHH qrn3II'IeCKHX CIICTeM. Ilpn 7TOM H8TIO.JIHOTa MOJKeT 6bITb yerparreHa rrocpe,D,CTBOM 

BBe,IJ,eHHH ,n,ono.rrHTITe.JibHblX CKpbITbIX napaMeTpOB. TeM caMLIM rrpe,IJ,no.rrara.i-roch Ha.rrwrne 
K.rraccrr<JeCKHX 3aKOHOMepHOCTeil: Ha 6oIIee r.rry6oKOM cy6IrnaHTOBOM yponrre MaTep1m. Ha­
rrpOTHB , Bop rrpe,IJ,no.rrara.rr npHHD}rnrraJILHyro neB03MOJKIIOCTb ,n,OCTII'-Ih 3Toro, TaK KaK MHO­

rne xapaKTepIICTTIKH MHKPOMHpa npOHBJIHIOTC5I IICKJIKl'IllT8JiblIO 6.naro,n:apz HaJIH'IHIO MaK­

pOCKOIIII'IeCKHX rrpn6opOB II He MOI'YT 6bITh upnnncaHbi 3J!eMeHTapHb!M 'IaCTHil,aM B OTCYT­
CTBIIH II3MepeHTI5I, 

3aMeTHM, 'ITO B xx BCKe 6hIJIH c,n,eJiaHbI rpoMa,D,Hbie ITOIILITKH pa3pyIIIHTb H.TIJJI03Hl0 
,D,eTepMIIHH3Ma, KOTopaz yTnep;�n..rracb B ttayKe n KOH11,e XIX neKa. KoHe'IHO, r.rraBHYIO nerrTy 
B 3TO BH8CJia KBaHTOBaH Mexamma, C03,UaHIJe KOTOpoil: 6bWO HHI:II�MHpOBaHO pe3y.JibTaTaMH 

3KCirnprrMeHTOR B aTOMHOH H .1111epnoi1: ¢n3HKH . Ho H B OCHOBe OCHOB, Ha KOTOpOH 6mnpoBa.TI­
C.H ,n,eTepMHHl13M -·-· K.JiaCCH'-18CKOH MCXaHTIKe - 6bIJITI OTMWieHbI "He,IJ,OCTaTKrr'', rrpHBO,Il,HIIl,He 
K yTpaTe II.TIJil03TIH [2] . HeCMOTpH Ha TO, 'ITO c HJIJII03H.HMH 6bI.JIO IIOKOH'I8HO, OT rr;:1en ,D,CTep­
MIIHH3Ma TPYAHO OTKa3aTLCH, TaK KaK IIJiaHrrponamre ¢n3H'leCKlDC 3KCIIepnMeHTOB OCHOBaHo 

Ha pac'IeTax, onnpa10I11,nxcz Ha MeTO,D,bI, Hapa6oTaHHbre B HayKe npn ero rocno,n,cTne. K 3TIIM 

MCTO,D,aM, B nepnym oqepe,D,h, Heo6xo,IJ;HMO OTH8CTH HC'IHC.JieHne 6ecKOHe'YHO MaJibIX. Ycrrexn 

B 3TOH 06.rracnr Tpy,n,Ho nepeon,eHHTb. MoJirno yKa3aTb na o,n,ny JrnlliL 06.rraCTh B MaTeMa­
THKe - Teopuro rpynn Jirr, KOTOpaz OKa3arra orpOMHOe BJIHHrrne ua BCIO TeopeTH'l8CKYIO 
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qm3HKy. KoHe'IHO JKe, noJie3Hbie pe3yJibTaTbI MOI'JIH 6bITb 3,n:ech noJiy'IeHbI 6naro,n:ap51 "xo­
poillHM" CBOMCTBaM npocTpaHc'.rBa-BpeMeHH. B nepByIO O'Iepe,n:b 3TO CBOMCTBO xayc,n:opcjJoBO­
cTH (oT,n:eJIHMOCTII) , KOTOpoe IIOCTYJIHpyeTC51, HeCMOTp51 Ha KBaHTOBbIH xapaKTep 3aKOHOB, 
,n;eiiCTBYIOliIHX B MIIKpOMHpe. Bo-BTOpbIX, B Teopmr rpynn Jin BaJKHYIO pOJib HrpaeT Ha­
JIH'IHe I'Jia,D;KIIX KOHrpyami;IDi, noJiy<J:aeMbIX KaK peIIIeHH51 ,n:n¢¢epeHirHaJibIIbIX ypaBHeHIIH. 
B TO JKe BpeMH HeJib351 He OTMeTHTb, 'ITO B KBaHTOBOM MexaHHKe OTPHI1aeTC51 caMO cyui;e­
CTBOBaHHe TpaeKTOpHH 3JieMeIITapHbIX <J:aCTHIJ.. MMeHHO II03TOMY BMeCTO npOH3BO,l\HbIX JIII 
CTaHOBHTC51 Heo6xo,n:HMbIM IICIIOJib30BaTb 6onee o6ni;Me onepaTOpbI, KOTOpbre lIH,lJ;YIJ.MpOBaJIH 
6br H 6oJiee o6ui;ne no cpaBHeHIIIO c rpynnaMII Jin anre6pan<J:eCKMe tTpyKTYPhI, B <J:aCTHOCTM, 
JIOKaJibHhie JIYIIhI JIM [3, 4] , H KOTOpbre II03BOJIMJIII 6br y<J:eCTh OTCYTCTBIIe ,11,eTepMIIHII3Ma B 
peaJihHhIX QJII3RqecKIIX rrpori;eccax. 3aMeTIIM, 'ITO Hea,n:eKBaTHOCTb OIIIICaHII51 QJII3II<J:eCKIIX 
CIICTeM IIpM IIOMOIIJ;Il rJia,D;KIIX IIOJieii: B ,n:n¢¢epemi;npyeMhIX MHOroo6pa3H5IX Be,n:eT K Heo6-
XO,l\HMOCTH ,n;aTh Bepo51THOCTHYIO HHTepnpeTari;mo reoMeTpII'IeCKMM ofrheKTaM. BcJre,n:cTmrn 
3TOI'O Mb! 6y;\eM paCCMaTpIIBaTh pemeHH51 ,n:u¢¢epeHIJ;IIaJihHhIX ypaBHeHIIM JIHIIIh KaK HaH-
6onee npaB,nprro,n:o6Hhie cjJyHKIJ;HII, npnMeH51eMhre ,D;JI51 onucaHH.H 3TIIX crrcTeM. KoHe'IHO, rrpu 
3TOM Mbl Y'IHThIBaeM 3aKOIIhI, ,n:eii:CTBYIOIIJ;He B MIIKpOMIIpe, H C'IIITaeM IIX 6oJiee cjJyH;.J;aMeH­
TaJihHbIMH, <J:eM Te, KOTOphre rrpHMeH51IOTC51 ,l\JIH OIIHCaHH51 ,l\BHJKeHH51 MaKpOCKOIIH'IeCKHX 
TeJI. 

Mhr 6y,n:eM orrnpaThC51 Ha no,n:xo,11,, npe,rwroJKeHHhIM Illpe,LJ;mrrepoM [5), KOTOpbrii: BBe.TI 
Ha6op HeOpTOI'OHa.TihHhIX ,LJ;pyr ,LJ;pyry BO.TIHOBhIX QJYHKIJ;IIH \II , OTIIIChIBaIOIIJ;IIX HepaCII.TlbI­
BalOIIJ;HllC51 BOJIHOBOM rraKeT ,ll;.TI51 KBaHTOBOI'O OCIJ;IIJimrTopa. Il03,LJ;Hee fJiay6ep [6] fl0Ka3&,'I 
B03MOJKHOCTb OIIHCaHIIH KOrepeHTHbIX RBJ'IeHIDi B OIITIIKe npH IIOMOIIJ;II BBe,n:eHHhIX Illpe­
,l\IIHI'epoM COCT05IHHH, KOTOphre H3.3Ba.TI KOrepeHTHhIMH. ,Il,aHHhIB IIO,ll;X0,11, ,n:anee 6hm pa3BHT 
B pa6oTaX IlepeJIOMOBa [7) , KOTOpbill BBe.TI onpe,LJ;eJiemre o6o6ui;eHHhIX KOrepeHTHbIX COCT0-
51Hllll KaK COCT051HHH, B03HIIKaIOIIJ;IIX rrpH ,n:e:iicTBH.II onepaTOpa npe,n:cTaB.TieHH51 HCKOTOpofr 
rpynnhI npeo6pa30BaHIDi: na KaKOH-JIH6o QJIIKCHpOBatIHhlll BeKTOp B npOCTpaHCTBC 3TOI'O 
rrpe,n:cTaBJICHirn. Ilo HaIIIeMy MHCHHIO, HMCHHO 3TO H II03BO.TI5ICT ,n;aTh QJII3II'IeCKYIO IIHTeprrpe­
Tall,HIO KaJIU6pOBO'IHbIM rrpeo6pa30BaHH51M KaK rrpeo6pa30BaHH51M, II03BO.TIRIOIIJ;IIM no.rry<J:aTb 
o6o6rri;eHHbIC KOrepeHTHbie COCTORHH.51, xapaKTepH3YIOliIHeCR HenpepbIBHhIMII n, B03MO)KH0, 
CKpbIThIMH napaMeTpaMII [8] -

I1TaK, paccMOTpnM BOJIHOBhre naKCThI { Y ( w)} "aMrrn:pM'IecKHx" QJYHKIJ.IIM Y ( w) , 5IB­
.rrR10rri;nxcR aMHJIHTy,n:aMH BepORTHOCTH QJH3H'ICCKOM CHCTCMhI, HaXO,ll;RliiefrcR B COCT051HHH, 
KOTOpoe xapaKTCpH3YCTC51 rrapaMeTpaMH w . IlepeXO,l\hI Me)K,ll,y COCT051HIU.!Mll 6y;::i;eM 3a,D,a­
BaTh IIpII IJOMOIIJ;H llHQJHHHTe3IIMaJihHbIX no,n:cTaHOBOK 

Y --+ Y + 8Y = Y + 8T(Y) ( 1 . 1 )  

JIOKaJihHOM .rryTihr JIM, r,n:e 5T 51BJIReTCR IIHQJIIHIITe3MMaJihHhIM onepaTopoM nepexo,z�a. BBe­
,n:eHMe MaKpOCKOIIH<J:ecKoro nafouo,n:aTemi: 3acTaBJI5IeT nae MCKaTb npe,n;cTaBnenue onepaTo­
poB nepexo,n;a ,n:II¢¢epeHri;nanbHbIMM onepaTopaMM. B pe3ynbTaTe cTaHOBHTC51 JKe.rraTe.rrh­
HhIM IIC110Jih30Banne ,n:n¢¢epem.1,npyeMoro Mnoroo6pa3IDI Mr , B o6JiaCTM Dr KOTOporo 6y­
,n:eM IICKaTb rna,n:KMC "TeopeTII'IeCKne" IIO.TI51 Y(w) ( w E nr c l'vfr ) KaK perneHH.H AM¢¢epeH­
IJ.IlaJibHbIX ypaBHCHHM, 'ITO B o6ni;eM CJiy<J:ae .HBJI51CTC.H HepeanbHOM 3a,n:a<J:ea (KaK H3BCCTHO, 
,n;a:tKe B K.TiaCCM<J:eCKOll ,ll;MHaMHKC HaH6o.rree HHTepeCHbie rrpo6JICMhI He CBO,ll;RTC.H K HHTerpnpy­
CMbIM CHCTCMaM [9]) .  MMeHHO II03TOMY npe,n;cTaB.TI5ICT UHTepec 6oJiee npocTa51 3a,[\a'Ia IIOHCKa 
cy)KeHMli Y ( x) "TeopeTM'IeCKHx" no.rrefr Ha MHoroo6pa3MH Mn ( x E Mn C Mr, n ::; r ) . 

,Il,JI51 3TOI'O 'Iepe3 HCKOTOpym TO'IKY w E Mr npoBe,n;eM rna,n;Kne KpHBbIC, c IIOMOliiblO 
KOTOphIX onpe,n;eJIIIM COOTBCTCTBYIOliICC MHOJKCCTBO BCKTOpHhIX IIOJICH { 5�(w)} , a c HX no-
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MOru;bID orrpe,n:eJIHM OTKJIOHeHHe ITO.JI en y ( w) B TO'IKe w E Mr B BHf];e 

60 Y = 6X(Y) = 6T(Y) - 6�(Y) . (1 .2) 

Ecnu 60 Y = 0 , TO MbI noJiyqaeM amuror KnHeTn'IeCKOro ypaBHeHHH BoJrhrrMaHa, r,JJ,e 'IJieH 
6T(Y) HrpaeT pOJib HHTerpana CTOJIKHOBeHH5I. TaK KaK MbI He Ha,n;eeMC5I B o6ru;eM cnyqae 
IlOJIY'IllTb llHTerprrpyeMyIO CHCTeMy, TO 6y,n;eM Tpe6oBaTh, qTo6bI 3TH OTKJIOHeHn5I ( 1 .2) XOT5I 
6br B 11 cpe,n;HeM11 6bIJIH MHHHM&,1IbHbI [IO] . 

I1TaK, orrpe,n;eJIHM KBa,n;paT rroJiyttopMhr I X('Y') I B BeKTOpHOM npocTpaHcTlie c rro.rryc­
KamrpHbIM rrpOH3Be,lJ,CHHeM KaK HHTerpan 

A =  Jc  dn v = J ""X(Y)QX(Y)dnV 
fin fin 

( 1 .3) 

( A  - ;:i;eftCTBue; C(Y) - - Jiarpamrrnatt; "" --·- rrocTOHHHa}r, (} - MaTpurra rrJIOTHOCTH, qepTa 
CBepxy 03lia"'-IaeT ,JJ,HpaKOBCKOe corrpH:tKeHHe 5IBJI5IIOIIIeecn cyrrepn03HI1HeH 3pMllTOBOrO co­
np5I:tKeHml Il rrpocTpaHCTBeHHOM HHBepcmr) , 5lBJrnIOru;n:ftc5! aHaJIOrOM ,lJ,HCrrepCHH cy:tKeHHM 
11 TeopeTH'IeCKHX11 IIOJiefr Y(x) B o6naCTH nn c Mn . Pernemrn Y(x) (B03MO:IKHO, ,lJ,a:tKe 
0,lJ,HO perneHn:e) ypaBHeIIHM, KOTOpble rroJiy'IaIOTC5l Il3 Tpe6oBamrn MHHHMaJibHOCTH llHTerpa­
Jia ( 1 .3) , MOryT 6brTb llCI10Jih30BaHbI ,Il;JI5l IIOCTp08HH5l IlOJIHOro na6opa cPYHKWIM {Y(x)} 
( reHepnpyeMhIX onepaTopaMH nepexo;:i;a) , onncbma:iou1nx BOJIHOBOH rraKeT. 

KoHe'IHO, ,n:Jrn 3TOi1 ri,e,'III MO:tKHO ucnOJIL30BaTh anaJior MeTo,n:a Han6o.rrburero rrpaB;:i;o­
rro,n;oforn, rrp11MeH.HCMhIH B MaTeMaTnqecKorr cTa'fiICTHKe. KaK H3BeCTHO, cor.rracHo rilnOTe3e 
CI>etiHMaHa, aMITJIHTy,lJ,a Bep05!THOCTII nepexo;_i,a CilCT8MbI H3 COCT05!IIH5I y ( x) B COCT05!HHe 
Y' ( x') paBHa cne,D,y10ru;eMy IIHTerpany 

K(Y, Y') = J exp ('iA) DY = 
fl(i,1') 

(1 .4) 

( MCITOJih3yeTC.H c11cTeMa C,lJ,MHIIII h / ( 2n) = c = 1 , r,LJ,e h - rrocTO.HHHaa II.rraHKa, c -
cKopocTb mer a; i2 = -1  ; BeJIH'-IHHa IN Bhr6IIpaeTcz TaK, 'IT06hl npe)J,eJI cyIIrecTBOBaJI) . 
BcJie,LICTBHC 3Toro ¢YHKI1IIH Y(x), nonyqaeMbre II3 Tpe6oBaHII5r MIIHIIMa.J1bHOCTII )J,CHCTBIIa 
A II IICIIOJlh3Y8MbIC /l,JI5I orrncamrn KBaHTOBbIX CIICTCM, TaJDKe 5IBJI5lIOTC5l JIIIIIIb HaII6onee 
rrpaB,n;orro,n:o6HbIMH. B 3TOM nO.AXO/_t;e narpaH:tKIIaH IIrpaeT 60.Jiee cPYH,lJ,aMCHTaJibHYID ponh 
rrpn OIIHCaHIIll tj)H3II'Y:eCKIIX ClICTCM, 'ICM ,n:n¢¢epenrrII<WlbHbI8 ypaBHeHII5l, KOTOpbre II3 Hero 
TIOJiyci:aIOTC}!. 

2 .  JloKaJihHhie JIYIIhl Jin 
,Il,aJiee MhI 6y,n:eM paccMaTp1rnaTb npocTpaHCTBO Mr KaK MHoroo6pa3He,  napaMeTpbI wa 

( a, b, c, d, e = 1 ,  2 , . . . , r ) - KaK KOOp,lJ,IIHaThI rrpOH3BOJibHOil: TO"IKII w E Mr , a nonz Y ( w) 
6y,n:eM 3a,n:aBaTh B HCKOTOpofr 06nacn1 Dr ,n:aHHOro MHoroo6pa3II'5! ( w E Dr C 1\.1r ) . IlycTh 
06.JiaCTb Dr co,n;ep:tKHT IIOc1J:06JiaCTh Dn c TO'-:!KOH w , npll 3TOM 06.JiaCTb Dn rrpIIHa,lJ,JI8)KMT 
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orrpe,n;eJieHHOMY ,n;u¢¢epemi;upyeMOMy MHoroo6pa3HIO Mn (xoTH, B03M02KHO, y.n;o6Ho orrpe­
,Il;€JI51Th MHoroo6pa3ne Mn OT,IJ;eJihHO OT MHoroo6pa3HH Mr ) .  BoJiee Toro, rryCTh MHO?KeCTBO 
rna,Il;KIIX KpHBhIX, rrpHHa,n;.rre2Kani;rrx MHoroo6pa3rrIO A1n , IIMeeT o6uryro TO'IKY w . Onpe,n;e­
JIMM TaK?Ke Ha6op BeKTOpUbIX IIOJieH � (x) ) S!BJIS!IOIL\HXCH KaCaTeJihHhI.Mil K 3TIIM KpllBhIM, II 
6y,n;eM cqnTaTh , qTo x E Dn , a ua oforacTrr Dn onpe,n;eJieua co6cTBeHHaH Koop,n;mmTnaH 
CHCTeMa. 

IlyCTb O!lr 5IBJI5IeTC5I ,IJ;OCTaTO'IHO MaJIOH OKpeCTHOCThIO TO'IKH W , B CBH3H C 3TIIM 3a,IJ;a­
eTC5I H ,n;OcTaTO'IRO MaJiaH OKpecTHOCTb 5Dn TO'IKH x ( x = w E oDn C oDr ) . Koop,n;rrnaThI 
TO'IKll x 3arnnne.M KaK xi ( i, j, k, l , p, q = 1, 2, . . .  ' n  ) . HcrrOJib3Y5I BeKTOpHhie TIOJI5I o�(x) , 
Koop,n;rrHaThI coce,z:i;tte.H TO'IKH x' = x + ox E oDn nepemuneM B BH,[\e 

CpaBHMBM 3ua'IeH1rn no.rrei1 Y1(x1) M Y(x' ) ,  r,n;e 

Y' (x') = Y + oY = Y + oT(Y) � Y + owaTa (Y), 

Y(x') = Y(x + ox) � Y + 5wa��8iY 

( oi ·� "laCTHhre rrpOM3BO,Il;Hhie) , MhI BM,Il;HM ,  "ITO OHM OTJIH'IalOTCH rrepeMeHHhIMH 

(2 .1 )  

(2 .2 )  

(2 .3) 

(2 .4) 

KOTOpbre MOJKHO llHTeprrpenrpoBaTb KaK OTKJIOHCHH5I TIOJie:U: y ( x) ' IIOJiy"!eHHbIX c HOMOIIIblO 
IIO):\CTaHOBOK (2 .2) .  

Jl,anee MhI 6y,n;eM pacc.MaTpMBaTh oforacTh oDr C Mr KaK o6naCTb JIOKaJibHOH JIYTihI 
Jln Gr (KoTopaH, B 'IaCTHOCTH, M02KeT MM€Tb M CTPYKTYPY JIOKaJihHOH rpyrrrrbr Jlrr, eCJIH 
MhI IIOTpe6yeM ):\JI}[ Hee CBOHCTBO accowraTHBHOCTM) , IlH,IJ;JLWPOBaHHOH MH02K€CTBOM {T} ' 
rrpII 3TOM 6y,n;eM paCCMaTpIIBaTb Bhipa2KeHIIe (2.2) KaK MHcPIIHIITe3MMaJibHblM 3aKOH no,n,­
CTaHOBOK JIOKaJibHOil. nyrrbr JIM rronen Y(x) . 0T.MeTMM, 'ITO CTPYKTypa JIOKaJibHOil nyrrhr 
Jln 6y,n;eT xapaKTepM30BaTh CTerreHh KOrepeHTHOCTM paccMaTpMBaeMhIX KBaHTOBbIX CHCTeM. 
Ilpn 3TOM MaKCllMaJibHa.H CTerreHh ,n;ocnrraeTC51 ,Il;J15I rrpOCTOH rpyIIIIbI Jlrr, a MlllIIlMaJibHa51 
- ,Il;JI5I a6eJieBOH. B IIOCJI€):\H€M CJiy'Iae MhI 6y,n;eM IIM€Tb HCKOrepeHTHYIO CMeCb. 

TaK KaK ueB03M02KHO nperre6pe'Ih B3anMo,n;eilCTBHeM Me:r.<,zry '!aCTHIJ;a:MM, Mhl ,llOJJ2KHbI 
yMeTb oT6rrpaTh Te B3aMMo,n;eil.cTBIIH, KOTOphie rrac mITepecyIOT. HMenrro rro3TOMY nMeeT 
CMbICJI BhI6paTb MH02KeCTBO orrepaTOpOB, KOTOpbie B ,llaJibHeilrneM 6y,n:yT n:rpa:Tb pOJib CBE3-
HOCTH. KotteqHo, MbI rrprrHHMaeM BO BHIIMaHiie 3aBIICHMOCTb CIICTeM OTC'ICTa OT cPII3I'f'IeCKIIX 
CBOHCTB HHCTpyMeHTOB (BK.JIIO'IMf 3TaJIOHbI) M, 60Jree Toro, 'ITO 'IaCTh rrepexo,zi;oB HBJ]}[lOTCH 
He Ha6JJIO,IJ;aeMbIMH. IlycTh 

La (Y) = Ta(Y) + ��riY. (2 .5) 

Tor,n;a cpopMyJra (2.4) rrpnMeT BM,II 

(2 .6) 

I')J,e \7 i - KOBapnaHTilble npOM3BO,IJ;Hbie B OTHOIIIeHIIII CB513HOCTII f i ( X) . 3a.MeTIIM, ec­
.!lII La(w) = La \[r ,  TO ,LJ;OJJ?KHbI MMeTb MecTo cJre,LJ;yIOurne cooTrrorneHIIE [1 1] 

ci n ck ci n ck 2 5k ci d _ cc ck C,,a V i C,,b - S,b v i C,, a. - ij C,, a c,,b - - ab C,,c '  (2 .7) 

(2.8) 
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r,n;e St (x) - KOMIIOHeHTbl Kpyciemrn: MHOroo6pa3IIH Mn , a Rij (X) - KOMIIOHeHTbI KpII­
BH3HbI CBH3HOCTM f i ( X) , OIIpe,n;emreMbie KaK 

(2.9) 

(2.10) 

3,n;ecb II ,n;a.rree I';/(x) ··-- KOMIIOHeHTbI BHyTpeHne:fi CBH3HOCTM MHOroo6pa3II5I Mn . IlpM 
3TOM KOMIIOHeHTbI C�b(x) CTpyKTypHOl'O TeH30pa JIOKa.JibHOH JIYIIbI .JIII Gr ,Il;OJDKHbI y,n;o­
BJieTBOp5ITb TO.IK,Il;eCTBaM 

c�b + cga = 0, 

Cd ce r:i V' ce + R e ci d _ o [ab c]d - '>[a I i i  be] ij[a '>b S.c] - ' 

r,n;e Rija e ( X) - KOMIIOHeHTbI KpIIBII3Hbl CB5I3HOCTII f i� ( X) , OIIpe,n;emieMbie B BII,IJ;e 

(2 .11) 

(2. 12) 

(2. 13) 

Mbr paccMaTpHBaeM ,n;mp¢epeHii;IIpyeMoe MHoroo6pa3IIe Mn , He HHTeprrpeT11py.H 
ero ¢u3H<i:eCKII. KoHe<i:HO, MbI npe,n;rronaraeM pacc�mTpHBaTb Mnoroo6pa3IIC lvln KaK 
rrpocTpaHCTBO-BpeM11 M4 . B TO .IKe BpeM.H HeJib35I He y<i:HThrnaTh B03MO.IKHOCTh ¢a30BhIX rre­
pexo,rroB CHCTeMbI, B pe3yJihTaTe KOTOpbIX MO.IKHO 0.IKII,IJ;aTb II05IBJieHII.H KOrepeHTHbIX COCTO­
HHHH. BcJre,IJ;CTBMe 3Toro y,n;o6Ho He ¢nKCHpoBaTb pa3MepuocTh MHoroo6pa3H5I Mn . MmKHO 
C'IMTaTb ' 'ITO rrpM KOJIJiance MaKpOCKOIIH'ICCKa.H CHCTeMa ,[IOCTHraeT HMeHHO TaKoro COCTO­
.HHM5I. B pe3yJibTaTe MbI IIMeeM KJiaCCM'IeCKIIH ananor KOrepeHTHOro COCTO.HHH.H KBaHTOBOH 
CIICTeMbI. KpoMe TOro, He06XO,Il;J1MO 3aMCTIITb, 'ITO B KBaHTOBOH Teoprm IIOJI5I IIMeeTCH ,rro­
CTaTO'IHO pa3BIITbIH arrrrapaT - pa3MepHa.H peryn5IpI!3au;1rn, MCIIOJib3YIOIJJ;aH rrpOCTpaHCTBa 

C M3MeH5IIOIIICHC5I pa3MepHOCTbIO. 

3 .  KaJJ116poBO"CJ:Hhie n0Jn1 

PaccMoTpHM rnnoTe3y Bonhu;MaHa pmK,n;euH.a B ceneHHO:fi BCJICf:ICTBHe rnranTCKoli ¢nyK­
Tyau;HH, HO He B nyCTOM rrpOCTpaHCTBe,  a B cpe,[le, COCTO.HIIICH H3 cna6o B3aHMO,rreliCTBYIO­
IIIllX qacTHIJ;, xapaKTepH3YIOIIJ;HXC5l HyneBoil: TeMrrepaTypoil H o6pa3yIOIIIHX 603e-Kon,rrencaT. 

Konecino, ecJIH ciaCTHU,hI HBJIIDOTC.H ¢epMHOHaMH, OHM f!OJI:lKHhI naxo,n;IITbC.H B CB.H3aHHOM 
COCT05IHHll. )J;JI5I 0IlMCaHH5I TaKoro COCTOHHII5I MaTepHH BceJieHHOH , KOTOpoe 6y,rreM C"IHTaTb 

'IIICTbIM, Heo6xo,rwMo BBeCTII aMIIJJIITYf!Y Bep05ITHOCTH B c KOMIIOHeHTaMH 13� H MaTpnu,y 
IIJIOTHOCTH p(B) (,n;JI.H 'IIICTOro COCTO.HHH5I rank p(B) = 1 ) , KOTOpaH orrpe,IJ;C,'I5IeTC5I CTaH­
,n;apTHbIM o6pa30M: 

(3 .1) 

( tr p = 1 '  p+ = p '  BepXHIIH HH/�CKC "+" eCTh CHMBOJI 3pMHTOBOro corrp5I.1KeHIIH) . 

IIycTb B pe3yJihTaTe KaKnx-Jrn6o rrpwrnu rrpon3oll,Il;eT pacrra,n; 603e-Kon,rreHcaTa c o6pa-
30BanneM "cBo6o,rrHhIX" ¢epMIIOHOB (,rrJI.H RX ormcaHH.H BBe,n;eM aMIIJIIITYf!Y BCpOHTHOCTII \I! ) 
n c yBe.rrttcienIIeM ,rraBneHHH B HeKoTopoil JIOKaJrhuoil 06.rracTII BceneHnoli ( rrpH 3TOM HeKo­
Topoe BpeMH TeMrrepaTypa ¢oHOBbIX ciaCTlll� ,LIOJI:t!<Ha OCTaBaTbCH paBHOH (mrn 6JIH3KOH) 
HYJIIO - TaK Ha3brnaeMbIB rrepno,IJ; nH¢JI5IIJ;IIH) . B pe3yJihTaTe paHr MaTpIIu,hr rrnoTHOCTH p 
Ha<J:HCT paCTH, 'ITO xapaKTepII3yeT IIO.HBJICHHC CMernaHHbIX COCTORHMH. 06paTHbIH rrp01wcc 

penaKcau;nII, xapaKTeptt3yeMbIH o6pa3oBaHneM 603e-KoH,n;eHcaTa n yMeIIbrnenneM ,lI.anneuH.H, 
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,IJ,OJDKeH ll,IJ,Tll c Bbl,Il,€JI8Hll€M 3Heprmr, KOTOpa5! IIOM,IJ;eT H a  pa3orpeB cpepMM-:>Kll,ll;KOCTll c 
o6pa30BaHMeM B036y)K,ll;€HHhIX COCT05!HMH - ll3BeCTHbIX 3ap5!)K8HHbIX cpepMMOHOB (KBap­
KOl3 ll JI€11TOHOB) . c 3TOrO MOMeHTa MO)KHO BBO,IJ;MTb MeTpMKy ll MCIIOJib30BaTb pe3yJihTaTbl, 
rroJiy'Iemrhre ,IJ,JI5! ropH'Ie.li MO,IJ,eJIM BceneHHOH ( c B03MO)KHbIMM MHcpJrnl\MOHHbIMM MO,IJ,IIcpM­

Kau,IIHMH) , HHTeprrpeTnpyH 3BOJIIOI\HIO B ceneHHOH KaK rrpo11ecc, xapaKTepn3yeMbIH pocTOM 
3HTpomrn S = - tr(p ln p) . B HaCTOHru;ee BpeMH MaTepnH Ha6mo,IJ,aeMoli o6nacTn B ceneHHO:it 
HaXO,Il,MTC5! Ha TOH CTa,IJ,Mll 3BOJIIOIJ;Mll, KOr,IJ,a rrpeo6Jia,D,aIOu�ee qnCJIO '-IaCTMI\, KOTOpbie 6y­
,LJ,eM OIIMCbIBaTb C)KaTbIM o6pa30M, nepnyJIOCb B 603e-KOH,IJ,eHCaTHOe COCT05!HMe, rrp05!BJI5!.HCb 
JIMIIIb rrpH CJia6oM B3aIIMO,IJ,eHCTBMH c 'Iacn1ri;aMH BH,Il,HMOH MaTepHH. 

Bo3M0)KH0 ,  paHr MaTpHIJ;bI IIJIOTHOCTM p paBeH n '  HO HeJib35! HCKJIIO'IHTb, 'ITO ,n;aHHOe 
paBeHCTBO BbIIIOJIH5IeTC5! JUUIIb rrpn6JIH)KeHiiO, KOr,n;a H€KOTOpbIMH KOMIIOHeHTaMM MaTpH­
IJ;bI IIJIOTHOCTH MO)KHO rrpene6pecrb . B n1060M cny'Iae 6y,n;eM ccrnTaTb, 'ITO cpe,n;M rrone:it B� 
BbI,IJ;eJIMJIHCb cMecu II�. c HeHy.rreBhIMM naKyyMHbIMH cpe,IJ,HMMH h� ,  KOTOpbre orrpe,IJ,esrn.IOT 
,n;ncpcpepeHri;u.pyeMhre neKTOpHhre IIOJI5! �� ( x) ,!l;JI5I paccMaTpirnaeMo:it o6JiaCTII Dn B mi:,n;e 

(rrom1 �� (x) orrpe,n;en5IIOT ,IJ,McpcjJepen11nan d-rr rrpoeKI\HH M3 Dr C Mr B Sln ) .  9To II03BO­
.mICT onpe,n;eJIMTh pHMaiiOBO npocTpaHCTBO-Bpeivrn M� , ocnoBnoli T€H30p Yij ( x) KOToporo 
BBe,IJ,eM uocpe,n;cTBOM pe;�yr�wponanHoil MaTpHIJ;bI IIJIOTHOCTH p' (x) . B pe3yJihTaTe MO)KHO 6y­
,IJ,eT BIIOCJie,D,CTBHli! I I  crrp.sITaTb" 'IaCTb II OJI en rrpH IIOMOIJJ;H HeTpHBHa.JihHOll reoMeTpll"IeCKOM 
CTPYKTYPhI. 

IhaK, rryCTb KOMnoneHThI p{ pe,IJ,yri;uponannoil MaTpMIJ;hI IIJIOTHOCTH p' (x) orrpe;r,enH­
IOTCE CJie,IJ,yIOill,llM o6pa30M: 

(3.3) 

H rryCTh Il 0JI5! 

(3.4) 

5!BJI5!IOTC5! KOMIIOHeHTaMH TeH30pa o6paTHOI'O OCHOBHOMY TeH30py rrpOCTpaHCTBa-npeMeHH 
1\.1� . Ilpn 3TOM KOM110HCIITbI Yij ( x) OCHOBHOro TeH30pa ,Il,OJI)KHbI 5IBJI5!TbC5! perneHM5!Mll 
cne;ry10ru;IIX ypanHeHHil : ij d g 9ik = Uk (3.5) 

(3,IJ,eCh ll ;ranee 'l]ij - KOMIIOHeHThI MeTpnqeCKOl'O TeH30pa KacaTeJibHOro rrpOCTpaHCTBa K 

I\.1� , a 7)ik orrpe,n;eJIHIOTC}I KaK perneHM5I ypanHeHnil r/J 7/ik = 6� ; b'j - CHMBOJihI K poHe­
Kepa) . 

rAe 

3amnrreM MHTerpan ( 1 .3) c.11e,IJ,y10ru;11M o6pa30M 

IlyCTb IIOJI5! 

At = / .Ctdn V = / [.C0(B) + .C1 (IJ!)]dn V, 
nn nn 

Daw = -B�Xc (if!) = B� (��viw - Lew) .  

H3MenmoTC5! aHanorwi:no nOJIHM \If ( x) B TO"IKe x E Mn , TO ecTh 

(3.6) 

(3.7) 

(3.8) 

(3 .9) 
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(rromr Lb� (x) Yf\OB.'IeTBop.HIOT cooTHOIIIeHIDIM, amurorwrnhIM (2.8) ) .  B pe3yJihTaTe H3MeHe­
HH.H 6oB� 3aJIHIIIYTC.H B BHf],e: 

(3.10) 

'ITO BCJiefj,CTBHe IlO.HBJieHH.H rroc.rrefj,Hero c.rraraeMoro B rrpaBOH "'!aCTlI cPOPMYJihI (3.10) II03-
BOJI.HeT Ha3hIBaTh no.rr.H B(x) KaJrn6poBO'IHhIMH. 

TaK KaK fl,eiicTBHe (3.6) f\OJI)KHO 6b!Th HHBap11aHTHO rrp11 HHcPHHHTe311MaJihHhIX ITOf\CTa­
HOBKax JJOKaJihHOH .rryrrhr J1H Gr , TO .rrarpaH)KHaH L0 (B) fl,OJI)KeH 3aBHCeTh OT Ka.rr116poBO"'I­
HhIX (6030HHhrx) rroJreii B(x) ( [10, 12]) rrocpefl,CTBOM Harrp.H)KeHHOCTeli .F�b (B) , HMeIOilillX 
Bllfl, 

(3.1 1 )  

rf],e 

-;::b _ (Bc L e _ Bc L e ) Bb _ Bc Be Cb 
�ad - a Cd d Ca e a d , ce · (3.12)  

3fl,eCh H f],a.rree Bhr6op rro.rreu Hf 1 1  /3� orpann"'IeH cooTHorneHH.HMH 

(3. 13) 

)J,anee YA06Ho BOCIIOJih30BaTbca narpam1rnaHOM 

(3.14) 

( 11,� , v  -- TIOCTO.HHHhre) [12] .  Ecm1 s� = 6� , tab = '(/ab
, Uab = T/ab ( T/ab - KOMITOHeHThI 

MeTpII"'IeCKOro TeH30pa IIJIOCKOrO npOCTpaHCTBa, a T/ab - KOMIIOHeHThI TeH30pa o6panroro 
K OCHOBHOMy) '  TO fj,aHHhIH .JiarpaH)KMaH Han6onee rrpHMeHIIM fl,JI.H ormcaHII.H rop.H"'Ieli CTa­
,I\lill 3BOJUOil,llM MaTepIIn na6nIO,fl,aeMoii 06.rraCTll BcenenHoli, TaK KaK .HBJI.HeTca Han6o.rree 
CllMMCTplI'fHhIM OTHOCMTCJibHO Harrp.H)KeHHOCTeH Ka.nn6pOBO"'IHhIX no.rreii .F�b . Bo.rree Toro, 
MhI 6y,n,eM Tpe6oBaTh BhIITOJIHeHH.H COOTHOIIIeHllll 

L b ricd + L d ricb = 0 ac ·1 ac ·r ' (3 .15)  

'IT06hr orrepaTOphr rrepexo,n;a La� renepHpOBa.1111 CMMMeTpHIO, KOTopaa c.rref],yCT ll3 c,n,enan­
HhIX rrpe,n,rro.rro)Kettn:ti. B OTCYTCTBMII noneii II� ( x) n W ( x) Ha paHneii cTafl,HH 3BOJIIOil,Hll 
MaTepnn na6.rrIOf],aeMoli 06nacT11 Bce.11eHHO:ti rro.rrHhIH 11arpaH)KIIaH Lt cTaHOBMTC.H fl,a)Ke 
6onee CHMMeTpw:rnhIM ( Lt ex: B4 ) ,  TaK 'ITO o6pa3oBanne ¢epMHOHOB (rroaB.JieHtte noneli 
W(x) B IIOJIHOM narpan)KnaHe Lt ) n3 rrepBn'IHhIX 6o30HOB 5!BJrneTrn Heo6xo,n,nMhIM (xo­
T.H n He ,n,ocTaTO"'IHhIM) yc.rroBneM rrepexof],a MaTepttn na6J110,n,aeMoli 06.rracTn Bce.rrennoii K 
COBpeMeHHOH CTa,n,rrn ee Pa3BHTH.H co CITOHTaHHhlM HapyIIIeHneM CHMMeTpHII. ToJihKO o6pa-
30BaHne 603e-KOH,D,eHCaTa H3 nap H8KOTOporo KJiacca ¢epMHOHOB (B03MO)KHO, H3 HeHTPHHO 
pa3JIH"'IHbIX apoMaTOB) rrpnBeJIO K 3aMeTHOMY pocTy Mace IIOKOJI Tex BeKTOpHhIX 6o30HOB 
( w+ ' w- , zo ) , KOTOphre B3aHMO,IJ,eHCTBOBaJill c ,n,aHHhIM KJiaCCOM ¢epMUOHOB. IIapa.rrne.rrh­
HO MOr ll,IJ,Tll pocT Mace ITOKOJI H ,fl,pyrnx cPYHfl,aMeHTaJihHhIX "'!aCTllll,, XOT.H H He BCex ( cPOTOH, 
Henocpe,n,CTBemm c HeHTpHHO He B3aHMO,I\8HCTBYIOilillll, He HMeeT MaCCbI IIOK.05:{) . 

CB.H)KeM Heny.rreBhie BaKyyMHbie cpe,n,nne /3� K.a.rrn6poBO'IHbIX rro.rreu B� co crronTaHHhIM 
napymenneM cnMMeTpnn, KOTopoe npon3ornno B panHeli Bcenemmit n KOTopoe neo6xo.nnMo 
paccMaTpHBaTb K.aK cPa30BhIH nepexo,n; c o6pa30BanneM 603e-KOH,D,eHCaTa H3 ¢epMIIOHHbIX 
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nap. IIepexo,n; K coBpeMeHHOH cTa,n;1rn: 3BOJIIOIJ,1ur MaTep1rn tta6JIIO,n;aeMoi1: o6Jiacru Bcenen­
ttoil:, ,n;mi: KOTOpoll: rrpe,n;rronaraeTC51 Ha.JIH'IHC KJiaCTepHbIX COCT05IHHH CJia6o B3aHMO,ll,eHCTBY­
IOIIl,HX '!aCTHU, 6y,n;eT Bbrpa.tKaTbC5I B CJie,n;yron,eil cPOPMYJIC ,ll;J15I TeH30pOB s� ' tab ' V·ab H 

b _ , t' hb + t£ b tab = t ca cb . 7)(i) (j) -l- ca cb 7)cd Sa - S C.a i C.a E£' " ( z ) '- (J )  ' '"£ '-Q. ' 
_ ti tJ he hd cc c!l. ha f (j ) a Uab - U C.a C. b " j 7/cd + C.a C.b 7/cd, i = ii E(j) (3. 1 6) 

( (i ) , (j ) , (k) , (l) , . . .  = 1 , 2, . . . , n; g, Q, f;_, Q, f = n + l , n + 2, . . . , n + z:; L/r « 1 ) , r,n;e ITOJI5I 

hi1) (x) ' I1pHHHMa5I BO BHHMairne COOTHOIIIeHH5I (3. 16) , O,ll;H03Ha'IH0 orrpe,n;eJ1RIOTC5l. H3 ypan­
HeHHH hk h� = Ok . I1o,n;o6HbIM o6pa3oM TeH3opbr 7) (i ) (j) , 7)ab orrpe,n;e.1rnIOTC5l II3 ypaBHeHIIH 

r/i) (k) 7/(j) (k) = og� ' 7)ab7)fl2_ = Of ' B TO npeMR KaK TeH30pbI 7/(i ) (j )  ' T}ab orrpe,n;em1IOTC5I 

6 . - a b - cC cd M e CJie,LJ;yIOIIl,IIM o pa30M. 7/(i ) (k) - 7/ab E (i) E(k) ' 7/ab - 7/cd cg_ c!i. . bl CBR.IK M IlOCTORHHbie 

E(i) , E� c Bbr6opoM Ka.JIII6poBo'!HbIX rronefi IIf ( x) , neperrrrcbrnaR ux B Brrµ:e 

IIa = <f>(j) Ea + pf!. Ea ' ' (J ) ' Q '  (3. 1 7) 

H nycTh E� = 0 .  KpoMe Toro, Mhr 6y,n;eM npnMeHRTh pa3.JIO)Kettne 110.11eil Bf; (x) B BII,n;e 

(3 . 18) 

r,'l,e A� = Bg .;Z- . 0TMCTHM ,  'ITO MbI pa36nBaeM <t>113n'!ecKyIO cucTeMy, onIIChrnaeMyID rro.1rn­
MH B�(x) , Ha ,n;Be 110/�cncreMhI. O;,Ha H3 HHx , onnchrnaeMaR 110.JIRMH II�(x) , 6y,n;eT ttrpaTh 
pOJib MC/J,J18HHOH 110),CHCTeMhI. Ilp11 3TOM KOMilOHCHThI rrpoMe:lKyTO'IHbIX TCH30pHbIX IIOJICH b . b �� ( 2:) ' .;a ( x) ' (f ( x) ' c;r; ( x) ,LJ;OJI:lKHbI 6brTh CB5I3aHbI COOTHOIIICHI15IMH (," .;� = SJ ' (f .;a = . c - c 0, (/:�� = 0, .;a;(b = Ob . lIMeHHO 3TO I1 6y,n;eT rrepBbIM warOM npH TIOCTpOeHHH CH..:a-

TOrO 
-

OTIHCaHIIR [ 13] ,ll;J15I �OBpCMCUHOH CTa,[l,IIH 3BOJIIOIJ,IIII MaTepHH Ha6JIIO,LJ;aeMOH 06.:rnCTH 
Bcene1rnofi . lITaK , Y'IHThrnaa uepa3JIH'IHMOCTb cPH3H'!ecKHX cocTORHHil cna6o B3aHMO,n;eil­
crByronwx 'IaCTHI�, MhI 6yLJ;eM HCITOJib30BaTb yMeHhIIIeHHhril tta6op noJieil {II� , A%} BMeCTO 
rro.nnoro Ha6opa {B�(x)} . EcTeCTBCHHO, Heo6xo)l,HMO Y'IHThIBaTh, 'ITO B narpamirnatte no­
RBRTCR Il0CT05IHHbie, IICIIOJIH5IIOIIl,HC pOJib BCCOBbIX MHo:lKHTe.Jieil: ,  TaKHe KaK l/GN ' r)l,e GN 
- rpaBl:!TaIJ,norrnaa IIOCT05IHHaR HbIOToHa. 

4.  I10Ju1p1I3au;HOHHhie IIOJUI H nporraraTOp BeKTOpHoro 

6o3oHa 

IIVCTb n - 4 ,, , - 2 tu - s2 L a - L acb - L (i ) Ea L · (k) - 1ai (k) 
,J - l '-' - l - l C (k) - Cb'- (k) - C(k) (i ) l ' (j) - ',i a {J)  ' 

(k) l k ) LQ(j) = (f La (j) , TaK 'ITO nOJIHhIH JrarpamirnaH (3.6) neperrHUICTC5I rne,n;yIOIIJ,HM o6pa30M: 

Lt = L (IJ! ,  D\J!) + 7) (j) (m) [;;;0 E(;) (j )  E�k) (m) 7)(i ) (k) 7)ab+ 

+K1 (F/i�L ) Fg)/m) 7) (i) (l )  7/(k) (n) + 2 F(��j )  F(�� (m) - 4 FcWuJ Fr�?rm)l /4, (4 . 1 )  

I 2 ! 2 K0 = K,0 t , K1 = K0 t S . 
F(k) pc a b f l h(k) .T. (k) pl ,T.m .T.n (i ) (J )  = ab E (i) E(j ) le l = '±' l mn '±' (i) '±' (j )  = 

( 4 . 2) 
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= (<I>(i) 1\71<Ii(j) - <PL) \71<I>(7) ) qi�) + <I>ti)Ll �;; - <I>L)L1 i�/ + A(;) Lg_i;J - At) Lg_i�/ ' (4.3) 

E£ E£ ;r.. (k) ;r.. (l) _ Dd c£ b c ;r.. (k) (l ) ij = (k) (l) '±'i '±'j - rbc <,d E(k) E(l) '±'i cpj = 

;r.. i II' a '±' (k) = a E(k) ' A!!. A!!. (1 ) . = ( ' ) <I> . i J i ' 

( 4.4) 
(4.5) 

c� = c�ctc�d ��, cf(}, = ((fc:c::d + ai(�)��, ct = ((f(jc�b + \7i(f - V71(f)��· (4.6) 
B pe3yJihTaTe ypaBHemrn noJie:ii <I>(J) (x )  Memmo nOJIY'll1Th crntt,n,apTHhrM o6pa30M [14] B 
Bl1,Il,C rpaB11TaU,110HHhIX ypaBHeH!1H 9iiHillTeHHa 

D .T, [)[, /' ( •T• D 'T' ) J I ( (}, E!!. 1 mn E(}, EQ ' i 'I'  oD · W gjk - gik J..- '1' ,  m"'  + Ko T/l})}_ g  Eij kl - 4 gik g jm In) = J 

(4 .7) 
( Rijk l - TeH30p Kp11Bl13Hhl CB.H3HOCTl1 rfj p11MaHOBa rrpocTpaHCTBa -BpeMeH!1 .M,� ; Ko = 
l/(41T) , K:1 = l/(161TGN) ) . EcTecrnemm, 'ITO ypaBHeH11.H 91IHillTeiiHa OTpa)KaIOT coBpe­
MeHHOe ¢113wi:ecKoe cocTO.HHHe MaTep11H BceJieHHoii . Bee 3TO no,n,TBep)K,n,aeT B03MO)KHOCTh 

llHTepnpeTaU,Irn IlOJieii <I>(j) (x) l1JI11 IlOJieii <I>�j) (x) KaK rpaB11Tau,110HHhIX IlOTeHU,MaJIOB, HO 

Y'll1Tb!Ba51 3aB!1Cl1MOCTh l1X OT CBOHCTB cpe,n,hr (BaKyyMa) ' a TaK.JKe l1CTOpH'IeCKl1 CJIO)KHB­
rneec.H MHemrn C'IHTaTb KOMIIOHeHThI gij (:r) MeTpwrecKoro TeH30pa npOCTpaHCTBa-BpeMeHH 

ITOTeHu,11aJ1aMI1 rpaB11Tau,uom10ro IIOJI51, IIMeeT CMbICJI Ha3h!BaTb <I>(1/ x) l1 <I> �j ) ( x) IIOJI.Hpl1-
3aI\IIOHHbIM11 noJIHMH. HMeHHO ,n:aHHhre nOJI5l, orr11chrnarom11e Me;vrenHy10 no,n,c11cTeMy, MO)K­
no crrp5ITaTb,  BBO,Il,51 p11MaHOBy CTpyKTYPY npocTpaHCTBa-BpeMen11, TeM caMbIM ITOJiy'la5l 
B03MO)KHOCTh rrpttMeH.HTb MeTO,IJ,bl ,n,HcpcpepeHU,llaJihHOH reoMeTpl111 npll C)KaTOM onncamrn 
cPII311'J:eCKllX CHCTeM .  

PaccMoTpnM npI16JI11)KeHIIe, B KOTOpOM npocTpaHCTBO-BpeM5l MO.JKHO C'rnTaTb npocTpaH­

CTBOM MnnKOBCKOro, IIOJI.H <I>)k) , <I>(k) .HBJI.HIOTC5l IIOCTO.HHHhIMlI If rryCTb r. = 1 , 'ITO rrpe,n,-

IIOJraraeT c�b = 0 . )],Jrn IIOJiycremrn ypaBHCHMH IIOJIII Af ( x) B cpeiinMaHOBCKOH Teop11n 
B03Myru,ennii KaJm6poBKa ,!l;OJI)KHa 6hITh ¢11Kcnp0Bana, ,IJ,JI5l <rero ,n:o6aBHM K JiarpaH)KHaHy 
( 4 . 1 )  cne,n,y10mee cJiaraeMoe: 

(4 .8) 

T (iJ T/ (j J (kJ + T (jJ T/ (iJ (kJ _ cl!. t T/(i) (j) a (k) . a (k) - c. a  Q . (4.9) 
b B pe3yJihTaTe ypaBHCHIIH BeKTOp11oro rrOJI5l Ai( x) 3annrrryTc.H B BII,n,e: 

(4 . 10) 
r,n,e I5f = (%/T/aa ) (8L (w) ) / (8Ay) 11 

(4. 1 1 )  
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0TMeTHM, 'ITO ncne,n:cTBrre IIOJI5IpH3a1\HH naKyyMa ( C; i= 0 )  rrporraraTop BeKTOpHoro 
6o30Ha HMeeT ,D,OBOJibHO rpOM03,D,KHM BH,D, [15] 

D; - (  ) = [(l _ qo) 
(PiPj - C;Cj ) (PkPk - qom2) + (1 - q0)pkCk (p;Cj + C;pj ) 

J P (plp1 _ q0m2)2 + (1 _ q0)2 (plC1)2 

-9ij] / (PmPm - m2) , (4.12) 

KOTOpbIH yrrpon1aeTC5I H rrpHHHMaeT 3HaKoMyro <Pop My ( -g;j / (Pk Pk -m2) , pk - 4-HMIIJJihC, 
a m - Macca BeKTOpHoro 6030Ha) JIHIIIb B <PeliHMaHOBCKOM KaJIH6poBKe ( qo = 1 ) . 

llTaK, nepexo,n: K rop5I'IeMy cocT05IHHro Ma·rep1rn Bcenenno:il: 6bIJI CB5I3an c pa3pyrne­
HIIeM 6o3e-KOH,D,eHCaTa (rrpH 3TOM HeKOTopoe BpeM5I TeMrrepaTypa ¢oHOBhIX craCTHI\ Bce­
JICHHOH MOrJia OCTaBaTbC5I paBHOM HJIH 6JIH3KOH K HJJIIO - TaK Ha3bIBaeMblll rrepHO,D; HH­
¢nmi,1rn) H yBeJIHcrerrneM, COOTBCTCTBeHHO, ,D,aBJieHH5I ¢epMH-ra3a. B pe3yJihTaTe MaCCbl 
ITOK05I w+, w- , Z0 6030HOB yMeHbIIIHJIHCb TaK, 'ITO CJia6oe B3aHMO,LJ;eHCTBHe rrepeCTaJIO 
6bITb cna6bIM H BCe ( HJIH IIO'ITH BCe) craCTHI\bI H3 OCHOBHOro ( BaKyyMHOrO) COCTORHH5I cramr 
ycracrnoBaTb B ycTaHonnenHn TepMO,D,HHaMHcrecKoro panHOBeCH5I. AaHHOe RBJICHHe H CTano 
npwrnHOH Ka)Kyu:i;eroc5I yneJIH'ICHilll IIJIOTHOCTH craCTHI\. Ilpe,n,rronara5I, "ITO cpe,ll;H5I5I 11JIOT­
HOCTb no 'IaCTHIJ; BO BceneHHOM npH 3TOM He MeH5IJiaCb, a c11eHapHH rop5I'IeH MO,D,eJin ee 
3BOJI!OI\HH B OfoIJ,eM BepeH, MbI npHXO,D,HM K CJie,D,yrorri;eH ee OIJ;eHKe: n0 rv m� rv lQ-3 f3B 3 
( m7r - Mac ca 1f -MC30Ha) . 9TOT pe3yJihTaT IT03BOJI5ICT ,n:aTb ofrb5ICHemre H3BeCTHOMY COOTHO­
rneHH!O [16] H0/GN ;::;J m� , ecnH ccrHTaTh, 'ITO rrocT05IHHa5I Xa66na H0 ,ri;aeT 011enKy 1/ H0 
,ll;JIHHbI l ,.__, 1 / ( n0u,,, ) cno6o,ri;noro rrpo6era qacTHIJ,bI B ''BaKyyMe" Ha coBpeMeHHOH cTa,n:Hn 
9Bo.mou;ttn BceneHHOH ( u v -- ceqeune pacceRHHH ueifTpHHO Ha 3apa)KeHHOM -qacruu;e) , H 
ytJ:eCTb Oll,CHKy, ,ri;auuyro paHee [17] rpaBHTall,MOHHOH IIOCT05IHHOH G N ( G N rv (]" v ex G'i-TJ ' 
G F' - rrocro5IHHa5I <PepM:rr , T,,, - TeMneparypa ¢oHOBhIX neihpuHo Bcenem10it) . 

Ha 6onhrnyro ITJIOTHOCTb 'IaCT.1111 Bo Bceneuuoli, B3aHMo,n;e:il:cTnyrou:i;ux JIHIUb cna6bIM 
o6pa30M, YKa3bIBaeT H 3Ha'IHTeJibHa5I BeJIH'IHHa Mace ITOK05I rnw H mz ' COOTBeTCTBeH­
HO, w± il Z0 6030HOB, reHepupyIOill;liX CJia6oe B3aIIMO,D,eMCTBHC. 3,n,eCb Mb! HMeeM aHaJIOr 
CBepxrrpOBO,D,HHKa rrepBoro po,n:a c 60JibIIIOH ,D,JIHHOH KorepeHTHOCTH ( ee pOJib MO)KCT nrpaTb 
1 / H0 ) 11 Ma.rroii: JIOH,Il,OHOBCKOM rny6nuoli rrpOHHKHOBeHHH cna6oro rronn ( ee pOJib MOMeT 
nrpaTb l/mz ) . IlpmvreH5I5I auanor lI3B8CTHOH cPOPMYJibl ,n,mr JIOH,D,OHOBCKOH rny6HHbI rrpo­
HlIKHOB8HH5I Marnnrnoro IIOJI5I ( ,\ 'i = mqc2 / ( 41fnqq2) , r,n,e AL - JIOH,D,OHOBCKaR rJry6nna 
rrpOHHKlIOBemrn, mq - Macca KyrrepOBCKOll rrapbl, nq - IIJIOTHOCTb KynepOBCKHX nap, q 
- 3ap5I,Il, KyrrepOBCKOfr rrapbr) , MO)KHO c,n:enaTb rpy6yro ou;eHKY MaCCbI TIOK05I T.J:aCTlIIl, OCHOB­
HOro cocTOaHIDI, 3Kpauttpyrou:i;nx cna6oe none: m ,.__, 10-s f3B , 'ITO no uopRµKy forn:3KO K 
rrpe,IJ,llOJiaraeMOH Macce IIOK05! 3JieKrponnoro neilrpHHO. 

5 .  3aKJUOl:JeHMe 

TaKnM o6pa3oM, Marepn5I B 603e-KoHµeHcarnoM coCTOHHHH ,ll,OJI)KHa HaMnoro rrpeBoC­
xo,n:HTh BCe OCTaJibHbie ¢opMbI Marep1111 H Mbl ,ll;OJI)KHbI nepeOCMbICJIUTb He TOJibKO npHpO­

xw rpaBHTaIIHOHHbIX 5IBJICHHH H, B tJ:aCTHOCTH, rpam!TaIJ,HOHHbIX BOJIH, HO H o6cyµHTb B03-
M0)KH0CTb µeTeKTHPOBamrn 3ByKOBbIX H TeMrreparypHbIX BOJIH B KOCMH'ICCKHX MaCnITa6ax. 
Bcne,n,crnHe 3Toro, B03MOMHO, cne,l\JeT rrepeoCMhICJIHTh H cran,n:apruyro HHTeprrpeTau,n:ro pe-
3YJibTaroB ua6nro)J,ettttli, BbIIIOJIHeHHbIX KOCMHtJ:eCKHM anrrapaToM WMAP. C ttaruen TO'IKH 
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3pemur, IIOBO.ll;OB ,IJ;JUI 3TOI'O rrpe.n;ocTaTO'!HO H, B 'IaCTHOCTH, no Ha6mo.n;eHH5IM KOrepeHT­
HhIX 5IB.JieHHH B rrp.WIHHHO uecBE3aHHhIX o6naCT5IX BceneHHOH. 0TMeTHM, 'l.TO Hecnoco6-
HOCTh CTaH.n;apTHOH KOCMO.JIOI'H'l.eCKOH MO,IJ;e.JIH o6'b5ICHHTb IIOBe,n;eHHe KOCMH'!eCKHX o6'beK­
TOB 3aCTaB3I5IeT BBO,IJ;HTb B TeOpIT!O TaKHe 3K30TH'l.eCKHe o6'beKThI, KaK T€MHa5I MaTepH5I lIJIH 
TeMHaE aueprnE, a TaK)Ke rrpe.n;nonaraTh CBepxcBeTOBhre CKOpocTn 11 TOMy rro.n;o6Hoe. Kpo­
Me Toro, lIHlJYil,HpOBaHHbIH xapaKTep rpaBHTarrHOHHbIX B3alIMO,n:ei1.CTBlIH H HX 3aBHCHMOCTb 
OT cna6brx ,rre.JiaIOT aKTya.JibHbIM MOHHTOpHHr rrporreCCOB, reHepIIpOBaHHhIX cna6bIMH B3an­
MO,IJ.eiicTBH.}lMM, H rrpe.n;rronaraIOT IIOHCK HX KOppeJUIIIMll c rpaBHTarrHOHHbIMH 5IBJI€HlI5IMH, 
uanrr'l.ne KOTOphrx .n;enaeT 3aBIICHMOCTh rpaBrrTau;noHHOil " rrocT05IHHOH11 GN OT npeMeHn He 
Bbl3hIBaIOIIIeH COMHeHIIH. 
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We shall assume that the Universe evolution is defined by particles the most of which is in 
the bound state at present and which's manifest oneself by weak interactions only. For the 
description of boson states we shall use smooth fields B� . Probably the rank of the density 
matrix p of fields B� equals n , but it is impossible to eliminate that the generally given 
equality is satisfied only approximately when some components of a density matrix can be 
neglected. Considering the indistinguishability of the most of boson states we shall use the 
reduced set of fields {<I> �j) , Af} instead of the full set { Bg} . Naturally, it is necessary to take 
into account that the constants performing the role of weighting coefficients such as 1 / G N 
( G N is the gravitational constant) appear in the Lagrangian. As a result of an equations of 

fields <I>�j) can be written down as the Einstein equations. It allows to define a space-time 
Mi as the Riernannian manifold, the basic tensor 9ij of which we shall introduce by a 
reduced density matrix p1 • 

E-mail address: koryukin@rnarstu.mari.ru 
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A GROUP THEORETICAL APPROACH TO THE 
PROBLEM OF  SPACE-TIME DIMENSIONALITY.  
P OST-MAXWELLIAN AND POST-EI NSTEINIAN 

EFFECTS IN  THE L5 GROUP 

A.V. Kukushkin 

Nizhny Novgorod State Technical University 

Physical consequences of "splitting"of the single time co-ordinate of Minkovsky world into 
two independent time-like co-ordinates are investigated. Within this approach, first, the 
generalized Maxwell equations, unifying electric, magnetic, gravitational and scalar fields, 
are derived. Second, their post-Maxwellian solutions are found, which correspond to the 
longitudinal electrograviscalar waves, propagating in vacuum at the speed of light . Third, 

an investigation of the newly discovered "dark matter"effects in cosmology is suggested on 
this basis. 

1 .  Introduction 

\Ve consider a non-compact extension of Minkovsky space-time by way of transition from 
the single time co-ordinate to the T - plane of two Cartesian time-like co-ordinates, t4 and 
ts . It is essential that the physical time, T , in the theory suggested is not a co-ordinate of 
the 11fiat 11five dimensional space-time, but the parameter connected with the two time-like 
co-ordinates invariantly (in a linear way (1 .3) ) .  By this we partly return to the principles of 
the pre-relativistic physics where the physical time acts as a parameter not a co-ordinate. 
However, as it is in the classical special relativistic theory (SRT) , the general part is played 
by the Cartesian co-ordinates, which are five in number here, and the metric signature is 
the following ( + + + - - ) . 

There are examples of conformally invariant unification theories of Kaluza-Klein's type 
where two and even more time co-ordinates were introduced; among those there are works by 
Pavsic [1] and Ingraham [2] . Also A.  D .  Sakharov [3] introduced compact time co-ordinates 
and explored cosmological inferences of such introduction. The main result of those attempts 
is the renormalization of various masses at the Planck scale. But , as Yu. S. Vladimirov says 
[4] , to use his own words '1one would rightly expect it to be not a formal calculation trick, 
but a step discovering new aspects of the reality. This step should be seriously grounded. 11We 
share this point of view and, moreover, show how the concept of two time axes may be used 
for making more valuable phisical predictions. There has recently appeared a series of works 
by Bars [5] , where he does seriously ground the additional time dimension. He confronts 
n 1 -T nand " 2-T physics 11using the so-called M - theory, the non-commutative quantum 
field theory, and the supergravitation concept . We are rather against 11 2 - T physics 11 • We 
make it a point here that any theory in its final expression must allow to reduce itself to the 
1 - T physics with the single time variable as in the classical SRT. 

The T - plane used in the present paper is shown in Fig. 1 .  The physical time parameter 
is actually an algebraic length of the time-like vector T .  This is shown in Fig. 1 in two 
positions: T1 and T2 . The first takes place if t4,5 > 0 ,  the second if t4,s < 0 . In the first 
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Fig. 1. T - plane of the R?_ space 

case the T1 time is the T1 vector length, in the second it is the T2 vector length with 
minus. Mathematically it is expressed by usual scalar proportions: 

ts = T · sin 84 , 

T = t4 cos B4 + ts sin 84 , 

( 1 . 1 )  

(1 .2) 

(1.3) 

which will be used everywhere below, particularly when transitioning from the Lorentz­
Poincare co-ordinate transformations of the L4 group to the generalized co-ordinate 
transformations of the 5-dimensional Ls group. Conventionally it could be imagined that 
Minkovsky space were embedded into the Rs space. But in fact, and that is crucial, this 
is not so. The fictitious co-ordinate T has no unit vector. The basis of tensor algebra in 
R5 are the five unit vectors of the corresponding five co-ordinates. In any other inertial 5-
dimensional reference frame, that is, moving relative to the K frame at velocity, V , shown 
as K' in Fig.2 ,  the T1 -plane, will look absolutely the same as in Fig. 1 ,  for we postulate 
that the 84 parameter is invariant. This postulate is one of the main in the theory. Inversion 
of the 84 parameter sign creates an additional R� space ( T -plane in Fig. 1 belongs to it) 
which will act in the theory as well as R5 . The following symbolic scheme of extension of 
Minkovsky space-time satisfies all the above said: 

(3 + 1) =? (3 + 1 · cos B4 + 1  · cos 85) . (1 .4) 

where cos Bs = sin 84 . The realization of scheme (1 .4) is a serious step: in the case of two time 
co ordinates in the frame, the electric and gravitational charge can mix in the relativistical 
sense. As a result, the law of conservation of charge may not hold. Besides we distinguish 
between the notions of the "gravitation massnand the " inertial mass11 , and the weak principle 
of equivalence (WPE) is reconsidered for the case of the moving reference frames. As is well 
known, the WPE has been experimentally tested under laboratory conditions only. 

But the theoretical. inferences of scheme (1 .4) realization must not contradict the 
experimental data on the conservation of an elementary charge, e , in the moving reference 

1 
I I 
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v 

,X1 
Fig. 2 .  Relative position of the K and K' frames at the moment of time fixed by the 
watch in the rest K frame. Along (in the general case) curved trajectory following 
the origin of the K' frame, the axes of the two frames remain parallel (only the 
angles ei and the length of V vector change their values) . 

frames. If we suppose for the sake of clearness that the parameter 84 equals the ratio of the 
two constants of the gravitational and electromagnetic interactions: 

( 1 .5) 

(where mp,e is the proton (electron) gravitational mass, "' the Newton gravitational 
constant) ,  the value of novel expected effects is suppressed by the extremely small value 
of the ratio. Thus, the effects rnmains and will remain unobserved in near future, since the 
energy necessary for this observation is unachievable at present. 

The paper is devoted to the theoretical consequences of such generalization of Minkovsky 
space-time. In particular, the latter give new interpretation of the substance, which is 
conventionally called "dark matter"in astrophysics and cosmology. The point is that the 
realization of scheme ( 1 .4) makes one to put forward the hypothesis , that the stable 
elementary particles of usual matter and anti-matter are manifestation of the interior 
motions of some substance deprived of electric charge but not of gravitational charge. 
We may (though not necessarily) identify this hypothetical substance as the known "dark 
matter"and consider transformation of "dark matter elements" (DME) into "usual matter 
elements" (UME) . The group theoretical analysis of the DME physics shows that the WPE 
does not hold for those. This matter possesses very low inertia, that is why its transformation 
into UME (understood as the interior motion of DME) can take place at low energies. 

One more important remark is the following. The group theoretical approach 
distinguishes between the inertial mass and the gravitational mass. The inertial mass, unlike 
gravitational, is not a charge, that is why it has nothing to mix with, whatever dimensionality 
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of the world we would introduce. Thus, all the kinematic theorems of the Lorentz-Poincare 
group should retain their standard 4-dimensional expression in the new R5 space-time. 

2 .  C o-ordinate transformations equations for the new 

L5 group and its 4-dimensional kinematics 

First, let us consider the general 4-dimensional co-ordinate transformation from the 
primed frame into the unprimed one (Fig. 2) in Poincare's form [6] : 

x, = x� + cos Bi · µ� + a� (i = l , 2 , 3) , 

xo = x� + µ� + ab (xo = cT) ,  

(2 . 1 )  

(2 .2) 

where ab., are constants fixed by initial conditions, cos ei the guiding cosines ( ei is shown 
in Fig. 2) of the velocity vector, V , and 

I _ ( _ l' .I _j_ (./ , I 
µT - 1 ) Xo ' JJ/Ts,  

f3 = !V i /c. 

(2 .3) 

(2 .4) 

(2.5) 

(2 .6) 

The first three equations for the new Ls group are deduced from Eqns. ( 2 . 1 ) ,  (2 .3) by 
way of simple substitution the right-hand side of primed Eqn. (1 .3) instead of T' (xb) . To 
get two new equations from single Eqn. (2 .2) , we multiply Eqn. (2.2) first by cos B4 , then 
by cos 85 (= sin 84) . Using then primed and unprimed Eqns . ( 1 . 1) and ( 1 . 2) ,  we get two time 
co-ordinate transformation equations for i = 4, 5 . Thus we get five new equations for the 
Ls group co-ordinate transformations: 

(2 .7) 

It is supposed that Eqns. (2 .7) includes µ� , when i = 1, 2, 3 ,  and µ� , ·when i = 4, 5 .  The 
fundamental part in the following argument belongs henceforth to Eqns. (2 .7) ,  which is in 
fact but a widened form of the Lorentz-Poincare classical transformations . 

The (}4 parameter's invariance (due to which the T -line does not rotate) conserves 
all the group theory kinematics theorems for the L4 group (time and space dilatation, 
composition of velocities theorem) in the L5 group. The general and consistent proof of the 
fact that the 4-dirnensional kinematics remains valid in Ls is the following. Let us consider 
the motion of a substance of arbitrary propagated inertial mass density or, in other words, 
partially differentiable inertial mass density in the R5 space. The relativistically invariant 
in the R4 space tensor method to get the left-hand side of the vortical motion equation 
for such substance was offered by the author in [7] . To solve this problem in R5 space we 
should invariantly define the three 5-vectors: the velocity 5-vector, the momentum density 
5-vector and the 5-dirnensional Hamilton operator. It is evident that the invariantly defined 
velocity 5-vector is 

(2.8) 
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The momentum density is easily deduced from this by multiplying ( 13) by the inertial mass 
density scalar function µ . The co-ordinate expression for the operator \7 in the covariant 
form is obvious: 

\7 = {grad, o/c8t4 , f)/cot5} . 

Using henceforth this co-ordinate expression of \7 , we get the left-hand side of the motion 
equation wherein there are partial derivatives by the time-like t4 and t5 . Neither has any 
physical sense, unlike the physical time T ,  which is connected with the t4,5 by invariant 
Eqn. ( 1 .3) . Using Eqn. ( 1 .3) which leads to 

-

where i = 4, 5 ,  we can represent the 5-vector \7 in the parametric form: 

\7 = {g1ad, cos (}4 . 0 I COT, sin 84 . a I COT} ' 

(2.9) 

(2.10) 

which includes the T physical time as a parameter and does not the physically senseless 
variables. 

It is worth noting that this trick wiil be used on in the argument and in the field theory 
as well. It enables one to represent the 5-dirnensional equations in the 4-dimensional form, 
not co-ordinate but parametric, as it took place in the pre-relativistic physics. This trick 
helps to overcome that above spoken of fundamental difficulty, which all theories with two 
time co-ordinates experienced. 

Making operations with the three 5-vectors in the same way as was done in the R4 
space [7] , as a result we get the left-hand side of the substance motion equation in the R5 
space: 

{ dP 
( 2 2 ) 

I { dP } / -d cos G4 + sin 84 , -Ve cos t91 , -Ve sin B4 > = 1  - , -Ve cos 81, -Ve sin 84 , � ) � 

where 
dP ] -1 = ce - [V x rotp_ , G T  

e = c-1 (gradK + ap/oT) , (p = µ1V, K = wyc2) .  

(2 .11)  

There is  no 84 parameter in the space-like part of 5-vector (2. 1 1 )  (in the right-hand 
member of Eqn. (2 . 1 1 ) ) ,  so this part is identical to the respective part of the 4-vector in R4 

(see ref. [7) ) .  In other words, the 84 parameter (an invariant additional to the speed of light 
in the L5 group) does not influence the classical Lorentz-Poincare group kinematics, Q. E. 
D. 

3. Post-Maxwellian effects of the L5 group : grav1-

electrical and electrogravitational inductions 

Henceforth we suppose that electric and gravitational charges (along with corresponding 
convection currents) , or '' electromagnetic units" ,  are meant by the field sources. 
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The use of  the Lorentz form for co-ordinate transformations (2 .7) will be sufficient to  
describe local effects of the infinitesimal transformations: 

(3.1) 

Now we suppose that matter in the primed frame is characterized by either type of 
charge density, the frame being co-moving with the substance element. In other words, the 
contravariant hypercurrent density 5-vector possesses but two nonzero components, that is, 
the two time-like components: 

J' = {o, o, 0, -4np', -4nfaµ�} . (3.2) 

As the result of convection, in the K rest frame there appears the hypercurrent density 
3-vector j .  The unprimed hypercurrent density 5-vector will have all the five components: 

J = {4n/c · j , -4np, -4nfaµ9} ,  (3.3) 

where in accordance with Eqn. (3. 1 )  

j = ( faJL� sin 84 + p' cos 84) 'YV = rJ' cos (84 - 04) ')'V, (3.4) 

p = faµ� ('Y - 1)  sin 84 cos 84 + p' [1 + ('Y - 1) cos2 84] = 

= f71 [cos B4 + ('Y - l) cos 84 cos (84 - 04) ] ,  (3 .5) 

faµ9 = p' ('Y - 1)  sin 84 cos 84 + faµ� [1 + h - 1) sin2 84] = 

Here 

= f71 [sin B4 + ('y - 1)  sin 84 cos (04 -- 04) ] . (3.6) 

m� , q' are the gravitational mass and the electrical charge in the K' frame. It is clear 
from these formulae that in the general case neither the gravitational mass nor the electrical 
charge are conserved. But if we grant {j4 = 84 , then from Eqns (3.5) , (3.6) it follows that 

This proves that in this particular case the electrical charge and the gravitational mass 
are conserved, for the post-Maxwellian effects of gravi-electrical and elctrogravitational 
induction are mutually compensated. This theorem seems to testify that the 84 parameter 
could be measured experimentally in case it were possible to define what charge of what 
elementary particle is conserved at however high energies. 

We shall start however with the following approximation. Let us attribute such a volume 
to the 84 parameter in the R5 space that will provide for the electron charge and mass 
conservation: 

(3.7) 
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The effect of gravi-electrical induction shows itself in Eqn. (3.2) when p' = 0 .  Then the 
following formulae take place: 

p = -/K,µ� ('y - I) sin 84 cos 84 , 

;;,9 = µ� [1 + ('y - 1) sin2 84] . 

(3.8) 

(3.9) 

(3. 10) 
Among the consequences of the L5 group the effect of the gravi-electrical induction 

deserves the closest concern. Theoretically electricity may be a relativistical manifestation of 
gravitation. For the "dark matter" ,  where there are neither negative nor positive electricity, 
Eqns. (3.8)-(3. 10) are exact . As a first approximation we will consider that these formulae 
are applied for neutral particles of usual matter. 

However, here we are interested mainly in low energy effects expressed by Eqns. (3.9) 
and (3. 10) . First we consider them for the usual matter, when the Lorentz factor / due to 
the comparatively large initial inertia does not reach high volumes. Chargeless UMEs have 
large inertia, that is why the Lorentz factor cannot be of a high value at low energies. Thus, 
integration by volume in Eqns. (3.9) and (3. 10) or (3.6) for /3 «: 1 results in 

q ;::;::; -/Km� sin 84 · /32 /2, 

m9 ;::;::; m� (1 - /]2 /2) . 

(3. 11)  

(3. 12) 
As follows from Eqn. (3.12) gravi-electrical induction is substantially suppressed by the 

sin 84 coefficient . This reduces to zero all the chances to observe the effect in the experiments 
with elementary particles. 

Eqn. (3.12) proves, that the group theoretical approach discloses it that the WPE does 
not hold for the moving neutral usual matter objects, for 

In experiments with elementary particles this cannot be observed as gravitation is greatly 
suppressed by electrodynamics . 

Let us suppose now that at the basis of low energy transformation of DME into UME 
there lies the relativistic effect of gravi-electrical induction. Let us put the question, what 
qualities a DME should possess in order to become, say, an electron, that is, an element of 
the elementary charge and its rest inertial mass equal to its gravitational mass , as a result 
of such low energy transformation. Let us integrate Eqns. (3.9) and (3.10) by volume and 
apply the relativistic formula on the inertial mass to the final expressions: 

q � -/Km�84 (1 - 1-1) , 

Tl1g � m� [r-l + 8� ( 1 - 1-1)] , 
mi = rm�, 

(3.13) 

(3.14) 
(3. 15) 

where m� , m� are respectively gravitational and inertial masses of DME at rest. Since in 
Eqrt. (3. 14) e� � 10-4o , then, supposing that in Eqn. (3. 14) 1-1 s 10-41 , and equating 
mi to the electron gravitational mass (in accordance with vVPE for usual matter at rest) , 
it follows from (3. 1 3) (or (3. 14) )  and (3 .7) that 

(3.16) 
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The result is striking. It testifies to a gigantic discrepancy between the inertial mass 
and gravitational mass values of the primary matter element . It is worth mentioning that 
whatever value of the 84 parameter we choose, whether to preserve the electron gravitational 
mass and charge or that of the proton or of the quark or anything else, the discrepancy will 
remain gigantic. 

Deducing (3. 16) we have used WPE for usual matter at rest. It means that the ultra­
relativistic motion of the DME with parameters (3.16) must progress by laws of irregular 
finite motion and by the present days evaluations within a volume of the radius less than 
10-16 cm. 

The very evaluation (3.16) is related to the parameters of the substance at rest, an 
element of which possesses a gigantic gravitational charge and negligible inertial mass 
( "starter"rest energy) .  By  this it is possible to conclude that within the substance there is 
gigantic primary tension (interior potential energy) , which must dynamically manifest itself 
as a practically momentary collapse since initial inertial mass is negligible. The supposition, 
that this mighty factor exist, can make us change the habitual evaluations of the balance 
between gravitational and electrical forces, and of the role which the balance plays in the 
stability of charged UME (electron, proton, quark, ets) . 

To an observer it will seem that " dark matter"sub-elements different by mass reach 
one and the same reversal point (there will be but two in a fiat trajectory, where i = 
1 ) at different moments of time. It is significant that the observer will register the sub­
elements of the substance stay still "for a moment"at those points, and therefore get the 
qualities of the primary substance with negligible inertial mass, large gravitational charge 
and zero electrical charge. Without those reversal points there is induced electric charge 
in the substance sub-elements and thus the centrifugal acceleration appears that bars the 
further collapse. Without going into detail we may suppose that dynamic balance between 
centripetal and centrifugal forces may be reached in such a model, while in the old static 
model gravitation (or surface tension as in Poincare's model) was insufficient for holding the 
charged matter within a finite volume. 

Of course, the above expressed arguments are purely speculative and need grounding 
by calculations before coming to so strong assertions. Nevertheless ,  this hypothesis may be 
useful for the interpretation of the generalized Maxwell equations in the next section. 

Formulae (3. 15) and (3.16) testify to the purely mechanical genesis of the UME rest 
energy. It should also be mentioned here that the Lorentz factor i may reach gigantic 
values ( i ?:: 1041 at low energies of ,...., 0 .5  MeV) due to the primary environment tension 
and to the negligible value of the DME inertial mass. 

It is very important, that due to the irregular mass distribution along the trajectory 
(which must appear due to the self-action of the substance along the current lines) and due 
to the great range of the factor i ( ; E [l, 1041] ) the integrate effect of the dm� and dm� 
transformation wili be different at different moments of time for all the system taken as a 
whole. Therefore the full mass and charge of UME will be time dependent ,  periodicaliy 
or quasi-periodically. This consequence of the hypothesis cannot be observed experimentally 
nowadays and above all it should be considered when building up a field theory in the R5 
space. Experimentally only average mass and charge values of a UME can be observed since 
their radius is very small ( r ::; 10-16 cm) and the velocity of the DME periodical motion is 
virtually the speed of light. Therefore the T period can be evaiuated as T � 211-r / c ::; 10-25 
s, that is, much smaller than the integrating constant of any macroscopic instrument " Pulse 
time dependences of the electron charge and its two masses are shown in Fig. 3. The plots, 
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built with the help of the Gaussian function, show what one can expect the qualitative 
aspects of the process to be. 
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Fig. 3. Pulse time dependences of the electron charge and its two masses 
(qualitatively) ; logarithmic scale on the vertical axis for m9 , mi and q are not 
the same. 

The solution to the problem on anti-matter particles' origin is contained in the symmetry 
relative to the m� sign inversion in (3.9) and (3. 10) .  That is, there is supposed to 
be "dark matter"of negative gravitational charge. It follows from (3.9) and (3. 10) that 
the negatively charged gravitating particle and its respective anti-particle belong to the 
R5 (B4 < 0) . Vice versa, the positively charged particle and its respective anti-gravitating 
anti-particle belong to the space R�_ ( 04 > 0) . Therefore, all charged anti-particles must 
have negative gravitational charge. Thus the L5 group's qualities include the operation of 
charge conjugation relative to the gravitational charge. 

4 .  The generalized Maxwell equations 

The Maxwell equations general form for any dimensionality space of arbitrary metrics 
is well known [8] : 

RotFik = 0 

DivFik = J.k 

(V' x F = 0) , 

(V' . F = J) ' 

(4.1) 

(4.2) 

where Jk are the components of hypercurrent density N-vector J ,  rotor and divergency 
are supposed to be definite in N dimensions, Fik bivector components of hyperfield F . 

In the R5 flat space-time with metric signature ( + + + + - ) the problem of the 
Maxwell equations generalization in vacuum was solved by Corben [9] . But it was not stated 
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in a physically clear and self-sufficient way what the premises for introduction of the five­
dimensional space-time were. They were rather copied more or less formally from those that 
were in Kaluza-Klein non-Euclidian 5-dimenssional space-time. Let us see now what this 
new metric signature ( + + + - -) will grant us. Following in every detail the algebraic 
scheme for field equation deduction, suggested by Minkovsky, we suppose that the field is 
completely defined by the 5-potential 

(4.3) 

where A4,s are respectively electric and gravitational potentials, A is the 3-vector 
hyperfield potential. The F -field tensor is connected with the 5-potential ( 4.3) in the 
usual way: 

F = \7 x a, (4.4) 

where the parametrical form for the operator \7 in the Rs space is suggested above (in 
Eqn. (2 .10) ) .  Therefore, the F - tensor components are 

G = -gradAs + sin848A/cfh (Fis) 

H = rotA (F23 , F31 , F12) 

\Ii =  sin 848A4/dh + cos 848As/c8T (F45) , 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where E, G ,  H, \Ii are the electric, gravitational, magnetic and scalar fields respectively (in 
Corben theory the additional field is pseudoscalar) . Putting the right-hand side of (4.2) in 
(4 .3) and using the potential Lorentz gauge 

divA + BUcEJT = o (Diva = 0), 

where � = --As sin 84 + A4 cos 84 , we come to the standard wave equations: 

DA = -47r/c · j 

DA1 = -47rp, 

DAs = 47rfa,µ9 . 

(4.9) 

(4. 10) 

(4. 11 )  

(4.12) 

Let us mention it again (see Eqn. (2 .9))  that the 5-dimensional form of equations is reduced 
to 4-dimensional, as it was in kinematics, due to 

Now we put components of tensor (4.4) into (4.1 )  and (4.2) and come to the generalized 
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form of the Mci,xwell equations in vacuum: 

E 
cos 84 uH rot = ---- -- , 

c OT 

rotG = sin 84 8H 
c UT ) 

divH = 0 ,  
rotH = cos 84 8E _ �in 84 �G + 4r. j, 

c OT c OT c 

grad'I! = _ cos 84 �G _ sin 84 8E
, c 81 C OT 

. .  sin 84 8\¥ 
aivE = -- -- -;:;---- + 4?Tp, 

C UT 
. ' COS 84 OW A r dwG = - ·--- A - t±7Ty K,µq , 

C _ T . 

where j is the electrogravitational current density. 

(4 . 13) 

Relatively w the r physical time, Eqns. ( 4. 13) arc written down in parametrical not 
co-ordinate form, as it is in the classical Maxwell equations of relativistic physics (in the 
same equations of pre-relativistic physics time was considered a parameter) . However Eqns. 
( 4.13) set is essentially 5-dimensional and invariant relatively to the new L5 group. Since the 
gravimagnetism in Eqns. ( 4. 13) is significantly suppressed by the sin 84 coefficient, in case of 
fl·� == 0 and ap/dT = () the system of Eqns. (4. 13) is transformed under condition 04 -4 0 
ir{to the Maxwell system. The first four equations of (4.13) are practically in Maxwellian 
form, since cos 84 � 1 ,  sin 64 � 0 .  

Using accessory expressions 

TR �"' E cos 84 - G sin 84 ,  
Le = E sin &.1 + G cos 84, 

( 4 . 1 -1) 

the system of Eqns. (4. 13) is transformed into a more iaconic, but a more particular form 
of two independent sub-sets: 

rotTE = -8'Hjc8r, 

divH = 0 ,  
rotH = oT E/ cEIT + 47T / c  · j ,  

grad1Il = -E!Lc / c8r, 

d·ivLc = -8W/c.'.h + 41Tue9 , 

(4.15) 

(4 . 16) 

h r; e · e 1'� . · 1· · + 14 l'�) b th i w ere ,, eg = v K,/Lg cos 4 - p sm 4 . . ,1e ma3or qua,1t1es o, system \ . J s iow emse, ves 
most clearly in those two artificially deduced systems. Subsystem ( 4 .1.5) is the Maxwell 
system as it is, but wanting one equation which has transferred to (4.16) .  But the three 
equations are sufficient to describe usual transverse waves ( electrogravimagnetic as it is here 
(see Eqns. (4. 14)) .  Subset (4. 16) on the contrary describes longitudinal field of gravitation 
and electricity (see Eqns. (4. 14) )  and their retarding propagation in vacuum. It is clearly 
seen that the system is post Maxwellian in structure. The sources of those time--dependent 
waves are varying in time but rest graYitational and electric: charges. 
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Applying the energy conservation law for arbitrary wave processes in vacuum out of 
sources together with the following equality (taken frorn vector analysis) 

LegradiI! + iI!divLe = div (iI! · Le ) , 

to Eqns. ( 4 . 16) the Pointing vector and longitudinal wave energy density are easily found: 

II =  c/47r · (if! · Le) , ( 4.17) 

It follows frorn Eqns. ( 4. 17) that the L9 iI! field is a field of a longitudinal gravi - electroscalar 
wave propagating in vacuum at the speed of light carrying away some interior energy of 
the rest UME. Actually it is a post--Maxwellian and altogether post-Einsteinian effect 
of the Ls group, which is not to be found in Corben's theory. If we just integrate now 
usual wave Eqns. (4. 1 1 )  and (4. 12) by volume (for instance, in case of electron) where in 
their right-hand sides the charge densities are time-dependant (pulse functions) we "''ill 
get longitudinal electrogravitoscalar waves. If we calculate then the time average volumes 
of the matter interacting E and G fields, we will get what is observed experimentally: 
longitudinal electrostatic and gravistatic fields (of the electron) .  Now that we have studied 
all the qualities of the Ls group we know there are retarding fast-oscillating processes 
( electrograviscalar waves) underlying the static electric and gravitational processes; that 
satisfies all the conditions of the classical SRT. 

It is absolutely obvious that those waves carry away some of the interior energy of an 
elementary particle at rest. If we take the hypothesis that the rest UME is the primary 
substance interior motion manifestation, where there is a gigantic interior tension, evidently 
the latter, and it alone, can play the part of the compensating mechanism, which replenishes 
the energy loss (radiation friction) . 

In conclusion it should be said that this undoubtedly heuristic method by which set ( 4. 16) 
was deduced needs experimental tests of its consequences (gravimagnetism, for instance) . 
We believe, however, that a good argument for those equations is that they enable one to 
view electro- and gravistatics as macroscopic manifestation of longitudinal electrograviscalar 
dynamics, which satisfies all the conditions of the classical SRT. 

5 .  Conclusions 

Frorn the methodological point of view it is denial to view the T co-ordinate as the fourth 
co-ordinate of Minkovsky world. Introduction of two independent time-like co-ordinates 
firmly bound with the T variable by the postulate of the 84 parameter invariability enabled 
us to get a vector equation systf�m for the unified field of the only one T variable (which is 
present in the equations as a parameter) and to stay within the scope of 1-T physics. 

The study of time-space (not gauge ones!) symmetries in the Ls group enables us to put 
forward the hypothesis that electricity is a special manifestation of some primary substance 
gravitation (maybe "dark matter" )  which differs from the usual matter ,  in particular, the 
WPE does not hold in the rest frames. 

The analysis of structure of the unified field equations showes that there are solutions, 
which correspond to the longitudinal waves of gravitation and electricity propagating in 
vacuum at the speed of light. 
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CONTINUATION OF THE DUAL AMPLITUDE WITH 
MANDELSTAM ANALYTICITY OFF MASS SHELL 
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Valencia, Spain 

The off mass shell continuation of dual amplitude with Mandelstam analyticity (DAMA) is 
proposed. The modified DAMA (M-DAMA) preserves all the attractive properties of DAMA, 
such as its pole structure and Regge asymptotics, and leads to a generalized dual amplitude 
A(s, t, Q2) .  In such a way we complete a unified "two-dimensionally dual"picture of strong 
interaction [ 1 ,  2, 3, 4]. This generalized amplitude can be checked in the known kinematical 
limits, i .e. it should reduce to the ordinary dual amplitude on mass shell, and to the nuclear 
structure function when t = 0 . We fix the Q2 -dependence in M-DAMA by comparing 
the structure function F2 , resulting from it, with phenomenological parameterizations. The 
results of M-DAMA are in qualitative agreement with the experiment in all studied regions, 
i.e. in the large and low x limits as well as in the resonance region. 

1 .  Introduction 

This work is devoted to modeling of the scattering amplitude for inelastic electron-proton 
scattering. The kinematics of inclusive ep scattering, applicable to both high energies, 
typical of HERA, and low energies as at JLab, is shown in Fig. 1 .  We introduce virtuality 

, e ' 
k'-4 ' ' , 

e' , , 
, k' .. � 

x 
p 

Fig. 1 .  Kinematics of inelastic electron-proton scattering. 

Q2 , Q2 = -q2 = -(k - k')2 z O ,  and Bjorken variable x = Q2 /2p · q .  These variables x ,  
Q2 and Mandelstam variable s (of the "f*p system) , s = (p + q)2 , obey the relation: 

s = Q2 (1 - x)/x + m2 ,  ( 1 . 1) 
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where m is the proton mass. And Fig. 2 shows how inelastic 1*p scattering is related to 
the forward elastic (t=O) 1*p scattering, and then the latter is decomposed into a sum of 
the s -channel resonance exchanges. 

About thirty years ago Bloom and Gilman [5] observed that the prominent resonances 
in inelastic e-p scattering (see Fig. 1) do not disappear with increasing photon virtuality 
Q2 , but fall at roughly the same rate as background. Furthermore, the smooth scaling limit 
proved to be an accurate average over resonance bumps seen at lower Q2 and s , this is 
so called Bloom-Gilman or hadron-parton duality. Since the discovery, the hadron-parton 
duality was studied in a number of papers [6] and the new supporting data has come from 
the recent experiments [7, 8] . These studies were aimed mainly to answer the questions : in 
which way a limited number of resonances can reproduce the smooth scaling behaviour? The 
main theoretical tools in these studies were finite energy sum rules and perturbative QCD 
calculations, whenever applicable. Our aim instead is the construction of an explicit dual 
model combining direct channel resonances , Regge behaviour typical for hadrons and scaling 
behaviour typical for the partonic picture. Some attempts in this direction have already been 
done in Refs. [1 , 2, 3, 4] , which we will discuss in more details below. 

��ttar;fe: � x: R�ft.< 
Veneziano duality 

Fig. 2 .  (From [2] . )  According to the Veneziano (or resonance-reggeon) duality a 

proper sum of either t -channel or s -channel resonance exchanges accounts for the 
whole amplitude. 

The possibility that a limited (small) number of resonances can build up the smooth 
Regge behaviour was demonstrated by means of finite energy sum rules [9] . Later it was 
confused by the presence of an infinite number of narrow resonances in the Veneziano model 
[10] , which made its phenomenological application difficult, if not impossible. Similar to the 
case of the resonance-reggeon dua.lity [9] , the hadron-parton duality was established [5] by 
means of the finite energy sum rules, but it was not realized explicitly like the Veneziano 
model (or its further modifications) . 

First attempts to combine resonance (Regge) behaviour with Bjorken scaling were 
made [11 ,  12 ,  13] at low energies (large x ) , with the emphasis on the right choice of the 
Q2 -dependence, such as to satisfy the required behaviour of form factors , vector meson 
dominance (the validity (or failure) of the (generalized) vector meson dominance is still 
disputable) with the requirement of Bjorken scaling. Similar attempts in the high-energy 
(low x ) region became popular recently stimulated by the HERA data. These are discussed 
in section 3.  

Recently in a series of papers [1 ,  2, 3, 4] authors made attempts to build a generalized 
Q2 -dependent dual amplitude A(s, t, Q2) . This amplitude, a function of three variables, 
should have correct known limits, i .e. it should reduce to the on shell hadronic scattering 
amplitude on mass shell, and to the nuclear structure function (SF) when t = 0 . In such 
a way we could complete a unified "two-dimensionally dual"picture of strong interaction 
[l, 2 ,  3, 4] - see Fig. 3 .  
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Fig. 3 .  Veneziano, or resonance-reggeon duality [ 10] and Bloom-Gilman, or hadron­
parton duality [5] in strong interactions. From [2] . 

In Ref. [1 , 2] the authors tried to introduce Q2 -dependence in Veneziano amplitude [10] 
or more advanced Dual Amplitude with Mandelstam Analyticity (DAMA) [ 14] . The Q2 -
dependence can be introduced either through a Q2 -dependent Regge trajectory [1] ,  leading 
to a problem of physical interpretation of such an object, or through the g parameter of 
DAMA [1 , 2] . This last way seems to be more realistic [2] , but it is allowed only in the 
limited range of Q2 due to the DAMA model requirement g > 1 [14] (see [2] for details) . 

In the papers [3, 4] the authors went in an opposite direction - they built a Regge-dual 
model with Q2 -dependent form factors, inspired by the pole series expansion of DAMA, 
which fits the SF data in the resonance region1 . The hope was to reconstruct later the 
Q2 -dependent dual amplitude, which would lead to such an expansion. 

A consistent treatment of the problem requires the account for the spin dependence, 
which we ignore in this paper for the sake of simplicity. Our goal is rather to check 
qualitatively the proposed new way of constructing the 11two-dimensionally dual 11 amplitude. 

1It  is important that DAMA not only allows, but rather requires nonlinear complex Regge 
trajectories [14] . Then the trajectory with restricted real part lead to a limited number of resonances. 
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2. Modified DAMA model 

The DAMA integral is a generalization of the integral representation of the B-function 
used in the Veneziano model [14] 2 :  

_ 11 ( Z ) -ns (s' )-1 ( l 
_ Z ) -a, (t") - 1  

D(s , t) - dz - -- , 
0 g g 

(2 .1) 

where a' = a(l - z) , a" = az , and g is a free parameter, g > 1 ,  and o:8 (s) and O:t (t) 
stand for the Regge trajectories in the s - and t -channels. 

In this paper we propose a modified definition of DAMA (M-DAMA) with Q2 -
dependence [15] . It also can be considered as a next step in generalization of the Veneziano 
model. M-DAMA preserves all the attractive features of DAMA, such as pole decompositions 
in s and t , Regge asymptotics etc. ,  yet it gains the Q2 -dependent form factors, correct 
large and low x behaviour for t = 0 etc. 

The proposed M-DAMA integral reads (151 : 

2 
_ 11 ( Z ) -ns(s')-,6(Q2 1 1 )-l ( l _ Z ) -a, (t") -,6(Q2 1) -l 

D(s, t , Q ) - dz - -- , 
0 g g 

(2 .2) 

where (3(Q2) is a smooth dimensionless function of Q2 , which will be specified later on 
from studying different regimes of the above integral. 

The on mass shell limit, Q2 = O , leads to the shift of the s - and t -channel trajectories 
by a constant factor (3(0) (to be determined later) , which can be simply absorbed by the 
trajectories and, thus, M-DAMA reduces to DAMA. In the general case of the virtual particle 
with mass M we have to replace Q2 by (Q2 + M2) in the M-DAMA integral. 

Now all the machinery developed for the DAMA model (see for example [14]) can be 
applied to the M-DAMA integral. Below we shall report briefly only some of its properties, 
relevant for the further discussion. 

2 . 1 .  Singularities in M-DAMA 

The dual amplitude D(s, t, Q2) is defined by the integral (2.2) in the domain 
Re (a8 (s' ) + /3(Q2") )  < 0 and Re (at (t") + (3(Q21) ) < 0 .  For monotonically decreasing 
function Re (3(Q2) (or non-monotonic function with maximum at Q2 = 0 )  and for 
increasing or constant real parts of the trajectories these equations, applied for 0 :S: z :S: 1 , 
mean Re (a8 (s)+/3(0)) < 0 and Re (at (t) +/3(0)) < 0 .  To enable us to study the properties 
of M-DAMA in the domains Re (a8 (s') + /3(Q211) )  � 0 and Re (o:t (t") + /3(Q2') )  � 0 ,  
which are of the main interest, we have to make an analytical continuation of M-DAMA. 
This leads to the appearance of two moving poles 8 (s(l - Zn) )  + f3(Q2zn) = n and 
at (tzm)+/3(Q2 (1-zm))  = m, n, m = 0, 1 ,  2 . . . polesThesingularitiesofthedualarnplitudear 

The collision of a moving pole z = Zn with the branch point z = 0 results in a pole 
at s = Sn , where Sn is defined by 

(2 .3) 

2There are several integral representations of DAMA [14), here we shall use the most common 
one. 
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Please, notice the presence of an extra (in comparison to DAMA) term ;3(0) . It can 
be considered as a shift of the trajectory. If ;3(0) is an integer number, then the 
modification is trivial . 

The collision of a moving pole z = Zn with the branch point z = 1 results in a pole 
at Q2 = Q;;, , defined by 

a8 (0) + J](Q�) = n .  (2.4) 
In this sense we can think about J3(Q2) as of a kind of trajectory, but we do not 
mean that it describes real physical particles. Also we will see later that with a proper 
choice of ;3( Q2) we can avoid these unphysical poles, and ;3( Q2) required by the low 
x behaviour of the nucleon SF is exactly of this type. 

Similarly, the collision of a moving pole z = Zm with the brnnch point z = 1 results 
in a pole at t = tm , defined by 

CTt (tm ) + /3(0) = m . (2 .5) 

The collision of a moving pole z = Zm with the branch point z = 0 results in a pole 
at Q2 = Q;n , defined by 

CTt (O) + J](Q;,) = m .  (2 .6) 

Note that if a8 (0) = at(O) the poles in Q2 will be degenerate. For further discussion 
we shall consider a non-degenerated case. 

2 .2 .  Pole decompositions 

Similarly as for DAMA [14] ,  case 1 from the above results into pole decomposition 
of M-DAMA amplitude with the following expression for the pole term [15] :  

where 

D ( Q2) = n+l � [;3' (0)Q2 - sa� (s)] 1Cn-z(t, Q2) 
(2 _7) sn s, t, g t:o' [n - as (s) - ,8(0)] !+1 ' 

2 _ �_If_ [ ( l - Z) -at (tz)-,6(Q2 (1-z))- 1] 
C1 (t, Q ) -

l' d z . z g . z=O 
(2.8) 

Formula (2 .7) shows that our D(s, t, Q2) does not contain ancestors and that an 
(n + 1) -fold pole emerge on the n -th level. The crossing-symmetric term can be 
obtained in a similar way by considering the case 3 from the list above. 

The modifications with respect to DAMA are A) the shift of the trajectory 0'.8 ( s) 
by the constant factor of ;3(0) (we can easily remove this shift including ;3(0) 
into trajectory); B) the coefficients Cz are now Q2 -dependent and can be directly 
associated with the form factors. The presence of the multipoles, eq. (2 .7) ,  does not 
contradict the theoretical postulates. On the other hand, they can be removed without 
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any harm to the dual model by means the so-called Van der Corput neutralizer3 .  This 
procedure [ 14] seems to work for M-DAMA equally well as for DAMA and will result 
in a 11Veneziano-like 11pole structure: 

D ( Q2) - n+l Cn (t, Q2) 
sn \s, t, - g n - a8 (s) - ,8(0) (2.9) 

The Q2 -pole terms can be obtained by considering cases 2 and 4 from section 2 . 1 . ,  
but , as we shall see later in  section 4 . ,  with our choice o f  ,8(Q2) we avoid Q2 poles. 

2.3.  Asymptotic properties of M-DAMA 

Let us now discuss the asymptotic properties of M-DAMA. Using exactly the same 
method as in [14] it is possible to show that if the trajectory satisfies some restriction 
on its increase, then we obtain the Regge asymptotic behaviour [15] :  

D (s , t, Q2) ,..., sa, (t)+f3(0)gf3(Q2 ) , s ....., oo .WOSo, intheReggelimitM-DAMAhasthe 

,8(0) ) . 
It is more interesting to study the new regime, which does not exist in DAMA - the 
limit Q2 ....., oo ,  with constant s ,  t .  We assume that ,8(Q2) ....., - oo  for Q2 ....., oo .  
Then [15] ,  

D(s  t Q2) I � (2g) 2f3(Q2 /2)+as (s/2)+a, (t/2)+2 {2; ' ' JQ2�co ,...,_, ' V W , (2 .10) 

where W r:::::! 81 ln(Q2 /Q5 ) .  For DIS, as we shall see below, if s and t are fixed 
and Q2 ....., oo then u = -2Q2 ....., -oo , as it follows from the kinematic relation 
s + t + n = 2m2 - 2Q2 • So, we need also to study the D(u, t, Q2) term in this limit. 
If /au (-2Q2) 1  is growing slower than l,8(Q2) 1 or terminates when Q2 ....., oo ,  then 
the previous result ( eq. (2 .10) , s to be changed to n = -2Q2 ) is still valid. 

3 .  Nucleon structure function 

The total cross section of 'Y*P scattering is related to the SF by 

(3 . 10) 

3In brief, the procedure (14] is to multiply the integrand of (2.2) by a function cp(z) , which has 
the following properties: 

cp(O) = O, cp(l) = J , cpn( l ) = O, n = l, 2 , 3, . . .  

The function cp(z) = 1 - exp (- 1.:_z ) , for example, satisfies the above conditions. 
\ 
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where a is the fine structure constant. In eq. (3 . )  we neglected R(x, Q2) = 
ClL (x, Q2) / crr(x, Q2) , which is a reasonable approximation. 

The total cross section is related to the imaginary part of the scattering amplitude 

where PcM is the center of mass momentum of the reaction, PcM 
s-m2 / 1+4m2x2 /Q2 r T 2(i-x) y 8 ior DIS. hus, we have 

2 \ 4Q2 (1  - x)2 2 2 F2 (x, Q J = a (s - m2) ( 1 + 4m2x2 /Q2)3/2 I
m A(s(x, Q ) , t = 0, Q ) . (3 .10) 

The minimal model for the scattering amplitude is a sum (17] 

A(s, 0 , Q2) = c(s - u) (D(s , 0, Q2) - D(u, 0, Q2) ) , (3.10) 

providing the correct signature at high-energy limit, where c is a normalization 
coefficient. As it was said at the beginning, we disregard the symmetry properties 
of the problem (spin and isospin) ,  concentrating on its dynamics. 

In the low x limit: x ____, 0 ,  t = 0 ,  Q2 = canst , s = Q2 /x ---> oo ,  u = -s we obtain 
from eqs. (?? ,3 . ) :  

(3.1 0) 

Our philosophy in this section is the following: we specify a particular choice of (3(Q2) 
in the low x limit and then we use M-DAMA integral (2.2) to calculate the dual 
amplitude, and correspondingly SF, in all kinematical domains . We will see that the 
resulting SF has qualitatively correct behaviour· in all regions . Even more - our choice 
of (3(Q2) will automatically remove Q2 poles. 

According to the two-component duality picture [ 18] , both the scattering amplitude 
A and the structure function F2 are the sums of the diffractive and non-diffractive 
terms. At high energies both terms are of the Regge type. For 1*p scattering only the 
positive-signature exchanges are allowed. The dominant ones are the Pomeron and f 
Reggeon, respectively. The relevant scattering amplitude is as follows: 

2 2 ( s ) °'k (0) 
B(s, Q ) = iRk (Q ) -') , \ m- (3 .10) 

where ak and Rk are Regge trajectories and residues and k stands either for the 
Pomeron or for the Reggeon. The residue is chosen to satisfy approximate Bjorken 
scaling for the SF [19, 20] . From eqs. (3 . ,3 . )  SF is given as: 

(3 .10) 

Bjorken variable x = Q2 / s for s ____, oo and thus, Regge asymptotics and scaling 
behaviour require that 

(3. 10) 
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Actually, it could be more involved if we require the correct Q2 -+ 0 limit to be 
respected and the observed scaling violation (the "HERA effect " )  to be included. 
Various models to cope with the above requirements have been suggested (16, 19 ,  20] . 
At HERA, especially at 1:1rge Q2 , scaling is so badly violated that it may not be 
explicit anymore. 

In the phenomenological models which are used nowadays to fit F2 data [19, 20, 7, 8 ,  
24] (also [3 ,  4 ]  were discussed in introduction) the Q2 -dependence is  introduced 11 by 
hands " ,  via residue in the form (3.) , parameters of which are then fitted to the data. 
Now we have a model which contains Q2 -dependence from the very beginning and 
autornaticaliy gives a correct behaviour of the residues. 

Data show that the Pomeron exchange leads to a rising structure function at large 
s (low x ) . To provide for this we have two options: either to assume supercritical 
Pomeron with ap(O) > 1 or to assume a critical ( ap(O) = 1 )  dipole (or higher 
multipole) Pomcron [16, 2 1 ,  22] .  The latter leads to the logarithmic behaviour of the 
SF: 

D ( Q2) Q2R (Q2 ' 1 ( s \ r 2 , P  x , "' P ) n \ m2 j '  (3 .10) 

which proves to be equally efficient [16, 22] .  

Let us now come back to  M-DAMA results . Using eqs. (3 . ,3 . )  we obtain: 

(3 . 10) 

Choosing 
p(O) = - 1  

we restore the asymptotics (3 .) and this allows us to use trajectories in their commonly 
used form. Now we have to find such a p(Q2 ) ,  which can provide for Bjerken scaling. 
If we choose p(Q2 ) in the form 

p(Q2 ) = d -- 1 ln(Q2 /Q�) , (:3 . 10) 
with 

I = (at (O) + i3(0) + l)/ ln g = Gt (O)/ ln g , (3 . 10) 

where d ,  Q� are some parameters, we get the exact Bjorken scaling. 

Actually, the expression (3.) might cause problems in the Q2 --+ 0 limit. To avoid 
this, it is better to use a modified expressions 

/ Q2 Q2 \  10' ( Q2 Q2 \ 
,B(Q2 ) = ,8(0) - 1 ln l --;-_Q ) = - 1 - °'t \ ) ln \ -� i 

' Qo / In g \ Qo ) 
This choice leads to 

Q2 . 
r 1 (0) I l 0:,{0) r- '.L rr -at r2 (x, Q ) rv �  ( Q2 1 Q2 ' . T 0 /  

(3. 10) 

(:3 . 10) 

where slowly varying factor 

(for example [20]) . 

( 2 ) °'t (O) Q2�Qg. i s  typical for the Bjorken scaling violation 
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2 
Now let us turn to the large x limit . In this regime x -+ 1 ,  s is fixed, Q2 = 81-� -+ 
oo and correspondingly u = -2Q2 . Using eqs. (2 .10,3. ,3.) we obtain: 

p2 ,.._, (1 _ x)2Q4g2f3(Q2/2)1f£ (g'>s (s/2) _ 9au(-Q2 )) • (3. 10) 

For Q2 -+ oo factors (g°'s (s/2J - g°'" (-Q2)) and W are slowly varying functions 

of Q2 under our assumption about o:u(-Q2) . Thus, we end up with qualitatively 
correct behaviour 

( 2 ) 2')' ln 2g F2 "" 2g2
0 "" (1 - x)2at (O) ln 2g/ ln g .  (3 .10) 

Let us now study F2 given by M-DAMA in the resonance region. The existence of 
resonances in SF at large x is not surprising by itself: as it follows from (3.)  and (3. ) 
they are the same as in 1*p total cross section, but in a different coordinate system. 

For M-DAMA the resonances in s -channel are defined by the condition (2 .3) .  For 
simplicity let us assume that we performed the Van der Corput neutralization and, 
thus, the pole terms appear in the form (2 .9) . In the vicinity of the resonance s = BRes 
only the resonance term DRes (s, 0 ,  Q2) is important in the scattering amplitude and 
correspondingly in the SF. 

Using (3(Q2) in the form (3.) ,  which gives Bjorken scaling at large s ,  we obtain from 
eq. (2 .8) : 

r 2 _ ( gQS ) °'t (O) [ Q2 O:t (O) (Q2 + Qs \ 1  . CnQ ) - Q2 + Q6 o:t (O) + ln g Q2 + Q6 - Ing ln Q6 r . (3 .10) 

( Q2 ) °'t (O) 
The term Q2+0Qg gives the typical Q2 -dependence for the form factor (the 

rest is a slowly varying function of Q2 ) .  
If we calculate higher orders o f  Cn for subleading resonances, we will see that the 

Q2 -dependence is still defined by the same factor ( Q2�6Q� ) o:, (o) . Here comes the 

important difference from the Regge-dual model [3, 4] motivated by introducing Q2 -
dependence through the parameter g .  As we see from eq. (2.9) , g enters with different 
powers for different resonances on one trajectory - the powers are increasing with the 

step 2. Thus, if g �..., ( Q2�Qg) D, , then the form factor for the first resonance is ( n = 0 )  

� ( Q2�5Qg) D, , and for the second one ( n = 2 ) it is "" ( Q2��Qg ) 31':, etc. As discussed 

in [4] the present accuracy of the data does not allow to discriminate between the 
constant powers of form factor (for example Refs. (23, 7, 8, 24] , and this work) and 
increasing ones. 

4 .  How to avoid Q2 poles? 

General study of the M-DAMA integral allows the existence of Q2 poles (see cases 
2 ,  4 in section 2 . 1 . )  which would be unphysical. The appearance and properties of 
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these singularities depend on the particular choice of the function (3( Q2) , and for our 
choice, given by eq. (3.) , the Q2 poles can be avoided. 

We have chosen /3( Q2) to be a decreasing function, then, according to conditions 
(2.4,2 .6) , there are no Q2 poles in M-DAMA in the physical domain Q2 � 0 ,  if 

Re /3(0) < -a8 (0) , Re /3(0) < -o:t (O) . (4.10) 

We have already fixed /3(0) = - 1 , eq. (3.) , and, thus, we see that indeed we do 
not have Q2 poles, except for the case of supercritical Pomeron with the intercept 
o:p(O) > 1 .  Such a supercritical Pomeron would generate one unphysical pole at 
Q2 = Q;olc defined by equation 

- 1 - ap(O) ln (Q2 + Q6) + a  ro) = O =?-ln g Q6 
P \  

e<p(0)-1 
Q;ole = Q5(g ap (O) - 1) · (4.10) 

Therefore we can conclude that M-DAMA does not allow a supercritical trajectory 
- what is good property from the theoretical point of view, since such a trajectory 
violates the Froissart-Martin limit [25] . 

As it was discussed above there are other phenomenological models which use dipole 
Pomeron with the intercept ap(O) = 1 and also fit the data (see for example [16] ) .  
This i s  a very interesting case - ( O:t (O) = 1 )  - for the proposed model. At the first 
glance it seems that we should anyway have a pole at Q2 = 0 . It should result 
from the collision of the moving pole z = z0 with the branch point z = 0 , where 
O:t (0) + ,8( Q2 ( 1  - zo) )  = 0 in our case. Then, checking the conditions for such a 
collision: 

we see that for t = 0 and for (3( Q2) given by eq. (3.) the collision is simply impossible, 
because z0 (Q2) does not tend to 0 for Q2 -+ 0 .  Thus, for the Pomeron with o:p(O) = 
1 M-DAMA does not contain any unphysical singularity. 

On the other hand, a Pomeron trajectory with ap(O) = 1 does not produce rising SF 
(3.) ,  as required by the experiment. So, we need a harder singularity and the simplest 
one is a dipole Pomeron. A dipole Pomeron produces poles of the second power - Ddipole (s, tm) oc (m-a0}(fJ+1)2 , see for example ref. [21] and references therein. 

Formally such a dipole Pomeron can be written as aZP (m-��(�)+1) , and generalizing 
this -- Ddipole (s,  t) = a�P D (s, t) , where D(s, t) can be given for example by DAMA 
or M-DAMA. Applying this expression to the asymptotic formula of M-DAMA, eq. 
(T?) ,  we obtain a term gf3CQ2l s°'' (t)+fJ(O) ln s ,  which then leads to a logarithmically 
rising SF (for ap(O) + /3(0) = 0 )  - the one given by eq. (3 . ) .  

For f3(Q2) in the form (3 . )  M-DAMA will generate an infinite number of the Q2 
poles concentrated near the " ionization pointn Q2 = -Q5 . Although these are in the 
unphysical region of negative Q2 , such a feature of the model 
A) makes us think about /3( Q2) as about a kind of trajectory, what is not the case , 
as it was stressed above, and 
B) might create a problem for a general theoretical treatment, for example for making 

- .. _____. 
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analytical continuation in Q2 . To avoid this we can redefine (3( Q2) in the nonphysical 
Q2 region, for example in the following way: 

{ -1 - � ln (Q2+Q� l 
2 _ In g Qr ' (J(Q ) -

-1 - a, (O) In Q6-2Q2 In g Q0 ' 
for Q2 ::'.:: 0 ,  

for Q2 < 0 .  
(4. 10) 

This function has a maximum at Q2 = 0 ,  (3(0) = - 1 . M-DAMA with (3(Q2) given 
by eq. (4.) preserves all its good properties, discussed above, and does not contain any 
singularity in Q2 (except for the supercritical Pomeron case, which we do not allow) . 

5 .  Conclusions 

A new model for the Q2 -dependent dual amplitude with Mandelstam analyticity is 
proposed. The M-DAMA preserves all the attractive properties of DAMA, such as its 
pole structure and Regge asymptotics, but it also leads to generalized dual amplitude 
A(s, t, Q2) and in this way realizes a unified "two-dimensionally dual"picture of strong 
interaction [1 ,  2, 3, 4) (see Fig. 3) .  This amplitude, when t = 0 ,  can be related to 
the nuclear SF, and in this way we fix the function (J(Q2) , which introduces the Q2 -
dependence in M-DAMA, eq. (2.2) . Our analyzes shows that for both large and low 
x limits as well as for the resonance region the results of M-DAMA are in qualitative 
agreement with the experiment. 

In the proposed formulation a Q2 -dependence is introduced into DAMA through 
the additional function (J(Q2) . Although in the integrand this function stands next 
to Regge trajectories, this, as it was stressed already, does not mean that it also 
corresponds to some physical particles. There is no qualitative difference between 
two ways of introducing Q2 -dependence into DAMA: through the Q2 -dependent 
parameter g ,  i .e. function g( Q2) [1 , 2] or through the function /]( Q2) . On the other 
hand the second way, i.e. M-DAMA, is applicable for all range of Q2 and it results 
into physically correct behaviour in all tested limits. 
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WAVE-MIXING SCHEM ES REVEALING QED VACU U M  
NONLINEARITY 
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Institute of Applied Physics Russian Academy of Science, Nizhny Novgorod, 

Mode coupling and combinative frequency generation due to quantum-electrodynamical non­

linearity of vacuum are considered for specially designed microwave-optical cavities. 

1 .  Introduction 

According to quantum electrodynamics (QED) , there is photon-photon scattering 
in vacuum; see, e.g. , [1 , 2 ,  3, 4, 5] . It is owing to virtual electron-positron pairs and 
makes vacuurri a nonlinear medium. Nonlinear terms in Maxwell equations vanish in 
the limit of parallel propagation of plane waves .  However, observation of nonlinear 
vacuum effects is possible when eigenmodes of a cavity or crossed beams are used 
(some recent proposals are given in [6, 7, 8, 9]) .  

In the present paper, several new wave-mixing schemes revealing this nonlinear­
ity are considered, including third harmonic generation in high-Q microwave (MW) 
cavities and quasi-optical resonators , and combinative frequency generation due to 
coupling of MW fields with laser beams. 

It is easy to understand why the electrodynamics in vacuum is nonlinear First , 
there is a well-known process of annihilation of a charged particle and its anti-particle, 
for example, electron and positron, that produces a pair of photons. Consequently, 
there must exist an inverse process in which two photons collide and produce an 
electron-positron pair. This pair can immediately disappear, or be virtual, and in 
turn produce two photons . The process as a whole can be thought of as scattering 
of one photon on another (Fig .1 ) , and since photons interact , the evolution of elec­
tromaguetic field cannot be described by linear equations. If such an interaction is 

Puc. l .  Photon-photon scattering due to virtual pairs. 

1 I 
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taken into account, it gives an additional term in the Lagrange function, which was 
calculated by Heisenberg and Euler in 1936 [10] :  

Here the Planck's constant fi and the velocity of light c are equal t o  unity, e 
is the electron charge, m the electron mass, a = e2 /fie = e2 the fine structure 
constant . We are taking only electrons and positrons into account because they have 
the smallest mass and thus are most readily produced in vacuum by electromagnetic 
fields E ,  B . Over the years, various authors have studied the feasibility of using 
high-intensity radiation in vacuum to observe some nonlinear effects ,  such as four­
wave mixing [7] , self-action [1 1 ] ,  vacuum birefringence [12] , etc. 

2.  Nonlinearity i n  low-frequency weak fields 

Electron-positron pair creation is exponentially small if the work of electric field 
over Compton's wavelength is much smaller than the electron rest energy or, equiv­
alently, the field is smaller than the so-called critical field, Ee = mc2 / eX, where 
x = n/mc . 

Under laboratory conditions pair creation is hardly possible, with the exception 
of some extreme cases such as collision of two nuclei with relativistic velocities or 
x-rays focusing [3, 9, 13] .  Hereafter we assume the fields to be much weaker than the 
critical ones, and the frequencies to be not too high so that dispersive effects owing 
to quantum nature of light can be neglected [4, 5, 1 1] :  

E ,  B « Ee =  Be = m2c3 /efi = 4 . 4  · 1013G � 1 . 3  · 1016 V /cm, 

,\ '"'"' c/w » mc2 /e(E + B) ,  i .e . ,  fiw « Xe(E + B).  

Both assumptions are valid for modern powerful microwave and optical sources. 
Then one can use perturbation theory and obtain the following well-known form of 
the Lagrange function [1] 

and come to the standard Maxwell equations, where polarization and magnetization 
depend cubically on the electric and magnetic fields: 

divB = 0, div(E + 47rP) = 0, 
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1 8B 1 8(E + 4wP) 
rotE = - - -0 , rot (B - 4wM) = - 0 ; c t c t 

p = l_ [2(E2 - B2)E + 7(E · B)B] , 
47r 

M = _l_ [2(E2 - B2)B - 7(E · B)E] . 
47r 

Nonlinear constant is defined by the electron charge and mass: 

fie4 -31 � = -� � 0.26 · 10  e.s .u. ,  45wm c 

ENL ,...., C1/2 � 0 .6  · 1016 e.s .u. � 2 · 1018 V /cm. 
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In all the processes we are going to discuss, no real electron-positron pairs are 
produced, the pairs are virtual and manifest themselves only through the nonlin­
earity of Maxwell equations. In other words, there are no actual charge and current 
sources in the equations. It is important to note again that the nonlinear terms are 
exactly equal to zero for a plane electromagnetic wave, or for a group of plane waves 
propagating in one direction. 

In sections 3-6 we briefly discuss some of the predicted nonlinear vacuum effects 
and proposed schemes for their experimental detection. In sections 7, s .. we discuss the 
possibility of observing the vacuum-produced third harmonic of microwave radiation, 
and in sections 9, 10 we present new combined MW-laser schemes, which are a 
natural generalization of previously proposed schemes based on either MW or optical 
radiative processes; cf. , e .g . , [7, 8, 1 1 ,  13] .  

3 .  Magnetized vacuum as an anisotropic medium 

There are products of three electromagnetic fields in the expressions for vacuum 
polarization and magnetization, and by fixing some of them to be constant external 
fields we can obtain linear, quadratic, and cubic effects. 

One of these linear effects is birefringence in magnetized vacuum. In the presence 
of strong constant magnetic field, the two eigenmodes of Maxwell equations have 
different indices of refraction. Dependence of ordinary and extraordinary indices of 
refraction on external magnetic field may be easily calculated and is shown in Fig .2 ,  
where () is the angle between a wave vector and the magnetic field, Bo . When 
the field is much weaker then the critical value, Bo « Be , and the wave frequency 
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is not too high, fiw « mc2 /sin Bl Be/ Bo , the correction to the phase velocity of 
electromagnetic waves is quadratic on the external magnetic field (see, e.g. , [14 ,  1 5] ) :  

{ n e  � 1 + ( 7  /2)a sin2 () 
no � 1 + 2a sin2 e ' a B2 

a =  __ __  o 
45n Et

. 

Thus, vacuum in a strong magnetic field can influence the polarization of electro­
magnetic waves propagating through an inhomogeneous magnetoactive plasma. So, 
observing polarization peculiarities of radiation coming from astrophysical sources 
(e.g. , neutron stars) with high magnetic fields may provide an indirect evidence of 
nonlinearity of vacuum. However, there are no firm observations of this kind nowa­
days, though there were some observational attempts and many discussions on this 
account ; see, e.g. , [14, 15 ,  16 ,  17 ,  18] . 

n2 - 1  0 

0 1 2 3rt/a- 103 

Prrc. 2. Birefringence in magnetized vacuum; ne and no are refractive indices of x -
and o - modes, respectively. 

4 .  Nonlinear phase shift 

Phase shift leading to change of the wave polarization can also occur when a 
radiation beam propagates through oscillating electromagnetic field. Consider the 
setup depicted in Fig.3 (see [ 12) ) : a focused high power beam with electric field am­
plitude E and another probe beam are propagating in the opposite directions. Due 
to nonlinear interaction the probe beam will experience a phase shift proportional 
to the length of interaction region, l , and this shift will depend on the initial po­
larization of the probe beam: ()(!) ,..., a( jE2 j  /E�) (l(>..) . According to estimates [ 12] , 
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for a wavelength >.. rv lµm , a powerful beam of cross-section S ,....., {300µm)2 and 
length l ,....., (S/ >..) ,....., lOcm , with energy £ ,....., lOkJ , produces a phase shift of about 
o<I> ,....., 10-10rad , which is very hard to detect. Many other well-known nonlinear opti-

PHc. 3. Scheme for observation of nonlinear phase shift .  

cal effects are possible in vacuum, including second harmonic generation, parametric 
instabilities, self-focusing and channelling in counter-propagating beams, see, e.g. , 
[6 , 7] . In particlar, the critical power for self-focusing instability is of the order of 
[7] Per ,....., 103 E; A.2 "" 2.5 · 1024 W. 

Another interesting nonlinear effect is photon splitting in magnetized vacuum 
[19] . An ordinary photon can decay into two extraordinary photons (Fig .4) . This 
3 -wave interaction process has also been widely studied; in particular, self-similar 
solutions of photon transfer equations are found [19] . 

Bo 
ko 

PHc. 4 .  Photon splitting 'Yo -+ 'Ye + 'Ye  in magnetized vacuum. 

5 .  4-wave mixing i n  vacuum 

Virtual electron-positron pair creation and annihilation leads to photon-photon 
scattering 11 + 12 -+ 1' + ')'11 (Fig. 1 ) .  Its effectiveness is characterized by well-known 
cross-section, a , which is calculated by quantum electrodynamical methods and has 
the following asyrnptotics [ 1 ,  2] 

a �  0.030:2 ( e\) 2 ( hw
2 
J 6 '  

me me / 
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tu.v » mc2 . 

A maximum, O"max ,..._, 10-30cm2 , is found at tu.v ::::; 1 . 5mc2 . This extremely small 
value of CT max explains why the effects of vacuum nonlinearity are so hard to observe. 

Generation of sum of three frequencies , w8 = w1 + w2 + W3 , is forbidden in 
vacuum. In this case, to satisfy the phase matching condition together with the 
vacuum dispersion relation, all three initial wavevectors and scattered wavevector 
must be parallel, ks It ki It k2 It k3 , and for waves propagating in the same 
direction vacuum nonlinearity vanishes . 

However, for combinative frequency generation, W8 = w1 + w2 - w3 , the phase 
matching condition, ks = k1 + k2 - k3 , can be met . It is illustrated in Fig.5 [1 1 ] . If 

( 
P:rrc. 5 .  Schematics of the phase matching for combinative frequency generation (after 
[ 1 1) ) .  

we fix the three initial frequencies, and therefore the lengths of all four wavevectors, 
and if we fix vectors k1 and k2 , the two spheres with radii ks and k3 intersect 
each other. Then, taking any point in the intersection we would satisfy the phase 
matching condition. The electric field of the scattered wave will be proportional to 
nonlinear polarization, scattered differential frequency, w8 , and grows linearly with 
coordinate along the scattered wavevector, ks : Esx (z) ex iw8z(P;�L + M��L) . 

6 .  Wave conjugation scheme 

One special case of the four-wave mixing scheme is so-called wave conjugation. 
It is realized when 

In this case the scattered wave goes exactly in the opposite direction to the third 
wave, and that is where the name "conjugation" comes from (Fig.6) . This scheme is 
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widely used in nonlinear optics, and one finds for the scattered wave amplitude [11] 
Es (l) ,....., ie (lw/c) (3 + cos2 'ljJ)E1E2E3 , where e � (a/ Bc)2 , and l is the path of the 
scattered wave along four wave overlapping region. 

PHc. 6. Geometry of wave conjugation in vacuum. 

For vacuum nonlinearity, it has been shown that if the intensities of the three 
laser pulses are equal Ii = h = h = E /ST , then the scattered energy, Es , is 
independent of pulse duration, T , and an estimate of this energy has been obtained 
[11] . In the case of small angle of conjugation, 'ljJ « 1 ,  the scattered energy Es ,....., 
10-4c2£3 / (EcS>..)2 . For >.. ,....., lµm and S rv (100µm)2 one would need laser pulse 
energy £ > lkJ to get a few scattered photons. 

All of the optical manifestations of vacuum nonlinearity described above have 
been analyzed theoretically, but none of them is anywhere near experimental real­
ization. 

In the radio frequency and microwave radiation band, which we would denote MW 
range, there have been proposals to detect vacuum nonlinearity by use of waveguides 
[8] . As an eigenmode propagates along a waveguide, the nonlinear polarization in­
duced by it gradually excites the third harmonic, and theoretically the latter can be 
measured, but estimates show that this would require vacuum tubes more than a 
million kilometers in length. Therefore, it is more practical to use a cavity instead of 
a waveguide. 

7.  Third harmonic generation in a high-Q cavity 

If we take a cavity with high quality factor Q , in which the funda..rnental eigen­
mode at frequency n is excited to sufficiently large amplitude, the nonlinear vacuum 
polarization and magnetization will be oscillating at frequency 3fl . If this is also an 
eigenfrequency of the cavity, then there is a resonance and this third mode will also 
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grow, until it reaches some saturated level , Ew . . To detect the third harmonic more 
easily, it is convenient to design the cavity in such a way that the fundamental mode 
has negligible amplitude in some part of the cavity, and hence does not interfere with 
measurements of the third harmonic. This can be accomplished by separating the 
cavity into two parts and connecting the parts with a filter waveguide for which the 
fundamental frequency of out cavity is below the cutoff (Fig.7 and also [8] ) .  

Q 3Q 
waveguide filter 

pump wave� I 
main cavity probe cavity 

PIIc. 7. MW cavity for third harmonic detection. 

For the sake of simplicity, let us consider a cavity with very simple geometry, 
so all the computations can be carried out analytically. Namely, we choose a basic 
mode m1n10 of a rectangular cavity (Fig.8) . 

c ! I E .· ,..-... .  T .... . . . . .  1 . . .. . . .. . ..  . 

a 

Pnc. 8 .  Model rectangular cavity. 

In this case it is also very simple to derive the condition that both fundamental 
and triple frequencies are eigenfrequencies of the cavity: 

3 3 9 1 1 m2 n2 (m2 n2) 
� + y; = � + y; . 

Stationary amplitude of the excited third harmonic, owing to the nonlinear 
sources P3 and M3 , can be found by standard perturbation theory methods : 
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where E(m) (r) and H(m) (r) are normalized fields of the excited mode. Taking into 
account the finite quality factor, Q ,  of the superconductive cavity at the frequency 
3n ' one finds E3n ,...,_. eEAQ. Here and in the following estimates we take into account 
only the term with nonlinear polarization of vacuum, P3 . The term with nonlinear 
magnetization is of the same order, and this two effects can in principle partially 
cancel each other, especially in par axial schemes such as discussed below in sections 
9 and 10 .  

This estimate obviously means that the more power we inject into the cavity 
the easier it is to detect the third harmonic, but in practice, metallic walls cannot 
withstand high electric fields, and the emitted electrons will spoil the vacuum. To 
prevent this negative effects, the electromagnetic fields should be kept under about 
0.4MV /cm , or, equivalently, 1300 e.s .u . .  So, we arrive at an estimate for the third 
harmonic amplitude which depends only on the quality factor: 

E3n < 0.6 · 10-22 e.s.u. · Q. 

What quality factor do we need to be able to detect the nonlinear field? At least, 
this field should be above the thermal fluctuation level, which for typical cavity 
volume V ,...,_. 102 cm3 at liquid helium temperatures is 

� -8 E3ntherrn "" y � "" 0.8  · 10  e.s.u . .  

And to exceed that , we need quality factor Q > 1014 , which can hardly b e  achieved 
even in superconductive cavities, and demands unattainable stability of an MW 
oscillator. 

8.  Third harmonic generation in quasi-optical 

crowave resonator 

. 
m1-

To overcome the principal limitation of the closed cavity scheme, we can use a 
quasi-optical resonator, so the focusing of the beams gives much higher field ampli­
tudes in the interaction region than the walls can tolerate. The third harmonic we 
are trying to detect will be excited in a smaller probe resonator aligned at an angle 
to the high-power resonator (Fig. 9) . 

This alignment is convenient for detection of nonlinear field components, since 
the high-power radiation has no contact with cooled surfaces of the high-Q probe 
resonator, and the harmonic field detector is away from the strong electric field. 
To counter the positive effect of this geometry, note, however, that the interaction 
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high-power 
resonator 
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interaction 
volume 

Puc. 9 .  Generation and detection of the third harmonic using quasi-optical res­
onators. 

volume becomes much smaller than the resonator volume, while in the case of a 
cavity they were comparable. 

Assuming the beams to be Gaussian and neglecting their divergence, we can 
obtain an analytical estimate of the saturated amplitude of the third harmonic .  For 
perpendicularly aligned resonators the third harmonic amplitude is 

r::. 2 2 2 ) E v 11 Qa3 a1 '"E3 (-4a1 k1 3D ,,...., S Lg a� c; n exp 
3 ' 

where Q and L3 are the quality factor and the length of the probe resonator, ai 
and a3 radii of waists of quasi-optical beams at frequencies n and 3n , respectively. 
Decreasing the angle between resonator axes can improve the above estimate only 
by a few times, mostly due to exp ( . . .  ) � 1 .  This result is of similar nature to the 
cavity estimate: the same third power of pump wave field, nonlinear constant and 
quality factor, which in this case comes in a combination that is independent of the 
length of resonator and characterizes the property of the material that the walls are 
made of. The rest are geometrical factors of order unity, except for the exponent . 
The latter reflects phase matching or mismatching between the modes of the two 
resonators, and also can be made close to unity. 

With sensible mirror sizes (about a meter) of quasi-optical resonator and wave­
length '"" 1 cm , the electric field in the interaction volume is bound by En ,...._, 4 · 104 e.s .u . .  For at/a� '"" 1 0 , L;3 /a3 '"" 1 02 we obtain 

E3n ,..__, Q · 1 .6 · 10-19 exp ( . . .  ) e.s .u . .  
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Thermal fluctuations in the probe resonator are 

E3ntberm rv 
87r/'l,T _8 --2 rv 3 . 10 e.s .u . . 
2L3a3 
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To exceed thermal threshold we need the quality factor Q > 1011 , which can 
in principle be realized in superconductive resonators, but the requirements for the 
stability of an MW oscillator remain prohibitive. 

9.  Mixing of two MW waves with an optical wave 

Since our chances for detection of vacuum nonlinearity in the radio or microwave 
frequency band do not look optimistic, let us consider combining it with laser radi­
ation in the optical band. Suppose we have the same high-power quasi-optical MW 
resonator and we shine a laser beam through it. Then, nonlinear polarization and 
magnetization are induced in the interaction volume, and as they coherently oscil­
late, they produce radiation. The effect can be thought of as coherent scattering of 
the laser pulse on MW radiation, with a corresponding shift in frequency ( ±2n ) 
and in direction of propagation ( <p , Fig.10) . 

MW pum� 
wave 

PHc. 10. Coherent scattering of a laser beam on an MW field in a quasi-optical 
resonator. 

For this process to be efficient , the phase matching condition must be satisfied. 
If we think of it as four-wave mixing,  the sum of wavevectors of three partial pump 
waves must be equal to the scattered wavevector. Exact phase matching condition, 
k + 2 kmw = lkJ + 2 lkmw J , can only be fulfilled if the laser radiation propagates along 
the axis of the resonator, when vacuum polarization drops to zero. Competition 
of these two effects determines the optimal angle between the laser pulse and the 

I I 
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resonator axis ,  e � J2/ (kmwamw) ,  where amw i s  the radius of the waist of MW 
beam (see Figs. 10 and 1 1 ) .  

PHc. 1 1 .  Wavevector mismatch maximizing vacuum nonlinear effect for the geometry 
of Fig. 10 .  

Maximum scattered power turns out to be proportional to the power of  optical 
pump, P :  

P. rv [fi �cE2 k  exp (-kmwamw/2) ] 2 p 
s rv l. " fl mwamw . 16  · �mw y'2kmwarnw 

For k/kmw ,.._, 104 , kmwamw >:::: 7r ,  En ""' 4 · 104 e.s .u. we obtain Ps "' 1 . 5  · 1 0-3s P. 
The scattered photon beam is of similar optical quality as the pump beam and is 
deflected by a small angle, cp rv kmw/k . 

To be experimentally measurable , the scattered radiation must contain at least 
one photon (the energy of an optical photon is fiw "' 2 · 10-19 J ) .  The latter requires 
,.._, 101 9 J of energy of the pump wave. This is hardly possible in laboratory conditions. 

1 0 .  Mixing o f  two optical waves with an �1W wave 

As an improvement of the previous scheme, we can use two laser pulses that 
interact in the presence of an MW field. Again, this should produce scattered beams. 

For the beam at frequency 2w - n (Fig .12)  we can fulfill the phase matching 
condition k1 + k2 = ks + kmw by aligning the wavevectors as shown in the diagram 
of Fig. 13 ,  where the following condition is assumed: 

In this scheme we have far greater freedom of choosing the angles , and for the 
sake of computational simplicity we will assume ks t+ kmw and 01 = 02 = 0 (see 
Fig. 12) . Then the phase matching condition, 

2k cos 0 + kmw = 2k - kIDW ) 

determines the angle e uniquely, o � J2kmw / k . 
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Prrc. 12 .  Interaction of two beams with a standing electromagnetic wave. 

Prrc. 13 .  Wavevector alignment for Fig .12 .  

Solving the corresponding electrodynamical problem we arrive at the following 
scattered power at frequency 2w - n :  

where both laser beams are assumed to have radius a0pt in the interaction region. 

Now the scattered power is proportional to the second power of pump laser power, 
so , for a given pump energy we should make the laser pulse as short as possible. But 
it cannot be shorter than the period of MW oscillations or the bandwidth of the laser 
pulse will be greater than the MW frequency, the coherent effect of this oscillations 
will be lost, and the shift in the frequency and angle would be impossible to measure. 

Finally, the constraint P8 > Psmin ,...., 2 - 10-10 W should be fulfilled, which means 
that during the action of the laser pulse ( ,...., 1 ns ) at least one photon is scattered. 
Hence, with the same beam parameters as in the previous scenario ( ( k/kmw) ""' 104 , 
(27r/k) ,...., lµm , En ,...., 4 ·  104 e .s .u. ) ,  we obtain the following requirement for the 
power of the optical pump: - ] 1/2 p > ll Psmin ckmw 

rv 3 . 1016 W. 
47r(�En)2  k3 

The improvement over the previous non-resonant scheme is due to the numerical 
factor ""'"' 104 , and two large factors (k/kmw) ,...., 104 and (Ew/ En)2 . Nevertheless, the 
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required energy in one nanosecond laser pulse ,...., 3 · 10 7 J ,  corresponding to electric 
field Ew :;;:: 3 · 107 e.s .u. , is still beyond the capabilities of modern laser systems. 
Nanosecond lasers available now have energies in the kilojoule range, so an increase 
in energy of about three orders of magnitude is required . 

However, the progress in laser optics and microwave electronics over the past two 
decades has been tremendous, and if its rate remains the same in the future, vacuum 
nonlinearity will probably be detected over the course of a few decades. 
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GEODESICS ON THE PSEUDOSPHERE 

/. /. R. Olah-Gal, Ju. Salamon 

Babes-Bolyai University, Cluj-Napoca, Romania 

Sapientia University, Miercurea-Ciuc, Romania 

In the present contribution we gave an elementary technology for drawing the geodesics, 

paracycles and hypercycleson the pseudosphere. 

1 .  Introduction 

We have mentioned several times, that the Bolyai-Lobachevsky plane geometry 
doesn't materialize in the third dimensional space (theorem of D .  Hilbert) . A lot of 
mathematicians submit that the Bolyai-Lobachevsky plane geometry can be easily 
presented by the logical models (Pioncare-Klein, Cayley) . Unfortunately this is not 
so, and it seems that , physicists accept this information more easily than mathemati­
cians do. 

It 's a well known fact that the pseudosphere is one of the local models where the 
Bolyai-Lobachevsky plane geometry is materialized in little. But as we will see, right 
here on the pseudosphere we can present , that the model is indeed local. One surface 
is complete, if the geodesics are extendable in any orientation and in any length. 
Well, this doesn't materialize on the pseudosphere. Furthermore, we haven't seen any 
drawing that would present the hypercycle or the paracycle on the pseudosphere. We 
know that the paracycles must be congruent, namely every paracycle is congruent 
as well as the lines are. Consequently on the Bolyai-Lobachevsky plane geometry 
there exist a line and a paracycle ruler . So we can see that the paracycles are not 
congruent on the pseudosphere, so there isn't a paracycle ruler on them, because of 
this the way reproducing the Bolyai-Lobachevsky plane geometry is very distorted. 

When we named as our target to draw the famed lines of the Bolya.i-Lobachevsky 
plane geometry, on the pseudosphere we first looked for some special literature. We 
have found one remarkable book, whereof sure many don't know. We have worked 
from this book. We have calculated and illustrated these geodesics. 

We can say that these geodesics haven't been illustrated correctly, probably be­
cause nobody troubled himself to draw the paracycles and hypercycles with hands 
and with the help of representative geometry design until now. 

- - _ _  ____, 



·' / R. Olah-Gal, Ju. Salamon 

The differential equations of geodetics are: 

UV - UV + Cf1 u3 + ( Cf2 - C{1 )  u
2
v - (2C{2 - Ci2) v

2
u - C�2v3 = 0. 

In case of pseudosphere: 
2 ( cos 'U ) 2 2 2 ') 

ds = -.- du + sin udv- , 
Slll 'U 

cl = 
-1  

c
l = - sin3 u 

c
2 - cos u 

11  sin u cos u ' 22 cos u ' 12 - sin u ' 
1 . 

3 . . . . . . 2 
cos u . 2 . . 2 . sm u . 3 

0 UV - 'UV + -.- U V + . U V + --V = . 
sm u sm u cos u cos u 

187 

This differential equation can be solved analytically, and the solutions can be 
represented in the pseudosphere. However , the figures of the geodesics also depend 
on the chaise of two constants, and we don't obtain nice looking figures. One of 
the authors has already done the mathematical study of this in paper [3] . But the 
analytical approach of the paracycles and hipercycles is very difficult . 

The differentiable geometry's equation of paracycle and hypercycle is very com­
plicated, and may not be given in a closed form. 

An elementary technology for drawing the geodesics, paracycles , and hypercycles 
is: In every case, first we represent the famed lines in the Poincare half-plane model, 
then we transform these lines inside of a circle, and from here we project them on 
the pseudosphere. 

The steps of drawing the geodesics: First we draw the geodesic in the Poincare 
half-plane model, what is defined in the following way. Let e be a line in the Eu­
clidean plane, and be named boundary line. For the points of the half-plane model we 
consider one of the half-plane's ,  which is defined by this boundary line. The geodesics 
are the half-circles which arc range (located) in this half-plane and intersect in right 
angle the e boundary line, as well as the half-lines (figure 4.3) which are perpen­
dicular on the e boundary line. Without loss of generality we can presume that the 
chosen e line is the ordinate and the center of the represented geodesic (half-circle) 
is in origin. We take the band between the lines x = 7r and x = -Jr (see figure 1 ) .  

If the radius of the half-circle's i s  bigger then 7r ,  then we project the half-circle 
symmetriqiJly back regarding the lines x = 7r and x = -Jr , until every part of the 
half-circle will be in the [- 7r ,  7r] band (see figure 2) . 

This is the following: 
if x < -Jr then x = -2 * 7r - x, 

if x > 7r then x = 2 * 7r - x.  
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3 . 5  

1 . 5 

��-·---��� 
ra.d i LJS=-:n: 

o ��--��� -5 0 
ra..c:l i LI S = S  

Prrc. 1. Geodesics in the Poincare half-plane. 

ra.d i LI S= 1 ra..d i u s=:n:: ra.cl i U S = 5  

Prrc. 2. Geodesics in the [-7r, 7r] band. 

ra.cf i LJS= "'1 0 

ra.cl i u s = 1 O 

The next step is the transformation of the obtained curve inside of one circle. We 
transform the strip between the lines y = 0 and y = r + 1 of the band given by the 
Euclidean x = 7r and x = -?r lines (the rectangle obtained in this way contains the 
whole curve) into one circle, where r is the radius of the half-circle. We shrink the 
line segment between the points (-?r, r + l) and (7r, r + l) of the obtained rectangle 
into one point , which will be the center of the circle. We elongate the line segment 
between (-?r, 0) and (7r, 0) to the length of 27r(r + 1 )  and we join the ends of them, 
to obtain a circle (see figure 3) . 

Mathematical we obtain this with the 

{X2 = (r + 1 - y) · COS X, 

Y2 = ( r + 1 - y) · sin x 

replacement , where the x, y are the drawing's curve. 

\Ve only have to project the points of the curve inside the circle into the pseudo-
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rad i u s = 1 rad i u s = P i  rad i u s = S  rad i u s= 1 0 

Pnc. 3. Geodesics in the circle. 

sphere (see figure 4) , knowing the formula of the pseudosphere 

{ 
x = ru cos ( v) , 
y = rn sin(v) , 

r+ 1r2- (y2+x2) . 1�----� z = r log v . - V r2 - (y2 + x2 ) . yy2+x2 

where u is the height (altitude) of the parallel circles, and v is the angel inside of 
these parallel circles which value is in [- K ,  K] interval. 

Pnc. 4. Geodesic on the pseudosphere. 

The course of drawing the paracycles is similar to that of the geodesics. The para­
cycles in the Poincare half-plane model are the circles which contact the boundary 
line, respectively the parallel lines with the e boundary line. The drawing of the 
paracycles which are parallel to the boundary line is not a problem because these 
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are the parallel circles on the pseudosphere (figure 6 .3) . Thus, the drawing of others 
paracycles: let consider those specific circles which have the center on the line that is 
perpendicular on the boundary line in the origin. We wedge the paracycles into the 
[-n, n] band as same as in case of the drawing of geodesics . Henceforth we proceed 
the same way as we have described above (see figures 5, 6) . 

PJic. 5 .  Paracycle in the Poincare half-plane for R=5. 

50 
40 
30 
2 0  

-S -5 

2 
5 

Prrc. 6. Paracycle on the pseudosphere. 

-5 -�5 

The drawing of the hypercycle. Let be one line in the Poincare half-plane and we 
draw the curve which is at distance 1 . In the course of this draft we take the lines 
(half-circles) in sense of Poincare which are perpendicular to our line (half-circle) . 
The points in these lines which are at distance 1 at the given line constitute the 
wanted curve. In this logical model the distance, metrics is defined by 

D (A, B) = k log (ABVU) 
formula. Here k is one arbitrary positive constant , A, B are two points on the half­
circle (line) and V, U are the intersection points of the half-circles and the boundary 

__ __ __, 
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line, with (ABVU) we sign the cross ratio 

(ABVU) = 
AV . BU 
BV Au · 
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The algorithm for finding the points which are at distance 1 to the given line: 

rad = r tan(o - 3� ) ;  
kp = - Jr2 + rad2; 

rad is the radius and (0, kp) is the center of the half-circle which is perpendicular 
on the given line (half-circle) at point which location is in angel o .  

x = rx; y = ry; 
dist = O; 
while (dist - 1 <= 0) do 
begin 

d . 1 1  ((kp-rad-x)2+y2) ( (kp+rad-rx)2+ry2) 1st - - og · ' - 2 ((kp+rad-x)2+y2 ) ( (kp-rad-rx)2+ry2) ' 
f . f . 7f 

'/, = '/, - 1000 ; 
x = kp + rad * sin(fi) ;  
y = rad * cos(fi ) ;  
end 
sx = x; 
sx = y. 

Here (rx, ry) is the point of the given half-circle at the angle o ,  the (x, y) is 
the point of the half-circle which is perpendicular on the given half-circle at point 
(rx , ry) , and the (sx, sy) is the point at distance 1 at (rx, ry) . 

Henceforward the wedge in [-7r, 7r] band, the transformation into the circle and 
the projection on the pseudosphere are the same as in the previous cases. The ob­
tained curve is on figure 8 .  

2. Conclusions 

We can assure about the correctness of the geodesic's drawings by the evocation 
of theorem of Clairaut . (A. Clairaut ( 1713- 1765) wrote the first study about space 
curve's: Traite des courbes ' a la double courbure, 1731) .  According Clairaut 's the­
orem the product of the radius of parallel circle and the cosine of angle between 
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PRc. 7. Hypercycle in the Poincare half-plane. 

PRc. 8. Hypercycle on the pseudosphere. 

geodesics and parallel circles is constant in case of surface of revolution. Based on 
this theorem every meridian curve is geodesic, since the meridian curves are perpen­
dicular to the parallel circles, so this way the cosine of angle is zero and the constant 
in the theorem is zero too and independent of the radius . It 's easy to educe that 
in case of the cylinder the parallel circles are geodesics. So in the case of the pseu­
dosphere the meridian curves are geodesics, moreover even those curves that satisfy 
Clairaut 's theorem are geodesics too. Namely they wrap gradually around the pseu­
dosphere until they reach oscillatory one parallel circle, because then cos 0 = 1 so 
the prescribed constant is the radius of the reached parallel circle. 

With the exemplification of the famed lines on the pseudosphere we wanted to 
prove, that the Bolyai-Lobachevsky plane geometry in the 3-dirnensional Euclidean 
space doesn't materialize physically. 
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PYKOTII1CI1 5IHOWA B05II1 0 J10BALJ EBCKOM 

P. OJiax-I'aJI 

Y'HuBepc11mem u.M. Ba6ew-BoJtu, 2 .KJLy;J1C-Hanona4 
KoJ!J!ea;JIC U'H<f;opJ-.wmur.:u, 2.Muepnypea lfyi? 

PaccK33hrnaeTCH o MaJIOH3BeCTHbIX B Pocc= pyKOIIHCHx 5IttoIIIa BoHH . 

MHorne pyccKHe r1eHbre yBepeHbI (cM . ,  ttanpHMep , [ I ] ) , 'ITO 51ttow Bmrn peBHOBaJI K Jio6a­

•1eBcK0My. B pyccKoti nay'rnoti JIHTepaType ,LJ,aw:e pacrrpocrpa1-ietto MHemie, 'ITO Bomi o6BH­

HH.rr faycca B nepepa6oTKe H H3,LJ,anH H  ero Tpy,LJ,a rro,LJ, nceB,LJ,OHHMOM " J1o6a'leBCKHJi: " . BepHo, 
5lHom BoHH nepew:nJr H TaKoe BOJIHemie, HO 3TO 6hmo ,LJ,O Toro, KaK OH rrpo'-!wra.11 pa6oTbI 

Jlo6a'-!eBcKoro ua HeMeIJ,KOM .H3bIKe . K co:tKa.nettmo, 3TO eMy yµ,aJIOCb O'I8Hb 1103,ll,HO, TOJibKO 

B 1848 ro,LJ,y. ITocJie 3HaKOMCTBa c pa6oTaMH J106a•1eBcKoro 5lttow BoHH rroJIHOCTbID H3MeHHJI 

CBOe MH8Hlie H CTaJI ,n,yMaTb ll IIllCaTb 0 J1o6a'ICBCKOM TOJibKO c B€Jill'IaHllilIM npll3HaHll8M 

li yBaw:ettueM .  I1p1rne,L1,eM µ:oKa3aTeJihCTBa 3Toro. 

Bomr Harrnca.n npeKpacny10 pa6oTy " 3aMe'IaHHH o pa6oTe J1o6a'feBcKoro" ( 40 pyKonuCHbIX 
cTpamm n [2] ) .  KpoMc 3Toro, ecTh MIJOro MaJieHbKHX 3anl!COK, B KOTopLix Bcmu rmmeT o 

Jlo6a•reBCKOM c BCm!'-IallUlllM IIO'l.T8HHeM lI CTaBHT ce6e IJ,eJlb npHo6pecTll BCe pa60Thl .J1o6a­

qeBCKOro. Ha puc. l npuBe;�eHa KOTilIH 110/l,JllIHI-IOro ;J,OKyMeHTa, TCKCT KOTOporo CJICll,YKHJJ,HH: 

0 11pHo6pecTH Bee pa6oTbI J1o6aqeBcKoro H3 Ka3am1" . 

Fig. 1 .  " Ilpuo6pecTH Bee pa6oThI Jio6aqeBCKoro H3 Ka3aHH11 

5ltiollI Bmrn n HcaJI CBOH 3aMcTKH u Tpy,n,hr B oforacTH MaTeMaTHKH Ha BeI-IrepcKoM , .JiaT11n­

CKOM l!JIH I-ICMeIJ,KOM H3bIKax. HnTepecno, 'ITO Hatt6oJiee Tpy;i,tto p a36Hpa10TCH ero pyKOTIHCll 

4Be11rcpcKoe na3Bamie - KoJim1rnap. 
5 BenrepcKoe Ha3BaHIJ.e - '-IHKCepel(a. 
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Ha BeHrepCKOM a3bIKe, IIOCKOJibKY OH C03)J,aJI H llCIIOJlb30BaJI CIIeL\HaJibHbie 3HaKH H 6yKBbI. 
Ero tteMeL\KHe pyKorrnc11 ttarrncaHbI roTWICCKHMH n naTHHCKI1MH 6yKBa�r n ,  a nan6o.nee .nerKo 
quTaIOTCa PYKOIIHCH Ha JiaTbIHH, IIOCKOJlbKY OHH aBJiaIOTCa qncTOBblMH 3K3CMIIJiapaMH ro­
TOBb!X MaTeMaTwrecKHX pa6oT. Y Boan ecTb MHoro noxnaJibHbIX 3aMe'rannti o Jio6aqencKoM, 
caMbIM Bb!pa3HT€JibHblM ll3 HHX npe)J,CTaBJiaeTca CJie)J,yIOIL\ee: " IIoKa B Poccm1 .IKHBYT TaKue 
KpaCHBbie, )J,06pbre ll CTpeMaIL\HC K 6JiaropO)J,CTBY ,ll,ylllll , KaK Jio6aqeBCKHH, eCTb IIOBO)J, ll 
ocHonaHne Ha)J,eaTbC.H Ha BbICIIIee npocneIL\ettnn Poccuu . " (BJ-93/1 ;  CM. Prrc.2) . 

Fig. 2. Jieccrnoe MHettIIe 5IHorna Bmrn o Jio6a'-reBCKOM 

Hy:)!rnO 3IIaTb, qTo n Mapournarnapxe e6 coxpatteHbI 14000 pyKonucttbIX CTpaHHL\ 5Inowa 
B05m, KOTOpbre CO)J,ep.tKa!OT ero caMbie m1q!fb!e HCIIOBe)J,il: y 5IHowa He 6bIJ[(l coqyBCTBeH­
HOH .IKCHbl liJili ,IJ,pyra, II03TOMY o6bI'IHO eMy OCTaBaJiaCb TOJibKO 6yMara, Tr06bI l'OBOpHTb 0 
cBoux caMhIX Jrnqttbrx MbICJiax n qyBCTBa.x . B I1HTepHeTc [3] )J,OcTyrrna rr0Jrna51 nepe11ncKa 
cI>apKaIIIa Boau 7 c fayccoM , KOTopaa CBH,1eTeJibCTByeT 0 TOM, KaK II03)J,HO Y3HaJIH o6a Boau 
0 Jio6aqeBCKOM . 3,IJ,eCb o6paTHM BHHMaHIIC TOJibKO Ha )J,Ba IIllChMa. IIepBOe ll3 HHX - IIHChMO 
faycca ct>apKaIIIy Boau, BTOpoe - OT cI> apKarna Bom1 K fayccy. IIucbMO cI> apKarna Bmrn HH­
Tepecno TeM, 'ITO on rrttmeT: " B  apmpMeTnKe 51 ormpanca na Hh!OTOHa, reoMeTpnio naqa.,1 c 
Jio6aqencKHM. He 6bmo y MeHa cqacTba, qT06b1 cTaTh OTKphrnaTeJieM )J,Opor . . .  " TaK qTo l1 
cI> apKaIII Bol'!n noHaJ1 H npim.HJI TPY,IJ, Jio6aqencKoro B nwrnoil ero rJiyforne. 9To an.JI.HeTca 
H OTBCTOM Ha MHeHue, corJiaCHO KOTOpOMY cI>apKalll Boan: He f!OH5fJl 5IK06bI CYIL\HOCTb Heen­
KJlll,lJ,OBOH reoMeTpllll l1 ee 3IIOXaJihH)'IO pOJib. ECJIH OH " reoMeTpmo naqaJJ c Jio6aqeBCKllM 11 ' 
TO y uero )J,OJD:KHhl 6bIJIII 6b!Tb ,Il,OBOJibHO COBpeMeHHbie B3l'JI51)�bI. I1 OH rrpoBeJI rrapaJIJIC.Jib 
c Hb!OTOHoM' B 1853 oqeHb MaJIO MaTeMaTnKOB CTpomm cnoio reoMeTpwrecKyJO rre6Hy10 
CHCTeMy na Jlo6a'-1encKOM. Bo3MO.IKHO, TOJihKO O,IJ,HH ct>apKam Boan? Mbr xoTeJrn 6hr, 'J:T06hr 
narun pyccKue KOJIJiern H ,IJ,py3hl'I IIOHaJIH,  'ITO 5IHOUI Bom1 6b!JI C)J,HHOMh!IIIJJeHHHK, ,IJ,YXOB­
HhIH ,D,pyr 11 IIOKJIOHHHK Jio6a'-leBcKoro. B Hn.tKHeM HoBropo,IJ,e Mbr rroqyncTBOBaJin 60J1bmo:H 
HHTepec 11 cep,LJ,eqnocTb co cToponLr pyccKnx KOJIJier rrpn narnnx ,LJ,OKJia,IJ,ax o Boau, n03TOMy 
MbI nocTaBHJIU rrepe)J, co6o:H L\eJih pa3o6paTb H ,1.l,pyrne pyKorrncn 5IHorna BoRH , KacaFOrn,nern 
Jio6aqencKoro, n H3,IJ,aTb llX B nepeBo,IJ,e Ha pyccKnti 5!3hIK. 

6 Oqmuua.rrbttoe (pyMbIHCKoe) tta:rnaHirn - Tb1pry Mypern. 
7 <I>apKarn Bo5!H (oTeu; 5Ittoma Bo5!n) 6hIJI TO)Ke MaTcMaTHK, rrperroµoBa:reJih B Pe<j:JopMaTCKOM 

Jlllu;ee r. MapornBamapxeil. 9noxa.JibHa5! pa6oTa .Httoma Bo5lu II05!BHJiaCb KaK rrpllJIO)Kenuc K Kttnre 
TettTaMeH (Tentamen) <I>apKarna Bo5ll1. 
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IIpe,[IJIO:lKeH crroco6, II03BOmno:rn;IDi: accou;mrpoBaTh c Ka)f(,ll;I>IM CllMMeTpli'IeCKllM 

rrpocTpaHCTBOM G / H rrpe,[ICTaBJieirrle JlaKca HeKoTopoli cncTeMhI ,n;mpcpepeHIJ,llaJThHbIX 

ypaBHeHllH. IIony'!eHbI ,ll;OCTaTO'!Hbie ycJIOBHfl, rrp:n KOTOpb!X ,n;aHHaf! KOHCTpyK!l)'llI rrpHBO,ll;IlT 

K JiarpaH)f(eBhIM cncTeMaM. Oco6o BhI,D;eJieH CJIJ'laH CHMMeTpH'IeCKHX rrpocTpaHCTB BH,LJ;a 

G /(Hi x H2) • PaccMOTpeHbI rrpnMepbI JJ;onycKarom;mc rrpe,n;cTaBJieHHe JiaKca CHC'l.'eM c 

npHBO,ll;llMhIMll MeTpuKaMil. 

PaccMaTp1rnaroTca CllCTeMhI ,n;mp¢epenu;Ha.rrhHhIX ypaBnenH:H B 'IaCTHhIX 
IIpOII3BO/J,HhIX 

( 1 . 1) 

r,n;e x,y - He3aBHCllMhie rrepeMeHHhie; fbc' Qa - HeKOTOpbie rna,[\Klle cPYHKIIllll OT 
U1 ' U2 ' . . . ' un ; llH,I\8KCbI rrpRHHMaIOT 3Ha'I8Hll5I OT 1 ,I\O n . CMcTeMhl TaKoro m1,n;a 
Ha3hIBaIOTC5I 06ID;llMll HeJJHHeHHhIMll () -MO,I\8J15!Mll HJill CllCTeMaMH KHpaJJbHOro THIIa, 
eCJlll OHll npHHa,n;.11e:tKaT Knaccy narpaH:lKeBbIX CllCTeM, T.e. 5IBJ15IIOTC5I CllCTeMaMll 
ypaBnenrrii 8:Hnepa-Jlarpan2Ka ,n;mr .11arpaH:tKHaHoB 

(1 .2 )  

r,n;e Pab , Q --- rna,[\Klle cPYHKIIllH O T  U1 , U2 , . . •  , Un ll CHMMeTpnqecKa5l: craCTb 
MaTpli1IhI l lPab l l  neBhipo:tK,n;ennaa. EcnH P[ab] = 0, TO Pab MO:tKHO paccMaTp1rnaTh 
KaK MeTpHqeCKHM TCH30p HeKOTOpOrO pnMaHOBa MHOI'006pa3H5I v n ,  3a,n;aHHhIH B 
JlOKaJihHOH CHCTeMe KOOp,LJ;HHaT U1 , . . .  , Un . IlpH 3TOM K03cPcPIIIJ,II€HThI fbc B CHCTeMe 
(2 .1)  COBna,TJ,aIOT c CIIMBOJlaMll KpHCTo¢¢en5I CB5I3HOCTH Ha vn, cornacoBaHHOH c 
M8TpHKOH Pab · 

By.n:eM na.%IBaTb CHCTeMy (2 .1 )  CIICTeMOH c rrpnBO,ll;HMOH MeTpHKOll , ecnn B 
HeKOTOpo:IT JIOKaJJbHOH CIICTeMe KOOp,[IHHT KOOp,UHHaThl MO:tKHO pa3,D,€J1HTh Ha ,ZJ;Be 
rpynnhl (U°' , uc>' ) TaK, qTO narpaH:tKHaH npHMeT BH,I\ 

f3 I I !3' L = Pa13 (U1)dUadU + Pa'f3' (U1 )dUa dU + Q. 

3,n;ecb n /!Mee n e  rrpeµ;rronararoTca BhIIIOJIHeHHhIMH ycnoBIIB P[af3] = 0,  P[a'f3'] = 0. 
IlyCTh ei -- JieBOllHBapHaHTHhie ,n;11¢¢epeHIJ;Ha.TlhHhie ¢opMhI H€KOTOpOH 

rpyrrrrhr Jln G , Y/IOBJ1€TBOp5IJOID;He CTpyKTYPHhIM ypaBnennHM Maypepa-KapTana 

dei = �ci ek /\ ej 
2 Jk ' ( 1 . 3) 
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r,n,e c;k - CTpyKTypHbie KOHCTaHTbI a.rrre6pbl Jln g rpyrrrrhI G ,  lIH,IJ,eKCbI i, j, k 
rrpIIHMMa.FOT 3Ha'IeHH5I OT 1 ,n,o r, (r 2: n) . foBOpHT, 'ITO CllCTeMa (2. 1 ) ,n,orrycKaeT 

rrpe,n,cTaBJieH:rre HYJieBo.H KpHBH3H.bI HJI:rr npe,n,cTaBJieHrre JlaKca c rpyrrno.H Jlrr 

G , ecm1 cyII1eCTBYIOT cPYHKI1llII Ai ' Bi , 3aBIICRII1lle OT ua , HX rrpOH3BO,lJ,HbIX 

U�, u:, U�X ' . . .  II HeKOTOpOrO rrapaMeTpa A ,  TaKIIe, 'ITO CllCTeMa ypaBHeHHH 

(1 .4) 

HBJiaeTCa BIIOJIHe llHTerprrpyeMOH (B CMbICJie <Dpo6eHIIyca) Ha perueHHRX CllCTeMhI 

(2 . 1 ) ,  T.e . ,  ecnrr TIO,lJ,CTaHOBKa COOTHOIIIemr.H ( 1 .4) B ypaBHeHHR ( 1 .3) rrpIIBO,JJ;IIT K 

TO?K,IJ,eCTBaM B c1rny CllCTeMhI (2 . 1 ) .  
B [l] yKa3aH KJrncc CIICTeM, ,n,orrycKaIOII1IIX npe,n,cTaBnem1e .JiaKca c rpy1rnaMII 

Jln, CTpyKTYPHhie ypaBHeHIIR KOTOphIX MoryT 6bITh 3anncaHhI B mr,n,e 

( 1 .5) 

( 1 .6) 

r,n,e a,  b, c 1 ,  n ,  A, B n + 1 ,  n + r; ga , wA JI8BOHHBap:rraHTHhie 

,lJ,IIcpcpepem:i;IIa.7IhHhie ¢opMhI rpyrrrrhI G . Ifa To:tK,n,ecm 5IKo6II ,D,Jrn rpyrrrr:&I G 
cne,n:yeT, 'ITO CTpyKTypHbie KOHCTaHThI y,n,omreTBOparoT ycJJOBHRM 

D(jaCbc + D�[0D{2;lc] = 0, 

Cb'cR[w + Rfs1c1Dg]b = 0 ,  

D�lalRDcJ = 0 .  

( 1 .  7) 

( 1 .8) 

(1 .9) 

YpaBHeamr (2.4) , (2.5) MQ)KHO TaK)Ke liHTeprrpeTnpoBaTh KaK CTpyKTypahre 

ypaBHemrn: rreKOToporo JIOKa.TihHO CHMMeTpw-recKoro rrpOCTpancrna GI H , r,n,e cgc 
- CTPYKTypn:&ie KOHCTaHThI rpynrrhr I130TpOmIII H . CrrpaBe,D,JI11Ba TeopeMa (CM. [1] ) :  

TeopeMa 1 . 1 . .  Ilycm'b cgc - cmpyx:myp'Hibte 'X:O'HCma'Hm1Jl 2pynn'bl usomponuu 

H Hex:omopow JW'i'WJt'b'H.O cu.1vt.Mempu"{,ecx:o20 npocmpaHcrnBa G /H , cmpyx:mypH'bte 

ypa6'Hett:UJl r.:omopow uMe10rn 6UO (2.4) , (2 .5 ) . IlpeiJno.11,o:J1CuM, "{mo cyw,ecrrl6y10m 
Mampu1.J/bl l lT1b i i , l lT2/: l l  ·u ¢y11:xv,uu JvfA, NA , yiJ06.rtemBop.R10v�ue ycA06UJlM 

Ti�,c] = C�eiiiTi� (i = 1 , 2) , 

det l !T1/: - T2b !i # 0, 

_l'vf,t = D�aT2/iMB ' 
Nt = D�aT1/iN8 . , 

( 1 .10)  

( 1 . 1 1) 

( 1 . 12) 

( 1 . 13) 

To2aa cucmeMa (2 . 1 )  iJonycr.:aem npeocma6JW'HUe J!ar.;ca, ec.11,u if;y'HX:V,UU rbc' Qa 
UMe10m 6UO 
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Qa = -PJR�BNBM"4, 
2iJe sg = � (Tlb + T2b) ,  Pf: = � (T1b - T2b) ,  p - o603'Ha"te'Hue MampU'4'bt, o6pam'H01l 

"' P . 

3aMe"<JaHtt:e. C Ka)l(,LI;hIM JIOKa.JJhHO CHMMeTpH'IeCKIIM rrpocTpaHCTBOM G / H 
MO)l(HO aCCOIJ,IlilpOBaTh CHCTeMy BH,n;a ( 2 . 1 ) ' ,n;orrycKaIOIIJ,yIO rrpe,n;cTaBJiemie JiaKca. 

,IJ;eilCTBHTeJihHO, rryCTh cgc - CTPYKTYPHhie KOHCTaHThI rpyIIIIhI H OTHOCHTeJihHO 

6a3HCa JieBOlIHBaprraHTHhIX ,n;mpcpepeHIJ,llaJihHhIX cpopM wa = Tf:dU6 . Bhr6epeM 
T1b = Tf:, T2b = 0 (mrn Tif; = 0, T2f; = Tba ) . Tor,n;a ycnoBH5I (2.8) , (2 .9) BhIIIOJIHeHhI 
ll ClICTeMhI ( 1 . 12) , (2 . 10) COBMeCTHhI B CHJIY (2.8) , ( 1 .7) .  IloJiara5I 

( 1 . 14) 

( 1 . 15) 

IlOJiy<-IHM npe,n;cTaBJiemi:e .JiaKca CllCTeMhI (2 . 1 ) ' K09cpcpHI�IleHThI KOTOpoii IlMeIDT BH,LI;, 

yKa3aHHhii1: B TeopeMe. O,n;uaKo, ue Bcer.n;a noJiy-qennaH TaKHM o6pa30M cncTeMa 

rrp1rna,n;Jie)l(IIT KJiaccy JiarpaH)l(CBhIX CHCTCM. 

2.  IIpe,n;cTaBJieHtte JlaKca JiarpaH:JKeBhIX CIICTeM 

KaK II3BeCTHO (CM . ,  HanpnMep, [2] ) ,  Ka*,n;oe CIIMMeTpII'IecKoe rrpocTpaHCTBO 

G / H rropo*,n;aeT CHMMeTpu-qecKyro a.nre6py JIII (g, h, �) , r,n;e g, h - a.nre6phI 

J1II rpyrrn G 11 H cooTBeTCTBeHHO, � - HHBOJIIDTHBHhIH aBTOMopcpH3M ,n;nH g .  
Bcer,n;a cyIIJ,eCTByeT pa3JIO)l(eHHe 

g = h EB m  

Ha co6CTBeHHhI8 no.n;rrpoCTpancTBa lIHBOJ'IIOTHBHOro aBTOMOpcpH3Ma � ' KOTOpoe 

Ha3bIBaeTC5I KaHOHH'l:eCKlIM pa3JI0)l(CHlI8M ClIMM8TpH"9:CCKOH a.nre6phI (g, h, �) ' 
rrpvrqeM BbIIIOJIH5IIDTC5I CJie,n;yroIIJ,He BKJIID'ICHHS 

[h, h] C h, [h, m] c m, [m, m] C h. 

B ccpopMymi:poBaHHoH: HH)l(e TeopeMe yKa3bIBeTC5I ycJiomre Ha h H m , BhIIIOJIHeHHe 

KOTOporo rapaHTilpyeT, '-ITO c ,n;aHHhIM CllMMeTpll'ICCKilM rrpocTpaHCTBOM MO)l(HO 

acCOIJ,HilpOBaTh rrpe,n;cTaBJICHile JiaKca JiarpaH)l(eBOH CllCTeMhI. 

)J;anee IICITOJih3YIDTC5I CJie,n;yIDIIJ,Ile o603Ha'IeHII5I: 

1 )  (Ua) - �  JIOKa.TihHaH KOOp,n;uHaTHaH CHCTeMa Ha rpyrrrre H ; 
2) cgc - CTPYKTYPHhie KOHCTaHThI rpymihI Jfa H OTHOCIITeJihHO 6a3uca 

JieBOlIHBapIIaHTHhIX ,ll;IIcpcpepeHIJ,lla.TihHhIX cpopM '1fa = TbadU6 ; 
3) h�b - cpopMa KunJI11nra a.nre6phr h ,  3a,n;auuaH B µ,BoilcTBeunoM 6a3uce; 



200 Proceedings of 

4) 90,b - MeTpHKa KmurnHra rpyrrrrhI H ,  T.e.  

ho ,Tcrrid.  9ab = cd a 1 b ' 

BGL-4 

5) a = aabdUa /\ dUb - 2-cPOPMa, yJJ;OBJI8TBOp5IIOII1a.>r ycnomuo 

da = �ho Cb wa /\ \f!d /\ we. 
3 ab cd 

TeopeMa 2 .1 . .  Ilycm'b G / H - AO'IWA'b'l-tO cuM.Mempu'l/,ecx:oe npocmpa'Hcmeo c 
noAynpocmou 2pynnou Jlu H u cmpyx:myp'H'bl.MU ypae'He'fm.fl.Atu (2 .4) , (2 .5) . Ilycm'b 
g = h EB m - x:m-to'HU'l/,ecx:oe pasAo:HCe'Hue u dA.fl A'f06'blx aJie.Me'l-tmoe hi E h, mi E 
m (i = 1 ,  2) cnpaeedAueo paeeHcmeo 

2de 'i'i:py2A'bte cx:o6x;u, 0603'1-ta'l/,a'/Om cx:aA.flp'l-toe npouseedeHue e h omHocurneA'b'HO 
.Aternpux:·u K UAAU'l-t2a h0 . 

To2da cy�ecmeyem rfiY'H$'4U.fl Q max:a.fl, 'l/,TnO cucme.Ma ypae'l-te'l-tuu EH1Jiepa­
JI a2pa,'l-t:J1Ca dA.fl Aa2paH:HCUa'l-ta 

donycx:aem npedcmaeJ1,e'l-tue Jlax:ca. 

3aMeqattn:e. Herrocpe,n;cTBeHHa5I rrpoBepKa rroKa3brnaeT, 'ITO CHMMeTpH'IeCKHe 

rrpocTpaHCTBa AI: SU(n)/SO(n) , DIII :  S0(2n)/U(n) , CI: Sp(n)/U(n) 
yµoBJI8TBOp5IIOT ycJIOBIUIM TeopeMhI . 

3 .  IIpe,n;cTaBJieHMe JlaKca c11cTeM c npHBO,D;HMhIMH 

MeTpMKaMH 

LfT06hI no.rrrnITb npe,n;cTaBJI8HH5I JiaKca H8JIHH8llHbIX a -MO,IJ;eJie:ii c: 
rrpHBO,I(HMhIMI:I MCTpl1KaMH, paccMOTpHM CHMMeTplI'I8CKHe npocTpaHCTBa BII,n;a 

G/(H1 x H2) . Pa3,[\8JIHM KOop,n;1maThI (U0) Ha ,IJ;Be rpymihl (U°', ua' ) B 

cooTBeTCTBHH c pa3nmr<eH11eM rpyrrrrb1 H = H1 x I-h . IIycTh 

1 )  C$1 , C$; 1, - cTpyKrypHhie KOHCTaHThJ rpynrr H1 , H 2 OTHOCMTenr.Ho 6a3rrcoB 

f3 I I !3' 
JieBOHHBapnaHTHhIX JJ;HcPcPepem::i,11aTTuHhIX cPOPM g:.a = TfJdU , cpa = Tfj't dU ; 
2) h�13 , h�, 13, -- cPOPMhI Knnnnttra arrre6p Jin h1 , h2 ; 
3) 9af3 , 9a'/3' -� MeTpHKH KHJIJIHHra rpynrr H1 , H2 ; 

4) O = aa13dU°' /\ dUf3 , 01 aa' 131dU°" /\ dUf3' - 2-cPOPMhI, y,D,OBJieTBop.mom;He 

YCJIOBH5IM 
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TeopeMa 3 .1 . .  Jiycm'b G / H - JW'IWJ!'b'l-W cuMMempu"lecr.oe npocmpancmeo, 

H = Hi x H2 , Hi , H2 - noJtynpocm'ble 2pynn'bl Jiu. II nycm'b dJtJI, Jt106'blx 

3JteMeHmoe h: , h/' E hi , mi E m  (i = 1 ,  2) cnpaeeoJtUB'bt paeeHcrrwa 

2de R, S ---- ifmr.cupoeaHH'bte He'HyJte6'bte r.oHcmaHm'bt, a r.py2Jt'bte cr.o6r.u 06osHa·tta10m 

cr.aJtRpHoe npouseeoei-me e h orrmocumeJt'bHO ,Mempur.u KuJtJtU'H2a h0 . 
To2oa cyw,ecmeyem rjjyHKU,UJI, Q(U°' ,  U°'1 ) ma'IWJI,, •tmo cucmeM'bl ypa61-teHuu 

.9uJtepa-Jia2paH:JiCa OJ!Ji, Jta2paH:J1CuaHoe 

c = ±1,  

oonycna10rn npeocma6Jie'HUJI, Jiar.ca. 

3aMe'-laHHe. Hcrrocpe,n;cTBeHHazr rrpoBepKa rroKa3hmaeT, 'ITO CHMMeTpH'IeCKIIe 
rrpocTpaHCTBa 

BDI: SO(p + q) / (SO (p) x SO(q) ) , p, q � 3 , CII : Sp(p + q) / (Sp(p) x Sp(q) ) , 
G:  G2/ (S0(3) x S0(3)) Yl-\OBJieTBOp5UOT ycJIOBII5IM TeopeMhL 

4.  IlpIIMepbI 

PaccMoTpIIM rrp11Mepb1 rrocTpoemi::H rrpe,n;cTaBJiemi:il J1aKca CHCTeM, 
acc01w11poBaHHhrx c CMMMeTpwrecKHMII npocrpaHCTBaMII BII,n;a SO(p + q) / (SO(p) x 
SO(q) )  (p, q � 3) . 

IlpMMep 1 . (  S0(6) / (S0(3) x S0(3) ) ) 
Bhr6epeM B Ka'IeCTBe JIOKaJihllhIX KOOp,Il;I:m:aT U1 , U2 ' U3 Ha rpyrrrre Hi = S0(3) 

ynrhr 8:ITJiepa. Tor,n;a 

e1 = - cos U2dU3 - sin U2 sin U3dU1 , 

e2 = sin U3 cos U2dU1 - sin U2dU3 ' 

e3 = - cos U3dU1 - dU2 

- 6a3IIC JI8BOIIHBapHaHTHhIX ,n;mp¢epemJ;II(L'IbHhIX ¢opM II 

- CTPYKTYPHhie ypaBH8HII5I rpyrrrrbI s 0 ( 3) .  J10KaJibHhie KOOp,Il;HHaThI U4' U5 ' U6 
11 JI8BOIIHBapHaHTHhie ¢opMbl e4, e5 ' e6 Ha H2 = S0(3) BbI6epeM am1JIOI'H'lHhIM 
o6pa30M. 
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3amnrreM CTPYKTYPHhie ypaBHeHH.H CHMMeTplr'IeCKOro 

50 (6 ) / (50(3) X 50(3) )  B BH,IJ;e 

r,n;e 

I fP 
dfl = fl ;\ fl, fl = I �, 

I Wf3 

a W131 
()a' 

{3' 

IlOJIOLKHM 

w�, = >-.M:;_, dx + l N:;,, dy, 

()1 = (- cos U3U1 - U2)dy ()1 = (- sin U3 cos U2U1 + sin U2U3)dy 
2 y y , 3 y y ' 

(4. 1 )  

()2 = (- cos U2U3 - sin U2 sin U3U1 )dy ()4 = (- cos U6U4 - U5)dx (4.21, 
3 y y , 5 x x ' 

et = (- sin U6 cos U5u: + sin U5U�)dx, ()� = (- cos U5U� - sin U5 sin U6U:) dx. 

Ilo)J,CTaBJI.H.H Bhipa)KeHJrn (4.2) B (4. 1 ) ,  IIOJiyqnM CHCTeMy ypaBHemrli ,n;mi: 
orrpe,n;eJremrn: ¢YHKunii: M:;_, , N:;_, . B rrpocTeii:rneM cJiyqae 9TH ¢YHKUIIII MO)KHO 

BhI6paTh B CJie,n;yrorueM BH,n;e: MJ = sin U2 sin U3 ' Mg = - cos U2 sin U3 ' 
Ml = cos U3 , Nl = n sin U2 sin U3 , Ng = -n cos U5 sin U6 , Nl = n cos U6 , 
n = canst, a OCTaJihHhie IIOJIO)KIITh paBHhIMH Hymo. Tor,[\a Bhrpa)KeHrr.H (4.2) 
onpe,n:eJnnoT rrpe,n,craBJreHrre JiaKca crrcTeMhI ypaBHeHnii: 9fiJiepa ,IJ,mr JiarpamirnaHa 

3 6 
L = � uaua + 2 cos U3 U1 U2 + � ua' ua' + 1 L...t x y  y x  L...t x y  

a=l a'=4 

+ cos U6 (U4U5 + U4U5) + E COS U6 (U4U5 - U4U5) + 2n cos U3 cos U6 y x x y y x x y ' 
r,n:e E = -1 . 

IIpnMep 2. (,ll,BoliHoii: KOMIIJieKCHhrii: sin-Gordon) 
CrrcTeMa ypaBHemrii: 9fiJiepa ,n;mr JiarpaH)KIIaHa 

vz v4 
L = v1·v:1tg2 - + V2F2 + V3V3tg2 - I V4V4 + 2n cos V2 cos V4 (n = canst) 2 x y  2 x y  x y  2 1 x y  

IIOJryqeHa npn noMorun pe,IJ,yKunrr II rrpeo6pa3oBaHrril B9KJIYH,IJ,a M3 cncTeMLI c 

JrarpaH)KIIaHoM Li . Ee MO)KHO paccMaTp1rnaTh KaK 11,n;BoiiHoli KOMIIJI€KCHhJH sin­
Gordon 11 , IIOCKOJihKY IIO,!J;CTaHOBKa V1 = V3' V2 = F4 rrpHBO,Il;IIT K o6biqHoMy 

KOMnJieKCHOMy sin-Gordon. ,ll,aHHaa cucTeMa TaK2Ke ,n;orrycKaeT npe,n;cTaBJieHrre 

JiaKca BII,n;a ( 4 . 1 ) ,  r,n;e 

. y2 
1 1 l 1 1 sm 2 1 1 ()
2 

= y2 (Vx dx + Vy dy) , ()
3 

= - y2 (Vx dx - �'l/ dy) , 
2 cos 2 2 cos2 2 
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e2 
1 

( 2 � 2 ) 4 1 
( 3 3 ) 3 = -2 Vx dx - VY dy , 85 = v4 Vx dx + Vy dy , 

2 cos 2 

. y4 sm 2 3 3 5 1 4 4 v4 (Vx dx - Vy dy) , 86 = - (V';c dx - Vy dy) , 
2 cos2 2 2 

°' \ °' d  1 °' Wa' = AMa' .x + ")._Na1dy, 

M
a 

Ml 0 N°' - J\Tl - 0 4 = a' = ' 4 - 1 v a' - ' 

Mz 
. v2 . v4 

Mz 
. v2 v4 

5 = sm 2 sm T , 6 = - sm 2 cos 2 ,  

v 2  v4 
1vf� = - cos - sin -0 2 2 ' 

? . v2 . v4 
N5 = n sm 2 sm 2 , 

3 v2 v4 
M6 = cos T cos T , 

v2 v4 
N62 = n sin -- cos -2 2 ' 

v2 v4 v2 v1 
N� = n cos T sin T , N� = n cos T cos 2 .  

IlpIIMep 3 . (  SO(p + 3)/ (SO(p) x 80(3) )  ) 
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�oKa3aHo (CM. [3] ) ,  "ITO c Ka)K.D;hIM CIIMMeTpII11ecKHM npocTpancTBOM SO(p + 
3 )/ (SO(p) x S0(3)) MO)KHO acco1IIIIIpoBaTh npe,TJ:CTaB.Jiemre J1aKca CHCTeMhI 

ypaBHeHn:rr 9iinepa ,D,mI JiarpaH)KIIana 

v2 
L - uaub uraub 2 ( 2 ) (V1V1 t 2 v·2 v2)  Q 3 - gab x y + aab x y - P - x y g 2 + x y + ' 

l',I\C Q - HeKOTOpa5r rJia,D,Ka5I cPYHKIJJI5f OT Ua, V 1 ,  V2 . 

IlpttMep 4. (  SO(p + 2)/ (SO(p) x S0(2) )  ) 

b =  1 p(p - l) a ,  
' 2 ' 

�Jrn Ka)K,n;oro II3 CHMMeTpuqern:ux rrpocTpaHCTB SO(p + 2)/ (SO(p) x 30(2) )  
cymecTByeT cPYHKIJ,H.a Q(Ua,  V) 'raKa.a, 'ITO CHCTeivra ypamrerrnli 9liJrepa-JiarpamI<a 

,I\JI.H .rrarpaH)KHaHa 

,ll;OIIYCKaeT npe,n;CTcrnJieHIIe J1aKca (CM. [3] ) .  
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The trajectory of a double star is obtained by applying the special theory of relativity 
equations of motion, and that in the center of mass frame. Similar to the original Bohr­

Sommerfeld quantum mechanical application of the one electron atom, the excited energy 

levels of the double star can be obtained. Gravitation waves are then emitted during the 

passage to the ground state, when the two stars collide. 

1 .  Introduction 

The application of the general theory of relativity has already been applied to the mo­
tion of a double star, to explain the slowing of the orbital motion period. The emission 
of gravitational waves is causing the Earth to slowly spiral towards the Sun, but it would 
take , according to the application of general relativity 1027 years for them to collide. In 
1975 Russel Hulse and Joseph Taylor [21 discovered the binary pulsar PSR 1963+ 16 in a 
system of two neutron stars, orbiting each other with a maximum separation of only one 
solar radius. The change predicted by general relativity is in excellent agreement with careful 
observations by Hulse and Taylor of the orbital parameters, indicates that since 1975, the 
period has shortened by only 10 seconds in 1993. They were awarded the Noble Prize for 
this confirmation of the general relativity. 

In the case when the pair of double stars approach each other, leading to very high 
orbiting velocity, the trajectories can no longer be approximated by Kepler ellipses . Before 
the collapse, the application of quantum mechanics to the system becomes quite essential. 
This can be approximated by applying the Bohr-Sommerfeld quantum conditions to the tra­
jectories, similar to what happened in the beginning of the discovery of quantum mechanics. 
As it was known that the Sommerfeld quantum conditions already explained roughly the 
energy levels of the one electron atom, as later verified by the exact solution of Dirac rela­
tivistic equation, the present application of the relativistic Sommerfeld quantum conditions 
can lead roughly to the excited energy levels of the double star. 

2. Relativistic Two Body Trajectories in the Center of 

Mass Frame 

The momenta and energies p; , m;c2 ( i 
( i = 1 ,  2 ) , measured in a system 0 , where 

1 ,  2 ) of two bodies of rest masses m0; 

(2 . 1 )  

P , M c2 are their total momentum and energy in the system. 
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These can simply be expressed in their center of mass frame 01 , moving at velocity V 
with respect to 0 

- p 
V = A1 

by the momenta and energies respectively 

where 

-; 1 2 -; m1 c2 p ' m1 c ; -p ' 2 ' 

12 c2 12 2 • 12 2 P = 41\1,2 [M - (mo1 + mo2 ) J [M - (mo1 - m02 ) ] .  

(2 .2 )  

(2 .3) 

(2 .4) 

(2 .5 )  

The total momentum in the center of mass system vanishes and M1 c2 i s  the total energy 
in the center of mass system, given by 

(2 .6) 

If x1 , x1 denote the particle positions in the center of mass frame, then we can express 
the momenta i/ , -i} in this frame by 

- dx1 P1 = mo1 � '  
- dx1 

-p1 = mo2 - ,  dr (2 .7) 

where dr( = /dt2 - (d��)2 ) is the element of proper time. In terms of their relative position 

:i' = x1 - x1 in their center of mass frame, we can then express 

and hence 
- mo1 mo2 dx1 pl = -

mo1 + rno2 dr 

(2 .8) 

(2 .9) 

The equation of constant total energy E1 in the center of mass system is given 

· , 2 J'mo1 rno2 1 (M - mo1 - m02 )c - = E , r1 

where r' = Ii' I is the magnitude of x1 . Using Eqs. (2 .9) and (2 .5) , we get 

( 
d;; )2 = ( rn01 + mo2 )2p12 , 
dr mo1 mo2 

where p12 as function of M' is given by Eq. (2 .5) . 
Let the orbital angular momentum vector in the center of mass frame be 

then we can express 
mo1mo2 - - -

---- L = x' x p' 
mo1 + mo2 

(2 . 10)  

(2 . 1 1 )  

mo1 mo2 £ mo1 +mo2 ' 

(2 . 12 )  
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satisfies, according to Eq. (2 .9) , 

mo1 mo·' d - - d ------- - L  = x' x -p' . 
mo1 + mo2 dr dr 

For a central force acting along ;} , it follows 
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(2 . 14) 

showing that the orbital angular momentum remains constant . Using polar coordinates r' ,  () 
in the plane of motion, we then find 

12 d() 
- L r dr - ' 

(2 . 15 )  

where L i s  the constant angular momentum per unit rest mass in the center of mass frame. 
Also the left hand side of Eq. ( 2 . 1 1 )  becomes 

Thus substituting for p'2 from Eq. (2 .5)  into Eq. ( 2 . 1 1 ) ,  we get for (�� )2 : 

Using further Eq. (2 . 10) to substitute M' for f, 

we get 

where 

L Lc2 E' 
---- [M' - m01 - mo2 - -], r' 1mo1mo2 c2 

dr' c2 
( - )2 = [AM'4 + BM'3 - C.�!'2 + D1 , 

dr 4m2 m2 M12 J 
O J  02 

( 2 2 A = mo1 + mo2 ) - m"f , E' 
B = 2m; (mo1 + mo2 + 2 ) , c 

(2 . 16) 

(2 . 17) 

(2 . 18) 

(2 . 19)  

(2 .20) 

, 2 r 2 2 2 E' 2 , 2 2 2 , 2 C = 2 (m01 + mo2 J ,ni01 + m02 ) + m"r(mo1 + moz + 2) , D = (mo1 T mo2 ) (m01  - m02 J , c 

2Lc m"f = - . I 
Using Eq. (2 . 1 5) and noticing that from Eq. (2 . 18) that 

we finally obtain 
d() 

dM' 

L Lc2 =-dr' = dM1 
r12 1mo1 mo2 

' 

v AM14 + BM13 - CM12 + D 

(2 .21)  

(2 .22) 

(2 .24) 



208 Proceedings of BGL-4 

The polar equation of the trajectory between r' , fJ is then obtained, by integrating 
Eq. (2.24) to give the relation between fJ and M' 

fJ - - ')' I m M'dM' 
-

. JAM'4 + BM'3 - CM'2 + D ' 
(2 . 25) 

and then using the relation between M' and r' given by Eq. (2 . 10) .  The above integral 
represents an elliptic integral [1] , whose value depends on the roots of the fourth order 
polynomial under the square root. When the four roots of the biquadratic equation are all 
real, the value of the integral is given as a simple sum of elliptic integrals F( <p, k) of the 
first kind and II( <p, o:2 , k) of the third kind, where the modulus k and o:2 are given as 
functions of the four real roots, also the angle <p is expressed as function of M' and the 
four roots [l] . When there are two, or four complex roots of the biquadratic equation, the 
value of the integral is expressed apart from elliptic integrals of the first and third kinds, an 
additional contribution depending on a logarithmic or arctangent function of an expression 
depending on the values of the roots. The evaluation of the roots of the biquadratic equation 
as is well known, depends on obtaining the three roots of the cubic equation 

(2 .26) 

3. The Simple Case of Two Equal Masses 

Instead of going through the complicated expression of the value of the integral in the 
general case, the behaviour of the trajectory can simply be found by considering the special 
case when the masses of the pair of stars are equal : 

mo1 = mo2 = mo . (3 . 1 ) 
In this simple case, as the value of the coefficient D vanishes, the value of the integral 

simplifies to 

where now 

As =  4m6 - m; , 

B 
= _ I m'YdA1' 

. J AsM'2 + BsA1' - Cs ' 

z ( 
E' \ B 8 = 2m'Y 2mo + 2 J ,  c 

4 2 E' 2 Cs = 16m0 + m'Y (2mo + --z) . 
c 

The integral can then be readily evaluated, giving (for As < 0 )  

(M' + _§_,__ ) -fJ = � arccos 
· zA_. 

� 

On using Eq. (3.3) , we find 

(.!!]__ + C, ) 4A; A, 

B2 C 16m2 E'2 E' 
4A

s
2 + A

s = 
4A

2o [16m6 + m; ( -4 + 4mo --z ) ] .  s s s c c 

Further using Eq. (2 . 10) and Eq. (2 .22) , we find 

1 Bs 4m6 E' �m6 M + 2A = 4 2 2 (2mo + 2) + -2-, . s m0 - m'Y c c r 

(3 .2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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Thus from Eq. (3 .4) , we find the equation of the trajectory for As < 0 

where for 0 < >.. < 1 

E' 
(2m0 + 9 )2 - 4mg>..2cos(.M)] ,  c� 

>..2 = 1 - 4mg 
m2 7 

and for As > 0 we find in a similar way, for 0 < >..' < oo , 

where, for 0 < >..' < oo , 

E' (2mo + 2 ) 2 + 4m6N2cosh(>..'t.I)] , c 
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(3 .7) 

(3 .8) 

(3.9) 

(3. 10) 

The equation of the trajectory in polar coordinates r' ,  t.I ,  as given by Eq. (3. 7) and 
Eq. (3 .9) , for As < 0 ,  and As > 0 ,  respectively, shows that the double star spiral, lowering 
their distance r' apart, until they collide. One notices that the expression ic��, on the 

left side of Eq. (3 .  7) , or Eq. (3.9) is a measure of the ratio of the potential energy ·r;:� to 
the total rest energy 2m0c2 of the double star. In the applications of the general theory of 
relativity, this ratio is known as the gravitational parameter. 

4 .  Application o f  Quantum Mechanics in the Form o f  

Bohr-Sommerfeld Quantum Conditions 

In the case of neglecting the small deviation from a closed path during one complete 
rotation of the double star, we apply the original form of the Bohr-Sommerfeld quantum 
conditions in the form 

1 f / d / - Pr' r = nl n, 27r 
� f p�dt.I = n2n, 2w . 

where the momenta p�, , Pe are given according to Eq. (2 .9) and Eq. (2. 15) 

, _ m.01mo2 (
dr'

) Pr' - d , mo1 + mo2 .T 

, _ mo1mo2 ,2 (
dt.I ) _ mo1mo2 L Po - r - . mo1 + mo2 dT mo1 + m02 

Restricting now to the simple case, when the two masses are equal, we get 

1 1"1 1 dr' - -mo (-d )dr' = n11?., 
7r r2 2 T 

where from Eq. (2 . 19) and Eq. (2 .21) 

( 
dr' 

) -
c IA i2 B ' C 

dT 
-

2m2 V sM + sl'vf - s · 
0 

( 4 .1 ) 

(4.2) 

(4 .3) 

(4.4) 

(4.5) 
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Substituting for M' in terms of r' from Eq. (3.6) 

' E' rymo M = 2mo + - + --c2 c2r' 

the expression in Eq. (4.4) for n1 /i becomes 

where 

2 2 E' 2 2 12 rymo (2 ) 1 '"Y mo ( 2 4 2 ) -r + c2K2 mo + -;;z- r - 4c4K2 m, - mo ' 

2 2 ( E' 2 K = 4m0 - 2mo + 2) . c 
On using the standard integral 

expression in Eq. (4.7) , then becomes 

rym6 E' rymo V 2 nili = --(2mo + -) - -- m2 - 4m .  2cK c2 4c 1 0 

Using Eq. (2.22) and Eq. (4.4) ,  one can express m1 as 

4c m, = --nn2 . 
mory 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4. 10) 

(4.1 1) 

Hence the eigen values of energy E' ,  following Eq. (4.9) and Eq. (4. 1 1) ,  can finally be 
expressed 

E' 2mo(n1 + Jn� - N2) 2 + 2mo = --;============= 
c V NZ + (n1 - Jn� - N2 )2

' 

where the number N is given by 
2 

N =  rymo 
2cn 

(4.12) 

( 4. 13) 

For a fixed value of n2 > N , the value of �: + 2m0 , as function of n1 , starts with the value 

2mo � for n1 = 0 , then increases to a maximum, followed by a continuous decrease n2 
to zero as n1 --+ oo .  The maximum value E:n of E' , as function of n1 (for given n2 ) , is 
given 

at n1 , given by 

E;,, = 2mo (-1 + 
y4n�; 3N2

) 

2n� - N2 
ni = . 

2Jn� - N2 

( 4.14) 

( 4. 15) 



AfaJ A.Sabry 21 1  

References 

[lj BYRD , P .  F . ,  AND FRIEDMAN, M .  D. Handbook of Elliptic Integrals for Engineers and 
Scientists. Springer-Verlag, 1971 . 

[2] HULSE, R .  A . ,  AND TAYLOR, J .  H .  Discovery of a pulsar in a binary system. Ap. J. 
195, L51 (1975) . 

E-mail address: afaf@frcu.eun.eg 



212  Proceedings of BGL-4 

ON EFFECTS OF NON-EUCLIDEAN GEOMETRY IN  
QUANTUM THEORY 
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Theory of scattering of a quantum-mechanical particle on a cosmic string is developed. S­
matrix and scattering amplitude are determined as functions of the flux and the tension of 
the string. We reveal that, in the case of the nonvanishing tension, the high-frequency limit 
of the differential scattering cross section does not coincide with the differential cross section 
for scattering of a classical pointlike particle on a string. 

1 .  Introduction 

Usually, the effects of non-Euclidean geometry are identified with the effects which are 
due to the curvature of space. It can be immediately shown that this is not the case and 
there are spaces which are fiat but non-Euclidean. 

A simplest example is given by a twodimensional space (surface) which is obtained from a 
plane by cutting a segment of a certain angular size and then sewing together the edges. The 
resulting surface is the conical surface which is fiat but has a singular point corresponding to 
the apex of the cone. To be more precise, the intrinsic (Gauss) curvature of the conical surface 
is proportional to the twodimensional delta-function placed at the apex; the coefficient of 
proportionality is the deficit angle. Usual cones correspond to positive values of the deficit 
angle, i .e. to the situation when a segment is deleted from the plane. But one can imagine a 
situation when a segment is added to the plane; then the deficit angle is negative, and the 
resulting flat surface can be denoted as a saddle-like cone. The deleted segment is bound by 
the value of 211 , whereas the added segment is unbounded. Thus, deficit angles for possible 
conical surfaces range from -oo to 21!" . 

It is evident that an apex of the conical surface with the positive deficit angle can play a 
role of the convex lens, whereas an apex of t.he conical surface with the negative deficit angle 
can play a role of the concave lens. Really, two parallel trajectories coming from infinity 
towards the apex from different sides of it , after bypassing it, converge (and intersect) in the 
case of the positive deficit angle, and diverge in the case of the negative deficit angle. This 
demonstrates the non-Euclidean nature of conical surfaces. It is interesting that this item 
provides a basis for understanding such physical objects as cosmic strings. In the present 
paper we shall discuss peculiarities of quantum theory and its quasiclassical limit, which are 
due to non-Euclidean geometry of locally flat space-times. 

2. Space-time in the presence of a cosmic string 

Cosmic strings are topological defects which are formed as a result of phase transitions 
with spontaneous breakdown of symmetries at early stages of evolution of the universe, see, 
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e.g. , reviews in Refs . [ l ,  2] . In general, a cosmic string is  characterized by two quantities: flux 

<I> = J d2xylgB3 , (2 . 1 )  

core 
and tension 

(2 .2) 

core 
here the integration is over the transverse section of the core of the string, B3 is the 
field strength which is directed along the string axis, R is the scalar curvature, G is the 
gravitational constant, and units n = c = 1 are used. The space-time metric outside the 
string core is 

�2 �2 2 �2 2 ds2 = dt2 - (1 - 4Gµ)-1 dr - ( 1 - 4Gµ) r d<p2 - dz2 = dt - dr2 - r2d <p -dz , (2 .3) 

where 
°i= ry'l - 4Gµ, 0 ::::; rp < 27r , 0 ::::;':/:< 27r(l - 4Gµ) . ( 2.4) 

A surface which is transverse to the axis of the string is isometric to the surface of a cone 
with a deficit angle equal to 87rGµ . Such space-times were known a long time ago (M. Fierz, 
unpublished, see footnote in Ref. [3]) and were studied in detail by Marder [4] .  In the present 
context , as cosmological objects and under the name of cosmic strings, they were introduced 
in seminal works of Kibble [5] and Vilenkin [6] . A cosmic string resulting from a phase 
transition at the, scale of the grand unification of all interactions is characterized by the 
values of tension 

(2.5) 

The nonvanishing of the string tension leads to various cosmological consequences and, 
among them, to a very distinctive gravitational lensing effect. A possible observation of such 
an effect has been reported recently [7] , and this has revived an interest towards cosmic 
strings. 

The flux parameter (2 . 1 )  is nonvanishing for the so-called gauge cosmic strings, i .e . 
strings corresponding to spontaneous breakdown of local symmetries. If tension vanishes 
( µ = 0 ) , then a gauge cosmic string becomes a magnetic string, i .e. a tube of the magnetic 
flux iines in Euclidean space. If the tube is impenetrable for quantum-mechanical charged 
particles , then scattering of the latter on the magnetic string depends on flux if> periodically 
with period 27re-1 ( e is the coupling constant - charge of the particle) . This is known as 
the Bohm-Aharonov effect [8] , which has no analogue in classical physics, since the classical 
motion of charged particles cannot be affected by the magnetic flux from the impenetrable for 
the particles region. The natural question is, how the nonvanishing string tension ( µ -:/- 0 )  
influences scattering of quantum-mechanical particles on the string. Thus, the subject of 
cosmic strings, in addition to tantalizing phenomenological applications, acquires a certain 
conceptual importance. 

3. Quantum scattering on a cosmic string 

Due to nonvanishing flux <J> and tension µ , the quantum scattering of a test particle 
by a cosmic string is a highly nontrivial problem. It is impossible to choose a plane wave 
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as the incident wave, because of the long-range nature of the interaction inherent in this 
problem. A general approach to quantum scattering in the case of long-range interactions 
was elaborated by Hormander [9] . This approach covers the cases of scattering on a Coulomb 
center and on a magnetic string ( µ = 0 ) , but is not applicable to the case of scattering on a 
cosmic string ( µ -f. 0 ) . Therefore the last case needs a special consideration and a thorough 
substantiation. 

When the effects of the core structure of a cosmic string are neglected and the transverse 
size of the core is negligible, the field strength and the scalar curvature are presented by 
twodimensional delta-functions. Scattering of a quantum-mechanical particle on an idealized 
(without structure) cosmic string was considered in Refs. (10, 1 1 ,  12 ,  13] .  A general theory of 
quantum-mechanical scattering on a cosmic string, permitting to take into account the effects 
of the core structure, was elaborated in Ref. [14]. According to this theory, the S -matrix in 
the momentum representation is 

I I 1 J(k - k') { I 4Gµn [ ie<[> ] S(k, cp; k ' 'P ) = 2 Vfki D..(cp - 'P + 1 - 4G) exp -
2 ( 1  - 4Gµ) + 

D.. ( , 4Gµn ) [ ie<[> l }  J( ' ) Ji f (k ' ) + 'P - 'P - 1 - 4G µ 
exp 

2 ( 1 - 4G µ) J + k - k Y hl J ' 'P - 'P ' (3 .1 )  

where the initial (k) and final (k') twodimensional momenta of the particle are written 
00 

in polar variables, J(k , cp - cp') is the scattering amplitude, and D..(ip) = 2� :Z:: eincp is 
n==-oo 

the angular part of the twodimensional delta-function. Note that in the case of short-range 
interaction one has 2D..(cp - cp') instead of the figure brackets in Eq. (3. 1 ) .  Thus, one can 
see that , due to the long-range nature of interaction, even the conventional relation between 
S -matrix and scattering amplitude is changed, involving now a distorted unity matrix (first 
term in Eq. (3 .1 ) )  instead of the usual one, J(k - k')D.. (ip - cp') (kk')-112 . 

In view of the comparison with the Bohm-Aharonov effect [8) , we shall be interested in 
the situation when the string core is impenetrable for the particle. The scattering amplitude 
in this case takes form: 

where re is the radius ofthe string core, Jv ('u) and H�1) (u) are the Bessel and the first-kind 
Hankel functions of order v , 

and 

fo (k, cp) 

I e<i> I -1 O:n = n - 27r 1
( 1 - 4Gµ) , 

__ 1_
.
_ exp li 2'f \'P + l-4Gµ - 2(1-

4Gµ) { f ' [ (e<I> j j f  4Gµ,7r ) ie<I> "J 
� 1 - exp [-i (cp +  �)] 

exp [i rr�J] (cp - �) + 2(1�i'Gµ) ] } 
1 - exp [-i ( ip - 1�:;µ) J 

(3.3) 

(3.4) 
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i s  the amplitude of scattering on an idealized (without structure) cosmic string, [[u]] is 
the integer part of u .  Sum over n in Eq. (3.2) describes the core structure effects. In the 
low-frequency limit (k -t 0) these effects die out, and the differential cross section (i. e. the 
square of the absolute value of the amplitude) takes form 

da 
d<p -4�-k { 2 sin2 [1 (1()

1
+ �)] + -2-si_n_2 _[ _-1 -(-,:-_-4_0_µ_rr _)_] 

2 .,., 1 -40µ 2 .,., 1 -40µ 

cos [ 1__e!cµ - (2[[�!ll + 1) 1�1Qµ] } 
. [ l ( �)] . [ l ( �)] . sm 2 IP + l -4Gµ sm 2 'P - 1 -40µ 

4 .  Differential cross section in the limit o f  high 

frequency of scattered particle 

(3.5) 

In the high-frequency limit (k -t oo) the first term in Eq. (3.2) dies out, and the differ­
ential cross section takes form 

da 
d<p 

x 

�rc ( l - 4Gµ)2 I� Jcos[� ( l - 4Gµ) (<p - 7r + 2l7r)] x 

1 1
2 

exp{ieil>l - 2ikrc cos[2 ( 1  - 4Gµ) (<p - 7r + 2l7r)] }  , 

where the summation is over integer l satisfying condition 

2Gµ cp 2Gµ 
1 - 4G µ 

< l < - 27r + l + 1 - 4G µ
. 

( 4 . 1 )  

( 4.2) 

Note that results (3.5) and (4. 1 )  are periodic in the value of flux iI> with period equal to 
27re-1 . This feature is common with the scattering on a purely magnetic string ( p, = 0 ) . 
The difference is that the Bohm-Aharonov differential cross section in the low frequency 
limit ( k --+ 0 )  diverges in the forward direction, <p = 0 ,  while Eq. (3.5) diverges in two 
symmetric directions, <p = ±4Gµ(l - 4Gµ)-1 . The difference becomes much more crucial 
in the high-frequency limit (k --+ oo) . In the µ = 0 case one gets 

(4.3) 

which is the cross section for scattering of a classical point.like particle by an impenetrable 
cylindrical shell of radius re ; evidently, the dependence on fractional part of e<I> (27r)- 1  dis­
appears in this limit. In the µ =j:. 0 case the dependence survives, see Eq. (4. 1 ) .  In particular, 
if 0 < µ < (8G) -1 , which is most interesting from the phenomenological point of view, 
then the cross section at k --+ oo takes the following form in the region of the cosmic string 
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h d 4GµJr 4Gµrr . s a ow, - l -4Gµ < tp < l -4Gµ · 

Proceedings of 

�� = rc ( l  - 4Gµ)2 (cos[� ( l  - 4Gµ)(f)] sin(2Gµri)+ 

BGL-4 

+ jsin2 (2Gµr.) - sin2 [� (1 - 4Gµ)tp] x 

cos { e<Ii + 4krc sin[� ( l  - 4Gµ)ip] cos(2Gµr.) } . (4.4) 

Integrating Eq. (4.4) over the region of the shadow and the appropriate expression (which is 
independent of <P )  over the region out of the shadow, we obtain the total cross section in 
the k --+ oo limit: 

CTtot = 2rc (l - 4Gµ) . (4.5) 

The high-frequency limit is usually identified with the quasiclassical limit . Although this 
identification is valid for the total cross section, it is found to be invalid for the differential 
cross section, see Eqs . (4 .1 )  and (4.4) revealing the periodic dependence on the flux, which 
is a purely quantum effect. 

These results are generalized to the case of scattering of a particle with spin. 
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A theory of special inconstancy, in which some fundamental physical constants such as the 
fine-structure and gravitational constants may vary, is proposed in pregeometry. In the the­
ory, the alpha-G relation of a = 3rr /(16 ln( 4rr /5GM&,. )] between the varying fine-structure 
and gravitational constants (where Mw is the charged weak boson mass) is derived from 
the hypothesis that both of these constants are related to the same fundamental length scale 
in nature. Furthermore, it leads to the prediction of G/G = (0.4 ± 0.4) x 10- 12yr- 1  from 
the recent observation of O:/a = (5 ± 5) x 10-1 5yr-1  by Webb et al. , which is not only 
consistent with the most precise limit of G /G = (-0.6 ± 2 .0) x 10- 1 2yr-1 by Thorsett but 
also feasible for future experimental tests. In special inconstancy, the past and present of the 
Univese are explained and the future of it is predicted, which is quite different from that in 
the Einsein theory of gravitation. The contents of this talk include the following: 
1 .  Introduction 
2. Pregeometry 
3. Special Inconstancy 
4. Further Discussions and Future Prospects. 

1 .  Introduction 

Is a physical constant really constant? In 1937, Dirac [1] discussed possible time varia­
tion in the fundamental constants of nature. He made not only the large number hypothesis 
(LNH) but also, as a consequences of the LNH, the astonishing prediction that the gravi­
tational constant G varies as a function of time. Since then, .Jordan [2] and many others 
[3.4] have tried to construct new theories of gravitation or general relativity in order to 
accomodate such a time-varying G .  Although the LNH has been inspiring many theoretical 
developments and has recently led myself [5J to many new large number relations, the pre­
diction of the varying G has not yet received any experimental evidence. Recently, Thorsett 
[6] has shown that measurements of the masses of young and old neutron stars in pulsar 
binaries lead to the most precise limit of 

G/G = (-0.6 ± 2 .0) x 10-12yr-1 

at the 683 confidence level. 
More recently, on the other hand , Webb et al. [7] have investigated possible time variation 

in the fine structure constant a by using quasar spectra over a wide range of epochs, 
spanning redshifts 0 .2  < z < 3 .7 , in the history of our Universe, and derived the remarkable 
result of 

ix/a = (6 .40 ± 1 .35) x 10- 16yr-1  
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for 0 .2  < z < 3.7 , which i s  consistent with a time-varying a .  Note, however, that in  1976 
Shylakhter [8] obtained the very restrictive limit of 16.a/al < 10-7 or, more precisely, 

6.a/ a At = (-0.2 ± 0.8) x 10-17 yr-1 

for z � 0.16 (but over a narrower and latest range of epochs between now and about 1 .8  
billion years ago) from the "Oklo natural reactor". Very lately, Srianand et al. [9] have made 
a detailed many-multiplet analysis performed on a new sample of Mg II systems observed in 
high quality quasar spectra obtained using the Very Large Telescope and found a null result 
of 6.a/a = (-0.06 ± 0 .06) x 10-5 for the fractional change in a or a 3cr constraint of 

-2.5 x 10-16yr-1 :::; (6.a/a6.t) :::; +1 .2  x 10-16yr-1 

for 0.4 :::; z :::; 2 .3 , which seems to be inconsistent with the result of Webb et al. (7] . However, 
a careful comparison of these different results [7-9] indicates that they are all consistent with 
a time-varying a as 

a/a = (5 ± 5) x 10-15yr-1 
for 2.2 < z < 3 .7 . 

In this talk, I am going to propose a theory of special inconstancy, in which some 
fundamental physical constants such as the fine-structure and gravitational constants may 
vary. In the theory, the alpha-G relation of 

a =  37r/ [16 ln(47r/5GMft,)] 

(where Mw is the charged weak boson mass) is derived from the hypothesis that both of 
a and G are related to the same fundamental length scale in nature. Furthermore, from 
the above result on a ,  it leads to the prediction of 

G /G = (0.4 ± 0 .4) x 10-12yr-1 

which is not only consistent with the limit on G by Thorsett [6] but also feasible for future 
experimental tests. I will organize this talk as follows: in Section II, I will briefly review 
pregeometry in which a theory of special inconstancy is constructed. In Section III, I will 
present the theory and its predictions. Finally in Section IV, I will present further discussions 
and future prospects. In addition, in special inconstancy I will explain the history of our 
Universe and predict the future of it , which is quite different from that in the conventional 
Einstein theory of gravitation. 

2. Pregeometry 

Pregeometry is a theory in which Einstein's geometrical theory of gravity in general 
relativity can be derived from a more fundamental principle as an effective and approximate 
theory at low energies (or at long distances) .  In 1967, Sakharov [10] suggested possible ap­
proximate derivation of the Einstein-Hilbert action from quantum fructuations of matter . 
A decade later, we [ 1 1] demonstrated that not only Einstein's theory of gravity in general 
relativity but also the standard model of strong and electroweak interactions in quantum 
chromodynamics and in the unified gauge theory can be derived as an effective and ap­
proximate theory at low energies from the more fundamental unified composite model of all 
fundamental particles and forces [12] . 
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Let us explain what pregeometry means more explicitly in a simple model of 

where 9µv is the space-time metric, g = det(gµ,, )  , Aµ is an Abelian gauge field, and I.pi 
( ·i = 1 "' n ) are n complex scalar fields of matter with the charge e . The fundamental 
Lagrangian L0 consists of the gauge-invariant kinetic terms of the matter fields only as 

(where F is an arbitrary constant) but does not contain either the kinetic term of the space­
time metric or that of the gauge field so that both of gµv and Aµ are auxiliary fields. The 
effective action for the space-time metric and gauge field can be defined by the path-integral 
over the matter fields as 

exp(iSeff) = J IT[dtp!J [dtp;]exp(iSo) 
' 

and it can be expressed formally as 

after the path-integration over tp; . For small scalar curvature R and Ricci curvature tensor 
Rµv , the effective action can be calculated to be 

with 

and 

2.A = [nA 4 /8( 47r)2 ] � p-1 , 
(1/l67rG) = nA2 /24(47i-) 2 , 

c = nlnA 2 /240( 411" )2 ,  
d =  2 ,  

(1/  4e2) = nlnA 2 /3( 411" ) 2 , 
where .A and A are the cosmological constant and the momentum cut-off of the Pauli­
Villars type, respectively. Note that the arbitrary constant p-l plays a role of counter 
term so that the cosmological constant may become as small as it is observed. Note also 
that the momentum cut-off A must be of order of the Planck mass c-1/2 ( ,... l019GeV ) . 
Furthermore, not only the R2 and Rµ,, Rµv terms but also the remaining terms in the 
expansion of Sef f are practically negligible. This completes a simple demonstration that not 
only the Einstein-Hilbert action of gravity but also the Maxwell action of electromagnetism 
in general relativity can be derived as an effective and approximate theory at low energies 
from the simple model in pregeometry, provided that there exists a natural rnomfmtum 
cut-off at around the Planck mass in nature [13] . 
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One of the most remarkable consequences of pregeometry is the alpha-G relation, a 
simple relation between the fine-structure and gravitaional constant, which can be easily 
derived from the results for a and for G by eliminating the momentum cut-off A . In our 
unified quark-lepton model of all fundamental forces [14,15] , the alpha-G relation is given 
by [16] 

a = 31f I L QI ln(l27r I nGmr) , 

where Qi and mi are the charge and mass of quarks and leptons, respectively. For three 
generations of quarks and leptons and their mirror- or super-partners, the alpha-G relation 
simply becomes 

a �  37r/ 16ln(47r/5GMlv) 
where J\1w is the charged weak boson mass. Note that this alpha-G relation is very well 
satisfied by the experimental data of a � 1/137 , a�1/2 � 1 .22 x l019GeV , and Mw � 
80.4GeV . 

3.  Special Inconstancy 

Special inconstancy is a principle in which some fundamental physical constants such as 
the fine-structure and gravitational constants may vary. Let us first make it clear that in this 
talk we use the natural unit system of h/27r = c = 1 (where h is the Planck constant and c 
is the speed of light in vacuum) . Note, however , that it does not mean that, in discussing the 
relevant possibility of the varying fine-structure and gravitational constants [ 17] ,  we exclude 
another intriguing possibility of the varying light velocity recently discussed by some authors 
[18] since varying either h or c is inevitably related to varying the fine-structure constant 
a ( = e2 /2hc ) (if the unit charge e stays constant) .  It simply means that we must set up 
a certain reference frame on which we can discuss whether physical quantities such as the 
fine-structure, gravitational, and cosmological [19] constants be really constant. Our basic 
hypothesis is that both of the fine-structure and gravitational constants are related to the 
more fundamental length scale of nature as in the unified (pregauge [20] and) pregeometric 
[10-12] theory (or ''pregaugeometry" in short) of all fundamental forces [14,1 5] reviewed in 
the last Section. 

To be more explicit , in the simple model of pregaugeometry discussed in the last Section, 
assert that 

and 

< (8µ + iAµ) Fggµv (8v - iAv)(fi >A= 0 ,  

9µv = F < [(8µ + iAµ)(fl ] (8v - iAv)4'.'i >A , 

Aµ = (i/2) < [4?j8µ4'.'i - (8µ4'.'j )4?i]/ (4?j4'.'j ) >A , 
where <>A denotes the expectation value in the space-time with the fundamental length 
scale parameter of A-1 . The first equation is the usual field equation for 4'.'i while the 
last two can be taken either as the "equations of motion" for g1,v and Aµ , which can be 
derived from the fundamental action S0 , or as the ''fundamental field equations", which can 
reproduce the effective Einstein-Hilbert-Maxwell action Seif at low energies( «  A )  or at 
long distances( » A-1 ) . 
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The most important consequence of special inconstancy in pregaugeometry is the a - G 
relation for the varying fine-structure and gravitational constant of 

(G/G) + 2(Mw/Mw) = (37r/16) (a/a2) ,  

which can b e  derived from differentiating both hand sides of the alpha-G relation with respect 
to any parameter for varying fundamental physical constants. This immediately leads to the 
remarkable predictions of 

G /G = (0.4 ± 0.4) x 10-12yr-1 

for constant Mw and 
Mw /Mw = (0.2 ± 0.2) x 10-12yr-1 

for constant G from the experimental data of a/a = (5 ± 5) x 10-15yr-1 by Webb et al. [7]. 
The first prediction is not only consistent with the limit of G /G = (-0.6 ± 2.0) x 10-12yr-1 
by Thorsett [6] but also feasible for future experimental tests. The second prediction, how­
ever, seems too small to be feasible for experimental tests in the near future although such 
prediction for the possible varying particle masses seems extremely interesting at least the­
oretically. Note that the varying A1w is perfectly possible through the varying electroweak 
gauge coupling constant g (which is related to the fine-structure constant in the standard 
unified electroweak gauge theory of Glashow-Salam-Weinberg [21]) and/or the varying vac­
uum expectation value of the Higgs scalar v (which is related to the momentum cut-off A 
in the unified composite model of the Nambu-Jona-Lasinio type for all fundamental forces 
[22]) since Mw = gv/2 . 

4. Further Discussions and Future Prospects 

In this talk, I have proposed a theory of special inconstancy in which some fundamental 
physical constants such as the fine-structure and gravitational constants may vary, based on 
the hypothesis that these constants are related to the fundamental length scale in nature. In 
the pregaugeometric theory, I have derived the simple relation between the varying a and 
G ,  predicted the value of G /G from the 0: - G relation and the experimental data on a/a , 
and found that the prediction is not only consistent with the present experimental limit on 
G /G but also feasible for future experimental tests. 

Let us first add that in some pregaugeometric model [23) the alpha-G relation is not of 
the type of a ,.._, 1/ln(l/G) but of the type of a �  GM2 (where M is a parameter of mass 
dimension) so that the ci - G relation becomes 

(G/G) + 2 (lvI/M) = a/a. 

This type of relation predicts 

G/G = (5 ± 5) x 10-15yr-1 

for constant M and 
M / M = (2.5 ± 2.5) x 10-15yr-1 

for constant G from the experimental data by Webb et al. [7]. We suspect that either one of 
these predicted values for G / G and M / M seems too small to be feasible for experimental 

-- · -- - � 
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tests in the near future although the first prediction is consistent with the limit by Thorsett 
[6) . 

Next, remember that in the principle of special inconstancy we do not assert that physical 
constants may vary as a function of time but do that they may vary in general, depending 
on any parameters including the cosmological time, temperature, etc .. What is the origin of 
varying the physical constants? The answer to this question may be related to the answer 
to another fundamental question: What is the origin of the fundamental length scale A-1 
in nature? It can be spontaneous breakdown of scale-invariance in the Universe, which has 
been proposed by myself [5) for the last quarter century. It can be the natural, dynamical, 
automatic, a priori, but somewhat "wishful-thinking " cut-off at around the Planck length 
G1!2 where gravity would become as strong as electromagnetism, which was suggested by 
Landau [13) in 1955. It can also be due to the Kaluza-Klein extra dimension [24), which is 
supposed to be compactified at an extremely small length scale of the order of G112 or at a 
relatively large length scale of the order of l/TeV recently emphasized by Arkani--Hamed 
et al. [25] . It seems, however, the most natural and likely that the origin of the fundamental 
length comes from the substructure of fundamental particles including quarks ,  leptons, gauge 
bosons, Higgs scalars, etc. [26,27) . In the unified composite model of all fundamental particles 
and forces [27) , the fundamental energy scale A in pregaugeometry can be related to some 
even more fundamental parameters such as the masses of subquarks, the more fundamental 
constituents of quarks and leptons, and the energy scale in quantum subchromodynamics, 
the more fundamental dynamics confining subquarks into a quark or a lepton. In either way, 
the fundamental length scale A-1 can be idetified with the size of quarks and leptons, the 
fundamental particles. 

In pregeometric special inconstancy, let us briefly explain the past and present of the 
Universe and predict the future of it, which may differ from that in the conventional Ein­
stein theory of gravitation (28] . The history of our Universe goes as follows: Long, long 
time ago, there was no physical space-time, in which the space-time metric was finite and 
non-vanishing so that the distance was well defined, but the only matter "existed" in the 
mathematical space-time. Suddenly, there appeared the big bang of our Universe as a phase 
transition of the space-time from the pregeometric phase to the geometric one due to quan­
tum fluctuations of matter, as suggested by us [29] in the early nineteen eighties, and our 
Universe had happened to be either flat or open. Then, not only all fundamental particles 
but also all fundamental forces between them were created and they started obeying the ef­
fective theory of all fundamental particles and forces including the Einstein theory of gravity 
with the non-vanishing and varying cosmological constant. In the eariest era during which 
the matter density had been extremely small, our Universe had been expanding almost ex­
ponentially. It had been the "almost inflationary Universe". In the next era of the radiation 
dominated Universe, our Universe was expanding less fast. Furthermore, in the last era of 
the matter dominated Universe, our Universe has still been expanding even faster. This 
history of our Universe is well simulated by a simple model of (Om , !.1.>,, -q) = (0, 1 , 1) , 
( 1/3, 2/3, 1/3) , or (1/3, 2/3, 1/2) for the early inflationary era, for the radiation domi­
nated era, or for the matter dominated era, respectively, where nm , !.1.>- , and q are the 
"pressureless-matter-density'', "scaled cosmological constant", and deceleration parameter of 
the Universe, respectively. Note that there must be another "phase transition" in which n>­
changed from 1 to 2/3 in between the early inflationary era and the radiation dominated 
era. Concerning the cosmological constant , I have been most impressed by the recent obser­
vation of the "farthest supernova ever seen" by Hubble Space Telescope [30] . "This supernova 
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shows us the universe is behaving like a driver who slows down approaching a red stoplight 
and then hits the accelerator when the light turns green." Note that this behavior of the 
Universe is what our model simulates. Note also that our model of the Universe is consistent 
with the recent measurement of the cosmological mass density from clustering in the Two­
Degree-Field Galaxy Redshift Survey [31] which strongly favors a low density Universe with 
Dm � 0.3 . Very lately, The CBI Collaboration [32] has found Dm = 0.64 + 0 . 1 1/  - 0.14 and 
Dm + D>. = 0 .99 ± 0 . 12 . More lately, the Wilkinson Microwave Anisotropy Probe (WMAP) 
team [33] has found 1) the first generation of stars to shine in the Universe first ignited only 
200 million years after the big bang, 2) the age of the Universe is 13 .7 ± 0 . 2  years old, and 
3) Dm = 0.27 ± 0.04 and n>. = 0 .73 ± 0.04 . 

The future of the Universe in our special inconstant picture can be quite different from 
that expected in the Einstein-Friedmann picture: 1) Since the cosmological constant may 
vary in special inconstancy, the space-time of our Universe which is almost fiat and expanding 
faster and faster may not continue to be fiat and accelerating forever. Our Universe may 
even encounter a "topological phase transition", which was first discussed by ·wheeler (34] in 
1959, from the open Universe to the closed one. 2) If the gravitational constant increases, the 
expansion of the space-time may not contitue forever. The Universe may well stop expanding, 
start contracting, and even be bouncing forever. If G decreases, it will be more accelerated 
ever. 3) If the fine-structure constant (and/or other fundamental coupling constants such as 
the strong and weak coupling constants) varies, our Universe may encounter an "obsolete 
phase transition" from the matter-dominated Universe to the radiation-dominated one. In 
short, we can expect anything about the future of our Universe or, in other words , we can 
predict nothing definite on the destiny of our Universe. 

In conclusion, let us point out that not only continuous physical constants such as a and 
G but also discrete physical numbers such as the number of the space-time dimensions n ,  
the number of quark colors Ne , the number of quark-lepton generations N9 , etc. may vary. 
In fact, an astonishing "dimensional phase transition'', which was discussed by myself [35j 
about two decades ago, may be possible in the history of our Universe. If n is related to Ne 
as in the "space-color corespondence", which was proposed by myself about three decades ago 
[36] , both of these fundamental physical natural numbers must vary simultaneously. Before 
concluding this talk, let me ask the following question: Are no constants of nature constant? 
After all, it may be that nothing is constant or permanent in the Unverse as emphasized by 
the Greek and Indian philosophers about two and a half millennia ago! 
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COBpeMeHHOH fllH3HKe H MaTeMaTHKe» (BGL-4) 
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1 .  1 2  cpeBparuI 2006 ro.n:a wcnonHttTCH 1 50 neT co AHH cMepn1 Bhmarorueroc51 pyccKoro 
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