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Abstract
We study the cosmic microwave background (CMB) anisotropy generated by nonlin-
ear structures in a flat universe with a cosmological constant. We model a spherical
compensated void/lump by a family of Lemaitre-Tolman-Bondi spacetimes, and nu-
merically solve the null geodesic equations together with the Einstein equations. We
find that voids redshift CMB photons regardless of Ω (or z), while lumps blueshift
CMB photons if Ω (or z) is small. Those nonlinear structures could be observed as
cold/hot spots in the CMB sky map.

1 Introduction

Recently it has been argued [1, 2] that the anomalies of the cosmic microwave background (CMB) such as
octopole planarity and the alignment between quadrupole and octopole components [3], anomalously cold
spots on angular scales ∼ 10◦ [4], and asymmetry in the large-angle power between opposite hemispheres
[5] could be explained by the Rees-Sciama (RS) effect [6] of nonlinear large-scale structures.

To test such a conjecture, we study the RS effect due to nonlinear structures in a flat universe with a
cosmological constant Λ. We model a spherical compensated void/lump by a family of Lemaitre-Tolman-
Bondi (LTB) spacetimes, and numerically solve the null geodesic equations together with the Einstein
equations. In the literature [7] the CMB signature of voids/lumps has been extensively studied, using
LTB spacetimes; however, Λ = 0 has been assumed in all the papers. In this paper, we consider large
voids/lumps (> 100Mpc) in a flat universe with Λ > 0, as suggested by recent observations.

2 Model and Basic Equations

Consider a family of spherically symmetric spacetimes with dust and a cosmological constant. Their
general solutions are represented by the LTB metric,

ds2 = −dt2 +
R′2(t, r)

1 + f(r)
dr2 + R2(t, r)(dθ2 + sin2 θdϕ2), (1)

which satisfies the Einstein equations,

Ṙ2 =
2Gm(r)

R
+

Λ

3
R2 + f(r), ρ(t, r) =

m′(r)

4πR2R′
, (2)

where ′ ≡ ∂/∂r and ˙ ≡ ∂/∂t. ρ is energy density of matter, and m(r) and f(r) are arbitrary functions,
which should be fixed by initial conditions.

Our model of a void/lump is composed of three regions: the outer flat Friedmann-Robertson-Walker
(FRW) spacetime (r > r+), the inner open FRW spacetime (r < r−) and the intermediate shell region
(r− < r < r+). Hereafter we denote quantities in r > r+ and in r < r− by subscripts + and −,
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Figure 1: Examples of initial and evolved profiles of ρ(t, r). (a) and (b) represent a void (δ < 0) and a
lump (δ > 0), respectively.

respectively. At the initial time t = ti we give small perturbations on ρ in such a way that ρ−(ti) =
ρ+(ti)(1 + δi) with δi � 1 and in the shell,

ρ(ti, r) =























ρ− for r ≤ r−,
ρc − ρ−

16
(3X5

− − 10X3
− + 15X− + 8) + ρ− for r− ≤ r ≤ rc,

ρ+ − ρc

16
(3X5

+ − 10X3
+ + 15X+ + 8) + ρc for rc ≤ r ≤ r+,

ρ+ for r ≥ r+,

(3)

where rc ≡ r+ + r−
2

, w ≡ r+ − r−
2

, X± ≡ r − rc ∓ w/2

w/2
, (4)

and ρc ≡ ρ(rc) is determined by the boundary condition at r = r+. Examples of initial and evolved
configurations of ρ(t, r) are shown in Fig. 1.

As for initial values of H(t, r) ≡ Ṙ/R, we assume H(ti, r) = H+(ti) = H−(ti). We fix the gauge of
the radial coordinate as r = R(ti, r). In this model there are four dimensionless parameters,

Ω ≡ 8πGρ+

3H2
+

, δ ≡ ρ−
ρ+

− 1,
R(rc)

H−1
+

,
w

rc

, (5)

which should be fixed at a certain time.
Let us consider a photon which passes the center, r = 0. The geodesic equations with the metric (1)

are given by

dt

dλ
= kt,

dr

dλ
= kr, kθ = kϕ = 0, kr = ε

√
1 + f

R′
kt, ε ≡ sign

(

dr

dt

)

, (6)

dkt

dλ
= − ˙grr

2
(kr)2,

d

dλ
(grrk

r) =
grr

′

2
(kr)2, grr ≡ (R′)2

1 + f
(7)

By numerical integration of the null geodesic equations (6) and (7) together with the Einstein equation
(2), we evaluate temperature fluctuations,

∆T

T
=

kt

kt
+

− 1, (8)

where kµ
+ is the null vector of another photon which passes the homogeneous region, and given by

kt
+ ∝ 1/a+.
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Figure 2: Temperature fluctuations of photons passing through a void (a) and a lump (b). We put
δo = ∓0.3, Ωo = 0.24, Ro(rc) = 0.1H−1

o and w/rc = 0.1. The arrow indicates the traveling direction of a
photon.

Figure 3: Temperature fluctuations for a large void with Ro(rc) = 0.1H−1
o . (a) shows ∆T/T versus Ωo

with δo = −0.3. The dotted line indicated by “thin shell” shows ∆T/T for the thin-shell model [2]. (b)
shows ∆T/T versus δo with Ωo = 0.24 and w/rc = 0.3 The dashed line indicated by “linear approx.”
shows a linear extrapolation from the values for |δo| ≤ 0.1.

3 Results and Discussions

Figure 2 shows temperature fluctuations of photons passing through a void/lump. The subscript o denotes
quantities at the time to when a photon comes out of a void/lump. Although ∆T/T temporarily becomes
∼ 10−3, it finally reduces to ∼ 10−5 because of mass compensation of a void/lump.

In what follows we discuss only the eventual values of ∆T/T measured outside a void/lump. Figure
3 shows ∆T/T for a large void. (a) indicates how ∆T/T depends on Ωo and the width of the shell w/rc.
We find our result is consistent with that for the thin-shell model [2], and that ∆T/T decreases as w/rc

increases. (b) shows that the nonlinear effects enhance ∆T/T .
In Fig. 4 we plot ∆T/T for a large lump. According to Mart́ınez-González and Silk [8], lumps redshift

CMB photons in the Einstein-de Sitter universe (Ω = 1, Λ = 0), just like voids. In contrast, we find in
(a) that lumps blueshift CMB photons in low-Ω universes. That is, large lumps at high-z and at low-z
have opposite effects on the CMB anisotropy. We also see that our result is consistent with that for
the top-hat model calculated by the second-order perturbation [9]. (b) shows that the nonlinear effects
reduce ∆T/T , in contrast to those for a void.
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Figure 4: Temperature fluctuations for a large lump. (a) shows ∆T/T versus Ωo with δo = 0.3, Ro(rc) =
0.09H−1

o and w/rc = 0.1. The dotted line indicated by “top hat (2nd)” shows ∆T/T for the top-hat
model calculated by the second-order perturbation [9]. (b) shows ∆T/T versus δo with Ωo = 0.24,
Ro(rc) = 0.1H−1

o and w/rc = 0.2.

Our results indicate that, if quasi-linear (|δ| ∼ 0.3) and extra-large (R ∼ 0.1H−1) voids/lumps exist,
they could be observed as cold/hot spots in the CMB sky map. Furthermore, with such observations we
could estimate the quantity of dark matter in voids.
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