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Abstract 
The mass spectrum of the bound state is analytically derived. The mechanism for 
arising of the constituent mass of the bound state forming particles is explained. 
Change of the bound state mass and of the constituent mass of particles is analyzed 
by the varying the coupling constant. The mass spectrum of the two-gluon glueball 
is calculated taking into account spin-orbit and spin-spin interactions. 

1. Introduction 

For the last three decades theorists have been trying to derive the effective potential 
of the quark interaction, starting from the basic principle of the QCD which explains 
the requirement of the confinement and deconfinement of the constituent particles [l). 
There is a lot of potential models of quarks which are constrncted on the basis of non­
relativistic picture of confinement. These models are mainly applicable to physics of 
hadrons consisting of heavy quarks. The properties of hadrons consisting of light quarks 
are dominated by the relativistic character of the interactions, which requires additional 
efforts to incorporate relativistic effects. It is known (for instance, [2]) that relativistic 
effects in the bound state formation in the quantum field systems can be taking into 
account as small corrections only in the weak coupling regime, but the strongly coupled 
systems like hadrons in QCD ultimately require fully relativistic consideration which can 
be adequately realised only by means of genuine field theoretical methods. One of the 
most powerful method ofthis kind is based on the Bethe-Salpeter equation. Application of 
Bethe-Salpeter equation in QCD assumes an appropriate approximate choice of the kernel, 
which is usually chosen on the basis of physical assumptions about nonperturbative QCD 
vacuum (see, for example [3, 4)). 

Another field theoretical method based on the Fock-Feynman-Schwinger representa­
tion was suggested in [5]. This method succ:essfully applied [6] for the description of the 
hadron and glue ball mass spectra. The keynote of this approach is the presentation of the 
polarized loop fonction as a functional integral and the main problem is its integration. Of 
course, this integral is not evaluated in general but only in certain physical assumptions. 
One of the alternative methods of the functional integral evaluation and determination of 
the glueball mass with taking into account the nonperturbative and relativistic character 
of the interaction is suggested in the [7). In this work, we was present one of the alterna­
tive methods of the bound state mass determination. The bound state mass determined 
in the form 

M = /~r - 2µ 2E'(1t) + /m~ - 2µ 2E'(µ) + µE' (µ) + E(µ). (1) 
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The parameter µ. can be determined from the equation 

1 1 1 1 1 
=-+-= + ' 

µ. µ1 µ2 Jmî - 2µ2 · E'(JL) Jm§ - 2J12 · E'(11) 
(2) 

where the following notation is used: 

E' (µ) = ôE(µ)/ôJL. (3) 

We will consider the parameters Jli and µ 2 as masses of the constituent particles in the 
bound state. These masses differ from m 1 and m2 which represent the masses of a free 
state. To describe the mass spectrum of the relativistic bound state, the constituent mass, 
which differs from the mass of the initially free particle. Particularly, when describing the 
hadron mass spectrum, the masses of the valence and current quarks are introduced. On 
the other hand, if the bound state consists of two gluons, then the constituent mass of 
gluons is nonzero, according to (2). In this case, one can iclentify the two-gluon bouncl 
state with the pomeron which is broaclly used in describing the mechanism of the inelastic 
scattering of particles. The quantity E(JL) is defined as eigenvalues of the interaction 
Hamiltonian with the nonperturbative correction. The nonperturbative correction to the 
interaction Hamiltonian represented as( the detail see [7]) 

1 -2 4 cts + V(O) · Ho= -·P --- ' 
2µ 3 r ] 

4 Œs l 1 f:::.H~onpcr = -37. [ J1 + e(e + l)/(c2r2µ.2) 
(4) 

2. Calculation of the glueball mass spectrum taking 
into account the spin-orbit interaction 

Let us determine the mass spectrum of the two-gluon bound state when al! effects of the 
gluon-gluon interaction such as the one-gluon exchange, nonperturbative character, and 
spin-orbit corrections are taken into account. The total Hamiltonian can be written as 
a sum of two parts. The first one is the central Hamiltonian which corresponds to the 
conditions of the one-gluon exchange and nonperturbative character of interaction and 
also to the confinement. The second one is the Hamiltonian of the spin-orbit interaction 

H = He + Hspin ' (5) 

where He is the central part 

1 4 Œ8 4 Œs - 1 
[ 

1 ] 
He= 2µ P

2 

+ aadr - 37 - 37 J1 +li( li+ l)/(r2µ 2 ) 
(6) 

The second part of the Hamiltonian is defined in the standard form 

Hspin = Hss + HLs + Hrr . (7) 
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where Hss is the spin-spin interaction Hamiltonian 

Hs·s· = (8182) ~V: 
9 V > w 

(8) 

and also the spin-orbit interaction Hamiltonian 

HLs = (L~) [~~Vv - ~~Vs] , 
8p2 Tor r or 

(9) 

and, at last, the tensor interaction Hamiltonian 

S12 [1 o o2 
] 

Hrr = 48p2 -:;: or Vv - or2 Vv (10) 

Here Vv is the vector potential corresponding to the one-gluon exchange 

V: __ 40'.s 1 

V - 3 Jr2+/!.(/!.+1)/p2' 
(11) 

Vs is the confinement potential 

Vs= TO"ad ' (12) 

and also the following notation is used: 

8 = 81 + 82 (13) 

S12 '~". n,4,~" ~, [L282 -~(L8)-3(L8)2] 

Using the explicit form of the Hamiltonian introduced in equations (7)-(13), let us start 
to determine the mass of the glueball with the spin-spin interactions when /!. = O. In this 
case, for the energy spectrum we have 

t:0 (E) = t:g(E) +t:g5 (E), (14) 

where t:f?(E) and t:g5 (E) are the contributions of the Hamiltonians of the central and 
spin-spin interactions, respectively: 

"'c(E) = (1 + p)w + 4p2
flO"ad f(4p) _ 4p2 pE f(3p) _ 

~o 2 w3p-l r(l + p) w2p-l r(l + p) 

16asp2 pwl+P Joo U3p-l e-uw 
dîl--;====== 

3r(l+p) O Ju2P+/!.(/!.+l)jp2 
(15) 

ss _ 0'.8p(8182) w 1
+P 

t:o - 36ri r(l+p)' 

After some simplifications we obtain for the energy spectrum 

E(p) = y'ci::d ·min [xA + ~B] , 
{p,Z) X 

(16) 
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where the following notation is used: 

A=~ r(2 + p) _ 4Zas r(2p) _ a,p(S1 S2 ) Z 3 

8p2 f(3p) 3 f(3p) 144p2 f(3p) 
(17) 

B=]:_f(4p). X=__!!:_ 
Zf(3p) ' .,fii:d' 

and the x parameter is derived from (1), (2). Using this parameter for the glueball mass 
we have 

[ 
E(µ)] M = .,fii:d 2x + .,fii:d . 

In this case, the mass glueball corresponding to the following states, is determined 

]PC = o++ , 1 +- , 2++ . 

Our numerical results are presented in Table 1. 

(18) 

Table 1. The mass spectrum of the glueball with taking into account the 
nonperturbative character of interaction and spin-spin interaction for the case off. = O. 

In Ge V units. crad = 0.45 GeV2 , Œ8 = 0.3 
jf'C our resv.lt lattice data Exp. other works 

1.73 [8] 
o++ 1.64 1.63 [9] 1.50 [12] 

1.61 [10] 2.11 [12] 1.98 [14] 
1.75 [11] 2.32 [13] 2.69 [15] 
2.40 (17] 

2++ 1.97 2.35 (9] 2.02 (16] 2.42 [14] 
2.26 [10] 2.70 [15] 
2.42 [11] 

From Table 1, we eau see that our results are in good agreement with the results of 
other authors. Let us now consider the general case when f. =!= O. We obtain the energy 
spectrum E(µ) for the total Hamiltonian from SE 

E = E(c) + e<ssi + e<Ls) + E(rri . (19) 

Here E(C) is the contribution of the central interaction Hamiltonian 

E(C) = x2 .,fii:d f(2 + p + 2pf.) .,fii:d r( 4p + 2pf.) -- +-- -
8p2 f(3p + 2pf.) xz f(3p + 2pf.) 

(20) 

4a xz.,fii:d 1"" u3p+2pf-le-u 
s ad du-;========== 

3f(3p + 2pf.) 
0 

JuzP + z2f.(f. + 1) 

E(LS) is the spin-orbit interaction contribution 

E(LS) = yvaa +4a XZ du-------z2 ~(LS) { f(2p + 2pf.) 1"" u3p+2pf-le-u } 
8f(3p + 2pf.) xz s 

0 
[u2P + z2f.(f. + 1)]3/2 

(21) 
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E(TI') is the inclusion for the tensor interaction 

3 ;;:r-:,5 OO 
0 p+'>pf ! 

E
(1'1') ŒsXZ y <lad 12 J 'U~ - - e-u 

= d'IJ,-c--c------
12r(3p + 2pP) ['/),2P + z2P(P + 1)]5/2 

0 

and E(SS) is the contribution of the spin-spin interaction 

E(SS) 
ŒsP 0;;;J(S1S2) , ? 1°" 'U3p+2pf-le-u _ _,_v_vaa--'----'-. xz3p- dii------
18r(3p + 2pP) ['U2P + z2P(P + 1)]5/2 

0 

X [u2
P + ~

2 

(3 + 2P)(l + P)] 

The parameter x is derived from the equation 

2 + _l àE 
~àx -0, 

and then the energy spectrum is determined in the following form: 

E(µ) = min [E(x, p, z)] 
{p,Z) 

The numerical results are in Table 2. 

(22) 

(23) 

(24) 

(25) 

Table 2. The mass spectrum of the glueball for the general case. In Ge V units. 
<lad= 0.45 GeV2 

, Ct8 = 0.3 
Ç, = 1 P= 2 P= 3 

aur other üllT other O'UT other 
jPC result works jPC: result works jPC res'Ult works 

S=O o-- 2.95 o++ 3 39 1.72[8] o-- :3.95 
1 2.99 l++ 3.42 i-- 3.97 3.81 [8] 

2++ :3.47 3.50 [11] 2- 4.00 3.90 [8j 
;3--· 4.05 4.10 [8] 

IS=l 0 + 2.92 2.59 [17] o+ 3.:36 4.82 [8] 1 0 + :3.90 3.64 [10] 
i-+ 2.95 i+- 3.39 2.95 [8] 1-+ 3.95 1 

2 + 3.02 3.10 [17] 2·c- 3.44 4.10 [8] 2-+ 3.99 3.89 [ÏOJ 
3+ 3.52 3.53 [8] 3··T 4.03 

4 + 4.10 
S=2 o-- 2.86 o++ 3.31 2.67[8] o-- 3.90 

--1- 2.89 i++ 3.33 1 .. 3.92 
2-· 2.95 2++ 3.38 2.38 [8] 2-- 3.95 
;3-- ;).()5 3++ 3.46 3.69 [10] ;)-- 4.00 

The mass spectrum of the two-gluon glueball is calculated taking into account spin­
orbit and spin-spin interactions. 

Our approach allows a unified description of the mass spectrum of glueball for var­
ious states with various spin and orbit quantum numbers. Further, we will apply our 
approach for the description of the glueball mass spectrum ta.king radial excitation into 
consideration and for determination of the hadron mass spectrum. 
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