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THE FIELD INDUCED IN AN ACCELERATOR SECTION BY A NON-
SYNCHRONOUS BUNCHED ELECTRON BEAM

1.0 INTRODUCTION

We propose to study the general first order behavior of a non-
synchronous rf accelerating structure. Many results are already avail-
able ag far as the klystron rf wave is concerned™’® and as far as the
1

We

will try to find out general expressions and chiefly enhance the behavior

beam induced wave is concerned in constant impedance structures.

of the beam induced wave in constant gradient structures. Thecoretical
results will be applied to the 2 mile accelerator section leading to a
discussion of the rf automatic phasing system. Experimental results will

be compared to the theoretical ones.

2.0  HYPOTHESES

2.1 Fields

The fields travel only in the direction, =z , of the electron beam
and the interaction between the field and the beam is independent of the
radial position of the beam. In addition higher space harmonics are

neglected.

2.2 Beam
The beam is bunched and travels in the =2z direction with the vel-

ocity of light.

2.3 General

Let, E(z,t) be the field in the structure without beam, and
E;(z,t) be the field induced in the structure by the beam with the kly-
stron off. Since the beam current is not affected by the klystron power,
the klystron and beam can be regarded as independent power sources so

that with both the klystron and beam on, the total electric field in the



structure ET(z,t), is given by,

Ex(z,t) = B (z,t) + E(z,t) (1)

Similarly the total energy Vi, can be written,

vT = Vi + V (2)

where V 1is the energy gained by the beam with no beam loading, and

Vi is the energy lost by beam in a section with no rf input power.

3.0 TPFIRST ORDER NON-SYNCHRONOUS OPERATION
3.1 Definition

If vp is the phase velocity of the wave in the structure and Ve

is the electron veloecity, synchronous operation occurs when,

The phase velocity is a function of the operating frequency and
temperature, and the condition vp = ¢ occurs only at the synchronous
frequency fo for a given temperature. A change in temperature ATP

however can be related to a change in freguency, by

where Vv 1s the coefficient of linear expansion of the metal.

-2 -



In non-synchronous operation, both temperature and frequency varia-

tions can be included in the parameter o, where

and

3.2 BSlippage Between the Beam and Wave in a Non-Synchronous Section

The phase difference between the rf wave and the beam at a given

point 1z, along the structure is given by,

\

[eRIN
1
L\\D
<l&

8(z) = B, + W

where 60 is the phase difference at 2z = o. If vp = ¢, then
85(z) = 8 = constant
however, if vy # ¢ then a "slippage" occurs and is given by
z

Z
glz) = <z fv = = 2 fadz
o P

e}

For a small frequency variation around the synchronous frequency, g(z)

can be expanded in a Taylor series,
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Neglecting second order terms, i.e., assuming that

[?his means that the group velocity is constant around the synchronous

frequency and the Brillouin characteristic can be approximated by the

tangent at w = wo. So we neglect all pulse phase and amplitude dis-
. s} *

tortions due to = (vg) # O.] Then,

z
zZ dz .
g(z) = Lw - —kzn ;; since g(mo) =0
or
glz) = Aﬂ>[3i(2) - T({ﬂ

where, Ti(z) is the electron transit time to 2z and T 1is the rf

filling time to 2z but since Vg ~ 0.01 C, Ti(z) << 7(z) and Ti(z) can be

*A more scophisticated approach by J. M. Leiss® takes care of the v
variations for studying transients in a constant impedance accelerator
gection, but seems difficult to be used for a constant gradient section
and in most of the cases exhibits only small corrections with respect to
the first order. ‘

T



neglected according to the previous hypotheses, then

g(z) = - owr(z) (&)

g(4) will ve only called g

4.0 FIELD INDUCED BY THE BEAM IN A NON-SYNCHRONOUS SECTION

Consider an accelerator section of length 4 and filling time T

2

0 1
(z) 7 < ar

Let,
r be the shunt impedance/unit length
& be the attenuation coefficient/unit length
Q@ be the Q of the section

and assume

and that the field dEi’ induced by the beam in a length dz, is

established instantaneously,i.e.,

1
2Q' o dz
w v

g

where Q' is the Q of an individual cavity which is very low. Then,
dE. = - arIdz(*) (5)
1

where I 1is the beam current.

*
See for instance Ref. L.



Equation (5) can be rewritten in terms of the filling time dT, as follows:

0
dE; = - 3q I ar = - rlIav (5)
where,
TT:‘..U_.T
29

It should be noted, that with the above assumptions using the filling
time as the variable as opposed to the length, that both dg/dT and
dEi/dT are constant along the section whatever type of structure is
considered.

The expression for the total field induced at the end of the section
can now be derived as follows:

Let the amplitude of the beam induced wave be governed by a(z),
or in terms of the filling time A(T) and let the slippage be given by
g(z) = ~owt(z) (Bq. (41)), i.e., when the field travels from zl(Tl) to

ZE(TZ)

it

the amplitude E E xa(lz -z ) =E X A(t -1 )
2 1 2 1 1 2 1

]

the phase o]

¢ - ot -7 ) with respect to the beam
2 1 2 1

Ei({) at the end of the section is the sum of all the dE,(z) after
they travelled from z.

The expression for Ei({J is so given, in the steady state condi-
tion by,

T T

E.(4) =L/h dE.(z) =ljp— gg IA [Tt~ (z)] gmdoelt-t(2)] 4o



For clarity write <(z) = u, then,

1

Ei({J = - %% I\/P A(T-u) e_jdm(T_u) du (6)

o

Induced power

The travelling power in an accelerator section is given by:

E4(z
oz) X r

:

P(z) =

o

In the particular case when E = Ei’ P(z) is the power induced
by the beam and if 2z =4, end of the section P(€) 1is put out from
the section excited by the beam. This holds in the non-synchronous

operation as far as we can assume a good output coupler matching and:

i 2ad) x r T 2T

2 -—2
P - iEi<£)' @i(;)i (1)

r

¢, the phase angle between the beam and the induced wave at the end of

the section, is given by;

T

. [%i({51 JrA(T—u) sin ow (T-u) du

tan @ = :

:! _o
. [%i({?J \ij(T—u) cos ow (T-u) du
o

- (8)

Remark: At a given point 2z in the section, Ei’ Pi and @ can be
determined from Egqs. (6), (7) and (8) by replacing T with T(z) where
7(z) 1is the filling time from the input to the point z. It is Just

like considering each point as the end of a shorter section of filling

-7 =



time T(z). This property of course holds during the transient state as

well and will be true for all the expressions given in the remaining

pages.
The energy lost by beam loading is:

1
vy =f R E!i(zﬂ dz
o
when Ri:] means the real part.

5.0 TRANSIENT STATE PHENOMENA

Let the beam pulse of duration D, and amplitude I enter the
section (z=o) et t=0 and assume that the electron transit time is

short compared with the rf filling time.

5.1 Leading Edge (t < T)
At the end of the section (z=), 0 <t < T, which means that the

field is built up only by components coming from =z, i.e.
t =71 - T(z)

E, and ¢, which become Ei({gt) and o(4,t) are given by Egs. (6)
and (7) when the lower limit of the integral is replaced by T(z) = T-t.

B(Lt) = 2 [ atrow) T s (5 <) ()

T-t

It should be noted that the integrals always include the variable
u as T-u so that if T-u is replaced by a new variable v, the
upper limit becomes O and the lower limit  t. This means that during
the transient state, the field 1s constant at any point in the section

provided T(z) > t.



The energy lost is a function of time and can be calculated in two

parts.

from O to z (7(z) = t) steady state

from 2z to {3 transient state

5.2 Trailing Edge (D < t < T + D)

The following analysis starts from the steady state condition. At
time t=D the beam current stops and the induced field begins to decay.
The first part which is lost is that induced in the section at point L.
At time t, (D<t <D+ T) it is the component induced at the point =z
so that if 7(z) 1is the filling time from O to z,

t -D=71 - 7(z)

The total field is the steady state field less the field suppressed;

T T
Ei({vt) = - g% I \/ﬁ A(T-u) enjd&(T_u) du - k/p A(T-u) e_jgw(T_u) du
0 T+D-t
or,
T+D-1%
B.(£t) = - 32%’ I f A(T-u), 30T 4 (p <y <o+ D) (10)
@
We notice that when t goes to T+D, E.({ﬁt) goes to zero and,
1
P to :

o(L,D+1) = - owT+n

Thus the angle of slippage between the beam and the last beam induced
wave is given by g=-owT since the last component has traveled the full

length of the section.



5.3 Particular Case of the Pulse Length Shorter than the Filling
Time of the Section (D < T)

Consider the situation at the end of the section (z=&).

0 <t <D This is the leading edge transient state studied in

Section 5.1.

t = D; Equation (9) gives:

.
5(42) = - 21 [ Are), 3T g

2Q
T-D
D<t < T; The induced field is now only a function of the time be-
tween =z (T(z) ='Q and {3 and the fields no longer
build up. Then,
Ei(&,t) = Ei(&,D) A(%-D) e”J""’(t'D) (D<t<T) (11)
t =T
Ei({gT> = Ei({gD> A(7-D) e-Jow(T-D)
T <t <7+D; This is the normal case of the trailing edge transient
state starting with Ei({QT)
T :
E.(4,t) = Ei(qu) + %% I A(T-D) e—Jow(T—D) X JF A(T-u) e_JGw(T_u) du
27-% '
27-1
5,(06) = - 21 aren) T s [ atr) 3T Way (ren<rin) (2)
: T-D

- 10 -



We see that Ei({gt) goes to zero as t goes to T+D (i.e.,
2T-t - 7-D). Let, t = T+D-¢ where ¢ is small then,
E.(L,t) = -X271a(T) omdoe{T)
i 2q
€-0

So as before and for the same reason the angle of slippage goes to -gwr=g.

6.0 EXPRESSION FOR THE FIELD IN THE CONSTANT IMPEDANCE STRUCTURE

In the constant impedance structure

ov
. Eoo wm ra) -8,
g
the amplitude law is given by
a(z) = e %
w
Qv T - =T .
A(T) =€ € -¢ SE - e’
From Eq. (6)
A= s (Teu)
o Teq M T -joa(T-u)
El({J = - I e e du
o
o] [
_ .1 |i-2joa 2Q I
1 + Lo®Q%
-2 .
ri 2Q
= — (e (cos g - 20Q sin g) -1
1 + ho®Q®
N —_
_—E—Q"T'
- l; (sin g + 20Q cos g) - 20%J (13)

- 11 -



The phase of the induced wave with respect to the beam is then given by,

.
[sin g + 20Q cos g] -20Q (1)

e
tan ¢ = -
-

[cos g - 20Q sin g] -1

L
2Q
L
2Q

Energy Lost in the Constant Impedance Section by Beam Loading

The energy lost Vi’ is given by

Integrating and expressing Vi as a function of the length {9 and of

the total angle of slippage, g, gives

2,2
v, o=——xL 1 - ho7q [%"aﬁ (cos g + koQ sin g) -1{) (15)
L1 4 b33 oc(l + hc‘gQE) ’

It can be shown from the above formula that if o¢=0, then the well-
known formulae for the induced field and energy loss obtain and in
addition that ¢=0. Ei’ ¢ and Vi can be calculated for the transient
state case from Egs. (9), (10), (11) and (12).

7.0 EXPRESSIONS FOR THE FIELD IN THE CONSTANT GRADIENT SECTION

For the constant gradient section considered let,

then,

- 12 -



and,

in addition,

From Eq. (6 ):

T owT
_ e -jow(T-u) ozl GuT A
R R-T) If W= -5y sin (“2‘)
o]
S50 the Ei amplitude is:
ow
ro etn (%)
Ei = —2—@ T I o (16)
2
and can be written:
1] ; B l
!Ei‘ ) Eilo T ('16!)

| .
where Eii is the field amplitude in the synchronous operation and
e

- 13 -



The phase of Ei with respect toc the electron beam is:

cp=—94°2£+n=%+ﬂ : (17)

Remark: Results (16) and (17) can be geometrically found out noticing
that the pattern of the vectors dﬁz added one after another is inscribed

. . = .
in a cirecle where Ei is a cord.

7.2 Induced power
From Egs. (7) and (16t)

or

P =P I® (18)

Where Pio is the induced power in the synchronous operation and

can be written as a function of T (Ref. 5)

The I' factor in both Ei and Pi expression shows that Ei and
Pi can go to zero several times along the section C%gz = kﬁ) if o 1is
large enough. That means the power is balanced between the field and the
beam; in the first part the field is induced by the beam and reaches a

maximum, then it accelerates the beam again and goes to zero and so on.

7.3 Energy Lost by Beam Loading




The energy lost V.l is given by,

Z
vV, :R/ E. dz
i . i
o
T i
Iw foT Qv
R L sin owu - j(1 - cos owu) e du
2 v,
Ll-oQOlo
T gu
= = rlo 3 / e < sin owu du
2 ) .
haooQ N
[0V)
- =T
rI e @ (sin g + 0@ cos g) - oQ (19)
lLO‘o o@(1 + ¢2Q%)

We can check that Vi goes to the synchronous expression5 when

0 goes to zero since,

—

1

(0]
DIE

7.4 Leading and Trailing Edge Transients

At the leading edge at a time t < T , +the induced field is given
from Eq. (5) by ’

. T
N oL I - ~Jow(T-u)
Ei(t,{) -3 I L/ e du
T-t .
E.(t) = _rl sin owt -j (1 - cos owt)
i 20Q J v
L ot
ool oot U2
=-5g sin e (20)



and,

It can be seen from these expressions that both the phase and amplitude
are functions only of time and not of distance.

In the case of the trailing edge, with D <t < D + 7, the induced
field is given from Eq. (6) by

T+D-t
rdd -jowl T-u
Ei(iat) T IL/q eV ( ) du
o]

=
o
ct
)
1
1))
'—l.
o
Q
e
/—t‘ﬂ\
4
_.‘
'
(0]
[
TS
1
Ve
¥
~t
no
)_I

and

It should be noted that as t goes to T + D, the amplitude goes to

zero and the phase to -owT = g.

7.5 Particular Case of Beam Pulse Shorter than the Section Filling

Time
In this case DT
For t <D

The expressions for the field amplitude and phase are given by
Egs. (20) and (21) of Section 7.h.

For D<t <1

- 16 -



hence,

‘Ei(t)l = constant

cp(t)=-crco( 'g)“'“

For t =7

and

cpw,n:-w(v--g)m

For 1<t <T+D

From Equation (12), Section 5.3

27~
_ _ rIw _-jou(T-D) -Jow(T-u)
Ei({”t> =-5q °© \/ﬂ e du
T-D
_Jo®
- - gin ow Q4D_£) e (repre) (22)
oQ 2 )¢

and

o) = - L [r-pet] +

It can be seen from Eq. (22) that as t goes to T+D the amplitude
goes to zero and the phase ¢(t) to -owr =g

7.6 Energy Lost by Beam Loading in Transient State
From O to z(t) so that T(z) = 1t, it is steady state and v, is

given by Eg. (19) where T 1is t.

- 17 -



From z(%) tof&,Ei is E,(t) given by Eq. (20) and Vi is

R <Ei(t) X [?mz(t§]> , s0: ’

w
=T
v.(t) = rit 1 e 8 (sin owt + oQ cos ocwt) - 0@
! 20q 5 1+ 033
l-e
‘ _9 -t _9 T
- sinowt \e & - e 9 (23)

When t > T Eq. (23) becomes Eq. (19) again. We can have at each time
the total energy gained by the electrons travelling through the sections,

remembering that:

Vo=V +Vi(t) -

7.7 Graphical Representation

® and IEil are plotted versus time in Figure 1. lEi’ varies as
sin E%E fram O to T (or D') and the curve issymmetrical with respect
to the vertical axis t = I%Q (or 152’). From a good "square" beam
pulse both represented ¢ and lEil curves can be observed on a scope.

The observed lEi<t)’ is about a trapezoid; in the synchronous case
the sinusoid only becomes a linear function of the time.®’* If o is
small and considering the non-perfect detector characteristic it is
difficult to see the difference.

The observed ¢(t) is about the theoretical one = an accurate
reading would require an amplitude free phase detector and a very stable
pulse phase. For the same reason it is difficult to get a horizontal
straight line when =0 which could be an absoclute indication of syn-

chronism (as already suggested by K. Mallory) .

8.0 APPLICATION TO THE BEAM INDUCTION TECHNIQUE OF PHASING LINEAR
ACCELERATORS

The beam induction technique, which has been previously described,

consists basically of comparing the phase of the klystron wave and the

- 18 -
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D=D'
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D

D 7+D'

T+D

Figure 1
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beam induced wave at the output of the accelerator section. It has

been shown in this note that the phase at the output of the section is

a function of the synchronism of the beam. Synchronism is determined

by @he operating frequency and the temperature of the section. It is

important therefore to consider what is the effect of non-synchronism

when the beam induction technique of phasing is employed.

8.1

and,

Now 1if,

and,

then,

The Effect of Non-Synchronism on the Beam Induction Technigue

of Phasing

{ from klystron

0 L beam
e
A~ Reference
—4—o —e —

be the phase angle between O and L for the klystron wave
be the phase angle between O and L for the beam induced wave

be the phase angle between L and A

Q= E&'— owt  (from Eq. 4)

W o
Py = O ¢ is calculated in Section 7.1, Eq. (17)

Ww is the phase angle at A of the klystron wave

wb is the phase angle at A of the beam induced wave

\UW=6+CPW+CPO

- 20 -



and

A S
where © 1is the phase angle between the wave and the beam at the input
of the section which can be adjusted by the klystron phase shifter.

The automatic phasing system adjusts the angle between the klystron

wave and the beam induced wave so that,

whence,
5 =V - nt + gwr

Agsume now, that the beam pulse 1s larger than the rf filling time of
the section and the induced wave is sampled during the steady state

condition, then,

(23)

thus if ¢ 1s zero than ©® 1s zero as would be expected.
A more interesting feature appears however, when the phase of the
beam with respect to the wave &, is compared with the optimum phase

angle Sopt’ obtained theoretically.®

tan & _ sin owT + oq (cos owT - e(m/ng (2k)
" Popt (/)T

cos oWT - ¢gQ sin ocwr -

Substitute,

guT
tan —&—

if
=
I

o=

, tan aopt



Let us calculate o - 60 = A  then,

pt
_ xD-N
tan (A) ST
where,
g
> e
D = 1-x _ 20ex eQ
1+x= 1+x%
and
, w
> ®
N =< 4 4q -xT A
1+x2 1+x2
therefore,
xP-oQM
A) = 22252
tan (A) Myoxp (25)
w w
Q" QT
when M= e + 1 and P = e - 1 are not functions of o . It can

be immediately checked that,

tan (&) -0 or S—SOpt -0

when,
o -0 (x -0)

In Section 8.2 it is shown that for practical values of o, 6-60Pt

is small.

8.2 Numerical Example for the Two Mile Machine

The following values are assumed

w= 21 X 2.856 x 10°
T = 0.83 usec
Q = 13,000

- 20



Then,

and

M=e -1 =2.14

In the following table & is calculated for several values of o or

OF .

o0/ 2x g 5] x Sopt A
(ke/s)| (1075) | (rad) | a° (a°) |(4°)
0 0 0 0 0 0 0

50 1.75 .1304 7.#6; 13 6.171 1.29
100 3.50 .2608 1&.255 267 12.11} 2.81
200 7.0 5216 29.20 S5 1ek.2 | 5.7
400 4.0 1.0432 59.20 1.718 | 47.8 |12.0

Within the tuning range of the accelerator, which is + 100 kc/sec,
A < 3 degrees, which means that for practical purposes the beam induction

technique keeps ©& close to the optimum value.

8.3 Loss of Beam Energy

Vt =V + Vi

and since

55 =0 (26)

- 23 -



then,

.a_V.;t_ = _a.Y. (27)
a8 0%
It has been shown®
V(d,0) = IC cosd - IS sind (28)
where I  and I_  are not functions of & . When © =& , V can
c s opt

be expanded in a Taylor's series as follows,

V(s +€) = V(3

opt opt> + € 3% (aopt) + 2 gg; (6opt

but from the definition of 60

pt’
oV _
35 ( opt) 0
and,
2
VL
8%
_ A
€
(opt+) (opt> 1_2]
so,
A\ e®
v =1-% (29)
whence for ¢ = A < 3°
%’- < 0.15%

_.21'__



Which means that for practical purposes the beam induction technique
of phasing has the property that frequency and temperature drifts are

automatically compensated for if the machine is rephased.

9.0 EXPERIMENTAL RESULTS

An experiment has been performed on the Mark IV accelerator for
checking the behavior of a two-mile accelerator section in the non-
synchronous case.

We used the second section of Mark IV. The corresponding klystron
is turned off. We then turned the beam on and analyzed the section
output signal in phase with respect to the beam and in amplitude.

The non-synchronous state is obtained by changing the section tem-
perature rather than the frequency in order to keep all the other parameters
constant.

So, 6 = - 1.6 + 10°° X i-émp . When 1.6 - 10™° is the linear

9
expansion coefficient of the copper and ATP is the temperature change
in degrees Farenheit. The beam reference is picked up out of a cavity

excited by the beam.

9.1 Phase
The theorétical change in phase is a linear function of the frequency
change (Eq. (17)) and the slope calculated in the previous Section 8.2

was found to be

%"% = 149.25 a°/Mc/s
1

On the figure N2 we plotted the measured &P against the equivalent

Af = gf . We come up with a good straight line, the average slope of

which i1s = 152 dO/Mc/s. This result can be considered as a good con-

firmation of the theory within our hypotheses and the limited accuracy

of the temperature setting up and measurement.

- 25 -



9.2 Amplitude
The relative output power is

(_ﬂf_
r2 - 2
ouT |
2
which is tabulated below.

&f (Me/s)|of.x .2 .3 {.b }5 .6 (.7 (.8 [.9{1.0/1.1 1.2
r2 | 1].97].912|.801] 687} 548[ 41| .281 .17 | .09] .04 | .009 | 0

We cannot cover all the ranges since Af = 1.2 Mc/s is equivalent to
ATp = h7.5 d°F and cannot be reached by the section heating system.
However we plotted both theoretical and experimental variation on the
same paper (Fig. 2) and we found them not far from each other. The
experimental value seems to be systematically smaller than the theoretical
cne reaching a maximum difference of about 1.2 db at half amplitude
points due maybe to the ocutput coupler mismatch.

The synchronous point from the experimental amplitude curve is found
tobe f_ =2856.3 Mc/s at T, =102 a° F.

..26..
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