
‘LIV-u4-u ( 

P. F. Brunet 
June 1964 

1.0 
2.0 

3.0 

4.0 

5-o 

6.0 

7.0 

8.0 

P-0 

THE FIELD INDUCED IN AN ACCELERATOR SECTION BY A NON- 
SYNCHRONOUS BUNCHED ELECTRON BEAM 

TABLE OF COIWENTS 

Introduction 
Hypotheses 
2.1 Fields 
2.2 Beam 
2.3 General 
First Order Non-Synchronous Operation 
3.1 Definition 
3.2 Slippage between the beam and wave in a non-synchronous 

section 
Field Induced by the Beam in a Non-Synchronous Section 
Transient State Phenomena 
5.1 Leading edge (t < 2) 
5.2 Trailing edge (D < t < T + D) 
5.3 Particular case of the pulse length shorter than the 

filling time of the section (D < T) 
Expression for the Field in the Constant impedance Structure 
Expressions for the Field in the Constant Gradient Section 
7.1 Expression for the field in the steady state 
7.2 Induced power 
7.3 Energy lost by beam loading 
7.4 Leading and trailing edge transients 
7.3 Particular case of beam pulse shorter than the section 

filling time 
7.6 Energy lost by beam loading in transient state 
7.7 Graphical representation 
Application to the Beam Induction Technique of Phasing Linear 
Accelerators 
8.1 The effect of non-synchronism on the beam induction technique 

of phasing 
8.2 Numerical example for the two mile machine 
8.3 Loss of beam energy 
Experimental Results 
9.1 Phase 
9.2 Amplitude 



TN-64-67 
P. F. Brunet 
June, 1964 

THE FIELD INDUCED IN AN ACCELERATOR SECTION BY A NON- 
SYNCHRONOUS BUNCHED ELECTRON BEAM 

1.0 INTRODUCTION 
We propose to study the general first order behavior of a non- 

synchronous rf accelerating structure. Many results are already avail- 

able as far as the klystron rf wave is concerned1'2 and as far as the 
beam induced wave is concerned in constant impedance structures.i We 
will try to find out general expressions and chiefly enhance the behavior 
of the beam induced wave in constant gradient structures. Theoretical 

results will be applied to the 2 mile accelerator section leading to a 
discussion of the rf automatic phasing system. Experimental results will 
be compared to the theoretical ones. 

2.0 HYPOTHESES 
2.1 Fields 
The fields travel only in the direction, z , of the electron beam 

and the interaction between the field and the beam is independent of the 
radial position of the beam. In addition higher space harmonics are 

neglected. 

2.2 Beam 
The beam is bunched and travels in the z direction with the vel- 

ocity of light. 

2.3 General 

Let, E(z,t) be the field in the structure without beam, and 

Ei(z,tt) be the field induced in the structure by the beam with the kly- 
stron off. Since the beam current is not affected by the klystron power, 

the klystron and beam can be regarded as independent power sources so 

that with both the klystron and beam on, the total electric field in the 
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structure ETb,t), is given by, 

ET(z,t) = Ei(z,t) + E(z,t) 

Similarly the total energy VT, can be written, 

where V is the energy gained by the beam with no beam loading, and 

vi is the energy lost by beam in a section with no rf input power. 

vT =vi+v 

(1) 

(2) 

3.0 FIRST ORDER NON-SYNCHRONOUS OPERATION 
3 .l Definition 

If v 
P 

is the phase velocity of the wave in the structure and v e 
is the electron velocity, synchronous operation occurs when, 

z-g =c 
v~ e 

and non-synchronous operation when 

The phase velocity is a function of the operating frequency and 
temperature, and the condition v = c 

P 
occurs only at the synchronous 

frequency f. for a given temperature. A change in temperature AT P 
however can be related to a change in frequency, by 

AfO 

-vnTP = - f. ' 

where Y is the coefficient of linear expansion of the metal. 
: . : .,., 

. 
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In non-synchronous operation, both temperature and frequency varia- 
tions can be included in the parameter cr, where 

(3) 

and 

Af = f - f. . 

3.2 Slippage Between the Beam and Wave in a Non-Synchronous Section 

The phase difference between the rf wave and the beam at a given 

point z, along the structure is given by, \ Z 

6(z)=60+m E- ” 1 I s 
0 P 

where 6 
0 

is the phase difference at z = 0. If v =c, then P 

6(z) = E. = constant 

however, if v c then a "slippage" occurs and is given by 

For a small frequency variation around the synchronous frequency, g(z) 
can be expanded in a Taylor series, 
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Neglecting second order terms, i.e., assuming that 

d2P -= 
dw2 

r 

o=&+-. 0 g 
L This means that the group velocity is constant around the synchronous 
frequency and theBKi.louin characteristic can be approximated by the 
tangent at cc, = tioY So we neglect all pulse phase and amplitude dis- 
tortions due to $& (v,) f 0.1 * Then, 

Z 

g(z) =A% E - " 1 I s 
since g(cu,) = 0 

0 g 
- 

or 

g( z> = LkJ Ti C z> - -w I 
where, 'i(') is the electron transit time to z and T is the rf 
filling time to z but since v ;= 0.01 C, ~$2) << 7(z) and -r&z) can be 

g 

* 
A more sophisticated approach by J. M. Leiss3 takes care of the v 

variations for studying transients in a constant impedance acceleratorg 
section, but seems difficult to be used for a constant gradient section 
and in most of the cases exhibits only small corrections with respect to 
the first order. 
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neglected according to the previous hypotheses, then 

g(z) = - cm(z) 

g(4) will be only called g . 

(4) 

4.0 FIELD INDUCED BY TRE BEAM IN A NON-SYNCHRONOUS SECTION 
Consider an accelerator section of length 4 and filling time 7 . 

0 

Let, 
r be the shunt impedance/unit length 
CX be the attenuation coefficient/unit length 
Q be the Q of the section 

and assume 

and that the field dEi, induced by the beam in a length dz, is 
established instantaneously, i.e., 

where 

where 

Q' 

I 

2Q' ----&- << ” 
g 

is the Q of an individual cavity which is very low. Then, 

dam = - WIdz (*> 

is the beam current. 

(5) 

* 
See for instance Ref. 4. 
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Equation (3) can be rewritten in terms of the filling time dT, as follows: 

dEi = - g I d-r = - rIdT' (51) 

where, 

It should be noted, that with the above assumptions using the filling 

time as the variable as opposed to the length, that both dg/dT and 
d%/dT are constant along the section whatever type of structure is 
considered. 

The expression for the total field induced at the end of the section 
can now be derived as follows: 

Let the amplitude of the beam induced wave be governed by a(z), 
or in terms of the filling time A(T) and let the slippage be given by 

g(z) = -sun(z) (Eq. (41)), i.e., when the field travels from ~~(7~) to 

z2( T2) 

the amplitude E2 = El x a(z2-zl) = E x A(T 
I. 2-v 

the phase 
(p2 = Y - cu(z -v 

with respect to the beam 
2 

Ei(~) at the end of the section is the sum of all the dEi(z) after 
they travelled from z. 

The expression for E&t) is so given, in the steady state condi- 
tion by, 

Ei(t) = j 

7 

a(z) = 
s 

_ E 1 A [T _ T(z) ] e-jua[T-T(z) 1 dT 

0 0 
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For clarity write T(Z) = u, then, 

7 

Ei(-e) = - $ I 
s 

A(T-U) e -jucu(-r-u) du 

0 

(6) 

Induced power 
The travelling power in an accelerator section is given by: 

In the particular case when E = E., P(z) 1 
by the beam and if z = &, end of the section 
the section excited by the beam. This holds in 
operation as far as we can assume a good output 

is the power induced 

#2 is put out from 
the non-synchronous 
coupler matching and: 

/ I Ei(~) 2 -2 c J Ei(‘) 
'i=Pa(e) = 2a(7) (7) 

cp, the phase angle between the beam and the induced wave at the end of 
the section, is given by; 

tan 

l- 

s 
A(T-u) sin WJ (T-U) du 

0 = 7 

s 
A(-+-u) cos au.! (T-U) du 

0 

(8) 

Remark: At a given point z in the section, E., P. can be 
determined from Eqs. (6), (7) and (8) by replaciig 

1 and (p 

T with T(Z) where 
T(Z) is the filling time from the input to the point z. It is just 
like considering each point as the end of a shorter section of filling 
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time T(z). This property of course holds during the transient state as 
well and will be true for all the expressions given in the remaining 

pages. 
The energy lost by beam loading is: 

vi = f-R E&-j dz 

0 

when R I- 11 means the real part. 

5 .O TRANSIENT STATE PHENOMENA 
Let the beam pulse of duration D, and amplitude I enter the 

section (z=o) at t=o and assume that the electron transit time is 
short compared with the rf filling time. 

5.1 Leading Edge (t < T) 

At the end of the section <,a>, 0 < t < 7) which means that the 
field is built up only by components coming from z, i.e. 

t = T - T(Z) . 

Ei and cpj which become E&t,t) and cp(t,t) are given by Eqs. (6) 
and (7) when the lower limit of the integral is replaced by T(Z) = T-t. 

7 

Ei($,t) = -$ 
s 

A(T-u) e -juzr(T-u) du (t < T) 
7-t 

(9) 

It should be noted that the integrals always include the variable 
U as 7-u so that if 7-u is replaced by a new variable v, the 
upper limit becomes 0 and the lower limit t. This means that during 
the transient state, the field is constant at any point in the section 
provided T(Z) > t. 
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The energy lost is a function of time and can be calculated in two 
parts. 

from 0 to z (T(z) = t) steady state 

from z to t, transient state 

5.2 Trailing Edge (D < t < T f D) 

The following analysis starts from the steady state condition. At 
time t=D the beam current stops and the induced field begins to decay. 
The first part which is lost is that induced in the section at point 4. 
At time t, (D < t < D + T) it is the component induced at the point z 

so that if +A is the filling time from 0 to z, 

t - D = 7 - T(Z) 

The total field is the steady state field less the field suppressed; 

Ei(-e,t) = - g I 

7 7 

A(?-U) e -jadT-u) du _ 
s 

A(?-U) e -jW( T-u) du 

TfD-t 1 

T+D-t 

E,(&t) = - z I 
s 

A .(7-U), e 
-jcm( T-U) du (D<t<'r+D) 

0 

We notice that when t goes to r+D, Ei(&,t) goes to zero and, 
cp to : 

(P(&,D+T) = - uW7-k7( 

Thus the angle of slippage between the beam and the last beam induced 
wave is given by g=-5UT since the last component has traveled the full 
length of the section. 
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5.3 Particular Case of the Pulse Length Shorter than the Filling 
Time of the Section (D < T) 

Consider the situation at the end of the section (z=&). 
O<t<D; This is the leading edge transient state studied in 

Section 5.1. 

t = D; Equation (9) gives: 

T 

Ei(&D) = - g I 
s 

A(?-u), e - juw( T-u) du 

T-D 

D<t<T; The induced field is now only a function of the time be- 
tween z k(z) = t) and 4, and the fields no longer 
build up. Then, 

Ei(t,t) = Ei(t,D) A(t-D) e-'uU(t-D) (D < t < T) (11) 

t = 7; 

Ei(&,T) = Ei(&,D) A(T-D) e-jOW(T-D) 

7 <t<TfD; This is the normal case of the trailing edge transient 
state starting with Ei(&r) 

T 

E:(&t) = E&T) + g 1 A(?-D) e-jum(T-D) x 
s 

A(T-U) e -ju.u)( T-u) du I I 
27-t 

Ei(&t) = - g I A 
27-t 

.(T-D) e -jaw(T-D) x 
s 

A 

T-D 
.(T-U) e 

-j&T-u) du (T<t<I-+D) (12) 
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We see that Ei(&,t) goes to zero as t goes to T+D (i.e., 
2T-t +7-D). Let, t = r+D-E where E is small then > 

Ei(&,t) 
E-+0 

= - g I A(T) e-juco(T)~ 

So as before and for the same reason the angle of slippage goes to -aux=g. 

6.0 EXPRESSION FOR THE FIELD IN THE CONSTANT IMPEDANCE STRUCTURE 

In the constant impedance structure 

&J 

$s 
2aQ 

Z 
and T(z) = $ = cu z 

65 

the amplitude law is given by 

a(z) = e -az 

-W T 
A(T) = e g = e - $ T = e-T’ 

From Eq. (6) 

7 

Ei(&) = - g I 
s 

e - & (T-U) 
e 

-j~~(T-u) 
du 

0 

=rI 

/ 

r1 = e 

- ET 

1 + 4a2Q2 
(cos 8 - 2uQ sin g) -1 

(13) 
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The phase of the induced wave with respect to the beam is then given by, 

tan cp = - e 

-$T 
[sin g + 2aQ cos g] -2uQ 

e [cos g - 2aQ sin g] -1 

(14) 

Energy Lost in the Constant Impedance Section by Beam Loading 
The energy lost Vi, is given by 

Z 

Vi = Re 
s 

Ei(z) dz 
0 

Integrating and expressing Vi as a function of the length 8, and of 
the total angle of slippage, g, gives 

vi = -rI 
1 + 4a2Q2 

1 - 4a2Q2 
"(1 + 4a2Q2) 

(cos g + 4csQ sin g) -1 05) 

It can be shown from the above formula that if o=O, then the well- 
known formulae for the induced field and energy loss obtain and in 
addition that cp=O. Ei, 9 and Vi can be calculated for the transient 
state case from Eqs. (9), (lo), (11) and (12). 

7.0 EXPRESSIONS FOR TRE FIELD IN THE CONSTANT GRADIENT SECTION 
For the constant gradient section considered let, 

g= 0 for I = 0 

then, 

a 
CX= 1 - &oz a0 = a(0) 
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vg = vgw E - 2aog = & (1 - 2aoz) 

and, 

T(Z) = - 2 log (1 - 2aoz) 

in addition, 

a(z) = A(T) = 1 

7.1 Expression for the Field in the Steady State 

From Eq. (6 ):. 

7 

Ei = -joo(T-u 

0 

So the Ei amplitude is: 

sin 
=rw7y 

2Q UUZT 

2 

and can be written: 

.E 
'j 2 > du = r1 - - sin aJJ 

a& 0 - 
- -e 2 

iEi/ = /Eiio x r 

06) 

(16’) 

is the field amplitude in the synchronous operation and: 

I?= 
UCUT sin - 2 

ULcrT 
2 

= 
sin 

0 5 

0 : 
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The phase of Ei with respect to the electron beam 

UC!3 
cp= --+JI= 

2 $+, 

Remark: Results (16) and (17) can be geometrically 

is: 

(17) 

found out noticing 

that the pattern of the vectors dEi added one after another is inscribed 
in a circle where si is a cord. 

7.2 Induced power 
From Eqs. (7) and (161) 

or 

Pi = Pi0 F2 (18) 

Where P io is the induced power in the synchronous operation and 
can be written as a function of 7 (Ref. 5) 

P io =F&-~ -e 
( 1 

2 --T 

-wT Q 

The I? factor in both Ei and P. expression shows that Ei and 1 
'i can go to zero several times along the section (y = kg) if u is 

large enough. That means the power is balanced between the field and the 
beam; in the first part the field is induced by the beam and reaches a 
maximum, then it accelerates the beam again and goes to zero and so on. 

7.3 Energy Lost by Beam Loading 

dz = & 
0 

CD 
---7 

Q dT 



The energy lost Vi is given by, 

Z 

Vi = R 
I I 

Ei dz 
0 

7 LCI 
--u 

R rILo ' - 
I ,sin uwu - j(1 - cos 0~); e Q du 

4uQ2a L 0 0 

7 

rIu, z - 
4c~~uQ' ; I 

sin ucuu du 

u! 
T( sin g f UQ ~0s g) - UQ 

uQ( 1 + u2Q2> 
(19) 

We can check that Vi goes to the synchronous expression5 when 
u goes to zero since, 

co ---7 
1 a ;7 -e Q 

0 24,. 

'7.4 Leading and Trailing Edge Transients 
At the leading edge at a time t < T , the induced field is given 

from Eq. (5) by 
7 

Ei(t&) -2 - 

,J- -t 

Ei(t) = - & sin uLut -j (1 - COS Uot) 

(20) 
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and, 

uwt 
cp= --+JI 2 

It can be seen from these expressions that both the phase and amplitude 
are functions only of time and not of distance. 

In the case of the trailing edge, with D < t < D + 7, the induced 
field is given from Eq. (6) by 

T+D-t 

Ei(&tj = - g I 
s 

e-ju4T-u) du 

0 

E,(t,t) = - 2 sin u'cu (y +- ; - t) e-jua (e) (21) 

and 

I t should be noted tha t as t goes to 7 f D, the amplitude goes to 
zero and the phase to -uu)7 = g. 

‘, 

7-5 Particular Case of Beam Pulse Shorter than the Section Filling 
Time 

In this case D < 7 
For t < D - 

The expressions for the field amplitude and phase are given by 
Eqs. (20) and (21) of Section 7.4. 

For D < t < 7 

Ei(t) = - g sin y e 

- 16.- 



hence, 

I I Ei(t) = constant 

For t = T 

Ei(&,~) = - z sin y e 
-jcm 

and 

For~<t<~ +D 

From Equation (12), Section 5.3 

27-t 
rim Ei(a,t) = - 2& e -jaw(T-D) 

s 
e-juo3(T-u) du 

T-D 

r1 = --sinocu a& (22) 

and 

q&t) = - y E-D+t] -I- I-C 

It can be seen from Eq. (22) that as t goes to 7+D the amplitude 
goes to zero and the phase cp(t) to -crm- = g . 

7.6 Energy Lost by Beam Loading in Transient State 
From 0 to z(t) so that ~(2) = t, it is steady state and Vi is 

given by Eq. (19) where -r is t. 
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R 

is Ei(t) given by Eq. (20) and V. is 1 

1 sin oat + a& cos awt) - a& 
1 + cr2Q2 

(23) 

When t 2 T Eq. (23) becomes Eq. (19) again. We can have at each time 
the total energy gained by the electrons travelling through the sections, 
remembering that: 

v* = v + Vi(t) - 

7.7 Graphical Representation 
cp and Ei 

I I 
are plotted versus time in Figure 1. 

I I 
Ei varies as 

cwt sin T from 0 to 7 (or D,') and the curve issymmetricalwith respect 
71-D to the vertical axis t = 2 (or 7'). From a good 'square" beam 

pulse both represented cp and Ei I I curves can be observed on a scope. 
The observed Ei(t) is about a trapezoid; in the synchronous case I I 

the sinusoid only becomes a linear function of the time.6'4 If a is 
small and considering the non-perfect detector characteristic it is 
difficult to see the difference. 

The observed cp(t) is about the theoretical one = an accurate 
reading would require an amplitude free phase detector and a very stable 

pulse phase. For the same reason it is difficult to get a horizontal 
straight line when a=0 which could bean absolute indication of syn- 
chronism (as already suggested by K. Mallory). 

8.0 APPLICATION TO THE REAM INDUCTION TECHNIQUE OF PHASING LINEAR 
ACCELERATORS 
The beam induction technique, which has been previously described, 

consists basically of comparing the phase of the klystron wave and the 
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beam induced wave at the output of the accelerator section. It has 
been shown in this note that the phase at the output of the section is 
a function of the synchronism of the beam. Synchronism is determined 
by the operating frequency and the temperature of the section. It is I 
important therefore to consider what is the effect of non-synchronism 
when the beam induction technique of phasing is employed. 

8.1 The Effect of Non-Synchronism on the Beam Induction Technique 
of Phasing 

1 from klystron 

0 L beam 
c 

A -Reference 
-+--a --------+- 

Let, 

'PW be the phase angle between 0 and L for the klystron wave 

'b be the phase angle between 0 and L for the beam induced wave 

To 
be the phase angle between L and A 

u& 
'pw = c - cr*T (from Eq. 4) 

and, 

Now if, 

and, 

cl& 
'b =c+'p cp is calculated in Section 7.1, Eq. (17) 

$W 
is the phase angle at A of the klystron wave 

'b is the phase angle at A of the beam induced wave 

then, 

Ji,=6+(Pw+‘F 
0 
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and 

$, = (Pb +’ ‘p 0 

where 6 is the phase angle between the wave and the beam at the input 
of the section which can be adjusted by the klystron phase shifter. 

The automatic phasing system adjusts the angle between the klystron 
wave and the beam induced wave so that, 

whence, 

Assume now, that the beam pulse is larger than the rf filling time of 
the section and the induced wave is sampled during the steady state 
condition, then, 

S=,~-+y=- : (23) 

thus if cl is zero than 6 is zero as would be expected. 
A more interesting feature appears however, when the phase of the 

beam with respect to the wave 6, is compared with the optimum phase 
angle 6 opt' obtained theoretically.2 

= sin CFJX + UQ COS ucUT - e (da)-'- 
tan 6 

opt cos ULu7 - a& sin su)T - e b Q>T 

Substitute, 

tan 7 = x I tan 6 = z 
opt 

(24) 
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Let us calculate 6 - 6 
opt 

=A then, 

tan (A) = E 

where, 

L 

u)  

D = 1-x2 2a&x -e 

-T 
Q -- 

1+x2 1+x2 
I 

and 

N = v-%-m + aQ 
1+x2 

therefore, 

-wT 
Q 

-07 

when M=e +l and P = e Q - 1 are not functions of 0 . It can 
be immediately checked that, 

tan (A) +O or 6-6 
opt 

40 

when, 

(5 40 (x 40) 

In Section 8.2 it is shown that for practical values of u, 6-6 
opt 

.s small. 

8.2 Numerical Example for the Two Mile Machine 

The following values are assumed 

LU = 2~ x 2.856 x 10' 

7 = 0.83 psec 
Q = 13,000 
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Then, 

P=e & -6 1 = 4.14 

and 

M=eQ -1=2.14 

In the following table A is calculated for several values of 0 or 

Af. 

200 7-o .5216 29.9 .575 24.2 5.7 ' 
- 30 

400 14.0 1.0432 59.8 1.718 
- ho 

47.8 12.0 

Within the tuning range of the accelerator, which is + 100 kc/see, - 
A -C 3 degrees, which means that for practical purposes the beam induction 
technique keeps ij close to the optimum value. 

8.3 Loss of Beam Energy 

Vt = v f Vi 

and since 

&J. 
&o 

- 23 - 
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then, 

avt av as =as (27) 

It has been shown2 

V(a,cr) = Ic cos6 - Is sin6 (28) 

where I and I are not functions of 6 . 
C 

When 606 V can 
S opt' 

be expanded in a Taylor's series as follows, 

V(GOpt +4 = V(8 opt 
) + E g (Eopt) + " g (gopt) 

but from the definition of 6 opt' 

and, 

2.3 =-v 
as2 

a-v E2 -= 
v 1--5- 

whence for E = A < 3' 

(29) 
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Which means that for practical purposes the beam induction technique 

of phasing has the property that frequency and temperature drifts are 
automatically compensated for if the machine is rephased. 

9.0 EXPERIMENTAL RESULTS 
An experiment has been performed on the Mark IV accelerator for 

checking the behavior of a two-mile accelerator section in the non- 

synchronous ca.se. 
We used the second section of Mark IV. The corresponding klystron 

is turned off. We then turned the beam on and analyzed the section 

output signal in phase with respect to the beam and in amplitude. 
The non-synchronous state is obtained by changing the section tem- 

perature rather than the frequency in order to keep all the other parameters 
constant. 

so, u = - 1.6 * 1o-5 x 2 AT 
9 P' 

When 1.6 * lop5 is the linear 

expansion coefficient of the copper and &' P is the temperature change 

in degrees Farenheit. The beam reference is picked up out of a cavity 

excited by the beam. 

9.1 Phase 
The theoretical change in phase is a linear function of the frequency 

change (Eq. (17)) and the slope calculated in the previous Section 8.2 

was found to be 

$$ = 149.25 do/Me/s 

On the figure N' we plotted the measured 4 against the equivalent 
2 

af=af. We come up with a good straight line, the average slope of 
which is = 152 do/Me/s. This result can be considered as a good con- 

firmation of the theory within our hypotheses and the limited accuracy 
of the temperature setting up and measurement. 
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9.2 Amplitude 
The relative output power is 

which is tabulated below. 

Af (MC/S) 0 .l 1.2 1.3 I.4 ‘.5 
r2 1 .g+yu .801 ,687 $48 

We cannot cover all the ranges since Af = 1.2 MC/S is equivalent to 
AT 

P 
= 47.5 d°F and cannot be reached by the section heating system. 

However we plotted both theoretical and experimental variation on the 
same paper (Fig. 2) and we found them not far from each other. The 

experimental value seems to be systematically smaller than the theoretical 
one reaching a maximum difference of about 1.2 db at half amplitude 
points due maybe to the output coupler mismatch. 

The synchronous point from the experimental amplitude curve is found 
to be f. =.2856.3 MC/S at Tp =102d°F. 

,.6 I.7 1.8 .9 11.0 191 j 1.2 

.41 .2811.174 .09 .04 ,009 0 
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