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Abstract
We have constructed a nonlinear multi-graviton theory. An application of this theory
to cosmology is discussed. We found that scale factors in a solution for this theory
repeat acceleration and deceleration.

1 Introduction

We have constructed a nonlinear multi-graviton theory [1] so far. The features of our model are following:
(i) Gravitons as the fluctuation from Minkowski spacetime have a Fierz-Pauli (FP) type mass [2]. (ii)
This model based on dimensional deconstruction method. So, we can tune the mass spectrum more easily
than Kaluza-Klein theory. (iii) The mass term has a reflection symmetry at each vertex and a exchange
symmetry at each edge of a graph.

In this article, beginning with graph theory, dimensional deconstruction [3, 4] and our model are
reviewed (see also [5, 6]). Next, we consider the vacuum cosmological solutions of the case with the
four-site star graph and the four-site path graph. Finally, we summarize our work and remark about the
outlook.

2 A review of graph theory and dimensional deconstruction

2.1 Graph theory

We consider the matrix representation of graph theory.4 A graph G is a pair of V and E, where V is
a set of vertices while E is a set of edges. An edge connects two vertices; two vertices located at the
ends of an edge e are denoted as o(e) and t(e). Then, we introduce two matrices, an incidence matrix
and a graph Laplacian, associated with a specific graph. The incidence matrix represents the condition
of connection or structure of a graph, and the graph Laplacian ∆ can be obtained by EET . By use of
these matrices, a quadratic form of vectors aT ∆a(= aT EET a) can be written as a sum of (ai∆ijaj). If
all ai(i = 1, 2, ..., ]V ), components of a, take the same value, ET a = 0 and then a = 0.

2.2 Dimensional deconstruction

It is assumed that we put fields on vertices or edges. An idea that there are four dimensional fields on the
sites (vertices) and links (edges), dubbed as dimensional deconstruction, is introduced by Arkani-Hamed
et al.. In this scheme, the square of mass matrix is proportional to the Laplacian of the associated graph.
In the case of a cycle graph (a ‘closed circuit’) with N sites (CN ), when N becomes large, the model on
the graph corresponds to the five-dimensional theory with S1 compactification. In other words, the mass
scale of the model f over N corresponds to the inverse of the compactification radius L/(2π):

M2
` = 4f2(sinπ`/N)2 → M2

` = (2π`/L)2 (f/N → 1/L).

For a cycle graph, the linear graviton model presented in the previous work [1] coincides with the FP
model proposed in [2]. The model is a most general linear graviton theory on a generic graph.
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3 Nonlinear multi-graviton theory on a graph

We consider a nonlinear multigravity on a graph. Following Nibbelink et al. [8, 9], we introduce the
important ‘tool’:

〈ABCD〉 ≡ −εabcdε
µνρσAa

µBb
νCc

ρDd
σ,

where ε is the totally antisymmetric tensor. Using this tool, we have the Einstein-Hilbert term replacing
A and B by vierbeins and C and D by a curvature 2-form. In addition, because fourth power of vierbein
in the angle brackets is equal to the determinant of vierbeins, the use of this tool illuminates that the
Einstein-Hilbert term and the cosmological term have the same structure.

We assume the following term for each edge of a graph form;

〈(e1e1 − e2e2)2〉,

where e1 and e2 are vierbeins at two ends of one edge. This term has a reflection symmetry e ↔ −e at
each vertex and an exchange symmetry e1 ↔ e2 at each edge.

In the weak-field limit, e1 = η + f1, e2 = η + f2,

〈(e1e1 − e2e2)2〉 = 8
(
([f1]− [f2])

2 −
[
(f1 − f2)

2
])

+ O(f3),

where η is Minkowski metric, and [f ] = trf for notational simplicity. This quadratic term corresponds
to the FP mass term 5 . On the other hand, 1

2 |e|R contains the kinetic terms of a graviton in the leading
order.

Therefore, in the case of the tree graph, we have the nonlinear Lagrangian of multi-graviton theory
without higher derivertive and non-local terms,

L0 =
1
2

expΦ
∑

v∈V

|ev|Rv + M2
∑

e∈E

〈(
eo(e)eo(e) − et(e)et(e)

)2
〉

,

where M2 ≡ m2/16 and we assume φ1 = φ2 = · · · = φN = Φ.

4 Vacuum cosmological solution

Now we consider two vacuum cosmological models, based on the four-site star graph and the four-site
path graph. We assume the following metric;

gµνdxµdxν = −eΦ(t)dt2 + eΦ(t)+2ai(t)(dr2 + r2dΩ2)

where Φ(t) is a scalar field and ai(i = 1, · · · , 4) are scale factors. Then,
〈
(eiei − ejej)2

〉
= e−2Φ(t)(e2ai(t) − e2aj(t))2.

In the case of the star graph, the Lagrangian is following;

L =
1
2

expΦ(t)
4∑

i=1

|ei|Ri + M2
4∑

i=2

〈
(e1e1 − eiei)2

〉
,

where, a1 is on the center of the graph. On the other hand, the Lagrangian of the case of the path graph
is

L =
1
2

expΦ(t)
4∑

i=1

|ei|Ri + M2
∑

i<j

〈
(eiei − ejej)2

〉
,

where, a1 and a4 are on each end of the graph.
We show the results of numerical calculations of the two models on the same initial conditions in

Figure 1 and Figure 2. Both scalar fields behave similarly and each scale factor repeats the increase and
5It is known that the asymmetric part of f can be omitted. [10]
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the decrease. However, the scalar field in the star graph case changes slightly slower than the other. The
oscillation of the scale factors in the path graph case include more modes of different frequencies than
that of the scale factors in the star graph case.

The star graph model has more symmetries than the path graph model. A lot of modes in the star
graph case degenerate. In the path graph case, increase of the number of sites gives the more complicated
behaviors of the scale factors. On the other hand, in the star graph case, the symmetries are preserved
if the number of sites are inceased. Therefore, the behaviors of the scale factors are the same as the
four-site model, essentially.

5 Summary and prospects

We considered the four-site star and path graph model and found that vacuum cosmological solutions with
the scale factors show the repeated accelerating and decelerating expansions. The differences between
these two models were discussed from a viewpoint about symmetries.

As the future works, we should investigate the case that the matter fields exist. We also should
investigate the models based on arbitrary tree graphs.
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Figure 1: A numerical solutions of the scale factors in the case of the four-site star graph.
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Figure 2: A numerical solutions of the scale factors the case of the four-site path graph.
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