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Abstract

In this thesis, we study effective field theories for doubly heavy baryons and lattice

QCD. We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons

that is invariant under heavy quark-diquark symmetry at leading order and includes

the leading O(1/mQ) symmetry violating operators. The theory is used to predict

the electromagnetic decay width of the J = 3
2

member of the ground state doubly

heavy baryon doublet. Numerical estimates are provided for doubly charm baryons.

We also calculate chiral corrections to doubly heavy baryon masses and strong de-

cay widths of low lying excited doubly heavy baryons. We derive the couplings of

heavy diquarks to weak currents in the limit of heavy quark-diquark symmetry, and

construct the chiral Lagrangian for doubly heavy baryons coupled to weak currents.

Chiral corrections to doubly heavy baryon zero-recoil semileptonic decay for both

unquenched and partially quenched QCD are calculated. This theory is used to

derive chiral extrapolation formulae for measurements of the doubly heavy baryon

zero-recoil semileptonic decay form factors in lattice QCD simulations. Addition-

ally, we study the pion physics on lattice using chiral perturbation theory. For finite
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volume field theories with discrete translational invariance, conserved currents can

obtain additional corrections from infrared effects. We demonstrate this for pions us-

ing chiral perturbation theory coupled to electromagnetism in a periodic box. Gauge

invariant single particle effective theories are constructed to explain these results. We

use chiral perturbation theory to study the extraction of pion electromagnetic polar-

izabilities from lattice QCD. Chiral extrapolation formulae are derived for partially

quenched and quenched QCD simulations. We determine finite volume corrections

to the Compton scattering tensor of pions.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is a nonabelian gauge field theory describing the

strong interactions which bind quarks and gluons inside hadrons. Asymptotic free-

dom [1] is the most important feature of QCD: the coupling constant of the strong

interaction, αs, decreases at shorter distance scales. A rough sketch of the strong

coupling constant is shown in Fig. 1.1. ΛQCD is the energy scale of QCD, which

locates at the pole of the one-loop running coupling constant and is about a few

hundred MeV, and Λχ ≈ 1.5 GeV is the chiral symmetry breaking scale which we

will discuss in the next section. In the high energy regime, where ln(q2/Λ2
QCD) À 1,

αs ¿ 1, therefore perturbation theory is very useful to describe high energy colli-

sions characterized by large momentum transfer. However, as the energy approaches

ΛQCD the QCD coupling becomes so large, perturbation theory breaks down and

nonperturbative effects become important. Effective field theory is a useful method

for describing the low energy dynamics of QCD and providing analytic results which

can be tested directly by experiments. In this thesis, the relevant tools which we

will use are chiral symmetry and chiral perturbation theory, heavy quark symmetry,

non-relativistic QCD, and lattice QCD.
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Figure 1.1: The strong coupling constant, αs, as a function of q, the momentum

transfer in the processes. Here b0 = 1
2
(11− 2

3
nf ), where nf = number of flavors and

the ellipsis denotes higher order terms.

1.1 Chiral Symmetries and Chiral Lagrangian

The QCD Lagrangian of light quarks and gluons is [2]

LQCD = −1

4
GA

µνG
Aµν + q̄(i/D −mq)q, (1.1)

where q is the triplet of light quark fields,

q =




u

d

s




, (1.2)

and mq is the light quark mass matrix,

mq =




mu 0 0

0 md 0

0 0 ms




. (1.3)

2



The color index on the quarks is suppressed. Here Dµ denotes the SU(3) color

covariant derivative,

Dµ = ∂µ + igsA
A
µ TA , (1.4)

where gs is the strong coupling, AA
µ are the eight color gauge fields, and TA are the

eight generators of color SU(3). GA
µν is the gluon field strength tensor,

GA
µν = ∂µA

A
ν − ∂νA

A
µ − gsf

ABCAB
µ AC

ν , (1.5)

where the structure constants fABC are defined by [TA, TB] = ifABCTC . Here /D =

Dµγ
µ and we use the standard ”Bjorken and Drell” convention for gamma matrices,

γ0 =




1 0

0 −1


, γi =




0 σi

−σi 0


, and γ5 =




0 1

1 0


, where σi is the Pauli

matrix.

In order to explore the chiral symmetry in the limit of mq → 0, we write the QCD

Lagrangian of massless light quarks in terms of left-handed fields and right-handed

fields,

qL =
1

2
(1− γ5) q , qR =

1

2
(1 + γ5) q , (1.6)

yielding

Ll.q. = q̄i/Dq = q̄Li/DqL + q̄Ri/DqR . (1.7)

In the limit of zero quark mass, Ll.q. has the global chiral symmetry SU(3)L×SU(3)R,

qL → LqL, L ∈ SU(3)L ,

qR → RqR, R ∈ SU(3)R . (1.8)

3



Note that the strong interactions conserve chirality. Under the SU(3)L × SU(3)R

chiral transformation, the right-handed and left handed quark fields can transform

differently. The mass terms in the QCD Lagrangian breaks chiral symmetry explicitly,

Lmass = −q̄LmqqR − q̄RmqqL . (1.9)

Even for massless light quarks, chiral symmetry is not an exact symmetry. The

non-vanishing vacuum expectation value of the quark bilinear, 〈0|q̄j
Rqk

L|0〉 = vδkj,

spontaneously breaks the chiral symmetry. Here j and k are flavor indices, and v

is of order Λ3
QCD. The vacuum expectation value is not changed under transforma-

tions with L = R, therefore the SU(3)L × SU(3)R chiral symmetry is broken to the

subgroup SU(3)L+R. As a consequence of this spontaneous symmetry breaking eight

Goldstone bosons are produced according to Goldstone’s theorem [3, 4]. The Gold-

stone boson fields can be described by a 3 × 3 special unitary matrix Σ [5, 6]. Σ

represents the low energy excitations of quark bilinear, and transforms as Σ → LΣR†

under SU(3)L×SU(3)R chiral transformations. The Goldstone boson fields are writ-

ten as

Σ = exp

(
2iM

f

)
, (1.10)

where f is the pion decay constant and M is a traceless 3× 3 Hermitian matrix,

M =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η




. (1.11)
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Under the unbroken SU(3)L+R transformation L = R = V , M transforms as the

adjoint representation, M → V MV †, therefore, the π, k and η transform as an

SU(3)V octet. On the other hand we expect M to transform nonlinearly under the

broken SU(3)L×SU(3)R transformations, L = R† = A. Considering an infinitesimal

transformation L = R† = A = 1 + iεaT a as an example, M transforms nonlinearly:

M → M + fεaT a.

The effective Lagrangian for the Goldstone bosons is

L =
f 2

8
Tr[∂µΣ∂µΣ†] + vTr[m†

qΣ + Σ†mq] + · · · , (1.12)

where the ellipsis denotes terms with more derivatives and factors of mq. The fac-

tor f 2/8 is chosen so that the kinetic terms of the Goldstone bosons are properly

normalized. The first term is invariant under the chiral symmetry transformation.

The higher derivative terms are suppressed by powers of p2/Λ2
χ, where p is the typ-

ical momentum and Λχ = 4πf is the chiral symmetry breaking scale. Tree-level

four-pion interactions can be obtained from the Lagrangian in Eq.(1.12) and are of

order ∼ p2/f 2. The next order contribution from one loop diagrams is of order

∼ p4/(4π)2f 4 where the (4π)2 comes from the loop integration. Comparing tree level

and one-loop contributions shows the expansion is in p2/(4π)2f 2 = p2/Λ2
χ. Also in-

5



cluded are the leading O(mq) corrections which give masses to the Goldstone bosons

m2
π± =

4v

f 2
(mu + md),

m2
k± =

4v

f 2
(mu + ms),

m2
k0 = m2

k̄0 =
4v

f 2
(md + ms), (1.13)

m2
(π0,η) =

4v

f 2




(mu + md)
1√
3
(mu −md)

1√
3
(mu −md)

1
3
(4ms + mu + md)


 .

This Lagrangian can be used to analyze Goldstone boson interactions in an expansion

in p/Λχ and mπ/Λχ.

1.2 Heavy Quark Symmetries and Heavy Hadron

Chiral Perturbation Theory

Isgur and Wise first discovered the heavy quark symmetry of QCD in 1989 [7, 8].

In hadrons containing a single heavy quark, as sketched in Fig.1.2, the typical mo-

mentum exchanged between the heavy and light constituents are of order ΛQCD, and

then the size of such systems, Rhad, is about 1/ΛQCD. When the quark mass is much

larger than the QCD scale, the Compton wave length, 1/mQ, of the heavy quark

bound inside the hadron is much smaller than the typical hadronic distance of about

1 fm, then the heavy quark is like a static source of color. The strong interactions

of such a system can be described by an effective theory, which is invariant under

changes of the flavor and spin of the heavy quark in the heavy quark limit. Therefore

in the limit of infinite heavy quark mass, QCD possesses heavy quark spin flavor

6



Figure 1.2: The hadrons with one single heavy quark in the heavy quark limit,

where Rhad ∼ ΛQCD is the typical hadron size and λQ ∼ 1/mQ is the Compton wave

length.

symmetry. Because the interactions of the heavy quark with light degrees of freedom

are spin independent to lowest order in 1/mQ, the angular momentum of the light

degrees of freedom, j, is a good quantum number. Therefore in the heavy quark

limit, hadrons containing a single heavy quark come in degenerate doublets of total

angular momentum, J = j ± 1
2
, where J is the total angular momentum of a heavy

hadron.

The heavy quark fields are described in an effective field theory, heavy quark

effective theory (HQET) [9, 6, 10]. The part of QCD Lagrangian involving the heavy

quark field Q is

L = Q̄(i/D −mQ)Q , (1.14)

where in this work the relevant heavy quarks are the charm and bottom quarks1. In

1This QCD symmetry cannot be applied to top quark, since top quark’s lifetime is shorter than

the hadronization time scale. However, the heavy quark limit is well defined for QCD if weak

7



the low energy regime, the heavy quark bound inside a hadron carries most of the

energy and momentum of the system. In the low momentum regime it is appropriate

to consider the limit of QCD where the heavy quark mass goes to infinity with its

four velocity vµ fixed. The four momentum of the heavy quark is decomposed as

pµ = mQvµ + kµ where kµ ∼ ΛQCD is the residual momentum. The heavy quark

is almost on-shell, its momentum fluctuates around the mass shell by an amount of

order ΛQCD. The velocity becomes a conserved quantity and is no longer a dynamical

degree of freedom. The heavy quark field is rewritten in terms of fields with fixed

velocity vµ

Q = e−imQv·x(hv + bv) , (1.15)

where

hv = eimQv·x 1 + /v

2
Q, bv = eimQv·x 1− /v

2
Q. (1.16)

The heavy quark is almost on-shell, v ∼ 1, therefore the effects of bv are suppressed

by powers of 1/mQ and can be neglected. After integrating out the bv field, we obtain

the effective Lagrangian

Lv = h̄viv ·Dhv +
1

2mQ

h̄v[(iD⊥)2 − gsσµνG
AµνTA]hv + O

(
1

m2
Q

)
, (1.17)

where (D⊥)µ = Dµ − vµv · D. The first term is the leading order effective heavy

quark Lagrangian and has as its Feynman rules i/(v · k + iε) for the heavy quark

propagator, and −igTAvµ for the vertex of gluon heavy quark interaction. There

interactions are turned off.

8



are no more gamma matrices in the effective theory, therefore the spin of the heavy

quark is conserved. The second and third terms in the Lagrangian are of order 1/mQ

and are to be treated as perturbations. The third term breaks heavy quark spin

symmetry.

Heavy hadron chiral perturbation theory (HHχPT) [11, 12, 13] is a low energy

effective theory that incorporates chiral symmetry and heavy quark symmetry. It has

heavy hadrons, Goldstone bosons, and photons as its elementary degrees of freedom

and can be used to describe the low energy properties of heavy hadrons. Physical

observables, such as the masses of the ground state heavy meson, are calculated in an

expansion in light quark masses, mq, and inverse heavy quark masses, 1/mQ. As we

discussed before, in the heavy quark limit the hadrons containing a heavy quark come

in degenerate doublets of the total angular momentum, J = j ± 1
2
. For mesons with

flavor Qq̄a, the ground state doublets with j = 1
2

contain the pseudoscalar mesons, Pa,

and the vector mesons, P ∗µ
a , where a = 1, 2, 3 denotes u, d, s respectively. The vector

fields obey the constraint vµP
∗µ
a = 0. These fields are combined into a composite

field Ha in HHχPT,

Ha =

(
1 + /v

2

)
(P ∗µ

a γµ − γ5Pa) , (1.18)

which satisfies /vHa = Ha = −Ha /v. The HHχPT effective Lagrangian that describes

the low momentum behavior of the ground state heavy mesons which is invariant

under chiral SU(3)L × SU(3)R symmetry, heavy quark symmetry, and parity is [14]

L = −Tr[H̄aiv ·DbaHb] + gTr[H̄aHb /Abaγ5] + · · · , (1.19)

9



where H̄a = γ0H†
aγ

0 and the ellipsis denotes higher order terms. The chiral covariant

derivative is defined by

Dµ
ab ≡ δab∂

µ − V µ
ab = δab∂

µ − 1

2
(ξ†∂µξ + ξ∂µξ†)ab . (1.20)

The axial vector field is

Aµ
ab =

i

2
(ξ†∂µξ − ξ∂µξ†)ab . (1.21)

Under heavy quark spin transformation H transforms as H → SH where S is the

SU(2) heavy quark spin rotation matrix. Under chiral symmetry, H → HU †, DµH →

(DµH)U † and Aµ → UAµU
† where U is a unitary matrix that depends on spacetime.

ξ = eiM/f transforms as ξ → LξU † = UξR† under SU(3)L×SU(3)R. At leading order

the Lagrangian of the ground state heavy meson and Goldstone bosons is Eq. (1.12)

and Eq. (1.19).

At order∼ mq, terms with light quark masses explicitly break the chiral symmetry

δL1 = λ1Tr[H̄bHa(ξmqξ + ξ†mqξ
†)ab] (1.22)

+ λ′1Tr[H̄aHa(ξmqξ + ξ†mqξ
†)bb] .

These operators contribute to the leading order SU(3) splittings. At order ∼ 1/mQ

the heavy quark spin symmetry breaking operator that gives the leading contribution

to the hyperfine splittings is

δL2 = −∆H

8
Tr[H̄aσ

µνHaσµν ] , (1.23)

where ∆H is the hyperfine splitting of heavy mesons.
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This theory is a double expansion in ΛQCD/mQ and Q/Λχ where Q ∼ p ∼ mπ ∼

mK and p is the typical momentum. The parameter ∆H is treated as order Q. In

loop diagrams, integrals scale as Q4, the propagator of H as Q−1 and the propagators

of Goldstone bosons as Q−2. The couplings of pions and kaons to the heavy mesons

are ∼ Q. This theory for heavy mesons is well established [14] and an analogous

theory for doubly heavy baryons has not been developed. This is the purpose of this

thesis.

1.3 Non-Relativistic Quantum Chromodynamics

HQET is not the correct effective theory for hadrons containing two or more heavy

quarks. This is because HQET only has two scales of energy, the heavy quark masses,

mQ and ΛQCD, while a bound state containing two or more heavy quarks has two

additional scales: mQv, the typical momentum of the heavy quarks within the bound

state, and mQv2, the typical kinetic energy of the heavy quarks. The appropriate

theory is Non-Relativistic Quantum Chromodynamics (NRQCD) [15, 16]. In the

NRQCD formalism, nonperturbative aspects of hadrons with two or more heavy

quarks are organized in an expansion in powers of v. The typical velocity v of the

heavy quark in the bound diquark decreases as the mass mQ increases. If mQ is large

enough, v is proportional to the running coupling constant, v ∼ αs(mQv), which

decreases asymptotically like 1/ ln(mQ). NRQCD [15] assumes that the mass mQ is

large enough and the energy scales are well-separated: mQ À mQv À mQv2. This

assumption is very good for doubly bottom hadrons because quark potential model

11



calculations and lattice QCD calculations indicate the average value of v2 is about 0.1

for bottomonium, and reasonably good for doubly charm hadrons, for which v2 ∼ 0.3.

ΛQCD and mQv2 are comparable for both charm and bottom.

The NRQCD Lagrangian is derived in Ref. [15, 16]:

LNRQCD = Llight + Lheavy + δL. (1.24)

The gluons and the nf flavors of light quarks are described by the fully relativistic

Lagrangian in Eq.(1.1). The heavy quark and antiquarks are described by

Lheavy =
∑
p

ψ†p

(
iD0 − (p− iD)2

2mQ

)
ψp + χ†p

(
iD0 − (p− iD)2

2mQ

)
χp

+
∑
p,q

4παs

(p− q)2
ψ†qT

Aψpχ†−qT̄
Aχ−p + · · · , (1.25)

where ψp is the Pauli spinor field that annihilates a heavy quark and χp is the

Pauli spinor field that creates a heavy antiquark. Color and spin indices have been

suppressed. The last term is the Coulomb interaction and is also leading order. The

relativistic effects of full QCD are reproduced through the correction term δL.

To examine the properties of baryons with two heavy quarks, an additional sym-

metry - heavy quark-diquark symmetry - is valuable. In the limit of mQ → ∞, the

spatial extent of the diquark, 1/(mQv), is small compared to the size of the hadron,

1/ΛQCD, therefore the diquark can be treated as a pointlike object. The color repre-

sentation of the anti-diquark decomposes as 3̄⊗ 3̄ = 6̄⊕ 3 where 6̄ is symmetric color

wavefunction and 3 is the antisymmetric wavefunction. The anti-diquark inside the

baryon must be in the 3 representation in order to make the baryon color singlet.

12



Figure 1.3: The properties of a heavy meson with one single heavy quark and

those of a doubly heavy antibaryon with two heavy antiquarks are related by heavy

quark-diquark symmetry, where ∼ ΛQCD is the typical hadron size and ∼ 1/(mQv)

is extend of the diquark.

Thus, bound anti-diquark inside the doubly heavy antibaryon gives rise to the same

color triplet field as the heavy quark in the heavy meson. The heavy quark spin and

flavor are irrelevant in the mQ → ∞ limit. Then the configuration of the light de-

grees of freedom will be the same in both hadrons. Therefore the properties of doubly

heavy antibaryons with two heavy antiquarks can be related to those of the heavy

mesons with a single heavy quark by this symmetry. Refs. [17, 18] derived effec-

tive Lagrangians for heavy diquarks within the framework of Non-Relativistic QCD

(NRQCD) [15, 19, 16]. These papers obtain a prediction for the hyperfine splitting

of the ground state doubly heavy baryons in terms of the ground state heavy meson

hyperfine splitting2.

2The formula for the hyperfine splittings in Ref. [20] differs from the correct formula in Refs. [17, 18]

by a factor of 2.
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In the next chapter, we construct a chiral Lagrangian for doubly heavy baryons

and heavy mesons, which is invariant under heavy quark-diquark symmetry at leading

order and includes the leading O(1/mQ) symmetry violating operators. Predictions

for the strong and electromagnetic decays of the ground and excited states are made.

Chiral corrections to the heavy quark-diquark symmetry predictions are explored.

We provide numerical estimates for doubly charm baryons. In the third chapter,

we extend the chiral Lagrangian for doubly heavy baryons to include semileptonic

weak decays using χPT, heavy quark effective theory, and nonrelativistic QCD. Dou-

bly heavy baryon zero-recoil semileptonic decay form factors are predicted from this

theory with heavy quark-diquark symmetry. The theoretical predictions of masses

and decays in these two chapters are very helpful for experimental searches for dou-

bly charm baryons, doubly bottom baryons and charm bottom baryons in collider

experiments like the LHC and the Tevatron. The EFT techniques with heavy quark-

diquark symmetry for doubly heavy baryons can also be applied to doubly heavy

systems simulated in lattice QCD calculations.We extend the chiral Lagrangian with

heavy quark-diquark symmetry to the partially quenched theory. These theories can

be used to derive formulae for the chiral extrapolation of zero recoil semileptonic

decay of double heavy baryons in lattice QCD simulations.

14



1.4 Lattice QCD

Another useful tool to address the non-perturbative dynamics of quarks and gluons

is lattice gauge theory. Lattice QCD can be employed to calculate QCD observables

from first principles using non-perturbative numerical techniques. Lattice QCD is

based on the lattice regularization which was introduced by Wilson in the 1970’s [21].

The basic idea is to introduce lattice spacing a and discretize the theory on a lattice

in a finite volume Ld, where d is the dimension. Expectation values of observables can

be expressed as a path integral which can be directly evaluated using Monte-Carlo

methods.

The lattice QCD calculations have a finite lattice spacing, a, a finite lattice size, L,

and unphysical quark mass mq. However relating the results of simulations to the real

world requires extrapolation to zero lattice spacing, infinite lattice size and physical

quark mass. Therefore actual lattice QCD calculations suffer from a number of

systematic errors. Understanding and predicting these systematic errors are necessary

for accurate determination of hadronic observables. For example, finite volume effects

are important when L ∼ 1/mπ. In recent lattice QCD simulations, this occurs when

the lattice pion masses approach the physical pion masses. Another issue is quark

masses. It is very computationally expensive to simulate virtual quarks with physical

masses on the lattice. Sometimes the simulations omit the sea quark contributions

alltogether, this is called quenching. This is equivalent to setting the sea quark masses

to infinity. Other simulations have sea quark masses that are larger than the valence
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quark masses, this is called partial quenching.

Effective field theory can be used to address these systematic errors and determine

the quark mass dependence of the observables. We add two kinds of quarks to the

theory, sea quarks with different masses than valence quarks and ghost quarks with

the same masses as valence quark but with different statistics. Therefore SU(3) is

replaced by SU(6|3). Ghost quarks are bosons which bring opposite sign to the

loops and therefore cancel the valence quark contributions. Then only sea quark

contributions are left and this is equivalent to the partially quenching artifact in

lattice QCD simulations. If sea quark masses are set to infinity, the theory is then

SU(3|3) and is equivalent to the quenching artifact. This artifacts are considered in

our doubly heavy baryon semileptonic decays.

In the last chapter we study the pion physics at finite volume L3. We investigate

the pion current matrix elements at finite volume using chiral perturbation theory.

We determine the finite volume corrections to matrix element of the conserved pion

electromagnetic currents. The Ward identities still work at finite volume. We also

use chiral perturbation theory to study the extraction of pion electromagnetic po-

larizabilities from lattice QCD. We derive chiral extrapolation formulae for partially

quenched and quenched QCD simulations and we calculate the finite volume correc-

tions to the Compton scattering tensor of pions.
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Chapter 2

Chiral Lagrangian with Heavy
Quark-Diquark Symmetry

2.1 Introduction

Motivation1 for this work comes from the SELEX experiment’s recent observation of

states which have been tentatively interpreted as doubly charm baryons [23, 24, 25],

and also the COMPASS experiment, which in its second phase run in 2006 hopes

to observe doubly charm baryons [26]. Many aspects of the SELEX states are diffi-

cult to understand. States observed by SELEX include the Ξ+
cc(3520), which decays

weakly into Λ+
c π+K− [23] as well as pD+K− [25], the Ξ++

cc (3460), which decays

weakly into Λ+
c K−π+π+ [24], and a broader state, Ξ++

cc (3780), also seen to decay

into Λ+
c K−π+π+ [24]. The ground states of the Ξ+

cc and Ξ++
cc are related by isospin

symmetry and therefore should differ in mass by only a few MeV, so the observed

difference of 60 MeV seems implausible. On the other hand, an unpublished talk [27]

and conference proceedings [28] present evidence for additional states, Ξ+
cc(3443) and

Ξ++
cc (3541). If these states exist the isospin splittings are closer to theoretical ex-

pectations, but still quite large. The difference between the mass of the Ξ+
cc(3520)

and Ξ+
cc(3443) is 77 MeV, and the splitting between Ξ++

cc (3541) and Ξ++
cc (3460) is 81

1This chapter was previously published in Ref. [22] and was performed in collaboration with Prof.

Mehen.
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MeV. These splittings agree remarkably well with calculations of the doubly charm

hyperfine splittings in quenched lattice QCD [29, 30, 31] and are within ∼ 25 MeV

of the heavy quark-diquark symmetry prediction obtained in Refs. [17, 18, 29, 32],

an acceptable discrepancy given the expected corrections. However, interpretation

of the Ξ+
cc(3520) as the J = 3

2
member of the ground state doublet is impossible

to reconcile with the fact that the Ξ+
cc(3520) is observed to decay weakly because if

the Ξ+
cc(3520) is not the ground state of the ccd system it should decay electromag-

netically. There are also discrepancies between the weak decay lifetimes predicted

by HQET [33, 34, 35](∼ 100 fs) and the observed lifetimes (< 33 fs) [23, 25]. Pro-

duction cross sections are also poorly understood within perturbative QCD [36, 37].

However, the SELEX states are observed in the forward region, 〈xF 〉 ∼ 0.3, where

nonperturbative production mechanisms such as intrinsic charm [38, 39, 40] or parton

recombination [41, 42] may be important.

Even if there is difficulty interpreting the SELEX data, doubly charm baryons

must exist and are expected to have masses of approximately 3.5 GeV [36, 43, 44, 45,

46, 47, 48], where the SELEX states are. In light of existing and future experimental

efforts to observe doubly charm baryons, it is desirable to have model independent

predictions for other properties besides the relation for the hyperfine splittings de-

rived in Refs. [20, 17, 18]. Therefore it is important to develop theoretical tools for

analyzing the properties of doubly heavy baryons systematically.

Heavy quark-diquark symmetry relates mesons with a single heavy quark to
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antibaryons with two heavy antiquarks. Heavy hadron chiral perturbation theory

(HHχPT) [11, 12, 13] is a useful tool for studying low energy strong and electro-

magnetic interactions of heavy hadrons. This theory has heavy hadrons, Goldstone

bosons, and photons as its elementary degrees of freedom and incorporates the ap-

proximate chiral and heavy quark symmetries of QCD. In this chapter we derive a

version of HHχPT that includes doubly heavy baryons and incorporates heavy quark-

diquark symmetry. The theory is used to calculate chiral corrections to doubly heavy

baryon masses and to obtain model-independent predictions for the electromagnetic

decay of the J = 3
2

member of the ground state doubly heavy baryon doublet. We

also discuss the low lying excited doubly heavy baryons, show how these states can

be included in the effective theory, and calculate their strong decay widths.

Our formalism works best in the limit mQ À mQv À mQv2 & ΛQCD. Such a

separation of scales is only approximately realized in doubly charmed and doubly

bottom baryons. The scale ΛQCD should be identified with the hadronic matrix

elements typical of heavy quark systems. Using the hyperfine splittings of heavy

mesons, which are O(Λ2
QCD/mQ), or the excitation energies of excited heavy mesons,

which are O(ΛQCD), one finds ΛQCD ∼ 350−500 MeV. Taking mb ∼ 5 GeV, mc ∼ 1.5

GeV, v2
b ∼ 0.1 and v2

c ∼ 0.3 [15] one finds mbv
2
b ∼ mcv

2
c ∼ ΛQCD, while mbvb ∼ 1.5

GeV and mcvc ∼ 800 MeV. If one assumes that corrections to heavy quark-diquark

symmetry scale as ΛQCD/(mQv) then these naive estimates lead to the expectation

that heavy quark-diquark symmetry predictions should have ∼ 30% errors for doubly
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bottom baryons and ∼ 60% errors for doubly charm baryons. Nevertheless, there

is some empirical support for applying heavy quark-diquark symmetry to doubly

charm baryons, since the leading heavy quark-diquark symmetry prediction for the

hyperfine splitting of doubly charm baryons only differs from quenched lattice QCD

calculations and preliminary experimental data by about 30% [17, 18, 29]. More data

and theoretical predictions are needed to test whether heavy quark-diquark symmetry

applies to doubly charm baryons, and an important goal of this chapter is to provide

new predictions based on heavy quark-diquark symmetry for this purpose. Though

doubly bottom baryons would make a better testing ground for the formalism of this

chapter, no experimental observation of such states has been reported to date. Our

formulas can be applied to doubly bottom baryons once they are discovered. In our

numerical estimates, we will focus on doubly charmed baryons since there is some

experimental evidence for the existence of these states [23, 24, 25].

The rest of this chapter is organized as follows. In Sec.2.2, we derive a chiral La-

grangian for the ground state doubly heavy baryons and heavy mesons with approx-

imate heavy quark-diquark symmetry. In Sec.2.3, the electromagnetic decay widths

of the J = 3
2

members of the ground state doubly heavy baryon doublets are calcu-

lated. In Sec.2.4, we compute the chiral corrections to doubly heavy baryon masses.

In Sec.2.5, we discuss the lowest lying excitations of the doubly heavy baryon, which

turn out to be excitations of the diquark. The strong decay rates of these states are

calculated. In Sec.2.6, a brief summary is given.
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2.2 Derivation of the Chiral Lagrangian

Savage and Wise [20] wrote down a version of heavy quark effective theory (HQET)

which includes diquarks as elementary degrees of freedom and derived a formula

relating heavy meson and doubly heavy baryon hyperfine splittings. HQET only

separates the scales ΛQCD and mQ, where mQ is the heavy quark mass. The dynamics

of a bound state of two heavy quarks is characterized by additional scales mQv and

mQv2, where v is the typical velocity of the heavy quarks in the bound state. The

correct effective theory for hadrons with two heavy quarks is Non-Relativistic QCD

(NRQCD) [15], which properly accounts for the scales mQv and mQv2. Analysis of

heavy diquarks within the framework of NRQCD was recently performed in Refs. [17,

18]. These papers derived Lagrangians for diquark fields starting from NRQCD and

obtained the correct heavy quark symmetry prediction for the hyperfine splittings of

the doubly heavy baryons. For simplicity, we will consider only one flavor of heavy

quark. The lowest mass diquark will consist of two heavy antiquarks in an orbital

S-wave in the 3 representation of color SU(3). Then Fermi statistics demands that

they have total spin one. In the rest frame of the heavy quark and lowest mass

diquark, the Lagrangian to O(1/mQ) is [20, 18]

L = h†
(

iD0 −
~D2

2mQ

)
h + ~V † ·

(
iD0 + δ −

~D2

mQ

)
~V

+
gs

2mQ

h† ~σ · ~Ba λa

2
h +

igs

2mQ

~V † · ~Ba λa

2
× ~V . (2.1)
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Here h is the heavy quark field, ~V is the field for the diquarks, the λa/2 are the SU(3)

color generators, Tr[λaλb] = 2 δab, D0 and ~D are the time and spatial components

of the gauge covariant derivative, respectively, ~Ba is the chromomagnetic field, and

mQ is the heavy quark mass. The term proportional to δ is the residual mass of

the diquark. The heavy antiquarks in the diquark experience an attractive force

and therefore the mass of the diquark is not 2mQ but 2mQ − δ, where δ is the

binding energy. This residual mass can be removed by rephasing the diquark fields.

Physically, this corresponds to measuring diquark energies relative to the mass of

the diquark, rather than 2mQ. Once this is done the Lagrangian, at lowest order in

1/mQ, is invariant under a U(5) symmetry which permutes the two spin states of the

heavy quark and the three spin states of the heavy antiquarks. The U(5) symmetry

is broken by the O(1/mQ) kinetic energy and chromomagnetic couplings of the heavy

quark and diquark. The latter terms are responsible for the hyperfine splittings.

The ground state doublet of heavy mesons is usually represented in HHχPT as

a 4 × 4 matrix transforming covariantly under Lorentz transformations, and trans-

forming as a doublet under SU(2) heavy quark spin symmetry,

Hv =

(
1 + v/

2

)
(P ∗µ

v γµ − γ5Pv) . (2.2)

Here P ∗µ
v is the JP = 1− vector heavy meson field which obeys the constraint vµP

∗µ
v =

0, where vµ is the four-velocity of the heavy meson. Pv is the JP = 0− pseudoscalar

heavy meson field. The superfield Hv obeys the constraints v/Hv = −Hvv/ = Hv, so

Hv only has four independent degrees of freedom. These can be collected in a 2× 2
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matrix. For example, in the heavy meson rest frame where vµ = (1, 0, 0, 0),

Hv =




0 −~P ∗
v · ~σ − Pv

0 0


 , (2.3)

where we have used the Bjorken-Drell conventions for γµ and γ5. For a process such as

the weak decay B → D`ν, in which the initial and final heavy hadrons have different

four-velocities, the covariant representation of fields is needed to determine heavy

quark symmetry constraints on heavy hadron form-factors. However, for studying

low energy strong and electromagnetic interactions in which the heavy meson four-

velocity is conserved (up to O(ΛQCD/mQ) corrections), it is also possible to work in

the heavy meson rest frame and use 2×2 matrix fields. This makes some calculations

simpler and we find it easiest to formulate the extension of HHχPT with U(5) quark-

diquark symmetry in this frame. We define the heavy meson field in our theory to

be

Ha = ~P ∗
a · ~σ + Pa , (2.4)

where a is an SU(3) flavor anti-fundamental index and the ~σ are the Pauli matrices.

Since we have chosen to work in the heavy meson rest frame, Lorentz covariance is

lost and the symmetries of the theory are rotational invariance, SU(2) heavy quark

spin symmetry, parity, time reversal and SUL(3) × SUR(3) chiral symmetry. Under
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these symmetries the field Ha transforms as

rotations H ′
a = UHaU

†

heavy quark spin H ′
a = SHa

parity H ′
a = −Ha

time reversal H ′
a = −σ2 H∗

a σ2

SUL(3)× SUR(3) H ′
a = HbV

†
ba . (2.5)

Here U and S are 2 × 2 rotation matrices and V †
ba is an SU(3) matrix which gives

the standard nonlinear realization of SUL(3) × SUR(3) chiral symmetry. In the two

component notation the HHχPT Lagrangian is:

L = Tr[H†
a(iD0)baHb]− gTr[H†

aHb ~σ · ~Aba] +
∆H

4
Tr[H†

a σi Ha σi] . (2.6)

The last term breaks heavy quark spin symmetry and ∆H is the hyperfine splitting of

the heavy mesons. The time component of the covariant chiral derivative is (D0)ba,

~Aba is the spatial part of the axial vector field, and g is the heavy meson axial

coupling. Our definitions for the chiral covariant derivative, the axial current, and

the Lagrangian for the Goldstone boson fields are the same as Ref. [14].

We are now ready to generalize the Lagrangian to incorporate the doubly heavy

baryons and the U(5) quark-diquark symmetry. The field Ha transforms like the

tensor product of a heavy quark spinor and a light antiquark spinor. (This is how

representations of heavy hadron fields were constructed in Ref. [10].) Writing the

field with explicit indices, (Ha)αβ, the index α corresponds to the spinor index of the

24



heavy quark and the index β is that of the light antiquark spinor. In the theory with

quark-diquark symmetry, the heavy quark spinor is replaced with a five-component

field, the first two components corresponding to the two heavy quark spin states and

the last three components corresponding to the three spin states of the diquark:

Qµ =




hα

Vi


 . (2.7)

In terms of Qµ the kinetic terms of the Lagrangian in Eq.(2.1) are

L = Q†
µiD0Qµ . (2.8)

The fields in HHχPT with heavy quark-diquark symmetry transform as tensor prod-

ucts of the five component field Qµ and a two-component light antiquark spinor.

Thus, the 2× 2 matrix field Ha is promoted to a 5× 2 matrix field

Ha, αβ → Ha, µβ = Ha, αβ + Ta, iβ . (2.9)

Here the index µ takes on values between 1 and 5, α, β = 1 or 2, and i = 3, 4, or 5.

The doubly heavy baryon fields are contained in Ta, iβ. Under the symmetries of the

theory Ha transforms as

rotations H′
a = RHaU

†

heavy quark spin H′
a = SHa

parity H′
a = −Ha

time reversal H′
a = −Σ2H∗

a σ2

SUL(3)× SUR(3) H′
a = HbV

†
ba . (2.10)
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The matrix S is now an element of U(5) and R is a 5× 5 reducible rotation matrix

Rµν =




Uαβ 0

0 Rij


 , (2.11)

where Uαβ is an SU(2) rotation matrix and Rij is an orthogonal 3×3 rotation matrix

related to U by U †σiU = Rijσj. The 5 × 5 matrix appearing in the time reversal

transformation is

(Σ2)µν =




(σ2)αβ 0

0 δij


 . (2.12)

Under rotations the field Ta, iβ transforms as T ′
a, iβ = Rij Ta, jγ U †

γβ. Ta, iβ can be further

decomposed into its spin-3
2

and spin-1
2

components,

Ta, iβ =
√

2

(
Ξ∗a, iβ +

1√
3
Ξa, γ σi

γβ

)
, (2.13)

where Ξ∗a, iβ and Ξa, γ are the spin-3
2

and spin-1
2

fields, respectively. The factor of
√

2

is a convention that ensures that the kinetic terms of the doubly heavy baryon fields

have the same normalization as the heavy meson fields. The field Ξ∗a, iβ obeys the

constraint Ξ∗a, iβ σi
βγ = 0.

The U(5) invariant generalizations of the first two terms of Eq. (2.6) are simply

obtained by making the replacement Ha → Ha. To determine the proper gener-

alization of the U(5) breaking term we note that the chromomagnetic couplings in

Eq. (2.1) can be written as

gs

2mQ

Q†
µ
~Σµν · ~Ba

λa

2
Qν , (2.14)
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where the ~Σµν are the 5× 5 matrices

~Σµν =




~σαβ 0

0 ~Tjk


 , (2.15)

and (T i)jk = −iεijk. It is now obvious that the correct generalization of Eq. (2.6) is

L = Tr[H†
a(iD0)baHb]− g Tr[H†

aHb ~σ · ~Aba] +
∆H

4
Tr[H†

a ΣiHa σi]

= Tr[H†
a(iD0)baHb]− g Tr[H†

aHb ~σ · ~Aba] +
∆H

4
Tr[H†

a σi Ha σi]

+Tr[T †
a (iD0)baTb]− g Tr[T †

aTb ~σ · ~Aba] +
∆H

4
Tr[T †

a T i Ta σi] . (2.16)

The last line of Eq. (3.12) contains the terms relevant for doubly heavy baryons.

Heavy quark-diquark symmetry relates the couplings in the doubly heavy baryon

sector to the heavy meson sector. The propagator for the spin-1
2

doubly heavy baryon

is

iδab δαβ

2(k0 + ∆H/2 + iε)
,

while the propagator for the spin-3
2

doubly heavy baryon is

iδabPiα,jβ

2(k0 −∆H/4 + iε)
=

iδab (δijδαβ − 1
3
(σiσj)αβ)

2(k0 −∆H/4 + iε)
.

The projection operator Piα,jβ satisfies σi
γαPiα,jβ = Piα,jβ σj

βγ = 0. Comparison of

the poles of the propagators shows that the hyperfine splitting for the doubly heavy

baryons is 3
4
∆H , reproducing the heavy quark-diquark symmetry prediction

mΞ∗ −mΞ =
3

4
(mP ∗ −mP ) , (2.17)

obtained in Refs. [17, 18].
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2.3 Electromagnetic Decays

The decay Ξ∗ → Ξγ is related to the decay P ∗ → Pγ by heavy quark-diquark sym-

metry and therefore is interesting to study in our formalism. For interpreting the

SELEX states, it is useful to have estimates of the electromagnetic decay widths.

Even with the substantial O(ΛQCD/(mcv)) corrections that could be present for dou-

bly charm baryons, such estimates should be helpful for deciding whether an observed

Ξcc is the J = 3
2

member of the ground state doublet.

The Lagrangian for electromagnetic decays of the heavy mesons in the two-

component notation is [49]

L =
eβ

2
Tr[H†

aHb ~σ · ~B Qab] +
e

2mQ

Q′Tr[H†
a~σ · ~BHa] , (2.18)

where Qab = diag(2/3,−1/3,−1/3) is the light quark charge matrix, β is the param-

eter introduced in Ref. [49], and Q′ is the heavy quark charge. For charm, Q′ = 2/3.

The first term is the magnetic moment coupling of the light degrees of freedom and

the second term is the magnetic moment coupling of the heavy quark. Both terms

are needed to understand the observed electromagnetic branching fractions of the

D∗+ and D∗0 [49]. The magnetic couplings of the heavy quark and diquark are

Lem =
e

2mQ

Q′h† ~σ · ~B h− ie

mQ

Q′ ~V † · ~B × ~V

=
e

2mQ

Q′Q†
µ

~Σ′
µν · ~BQν , (2.19)
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where the ~Σ′
µν are the 5× 5 matrices

~Σ′
µν =




~σαβ 0

0 −2~Tjk


 . (2.20)

The magnetic coupling of the diquark has the opposite sign as that of the heavy

quark because it is composed of two heavy antiquarks. The coefficient of the chro-

momagnetic coupling of the diquark in Eqs. (2.1,2.14) is a factor of 2 smaller than

the coefficient of the electromagnetic coupling of the diquark in Eq. (2.19) due to a

color factor. The magnetic couplings in the HHχPT Lagrangian for heavy mesons

and doubly heavy baryons are

L =
eβ

2
Tr[H†

aHb ~σ · ~B Qab] +
e

2mQ

Q′Tr[H†
a
~Σ′ · ~BHb] . (2.21)

The part of this Lagrangian involving the doubly heavy baryon fields is

L =
eβ

2
Tr[T †

a Tb ~σ · ~B Qab]− e

mQ

Q′Tr[T †
a

~T · ~B Tb] . (2.22)

This can be used to obtain the following tree level predictions for the electromagnetic

decay widths:

Γ[P ∗
a → Paγ] =

α

3

(
βQaa +

Q′

mQ

)2
mP

mP ∗
E3

γ

Γ[Ξ∗a → Ξaγ] =
4α

9

(
βQaa − Q′

mQ

)2
mΞ

mΞ∗
E3

γ . (2.23)

Here Eγ is the photon energy. These results could also be obtained in the quark

model, with the parameter β = 1/mq, where mq is the light constituent quark mass.

The effective theory allows one to improve upon this approximation by including
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corrections from loops with light Goldstone bosons, which give O(
√

mq) corrections to

the decay rates [49]. If these loop corrections are evaluated in an approximation where

heavy hadron mass differences are neglected, the correction to the above formulae

can be incorporated by making the following replacements [49]

βQ11 → 2

3
β − g2mK

4πf 2
K

− g2mπ

4πf 2
π

βQ22 → −1

3
β +

g2mπ

4πf 2
π

βQ33 → −1

3
β +

g2mK

4πf 2
K

. (2.24)

For charm mesons, hyperfine splittings are ≈ 140 MeV and the SU(3) splitting is

≈ 100 MeV, while for bottom mesons the hyperfine splittings are ≈ 45 MeV and

SU(3) splitting is ≈ 90 MeV. The approximation of neglecting heavy hadron mass

differences and keeping Goldstone boson masses is reasonable for kaon loops but not

for loops with pions. However, the largest O(
√

mq) corrections come from loops

with kaons. When data on double heavy baryon electromagnetic decays is available,

more accurate calculations along the lines of Ref. [14] should be performed. In this

chapter, we will use Eqs. (2.23) and (2.24) to obtain estimates of doubly charm baryon

electromagnetic decay widths.

Currently Γ[D∗+] is measured to be 96±22 keV, while there is only an upper limit

for Γ[D∗0]. The branching ratios for the D∗+ decays are Br[D∗+ → D0π+] = (67.7±

0.5)%, Br[D∗+ → D+π0] = (30.7± 0.5)% and Br[D∗+ → D+γ] = (1.6± 0.4)%. The

branching ratios for D∗0 decays are Br[D∗0 → D0π0] = (61.9± 2.9)% and Br[D∗0 →

D0γ] = (38.1 ± 2.9)%. Isospin symmetry can be used to relate the strong partial
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Fit β−1(MeV) mc(MeV) Γ[Ξ∗++
cc ] (keV) Γ[Ξ∗+cc ] (keV)

QM 1 379 1863 3.3
(

Eγ

80MeV

)3

2.6
(

Eγ

80MeV

)3

QM 2 356 1500 3.4
(

Eγ

80MeV

)3

3.2
(

Eγ

80MeV

)3

χPT 1 272 1432 2.3
(

Eγ

80MeV

)3

3.5
(

Eγ

80MeV

)3

χPT 2 276 1500 2.3
(

Eγ

80MeV

)3

3.3
(

Eγ

80MeV

)3

Table 2.1: Predictions for the electromagnetic widths of the Ξ∗+cc and Ξ∗++
cc . The fits

are explained in the text.

width of the D∗0 to the known strong partial width of the D∗+. Then the measured

branching fractions of the D∗0 can be used to obtain the partial electromagnetic

width of the D∗0. We find

Γ[D∗0 → D0γ] = 26.1± 6.0 keV

Γ[D∗+ → D+γ] = 1.54± 0.35 keV , (2.25)

where the error is dominated by the uncertainty in Γ[D∗+]. Γ[D∗+ → D+γ] is sup-

pressed because of a partial cancellation between the magnetic moments of the light

degrees of freedom and the charm quark. Using the partial widths in Eq. (2.25) and

the formulae in Eqs. (2.23) and (2.24), we obtain predictions for doubly charm baryon

electromagnetic decays in Table 2.1.

In our calculations of the doubly charm baryon decay widths the factor mΞ/mΞ∗ in

Eq. (2.23) has been set equal to one. For the expected masses and hyperfine splittings

of the doubly charm baryons, this factor changes the predictions for the widths by
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less than 3%. The fits are labeled in the left hand column of Table 2.1. In the fits

labeled QM we have not included the O(
√

mq) corrections in Eq. (2.24). Therefore,

these predictions for the doubly charm baryon electromagnetic decays are the same

as what would be obtained in the quark model. The values of the parameters β and

mc for each fit are shown along with the predictions for the electromagnetic decay

widths. In QM 1, we have treated β and mc as free parameters and fit these to the

central values in Eq. (2.25). In QM 2 we have set mc = 1500 MeV and performed a

least squared fit to β. In the fits labeled χPT, we have included the leading O(
√

mq)

chiral corrections in Eq. (2.24). We have used fπ = 130 MeV, fK = 159 MeV, and

g = 0.6 which is extracted from a tree level fit to the D∗+ width. In χPT 1, we fixed

β and mc to reproduce the central values in Eq. (2.25). In χPT 2, we set mc = 1500

MeV and performed a least squares fit to β. There are several sources of error in the

calculation. We expect 30% theoretical errors due to heavy quark symmetry breaking

effects, 30% errors due to higher order SU(3) breaking effects, and 25% uncertainty

from the experimentally measured value of Γ[D∗+] leading to at least 50% error in

the predictions in Table 2.1.

Chiral perturbation theory and the nonrelativistic quark model give similar size

estimates for the Ξ∗cc electromagnetic decay widths which are expected to be ∼2-3 keV

if the hyperfine splitting is 80 MeV. The electromagnetic decay should completely

dominate any possible weak decay, even if the weak decay rates are an order of

magnitude greater than calculated in Refs. [33, 34, 35]. The quark model predicts
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Γ[Ξ∗++
cc ] slightly greater than Γ[Ξ∗+cc ]. This is in contrast with the charm meson sector

where the magnetic moment of the light degrees of freedom and the magnetic moment

of the charm quark add constructively to give a large Γ[D∗0 → D0γ] and destructively

to give a small Γ[D∗+ → D+γ]. In the doubly heavy baryon sector, the relative sign

of the magnetic moments is reversed, and both decay rates are approximately the

same. In fact from Eq. (2.23), we can see that for β = 4/mc the two rates are exactly

equal in the quark model. Fits to the D∗ electromagnetic decays yield values of β and

mc that are close to this point in parameter space. Including the O(
√

mq) corrections

from chiral perturbation theory, the most important effect is the kaon loop correction

whose contribution to the Ξ∗++
cc decay has opposite sign as the contribution from β

at tree level, therefore suppressing the Ξ∗++
cc decay relative to Ξ∗+cc .

2.4 Mass Corrections

The theory can also be used to compute chiral corrections to doubly heavy baryon

masses. The one loop corrections to the hadron masses are

δmΞ∗a =
∑

i,b

Ci
ab

g2

16π2f 2
i

(
5

9
K(mΞ∗b −mΞ∗a ,mi, µ)+

4

9
K(mΞb

−mΞ∗a ,mi, µ)

)

δmΞa =
∑

i,b

Ci
ab

g2

16π2f 2
i

(
1

9
K(mΞb

−mΞa ,mi, µ)+
8

9
K(mΞ∗b −mΞa ,mi, µ)

)

δmHa =
∑

i,b

Ci
ab

g2

16π2f 2
i

K(mH∗
b
−mHa ,mi, µ)

δmH∗
a

=
∑

i,b

Ci
ab

g2

16π2f 2
i

(
1

3
K(mHb

−mH∗
a
,mi, µ)+

2

3
K(mH∗

b
−mH∗

a
,mi, µ)

)
.(2.26)
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Here mi and fi are the mass and decay constant of the Goldstone boson in the one

loop diagram and Ci
ab is a factor which comes from SU(3) Clebsch-Gordan coefficients

in the couplings. For loops with charged pions we have Cπ±
12 = Cπ±

21 = 1, for loops

with neutral pions Cπ0

11 = Cπ0

22 = 1
2
, for loops with kaons CK

3i = CK
i3 = 1 (i = 1 or 2),

and for loops with η mesons Cη
11 = Cη

22 = 1
6

and Cη
33 = 2

3
. The function K(δ,m, µ) is

related to the finite part of the integral

i

∫
dDl

(2π)D

~l2

l2 −m2
π + iε

1

l0 − δ + iε
=

1

(4π)2
K(δ,m, µ) , (2.27)

evaluated using dimensional regularization in the MS scheme. We find

K(δ,m, µ) = (−2δ3 + 3m2δ) ln

(
m2

µ2

)
+ 2 δ(δ2 −m2)F

(
δ

m

)
+ 4δ3 − 5δm2, (2.28)

where

F (x) = 2

√
1− x2

x

[
π

2
− Tan−1

(
x√

1− x2

)]
|x| < 1

= −2

√
x2 − 1

x
ln

(
x +

√
x2 − 1

)
|x| > 1 ,

and µ is the renormalization scale. The µ dependence in the one loop calculation is

cancelled by counterterms that have not been included. Counterterms contributing

to the self-energies of heavy mesons can be found in, e.g., Ref. [50]. Again there

are many counterterms that contribute to the doubly heavy baryon self-energies,

only some of which can be obtained from Ref. [50] by the substitution Ha → Ha.

We focus on the nonanalytic dependence of the self-energies because they provide a

rough estimate of the long distance corrections to the leading prediction for hyperfine

splittings obtained earlier and because the nonanalytic dependence on the light quark
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mass could be useful for chiral extrapolations in unquenched lattice QCD calculations

of doubly heavy baryon masses.

We are interested in how the one loop corrections affect the leading order pre-

diction for the hyperfine splittings. Unfortunately, it is impossible to give a reliable

estimate without knowing the numerical value of the counterterms required to can-

cel the µ dependence in the nonanalytic contribution. Furthermore, to compute the

contribution from kaon loops, one must know the masses of doubly charm strange

baryons which have not been observed. We will assume that the ground state doubly

charm strange baryons are 100 MeV higher in mass than their nonstrange counter-

parts, similar to the D meson system. This is consistent with theoretical estimate of

the SU(3) breaking in Refs. [36, 43, 44, 45, 47, 48]. We work in the isospin limit and

use g = 0.6, ∆H = 140 MeV, mπ = 137 MeV, mK = 496 MeV, mη = 548 MeV and

the experimental values of the pseudoscalar meson decay constants: fπ = 130 MeV,

fK = 159 MeV, and fη = 156 MeV. The nonanalytic part of the one loop correction

to the nonstrange doubly charm baryon hyperfine splitting is

δmΞ∗cc
− δmΞcc =





−7.0 MeV µ = 500 MeV

8.1 MeV µ = 1000 MeV

16.9 MeV µ = 1500 MeV

, (2.29)

where we have shown our results for three values of µ. For these choices of µ the

nonanalytic part of the chiral correction varies between -7 MeV and +17 MeV. The

nonanalytic part of the chiral correction to the doubly charm baryon hyperfine split-

ting is quite sensitive to the choice of µ, and lies within 15% of the tree level prediction.
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We also calculate the correction to the hyperfine splitting relationship of Eq. (2.17)

and find for the masses in the nonstrange sector

δmΞ∗cc
− δmΞcc −

3

4
(δmD∗ − δmD) =





3.9 MeV µ = 500 MeV

5.3 MeV µ = 1000 MeV

6.1 MeV µ = 1500 MeV

. (2.30)

The nonanalytic correction to the symmetry prediction is small (< 10 MeV) and

relatively insensitive to the choice of µ. Chiral perturbation theory predicts the

nonanalytic dependence of the doubly heavy baryon masses on the light quark masses,

and generalized to include the effects of quenching as well as other lattice artifacts,

formulae such as those in Eq. (2.26) should be useful for chiral extrapolations of

doubly heavy baryon masses and hyperfine splittings in lattice simulations.

2.5 Excited States

In this section, we discuss excited doubly heavy baryons. There are two types of

excitations in the doubly heavy baryon system: excitations of the light degrees of

freedom and excitations of the diquark. Excitations of the first type are related to

analogous excitations in the heavy meson sector by heavy quark-diquark symmetry.

The lowest lying excited charm mesons are in a doublet of JP = 0+ and 1+ mesons

with masses approximately 425 MeV above the ground state in the nonstrange sec-

tor [51, 52, 53] and 350 MeV above the ground state in the strange sector [54, 55]. In

the nonstrange sector these states decay via S-wave pion emission and have widths
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in the range 250-350 MeV, while in the strange sector the strong decay is via π0

emission which violates isospin, and therefore the states are very narrow with widths

expected to be of order 10 keV [50]. These states have light degrees of freedom with

angular momentum and parity jp = 1
2

+
. The doubly charm baryons related to the

even-parity excited charm mesons by quark-diquark symmetry are a doublet with

JP = 1
2

+
and JP = 3

2

+
. The excited charm mesons and doubly charm baryons can

be incorporated into HHχPT with a 5× 2 matrix field Sµβ which is like the field Hµβ

except Sµβ has opposite parity. The excitation energies and strong decay widths of

these excited doubly charm baryons should be similar to their counterparts in the

charm meson sector. Since the excited Ξ++
cc (3780) state observed by SELEX is only

320 MeV above the Ξ++
cc (3460), the lowest mass Ξ++

cc candidate, and its width is con-

siderably less than 300 MeV, it does not seem likely that this excited doubly charm

baryon is related to the excited charm mesons by heavy quark-diquark symmetry.

This is not unexpected as the lowest lying excited doubly charm baryons are not

excitations of the light degrees of freedom but rather states in which the diquark is

excited. The lowest mass excited diquark is a P-wave excitation. Because of Fermi

statistics the diquark is a heavy quark spin singlet. The diquark’s orbital angular

momentum couples with the angular momentum of the light degrees of freedom to

form baryons with JP = 1
2

+
and JP = 3

2

+
, which we will refer to as ΞPcc and ΞP∗cc ,

respectively. The next lowest lying states are doubly heavy baryons with a radially

excited diquark, which form a heavy quark doublet with JP = 1
2

−
and JP = 3

2

−
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baryons, which we will refer to as Ξ′cc and Ξ′∗cc, respectively. If the heavy antiquarks

are sufficiently heavy that the force between them is approximately Coulombic, they

interact via a potential which is 1/2 as strong as the potential between the quark

and antiquark in a quarkonium bound state. Therefore we expect the excitation en-

ergies of the charm diquarks to be significantly smaller than the analogous excitation

energies in charmonium. Quark model calculations of excited doubly charm baryons

predict that the ΞPcc and ΞP∗cc states are about 225 MeV above the Ξcc and Ξ∗cc, re-

spectively, and that that the heavy quark doublet containing Ξ′cc and Ξ′∗cc is about

300 MeV above the ground state doublet [32, 56, 47, 57, 58]. These excitation ener-

gies are about 1/2 the corresponding excitation energies in the charmonium system:

mhc −mJ/ψ = 430 MeV and mψ′ −mJ/ψ = 590 MeV. The charm diquark excitation

energies are less than the expected excitation energy of the light degrees of freedom

and therefore the lowest lying excited doubly charm baryons have excited diquarks.

Excitation energies of a diquark made from two bottom quarks are similar to the

excitation energies of a diquark made from charm, so the same conclusion holds for

doubly bottom baryons.

Note that the excitation energies of the light degrees of freedom, which should

scale as ∼ ΛQCD, are as much as 2 times larger than the excitations of the diquark,

which should scale as ∼ mQv2. Since the difference is only a factor of 2, either

power counting mQv > ΛQCD ∼ mQv2 or mQv ∼ ΛQCD > mQv2 seems plausible

for excited doubly heavy baryons. Our calculations assume the first power counting,
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but if the second power counting is more appropriate a formalism similar to strongly

coupled pNRQCD needs to be developed instead [59]. It should be kept in mind

that since excited diquarks will be less pointlike than the ground states, corrections

to heavy quark-diquark symmetry could be larger for excited doubly heavy baryons.

Our predictions for strong decays listed below could be used to test the validity of

the assumption mQv > ΛQCD ∼ mQv2 for excited doubly heavy baryons.

The doubly heavy baryons with P-wave excited diquarks decay to the ground

state via S-wave pion emission. These decays violate heavy quark spin symmetry

because the total spin of the diquark is changed in the transition. The Lagrangian

for the excited ΞP and ΞP∗ states, including kinetic terms, residual mass terms and

terms which mediate the S-wave decays, is

L = 2 (ΞPa )† (i (D0)ba − δP δab) ΞPb + 2 (ΞP∗a )† (i (D0)ba − δP∗ δab) ΞP∗b

+2 λ1/2

(
Ξ†a ΞPb A0

ba + h.c.
)

+ 2 λ3/2

(
Ξ∗†a ΞP∗b A0

ba + h.c.
)

. (2.31)

The strong decay widths of the P-wave excited nonstrange doubly charm baryons are

Γ[ΞP∗cc → Ξ∗cc π] =
λ2

3/2

2πf 2

(
1

2
E2

π0pπ0 + E2
π+pπ+

)
mΞ∗

mΞP∗
= λ2

3/2 111 MeV

Γ[ΞPcc → Ξcc π] =
λ2

1/2

2πf 2

(
1

2
E2

π0pπ0 + E2
π+pπ+

)
mΞ

mΞP
= λ2

1/2 111 MeV . (2.32)

To obtain numerical estimates, we have assumed the masses mΞcc = 3440 MeV,

mΞ∗cc
= 3520 MeV, mΞPcc

= 3665 MeV and mΞP∗cc
= 3745 MeV, corresponding to a

diquark excitation energy of 225 MeV. We sum over both charged and neutral pion

decay modes. The coupling constants λ1/2 and λ3/2 are O(ΛQCD/mQ) so we should
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expect this suppression makes λ1/2 and λ3/2 < 1. Therefore these states could be

quite narrow despite decaying via S-wave pion emission. The small widths are due

to the small excitation energy which leaves little phase space for the decay. If the

excitation energy is increased to 280 MeV, the widths are twice as large. Like the

isospin violating decays of the D∗
s [60] and the even-parity excited Ds mesons [61, 50],

the excited doubly heavy strange baryons below the kaon threshold decay through

a virtual η which mixes into a π0. Denoting the ground state doubly charm strange

baryons as Ω
(∗)
cc and the P-wave excited doubly charm strange baryons as Ω

P(∗)
cc we

obtain the following formulae for the isospin violating strong decay widths

Γ[ΩP∗
cc → Ω∗

cc π0] =
λ2

3/2

2πf 2

2

3
θ2 E2

π0pπ0

Γ[ΩP
cc → Ωcc π0] =

λ2
1/2

2πf 2

2

3
θ2 E2

π0pπ0 . (2.33)

Here θ = 0.01 is the π0 − η mixing angle. We expect these widths to be in the range

1-5 keV, but without knowing the masses of the Ω
(∗)
cc and Ω

P(∗)
cc states or the couplings

λ1/2 and λ3/2 we cannot make more precise predictions.

The JP = 3
2

−
and JP = 1

2

−
doubly heavy baryons with radially excited diquarks

are members of a heavy quark doublet we will denote T ′
a whose definition in terms

of component fields is identical to Eq. (3.11). The Lagrangian describing this field,

including terms which mediate its decay to the ground state, is

L = Tr[T ′†
a ((iD0)ab − δT ′ δab)T

′
b]− g Tr[T ′†

a T ′
b ~σ · ~Aba] +

∆H

4
Tr[T ′†

a T i T ′
b σi]

−g̃
(
Tr[T †

a T ′
b ~σ · ~Aba] + h.c.

)
. (2.34)
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In the limit of infinite heavy quark mass, the light degrees of freedom in the radially

excited doubly heavy baryons are in the same configuration as the ground state.

Therefore, they are also related to the heavy meson ground state doublet by heavy

quark-diquark symmetry. The axial coupling and hyperfine splitting of T ′
a are the

same as Ta, as long as the spatial extent of the excited diquark, which is of order

1/(mQv), is much smaller than 1/ΛQCD. This is valid in the heavy quark limit, but

could receive significant corrections in the charm sector. The last term in Eq. (2.34)

mediates P-wave decays from the excited JP = 3
2

−
and JP = 1

2

−
doubly heavy

baryons to the ground state. The partial decay widths are

Γ[Ξ′∗a → Ξ∗bπ] = Cab
5

9

g̃2

2πf 2

mΞ∗

mΞ′∗
|pπ|3 Γ[Ξ′∗a → Ξbπ]=Cab

4

9

g̃2

2πf 2

mΞ

mΞ′∗
|pπ|3

Γ[Ξ′a → Ξ∗bπ] = Cab
8

9

g̃2

2πf 2

mΞ∗

mΞ′
|pπ|3 Γ[Ξ′a → Ξbπ]=Cab

1

9

g̃2

2πf 2

mΞ

mΞ′
|pπ|3.(2.35)

Here Cab is an SU(3) factor which is 1/2 for decays involving π0 and one for decays

involving charged pions. The radially excited doubly heavy strange baryons should

also be below the threshold for decays into kaons, and therefore should be quite

narrow. The formulae in Eq. (2.35) can be used to obtain these decay widths as well.

The isospin violating strong partial decay widths are obtained by using Eq. (2.35)

with C33 = 2
3

then multiplying by θ2. The expected widths of these states are of

order 10 keV, but more precise estimates cannot be made until the masses of the

states and the coupling g̃ are known. For the nonstrange doubly heavy baryons, in

the limit of infinite heavy quark mass, we obtain

Γ[Ξ′] = Γ[Ξ′∗] =
3g̃2

4πf 2
p3

π = 55 MeV

(
g̃

0.5

)2 ( pπ

250 MeV

)3

(2.36)
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for the total widths, and for the branching fractions we find

Br[Ξ′∗ → Ξ∗ π]

Br[Ξ′∗ → Ξ π]
=

5

4

Br[Ξ′ → Ξ∗ π]

Br[Ξ′ → Ξ π]
= 8 . (2.37)

These relations receive large corrections due to phase space effects. Once the hy-

perfine splittings are taken into account the factors of p3
π will differ greatly for the

four decays. To get a feeling for these effects in the doubly charm sector we choose

mΞcc = 3440 MeV, mΞ∗cc
= 3520 MeV, mΞ′cc

= 3740 MeV, and mΞ∗′cc
= 3820 MeV,

which corresponds to a diquark excitation energy of 300 MeV and hyperfine splittings

of 80 MeV. We then find

Γ[Ξ′cc] = g̃2 336 MeV Γ[Ξ∗′cc] = g̃2 78 MeV

Γ[Ξ′∗cc → Ξ∗cc π]

Γ[Ξ′∗cc → Ξcc π]
= 0.56

Γ[Ξ′cc → Ξ∗cc π]

Γ[Ξ′cc → Ξcc π]
= 2.3 . (2.38)

Note that the Ξ′cc unlike the Ξ′∗cc strongly prefers to decay to Ξ∗cc relative to Ξcc

despite the phase space suppression. This may be useful for distinguishing Ξ′∗cc and

Ξ′cc experimentally.

The SELEX Ξ++
cc (3780) is broad relative to the other SELEX doubly charm can-

didates. Since it is 260 MeV heavier than the Ξ+
cc(3520), it is a natural candidate

for one of the low lying excited doubly charm baryons. Unfortunately, no measure-

ment of the width exists and the pattern of decays is also hard to understand, since

Ref. [24] states that 50% of the decays to Λ+
c K−π+π+ are through Ξ+

cc(3520) π+ while

the other 50% are weak decays. More information on the quantum numbers of the
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Ξ++
cc (3780) and the Ξ+

cc(3520) are needed before we can determine which of the excited

doubly charm baryons should be identified with the Ξ++
cc (3780).

2.6 Summary

In this chapter we have developed a generalization of HHχPT which incorporates

heavy quark-diquark symmetry and includes the leading symmetry breaking correc-

tions from the chromomagnetic couplings of the heavy quark and diquark. We also

included electromagnetic interactions in the Lagrangian, and obtained an estimate

of the width of the J = 3
2

member of the ground state doubly charm baryon doublet.

The width of this state is completely dominated by electromagnetic decays. Our

theory was used to calculate chiral corrections to doubly heavy baryon masses. The

nonanalytic correction to the leading heavy quark-diquark symmetry prediction for

the hyperfine splittings is small. Computations of chiral corrections to doubly heavy

baryon masses which include effects of quenching and other lattice artifacts will be

useful for chiral extrapolations in future lattice QCD calculations of doubly heavy

baryon masses.

We showed how to include the lowest lying doubly charm baryons which are

expected to be excitations of the doubly charm diquark rather than the light degrees

of freedom. Strong decay widths of low lying excited states were calculated and the

states are expected to be rather narrow because of limited phase space available for

the decays. Of particular interest is the doubly charm strange sector where we expect
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three pairs of excited baryons whose strong decay must violate isospin conservation

because they are below the kaon decay threshold. These states will have narrow

widths of 10 keV or less. Experimental efforts to observe the narrow doubly charm

strange baryons would be of great interest.
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Chapter 3

Doubly Heavy Baryon Zero-Recoil
Semileptonic Decay with Heavy
Quark-Diquark Symmetry

3.1 Introduction

Heavy quark-diquark symmetry relates heavy mesons to doubly heavy antibaryons.

The heavy quark-diquark symmetry prediction for the doubly charm hyperfine split-

ting [17, 18, 29, 32] is within 25% ∼ 30% of the quenched lattice QCD calculation.

More observables are needed to see if heavy quark-diquark symmetry can be applied

to charm and bottom. In the previous chapter, we derived an effective Lagrangian

for doubly heavy baryons incorporating heavy quark-diquark symmetry and used this

theory to study low energy strong and electromagnetic interactions of doubly heavy

baryons. In this chapter, we will apply this theory to calculate leading chiral cor-

rections to heavy quark-diquark symmetry predictions for zero-recoil doubly heavy

baryon semileptonic decay form factors.

Lattice gauge theory is a useful tool for addressing the nonperturbative dynamics

of quarks and gluons. Lattice calculation of decay matrix elements of heavy mesons

and doubly heavy baryons can help determine the reliability of heavy quark-diquark

symmetry for charm and bottom hadrons. HPQCD and MILC collaborations are
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planning to calculate semileptonic decay form factors of heavy mesons in the near

future. In lattice QCD, simulations are performed with unphysical sea quark masses

which need to be extrapolated to the physical values. Chiral Lagrangians which

include quenching and partially quenching effects are useful for the chiral extrapola-

tions of lattice data. In this chapter, we will extend the chiral Lagrangian with heavy

quark-diquark symmetry to include effects of quenching and partial quenching, and

use it to derive formulae for the chiral extrapolation of zero-recoil semileptonic decay

of double heavy baryons in lattice QCD simulations.

The rest of this chapter is organized as follows. In Sec. 3.2, we use NRQCD to

derive couplings of heavy diquarks to weak currents that are consistent with heavy

quark-diquark symmetry. In Sec. 3.3, we construct the chiral Lagrangian for dou-

bly heavy baryons coupled to weak currents and calculate the doubly heavy baryon

zero-recoil semileptonic decay matrix elements. We calculate the chiral corrections to

doubly heavy baryon zero-recoil semileptonic decay using χPT. In the heavy quark-

diquark symmetry limit the corrections vanish. In Sec. 3.4, we extend the chiral La-

grangian with heavy quark-diquark symmetry to the partially quenched theory and

derive formulae for chiral extrapolation of doubly heavy baryon zero-recoil semilep-

tonic decay form factors in lattice QCD simulations. We compare chiral corrections

to the zero-recoil doubly heavy baryon semileptonic decay form factor in PQχPT

with the corresponding corrections in χPT. In Sec. 3.5, a brief summary is given.

Some useful formulae are collected in Appendix A.
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3.2 Couplings of Heavy Diquark to Weak Cur-

rents from vNRQCD

NRQCD is the nonrelativistic effective theory that describes the dynamics of nonrel-

ativistic heavy quarks. In NRQCD there are four important energy scales: the heavy

quark mass, mQ, the typical momentum of the heavy quarks within the bound state,

mQv, the typical kinetic energy of the heavy quarks, mQv2 and ΛQCD. The total

momentum of the heavy quark field is taken to be the sum of the label momentum

p and the residual momentum k: ptotal = p(∼ mQv) + k(∼ mQv2). vNRQCD [16]

is an effective theory for NRQCD which has a consistent v expansion. The leading

order vNRQCD Lagrangian to O(v5) for the Q̄Q̄ sector for b̄, c̄ antiquarks is

L = −1

4
F µνFµν +

∑

f=b,c

∑
p

χf†
p

(
iD0 − (p− iD)2

2mQf

+
gs

2mQf

σ ·B
)

χf
p (3.1)

− 1

2

∑

f=b,c

∑
p,q

g2
s

(p− q)2
χf†

q T̄Aχf
pχf†

−qT̄
Aχf

−p−
∑
p,q

g2
s

(p− q)2
χb†

q T̄Aχb
pχc†

−qT̄
Aχc

−p + · · · ,

where the ellipsis represents high order terms. χf
p is a nonrelativistic antiquark field

with flavor f which annihilates an antiquark. T̄A is SU(3) color generators for 3̄

representation, B is chromomagnetic field, and D0 and D are the time and spatial

components of the gauge covariant derivative. The kinetic energy, D0, and momen-

tum, p, of the heavy quarks are O(mQv2) and O(mQv), respectively. In order to

derive an effective Lagrangian for diquarks we follow the methods of Ref. [18]. We
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use the spin and color Fierz identities

δαδδβγ = −1

2
(σiε)αβ(εσi)γδ +

1

2
εαβεT

γδ , (3.2)

T̄A
il T̄

A
jk =

2

3

∑
m

1

2
εmijεmkl +

1

3

∑

(mn)

d
(mn)
ij d

(mn)
kl , (3.3)

to project the potential onto the 3 and 6̄ channels and to decompose the antiquark

bilinears such as χf
pχf

−p into operators with spin 0 and spin 1. In Eq.(3.3) The Greek

letters denote spin indices, the σi denote the Pauli matrices and ε = iσ2. In Eq.(3.3),

the Roman letters denote the color indices and the matrices d
(mn)
ij are symmetric

matrices in color space defined by

d
(mn)
ij =





(δm
i δn

j + δn
i δm

j )/
√

2 m 6= n

δm
i δn

j m = n

. (3.4)

For bb and cc, the diquark state must be in either(3)C(3)S or (6̄)C(1)S by the Pauli

principle. However, there is no restriction on the color and spin for mixed flavor.

After a Fourier transform to obtain position space potentials, the Lagrangian can be

rewritten as

L = −1

4
F µνFµν +

∑

f=b,c

∑
p

χf†
p

(
iD0 − (p− iD)2

2mQf

+
gs

2mQf

σ ·B
)

χf
p

− 1

2

∑

f=b,c

∫
d3rV (3)(r)

(∑
q

e−iq·r εmij

2
(χf†

q )iσε(χf†
−q)j

)
·
(∑

p

eip·r εmkl

2
(χf

−p)kεσ(χf
p)l

)

−
∫

d3rV (3)(r)

(∑
q

e−iq·r εmij

2
(χb†

q )iσε(χc†
−q)j

)
·
(∑

p

eip·r εmkl

2
(χc

−p)kεσ(χb
p)l

)

−
∫

d3rV (3)(r)

(
−

∑
q

e−iq·r εmij

2
(χb†

q )iε(χ
c†
−q)j

)(∑
p

eip·r εmkl

2
(χc
−p)kε

T (χb
p)l

)

+ · · · , (3.5)
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where the ellipsis reflexes to terms in which the diquark is in the 6̄ of color, V (3)(r) =

−2
3

αs

r
and V (6̄)(r) = 1

3
αs

r
. The first line includes the gauge boson fields, the kinetic

terms for the antiquarks and the leading spin symmetry breaking interactions which

generate hyperfine splittings. The next three lines are the quartic terms with diquark

fields. In order to get the interaction for doubly heavy baryon semileptonic decay, we

need the Lagrangian for diquarks of different flavor. The diquark fields for c̄c̄ and b̄b̄

can be introduced using the Hubbard-Strantonovich transformation as in Ref. [18].

We add to the Lagrangian:

∆L =
1

2

∑

f=b,c

∫
d3rV (3)(r)

(
Tm†

r −
∑
q

e−iq·r εmij

2
(χf†

q )iσε(χf†
−q)j

)

·
(
Tm

r −
∑
p

eip·r εmkl

2
(χf

−p)kεσ(χf
p)l

)

+

∫
d3rV (3)(r)

(
T̃m†

r −
∑
q

e−iq·r εmij

2
(χb†

q )iσε(χc†
−q)j

)

·
(
T̃m

r −
∑
p

eip·r εmkl

2
(χc

−p)kεσ(χb
p)l

)

+

∫
d3rV (3)(r)

(
T ′m†

r +
∑
q

e−iq·r εmij

2
(χb†

q )iε(χ
c†
−q)j

)

×
(
T ′m

r −
∑
p

eip·r εmkl

2
(χc

−p)kε
T (χb

p)l

)
, (3.6)

where m = 1, 2, 3 is the color index. The Tm =
∑

p eip·r εmkl

2
(χf
−p)kεσ(χf

p)l is the

spin-1 f̄ f̄ field, T̃m =
∑

p eip·r εmkl

2
(χc
−p)kεσ(χb

p)l is the spin-1 b̄c̄ field, and the T ′m =

∑
p eip·r εmkl

2
(χc
−p)kε

T (χb
p)l is the spin-0 b̄c̄ field. The quartic terms of antiquark fields
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p, i, α

−p, j, β

Tm
r , T̃m

r
−ie−ip·rV (3)(r)

εmij

2 (σε)αβ

ie−ip·rV (3)(r)
εmij

2
εαβT ′m

r

p, i, α

−p, j, β

Figure 3.1: Feynman rules for the coupling of the diquarks Tm
r , T̃m

r and T ′m
r to

antiquarks. The Greek letters denote spin indices and the Roman letters refer to the

color indices.

cancel and we are left with the following action

L=

1
2

∑

f=b,c

∫
d3rV (3)(r)

(
Tm†

r Tm
r −Tm†

r

∑
p

eip·rεmkl

2
(χf
−p)kεσ(χf

p)l−Tm
r

∑
q

e−iq·r εmij

2
(χf†

q )iσε(χf†
−q)j

)

+

∫
d3rV (3)(r)

(
T̃m†

r T̃m
r −T̃m†

r

∑
p

eip·r εmkl

2
(χc
−p)kεσ(χb

p)l−T̃m
r

∑
q

e−iq·r εmij

2
(χb†

q )iσε(χc†
−q)j

)

+

∫
d3rV (3)(r)

(
T ′m†

r T ′m
r −T ′m†

r

∑
p

eip·r εmkl

2
(χc
−p)kε

T (χb
p)l+T ′m

r

∑
q

e−iq·r εmij

2
(χb†

q )iε(χ
c†
−q)j

)
.(3.7)

The Feynman rules for the couplings of the diquark fields to the pairs of antiquarks

from the interaction terms in Eq.(3.7) are shown in Fig. 3.1. Integrating out the fields

Tm
r , T̃m

r and T ′m
r will give us back the original NRQCD Lagrangian. Integrating out

the antiquark fields χb
p and χc

−p will yield an effective action for the diquark fields

Tm
r , T̃m

r and T ′m
r . The b̄c̄ fields kinetic terms are the same as those of c̄c̄ fields in
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T̃, T ′

T

J
µ
weak

b

c

c

c

Figure 3.2: One loop diagram contributing to the coupling of composite anti-diquark

fields and weak currents.

Ref. [18], with the exception that the diquark reduced mass is now

mQ

2
→ µQ =

mb + mc

mbmc

. (3.8)

The coupling of the diquarks to weak currents is obtained by evaluating graphs in

Fig. 3.2. The flavor changing weak currents are given by Jµ
QCD = c̄γµ(1 − γ5)b. By

matching onto NRQCD, the weak current is rewritten by Jµ
NR = χc†(δµ0− δµiσi)χb +

· · · where the ellipsis reflexes to higher order terms. For the lowest order diagram in

Fig. 3.2 we find the couplings of diquark to weak currents. The Lagrangian for the

weak interactions of diquarks is

L = Jµ
QQ(JW )µ

=

∫
d3r

(
−δµ0Ti†

r · T̃i
r − iδµn(Ti†

r × T̃i
r)

n − δµn(T i†
r )nT ′i

r

)
(JW )µ

= η
(
−δµ0Ti† · T̃i − iδµn(Ti† × T̃i)n − δµn(T i†)nT ′i

)
(JW )µ + · · · , (3.9)

where (JW )µ is the weak current and Jµ
QQ is the diquark current. In the last line we
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expanded the diquark fields to the lowest order and wrote the Lagrangian in terms

of local currents. The · · · denotes the excited diquark states contribution and the

factor η can be interpreted as the spatial wavefunction overlap of the ground state

initial diquark with the ground state final diquark system, which is not predicted by

symmetry, i.e. η =
∫

d3rφ∗bc(r)φcc(r). Our results differ from Ref. [62] by a different

relative sign of the coupling to the zeroth component of the weak current and that

of the spatial component of the weak current.

3.3 Doubly Heavy Baryon Semileptonic Decay

In the heavy quark limit, the lowest mass states of the spin-0 heavy meson, P , and

the spin-1 heavy meson, P ∗, are degenerate, and therefore combined into a single

field, Ha,

Ha = ~P ∗
a · ~σ + Pa , (3.10)

where a is an SU(3) flavor anti-fundamental index and the ~σ are the Pauli matrices.

Similarly, the ground state degenerate doubly heavy baryon doublet, Tiβ
1, consists

of a spin-1
2

doubly heavy baryon, Ξa,γ, and a spin-3/2 doubly heavy baryon, Ξ∗a,iβ,

Ta,iβ =
√

2

(
Ξ∗a,iβ +

1√
3
Ξa,γ σi

γβ

)
, (3.11)

1In this section, the T is the doubly heavy baryon field, although T is diquark field in the previous

section.
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where Ξ∗a,iβ and Ξa,γ are the spin-3
2

and spin-1
2

fields, respectively. The i = 1, 2, 3

are diquark spin indices and β = 1, 2 are light antiquark spin indices. The field Ξ∗a,iβ

obeys the constraint Ξ∗a,iβ σi
βγ = 0. Heavy quark-diquark symmetry relates the heavy

mesons to doubly heavy antibaryons. The effective Lagrangian for doubly heavy

baryon and heavy meson ground state doublets in the heavy hadron rest frame was

constructed in Ref. [22],

L = Tr[H†
a(iD0)baHb]− g Tr[H†

aHb ~σ · ~Aba] +
∆H

4
Tr[H†

a ΣiHa σi] , (3.12)

where Ha,µβ = Ha,αβ +Ta,iβ is a 5×2 matrix field which transforms as tensor products

of the five component field Qµ (which corresponding to the two heavy quark spin

states and the three diquark spin states) and a two-component light antiquark spinor.

Here the index µ takes on values between 1 and 5, α, β = 1 or 2, and i = 3, 4, or 5.

The first term is the kinetic term, the second term is the coupling to the axial current

and these two terms respect the SU(5) heavy quark-diquark symmetry. The third

term is the leading heavy quark symmetry breaking operator which is responsible to

the hyperfine splitting. The ~Σµν are the 5× 5 matrices

~Σµν =




~σαβ 0

0 ~Tjk


 , (3.13)

and (T i)jk = −iεijk. ∆H is the hyperfine splitting of the charmed mesons which is

related to the hyperfine splitting of the doubly charm baryon by heavy quark-diquark

symmetry. ~Aba is the spatial part of the axial vector current.
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The relevant terms of Eq. (3.12) for our calculation are

L = T̃+
βiiD0T̃iβ − gT̃+

βiT̃iβ′~σβ′β · ~A +
∆H

4
T̃+

βj(−iεijk)T̃kβ′σ
i
β′β

+ T+
βiiD0Tiβ − gT+

βiTiβ′~σβ′β · ~A +

(
mc/2

µQ

)
∆H

4
T+

βj(−iεijk)Tkβ′σ
i
β′β

+ T ′+
β iD0T

′
β − g′T ′+

β T ′
β′~σβ′β · ~A . (3.14)

The composite fields are decomposed as

(Tc̄c̄q̄)iβ =
√

2

(
Ξ∗c̄c̄q̄,iβ +

1√
3
Ξc̄c̄q̄,ασi

αβ

)
,

(T̃b̄c̄q̄)iβ =
√

2

(
Ξ∗̄bc̄q̄,iβ +

1√
3
Ξb̄c̄q̄,ασi

αβ

)
,

(T ′̄
bc̄q̄)β =

√
2 Ξ′̄bc̄q̄,β , (3.15)

where Ξ∗iβ and Ξα are the spin-3
2

and spin-1
2

fields, respectively. Here, we have sup-

pressed the flavor indices. Tiβ and T̃iβ are the ground state doublet of c̄c̄q̄ and

b̄c̄q̄, respectively, and the diquarks have spin-1. T ′
β is the spin-1

2
ground state of

b̄c̄q̄ where the diquark has spin-0. The hyperfine splittings of the doubly heavy

baryons are related to those of the charmed mesons by heavy quark-diquark symme-

try, mΞ∗cc
−mΞcc = 3

4
∆H and mΞ∗bc

−mΞbc
=

(
mc/2
µQ

)
3
4
∆H , where the µQ is the reduced

mass of diquark bc.

Eq.(3.14) describes the low energy strong and electromagnetic interactions in the

doubly heavy baryon rest frame in which the doubly heavy baryon four-velocity is

conserved (up to O(ΛQCD/mQ) corrections). For a process such as the weak decay, in

which the initial and final baryons have different four-velocities, the covariant repre-

sentation of baryon fields is needed. However, for studying the zero-recoil semileptonic
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decay, in which the doubly heavy baryon four-velocity is conserved, it is possible to

work in the baryon rest frame. Therefore we are allowed to match the weak current

coupling of the diquark onto a current operator in the effective theory for doubly

heavy baryons. The Lagrangian for semileptonic decays of doubly heavy baryon is

L = iη T+
βiεijkT̃kβJk

W − η T+
βiT̃iβJ0

W + iη T+
βiT

′
βJ i

W . (3.16)

The couplings of the doubly heavy baryon to the weak currents is obtained by de-

manding that the diquark index on the doubly heavy baryons couple to the weak

currents as in Eq.(3.9).

Expanding out Eq.(3.16) in terms of doubly heavy baryon fields, we find the

following weak current matrix elements in terms of the initial and final spinor.

〈Ξc̄c̄q̄|Jµ
W |Ξb̄c̄q̄〉 = η ūα′

(
−2i(1 + δ1) δαα′δ

µ0 − 4i

3
(1 + δ2) σj

αα′δ
µj

)
uα , (3.17)

〈Ξ∗c̄c̄q̄|Jµ
W |Ξb̄c̄q̄〉 = η ūiβ

(
2i√
3
(1 + δ3) δαβδµi

)
uα , (3.18)

〈Ξc̄c̄q̄|Jµ
W |Ξ∗̄bc̄q̄〉 = η ūα

(
2i√
3
(1 + δ4) δαβδµi

)
uiβ , (3.19)

〈Ξ∗c̄c̄q̄|Jµ
W |Ξ∗̄bc̄q̄〉 = η ūkβ

(−2i(1 + δ5) δαβδikδ
µ0 + 2i(1 + δ6) σj

αβδikδ
µj

)
uiα , (3.20)

〈Ξc̄c̄q̄|Jµ
W |Ξ′̄bc̄q̄〉 = η ūα′

(
− 2√

3
(1 + δ′1) σj

αα′δ
µj

)
u′α , (3.21)

〈Ξ∗c̄c̄q̄|Jµ
W |Ξ′̄bc̄q̄〉 = η ūiβ

(−2(1 + δ′2) δαβδµi
)
u′α , (3.22)

where (uα, u′α, uiβ) and (ūα, ūiβ, ū′α) are nonrelativistic spinors for initial and final

states, respectively. Up to an overall normalization, these form factors are predicted
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by heavy quark-diquark symmetry. The tree level zero-recoil doubly heavy baryon

semileptonic decay matrix elements agree with Ref. [63] up to an overall minus sign.2

At tree level, the δi are zero and the δi vanish at any order in the heavy quark limit.

They will receive corrections from heavy quark symmetry breaking effects. Obtaining

those symmetry breaking corrections that come from chiral loop correction in Fig. 3.3

is the goal of this chapter. δ1 to δ6 involve the doubly heavy baryons which are

related to the known heavy D mesons by heavy quark-diquark symmetry. Therefore

the coupling constant g which appears in the chiral corrections is known. Chiral

corrections as δ′1 and δ′2 depend on the coupling constant g′ which is not known. We

will only focuse on δ1 to δ6 for this thesis.

The pion-baryon vertex in Fig. 3.3 is generated from the pion-baryon interaction

terms in Eq.(3.14) and the weak current vertex is from the weak current terms in

Eq.(3.16). There are also loops for the wavefunction renormalization which are not

shown here.

The chiral loop corrections to semileptonic decay form factors are given in Ap-

pendix A. Table 3.1 gives numerical results for δi for both q = u, d and q = s.

The PQχPT corrections will be discussed in the next section. Here we work in

the isospin limit, so mu = md. We take the the reduced mass of diquark bc to be

µQ = mbmc

mb+mc
≈ mc. We choose g = 0.6 [64] and we set fπ = fk = fη = 130 MeV. The

2They give results for Ξbc while we give the results for Ξb̄c̄. To obtain their result to the lowest order,

we should use the decomposition of the ground state doublet as Tiβ =
√

2
(
Ξ∗iβ − 1√

3
σi

βγΞa,γ

)

and then we agree up to an overall sign.
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J
µ
weak

Ξb̄c̄q̄ Ξc̄c̄q̄

Figure 3.3: One-loop contributions to the doubly heavy baryon semileptonic decay.

δ1(u, d) δ2(u, d) δ3(u, d) δ4(u, d) δ5(u, d) δ6(u, d)

µ = 500 MeV 0.25 0.25 0.07 0.15 -0.05 -0.05

µ = 1500 MeV 0.32 0.32 0.10 0.19 -0.01 -0.02

δ1(s) δ2(s) δ3(s) δ4(s) δ5(s) δ6(s)

µ = 500 MeV -0.01 -0.01 -0.14 -0.14 -0.16 -0.16

µ = 1500 MeV -0.0002 -0.001 -0.13 -0.12 -0.13 -0.13

Table 3.1: Chiral corrections to doubly heavy baryon containing a u, d or s semilep-

tonic decay form factors for µ = 500 MeV and µ = 1500 MeV.
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experimental value for ∆H is 140 MeV. In the numerical calculations we use mπ = 140

MeV, mk = 500 MeV, and mη =

√
−m2

π+4m2
k

3
. Then only one parameter can be varied,

the renormalization scale, µ. Table 3.1 gives results for µ = 500 MeV to µ = 1500

MeV. In the chiral perturbation theory calculations the logarithmic µ-dependence

from loops is cancelled by µ-dependent counterterms we have not included here. We

vary µ from 500 MeV to 1500 MeV to obtain an estimate of uncertainty due to the

unknown counterterm contributions. The µ dependence is pretty small. We find that,

for the doubly heavy baryon containing anti-up or anti-down quark, δ1 and δ2 in the

Ξ
1/2
bcq → Ξ

1/2
ccq transition get very big chiral corrections of order 25%− 32% and δ5, δ6

in the Ξ
3/2
bcq → Ξ

3/2
ccq transition get small correction of order 5%. The form factors for

doubly heavy baryon containing antistrange quark obtain negative corrections and δ1

and δ2 are least sensitive to chiral corrections, with corrections of order 1%. It would

be interesting to see if the observed deviations from heavy quark-diquark symmetry

in either experiments or lattice simulations agree with the predictions form chiral

perturbation theory. Disagreements with χPT predictions indicate the 1/mQ heavy

quark-diquark corrections are dominated by short distance effects.

3.4 PQχPT results

The EFT techniques with heavy quark-diquark symmetry for doubly heavy baryons

can also be applied to doubly heavy systems simulated on the lattice. It is useful

to extend the χPT results to include lattice artifacts such as quenching and partial
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quenching. Here we will focus on partially quenched chiral corrections to the doubly

heavy baryon zero-recoil semileptonic decay form factors, which provide the formulae

needed for chiral extrapolations in lattice calculations. The major modification to

the calculation in the previous section is that there is a modified propagator for the

Goldstone mesons.

In a lattice calculation, the sea quark masses are often different from valence

quark masses. In partially quenched QCD the sea quark masses are different from

the valence quark masses, while in quenched QCD, the sea quark contributions are

absent. To reproduce the lattice artifacts in field theory, fictitious ghost and quarks

are added to the Lagrangian. Ghost quarks have same masses as valence quarks

but are bosons, so the loops come with opposite sign and they cancel the valence

contributions. Then we are left with the effects of the sea quarks. This is equivalent

to the partial quenching artifact in lattice QCD simulations which use different masses

for sea and valence quarks. In the limit of msea = mvalence, QCD is recovered. PQχPT

is useful for lattice extrapolations to physical quark masses. The PQχPT and QχPT

pseudoscalar meson sector is described by the Lagrangian [65, 66, 67, 68, 69, 70, 71,

72],

L =
f 2

8
str

(
∂µΣ†∂µΣ

)
+

λ

4
str

(
mqΣ

† + m†
qΣ

)
+ αΦ∂µΦ0∂µΦ0 − µ2

0Φ
2
0, (3.23)

where the field Σ is defined by

Σ = exp

(
2iΦ

f

)
= ξ2, (3.24)
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and the meson fields appear in the U(6|3) matrix,

Φ =




M χ†

χ M̃


 . (3.25)

The operation str() in Eq. (3.23) is a supertrace over flavor indices, i.e., str(A) =

∑
a εaAaa, where εa = 1 for a = 1 − 6 and εa = −1 for a = 7 − 9. The M and

M̃ matrices contain bosonic mesons, while the χ and χ† matrices contain fermionic

mesons (one ghost quark with one sea/valence quark). The quark mass matrix is

defined as [73]

mq = diag(mu,md,ms,mj,ml,mr,mu,md,ms). (3.26)

We work in the isospin limit for both the valence and sea sectors, so mu = md and

ml = mj. We take the strange sea quark to be same as the valence quark, mr = ms.

From the lowest order PQχPT Lagrangian, the meson with quark content qq̄′ has the

mass of m2
qq̄′ = λ

f2 (mq + mq′). The PQχPT propagators of the off-diagonal mesons

have the usual Klein-Gordon form. The flavor neutral propagator can be conveniently

written as [73]

GPQ
ab = εaδabPa + Pab (Pa, Pb, PX) , (3.27)

where

Pa =
i

q2 −m2
aa + iε

, Pb =
i

q2 −m2
bb + iε

, PX =
i

q2 −m2
X + iε

,

Pab (A,B,C) = −1

3

[(
m2

aa −m2
jj

)
(m2

aa −m2
rr)

(m2
aa −m2

bb) (m2
aa −m2

X)
A +

(
m2

bb −m2
jj

)
(m2

bb −m2
rr)

(m2
bb −m2

aa) (m2
bb −m2

X)
B

+

(
m2

X −m2
jj

)
(m2

X −m2
rr)

(m2
X −m2

aa) (m2
X −m2

bb)
C

]
. (3.28)
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where m2
X = 1

3
(m2

jj + 2m2
rr).

In terms of the 5 × 2 field, the partially quenched Lagrangian for doubly heavy

baryons and heavy mesons is [73],

LPQ =
(
H†(Hi

←
D0)

)
− g

(H†HA · σ)

+
∆H

4

(H†Σ · Hσ
)

+ σ
(H†HM)

+ σ′
(H†H)

str(M), (3.29)

where M is the mass operator defined by M = 1
2

(
ξmqξ + ξ†mqξ

†) Therefore the

baryon mass splittings in PQχPT are given by

∆ccqq′ = mΞc̄c̄q̄′ −mΞc̄c̄q̄ = mΞ∗
c̄c̄q̄′
−mΞ∗̄cc̄q̄

= −σ(mq′ −mq) ,

∆bcqq′ = mΞbcq′ −mΞbcq
= mΞ∗̄

bc̄q̄′
−mΞ∗̄

bc̄q̄
= −σ(mq′ −mq) ,

∆∗
ccqq′ = mΞ∗

c̄c̄q̄′
−mΞc̄c̄q̄ =

3

4
∆H − σ(mq′ −mq) ,

∆∗
bcqq′ = mΞ∗̄

bc̄q̄′
−mΞb̄c̄q̄

=
1

2

(
3

4
∆H

)
− σ(mq′ −mq) , (3.30)

where we take the the reduced mass of diquark bc to be µQ = mbmc

mb+mc
≈ mc, σ is

the coupling constant in the mass operator in the Lagrangian in Eq.(3.29) . We

choose g = 0.6 [64] and f = 130 MeV. The experiment value for ∆H is 140 MeV.

From the value of the SU(3) splitting of the ground state D mesons, mDs −mD =

−σ(ms − mu) ≈ 100 MeV, m2
π = λ

f2 (mu + md) and m2
k = λ

f2 (ms + md), we obtain

−σ = 100
m2

k−m2
π

λ
f2 . For the mass of η, we use the SU(3) prediction mη =

√
−m2

π+4m2
k

3
.

Then only three parameters can be varied, the valence pion mass mπ val = muu, the

sea pion mass mπ sea = mjj, and the renormalization scale µ. As in the previous

section, we vary µ from 500 MeV to 1500 MeV to obtain an estimate of uncertainty
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Figure 3.4: ∆δn (q = u) as a function of mπsea for different values of mπval. The

width of the bands is the results of varying µ between 500 MeV and 1500 MeV.
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Figure 3.5: ∆δn (q = s) as a function of mπsea but independent of different values

of mπval. The width of the bands is the results of varying µ between 500 MeV and

1500 MeV.
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due to higher order corrections. Calculating the PQχPT loop diagrams, such as

Fig. 3.3, we find the corrections for the six form factors which we list in Appendix A.

In the Figs. 3.4 and 3.5 we plot the relevant corrections to the form factors ∆δi =

δiPQ − δiχ in terms of mπsea for different values of mπval for q = u and q = s. For

each value of mπval = 140 MeV, 280 MeV and 420 MeV, we let the mπval range from

mπval up to the mass of eta-strange, mηs = mss ≈ 700 MeV. The bands correspond

to varying µ from 500 MeV to 1500 MeV, which is chosen to be the same for both

χPT and PQχPT. From the plots, it is easy to see that the partially quenched chiral

corrections reproduce the chiral corrections when the sea quark mass goes to the

physical valence quark mass. As demonstrated by Figs. 3.4 and 3.5, the partially

quenched chiral non-analytic corrections relevant to the chiral corrections are very

insensitive to the choice of µ. The corrections to δ1, δ2, δ3 and δ4 are affected most

by sea quark masses and range from 10% − 40%. Those corrections increase with

increasing mπ sea values. δ5 and δ6 are very insensitive to partial quenching effects,

with corrections of order 1%− 8% small relevant corrections from partial quenching,

and are insensitive to sea quark masses, while δ1− δ4 are not. It would be interesting

to test the the chiral predictions in a lattice simulation.

3.5 Summary

In this chapter we have used NRQCD to derive the couplings of heavy diquarks

to weak currents with heavy quark-diquark symmetry. We constructed the chiral
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Lagrangian for doubly heavy baryons coupled to weak currents and calculated the tree

level predictions for doubly heavy baryon semileptonic weak decay form factors. We

calculated the chiral corrections in both unquenched and partially quenched theory.

The partially quenched loop corrections to semileptonic decay form factors are given

in Appendix A. The formulae will be useful for chiral extrapolation of doubly heavy

baryon zero-recoil semileptonic decay form factors in lattice QCD simulations. It will

be interesting to test the calculations of this chapter with either experimental data

or lattice simulations.
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Chapter 4

Pion Physics at Finite Volume

In addition to my work on doubly heavy baryons, I also coauthored two papers on the

subject of finite volume corrections to pion electromagnetic current matrix elements

and the pion Compton scattering tensor. These papers were written in collaboration

with Dr. Brian Tiburzi and Dr. Fu-Jiun Jiang and the original papers are reprinted

in Appendices B and C. Here I will give a concise summary of our work.

Our motivation comes from the discrepancy between experimental measurements

of pion electromagnetic polarizabilities and the theoretical predictions. The physical

meaning of the polarizability is the relative tendency of a charge distribution, like the

electron cloud of an atom or molecule, to be distorted from its normal shape by an

external electric field. This results in a shift in the ground state energy proportional to

the field squared, ∆E0 = −1
2
αEE2. The coefficient, αE, is the electric polarizability.

Similarly, the magnetic polarizability is defined in ∆E0 = −1
2
βMB2.

Pion polarizabilities have been measured indirectly in several experiments from

radiative pion-nucleon scattering, pion photonproduction in photon nucleus scat-

tering, and pion production seen in electron-positron Collisions. The most recent

experimental results were given by MAMI at Mainz [74], which measured the the

polarizabilities in the process γN → γπN . They measured the difference of electric
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and magnetic polarizabilities of the charged pion,

(αE − βM)π+ = (11.6± 1.5st ± 3.0sys ± 0.5model)× 10−4fm3. (4.1)

The theory used to calculate the polarizabilities is chiral perturbation theory.

Pion electromagnetic polarizabilities are extracted from the energy expansion of the

Compton scattering amplitude. At low energy the Compton scattering amplitude for

a real photon to scatter off a pion is given by:

Tγπ = 2mπ

[(
−e2Q2

π

mπ

+ 4π αE ω2

)
ε′∗ · ε + 4π βM ω2(ε′∗ × k̂′) · (ε× k̂)

]

+
e2Q2

π

2m2
π

ω2(ε′∗ · k̂)(ε · k̂′)(1− cos θ) + . . . , (4.2)

where the ellipsis denotes higher order in the photon energy. kµ = (ω, ωk̂) is the

initial photon momenta in the center-of-momentum frame, while k′µ = (ω, ωk̂′) is

the final photon momenta. The center-of-momentum scattering angle θ is given

by cos θ = k̂′ · k̂. Qπ is the charge of the pion. In the expansion in ω/mπ, the

coefficients of two of the second order terms are proportional to the electric and

magnetic polarizabilities. Therefore from the Compton scattering amplitude, one

can extract pion polarizabilities from the ω expansion. To one-loop order, the sum of

the pion electromagnetic polarizabilities is zero for both neutral and charged pions.

The difference to one-loop order is [75],

απ0

E − βπ0

M = − 2αQ2
π

3(4πf)2mπ

(4.3)

απ±
E − βπ±

M =
16α(α9 + α10)

f 2mπ

, (4.4)
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where α is the fine structure constant, e2/4π. α9 and α10 are low energy constants.

The numerical value for charged pion is απ+

E − βπ+

M = 5.4 × 10−4fm3. Even the two-

loop chiral perturbation theory prediction, απ+

E − βπ+

M = (5.7 ± 1.0) × 10−4fm3 [76],

does not agree with the experimental data very well.

Another theoretical approach to calculating the pion polarizabilities is lattice

QCD. Calculation of the four-point function for pion Compton scattering,

T µν(k′, k) =

∫

x,y

eik·y−ik′·x〈π|T{Jµ(x)Jν(y)}|π〉 , (4.5)

presently cannot be simulated on the lattice. But progress on extracting βπ
M has

been made with background field methods. In background field methods a uniform

external magnetic field is introduced on the lattice and the quadratic dependence of

the hadrons mass shift on the external B field is measured to extract βπ
M . For example,

Ref. [77] provided the pion magnetic polarizability for different pion masses. The goal

of our work was to calculate the finite volume dependence of pion polarizabilities and

other electromagnetic properties using finite volume chiral perturbation theory for

the lattice.

In our calculations, we keep the temporal extent of the simulation box, T , infinite

and the spatial extent, L, finite, to determine finite-size effects for the lattice QCD

observables. The meson fields are in a box with periodic boundary conditions, which

leads to quantized momenta, p = 2πn
L

. In the regime mπL > 1, the power counting is

|p| < mπ ¿ Λχ, which is the same as in the infinite volume chiral perturbation theory.

Therefore the same Feynman diagrams contribute to the pion Compton tensor and
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we only need to replace integrals over four momentum in χPT, with integrals over

energy and sums over all spatial momentum modes permitted by periodicity:

∫
d4q →

∑
q

∫ ∞

−∞
dq0 . (4.6)

This leads to modifications of the infinite volume results. The volume dependence of

pion Compton scattering tensor is derived in Ref. [78] (appendix C).

In Refs. [79], we work at zero photon energy and to the order O(p2) in pion

momentum, and calculated the finite volume corrections to matrix element of elec-

tromagnetic current. In the infinite volume case, the charge current matrix element

is normalized to be proportional to the pion charge and pion momentum as

〈π±(p)|Jµ|π±(p)〉 = ±2epµ. (4.7)

This is an exact result to all orders in chiral perturbation theory. This follows from

the infinite volume Ward identity,

−iΓµ(P, P ) = Qe
∂

∂Pµ

G(P )−1. (4.8)

Here Γµ(P, P ) is the charged pion photon vertex function at zero recoil and G(P )

is the pion propagator. At finite volume, the spatial part of the current obtains

additional corrections as,

〈π±|J|π±〉 = ±2ep(1 + ∆J(L)). (4.9)

as was shown in Ref. [79]( Appendix B). At first sight this might seem surprising in
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Figure 4.1: The Ward-Takahashi Identity is still valid at Finite Volume.

light of Eq.(4.8). However, we showed that the correct form of the Ward-Takahashi

identity at finite volume is

−ikµΓµ(P + k, P ) = Qe
[
G(P + k)−1 −G(P )−1

]
. (4.10)

The infinite volume identity in Eq.(4.8) follows from Eq.(4.10) by taking kµ → 0.

Such a limit is not possible in finite volume because of the discretization of momen-

tum. We checked that our results are consistent with the Ward-Takahashi identity

in Eq.( 4.10).

In order to address the finite volume effect in the electromagnetic polarizability

predictions obtained from the lattice background field method, We calculated the

finite volume corrections to the pion Compton scattering tensor and showed the

results for both neutral and charged pion in Ref. [78](Appendix C). If the two-

current two pion correlation functions are performable on lattice, our results can be

used directly to isolate the finite volume physics. However, this simulation presently

cannot be performed on lattice. All terms in our results are form factors in ωL.

Because of the momentum quantization, these form factors cannot be expanded in

ωL for the smallest modes. Therefore the connections from the Compton scattering

tensor to finite volume corrections to polarizabilities from background field theory
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methods are lacking.
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Appendix A

One-loop χPT and PQχPT corrections to
zero-recoil semileptonic decay.

Here we give the detailed one-loop χPT and PQχPT corrections to zero-recoil semilep-

tonic decay. In the calculation we use M̄S scheme and have not included the coun-

terterms. In the chiral corrections to the six form factors f is pion decay constant,

mi is the mass of the Goldstone boson in the one-loop diagram and Ci
ab is a factor

which comes from SU(3) Clebsch-Gordan coefficients in the couplings. For loops with

charged pions we have Cπ±
12 = Cπ±

21 = 1, for loops with neutral pions Cπ0

11 = Cπ0

22 = 1
2
,

for loops with kaons CK
3i = CK

i3 = 1 (i =1 or 2), and for loops with η mesons

Cη
11 = Cη

22 = 1
6

and Cη
33 = 2

3
.

δ1χ(q) =
∑

i,q′
Ci

qq′
g2

(4πf)2

(
−1

9
I(∆bcqq′ , ∆ccqq′ ,mi, µ)− 8

9
I(∆∗

bcqq′ , ∆
∗
ccqq′ ,mi, µ)

)
,

δ2χ(q) =
∑

i,q′
Ci

qq′
g2

(4πf)2
(

1

27
I(∆bcqq′ , ∆ccqq′ ,mi, µ)− 4

27
I(∆bcqq′ , ∆

∗
ccqq′ ,mi, µ)

− 4

27
I(∆∗

bcqq′ , ∆ccqq′ , mi, µ)− 20

27
I(∆∗

bcqq′ , ∆
∗
ccqq′ ,mi, µ)) ,

δ3χ(q) =
∑

i,q′
Ci

qq′
g2

(4πf)2
(− 8

27
I(∆bcqq′ ,−∆∗

ccqq′ ,mi, µ) +
5

27
I(∆bcqq′ , ∆ccqq′ , mi, µ)

− 4

27
I(∆∗

bcqq′ ,−∆∗
ccqq′ ,mi, µ)− 20

27
I(∆∗

bcqq′ , ∆ccqq′ ,mi, µ)) ,

δ4χ(q) =
∑

i,q′
Ci

qq′
g2

(4πf)2
(− 8

27
I(−∆∗

bcqq′ , ∆ccqq′ ,mi, µ) +
5

27
I(−∆∗

bcqq′ , ∆
∗
ccqq′ ,mi, µ)

− 4

27
I(∆bcqq′ , ∆ccqq′ ,mi, µ)− 20

27
I(∆bcqq′ , ∆

∗
ccqq′ ,mi, µ)) ,
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δ5χ(q) =
∑

i,q′
Ci

qq′
g2

(4πf)2

(
−4

9
I(−∆∗

bcqq′ ,−∆∗
ccqq′ ,mi, µ)− 5

9
I(∆bcqq′ , ∆ccqq′ ,mi, µ)

)
,

δ6χ(q) =
∑

i,q′
Ci

qq′
g2

(4πf)2
(− 8

27
I(−∆∗

bcqq′ ,−∆∗
ccqq′ ,mi, µ)− 4

27
I(−∆∗

bcqq′ , ∆ccqq′ ,mi, µ)

− 4

27
I(∆bcqq′ ,−∆∗

ccqq′ ,mi, µ)− 11

27
I(∆bcqq′ , ∆ccqq′ ,mi, µ)) . (A.1)

The formulae for χPT corrections to doubly heavy baryon semileptonic decay

form factors are given in terms of the following functions,

I(0, 0,m, µ) = 0 ,

I(∆, ∆,m, µ) = −6∆2 ln

(
µ2

m2

)
+ 4

(
m2 − 3∆2

)
+ 8m∆F

(
∆

m

)
+ 4

(
∆2 −m2

)
F ′

(
∆

m

)
,

I(∆1, ∆2,m, µ) = −2
(
∆2

1 + ∆1∆2 + ∆2
2

)
ln

(
µ2

m2

)
+ 4

(
m2 −∆2

1 −∆1∆2 −∆2
2

)

+
4

∆2 −∆1

(
(∆2

2 −m2)F

(
∆2

m

)
m− (∆2

1 −m2)F

(
∆1

m

)
m

)
, (A.2)

where

F (x) =





−√1− x2
(

π
2
− tan−1

(
x√

1−x2

))
, |x| < 1

√
x2 − 1 ln

(
x +

√
x2 − 1

)
, |x| ≥ 1

, (A.3)

and F ′(x) is the first derivative of x.

Next we give the same corrections for the partially quenched case.

δ1PQ(q) =
∑

q′=j,l,r

g2

(4πf)2
(−1

9
I(∆bcqq′ , ∆ccqq′ , mqq′ , µ)− 8

9
I(∆∗

bcqq′ , ∆
∗
ccqq′ ,mqq′ , µ))

+
g2

(4πf)2
(−1

9
K(∆bcqq, ∆ccqq,mqq,mqq, µ)− 8

9
K(∆∗

bcqq, ∆
∗
ccqq,mqq, mqq, µ)) ,
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δ2PQ(q) =
∑

q′=j,l,r

g2

(4πf)2
(

1

27
I(∆bcqq′ , ∆ccqq′ ,mqq′ , µ)− 4

27
I(∆bcqq′ , ∆

∗
ccqq′ ,mqq′ , µ)

− 4

27
I(∆∗

bcqq′ , ∆ccqq′ , mqq′ , µ)− 20

27
I(∆∗

bcqq′ , ∆
∗
ccqq′ ,mqq′ , µ))

+
g2

(4πf)2
(

1

27
K(∆bcqq, ∆ccqq,mqq,mqq, µ)− 4

27
K(∆bcqq, ∆

∗
ccqq,mqq,mqq, µ)

− 4

27
K(∆∗

bcqq, ∆ccqq,mqq,mqq, µ)− 20

27
K(∆∗

bcqq, ∆
∗
ccqq,mqq, mqq, µ)) ,

δ3PQ(q) =
∑

q′=j,l,r

g2

(4πf)2
(− 8

27
I(∆bcqq′ ,−∆∗

ccqq′ ,mqq′ , µ) +
5

27
I(∆bcqq′ , ∆ccqq′ ,mqq′ , µ)

− 4

27
I(∆∗

bcqq′ ,−∆∗
ccqq′ ,mqq′ , µ)− 20

27
I(∆∗

bcqq′ , ∆ccqq′ ,mqq′ , µ))

+
g2

(4πf)2
(− 8

27
K(∆bcqq,−∆∗

ccqq,mqq,mqq, µ) +
5

27
K(∆bcqq, ∆ccqq,mqq,mqq, µ)

− 4

27
K(∆∗

bcqq,−∆∗
ccqq,mqq,mqq, µ)− 20

27
K(∆∗

bcqq, ∆ccqq,mqq,mqq, µ)) ,

δ4PQ(q) =
∑

q′=j,l,r

g2

(4πf)2
(− 8

27
I(−∆∗

bcqq′ , ∆ccqq′ ,mqq′ , µ) +
5

27
I(−∆∗

bcqq′ , ∆
∗
ccqq′ ,mqq′ , µ)

− 4

27
I(∆bcqq′ , ∆ccqq′ ,mqq′ , µ)− 20

27
I(∆bcqq′ , ∆

∗
ccqq′ ,mqq′ , µ))

+
g2

(4πf)2
(− 8

27
K(−∆∗

bcqq, ∆ccqq,mqq,mqq, µ) +
5

27
K(−∆∗

bcqq, ∆
∗
ccqq,mqq,mqq, µ)

− 4

27
K(∆bcqq, ∆ccqq,mqq,mqq, µ)− 20

27
K(∆bcqq, ∆

∗
ccqq,mqq,mqq, µ)) ,

δ5PQ(q) =
∑

q′=j,l,r

g2

(4πf)2

(
−4

9
I(−∆∗

bcqq′ ,−∆∗
ccqq′ ,mqq′ , µ)− 5

9
I(∆bcqq′ , ∆ccqq′ ,mqq′ , µ)

)

+
g2

(4πf)2

(
−4

9
K(−∆∗

bcqq,−∆∗
ccqq,mqq,mqq, µ)− 5

9
k(∆bcqq, ∆ccqq,mqq,mqq, µ)

)
,

δ6PQ(q) =
∑

q′=j,l,r

g2

(4πf)2
(− 8

27
I(−∆∗

bcqq′ ,−∆∗
ccqq′ ,mqq′ , µ)− 4

27
I(−∆∗

bcqq′ , ∆ccqq′ ,mqq′ , µ)

− 4

27
I(∆bcqq′ ,−∆∗

ccqq′ ,mqq′ , µ)− 11

27
I(∆bcqq′ , ∆ccqq′ ,mqq′ , µ))

+
g2

(4πf)2
(− 8

27
K(−∆∗

bcqq,−∆∗
ccqq,mqq,mqq, µ)− 4

27
K(−∆∗

bcqq, ∆ccqq,mqq,mqq, µ)

− 4

27
K(∆bcqq,−∆∗

ccqq,mqq,mqq, µ)− 11

27
K(∆bcqq, ∆ccqq,mqq,mqq, µ)) , (A.4)
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where the function K(∆1, ∆2,m, m, µ) which arises from the hairpins is given by

K(∆1, ∆2,ma, mb, µ) = Pab (I(∆1, ∆2,ma, µ), I(∆1, ∆2,mb, µ), I(∆1, ∆2, mX , µ)) .
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Appendix B

Current Renormalization in Finite
Volume

B.1 Introduction

Since Wilson’s pioneering work [21], there has been considerable activity to solve field

theories non-perturbatively by numerical simulation on Euclidean spacetime lattices.

Today lattice gauge theory is a mature field, and current state-of-the-art lattice QCD

calculations are beginning to confront the challenges provided by the hadron spec-

trum. For an overview of lattice methods, see [80]. One aspect to these numerical

simulations is the finite-size scaling of observables. The finite spacetime volume em-

ployed on the lattice is a source of systematic error in the numerical determination

of observables. Thus the study of field theories in finite volume, while a theoretical

curiosity, is also of practical utility.

Recent work [81] suggests that electromagnetically gauge invariant amplitudes at

finite volume may differ from their infinite volume form. Specifically investigated was

the finite-size scaling of nucleon electromagnetic and spin polarizabilities that arise

in nucleon Compton scattering (see, e.g., [82, 83]). A goal in [81] was to address

systematic errors in the extraction of polarizabilities from classical background field

methods employed in lattice simulations [84, 85, 86, 87, 88, 89, 90, 91, 92, 77, 93]. An
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analysis of the finite volume behavior of nucleon polarizabilities was presented, as was

an oddity relating to the zero-frequency scattering amplitude. In infinite volume, the

zero-frequency Compton amplitude is fixed by gauge invariance to be proportional

to the total charge squared. Finite volume modifications, however, were found for

nucleon Compton scattering at zero frequencies [81]. These results suggest a finite

volume renormalization of the basic interaction between the photon and the hadron’s

charge. In this work, we show that gauge invariance in finite volume allows for such

modifications to zero-frequency photon couplings. In essence, conserved currents

are not protected from additive renormalization as they are in infinite volume. For

definiteness, we focus on the chiral dynamics of pions coupled to photons [94], but

could just as well choose any interacting field theory coupled to gauge fields.1

Our presentation is organized as follows. First in Sec. B.2, we analyze the electro-

magnetic interactions of pions in finite volume. We demonstrate the infrared running

of electromagnetic current matrix elements by explicit one-loop calculations in chiral

perturbation theory (χPT). In Sec. B.3, consequences of gauge invariance on a torus

are detailed. Gauge invariant zero-mode interactions allow for infrared renormaliza-

tion of electromagnetic couplings. We write down gauge invariant, zero-frequency

effective field theories for pions that reproduce our one-loop finite volume χPT re-

1An instructive alternate example is the QED electron. Straightforward evaluation shows that

the electron vertex function at zero frequency is modified by volume effects. This modification,

however, is infrared divergent and we have chosen to avoid such difficulties by using a theory that

is infrared finite.
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sults. Understanding such volume effects is necessary in practice for the extraction of

infinite volume physics from lattice QCD simulations. We show how our results are

consistent with Ward identities and low-energy theorems in Sec. B.4. A conclusion

in Sec. B.5 summarizes our findings, while a glossary of finite volume functions is

provided in AppendixB.6.

B.2 Pions in Finite Volume

The chiral Lagrangian is written in terms of a coset field Σ = exp(2iΦ/f) which

parametrizes the Goldstone manifold arising from spontaneous chiral symmetry break-

ing: SU(2)L⊗SU(2)R → SU(2)V . The pions are contained in the matrix Φ, explicitly

as

Φ =




1√
2
π0 π+

π− − 1√
2
π0


 . (B.1)

In our conventions, the dimensionful parameter f = 132 MeV. The chiral Lagrangian

provides an effective theory of low-energy QCD. At leading-order in an expansion in

momentum, p2, and quark mass, mq, there are two terms in this Lagrangian

L =
f 2

8
tr

(
DµΣDµΣ†) +

f 2

4
λ tr

(
Σmq + Σ†mq

)
, (B.2)

where mq is the quark mass matrix, mq = diag(mu,md). We shall work exclu-

sively in the isospin limit, mu = md ≡ m. The kinetic term of the chiral La-

grangian includes a U(1) gauge covariant derivative that couples pions to photons,

DµΣ = ∂µΣ + ieAµ [Q, Σ], where the quark electric charge matrix, Q, is given by
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Q = diag(2/3,−1/3).

Expanding the Lagrangian in Eq. (C.4) to tree level, one sees that the pions are

correctly normalized and their mass, mπ, is given by m2
π = 2λm. The couplings of

pions to zero-momentum photons at tree level can be read off from Eq. (C.4), from

which we find their canonical charges. We now investigate whether loop corrections

in a finite spatial volume modify these couplings.

B.2.1 Charged pion current

To consider the one-loop corrections to the electromagnetic current of charged pions,

we accordingly expand the χPT Lagrangian in Eq. (C.4) to second order to generate

vertices for one-loop graphs. Furthermore local terms at higher-order can then con-

tribute at tree-level, but these are absent for zero-frequency photons. Thus we need

to determine only the diagrams depicted in Fig. B.1.

In the limit of zero frequency and infinite volume, the current matrix element

between charged pion states is required by gauge and Lorentz invariance to be

〈π±(P )|Jµ|π±(P )〉 = ±2ePµ, (B.3)

where the overall sign reflects the charge of the pion. It is a straightforward exercise

to verify the above form at one-loop order in infinite volume. At an intermediate

step, we reach the result

〈π±(P )|Jµ|π±(P )〉 = ±2e

{
Pµ − 2i

f 2

∫
d4q

(2π)4

(q2 −m2
π)Pµ − 2(q · P )qµ

[q2 −m2
π]2

}
, (B.4)
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Figure B.1: One-loop graphs required to evaluate the pion electromagnetic current.

On the left appears the wavefunction correction; while, on the right, diagrams con-

tributing to the pion form factor. Vertices shown are generated from the leading-order

χPT Lagrangian, Eq. (C.4).
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from which we see the wavefunction correction to the tree-level vertex is exactly

canceled by the loop contributions to the form factor at zero frequency [95]. In this

way, the matter fields do not contribute to the running of the coupling and Eq. (B.3)

is preserved.

In finite volume, we repeat the calculation of the pion current to one-loop order.

We consider each of the three spatial directions of finite length L, and the quark fields

subjected to boundary conditions that maintain discrete translational invariance. For

definiteness, we assume periodic boundary conditions.2 As the pions are point-like

objects in the effective theory, they satisfy the same boundary conditions as the

point-like interpolating field Φ(x) ∼ q(x)γ5q(x). Pions are hence also periodic with

quantized spatial momentum modes of the form

q =
2π

L
n, (B.5)

where n is a triplet of integers. To keep matters simple, we keep the temporal

extent infinite as is commonly done to determine finite-size effects for lattice QCD

observables.3 To evaluate the pion current, we use the finite volume theory defined

by Eq. (C.4). The loop diagrams shown in Fig. B.1 are again generated. The only

2Similar results for anti-periodic boundary conditions, for example, can be derived easily using a

modified momentum quantization condition for the quark fields. As pions remain periodic, the

expressions we derive also hold for anti-periodic quarks.

3We implicitly choose mπL & 1 so that pion zero modes do not become strongly coupled [96, 97].

With this assumption, the ordinary χPT power counting in infinite volume can be carried over

to finite volume [98].
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difference compared to infinite volume is that the spatial momenta of real and virtual

states are quantized. The finite and infinite volume theories share exactly the same

ultraviolet divergences, so we can calculate the finite volume effect by matching the

two theories in the infrared. For an observable X calculated in both finite, X(L),

and infinite, X(∞), volumes, we have

X(L) = X(∞) + ∆X(L), (B.6)

where the matching term, ∆X(L), is free from ultraviolet divergences and gives the

finite volume effect.

Returning to Eq. (B.4), we can carry out the finite volume matching, Eq. (B.6),

for the pion current. We find

〈π±(P )|Jµ|π±(P )〉 = ±2ePµ

{
1− δµj

3f 2

[
2 I1/2(m

2
π, L) + m2

πI3/2(m
2
π, L)

]}
, (B.7)

where Iβ(m2, L) is defined in Appendixap:current. Results are consistent with charge

conjugation invariance and the current is only modified in the spatially finite direc-

tions. Specifically the virtual pion cloud in finite volume screens the current of the

infinite volume pion. In Fig. B.2, we plot the finite volume modification to the pion

current. Here the relative difference in the current matrix element at finite volume

versus infinite volume, ∆Jπ+ , given by

∆Jπ+ =
〈π+(P )|ê · J |π+(P )〉L − 〈π+(P )|ê · J |π+(P )〉∞

〈π+(P )|ê · J |π+(P )〉∞ , (B.8)

is plotted as a function of the length L of the spatial dimension.
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Figure B.2: Finite volume screening of the pion current. The relative difference in

pion current ∆Jπ+ is plotted as a function of the box size L, for a few values of the

pion mass.

We have used a unit vector ê to project onto the spatial part of the current.

Accordingly the pion cannot be at rest, P 6= 0. Subscripts on matrix elements

denote the box size, with infinity corresponding to infinite volume. The finite volume

effect is exponentially suppressed in asymptotic (mπL À 1) volumes. Consequently

taking the infrared cutoff, 1/L, to zero, the additive current renormalization vanishes

and infinite volume limit is maintained.

B.2.2 Neutral pion current matrix elements

Charge conjugation invariance demands the identical vanishing of single current ma-

trix elements between neutral pion states. Indeed whether the calculation of the
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neutral pion current is carried out in infinite or finite volume, we find zero for the

matrix element. The SU(2) flavor structure of the form factor diagrams shown in

Fig. B.1 ensures this vanishing and consistency with charge conjugation.

Neutral pion matrix elements of an even number of electromagnetic currents,

however, are not restricted to vanish by charge conjugation invariance. Indeed, it

is well known that the neutral pion has electric and magnetic polarizabilities that

can be predicted at one-loop order in χPT solely in terms of f and mπ [75]. Such

polarizabilities arise at second order in the low-frequency expansion of the matrix

element of two currents (the so-called Compton scattering tensor). The Compton

tensor also has a term at zeroth order in the photon frequencies

Tµν(ω = ω′ = 0) = 2(Qe)2gµν , (B.9)

which is sensitive only to the longest ranged electromagnetic interaction. This term

in the Compton tensor, when combined with relevant phase space factors, yields the

classical Thomson scattering cross section, σ = 8π(Qe)4/3m2
π. For the neutral pion,

the total charge is zero and the longest ranged interaction vanishes.

Using the χPT Lagrangian defined in Eq. (C.4), we can determine the Compton

amplitude for pions. We restrict our attention to the zero-frequency amplitude. Due

to charge neutrality, there are no tree-level couplings to the neutral pion. At one-

loop order, evaluation of the diagrams shown in Fig. B.3 is required to determine the

Compton amplitude. At an intermediate step in the calculation, contributions from
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Figure B.3: One-loop contributions to neutral pion Compton scattering in χPT.

Vertices shown are generated from the leading-order Lagrangian.

all six diagrams can be simplified to

Tµν(ω = ω′ = 0) =
4ie2m2

π

f 2

∫
d4q

(2π)4

(q2 −m2
π)gµν − 4qµqν

[q2 −m2
π]3

, (B.10)

which vanishes. Hence in infinite volume, a delicate cancellation between all diagrams

maintains the vanishing of the Compton amplitude at zero frequency [99, ?]. On the

other hand, the same is not true in finite volume. Carrying out the one-loop matching

between finite and infinite volume theories, Eq. (B.6), for the Compton amplitude in

Eq. (B.10), we find

Tµν(ω = ω′ = 0) = e2(δµ0δν0 − gµν)
m4

π

f 2
I5/2(m

2
π, L). (B.11)

Thus when one considers the purely spatial components of the Compton tensor, the

neutral pion has an effective charge-squared, cf. Eq. (B.9). In transverse gauge,
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Figure B.4: Zero frequency Compton amplitude for the neutral pion. The finite

volume amplitude ∆T is plotted as a function of the box size L, for a few values of

the pion mass. In infinite volume, this amplitude is identically zero.
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the above expression gives the amplitude to scatter zero-frequency photons off the

neutral pion. There is a non-vanishing contribution to this scattering amplitude when

the pion is confined to a periodic box with size on the order of the pion Compton

wavelength. When the box size becomes large compared to this scale, the amplitude is

exponentially suppressed and infinite volume results are recovered. We demonstrate

this in Fig. B.4, where we plot the finite volume amplitude ∆T defined by

∆T = − 1

3e2
gµνTµν(ω = ω′ = 0). (B.12)

B.3 Gauge invariance on a torus

To explain our above results, we investigate electromagnetism in finite volume. The

analogous finite temperature case is well known and described, e.g., in [100]. Because

our applications are with classical background fields, or equivalently current operator

insertion methods in lattice field theory, there are no quantum corrections to the

photon field itself.4

B.3.1 Spatial Torus

Let us consider a classical electromagnetic field defined on a finite spatial torus with

infinite time extent. On the gauge field Aµ(x, t), we impose periodic boundary con-

4Dynamical photons in QED cause additional complications as the vector current is renormalized

in infinite volume [101]. With classical background fields, penguin graphs are absent and such

renormalization does not occur.
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ditions and expand Aµ(x, t) in Fourier modes

Aµ(x, t) =
∑

n

Ãµ(n, t) e2πin·x/L, (B.13)

where n = (nx, ny, nz) ∈ Z3. It is convenient to separate out the zero-mode contri-

bution, so we write

Aµ(x, t) = Aµ(t) + Aµ(x, t), (B.14)

where the zero mode Aµ(t) ≡ Ãµ(0, t).

Under a gauge transformation, the photon field transforms in the familiar way,

Aµ(x, t) −→ Aµ(x, t)+∂µα(x, t), and observables are invariant. Requiring the gauge

transformed field to be single valued mandates that ∂µα(x, t) is periodic. Thus we

can decompose the gauge function α(x, t) into the sum of two terms, α(x, t) =

α0(x, t) + α(x, t), where

α0(x, t) = α0(t) + α · x, (B.15)

and

α(x, t) =
∑

m6=0

α̃(m, t) e2πim·x/L. (B.16)

Here we have dropped all overall irrelevant constants, and the vector α is a constant

vector. Using this decomposition for the gauge function, the gauge field transforms

as 



Aµ(t) −→ Aµ(t) + ∂µα0(x, t)

Aµ(x, t) −→ Aµ(x, t) + ∂µα(x, t)

. (B.17)
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In particular, the photon zero-mode transforms as

Aµ(t) −→ Aµ(t) +





∂0α0(t), µ = 0

αi, µ = i

. (B.18)

The time-component of the zero mode is absent from the field strength tensor. The

remaining three components of the zero mode field are translated by a constant under

the gauge transformation. In the gauge invariant free theory, each spatial component

of the zero mode is thus a massless one-dimensional scalar.

B.3.2 Coupling to Matter

For a generic matter field ϕ(x, t) of unit charge, the effects of a gauge transformation

show up as a local phase factor

ϕ(x, t) −→ ϕ′(x, t) = e−iα(x,t)ϕ(x, t). (B.19)

Now we assume that the matter field ϕ(x, t) is subject to periodic boundary condi-

tions. We again split the gauge function into zero mode and non-zero mode pieces,

α(x, t) = α0(x, t) + α(x, t). With the form given in Eq. (B.16), we see that the non-

zero modes will maintain the periodicity of the matter field under the transformation

in Eq. (B.19). The same is not in general true of the zero modes given the form of

α0(x, t) in Eq. (B.15). If the gauge transformed matter field is to remain periodic

under translations by L, then we must have the quantization condition

α =
2π

L
n, (B.20)
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on the spatial zero mode part of the gauge function. This quantization condition

reduces the continuous translational invariance of the spatial zero modes to discrete

translations. As gauge transformations are now less general compared to infinite

volume, more gauge invariant operators can be built.

Imagine that we start with some microscopic theory with electromagnetic interac-

tions. Take the scalar field ϕ(x, t) as some composite low-energy degree of freedom of

this theory. Further we assume that the energies of interest are ultra-low in the sense

that any interactions of ϕ(x, t) with itself or other fields have been integrated out.

In the absence of electromagnetism, e.g., we have a simple single particle effective

theory5

L = |∂µϕ|2 −m(L)2|ϕ|2, (B.21)

where m(L) is a running mass that depends on the infrared cutoff 1/L (and paramet-

rically depends on the other couplings, masses, etc. that have been integrated out of

the theory). Running the cutoff to zero completes the infrared sector of the theory

and produces infinite volume physics.

Now we include electromagnetism in this single particle effective theory by adding

all possible gauge invariant operators. The minimal coupling prescription, ∂µ →

Dµ = ∂µ + iAµ, renders the kinetic term of Eq. (B.21) gauge invariant. Because we

imagine ϕ is a composite particle, there can be non-minimal couplings that respect

5We have written only SO(4) symmetric terms in Eq. (B.21). Strictly speaking volume corrections

will reduce the dispersion relation down to only cubic symmetry. For pions in finite volume the

first SO(4) breaking effects occur at two-loop order in the chiral expansion.
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gauge invariance, e.g., the E2 and B2 terms for the particle’s polarizabilities. Further

terms in this ultra low-energy theory are allowed, however, because SO(4) is not

respected, and the gauge invariance of the zero mode has a special nature. As we will

show, these further terms are responsible for current renormalization. To simplify

the discussion, we will restrict ourselves to the effective theory operators for zero

frequency photons.

Using gauge symmetry, we can write down the general form of the ultra low-energy

effective theory for a single ϕ field coupled to zero frequency photons. We choose

to construct this theory using Wilson lines. By cycling once over the i-th compact

dimension, we can form gauge invariant Wilson lines Wi of the form,

Wi = exp

(
i

∮
dxi Ai

)
. (B.22)

Notice that there is no sum over repeated indices in this definition. Due to the

periodicity of the gauge field in the i-th direction, the loop integral

∫ L

0

dxi Ai(x, t) = LAi(t) + L
∑

nj 6=i, ni=0

Ãi(n, t)e2πin·x/L, (B.23)

produces just the ni = 0 modes of the gauge field. Indeed the gauge transformation

of the zero and non-zero modes, Eq. (B.17), demonstrates that the Wilson line Wi

is gauge invariant. For our purpose, we wish to isolate completely the gauge field

zero-mode and accordingly form modified Wilson lines Wi given by

Wi = P0WiP†0, (B.24)

where P0 is an operator that projects onto the zero-mode of the gauge field. A
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practical way to implement the action of P0 is to change the loop integration

∮
dxi −→ 1

L2

∮ 3∏
j=1

dxj ≡ 1

L2

∮
dx (B.25)

so that

Wi = exp

(
i

∮
dx Ai/L

2

)
. (B.26)

Furthermore it is useful to define Hermitian combinations of modified Wilson lines

that transform simply under parity and charge conjugation,

W
(+)
i =

1

2

(
Wi + W †

i

)
(B.27)

W
(−)
i =

1

2i

(
Wi −W †

i

)
. (B.28)

Notice that because W
(+)
i =

√
1− [W

(−)
i ]2, any operator involving W

(+)
i can be

traded in for a tower of operators involving W
(−)
i . Hence we can build our theory

solely in terms of W
(−)
i operators.

In addition to gauge, C, P , and T invariance, the theory on a torus has S4 cubic

invariance. Writing down operators consistent with these symmetries, we arrive at

the following ultra low-energy effective Lagrangian for a single ϕ field

L = |Dµϕ|2 −m(L)2|ϕ|2 +Q1(L)W (−) · J +Q2(L)
(
W (−) ·W (−)

) |ϕ|2

+ Q3(L)
(
W (−) ·Dϕ∗

)(
W (−) ·Dϕ

)
+Q4(L)

∑
i

W
(−)
i W

(−)
i Diϕ

∗Diϕ

+ Q5(L)
(
W (−) ·W (−)

)(
W (−) ·J)

+Q6(L)
∑

i

W
(−)
i W

(−)
i W

(−)
i Ji + . . . .(B.29)

Above we have employed the current operator J , given by J = i [(Dϕ∗)ϕ− ϕ∗(Dϕ)].

A number of things about Eq. (B.29) must be clarified. The . . . denotes that we have
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not finished writing the general Lagrangian allowed by symmetries. The most general

Lagrangian contains a tower of terms with n insertions of W
(−)
i operators. Writing

down all such terms consistent with S4 for a given n is arbitrarily complicated. For-

tunately the series expansion of W
(−)
i in terms of the gauge field starts out at a single

zero-frequency photon. Thus operators with n insertions of W
(−)
i contribute to pro-

cesses with at least n zero-frequency photons. In Eq. (B.29), we have written down all

operators with at most three insertions of W
(−)
i . Thus the Lagrangian generates all

possible couplings to at most three zero-frequency photons. We have also restricted

the dynamics to ultra-low energies, so have only kept terms with at most two deriva-

tives, D, acting on ϕ. Finally while a term of the form,
(
W (−) ·W (−)

) |Dµϕ|2, is

allowed by symmetries, it has been removed by a field redefinition.

The coefficients Qj(L) in Eq. (B.29) must be determined from matching, and

thus in general require the calculation of loop graphs with an arbitrary number of

photons in the microscopic theory. It is possible that certain additional symmetries

of the underlying theory constrain some coefficients to vanish. Because this is the

zero-frequency sector of an effective theory for a stable particle, no multi-particle

production thresholds can be attained in loop graphs that determine the matching

coefficients. Thus in asymptotically large volumes, the new coupling constants Qj(L)

will be exponentially small [102, 103, 104]. Consequently SO(4) will be restored in

large volumes.
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B.3.3 Zero frequency effective theories

Using the general analysis from above, it is straightforward to construct single par-

ticle effective theories that reproduce the zero-frequency results derived in Sec. B.2.

There is one difference, however. The underlying theory, QCD, has quark fields with

fractional charges. Maintaining periodicity of both quark fields under zero-mode

gauge transformations requires a slightly modified quantization condition, namely

α =
6π

eL
n. (B.30)

This modification reflects that both quark charges are quantized in units of e/3. The

Wilson lines Wi are now given by

Wi = exp

(
ie

3

∮
dxi Ai

)
, (B.31)

and similarly for the Wi. Thus for charged and neutral pions,6 we require the effective

Lagrangian

L =
1

2
tr(DµΦDµΦ)− 1

2
mπ(L)2tr(Φ2) + iQ(L) W (−) · tr [Q(DΦ)Φ−QΦ(DΦ)]

+Q(L)2 W (−) ·W (−) tr

[
(QΦ)2 +

4

5
Q2Φ2

]
− Q̃(L)2 W (−) ·W (−) tr

[
(QΦ)2 −Q2Φ2

]
,

(B.32)

6Because electromagnetism explicitly breaks isospin symmetry, we should formulate the low-energy

theories for charged and neutral pions separately. Although we utilize traces over SU(2) pion fields

Φ(x, t), there are no interactions between pions in Eq. (B.32).
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where mπ(L) includes the infrared running of the pion mass (not calculated here),

and the new coupling constants Q(L), Q(L), and Q̃(L) are given by

Q(L) = − 1

f 2L

[
2I1/2(m

2
π, L) + m2

πI3/2(m
2
π, L)

]
(B.33)

Q(L)2 =
9

2f 2L2
m4

πI5/2(m
2
π, L) (B.34)

Q̃(L) = 0. (B.35)

For the charged pions, we have also calculated all two-photon graphs to one-loop

order using Eq. (C.4) (this includes the one-pion irreducible contributions shown

in Fig. B.3, and additionally the set of one-pion reducible diagrams which are not

depicted) and do not find the need for an extra two-photon coupling to charged pions

in Eq. (B.32). For this reason, the coupling constant Q̃(L) vanishes. The term with

coefficient Q(L) only couples zero-frequency photons to neutral pions.

The single particle effective theory described by Eq. (B.32) correctly reproduces

the infrared running of one- and two-photon processes for both charged and neutral

pions at zero frequency. This theory is gauge invariant in finite volume because of the

allowance for new operators which are Wilson lines that cycle the compact dimen-

sions. These operators, moreover, lead to violation of SO(4) invariance. Consider a

charged pion at rest, P = 0. The current in Eq. (B.3) is

〈π±(0)|Jµ|π±(0)〉 = 2mπ (±e) gµ0, (B.36)

where 2mπ is a relativistic normalization factor. Boosting to a frame where P 6= 0,
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generates a current

〈π±(P )|J |π±(P )〉 = 2
√

P 2 + m2
π (±e)[1−Q(L)] V , (B.37)

where V = P /
√

P 2 + m2
π is the relativistic velocity. Because of SO(4) breaking,

the current in this frame is not simply the charge times the velocity, J 6= (±e)V .

Instead, the current is screened by finite volume effects, J = (±e)[1−Q(L)]V .

B.4 Field Theory Identities

Above we have derived finite volume modifications to the current of the charged

pions and the zero-frequency scattering tensor for the neutral pions. While we have

accounted for these findings using gauge invariant single particle effective theories,

here we show that our results are completely consistent with field theoretic identities

valid in finite volume.

B.4.1 Electromagnetic Vertex

The zero-frequency part of the electromagnetic vertex is constrained by gauge invari-

ance via the Ward identity [105]. Let Γµ(P, P ) denote the zero-frequency electromag-

netic vertex function of the charged pions. The Ward identity requires

−iΓµ(P, P ) = Qe
∂

∂Pµ

G(P )−1, (B.38)

where G(P ) is the pion propagator. In finite volume, we found that the wave function

correction did not exactly cancel the forward part of the vertex function. This lead
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to the new coupling Q(L) in Eq. (B.33). Thus at finite volume, the differential form

of the Ward identity shown in Eq. (B.38) is violated. Quite simply, however, the

steps used to derive Eq. (B.38) are not valid in a fixed finite volume.

On the other hand, starting from the Ward-Takahashi identity [106, 107] we have

−ikµΓµ(P + k, P ) = Qe
[
G(P + k)−1 −G(P )−1

]
. (B.39)

This identity is valid in finite volume. We can demonstrate this explicitly using

the charged pion vertex function, Γµ(P + k, P ) = 〈π±(P + k)|Jµ|π±(P )〉. To one-

loop order, we evaluate the diagrams in Fig. B.1 and contract with the momentum

transfer, kµ. We find

−ikµ〈π±(P + k)|Jµ|π±(P )〉

=∓ie

{
(2P +k)·k − 2i

f 2

∑∫

q

[
(2P + k) · k

q2 −m2
π

− (2P + k) · q (2q + k) · k
[q2 −m2

π][(q + k)2 −m2
π]

]}
,(B.40)

where we have abbreviated

∑∫

q

≡ 1

L3

∑

q=2πn/L

∫
dq0

2π
, (B.41)

and implicitly regulate ultraviolet divergences using dimensional regularization. We

then write

(2q + k) · k = (q + k)2 −m2
π − [q2 −m2

π],

in order to reduce factors in the numerator of the last term. To arrive at the Ward-

Takahashi identity from Eq. (B.40), we must show that the terms in the
∑∫

vanish.

This follows immediately by using discrete translational invariance to re-index the
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sum. If k 6= 2πm/L, then the summation over spatial momentum modes cannot be

re-indexed in this manner. Consequently the validity of the Ward-Takahashi identity,

Eq. (B.39), in finite volume hinges on quantized photon momentum.

Having established that the Ward-Takahashi identity holds in finite volume, there

must be a flaw in the subsequent derivation of the Ward identity. To arrive at

the differential form of the identity, Eq. (B.38), from Eq. (B.39) a limiting process

kµ → 0 is required. At fixed volume, the spatial momentum quantization condition

invalidates this procedure. Contrary to Eq. (B.38), there is no condition imposed

on Γµ(P, P ) in a compact space. In finite volume with infinite time extent, only the

spatial part of the differential form of the Ward identity does not hold. One can take

the limiting procedure with respect to the zeroth component of momentum transfer,

k0 → 0. Consequently the time component of Eq. (B.38) remains valid. Our results

are indeed consistent with this fact, cf. Eq. (B.7).7

B.4.2 Compton Tensor

The classical Thomson cross section arises in the zero-frequency limit of electromag-

netic waves scattering off charged particles. According to low-energy theorems [110,

111], any sensible gauge invariant field theory of charged particles will reproduce the

Thomson cross section. In terms of the off-shell Compton scattering amplitude for a

7χPT studies of the volume effects for form factors of pseudoscalar mesons [108, 109] have utilized

only the time-component of the current, and considered the extent of the time direction as infinite.

In this framework, no modification to meson charges was found, consistent with Eq. (B.38).
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scalar particle, the zero-frequency part is required to be of the form

Tµν(ω = ω′ = 0) = 2(Qe)2

(
gµν − 4PµPν

P 2 −m2

)
, (B.42)

where Pµ is the particle’s four momentum. Upon squaring and multiplying with phase

space factors, the first term produces the Thomson cross section, while the second

term is the Born contribution (which survives when we take the zero frequency limit

before going on-shell). For the neutral pion, Eq. (B.42) mandates that the Compton

tensor vanishes, contrary to our results in finite volume, Eq. (B.11).

The Thomson limit of the Compton tensor can be derived rigorously in field theory

from generalized Ward identities, specifically for a scalar particle we have

iTµν(ω = ω′ = 0) = (Qe)2G(P )−1

[
∂2

∂P µ∂P ν
G(P )

]
G(P )−1, (B.43)

which reproduces both the Thomson and Born terms. This generalized Ward iden-

tity for the two-photon amplitude is not valid in finite volume; because, as with its

counterpart in Eq. (B.38), its derivation relies on a limiting procedure.

Returning to the step in the derivation of Eq. (B.43) before the limiting procedure,

we have a version of the Ward-Takahashi identity that is valid in finite volume. Let

the initial particle (photon) momentum be denoted by P (k), and the final particle

(photon) momentum by P ′ (k′). Then we have

k′ν kµ G(P ′)iTµν(P
′, k′; k, P ) G(P ) = (Qe)2

[
G(P + k)−G(P ′)−G(P ) + G(P − k′)

]
.

(B.44)

Using the analytic expression for the one-loop diagrams in Fig. B.3 for the neutral

pion, one can verify explicitly that Eq. (B.44) holds in finite volume provided that the
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photon momenta, k and k′, are quantized. The validity of Ward-Takahashi identities

requires discrete translational invariance.

Now by taking the limit k′ → k, followed by k → 0 in Eq. (B.44), we accordingly

recover the differential form of the identity in Eq. (B.43). Quite simply then, the

zero frequency part of the Compton tensor is not constrained in finite volume as

the limit k → 0 cannot be taken. Gauge symmetry constrains only the frequency

dependent combination appearing in Eq. (B.44). Because we have kept the time

direction infinite, a limiting procedure does exist for the time-time component of the

scattering tensor. Consequently Eq. (B.43) must apply to T00(ω = ω′ = 0), as is

indeed the case for our one-loop results for the neutral pion, Eq. (B.11).8

B.5 Conclusion

Above we have considered infrared effects on currents in finite volume field theo-

ries. Using the chiral Lagrangian as an example, we showed that matter fields can

additively renormalize electric current in finite volume. Such effects do not violate

8By taking the limit k0 → 0 in the singly contracted identity

kµG(P ′)iTµνG(P ) = Qe [G(P ′)iΓν(P ′, P + k)G(P + k)−G(P ′ − k)iΓν(P ′ − k, P )G(P )] ,

(B.45)

we additionally see that T0ν(ω = ω′ = 0) = 0 for the neutral pion in finite volume with infinite

time extent. Similarly the other singly contracted identity yields Tµ0(ω = ω′ = 0) = 0 upon taking

the limit k′0 to zero. Both of these conditions are satisfied by our one-loop results, Eq. (B.11).
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gauge invariance; on the contrary, new couplings are allowed because of periodicity

constraints on zero-mode gauge field transformations. Consequently gauge invariant

single particle effective theories can be formulated that reproduce the infrared behav-

ior of the interacting theory. These theories are written in terms of Wilson lines that

cycle over the compact dimensions. As SO(4) is explicitly broken in these theories,

boosting a charged particle from its rest frame to a frame moving with velocity V

does not result in a current J = QeV . There are no contradictions with Ward-

Takahashi identities, or low-energy theorems. Differential forms of Ward identities

are inapplicable in finite volume.

Conserved currents are not protected from infrared renormalization in finite spaces

with discrete translational invariance. As non-perturbative field theories, such as

QCD, are numerically simulated in a finite Euclidean space, it is important to un-

derstand the infrared running of current couplings. As a practical application of our

work, the single particle effective theory derived here can be extended to describe

volume effects for properties of hadrons determined from lattice QCD.
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B.6 Appendix: Finite Volume Functions

For processes without momentum insertion, all finite volume matching terms, ∆X(L),

in Eq. (B.6) can be cast in terms of the basic building block

Iβ(m2, L) =
1

L3

∑
q

1

[q2 + m2]β
−

∫
dq

(2π)3

1

[q2 + m2]β
(B.46)

=
(m2)3/2−β

(4π)3/2Γ(β)

∫ ∞

0

dττβ−5/2e−τ
[
ϑ3(0, e

−m2L2/4τ )3 − 1
]
, (B.47)

where ϑ3(z, q) is a Jacobi theta function. To see that all other required finite volume

functions can be written in terms of Iβ(m2, L), we first define

I i1...in
β (m2, L) =

1

L3

∑
q

qi1 · · · qin

[q2 + m2]β
−

∫
dq

(2π)3

qi1 · · · qin

[q2 + m2]β
. (B.48)

As a consequence of cubic invariance in the sums, we have I i1...in
β (m2, L) = 0, for n

odd. For even values, we find

I i1...i2n
β (m2, L) =

1

2n + 1
δ{i1i2 · · · δi2n−1i2n}

n∑
j=0




n

j


 (−m2)jIβ+j−n(m2, L).(B.49)

The bracketed indices denote complete symmetrization in the usual way, e.g., {AB} =

1
2!
(AB + BA).
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Appendix C

Pion Polarizabilities and Volume Effectes
in Lattice QCD

C.1 Introduction

Electromagnetic1 polarizabilities encode fundamental properties of bound states.

The electric polarizability of the ground state hydrogen atom, for example, αH
E =

αfsN/meE
2
0 , represents the ease at which the atomic electron cloud deforms in an

applied electric field. Here αfs = e2/4π is the fine structure constant, me is the elec-

tron mass, E0 is the ground state energy, and N is a pure number, which turns out

to be 9/8. Atomic polarizability data are well described by theoretical calculations

using atomic wave-functions of the weakly bound electrons. Hadronic polarizabili-

ties, on the other hand, involve non-perturbative physics. The electrically charged

quarks inside hadrons respond to applied electromagnetic fields but against the strong

chromo-electromagnetic forces that confine them into bound states. If the pion were

a weakly bound system of quarks with mass mq, we might expect its electric polari-

azability to be of the form, απ
E ∼ αfsN/mqm

2
π. The actual behavior is considerably

different, απ
E = αfsN/mπΛ2

χ, where Λχ is the chiral symmetry breaking scale. It thus

appears that the pion cloud of the pion is what deforms in the applied field, and that

1The results in this chapter were first published in Ref. [78].

103



the relevant energy scale is Λχ, which is an order of magnitude greater than the pion

mass. Compared to the weakly bound scenario, the electric polarizability is a few

orders of magnitude smaller, which indicates stiffness of quarks inside hadrons.

Chiral peturbation theory (χPT) [94] provides a low-energy effective theory of

QCD from which the pion polarizabilities can be calculated in terms of a few low-

energy constants [75]. At leading order in the chiral power counting, calculated

values for the pure number N are Nπ0
= −1/3 for the neutral pion, and Nπ± ≈ 1/6

for the charged pions. Comparing these polarizability predictions to experimental

data is unlike the situation with atomic polarizabilities. Without stable targets, ex-

perimental determination is considerably challenging at best. Pion polarizabilities,

however, have been probed indirectly in several experiments. Three reactions are

used: radiative pion-nucleon scattering (πN → πNγ), pion photoproduction in pho-

ton nucleus scattering (γA → γAπ), and pion production seen in electron-positron

collisions (γ∗γ → ππ). Neutral pion polarizabilities have been accessed only by the

last reaction by the Crystal Ball Collaboration [112]. The most recent experimental

effort has been by MAMI at Mainz [74] in measuring the difference of electric and

magnetic polarizabilities of the charged pion through radiative pion-nucleon scatter-

ing, and by Compass at CERN [113] to measure charged pion polarizabilities using

photoproduction off lead. In the latter experiment, final data are being taken, and

soon will be analyzed. After the 12 GeV upgrade, Jefferson Lab has plans to measure

pion polarizabilities in the future.

104



Experiments to determine pion polarizabilities have one feature in common: dis-

agreement with predictions from chiral perturbation theory. Considerable effort has

been expended to determine polarizabilities to two-loop order in χPT [114, 115, 116,

76], but discrepancy with experiment remains. Because these experiments are indi-

rect, the challenge is removing the hadronic background to isolate the signal. This

is a largely model-dependent process with uncontrolled systematic error. Recent dis-

persion relation calculations, however, appear consistent with experimental values for

the polarizabilities [117, 118]. Thus it remains unclear whether disagreement between

theory and experiment has its roots in the experimental analysis, or in the behavior

of the chiral expansion.

As a first principles method, lattice QCD [80] can be employed to determine pion

polarizabilities. Currently and foreseeably this is itself a considerable challenge, but

progress has been made with background field methods [84, 85, 86, 87, 90, 91, 92,

77, 81, 119]. Such calculations suffer a number of systematic errors, such as: quench-

ing or partial quenching, quenching of sea quark charges, and volume effects. While

predictions of physical polarizabilities are not currently possible from lattice QCD

alone, forthcoming lattice QCD data on polarizabilities can be used as a diagnostic

for χPT. The predictions of χPT can be tested against lattice QCD data. To this

end, we perform a one-loop analysis of the quenching and partial quenching effects,

as well as the volume dependence of pion Compton scattering. As polarizabilities are

the coefficients at second order in an expansion in photon momentum ω, one would

105



naively expect that finite volume corrections to polarizabilities can be determined

from momentum expanding the finite volume Compton tensor. We find this is not

the case. There are many terms in the finite volume Compton tensor not antici-

pated by infinite volume gauge invariance. All terms, moreover, are form factors in

ωL, where L is the spatial size of the lattice. Because of momentum quantization,

these form factors cannot be expanded in ωL. Thus the infinite volume connection

between the frequency expansion and the polarizabilities is lost. As polarizabilities

are typically calculated in lattice QCD using background field methods, this means

we cannot use the finite volume Compton tensor to deduce finite volume corrections

to polarizabilities extracted from background field correlation functions. The same

problem exists for electromagnetic moments. Their volume effects cannot be de-

duced from series expanding finite volume electromagnetic form factors about zero

momentum transfer.

Our work has the following organization. First in Section C.2.1, we detail our

conventions for Compton scattering and the electromagnetic polarizabilities of the

pion. In Section C.2.2, we review the low-energy effective theories of QCD, and par-

tially quenched QCD. Quenched QCD is discussed in Appendix C.5. These theories

are then utilized in Section C.2.3 to compute the pion electromagnetic polarizabilities

in infinite volume. Next in Section C.3, we consider the modifications to polarizabil-

ities in finite volume. These modifications are complicated by both SO(4) breaking

and photon zero-mode interactions. We determine the finite volume modifications to
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pion Compton scattering. Here we argue, however, that these modifications cannot

be straightforwardly utilized to ascertain finite volume effects for background field

calculations of polarizabilities in lattice QCD. Section C.4 summarizes our work, and

Appendix C.6 collects the finite volume functions employed in the main text.

C.2 Pion Compton Scattering

C.2.1 Compton Scattering Amplitude

For Compton scattering in infinite volume, the amplitude for a real photon to scatter

off a pion can be parametrized as

Tγπ = 2mπ

[(
−e2Q2

π

mπ

+ 4π αE ω2

)
ε′∗ · ε + 4π βM ω2(ε′∗ × k̂′) · (ε× k̂)

]

+
e2Q2

π

2m2
π

ω2(ε′∗ · k̂)(ε · k̂′)(1− cos θ) + . . . , (C.1)

where in the center-of-momentum frame the photon momenta are kµ = (ω, ωk̂) for

the initial state, and k′µ = (ω, ωk̂′) for the final state. Terms denoted by . . . are

higher order in the photon energy. The frame-dependent scattering angle θ is given

by cos θ = k̂′ · k̂. In the above expression, Qπ is the charge of the pion in units of

e > 0. In writing the physical amplitude, we have made use of Coulomb gauge in

which the initial and final polarization vectors, εµ and ε′∗ν , satisfy ε0 = ε′∗0 = 0. The

Compton amplitude appearing above, moreover, includes the one-particle reducible

and irreducible pieces, as we have retained the Born terms.

The frequency independent term proportional to Q2
π reproduces the Thomson
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cross-section for low-energy scattering of charged particles when the amplitude squared

is combined with appropriate phase-space factors. This term is exactly fixed by the

total charge of the system in accordance with the Gell-Mann–Golberger–Low low

energy theorems [110, 111]. The induced E1-E1 interaction strength αE is the elec-

tric polarizability, while the induced M1-M1 interaction strength βM is the magnetic

polarizability. In order to identify these as polarizabilities one must pull out a factor

of twice the target mass from the Compton amplitude, as we have in Eq. (C.1). The

electric and magnetic polarizabilities are the first structure dependent terms in the

low-energy expansion of the Compton scattering amplitude. These polarizabilities

can be determined from first principles using lattice QCD techniques. In order to

make the connection between lattice data and real world QCD, extrapolations in

quark mass and lattice volume are required. To perform these requisite extrapola-

tions, we turn to the low-energy effective theory of QCD, χPT.

C.2.2 PQχPT for Pion Compton Scattering

In current lattice calculations, valence and sea quarks are often treated differently.

In the rather extreme approximation known as quenched QCD, the sea quarks are

completely absent. Less extreme is partially quenched QCD, where sea quarks are

retained but have different masses than their valence counterparts. While both ap-

proximations are certainly contrary to nature, the latter retains QCD as a limit.

Observables computed in partially quenched QCD can be connected to their real
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world values by utilizing partially quenched χPT (PQχPT) to derive formulae for

the required extrapolation in sea quark mass. Because χPT is contained as a lim-

iting case of PQχPT, we focus our discussion on PQχPT. Peculiarities of quenched

χPT (QχPT) will be noted where relevant and the general conventions appear in Ap-

pendix C.5. For further details on QχPT and PQχPT, see [65, 66, 67, 69, 70, 71, 72].

To determine pion observables, we imagine that the strange quark mass is fixed at

the physical value so that no extrapolations are needed in the valence strange or sea

strange quark masses. To this end, we consider a partially quenched theory of valence

u and d quarks, paired with degenerate ghost quarks ũ and d̃, and two additional sea

quarks j and l. The quark masses are given in a matrix

mQ = diag (mu, md,mj,ml,mu,md) , (C.2)

where the last two entries are ghost quark masses that are degenerate with their

valence counterparts. For simplicity below, we work in the isospin limit of the valence

and sea sectors, so that mu = md and mj = ml. PQχPT describes the low-energy

dynamics of partially quenched QCD and is written in terms of the mesons Φ that

appear in the coset field Σ as2

Σ = exp

(
2iΦ

f

)
. (C.3)

These mesons are the pseudo-Goldstone modes appearing from spontaneous chiral

symmetry breaking: SU(4|2)L ⊗ SU(4|2)R → SU(4|2)V . The dynamics of these

2In our conventions, the pion decay constant f ≈ 132 MeV.
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modes is described at leading-order by the PQχPT Lagrangian

L =
f 2

8
str

(
DµΣ†DµΣ

)
+ λ

f 2

4
str

(
m†

QΣ + Σ†mQ

)
−m2

0Φ
2
0. (C.4)

Here Φ0 = str(Φ)/
√

2 is the flavor singlet field which has been included as a device

to obtain the flavor neutral propagators in PQχPT. Expanding the Lagrangian to

tree-level, one finds that mesons composed of a quark Qi and antiquark Qj have

masses given by

m2
QiQj

= λ [(mQ)ii + (mQ)jj] . (C.5)

The flavor singlet field additionally acquires a mass m2
0. In PQχPT (as well as in

χPT), the strong U(1)A anomaly generates a mass for the flavor singlet field and hence

m0 can be taken on the order of the chiral symmetry breaking scale, m0 ∼ Λχ ≈ 4πf .

The flavor singlet field can thus be integrated out. Flavor neutral propagators in

PQχPT, however, cannot be diagonalized into simple single pole forms [72]. This

fact notwithstanding, the results of our calculations will not require the explicit form

of these flavor neutral propagators.

In writing the above theory of mesons, we have added the effects of electromag-

netism in the leading-order Lagrangian. The U(1) gauge field, Aµ, appears in the

action of the covariant derivative, Dµ, namely

DµΣ = ∂µΣ + ieAµ [Q, Σ] , (C.6)

where Q is the quark electric charge matrix. To completely specify how electromag-

netism is coupled, we must extend the quark charges to the partially quenched theory.
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The choice

Q = diag (qu, qd, qj, ql, qu, qd) , (C.7)

with qj + ql 6= 0, is particularly useful because it retains sensitivity to all electromag-

netic couplings in the theory as well as maintains the cancellation of disconnected

operator insertions between the valence and ghost sectors [120, 121]. Other choices

are possible but can be computationally cumbersome in actual lattice simulations.

C.2.3 Pion Polarizabilities in Infinite Volume

To determine the pion polarizabilities, we calculate the Compton scattering ampli-

tude for the process γπ → γπ using PQχPT. Contributions to the amplitude are of

three types: tree-level, wavefunction renormalization corrections, and one-loop con-

tributions. The first contributions arise from tree-level graphs generated from local

electromagnetic vertices in the effective theory. The relevant diagrams have been

depicted in Figure C.1, and are only non-vanishing for the charged pion. The first di-

agram represents the local coupling of two photons to the pion. This diagram arises

from both the charge-squared operator contained in the leading-order Lagrangian,

as well as from terms in the next-to-leading order Lagrangian. Specifically in the

notation of [122], the local two-photon, two-pion interactions are contained in the

next-to-leading order terms3

3Although we use the SU(3) notation for these terms, final results depend on the scale-independent

combination α9 + α10, which has the same value in SU(2) as it does in SU(3).
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���
Figure C.1: Tree-level contributions to the Compton scattering amplitude. The

dashed lines represent mesons, while the wiggly lines represent photons. Vertices are

generated from the leading and next-to-leading order Lagrangian.

L = i e α9 Fµν str
(QDµΣDνΣ† +QDµΣ†DνΣ

)
+ e2α10 F 2str

(QΣQΣ†) , (C.8)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field-strength tensor. In PQχPT,

the low-energy constants α9 and α10 have the same numerical values as in χPT, which

can be demonstrated by matching. The remaining two diagrams in Figure C.1 are

Born terms that do not contribute to the one-pion irreducible Compton amplitude.

The next contributions are those that arise from the pion wavefunction renormal-

ization. The leading self-energy diagrams are depicted in Figure C.2. The leading-

order diagrams involving the photon coupling to the pion charge must be multiplied

by the wavefunction renormalization to obtain contributions to the Compton ampli-

tude at next-to-leading order. Thus we require only the wavefunction renormalization

of the the charged pion. Due to fortuitous cancellation in both PQχPT and QχPT,

the hairpin diagram, which arises from the double pole structure of the flavor-neutral

propagator, vanishes.

The remaining contributions to the Compton amplitude arise from one-loop dia-

grams. In Figure C.3, we display the diagrams for the one-pion irreducible scattering

amplitude. Contributions from such diagrams lead to chiral corrections to the elec-
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��
Figure C.2: Wavefunction renormalization in PQχPT. Diagram elements are the

sames as in Figure C.1, and the cross denotes the partially quenched hairpin. The

vertex is generated by the leading-order Lagrangian.

��
��
���

Figure C.3: One-loop contributions to the Compton scattering amplitude in

PQχPT. Vertices shown are generated from the leading-order Lagrangian, and di-

agrams depicted are all one-pion irreducible.
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tromagnetic polarizabilities. For the charged pion, there are additional one-pion

reducible pieces in PQχPT. These diagrams are displayed in Figure C.4. The effects

of such diagrams in infinite volume, however, are to renormalize the mass of the

intermediate state pion, and to provide the necessary cancellations which preserve

the charge interaction of the leading Born terms. The latter cancellations were first

worked out explicitly for the case of the pion charge radius in PQχPT in [123, 108].

Assembling the results of Figures C.1–C.4, we can extract the pion polarizabilities

using Eq. (C.1) by utilizing Coulomb gauge in the center-of-momentum frame.

At one-loop order, it is well known that αE +βM = 0 for both charged and neutral

pions [99, 124, 75]. We find this remains true to one-loop order in PQχPT, as well as

QχPT. This is expected because extending the flavor algebra from SU(2) to graded

Lie algebras cannot alter the helicity structure of the Compton amplitude. As for

the orthogonal combination of polarizabilities, αE − βM , we arrive at

απ0

E − βπ0

M = − 2αfsQ
2
π

3(4πf)2mπ

(C.9)

απ±
E − βπ±

M =
16αfsQ

2
π(α9 + α10)

f 2mπ

, (C.10)

with Qπ = qu − qd. These results are the same in χPT, PQχPT, and QχPT, with

the exception that in QχPT the low-energy constants α9 + α10, and f have different

numerical values. Furthermore our χPT result agrees with the literature, see [75]

(being careful to note f =
√

2fπ). In deriving the above result, we remark that the

delicate cancellation between pion loops in the zero frequency limit present in χPT

remains in PQχPT, and QχPT. This cancellation is required by the infinite volume
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Figure C.4: One-pion reducible contributions to the Compton scattering amplitude

at one-loop order in PQχPT.
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gauge invariance of the amplitude and reflects that the longest-range coupling to the

pion is only to the total charge. In this way the Thomson scattering cross section is

produced in these three theories when the zero frequency limit is taken.

In each theory, there are no local electromagnetic interaction terms for the neutral

pion in the next-to-leading order Lagrangian. Thus there can be no divergences in

the polarizabilities of the neutral pion, as we found explicitly at one-loop. While

chiral logarithms are absent for the neutral pion, there are finite terms from the loop

graphs. In fact, the entire pion cloud contribution to the neutral pion polarizabilities

manages to survive quenching. This is rather surprising, but can be understood by

considering the quark-line topologies generated at one-loop order.

The five topologies arising from the four-pion vertex generated from Eq. (C.4) are

depicted in Figure C.5. The topologies in the second row are only possible for flavor

neutral external states, such as the neutral pion. Let us investigate which topologies

can make non-vanishing contributions to the neutral pion polarizabilities. Diagram

A contains a sea quark loop and thus associated contributions are proportional to

∆Q2 = (qu − qj)
2 + (qu − ql)

2 + (qd − qj)
2 + (qd − ql)

2, (C.11)

which sums the charge-squared couplings from all possible valence-sea loop mesons.

In the isospin limit of SU(4|2) all such mesons are degenerate with mass mju. The net

contribution from topology A, however, vanishes because contributions from the four-

meson vertex with two derivatives exactly cancel contributions from the four-meson

vertex with quark mass insertion. Terms from all of the meson loop diagrams in
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Figure C.5: Quark-line topologies generated at one-loop order. Diagrams in the

second row contribute only when the external states are flavor neutral.

Figure C.3 are required for this delicate cancellation. As a result, the characteristic

factor of ∆Q2 is absent from Eq. (C.9). Next, each of the quark line topologies

B, C, and D, require flavor disconnected contributions from flavor-neutral meson

propagators. As flavor neutral mesons are also electrically neutral, coupling to the

photon eliminates such contributions. Indeed looking at Figure C.3, there is only one

possible diagram with a hairpin vertex. Direct evaluation shows that this contribution

vanishes, ruling out the B, C, and D topologies. Therefore the loop contributions

to neutral pion polarizabilities in Eq. (C.9) stem entirely from topology E. As this

topology is quark-line connected, the contribution has the same form regardless of

quenching.

Let us examine topology E closer by writing the pion field in terms of quark basis
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mesons, ηu and ηd,

π0 =
1√
2

(ηn − ηd) . (C.12)

The diagonal contractions, ηu-ηu and ηd-ηd, for topology E result in an electrically

neutral loop meson. Only the first diagram of Figure C.3 could yield the diagonal

contractions of topology E. Close inspection of the Lagrangian shows, however, that

the four-meson, two-photon vertex with four electrically neutral mesons is identically

zero. Thus neutral pion polarizabilities stem entirely from topology E’s non-diagonal

flavor contractions: ηu-ηd, and ηd-ηu. To one-loop order, the neutral pion polarizabili-

ties arise entirely from annihilation contractions of lattice QCD correlation functions.

Returning to Eq. (C.10) for the charged pion polarizabilities, the quark-line pic-

ture helps to show why Eq. (C.10) has no loop contributions. In Figure C.5, the

quark-line topologies in the second row are no longer relevant because the external

states are charged. Furthermore topologies B and C require hairpins, but the hairpin

graphs in Figures C.2 and C.3 vanish. Loop contributions to charged pion polariz-

abilities can only arise from topology A. Cancellation of divergent loop contributions

from this topology must occur in χPT, PQχPT, and QχPT because the combination

α9 + α10 is renormalization scale independent. This independence disallows chiral

logarithms from loop contributions in χPT, and QχPT. While one can imagine scale

invariant combinations of the form log(m2
ju/m

2
lu), say, away from the isopsin limit of

SU(4|2), charge-squared couplings do not allow for loop contributions to alternate

in sign, see Eq. (C.11). Thus such logarithms are absent. While logarithms are not
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allowed, finite contributions can be present. As with the neutral pions for topol-

ogy A, however, the contributions from the four-meson vertex with two derivatives

exactly cancel contributions from the four-meson vertex with quark mass insertion.

The characteristic factor of ∆Q2 is consequently absent from from the charged pion

polarizabilities, Eq. (C.10). Thus the accidental cancellation of finite terms in χPT

also occurs in PQχPT, and QχPT.

As a final comment on the inifinite volume results in Eqs. (C.9) and (C.10), the

only pion mass dependence in both charged and neutral pion polarizabilities arises

from the target mass mπ. The target mass depends on the valence quark mass. Both

of these statements hold only to one-loop order in the chiral expansion.

C.3 Compton Tensor in Finite Volume

In finite volume, the pion is already deformed. Thus its ability to polarize in an

applied electric or magnetic field will differ from that in infinite volume. As finite

volume modifications to hadron properties are long distance in nature, they can be

quite generally addressed using χPT. Lattice simulations are usually carried out in a

hypercubic box of volume L3 × β, where L is the length of the spatial direction, and

β is the length of the Euclidean time direction. We consider β À L so that there

is no effect from the finite temporal extent of the lattice. With periodic boundary

conditions on the quark fields in each of the spatial directions, the momentum modes

on the lattice are p = 2πn/L, with n a triplet of integers. The ordinary power
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counting for χPT

|p| . mπ ¿ Λχ (C.13)

can be applied in a box of finite size provided 2fL À 1 and mπL & 2π. These two

conditions constitute what is called the p-regime of chiral perturbation theory. The

first condition is required in order to use chiral perturbation theory at all, while the

second condition maintains that pionic zero modes remain perturbative [96, 97]. As

the power counting in this regime remains the same as in infinite volume [98], the

same diagrams depicted in Figures C.1-C.4 contribute to the pion Compton tensor. It

is straightforward to perform the loop calculations in a finite box, we merely replace

integrals over virtual four-momenta by integrals over energy and sums over spatial

momentum modes permitted by periodicity.

Consider an observable X calculated in both finite and infinite volume. Let

X(L) denote the value of the observable in finite volume, and X(∞) denote its value

in infinite volume. The finite and infinite volume theories share exactly the same

ultraviolet divergences, thus the volume effect can be determined from matching the

two theories in the infrared,

X(L) = X(∞) + ∆X(L). (C.14)

The volume effect is given by the matching term ∆X(L) which is ultraviolet finite.

A salient feature of such matching is that it allows us to retain our infinite volume

regularization scheme and values of low-energy constants.

Calculating the finite volume matching for the Compton scattering amplitude,
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while straightforward, is quite involved in practice. We first remark that the decom-

position of the Compton tensor in Eq. (C.1) is no longer valid. That decomposition

makes use of the center-of-momentum frame. Finite volume results on a torus have

only an S4 cubic subgroup of the infinite volume SO(4) invariance. Results will thus

be frame dependent, and hence, to be general, we must not make recourse to a partic-

ular frame. Furthermore, as shown in [79], there are more gauge invariant structures

allowed on a torus. Thus more terms than shown in Eq. (C.1) are allowed at second

order in the field strength.

C.3.1 Neutral Pion

Carrying out the finite volume matching on the neutral pion Compton amplitude

without recourse to a particular frame or gauge, we find

∆Tµν
π0 (L) =

e2

f2

∑

φ

Cπ0

φ

[
− 1

6
gµν

∫ 1

0

dxI3/2(xr,m2
φ − x(1− x)r2)

+δµ0δν0

(
1
3

∫ 1

0

dx

∫ 1−x

0

dyI3/2(xk + yk′, m2
φ − xyr2)

− 1
4

∫ 1

0

dx

∫ 1−x

0

dy[(2x− 1)ω + 2yω′][2xω + (2y − 1)ω′]I5/2(xk + yk′,m2
φ − xyr2)

)

+
1
4
δµ0δνj

∫ 1

0

dx

∫ 1−x

0

dy[(2x− 1)ω + 2yω′]
{

k′jI5/2(xk + yk′,m2
φ − xyr2)

+ 2Ij
5/2(xk + yk′,m2

φ − xyr2)
}

+
1
4
δµiδν0

∫ 1

0

dx

∫ 1−x

0

dy[(2y − 1)ω′ + 2xω]
{

kiI5/2(xk + yk′,m2
φ − xyr2)

+ 2Ii
5/2(xk + yk′,m2

φ − xyr2)
}

−1
4
δµiδνj

∫ 1

0

dx

∫ 1−x

0

dy[4Iij
5/2(xk + yk′,m2

φ − xyr2) + 2kiIj
5/2(xk + yk′,m2

φ − xyr2)

+ 2k′jIi
5/2(xk + yk′,m2

φ − xyr2) + kik′jI5/2(xk + yk′,m2
φ − xyr2)]

]
. (C.15)
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Above we have employed rµ = (k − k′)µ for the momentum transfer, with kµ =

(ω, ωk̂), and k′µ = (ω′, ω′k̂′) for the photon momenta. To derive the above result, we

have employed the reality of initial and final state photons, and taken their spatial

momenta to be quantized. The finite volume functions Iβ(θ,m2), I i
β(θ,m2), and

I ij
β (θ,m2) are defined in Appendix C.6. The coefficient for contributing loop mesons

Cπ0

φ is given by

Cπ0

φ = 3Q2
π

(
2m2

π − r2
)
δφ,π − 3

2
∆Q2r2δφ,ju. (C.16)

While we have only given the PQχPT coefficients, the χPT, and QχPT results can

be trivially deduced from Eq. (C.16). The latter is possible because there are no

hairpin contributions. At zero frequency, the finite volume Compton amplitude for

the neutral pion is non-vanishing. This is because the Thomson cross-section is not

protected from renormalization in finite volume [79].

C.3.2 Charged Pion

The charged pion Compton amplitude at finite volume is even more involved than

the neutral result as we must determine both reducible and irreducible contributions.
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To one-loop order, the result is

∆Tµν
π±(L) = −3e2∆Q2

2f2
r2

{
− 1

6
gµν

∫ 1

0

dxI3/2(xr,m2
ju − x(1− x)r2)

+δµ0δν0

∫ 1

0

dx

∫ 1−x

0

dy

[
1
3
I3/2(xk + yk′,m2

ju − xyr2)

− 1
4
[(2x− 1)ω + 2yω′][2xω + (2y − 1)ω′]I5/2(xk + yk′,m2

ju − xyr2)

]

+
1
4
δµ0δνj

∫ 1

0

dx

∫ 1−x

0

dy[(2x− 1)ω + 2yω′]

×
[
k′jI5/2(xk + yk′,m2

ju − xyr2) + 2Ij
5/2(xk + yk′,m2

ju − xyr2)
]

+
1
4
δµiδν0

∫ 1

0

dx

∫ 1−x

0

dy[(2y − 1)ω′ + 2xω]

×
[
kiI5/2(xk + yk′, m2

ju − xyr2) + 2Ii
5/2(xk + yk′, m2

ju − xyr2)
]

−1
4
δµiδνj

∫ 1

0

dx

∫ 1−x

0

dy
[
4Iij

5/2(xk + yk′,m2
ju − xyr2) + 2kiIj

5/2(xk + yk′,m2
ju − xyr2)

+ 2k′jIi
5/2(xk + yk′,m2

ju − xyr2) + kik′jI5/2(xk + yk′, m2
ju − xyr2)

]}

−2e2Q2
π

f2

[
2gµν − (2P + k)µ(P + P ′ + k)ν

(P + k)2 −m2
π

− (2P − k′)ν(P + P ′ − k′)µ

(P − k′)2 −m2
π

]
I1/2(m2

ju)

−e2Q2
π

[
Iµ(P, P + k)(P + P ′ + k)ν

(P + k)2 −m2
π

+
(2P + k)µIν(P + k, P ′)

(P + k)2 −m2
π

+
Iµ(P − k′, P ′)(2P − k′)ν

(P − k′)2 −m2
π

+
(P + P ′ − k′)µIν(P, P − k′)

(P − k′)2 −m2
π

]

+
e2Q2

π

f2

[
δµ0δν0

∫ 1

0

dx
[
2I1/2(xk,m2

ju) + 2I1/2(xk′, m2
ju)

− x(2x− 1)
(
ω2I3/2(xk,m2

ju) + ω′2I3/2(xk′, m2
ju)

) ]

+δµ0δνj

∫ 1

0

dx
[
xω′k′jI3/2(xk′,m2

ju) + 2xω′Ij
3/2(xk′,m2

ju) + (2x− 1)ωIj
3/2(xk,m2

ju)
]

+δµiδν0

∫ 1

0

dx
[
xωkiI3/2(xk,m2

ju) + 2xωIj
3/2(xk,m2

ju) + (2x− 1)ω′Ii
3/2(xk′,m2

ju)
]

−δµiδνj

∫ 1

0

dx
[
2Iij

3/2(xk,m2
ju) + 2Iij

3/2(xk′, m2
ju)

+ kiIj
3/2(xk,m2

ju) + k′jIi
3/2(xk′,m2

ju)
]}

. (C.17)

In the above result, the initial (final) pion momentum has been denoted by P (P ′).

We have employed an abbreviation for the finite volume pion-photon vertex function,
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Iµ(P2, P1), which arises from the one-pion reducible diagrams and is given by

Iµ(P2, P1) =
1
f2

δµ0

{
(P2 + P1)0

[ ∫ 1

0

dxI1/2(x∆,m2
ju − x(1− x)∆2)

− 1
2
(∆0)2

∫ 1

0

dx x(2x− 1)I3/2(x∆,m2
ju − x(1− x)∆2)

]

+
1
2
∆0

∫ 1

0

dx(1− 2x)(P2 + P1) · I3/2(x∆,m2
ju − x(1− x)∆2)

}

+
1
f2

δµj

{
(P2 + P1)i

[ ∫ 1

0

dxIij
3/2(x∆, m2

ju − x(1− x)∆2)

+
1
2
∆j

∫ 1

0

dxIi
3/2(x∆,m2

ju − x(1− x)∆2)
]

+ ∆0(P2 + P1)0
[ ∫ 1

0

dxx
[
Ij
3/2(x∆,m2

ju − x(1− x)∆2)

+
1
2
∆j

∫ 1

0

dxI3/2(x∆,m2
ju − x(1− x)∆2)

]}
, (C.18)

with ∆µ = (P2 − P1)
µ. At zero frequency, we recover the results of [79]. Specifically

from the one-pion reducible terms, we see that the current is renormalized. This is

possible at finite volume because of gauge invariant zero-mode interactions.

C.3.3 Discussion of Finite Volume Results

With Eqs. (C.15) and (C.17), we have deduced the finite volume modification to

the pion Compton scattering tensor. These results show explicitly broken SO(4)

invariance as well as additional structures not anticipated by infinite volume gauge

invariance. The finite volume modifications can be directly utilized if two-current,

two-pion correlation functions are calculated on the lattice. One merely removes the

finite volume effects determined above to isolate the infinite volume physics. Such

lattice calculations of the Compton tensor are, however, prohibitively expensive time

wise, and will not be performed in the foreseeable future. A practical alternative to
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these calculations is provided by the background field method. In this approach, a

classical electromagnetic field is gauged into the QCD action.4 One then studies the

external field dependence of correlation functions to deduce electromagnetic observ-

ables. For example, at infinite volume the energy of a neutral pion in a weak external

electric field is

Eπ(p = 0) = mπ − 1

2
απ

EE2 +O(E4). (C.19)

Thus by measuring the quadratic energy shift in the external field strength |E|, one

can deduce the electric polarizability. A practical question is then how to deduce vol-

ume corrections to polarizabilities determined from background field methods. Given

the relation of the infinite volume Compton tensor to the polarizabilities, one might

suspect that the finite volume Compton tensor in Eqs. (C.15) and (C.17) contains

the finite volume corrections to the polarizabilities. We argue that the finite volume

Compton tensor has no relevance to volume effects in background field methods. At

finite volume, there is no longer a discernible relation between polarizabilities and

the Compton tensor.

An analysis of finite volume effects for nucleon polarizabilities for background

field methods derived from the Compton tensor, however, was presented in [81].

That analysis employed the Breit frame decomposition of the nucleon Compton ten-

sor in Coulomb gauge. Such results surely cannot be utilized for background field

4Implementing this method currently suffers the need to quench effects of the background field.

In principle, there is no impediment to coupling a suitably weak background field to sea quarks

other than time cost.
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calculations because such calculations are typically done in the rest frame. The finite

volume modifications derived, moreover, are polluted by subtle effects from the gauge

field due to the nature of gauge invariance on a torus. These effects have nothing

to do with polarizabilities. For example, in the center-of-momentum frame, where

k0 = k′0 = ω, we may encounter a term in the amplitude of the form

M = . . . +
1

2
ω2α(L) ε′∗ · ε + . . . , (C.20)

and be tempted to conclude that α(L) is a finite volume correction to the electric

polarizability. In a general frame, however, this term could stem from any combina-

tion of ω2, ω′2, and ωω′ structures. In infinite volume only the last term is allowed

by gauge invariance, specifically by an operator ∝ E2 with a coefficient proportional

to the electric polarizability. In finite volume, however, the additional structures ω2

and ω′2 are allowed. They stem from single-particle effective theory operators of the

form

L =
i

2
α(L) W (−) · ∂E

∂t
tr(Q2Φ2), (C.21)

for example, where W
(−)
i is the negative parity part of the zero-mode Wilson line Wi,

given by

Wi = P0WiP†0, (C.22)

with the Wilson line Wi as

Wi = exp

(
ie

3

∮
dxiAi

)
, (C.23)

and P0 as the zero-mode projection operator. The operator in Eq. (C.21) respects

C, P , and T , as well as the cubic symmetry of the torus. Furthermore it is gauge
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invariant because the zero mode has a periodicity constraint under gauge transfor-

mations, see [79]. From Eq. (C.20), we cannot deduce that α(L) is a finite volume

correction to the electric polarizability. In general, one must work in an arbitrary

frame to disentangle the zero-mode electric coupling in Eq. (C.21) from the electric

polarizability. An analogous situation exists for magnetic interactions, because the

operator,

∇ · (W (−) ×B
)
tr(Q2Φ2), (C.24)

for example, is allowed by symmetries.

The frame and gauge dependence notwithstanding, finite volume modifications to

polarizabilities were determined in [81] from Taylor series expanding the Compton

amplitude in photon frequency. That procedure is also invalid as we now demonstrate.

For simplicity, consider the following finite volume difference function, I1/2(k,m2),

where k is an external photon momentum. To determine finite volume corrections

to polarizabilities stemming from this term, we perform a Taylor series expansion in

the external momentum and arrive at

I1/2(k,m2) = I1/2(0,m2)− 1

2
k2m2I5/2(0,m2) +O(k4). (C.25)

If we were interested in determining a hypothetical polarizability X entering the

amplitude in the form

M = . . . +
1

2
k2X + . . . , (C.26)

then we would be tempted to conclude that the finite volume effect ∆X(L) is given
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by

∆X(L) = −m2I5/2(0,m2). (C.27)

Because the external momentum is itself quantized, instead of Eq. (C.25) we actually

have the exact relation

I1/2(k,m2) = I1/2(0,m2). (C.28)

This follows trivially from re-indexing the summation over loop momentum modes,

or from the periodicity of the elliptic-theta function, see Appendix C.6. Hence the

volume effect for our example is actually ∆X(L) = 0. The reason for this discrepancy

is a poorly convergent series expansion.5 Naively the expansion is in k2 = 4π2n2/L2,

and thus for large enough box size the finite volume effect should be well approximated

by the first few terms in the Taylor series. This is not the case. Because higher-order

terms have more derivatives, these contributions effectively have more propagators

and hence more sensitivity to the infrared. While we would expect the second term

in Eq. (C.25) to be 1/L2 suppressed relative to the first term, the asymptotics show

that the volume effect is L2 enhanced

lim
L→∞

m2I5/2(0,m2)/I1/2(0,m2) =
1

3
L2. (C.29)

The series expansion continues in this fashion: all terms are order one. We can see

the same effect more directly by expressing the finite volume difference in terms of

5Another difference between Eqs. (C.25) and (C.28) is that the order of summation and differen-

tiation has been interchanged. One can easily show, however, that the summation over modes is

uniformly convergent by using the Weierstrass M -test.
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the elliptic-theta function, namely

I1/2(k,m2) =
1

π2L2

∫ ∞

0

dλe−m2L2/4λ
[
ϑ3(πn, e−λ)ϑ3(0, e

−λ)2 − 1
]
, (C.30)

for the choice k = (2πn/L, 0, 0). A series expansion in k is thus effectively the same

as expanding in πn.

Returning to Eqs. (C.15) and (C.17), we must ascertain whether we can make

sense of a series expansion in frequency for the Compton tensor. Terms of the form

r2

∫ 1

0

dxI3/2(xr,m2 − x(1− x)r2), (C.31)

for example, can be plausibly expanded to second order because this requires only

evaluation of the finite volume function at r = 0. This was the logic employed in [125]

to deduce finite volume corrections to the nucleon magnetic moment. As r is not

continuous, however, one cannot deduce the small momentum behavior of this term

from evaluation at r = 0, nor can one deduce the small momentum behavior from

Taylor series expanding other terms like

∫ 1

0

dxI3/2(xr,m2 − x(1− x)r2), (C.32)

in the Compton tensor, for example. Series expanding in rL = 2πn is nonsense no

matter the size of the box length L.6

At finite volume, one must treat the terms in the amplitude as form factors in

ωL. Thus for electromagnetic form factors at finite volume, for example, volume

6There is a putative improvement in the convergence of the last term due to the integral over the

Feynman parameter. The L scaling of terms in the expansion, however, is unchanged.
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corrections to electromagnetic moments cannot be deduced. Similarly we are unable

to use our results for the finite volume modification of the Compton amplitude to

deduce corrections to the pion polarizabilities. At second order in the field strength

there are a myriad of new terms allowed by the less restrictive symmetries on a

torus: cubic invariance and periodic zero-mode gauge invariance. Furthermore a small

frequency expansion at finite volume does not make sense for quantized momenta.

Said another way, periodic gauge potentials on a torus do not lead to electromagnetic

multipole expansions.

C.4 Summary

Above we have investigated chiral and volume corrections to pion Compton scatter-

ing using χPT, PQχPT, and QχPT. In infinte volume, straightforward calculation

of the Compton amplitude allows us to determine charged and neutral pion polar-

izabilities in these theories. Due to fortuitous cancellation there is no dependence

on the sea quark masses, or sea quark charges at one-loop order in the chiral ex-

pansion. The Compton tensor itself does not have any quark mass dependence at

this order. Consequently the quark mass dependence of the derived polarizabilities

stems from a kinematical prefactor of the inverse target mass. As this valence pion

mass is relatively inexpensive to dial, the chiral singularity should be discernible from

lattice data at light quark masses. Thus as the chiral regime is approached, one can

use the lattice as a diagnostic tool to study the chiral behavior of pion polarizabil-
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ities. This can be done most easily for the charged pion. Whereas for the neutral

pion, we demonstrated that the polarizabilities at one-loop order stem entirely from

annihilation contractions which are notoriously difficult to calculate on the lattice.

When accounting for finite volume effects, however, the situation becomes more

complicated. Breaking of SO(4) invariance and the nature of gauge invariance on a

torus lead to considerably complicated structure for the Compton tensor. Sea quark

charge and mass dependence enter in the one-loop finite volume effects. One cannot

unambiguously determine the volume effects for the polarizabilities from the Comp-

ton tensor because the Taylor series expansion in quantized momentum is poorly

convergent. What was in infinte volume a series expansion in ω/mπ ¿ 1 that lead

to the polarizabilities, now is accompanied by an ill-defined expansion in ωL ∼ 1

at finite volume. This means that even at low energies, the finite volume Compton

amplitude is a form factor in ωL. Consequently connection of our finite volume re-

sults to background field lattice calculations is not possible. Similarly finite volume

corrections to electromagnetic moments cannot be deduced from momentum expand-

ing finite volume form factors. Further investigation is required to determine volume

corrections relevant for observables determined with background field methods.

C.5 Appendix A: Quenched χPT

Here we give the relevant details needed in the calculation of quenched pion polariz-

abilities. In quenched QCD, contributions from sea quarks are completely neglected.

131



In a quenched theory of two flavors u and d, we additionally have two ghost quarks

ũ and d̃. The mass matrix is now

mQ = diag (mu, md,mu,md) , (C.33)

where the final two entries are the masses of the ghost quarks. These equal mass ghost

quarks are necessitated so that path integral determinants for the valence quarks are

exactly canceled by those from the ghosts. The symmetry breaking pattern in QχPT

schematically takes the form U(2|2)L⊗U(2|2)R → U(2|2)V because there is no axial

anomaly in quenched QCD. The coset field Σ is hence a U(2|2) matrix and the singlet

component cannot be integrated out. The dynamics of the pseudo-Goldstone modes

is described at leading-order by the QχPT Lagrangian

L =
f 2

8
str

(
DµΣ†DµΣ

)
+ λ

f 2

4
str

(
m†

QΣ + Σ†mQ

)
+ αΦDµΦ0D

µΦ0 −m2
0Φ

2
0. (C.34)

While propagators for flavor-neutral mesons have double poles, these are not encoun-

tered explicitly in expressions for the pion polarizabilities at next-to-leading order.

Quenched observables are in general unrelated to their unquenched counterparts,

for example, the constants αΦ and m0 have no analogs in χPT, moreover, arbitrary

polynomial functions of Φ2
0 can multiply any term in the Lagrangian and the low-

energy constants in the quenched chiral Lagrangian above result from treating these

polynomial terms in mean-field approximation.

For the quenched electric charge matrix of the quarks, we must have

Q = diag (qu, qd, qu, qd) , (C.35)

132



for which the condition strQ = 0 is unavoidable. In general there are fewer local elec-

tromagnetic terms in QχPT as compared to χPT. At next-to-leading order, however,

both the α9 and α10 terms remain. We must keep in mind that the numerical values

of these coefficients are unrelated to their values in χPT. Calculation of the pion

polarizabilities then proceeds analogously to the partially quenched case. Results for

the quenched polarizabilities have been given for infinite and finite volume in the

main text.

C.6 Appendix B: Finite Volume Functions

Above we have determined the finite volume modification to the Compton scattering

tensor. In this Appendix, we give explicit formulae for the finite volume functions

used to express finite volume differences. We use similar notation for these functions

as [126, 127], where further discussion can be found.

In evaluating a Feynman diagram in finite volume, the loop integral is converted

into a sum over the allowed Fourier modes in a periodic box. The difference of this

sum and the infinite volume result is the finite volume effect. As is customary, we

treat the length of the time direction as infinite. All finite volume differences with

momentum insertion can be cast in terms of the function I
i1···ij
β (θ,m2), defined by

I
i1···ij
β (θ,m2) =

1

L3

∑
n

qi1 · · · qij

[(q + θ)2 + m2]β
−

∫
dq

(2π)3

qi1 · · · qij

[(q + θ)2 + m2]β
, (C.36)

where the sum on n is over triplets of integers, and the loop momentum modes

are quantized as q = 2πn/L in a periodic box. While a general expression for the
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exponentially convergent form of I
i1···ij
β (θ,m2) exists, it is easiest merely to cite the

required cases for our work. These are

Iβ(θ,m2) =
(L2/4)β−3/2

(4π)3/2Γ(β)

∫ ∞

0

dλλ1/2−βe−m2L2/4λ

[
3∏

j=1

ϑ3(θjL/2, e−λ)− 1

]
(C.37)

I i1
β (θ,m2) = − 1

2(β − 1)

d

dθi1
Iβ(θ,m2)− θi1Iβ(θ,m2) (C.38)

I i1i2
β (θ,m2) =

1

4(β − 2)(β − 1)

d2

dθi1dθi2
Iβ−2(θ,m2) +

1

2(β − 1)
δi1i2Iβ−1(θ,m2)

− θi1I i2
β (θ,m2)− θi2I i1

β (θ,m2)− θi1θi2Iβ(θ, m2) (C.39)

where ϑ3(z, q) is a Jacobi elliptic-theta function of the third kind, see, e.g. [100].
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