## Collider Constraints applied to Simplified Models of Dark Matter fitted to the Fermi-LAT gamma ray excess using Bayesian Techniques



### **Guy Pitman**

Department of Physics University of Adelaide

This dissertation is submitted for the degree of *MPhil* 

October 2016

I would like to dedicate this thesis to my wife Julia, who has enabled this undertaking by her patience, love and support.

#### Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures.

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time

> Guy Pitman October 2016

#### Acknowledgements

And I would like to acknowledge the help and support of my supervisors, Professor Tony Williams, and Dr Martin White as well as Assoc Professor Csaba Balasz who has assisted with information about a previous study, Ankit Beniwal and Jinmian Li who assisted with running MicrOmegas and LUXCalc. I adapted the collider cuts programs originally developed by Sky French and Martin White for my study.

## Contents

| List of Figures |         |               |                                                    |    |  |  |  |
|-----------------|---------|---------------|----------------------------------------------------|----|--|--|--|
| Li              | st of [ | <b>Fables</b> |                                                    | XV |  |  |  |
| 1               | Intr    | Introduction  |                                                    |    |  |  |  |
|                 | 1.1     | Motiva        | ution                                              | 3  |  |  |  |
|                 | 1.2     | Literat       | ure review                                         | 4  |  |  |  |
|                 |         | 1.2.1         | Simplified Models                                  | 4  |  |  |  |
|                 |         | 1.2.2         | Collider Constraints                               | 7  |  |  |  |
| 2               | Rev     | iew of P      | hysics                                             | 9  |  |  |  |
|                 | 2.1     | Standa        | rd Model                                           | 9  |  |  |  |
|                 |         | 2.1.1         | Introduction                                       | 9  |  |  |  |
|                 |         | 2.1.2         | Quantum Mechanics                                  | 9  |  |  |  |
|                 |         | 2.1.3         | Field Theory                                       | 10 |  |  |  |
|                 |         | 2.1.4         | Spin and Statistics                                | 10 |  |  |  |
|                 |         | 2.1.5         | Feynman Diagrams                                   | 11 |  |  |  |
|                 |         | 2.1.6         | Gauge Symmetries and Quantum Electrodynamics (QED) | 12 |  |  |  |
|                 |         | 2.1.7         | The Standard Electroweak Model                     | 13 |  |  |  |
|                 |         | 2.1.8         | Higgs Mechanism                                    | 17 |  |  |  |
|                 |         | 2.1.9         | Quantum Chromodynamics                             | 22 |  |  |  |
|                 |         | 2.1.10        | Full SM Lagrangian                                 | 23 |  |  |  |
|                 | 2.2     | Dark M        | Aatter                                             | 25 |  |  |  |
|                 |         | 2.2.1         | Evidence for the existence of dark matter          | 25 |  |  |  |
|                 |         | 2.2.2         | Searches for dark matter                           | 30 |  |  |  |
|                 |         | 2.2.3         | Possible signals of dark matter                    | 30 |  |  |  |
|                 |         | 2.2.4         | Gamma Ray Excess at the Centre of the Galaxy [65]  | 30 |  |  |  |

|   | 2.3   | Background on ATLAS and CMS Experiments at the Large Hadron collider |                                                                                                                                                                   |     |     |     |   |   |    |   |    |
|---|-------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|---|---|----|---|----|
|   |       | (LHC)                                                                |                                                                                                                                                                   | •   |     | •   | • |   | •  | • | 31 |
|   |       | 2.3.1                                                                | ATLAS Experiment                                                                                                                                                  | •   |     | •   | • |   | •  | • | 32 |
|   |       | 2.3.2                                                                | CMS Experiment                                                                                                                                                    | •   |     | ••• | • | • | •  | • | 33 |
| 3 | Fitti | tting Models to the Observables 3                                    |                                                                                                                                                                   |     |     |     |   |   | 35 |   |    |
|   | 3.1   | Simplif                                                              | ied Models Considered                                                                                                                                             |     |     | • • | • |   | •  | • | 35 |
|   | 3.2   | Observ                                                               | ables                                                                                                                                                             |     | • • | •   |   |   |    |   | 36 |
|   |       | 3.2.1                                                                | Dark Matter Abundance                                                                                                                                             |     | • • | •   |   |   |    |   | 36 |
|   |       | 3.2.2                                                                | Gamma Rays from the Galactic Center                                                                                                                               |     | •   |     | • |   |    |   | 36 |
|   |       | 3.2.3                                                                | Direct Detection - LUX                                                                                                                                            |     |     | ••  |   |   |    |   | 37 |
|   | 3.3   | Calcula                                                              | tions                                                                                                                                                             |     |     |     |   |   |    |   | 39 |
|   |       | 3.3.1                                                                | Mediator Decay                                                                                                                                                    |     |     |     |   |   |    |   | 39 |
|   |       | 3.3.2                                                                | Collider Cuts Analyses                                                                                                                                            |     |     |     |   |   |    |   | 42 |
|   |       | 3.3.3                                                                | Description of Collider Cuts Analyses                                                                                                                             | •   |     | •   | • |   | •  | • | 43 |
| 4 | Calo  | culation                                                             | Tools                                                                                                                                                             |     |     |     |   |   |    |   | 55 |
|   | 4.1   | Summa                                                                | ury                                                                                                                                                               |     |     |     |   |   |    |   | 55 |
|   | 4.2   | FeynRu                                                               | ıles                                                                                                                                                              |     |     |     |   |   |    |   | 56 |
|   | 4.3   | LUXCa                                                                | alc                                                                                                                                                               |     |     |     |   |   |    |   | 56 |
|   | 4.4   | Multine                                                              | est                                                                                                                                                               |     |     |     |   |   |    |   | 57 |
|   | 4.5   | Madgra                                                               | aph                                                                                                                                                               |     |     |     |   |   |    |   | 58 |
|   | 4.6   | Collide                                                              | $r \operatorname{Cuts} C++ \operatorname{Code} \dots \dots$ |     |     | • • | • | • | •  | • | 59 |
| 5 | Maj   | orana M                                                              | Iodel Results                                                                                                                                                     |     |     |     |   |   |    |   | 61 |
|   | 5.1   | Bayesia                                                              | an Scans                                                                                                                                                          |     |     |     |   |   |    |   | 61 |
|   | 5.2   | Best fit                                                             | Gamma Ray Spectrum for the Majorana Fermion DM                                                                                                                    | [ m | iod | lel |   |   |    |   | 64 |
|   | 5.3   | Collide                                                              | r Constraints                                                                                                                                                     |     |     |     |   |   |    |   | 67 |
|   |       | 5.3.1                                                                | Mediator Decay                                                                                                                                                    |     |     |     |   |   |    |   | 67 |
|   |       | 5.3.2                                                                | Collider Cuts Analyses                                                                                                                                            |     |     |     |   |   | •  |   | 69 |
| 6 | Rea   | l Scalar 1                                                           | Model Results                                                                                                                                                     |     |     |     |   |   |    |   | 73 |
|   | 6.1   | Bayesia                                                              | an Scans                                                                                                                                                          |     |     | ••  |   |   |    |   | 73 |
|   | 6.2   | Best fit                                                             | Gamma Ray Spectrum for the Real Scalar DM model                                                                                                                   |     | • • |     | • |   | •  |   | 76 |
|   | 6.3   | Collide                                                              | r Constraints                                                                                                                                                     |     | • • |     | • |   | •  |   | 77 |
|   |       | 6.3.1                                                                | Mediator Decay                                                                                                                                                    |     | • • |     |   |   |    |   | 77 |
|   |       | 6.3.2                                                                | Collider Cuts Analyses                                                                                                                                            |     | • • | •   | • |   | •  |   | 78 |

| 7   | Real        | Vecto  | or Dark Matter Results                                      | 81  |
|-----|-------------|--------|-------------------------------------------------------------|-----|
|     | 7.1         | Baye   | sian Scans                                                  | 81  |
|     | 7.2         | Best   | fit Gamma Ray Spectrum for the Real Vector DM model         | 84  |
|     | 7.3         | Colli  | der Constraints                                             | 84  |
|     |             | 7.3.1  | Mediator Decay                                              | 84  |
|     |             | 7.3.2  | Collider Cuts Analyses                                      | 86  |
| 8   | Con         | clusio | n                                                           | 89  |
| Bil | oliogr      | aphy   |                                                             | 91  |
| Ар  | pend        | ix A   | Validation of Calculation Tools                             | 97  |
| Ар  | pend        | ix B   | Branching ratio calculations for narrow width approximation | 105 |
|     | <b>B</b> .1 | Code   | obtained from decays.py in Madgraph                         | 105 |

# **List of Figures**

| 2.1        | Feynman Diagram of electron interacting with a muon                                                 | 11 |
|------------|-----------------------------------------------------------------------------------------------------|----|
| 2.2        | Weak Interaction Vertices [48]                                                                      | 15 |
| 2.3        | Higgs Potential [49]                                                                                | 18 |
| 2.4        | Standard Model Particles and Forces [50]                                                            | 24 |
| 2.5        | Bullet Cluster [52]                                                                                 | 25 |
| 2.6        | Galaxy Rotation Curves [54]                                                                         | 26 |
| 2.7        | WMAP Cosmic Microwave Background Fluctuations [58]                                                  | 29 |
| 2.8        | Dark Matter Interactions [60]                                                                       | 29 |
| 2.9        | Gamma Ray Excess from the Milky Way Center [75]                                                     | 31 |
| 2.10       | ATLAS Experiment                                                                                    | 31 |
| 2.11       | CMS Experiment                                                                                      | 34 |
| 31         | Main Feyman diagrams leading to the cross section for scalar decaying to a                          |    |
| 5.1        | which regiman diagrams leading to the cross section for scalar decaying to a pair of $\tau$ leptons | 40 |
| 27         |                                                                                                     | 40 |
| 3.2<br>2.2 | Width/ $m_s$ vs $m_s$                                                                               | 40 |
| 3.3<br>2.4 | Width/ms vs $\lambda_b$                                                                             | 41 |
| 5.4<br>2.5 | White Examples diagrams leading to the energy spatial for eacher decovirg to $\alpha$               | 41 |
| 3.3        | Main Feynian diagrams leading to the cross section for scalar decaying to a                         | 40 |
|            | pair of b quarks in the presence of at least one b quark                                            | 42 |
| 4.1        | Calculation Tools                                                                                   | 55 |
| 5.1        | Majorana Dark Matter - Posterior probability by individual constraint and all                       |    |
|            | together                                                                                            | 62 |
| 5.2        | Majorana Dark Matter - Marginalised Posterior Probabilities by Parameter .                          | 63 |
| 5.3        | Gamma Ray Spectrum                                                                                  | 64 |
| 5.4        | Plots of log likelihoods by individual and combined constraints: Masses in                          |    |
|            | GeV                                                                                                 | 66 |
| 5.5        | $\sigma * Br(\sigma \rightarrow \tau \tau)$ versus Mass of Scalar                                   | 67 |
|            |                                                                                                     |    |

| 5.6 | $\sigma * Br(\sigma \to \tau^+ \tau^-)$ versus Mass of Scalar $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 68 |
|-----|------------------------------------------------------------------------------------------------------------------|----|
| 5.7 | $\sigma * Br(\sigma \text{ where } \rightarrow bS + X)$ versus Mass of Scalar                                    | 68 |
| 5.8 | $\sigma * Br(\sigma \rightarrow bS + X)$ versus Mass of Scalar                                                   | 69 |
| 5.9 | Excluded points from Collider Cuts and $\sigma^*$ Branching Ratio                                                | 70 |
| 6.1 | Real Scalar Dark Matter - By Individual Constraint and All Together                                              | 74 |
| 6.2 | Real Scalar Matter - Marginalised Posterior Probabilities by Parameter                                           | 75 |
| 6.3 | Gamma Ray Spectrum                                                                                               | 76 |
| 6.4 | $\sigma * Br(\sigma \rightarrow \tau \tau)$ versus Mass of Scalar                                                | 77 |
| 6.5 | $\sigma * Br(\sigma \rightarrow bS + X)$ versus Mass of Scalar                                                   | 78 |
| 6.6 | Excluded points from Collider Cuts and $\sigma^*$ Branching Ratio                                                | 80 |
| 7.1 | Real Vector Dark Matter - By Individual Constraint and All Together                                              | 82 |
| 7.2 | Real Vector Dark Matter - Marginalised Posterior Probabilities by Parameter                                      | 83 |
| 7.3 | Gamma Ray Spectrum                                                                                               | 84 |
| 7.4 | $\sigma * Br(\sigma \rightarrow \tau \tau)$ versus Mass of Scalar                                                | 85 |
| 7.5 | $\sigma * Br(\sigma \rightarrow bS + X)$ versus Mass of Scalar                                                   | 86 |
| 7.6 | Excluded points from Collider Cuts and $\sigma^*$ Branching Ratio                                                | 87 |

## **List of Tables**

| 2.1 | Quantum numbers of the Higgs field                                                    | 19  |
|-----|---------------------------------------------------------------------------------------|-----|
| 2.2 | Weak Quantum numbers of Lepton and Quarks                                             | 21  |
| 3.1 | Simplified Models                                                                     | 35  |
| 3.2 | 95% CL by Signal Region                                                               | 44  |
| 3.3 | Selection criteria common to all signal regions                                       | 45  |
| 3.4 | Selection criteria for signal regions A                                               | 45  |
| 3.5 | Selection criteria for signal regions C                                               | 45  |
| 3.6 | Signal Regions - Lepstop1                                                             | 48  |
| 3.7 | Signal Regions Lepstop2                                                               | 49  |
| 3.8 | Signal Regions 2bstop                                                                 | 51  |
| 3.9 | Signal Region ATLASmonobjet                                                           | 52  |
| 5.1 | Scanned Ranges                                                                        | 61  |
| 5.2 | Best Fit Parameters                                                                   | 64  |
| 6.1 | Best Fit Parameters                                                                   | 76  |
| 7.1 | Best Fit Parameters                                                                   | 84  |
| A.1 | 0 Leptons in the final state                                                          | 98  |
| A.2 | 1 Lepton in the Final state                                                           | 100 |
| A.3 | 2 Leptons in the final state                                                          | 101 |
| A.4 | 2b jets in the final state                                                            | 102 |
| A.5 | Signal Efficiencies, 90% CL on $\sigma_{exp}^{lim}[fb]$ on $pp > t\bar{t} + \chi\chi$ | 103 |
|     | -                                                                                     |     |