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Abstract

In this work, we give a mathematical description of a chiral gapless edge of a 2d topological order (with-
out symmetry). We show that the observables on the 1+1D world sheet of such an edge consist of a family 
of topological edge excitations, boundary CFT’s and walls between boundary CFT’s. These observables 
can be described by a chiral algebra and an enriched monoidal category. This mathematical description au-
tomatically includes that of gapped edges as special cases. Therefore, it gives a unified framework to study 
both gapped and gapless edges. Moreover, the boundary-bulk duality also holds for gapless edges. More 
precisely, the unitary modular tensor category that describes the 2d bulk phase is exactly the Drinfeld center 
of the enriched monoidal category that describes the gapless/gapped edge. We propose a classification of all 
gapped and chiral gapless edges of a given bulk phase. In the end, we explain how modular-invariant bulk 
rational conformal field theories naturally emerge on certain gapless walls between two trivial phases.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is well-known that the fusing-braiding properties of topological excitations in a 2d topolog-
ical order (without symmetry) can be described by a unitary modular tensor category (UMTC) 
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(see a review [58, Appendix E]). A 2d topological order is uniquely determined by a pair (C, c), 
where C is the UMTC of topological excitations and c is the chiral central charge. If the topo-
logical order (C, 0) has a gapped edge, the edge can be mathematically described by a unitary 
fusion category (UFC) M such that the Drinfeld center Z(M) of M coincides with C [59,35,65]. 
The fact that the bulk phase is uniquely determined by the gapped edge as its Drinfeld center is 
also called boundary-bulk duality.

In general, 2d topological orders (without symmetry), such as quantum Hall systems, have 
topologically protected gapless edges [37,92,79,93] (see reviews [93–95,82] and references 
therein). A gapless edge is significantly richer than a gapped edge because gapless edge modes 
are described by 1+1D rational conformal field theories (RCFT’s) [8,80], the mathematical struc-
tures of which are much richer than a UMTC [80,91,56,43]. As far as we know, the precise 
mathematical description of a gapless edge is still not known.

In the last twenty years, the mathematical theory of boundary-bulk (or open-closed) RCFT’s 
has been successfully developed from at least three different perspectives (see the conformal-net 
approach in [78,85,86,56], the 2+1D-TQFT approach in [25,33,31,27] and the vertex-operator-
algebra approach in [38,46,47,62], and references therein). These mathematical developments 
have revealed a universal phenomenon: the mathematical structures of a boundary-bulk RCFT 
can be split into two parts. One part consists of a unitary rational chiral algebra V (or a con-
formal net in the first approach), also called a unitary rational vertex operator algebra (VOA) 
(see for example [74,18]) in mathematics, such that the category ModV of V -modules is a 
UMTC [43]. The other part is a pure categorical structure containing certain algebras in ModV

and its Drinfeld center Z(ModV ). This suggests that it might be possible to describe a chi-
ral gapless edge of a 2d topological order (C, c) by a pair (V , M�), where V is a VOA and 
M� is a purely categorical structure that can be constructed from ModV , C and perhaps ad-
ditional categorical data. The main goal of this paper is to show that this is indeed possi-
ble.

In Section 2, we recall some basic facts of boundary-bulk CFT’s. We explain that if a 
boundary-bulk CFT preserves a chiral symmetry given by a VOA V on the boundary, then there 
is a very simple but equivalent categorical description of such a boundary-bulk RCFT as cer-
tain algebras in UMTC’s. We summarize the results in a physics/mathematics dictionary at the 
end of this section. In Section 3, we explain that observables on a chiral gapless edge of a 2d 
topological order consist of a family of topological edge excitations, boundary CFT’s and walls 
between these boundary CFT’s. These boundary CFT’s and walls are required to preserve a 
chiral symmetry given by a VOA V such that ModV is a UMTC. This symmetry condition al-
lows us to describe all boundary CFT’s and walls equivalently by certain algebras and objects 
in B := ModV . As a consequence, all these observables organize themselves into a B-enriched 
monoidal category X� (see Definition A.16). We denote such a gapless edge by the pair (V , X�). 
In Section 4, we describe a canonical gapless edge (V , B�) of a 2d bulk phase (B, c), where 
the enriched monoidal category B� is canonically obtained from B. The boundary-bulk dual-
ity holds in this case. Namely, the Drinfeld center Z(B�) of B� coincides with the UMTC B
[72]. In Section 5, we explain that we can obtain a new gapless edge of a bulk phase (C, c) by 
fusing a gapped domain wall M between two bulk phases (C, c) and (B, c) with the canoni-
cal gapless edge (V , B�) of (B, c). This new edge can again be described by a pair (V , M�), 
where M� is a B-enriched monoidal category canonically constructed from the pair (B, M). 
Moreover, the boundary-bulk duality holds, i.e. Z(M�) = C. This mathematical description of 
gapless edges (as pairs (V , M�)) automatically includes that of gapped edges as special cases. 
In this way, we have obtained a unified mathematical theory of gapless and gapped edges. This 
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leads us to propose, in Section 6, a mathematical classification of all gapped and chiral gap-
less edges of a given bulk phase (C, c). In Section 7, we explain how a modular-invariant bulk 
CFT naturally emerges as a hom space in an enriched monoidal category describing certain gap-
less walls between two trivial 2d topological orders. We also discuss briefly 0d defects between 
edges. In Section 8, we give a summary and outlooks. In Appendix, we recall the mathematical 
definitions of various algebras in a UMTC and the definition of an enriched monoidal cate-
gory.

Acknowledgment: We thank Maissam Barkeshli, Meng Cheng, Yi-Zhi Huang, Yuan-Ming Lu, 
Chetan Nayak, Xiao-Gang Wen and Yi-Zhuang You for very helpful discussions. LK is supported 
by the start fund from Tsinghua University under Grant No. 53331000817. HZ is supported by 
NSFC under Grant No. 11131008.

2. Basics of boundary-bulk CFT’s

In this section, we briefly review the categorical description of various ingredients of 
boundary-bulk CFT’s [31,62] (see a review [63] and references therein). The mathematically 
definitions of various algebras in UMTC’s are given in Section A.1.

The most important ingredient of a 2d CFT is a chiral algebra V [80]. It was defined rigorously 
in mathematics as a vertex operator algebra (VOA) (see for example [74]). It is a graded vector 
space V = ⊕∞

n=0V(n). The grading n for V(n) is called the conformal weight, which is also an 
eigenvalue of the grading operator L(0), i.e. L(0) · V(n) = n · V(n). The partition function of V is 
defined as follows

χV (q) =
∞∑

n=0

dimV(n)q
n− c

24 , for q ∈C×.

By the state-field correspondence, for each φ ∈ V , there is a unique chiral field φ(z) asso-
ciated to φ ∈ V . The chiral field φ(z) depends on z holomorphically. More precisely, φ(z)

can be expanded as φ(z) = ∑
n∈Z φnz

−n−1, where φn is a linear operator that maps V(m) into 
V(k−n−1+m), ∀m if φ ∈ V(k). There is a distinguished weight 2 element T ∈ V(2). The chiral field 
T (z) is the called the energy-stress tensor and can be expanded as follows:

T (z) =
∑

n∈Z
L(n)z−n−2,

where L(0) is the grading operator and L(n), n ∈ Z generate a Lie algebra called Virasoro alge-
bra defined by

[L(m),L(n)] = (m − n)L(m + n) + δm+n,0
m3 − m

12
c IdV ,

where c is a complex number called the central charge of V . Chiral fields in V have operator 
product expansions (OPE), i.e.

φ(z1)ψ(z2) ∼ (φkψ)(z2)

(z1 − z2)k+1 + (φk−1ψ)(z2)

(z1 − z2)k
+ · · · .

The OPE is commutative, i.e. φ(z1)ψ(z2) ∼ ψ(z2)φ(z1). In mathematics, this OPE and its prop-
erties were rigorously defined as the data and axioms of a VOA.
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A simple V -module W (or an irreducible representation of V ) is again a graded vector space, 
i.e. W = ⊕∞

n=0W(n), where L(0) ·W(n) = (hW +n)W(n) for some hW ∈C. For example, the Ising 
VOA V has three simple V -modules, 1, ψ, σ , where 1 is just V itself and h1 = 0, hψ = 1

2 , hσ =
1
16 . The partition function of W is defined by χW(q) = ∑∞

n=0 dimW(n)q
n+hW − c

24 . The set of all 
V -modules and V -module maps (linear maps that intertwine the V -actions) form the category of 
V -modules, denoted by ModV .

The states (or chiral fields) in two different V -modules can be fused into the third V -module 
according to the so called chiral vertex operators,1 which also have OPE. These OPE were 
conjectured in [80] for RCFT’s, and was mathematically proved in [39,41], and was shown to 
provide a monoidal structure on ModV [49–52,39]. Namely, two V -modules x and y can be 
fused to give a new V -module x ⊗ y = y ⊗ x, which is a direct sum of simple V -modules. For 
example, for Ising VOA V , we have

1 ⊗ ψ = ψ, 1 ⊗ σ = σ, ψ ⊗ σ = σ, 1 = 1 ⊗ 1 = ψ ⊗ ψ, σ ⊗ σ = 1 ⊕ ψ.

The fusion product ⊗ and the braiding x ⊗ y
cx,y−−→ y ⊗ x endow ModV with a braided monoidal 

structure. Moreover, when the VOA V is unitary [18] and rational [43], the category ModV

is a unitary modular tensor category (UMTC) [42–44]. The tensor unit 1 in ModV is nothing 
but V itself. Each object x in ModV has a dual object denoted by x∗ and the duality maps 
ux : 1 → x ⊗ x∗ and vx : x∗ ⊗ x → 1. For example, for Ising VOA V , all objects in ModV are 
self-dual, i.e. 1 = 1∗, ψ = ψ∗, σ = σ ∗.

In a boundary CFT [12–14], the chiral fields on the 0+1D boundary (also called bound-
ary fields) also have OPE [14,32], which form a mathematical structure called open-string 
vertex operator algebra (OSVOA) [46]. A VOA is automatically an OSVOA. In general, an 
OSVOA A is R-graded A = ⊕i∈RA(i). An OSVOA A always contains a VOA generated by 
the energy-stress tensor TA ∈ A(2) and TA(r) = ∑

n∈Z L(n)r−n−2, where r is the coordinate 
of the boundary and can be chosen to be positive real numbers. In general, a boundary field 
φ(r) = ∑

n∈R φnr
−n−1 can have non-integer powers of r , and the OPE of an OSVOA is not 

commutative. Therefore, an OSVOA can be viewed as a non-commutative generalization of a 
VOA.

An OSVOA A is called an OSVOA over V if it is an extension of a VOA V by V -modules 
and boundary fields in A are all chiral vertex operators of V . This VOA V should be viewed 
as the chiral symmetry of A. When the chiral symmetry V is unitary and rational, ModV is 
not only a UMTC, but also a vertex tensor category [49,39,44], which allows us to reduce the 
complicated OPE structures in A to a simple categorical structure: an algebra A in the UMTC 
ModV [46] (conjectured in [66,33]). By definition, an algebra A in ModV is just an object A
(i.e. a V -module), together with a multiplication morphism m : A ⊗A → A and a unit morphism 
ι : 1 → A, i.e. a triple (A, m, ι), such that

m ◦ (m ⊗ IdA) = m ◦ (IdA ⊗m), m ◦ (ι ⊗ IdA) = IdA = m ◦ (IdA ⊗ι).

The information of OPE is completely encoded in the morphism m : A ⊗ A → A; and that of the 
chiral symmetry is encoded in the morphism ι : 1 → A (i.e. an embedding V ↪→ A) and the fact 

1 This notion was introduced by Moore and Seiberg [80] for RCFT’s, and was mathematically defined in [30] by the 
name of an intertwining operator.
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that both A and m are in ModV . This miraculous simplification is the key to the success of the 
categorical classification of boundary-bulk RCFT’s in [31,27,62,68]. Using this equivalence, it 
is very easy to construct OSVOA’s over V . For example, let x be a V -module, i.e. an object in 
ModV . Then the internal hom [x, x] = x ⊗ x∗, together with

m : x ⊗ x∗ ⊗ x ⊗ x∗ Idx ⊗vx⊗Idx∗−−−−−−−−→ x ⊗ x∗ and ι : 1
ux−→ x ⊗ x∗, (2.1)

gives an algebra in ModV , i.e. an OSVOA over V .

Remark 2.1. If A happens to be a VOA extension of V , then it is equivalent to a commutative 
algebra in ModV [45] (conjectured in [66]), i.e. an algebra such that m ◦ cA,A = m. For example, 
[1, 1] = 1 is the simplest commutative algebra in ModV .

A boundary CFT Abdy over V is an OSVOA over V equipped with a non-degenerate in-
variant bilinear form, which upgrade Abdy to a symmetric Frobenius algebra in ModV [62] (see 
Definition A.6).

A bulk CFT contains bulk fields φ(z, ̄z) that depend on both the holomorphic variable z
and the anti-holomorphic variable z̄. Bulk fields also have OPE, which form a mathemati-
cal structure called a full field algebra [47]. Let U be a VOA, and let V be the same VOA 
as V but consisting of only anti-chiral fields ψ(z̄) for ψ ∈ V . The tensor product U ⊗C V

with φ(z, ̄z) = u(z) ⊗C v(z̄) for φ = u ⊗C v ∈ U ⊗C V gives an example of full field alge-
bra. A full field algebra Abulk is called a full field algebra over U ⊗C V if it is an extension 
of U ⊗C V by objects in ModU �ModV and all bulk fields are chiral vertex operators of the 
VOA U ⊗C V . U is called the chiral symmetry of Abulk and V is called the anti-chiral sym-
metry of Abulk. A full field algebra over U ⊗C V is equivalent to a commutative algebra in 
ModU �ModV [60]. A modular-invariant bulk CFT over U ⊗C V is a full field algebra over 
U ⊗C V equipped with a non-degenerate invariant bilinear form and a unique vacuum such that 
its genus-one correlation functions are all modular-invariant [48]. It is equivalent to a Lagrangian 
algebra in ModU �ModV [62,68] (see Definition A.3). For example, the well-known charge-
conjugate modular-invariant bulk CFT over V ⊗C V is given by the Lagrangian algebra ⊕i i � i∗
in ModV �ModV , where i are simple objects in ModV . Its partition function 

∑
i χi(q)χi∗(q̄) is 

modular invariant.
A boundary-bulk CFT consists of a boundary CFT Abdy and a modular-invariant bulk CFT 

Abulk satisfying some compatibility conditions [62,68] (see a different formulation in [31,32,
26]), one of which requires that the chiral symmetry of Abdy coincides with both the chiral and 
anti-chiral symmetries of Abulk (see [61, Def. 1.25]). This condition implies that Abdy is a bound-
ary CFT over V and Abulk is a bulk CFT over V ⊗C V . If we include all compatibility conditions 
(such as the Cardy condition), then Abdy must be a connected special symmetric Frobenius al-
gebra (CSSFA) in ModV (see Definition A.6 & Remark A.7), and Abulk must be the Lagrangian 
algebra (see Definition A.3) given by the full center Z(Abdy) of Abdy in ModV �ModV [27,68]. 
For example, the internal hom algebra [x, x] for x ∈ ModV defined in Eq. (2.1) are CSSFA’s 
in ModV , and are boundary CFT’s of the same charge-conjugate modular invariant bulk CFT 
⊕i i � i∗, which is also the full center of [x, x] and a Lagrangian algebra in ModV �ModV . It 
turns out that mapping CSSFA’s in ModV to their full centers defines a one-to-one correspon-
dence between the set of Morita classes of CSSFA’s in ModV and that of Lagrangian algebras in 
ModV �ModV [67,68].

We summarize results reviewed in this section in the following dictionary:
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Physical terminologies Mathematical terminologies

A unitary rational chiral algebra A unitary VOA V s.t. ModV is a UMTC
Chiral vertex operators Intertwining operators
Boundary fields OPE An open-string VOA (OSVOA)
Boundary fields OPE with the chiral symmetry given by V An OSVOA over V = an algebra in ModV

A boundary CFT over V A symmetric Frobenius algebra in ModV

A modular-invariant bulk CFT over U ⊗C V A Lagrangian algebra Abulk in ModU �ModV

Boundary-bulk CFT over V contains:
1. A boundary CFT over V A CSSFA Abdy in C := ModV

2. A modular invariant bulk CFT over V ⊗C V A Lagrangian algebra Abulk in C � C

3. Boundary-bulk duality Abulk = Z(Abdy), where Z(Abdy) is the full center of A

3. Observables on a chiral gapless edge

A 2d topological order is described by a UMTC C and the chiral central charge c, i.e. a 
pair (C, c). The chiral central charge is defined by the difference between the central charges 
of the right movers and the left movers, i.e. c = cR − cL. It modulo 8 equals to the topological 
central charge of C. In this work, we only study chiral gapless edges. Objects in C are topological 
excitations. The tensor unit 1C of C represents the trivial topological excitation. We denote the 
fusion product in C by ⊗. The simplest UMTC is the category H of finite dimensional Hilbert 
spaces. The pair (H, 0) describes the trivial 2d topological order.

Suppose that the 2d bulk phase (C, c) is realized on an open 2-disk, and the edge of the 2-disk 
is gapless and chiral. We depict the 1+1D world sheet of the edge as a cylinder in Fig. 1 (a). 
The chiral fields associated to chiral edge modes live on the entire 1+1D world sheet. These 
chiral fields have OPE, which are described mathematically by a chiral algebra with the central 
charge c, or a VOA U with the central charge c. In general, the category ModU of U -modules 
might not coincide with C (see Section 5).

This VOA U is not the only observables on the gapless edge. In Fig. 1 (a), at t = 0, a topolog-
ical bulk excitation a is moved to the edge, it creates a topological edge excitation (or a defect) 
labeled by x on the edge at t = 0. This excitation x is different from those gapless excitations in 
the chiral edge modes, and should be viewed as certain super-selection sector, and is similar to a 
topological edge excitation on a gapped edge [59,64]. There are chiral fields (also called defect 
fields or chiral vertex operators) living on x at t = 0 [92,96,97]. They form a vector space Mx . 
In general, non-trivial topological bulk excitations might condense on the edge, and there might 
be more topological edge excitations than those from the bulk.

Note that the topological edge excitation x is also a wall between the t > 0 part of the world 
line (the blue line in Fig. 1 (a)) and t < 0 part. The chiral fields on the t > 0 part of the world 
line supported on x are potentially different from those in U . These chiral fields must also have 
OPE. Mathematically, this OPE structure of chiral fields in Ax alone forms an OSVOA (see 
Section 2). We denote the trivial topological edge excitation by 1. When x = 1, it is clear that 
A1 = U . We will argue that this OSVOA Ax is one of the boundary CFT’s of a modular invariant 
bulk CFT. Indeed, stretching the cylinder in Fig. 1 (a) along the dotted arrow from a to x, we 
obtain the quasi-1+1D world sheet with two boundaries, one of which is the 0+1D world line 
supported on x, as depicted in Fig. 1 (b). Chiral fields on this boundary Ax (and other data Ay

and Mx,y which will be explained later) remain the same during this process. It is clear that both 
chiral and anti-chiral fields live on this quasi-1+1D world sheet. It was shown in [15, Sec. 2.1]
that they form a modular invariant bulk CFT Abulk. This fact was also emphasized in [87,75] as 
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Fig. 1. The picture (a) depicts a 2d topological order (C, c) on a 2-disk, together with a 1d gapless edge, propagating in 
time. When a topological bulk excitation a ∈ C is moved to the edge at t = 0, it creates a topological edge excitation x
or a boundary condition Mx for the OSVOA Ax living on the t > 0 part of the world line. At t = t1 > 0, the topological 
edge excitation x is changed to another topological edge excitation y. This change creates a wall Mx,y between Ax and 
Ay . The picture (b) depicts the quasi-1+1D world sheet obtained by stretching the picture (a) along the dotted arrow from 
a to x. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

a consequence of the following no-go theorem: any 1+1D conformal field theory realized by a 
1d lattice Hamiltonian model is modular invariant. Therefore, the OSVOA’s Ax is one of the 
boundary CFT’s of the modular invariant bulk CFT Abulk.

Remark 3.1. We have argued on the physical level of rigor that Ax is a boundary CFT of a mod-
ular invariant bulk CFT. Mathematically, however, it is not a clear statement because there are 
different mathematical definitions of a boundary-bulk CFT. Here we assume that a boundary-
bulk CFT satisfies Segal’s type of axioms of an open-closed CFT of all genera [40,62], including 
modular invariance condition, Cardy condition, etc. In other words, we propose the following 
conjecture (as a generalized “no-go theorem”): A 1+1D boundary-bulk conformal field theory 
realized by a 1d lattice Hamiltonian model with boundaries should satisfy the mathematical ax-
ioms of an open-closed CFT of all genera.

Remark 3.2. Although using boundary CFT’s to study 0d defects or impurities in other con-
densed matter systems has a long history [1,2], we were advised by referees that those condensed 
matter systems are quite different and can not be used to justify the appearance of boundary 
CFT’s here. We are not aware of any earlier works that have mentioned or studied the boundary 
CFT’s on the gapless edges of 2d topological orders. That chiral vertex operators live on the de-
fect x was known in 90’s (see [96,97]). But it is far from enough to imply that Ax is a boundary 
CFT. See Remark 4.3 for a further discussion.

Remark 3.3. We will come back in Section 7 to give a mathematically precise description of this 
stretching (or dimensional reduction) process and to identify precisely which modular invariant 
bulk CFT is obtained at the end of this process.

In order to be a well-defined boundary CFT, this OSVOA Ax is required to satisfy certain 
compatibility conditions with U . More precisely, fusing chiral fields in U into those in Ax
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Fig. 2. This picture depicts the fusion of the chiral fields φ(z) in U into those in Ax along different paths. Chiral fields 

(t) in the boundary CFT Ax (or Ay ) are restricted on the world line (the t -axis), which is also the blue line in Fig. 1. 
Defect fields �(t1) in Mx,y are restricted on t = t1.

along a path γ defines an OSVOA map ιγ : U → Ax (see Fig. 2). The minimal symmetry re-
quirement for Ax to be a consistent boundary CFT is that ιγ should preserve the conformal 
symmetry [12]. More precisely, let 〈TU 〉 and 〈TAx 〉 be the sub-VOA’s in U and Ax generated by 
the energy-stress tensors TU ∈ U and TAx ∈ Ax , respectively. Preserving the conformal symme-
try means that ιγ |〈TU 〉 : 〈TU 〉 → 〈TAx 〉 is a VOA isomorphism and independent of paths. More 
generally, one can require ιγ to preserve a larger chiral symmetry given by a sub-VOA V of U , 
i.e. ιγ |V : V ↪→ Ax is an injective OSVOA homomorphism and independent of paths (see for 
example [46,61]). This independence-of-path condition implies that V is the chiral symmetry of 
Ax , or equivalently, Ax must be a boundary CFT over V (recall Section 2). At the same time, 
the bulk CFT Abulk obtained in Fig. 1 (b) must be a bulk CFT over V ⊗C V . This chiral sym-
metry V , or the V -symmetry, is an important data in describing the gapless edge. We assume 
that V is unitary rational so that ModV is a UMTC. As we have discussed in Section 2, Ax must 
be a connected special symmetric Frobenius algebra (CSSFA) in ModV (see Definition A.6 & 
Remark A.7).

It is also possible to change a topological edge excitation x to another y on the same world line 
at t = t1 > 0 as depicted in both Fig. 1 (a) and Fig. 2. For example, one can move a topological 
bulk excitation b ∈ C to the world line at t = t1 to give y = b⊗x in Fig. 1 (a). This process creates 
a wall (at t = t1) between two boundary CFT’s Ax (on {0 < t < t1}) and Ay (on {t > t1}). From 
Fig. 1 (b), it is clear that the OSVOA’s Ax and Ay are two boundary CFT’s of the same bulk CFT 
Abulk, and are CSSFA’s in ModV . The defect fields on the wall are a special kind of chiral vertex 
operators called boundary condition changing operators [13]. They form a vector space Mx,y . 
It is clear that we should have M1,x = Mx and Mx,x = Ax . Similar to Ax , the wall Mx,y should 
also preserve the V -symmetry. This condition means that My,x must be an object in ModV . 
Moreover, defect fields in Mx,y can be fused with those in My,z to give defect fields in Mx,z. 
This fusion should commute with the V -actions, i.e. an intertwining operator of V . Therefore, 
it can be described by a morphism My,z ⊗ Mx,y → Mx,z in ModV [49]. When x = y = z, this 
morphism is nothing but the multiplication morphism Ax ⊗ Ax → Ax that defines the algebra 
structure on Ax .

Remark 3.4. In general, V � U (see Remark 5.1). According to [45], the VOA U (i.e. A1) is 
a commutative CSSFA in ModV . Note that U also acts on Mx,y . So Mx,y is a left (or right) 
U -module. When Mx,y = Ax , U acting on Ax via two different paths γ1 and γ2 in Fig. 2. But 
Ax is not necessarily a local U -module ([6,66,31]) unless V = U or Ax = U . According to 



148 L. Kong, H. Zheng / Nuclear Physics B 927 (2018) 140–165
Fig. 3. This picture depicts how to fuse horizontally (on the same time slide) two topological edge excitations (or bound-
ary conditions of boundary CFT’s) x and y, together with boundary CFT’s Ax , Ay , Ax′ , Ay′ and walls Mx,y , Mx′,y′ . 
For convenience, we abbreviate x′ ⊗ x to x′x in the picture.

[45], a VOA-module over U is necessarily a local U -module in ModV . Therefore, Mx,y is not a 
VOA-module over U in general.

In summary, all the observables on 1+1D world sheet of a gapless edge of a given 2d bulk 
phase (C, c) can be described by a pair (V , X�), where X� is a categorical structure:

• objects in X� are topological edge excitations;
• for each pair x, y objects in X�, there is a space homX� (x, y) := Mx,y which is an object in 

ModV ;
• an identity map V = 1ModV

→ Mx,x = Ax is a morphism in ModV defined by the canonical 
embedding V ↪→ Ax ;

• a composition map My,z ⊗ Mx,y → Mx,z is a morphism in ModV ,

satisfying some natural physical properties, such as the unit property of the identity map and the 
associativity of the composition map. As a result, this categorical structure X� is nothing but a 
category enriched in ModV , or an ModV -enriched category [57] (see Definition A.10).

The last piece of structure is the fusion (on a time slide) of two topological edge excitations 
x′ and x, denoted by x′ ⊗ x as depicted in Fig. 3. It automatically provides a fusion between 
observables on two parallel world lines. This fusion provides

• a morphism Mx′,y′ ⊗ Mx,y → Mx′⊗x,y′⊗y in ModV for objects x, y, x′, y′ in X�,

satisfying some natural properties. This fusion structure upgrades X� to an ModV -enriched 
monoidal category [81] (see Definition A.16).

Remark 3.5. Actually, the physics observables demand more structures than just an enriched 
monoidal category. For example, the topological edge excitations should be semisimple and 
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have duals; the morphism Mx′,y′ ⊗Mx,y → Mx′⊗x,y′⊗y should factor through Mx′,y′ ⊗U Mx,y �
Mx′⊗x,y′⊗y (see Eq. (4.3)), etc. These will lead us too far to the mathematical details. We will 
postpone the discussion of them to [73].

Remark 3.6. The boundary-bulk duality2 for topological orders in arbitrary dimensions was 
proved formally in [70] under some natural assumptions. It says that the bulk topological or-
der should be given by the center of the boundary phase regardless how we describe the bulk 
and the boundary phases mathematically. This formal proof also works for the cases in which 
the boundary phase is gapless [70, Remark 5.7]. Therefore, if the enriched monoidal category X�

indeed gives a mathematical description of the gapless edge, then we expect that the Drinfeld 
center Z(X�) of the enriched monoidal category X�, a notion which was recently introduced in 
[72, Def. 2.1], gives exactly the UMTC C, i.e. Z(X�) = C.

4. A canonical chiral gapless edge

Let B be a UMTC such that there exist a rational VOA V of central charge c such that 
ModV =B. We denote its tensor unit by 1B. The creation and annihilation of a particle-
antiparticle pair are described by the duality morphisms

ux : 1B → x ⊗ x∗, vx : x∗ ⊗ x → 1B. (4.1)

We denote the braiding isomorphisms by cx,y : x ⊗ y → y ⊗ x for x, y ∈B. We use B to denote 
the UMTC that is the same monoidal category as B but equipped with the braiding given by the 
anti-braiding in B.

In this section, we focus on the simplest gapless edge of (B, c), called the canonical gapless 
edge. We describe all the observables on this canonical gapless edge below.

• Topological edge excitations are all obtained from moving topological bulk excitations to 
the edge. They are labeled by objects in B.

• B = ModV for a rational VOA V .
• V = U , namely, all the boundary CFT’s Ax and wall between them Mx,y are required to 

preserve the largest chiral symmetry V . As a consequence, Mx,y are objects in B.
• Mx = x as a V -module. For each x ∈ B, the boundary CFT Ax is given by the internal hom 

[x, x] := x ⊗ x∗, which is a CSSFA in B [25,31,62]. Its algebraic structures are defined in 
Eq. (2.1). When x = 1B, we have A1B = 1B = V .

• Mx,y = [x, y] = y ⊗ x∗ [29]. In particular, M1B,x = Mx = [1B, x] = x.
• Defect fields in [x, y] can be fused with those in [y, z] to give defect fields in [x, z]. This 

amounts to a morphism [y, z] ⊗ [x, y] → [x, z] in B, which is defined as follows:

[y, z] ⊗ [x, y] = z ⊗ y∗ ⊗ y ⊗ x∗ Idz ⊗vy⊗Idx∗−−−−−−−−→ z ⊗ x∗ = [x, z]. (4.2)

It is clear that [x, y] is automatically a [y, y]-[x, x]-bimodule.
• The fusion of topological edge excitations (on the same time slide) depicted in Fig. 3 de-

mands a morphism Mx′,y′ ⊗ Mx,y → Mx′⊗x,y′⊗y in B. It is defined as follows:

2 It is related to but different from the bulk-edge correspondence (see [79,36,88,77] and references therein).
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[x′, y′]⊗[x, y] = y′ ⊗x′ ∗ ⊗y ⊗x∗ Idy′ ⊗cx′ ∗,y⊗x∗−−−−−−−−−→ (y′ ⊗y)⊗ (x′ ⊗x)∗ = [x′ ⊗x, y′ ⊗y].
(4.3)

This canonical edge of (B, c) is the most studied edge in physics. But our description of the 
complete set of observables on this edge, especially the fusion of defects fields in (4.2) and (4.3), 
in terms of internal hom is new.

Remark 4.1. Recall that CSSFA’s [x, x] for x ∈ B are all Morita equivalent to the tensor unit 
1B, and are boundary CFT’s of the same charge-conjugate modular invariant bulk CFT given by 
the full center of 1B, i.e. Z(1B) = ⊕i i � i∗, in B �B. In general, there are more CSSFA’s in B
(not Morita equivalent to [x, x]) that can occur on a different gapless edge (see Remark 7.2).

These observables on the canonical edge of (B, c) can be summarized by a pair (V , B�), 
where B� is a categorical structure:

• an object in B� is a topological edge excitation, i.e. an object x in B;
• the hom space homB� (x, y) = [x, y] = y ⊗ x∗;
• a distinguished morphism idx : 1B → [x, x] = x ⊗ x∗ defined by ux : 1B → x ⊗ x∗;
• a composition map [y, z] ⊗ [x, y] → [x, z] defined by Eq. (4.2);
• a morphism: [x′, y′] ⊗ [x, y] → [x′ ⊗ x, y′ ⊗ y] defined by Eq. (4.3).

It was proved in [81] that this categorical structure B� is a B-enriched monoidal category. We 
denote this canonical edge by the pair (V , B�). It is explained in Example A.17 that this enriched 
monoidal category B� is exactly one obtained from the pair (B, B) via the canonical construc-
tion. Therefore, we can also denote B� by a pair (B, B), i.e. B� = (B, B), where the second B is 
viewed as a UFC equipped with the unitary braided monoidal functor φM : B→ B�B = Z(B).

Remark 4.2. The notion of an enriched monoidal category is a generalization of the usual notion 
of a monoidal category. For example, an ordinary UFC M can be viewed as the H-enriched 
monoidal category obtain from the pair (H, M) via the same canonical construction given in 
Example A.17, i.e. M = (H, M).

Our categorical description of the canonical gapless edge need pass an important consistence 
check: boundary-bulk duality (recall Remark 3.6). We expect the Drinfeld center Z(B�) of B� to 
coincide with B as UMTC’s. Indeed, we introduced the notion of Drinfeld center of an enriched 
monoidal category in [72, Def. 2.1] and proved that Z(B�) = B [72, Cor. 2.5].

Remark 4.3. It is generally accepted that a chiral gapless edge of a 2d topological order corre-
sponds to the boundary of a 2+1D TQFT, and there are also convincing arguments that such a 
boundary supports a chiral CFT, which consists of a VOA V and conformal blocks (i.e. hom 
spaces in ModV ). On the gapless edge, however, one only see chiral fields instead of the hom 
spaces in ModV . As a consequence, the hom spaces are replaced by internal homs, and ModV

is replaced by enriched monoidal category B�. This change is not contradicting to the statement 
“such a boundary supports a chiral CFT” because B� is canonically obtained from B, and B
can be recovered from B� as its underlying category (see Definition A.13). But this change is not 
only physically natural but also crucial for the boundary-bulk duality to hold because B describes 
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a gapped edge of a double-layered bulk, i.e. Z(B) = B � B, while B� describes a gapless edge 
of (B, c), i.e. Z(B�) = B.

The conclusion of this section is that the complete mathematical description of the canonical 
gapless edge of (B, c) is given by a pair (V , B�), where V is a VOA such that ModV = B, 
and B� is the B-enriched monoidal category obtained from the pair (B, B) via the canonical 
construction given in Remark A.17.

5. General chiral gapless edges

Similar to gapped edges, in general, there are more than one chiral gapless edges for a given 
bulk phase (C, c) (see for example [84,10,11,7]).

Similar to the fusion of gapped domain walls [59,34,76,53,3,55], we can obtain a new gapless 
edge of the 2d bulk phase (C, c) by fusing a canonical edge (V , B�) of (B, c) with a gapped 
wall M between (B, c) and (C, c). We denote the new gapless edge obtained from this fusion by 
(V , B�) �(B,c) M, or graphically as follows:

(5.1)

When C = B =M, we must have (V , B�) = (V , B�) �(B,c) B.
We will give a detailed analysis of this new edge (V , B�) �(B,c) M in [73]. We simply state 

the results here. Recall that the gapped wall M between (B, c) and (C, c) can be described 
mathematically by a UFC, still denoted by M, equipped with a unitary braided equivalence 
ψM : B � C → Z(M) [59,71,3] (see also [35,65,76,55] for equivalent descriptions). The exis-
tence of such a UFC M defines an equivalence relation, which is called Witt equivalence, between 
the two UMTC’s B and C [19, Cor. 5.9]. Since the topological edge excitations on the edge 
(V , B�) are labeled by objects in B = ModV , it is clear that those on the new edge are labeled 
by objects in B �B M = M. The tensor unit 1M = 1B �B 1M in M is the trivial topological 

edge excitation. Since there is a unitary braided monoidal functor φM : B ↪→ B�C 
ψM−−→ Z(M), 

for x, y ∈ M, the internal hom [x, y] is a well-defined object in B (see Eq. (A.1) or Eq. (A.2)). 
The chiral algebra U = A1M on this new edge is given by the internal hom [1M, 1M] in B, i.e. 
U = A1M = [1M, 1M]. It turns out that [1M, 1M] is a condensable algebra in B (see Defini-
tion A.2). According to [45], U is a VOA extension of V . In general, U �= V (see Remark 5.1). 
The boundary CFT Ax is given by the internal hom [x, x] in B. The defect fields Mx,y between 
the boundary CFT’s [x, x] and [y, y] are given by the internal hom [x, y] in B. As a conse-
quence, the new edge (V , B�) �(B,c) M is described by V and a B-enriched monoidal category 
M�, where M� is uniquely determined by the pair (B, M) via the canonical construction given 
in Example A.17. Moreover, we proved in [72, Cor. 3.3] that the Drinfeld center Z(M�) of M�

is exactly C, i.e. Z(M�) = C. Namely, the boundary-bulk duality still holds for this new gapless 
edge.

Remark 5.1. In general, U �= V . For example, let A be a condensable algebra in B and A �= 1B. 
Let (C, c) be the 2d bulk phase obtained by condensing A in the 2d bulk phase (B, c) [65] (see a 
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Fig. 4. This picture illustrate a wall (U, A, M) between (C, c1) and (D, c1 + c2) and a wall (V , B, N) between 
(D, c1 + c2) and (E, c1 + c2 + c3). The fusion of these two walls is defined by Eq. (5.3).

review [9] and references therein), i.e. C =B0
A [65], where B0

A is the category of local A-modules 
in B [6,66,19]. This condensation process creates between two phases a gapped domain wall M
[4], described mathematically by the category BA of A-modules in B, i.e. M =BA [65]. In this 
case, we have U = [1M, 1M] = A �= 1B = V .

Remark 5.2. On this new edge, all boundary CFT’s [x, x] and walls [x, y] preserve only the 
V -symmetry instead of the U -symmetry. As a consequence, M� is enriched in B = ModV instead 
of in ModU (recall Remark 3.4). We will give a detailed explanation of this phenomenon in [73].

Since M� is uniquely determined by the pair (B, M), we denote the new edge (V , B�) �(B,c)

M by the triple (V , B, M). This notation has a lot of advantages. First, notice that the canonical 
edge (V , B�) of (B, c), in the new notation, is just the triple (V , B, B). Secondly, this notation 
automatically include the mathematical description of gapped edges as special cases (recall Re-
mark 4.2). For example, if N is a gapped edge of a 2d bulk phase (D, 0), it can be expressed as 
a triple (C, H, N), where C denotes the field of complex numbers, viewed as the simplest VOA 
with 0 central charge. Thirdly, the fusion product (V , B�) �(B,c) M can be easily recovered by 
the following fusion formula

(V ,B�) �(B,c) M = (V ,B,B) �(B,c) (C,H,M) := (V ⊗C C,B� H,B�B M)

= (V ,B,M) = (V ,M�). (5.2)

Since domain walls can be viewed as special cases of edges by the well-known folding trick, 
above construction also works for gapless/gapped domain walls. More precisely, for two given 
bulk phases (C, c1) and (D, c1 + c2) (see Fig. 4), a gapless domain wall between them can be 
obtained by fusing a gapped 1d defect M at the intersection of C, A, D with the canonical edge 
(U, A�) of the bulk phase (A, c2). This new wall is nothing but (U, A�) �(A,c2) M = (U, A, M). 
Now we consider the fusion of two such walls (U, A, M) and (V , B, N) depicted in Fig. 4. 
This picture suggests that we should fuse those (vertically illustrated) data on these two walls 
horizontally. This leads to the following fusion formula (which generalizes Eq. (5.2)):

(U,A,M) �(D,c1+c2) (V ,B,N) = (U ⊗C V,A�B,M�D N), (5.3)

where the relative tensor product M �D N is defined in [89,23,5,71]. We want to remark that 
M �DN is, in general, not a UFC but a unitary multi-fusion categories even if M and N are both 
UFC’s [69,3]. It describes an unstable 1d gapped defect [69,3].
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Remark 5.3. We have decorated each domain wall in Fig. 4 by an arrow, which represents the 
orientation of 1+1D world sheets of the wall. More precisely, we introduce a complex coordinate 
z = t + ix on the 1+1D world sheet as shown in Fig. 4, where the arrow on the wall coincides 
with the orientation of the x-axis. This arrow also indicates the order of the fusion product of 
two topological excitations on the wall. For example, if a topological excitation a is located 
at (0, 0) and b located at (0, 1) in the (t, x)-plane, then we fuse them as a ⊗ b (same as the 
convention in [59,3]). If we only flip the arrow, say the one on the (V , B, N)-wall, then the 
same triple represents a different wall. If we not only flip the arrow but also change the triple 
(V , B, N), we can keep the wall physically unchanged. More precisely, in terms of the world 
sheet coordinate z = t + ix, flipping the arrow can be achieved by an orientation-reversing map 
t �→ t, x �→ −x, or equivalently, z �→ z̄. We use V to denote the same VOA as V but containing 
only anti-chiral fields φ(z̄) for φ ∈ V . It is clear that N should be replaced by Nrev, which is the 
same category of N but equipped with a reversed tensor product ⊗rev defined by a⊗rev b := b⊗a

for a, b ∈N. The braided monoidal functor φN : B→ Z(N) is automatically a braided monoidal
functor φN : B → Z(N) = Z(Nrev). Also note that changing V to V is compatible with the 
change from B to B according to the construction of braiding in B in [44]. Therefore, the triple 
(V , B, N), together with the arrow on the wall, represents the same wall as the triple (V , B, Nrev), 
together with a flipped arrow.

6. Classification of gapless/gapped edges

In Section 3, we have explained that a chiral gapless edge of (C, c) should be described by a 
pair (V , X�), where X� is an ModV -enriched monoidal category for a VOA V . Let B = ModV . 
The objects in X� are topological edge excitations. For x, y ∈ X�, the hom space HomX� (x, x)

is a boundary CFT, and HomX� (x, y) is a wall between two boundary CFT’s HomX� (x, x) and 
HomX� (y, y). These boundary CFT’s and walls between them all preserve the V -symmetry. In 
general, the chiral algebra U = homX� (1, 1), where 1 is the trivial topological edge excitation, is 
a non-trivial extension of V (recall Remark 5.1).

Mathematically, it is known, by a nice work [81], that any B-enriched monoidal category 
X� is equivalent to the one obtained from the canonical construction from a pair (B, X), where 
X is a monoidal category of X� equipped with a braided oplax monoidal functor φX : B →
Z(X), i.e. X� = (B, X). We have explained this canonical construction in Example A.17. In [73], 
we will argue that the only physical relevant cases are those (B, X) such that X is a UFC and 
φM is a unitary braided monoidal functor. Note that φM is automatically fully faithful by [19, 
Corollary 3.26].

Moreover, X� should satisfy the boundary-bulk duality [70]. Namely, the Drinfeld center 
Z(X�) of X� should coincide with the UMTC C. By [72, Cor. 3.3], we have Z(X�) = C if and 
only if Z(X) = B� C. This implies that the UFC X can be physically realized by a gapped wall 
between (B, c) and (C, c). Therefore, the gapless edge (V , X�) of (C, c) should be nothing but 
the triple (V , B, X) constructed in Section 5.

Therefore, we propose a classification result of all gapped and chiral gapless stable edges 
associated to the same 2d bulk phase (C, c) as follows:

Gapped and chiral gapless stable edges of (C, c) one-to-one correspond to triples (V , B, X), 
where V is a VOA V with central charge c such that B = ModV , and X is a unitary fusion 
category equipped with a unitary braided equivalence ψX : B � C 

�−→ Z(X). The edge is 
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gapped if V = C and gapless if otherwise. Equivalently, one can replace the data X by a 
Lagrangian algebra AX in Z(X).

If we allow to include unstable edges, we can simply replace “fusion” by “multi-fusion” in the 
description of X (see [69,3]).

Remark 6.1. When V = C, this classification recovers the classification result of gapped edges 
of (C, 0). A non-chiral gapless edge of a bulk phase (C, 0) is gappable if there is UFC X such 
that Z(X) = C. An example of such non-chiral gappable edges is given in Section 7.

Remark 6.2. There is a nice classification of gapless edges for abelian 2d topological orders 
given in [11]. It will be very interesting to compare our classification with that in [11]. Con-
structing new gapless edges via the anyon condensations of a non-abelian bulk phase (C, c) was 
considered in some special cases in [7]. In our constructions of gapless edges, the Witt equiv-
alence relation between C and B not only includes the cases, in which (B, c) is obtained from 
(C, c) via an anyon condensation [65], but also more general ones, in which both (B, c) and 
(C, c) are obtained from anyon condensations of another bulk phase (D, c) [19,65].

Our classification proposal reduces the problem of classifying all chiral gapless edges of a 
given bulk phase (C, c) to the problem of classifying all VOA’s whose module categories are Witt 
equivalent to C. The later problem is still widely open. Interestingly, if every (C, c) can indeed 
be realized by a 2d topological order and if C is not Witt equivalent to the trivial UMTC k, 
then (C, c) should have topologically protected chiral gapless edges. It suggests the following 
mathematical conjecture.

Conjecture 6.3. For any UMTC C, there is a unitary VOA V such that ModV is a UMTC which 
is Witt equivalent to C.

Remark 6.4. The above conjecture is significantly weaker than the stronger conjecture that every 
UMTC C coincides with ModV for some VOA V such that its central charge mod 8 coincides 
with the topological central charge of C (see for example [90]). Our theory of chiral gapless 
edges of 2d topological orders does not require (nor support) the stronger conjecture to be true. 
Interestingly, if there are only finitely many chiral gapless edges of a given bulk phase (C, c), an 
assumption which is not unreasonable, then our theory suggests that there are only finitely many 
unitary VOA’s of a fixed central charge c such that their module categories are Witt equivalent to 
a given UMTC C.

By the folding trick, we automatically obtain a classification of the gapless/gapped walls be-
tween two 2d bulk phases (C, c1) and (D, c2). If c1 = c2 and C, D are Witt equivalent [19,65], 
then there are gapped walls; if otherwise, then all the walls are necessarily gapless.

7. 0d defects and bulk CFT’s

In this section, we briefly discuss 0d defects between different gapless edges and the appear-
ance of modular-invariant bulk CFT’s.

Let us consider the situation depicted in Fig. 5 (a). Let M be a gapped wall between two bulk 
phases (C, c) and (C, c). Namely, M is a UFC such that Z(M) = C � C= Z(C) as UMTC’s. Let 
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Fig. 5. (a) depicts two 2+1D bulk phases (C, c) and (C, c), equipped with the canonical edge and its time reverse, 
respectively, and separated by a gapped domain wall M. x, z are objects in M, and the internal hom [x, z] ∈ M is defined 
by [x, z] = z ⊗ x∗. These internal homs form a canonical 0d edge of the 1d wall M. (b) depicts a 1+1D world sheet 
obtained by squeezing the entire 2-disk in (a) to the 1d wall M.

(V , C, C) be the canonical edge of (C, c) (i.e. ModV = C). Note that we have flipped the orienta-
tion of the part of edge on the right side of the wall M. As we have discussed in Remark 5.3, we 
need change the triple (V , C, C) to (V , C, Crev) in order to leave the edge unchanged.

Now we consider a dimensional reduction process by fusing these two gapless edges with the 
gapped wall M. The process is depicted as passing from Fig. 5 (a) to (b). The result of this fusing 
process is a 1d gapless wall between two trivial phases defined by

(V ,C,C) �(C,c) (C,H,M) �(C,c) (V ,C,Crev) = (V ⊗C V ,C� C,M). (7.1)

Its 1+1D world sheet is depicted in Fig. 5 (b). Both chiral and anti-chiral fields live on this 1+1D 
world sheet. Those fields on the world line supported on the trivial topological excitation 1M are 
given by the internal hom [1M, 1M]C�C in C �C. This internal hom is a Lagrangian algebra and 
is also called the full center of 1M, denoted by Z(1M). It is not a VOA but a modular-invariant 
bulk CFT over V ⊗C V [27,68]. When M = C, Z(1C) = ⊕i∈I (C) i � i∗, where I (C) is the set of 
simple objects in C, is nothing but the charge-conjugate modular invariant bulk CFT. It turns out 
that the map M �→ Z(1M) defines a one-to-one correspondence between gapped walls M and 
modular-invariant bulk CFT’s over V ⊗C V . Therefore, Fig. 5 provides a physical explanation of 
the one-to-one correspondences among the following three sets: the set of Lagrangian algebras in 
Z(C), that of gapped walls between (C, c) and (C, c), and that of modular-invariant bulk CFT’s 
in C � C.

Remark 7.1. More general heterotic modular invariant bulk CFT’s will be discussed in Re-
mark 7.4. The correspondence between Lagrangian algebras and modular-invariant bulk CFT’s 
was first proved in [68, Thm. 3.4]. The physical explanation of this correspondence was provided 
for abelian anyon systems by Levin in [75]. Using the general anyon condensation theory [65]
(see also [24,53]), Levin’s arguments can be trivially generalized to non-abelian anyon systems. 
In this work, we have generalized all these earlier works, and have made this correspondence 
more precise by an explicit formula Eq. (7.1) and by its generalization in Remark 7.4 in terms of 
a new mathematical structure: enriched monoidal categories.
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Now we discuss a 0d edge of the 1d wall M. In order to give a boundary CFT interpretation 
of the observables on this 0d edge, we must link M to an OSVOA. It turns out that M can always 
be realized by the category CW |W of W -W -bimodules, where W is a CSSFA in C [83,22,33,31]
thus an OSVOA extension of V [46]. As a consequence, M can be viewed as a subcategory of C. 
This CSSFA W is not unique, but it is unique up to Morita equivalence. Different choices of W
in the same Morita class amount to relabeling the objects in M. Moreover, there is a one-to-one 
correspondence between the set of UFC’s M (up to equivalences) such that Z(M) = Z(C) and 
that of the Morita classes of CSSFA’s in C [22].

Once we have fixed W , there is a canonical 0d edge of the gapped wall M (depicted in 
Fig. 5 (a)) defined by a pair (W, M�), where M� is an M-enriched category. More precisely, 
the objects in M� are the same as those in the UFC M, and the hom spaces HomM� (x, z) are 
given by the internal hom [x, z] = z ⊗ x∗ in M (recall Example A.12). The internal homs [x, x]
for x ∈ M are CSSFA’s in M, and automatically OSVOA extensions of W . They are automati-
cally boundary CFT’s over V [29,67,68]. The internal homs [x, z] are walls between boundary 
CFT’s. By passing from Fig. 5 (a) to (b), this 0d edge (W, M�) becomes a 0d edge of the 1d 
gapless wall (V ⊗C V , C � C, M) between two trivial phases. Its 0+1 world line is depicted as 
the left boundary of the 1+1D world sheet in Fig. 5 (b). Boundary CFT’s on this world line are 
CSSFA’s 1M, [x, x], [z, z] in M, and they must share the same bulk CFT Z(1M). Mathemati-
cally, it means that they must have the same full center, i.e. Z([x, x]) = Z([z, z]) = Z(1M). It 
is guaranteed because they are all Morita equivalent [29,67,16]. Moreover, these internal homs 
[x, x] in M for all x ∈M realize all boundary CFT’s over V that share the same bulk CFT Z(1M)

[67,68].

Remark 7.2. In particular, when M = C, [x, x] = x ⊗ x∗ for x ∈ C are all the CSSFA’s in C that 
are allowed on the canonical edge (V , C�) (recall Remark 4.1). When M �= C, [x, x] ∈ M = CW |W
recovers CSSFA’s in C in a Morita class different from that of 1C.

In this way, we have naturally recovered all boundary-bulk CFT’s over V from 2d topological 
orders via a dimensional reduction process.

Remark 7.3. Since (V ⊗C V , C � C, M) is a gapless wall between two trivial phases, the Drin-
feld center of the enriched monoidal category (C � C, M) is exactly the trivial UMTC H [72]. 
Such a gapless wall is called gappable (recall Remark 6.1). By [98, Corollary 4.3], the enriched 
monoidal category (Z(M), M) is Morita equivalent to (H, H), and the Morita equivalence is 
exactly defined by the invertible (H, H)-(Z(M), M)-bimodule M�.

Remark 7.4. More generally, bulk phases on the two sides of the gapped wall M in Fig. 5 (a) can 
be different, say (C, c) and (D, c). There is a VOA A with two VOA extensions U and V such 
that ModU = C, ModV = D [19]. The internal hom [1M, 1M]C�D = Z(1M) is a Lagrangian 
algebra in C � D. The map M �→ Z(1M) defines a bijection between the set of gapped walls 
between (C, c) and (D, c), that of Lagrangian algebras in C � D. These Lagrangian algebras 
are precisely those modular-invariant bulk CFT’s in Z(ModA) containing U ⊗C V as a full field 
subalgebra [28,17,19]. The fusion category M can be realized by EW |W , where W is a CSSFA in 
E := (ModA)U |V . The 0d edge of the wall M is still given by the pair (W, M�), where M� is the 
M-enriched category consisting of the same objects as those in M and HomM� (x, z) := [x, z] =
z ⊗ x∗ ∈ M. All [x, z] in M can be interpreted as boundary CFT’s (or walls) over A and share 
the same bulk CFT Z(1M). We will give more details in [73].
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Remark 7.5. We will give a detailed study and a classification of all 0d walls in [73]. There are 
some physics works on 0d walls between different gapless edges of 2d topological orders (see 
[10]). But boundary CFT’s were not mentioned there.

Remark 7.6. It will be interesting to understand the relation between our approach towards the 
gapless edges of 2d topological orders and the well-known formulation of boundary-bulk RCFT’s 
as holographic boundaries of a 2+1D Reshetikhin–Turaev TQFT’s [25,33,31,32,28,54]. We hope 
to clarify this relation in the future.

8. Summary and outlooks

In this work, we have shown that a gapless edge of a 2d bulk phase (C, c) can be mathemat-
ically described/classified by an enriched monoidal category M� together with a VOA V . This 
description includes that of gapped edges as special cases. Therefore, we have found a unified 
mathematical theory for both gapped and gapless edges.

We have left out a few important issues that will be discussed in [73]. We briefly mention 
them below.

• Some gapless edges given in our classification are actually gappable. A gapless edge is 
gappable if it shares the same bulk with a gapped edge. Mathematically, a gapless edge 
(V , B, M) is gappable if its Drinfeld centers Z(B, M) coincide with that of a UFC N, or 
equivalently, (B, M) is Morita equivalent to (H, N) [98].

• In [71], the complete mathematical statement of the boundary-bulk duality for gapped edges 
can be stated as a functor mapping UFC’s to their Drinfeld centers. Moreover, the functor is 
fully faithful. We will prove a similar result for gapless/gapped edges.

Enriched monoidal categories are also useful in the study of topological order with symmetries 
(SPT’s/SET’s). Our results shed light on how to describe gapless/gapped edges for SPT’s and 
SET’s. We will come back to this point in the future.

The unified mathematical theory of gapless/gapped edges/walls also allows us to compute 
global observables for topological orders with gapless edges/walls via factorization homology 
[3]. It will be interesting to explore them thoroughly in the future.

It is very important to study how to obtain a gapless edge from another via pure edge phase 
transitions (see for example [84,10,11] and references therein).

Appendix A

A.1. Algebras in unitary modular tensor categories

In this subsection, we recall the definitions of a few types of algebras in a UFC or a UMTC.

A unitary fusion category (UFC) C is a unitary finite abelian rigid monoidal category [21,20]. 
We will not recall its definition, but only recall a few important ingredients of it.

1. There are finitely many simple objects, and all objects are direct sums of simple objects;
2. The hom spaces homC(x, y) are all finite dimensional Hilbert spaces; For every morphism 

f : x → y, there is an adjoint f ∗ : y → x; and f ∗ ◦ f = 0 implies that f = 0;
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3. There is an associative tensor product ⊗ : C × C → C, i.e. x ⊗ (y ⊗ z) � (x ⊗ y) ⊗ z, and a 
distinguished object 1 called the tensor unit; 1 is simple;

4. Each object x has a (two-side) dual object x∗, together with duality maps ux : 1 → x ⊗ x∗
and vx : x∗ ⊗ x → 1.

A UFC C is a unitary braided fusion category if it is also equipped with a braiding cx,y : x ⊗y
�−→

y ⊗x for x, y ∈ C satisfying the Hexagon relations. A UMTC is a unitary braided fusion category 
such that 1 is the only simple object that is symmetric to all objects [91]. In other words, if x is 
simple and cy,x ◦ cx,y = Idx⊗y, ∀y ∈ C, then x � 1.

Definition A.1. Let C be a monoidal category. An algebra in C is a triple (A, m, ι), where A is 
an object in C, m : A ⊗ A → A and ι : 1 → A are morphisms in C, such that

m ◦ (m ⊗ IdA) = m ◦ (IdA ⊗m), m ◦ (ι ⊗ IdA) = IdA = m ◦ (IdA ⊗ι).

If C is also braided, then A is called commutative if m ◦ cA,A = m.

Definition A.2. An algebra (A, m, ι) in a monoidal category C is called separable if there is an 
A-A-bimodule map e : A → A ⊗A such that m ◦ e = IdA. A separable algebra (A, m, ι) is called 
connected if homC(1, A) = C. If C is a UMTC, then a commutative connected separable algebra 
is called an étale algebra [19], or a condensable algebra (due to the fact that it determines an 
anyon condensation in a 2d topological order [65]).

Definition A.3 ([19]). A Lagrangian algebra in a UMTC C is a condensable algebra A such that 
(dimA)2 = dim(C).

Definition A.4. Let C be a monoidal category. A co-algebra in C is a triple (A, 
, ε), where A is 
an object in C, 
 : A → A ⊗ A and ε : A → 1 are morphisms in C, such that

(
 ⊗ IdA) ◦ 
 = (IdA ⊗
) ◦ 
, (ε ⊗ IdA) ◦ 
 = IdA = (IdA ⊗ε) ◦ 
.

Remark A.5. If C is UFC and (A, m, ι) an algebra in C, then the triple (A, m∗, ι∗) is automati-
cally a co-algebra in C.

Definition A.6 ([33]). Let C be a monoidal category. A Frobenius algebra in C is a quintuple 
(A, m, ι, 
, ε) such that (A, m, ι) is an algebra and (A, 
, ε) is a co-algebra and

(m ⊗ IdA) ◦ (IdA ⊗
) = 
 ◦ m = (IdA ⊗m) ◦ (
 ⊗ IdA).

Such a Frobenius algebra is called special if m ◦
 = IdA. When C is a UFC, a Frobenius algebra 
in C is called symmetric if

(IdA∗ ⊗(ε ◦ m)) ◦ (uA∗ ⊗ IdA) = ((ε ◦ m) ⊗ IdA∗) ◦ (IdA ⊗uA).

We abbreviate a connected special symmetric Frobenius algebra to a CSSFA.

Remark A.7. A special Frobenius algebra is automatically a separable algebra. Conversely, 
a connected separable algebra in a UFC has a unique structure of a CSSFA.
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Let C be a UFC. Let M be a left C-module, which is a unitary category M equipped with 
a unital and associative action � : C × M → M. In other words, for a, b ∈ C, x ∈ M, we have 
b � x ∈ M, 1 � x � x and a � (b � x) � (a ⊗ b) � x. For x, y ∈ M, the internal hom [x, y] is 
an object in C defined by the following isomorphisms for all a ∈ C,

γa,x,y : homM(a � x, y)
�−→ homC(a, [x, y]), (A.1)

which are natural with respect to all three variables a, x, y. Equivalently, one can define the inter-
nal hom [x, y] by its universal property. When a = [x, y], ρ := γ −1

[x,y],x,y(Id[x,y]) is a morphism 
[x, y] �x → y. The pair ([x, y], ρ) satisfies the following universal property. If (u, f ) is another 
such a pair, i.e. f : u � x → y, then there is a unique morphism f ′ : u → [x, y] in C such that 
the following diagram

[x, y] � x
ρ

u � x
f

f ′�Idx

y

(A.2)

is commutative. This universal property of internal hom determines the pair ([x, y], ρ) up to 
isomorphisms. This universal property also provides a canonical morphism ev : [y, z] ⊗[x, y] →
[x, z] induced from the action ([y, z] ⊗ [x, y]) � x → [y, z] � y → z, and a canonical morphism 
1 → [x, x] induced from the unital action 1 � x � x. These morphisms provide [x, x] with a 
structure of an algebra in C and [x, y] with a structure of a [y, y]-[x, x]-bimodule.

Example A.8. When M = C is viewed as a left C-module, then [x, y] = y ⊗ x∗ and

ρ : [x, y] � x = y ⊗ x∗ ⊗ x
Idy ⊗vx−−−−→ x.

In this case, it is very easy to show that such defined [x, y] satisfies the universal property of 
internal hom. More precisely, by the rigidity of C, there is a canonical isomorphism φ : homC(u ⊗
x, y) � homC(u, y ⊗ x∗). For any f : u ⊗ x → y, we obtain f ′ = φ(f ) : u → y ⊗ x∗ such that 
diagram in Eq. (A.2). Moreover, in this case, the canonical morphism ev : [y, z] ⊗[x, y] → [x, z]
is explicitly defined by

z ⊗ y∗ ⊗ y ⊗ x∗ Idz ⊗vy Idx∗−−−−−−−→ z ⊗ x∗,
and the 1 → [x, x] is defined by ux : 1 → x ⊗ x∗. It turns out that [x, x] for x ∈ M are CSSFA’s 
in M.

Example A.9. Let M be a UFC. Its Drinfeld center Z(M) is a UMTC. M is also a left 
Z(M)-module. The internal hom [1M, 1M] in Z(M) is a condensable algebra (see Defini-
tion A.2), and is also called the full center of 1M, denoted by Z(1M). When M is a UMTC, 
Z(M) � M �M, and Z(1M) = ⊕i i � i∗, where i are simple objects in C, is a Lagrangian alge-
bra in Z(M). More generally, the notion of the full center Z(A) can be defined for any algebra 
A in M [16]. If A is a CSSFA in M, then the full center Z(A) of A in Z(M) is a Lagrangian 
algebra in Z(M) [27,67,68].

A.2. Enriched monoidal categories and a canonical construction

In this subsection, we recall the definition of an enriched monoidal category and a canonical 
construction of it.
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Definition A.10. Let B be a monoidal category. A category C� enriched in B, or a B-enriched 
category, consists of a set of objects Ob(C�), an object HomC� (x, y) in B for every pair x, y ∈ C�, 
and a composition morphism ◦ : HomC� (y, z) ⊗ HomC� (x, y) → HomC� (x, z) for x, y, z ∈ C�, 
such that there exists a morphism idx : 1B → HomC� (x, x) for x ∈ C� rendering the following 
diagrams commutative for x, y, z, w ∈ C�:

HomC� (x, y) ⊗ HomC� (x, x)

◦

HomC� (x, y)
Id

Id ⊗ idx

HomC� (x, y),

(A.3)

HomC� (y, y) ⊗ HomC� (x, y)

◦

HomC� (x, y)
Id

idy ⊗ Id

HomC� (x, y),

(A.4)

HomC� (z,w) ⊗ HomC� (y, z) ⊗ HomC� (x, y)
Id ⊗◦

◦⊗Id

HomC� (z,w) ⊗ HomC� (x, z)

◦

HomC� (y,w) ⊗ HomC� (x, y)
◦ HomC� (x,w).

(A.5)

Remark A.11. In this work, we distinguish two notations Idx and idx , where Idx is the usual 
identity morphism x → x in an ordinary category, but idx is reserved for the morphism 1B →
homC� (x, x) in B for a B-enriched category C�.

Example A.12 (Canonical construction I). Let B be a UFC and M a left B-module. The cate-
gorical structure M� consisting of

1. objects in M� are objects in M, i.e. Ob(M�) = Ob(M);
2. homM� (x, y) = [x, y] ∈ B;
3. idx : 1B → [x, x] is the morphism canonically induced from the unital action 1B � x � x;
4. ◦ : [y, z] ⊗ [x, y] → [x, z] is the morphism ev canonically induced from the action ([y, z] ⊗

[x, y]) � x → [y, z] � y → z.

It is well-known that this M� is a B-enriched category [57].

Definition A.13. The underlying category C of a B-enriched category C� is an ordinary cat-
egory defined as follows: Ob(C) = Ob(C�) and homC(x, y) := homB(1B, homC� (x, y)) for 
x, y ∈ Ob(C). The identity morphism in homC(x, x) is idx and the composition of morphisms is 
naturally induced from that of C�.

Definition A.14. An enriched functor F : C� → D� between B-enriched categories consists of 
a map F : Ob(C�) → Ob(D�) and a morphism F : HomC� (x, y) → HomD� (F (x), F(y)) for 
every pair x, y ∈ C� such that the following diagrams commute for x, y, z ∈ C�

1B
idx idF(x)

Hom � (x, x)
F Hom � (F (x),F (x)),
C D
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HomC� (y, z) ⊗ HomC� (x, y)
◦

F⊗F

HomC� (x, z)

F

HomD� (F (y),F (z)) ⊗ HomD� (F (x),F (y))
◦ HomD� (F (x),F (z)).

(A.6)

It is clear that the composition of two enriched functors is again an enriched functor. The 
enriched functor F : C� → D� naturally induces an ordinary functor F : C → D between two 
underlying categories.

Definition A.15. An enriched natural transformation ξ : F → G between two enriched functors 
F, G : C� → D� consists of a morphism ξx : 1B → homD� (F (x), G(x)) for x ∈ C such that the 
following diagram commutes for x, y ∈ C�:

HomC� (x, y)
G

F

HomD� (G(x),G(y))

−◦ξx

HomD� (F (x),F (y))
ξy◦−

HomD� (F (x),G(y)).

(A.7)

Note that the composition of two enriched natural transformations ξ : F → G and η : G → H

is defined by (η◦ξ)x = ηx ◦ξx : 1B → HomD� (F (x), H(x)). An enriched natural transformation 
ξ is called an enriched natural isomorphism if each ξx is an isomorphism.

Now we assume that B is a braided monoidal category equipped with braiding cx,y : x ⊗ y →
y ⊗ x for x, y ∈ B. Let C� and D� be B-enriched categories. The Cartesian product C� ×D� is 
a B-enriched category defined as follows:

• Ob(C� ×D�) = Ob(C�) × Ob(D�);
• HomC�×D� ((x, y), (x′, y′)) = HomC� (x, x′) ⊗ HomD� (y, y′);
• the composition

◦ : HomC�×D� ((x′, y′), (x′′, y′′)) ⊗ HomC�×D� ((x, y), (x′, y′))
→HomC�×D� ((x, y), (x′′, y′′))

is given by

HomC� (x′, x′′) ⊗ HomD� (y′, y′′) ⊗ HomC� (x, x′) ⊗ HomD� (y, y′)
Id ⊗c−1⊗Id−−−−−−−→ HomC� (x′, x′′) ⊗ HomC� (x, x′) ⊗ HomD� (y′, y′′) ⊗ HomD� (y, y′)

(A.8)
◦⊗◦−−−−→ HomC� (x, x′′) ⊗ HomD� (y, y′′).

Definition A.16. A B-enriched monoidal category consists of a B-enriched category C�, a dis-
tinguished object 1C� , an enriched functor ⊗ : C� × C� → C�, and enriched isomorphisms 
λ : 1C� ⊗ − → IdC� , ρ : − ⊗ 1C� → IdC� , α : ⊗ ◦ (⊗ × IdC� ) → ⊗ ◦ (IdC� ×⊗) such that the 
underlying category C, together with ⊗, λ, ρ, α, defines a monoidal category.

Example A.17 (Canonical construction II). Let M be a monoidal category and B a braided 
monoidal such that there is a braided oplax monoidal functor φM : B → Z(M), where Z(M) is 
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the Drinfeld center of M. The oplax monoidal structure of φM is a morphism βa,b : φM(a⊗b) →
φM(a) ⊗ φM(b) and an isomorphism φM(1B) � 1Z(M) satisfying some natural conditions. If 
βa,b for a, b ∈B are isomorphisms, then an oplax monoidal functor becomes a monoidal functor. 
In general, βa,b are not isomorphisms. There is a functor � : B × M → M defined by B ×
M 

φM×IdM−−−−−−→ Z(M) × M → M × M 
⊗−→ M. There is a canonical construction of a B-enriched 

monoidal category M� from the pair (C, M) [81]:

• objects in M� are objects in M, i.e. Ob(M�) := Ob(M);
• for x, y ∈M, HomM� (x, y) := [x, y] in B (or in B);
• idx : 1B → [x, x] is the morphism in B canonically induced from the unital action 1B �

x � x;
• ◦ : [y, z] ⊗ [x, y] → [x, z] is the morphism canonically induced from the action ([y, z] ⊗

[x, y]) � x → [y, z] � y → z;
• ⊗ : [x′, y′] ⊗ [x, y] → [x′ ⊗ x, y′ ⊗ y] is the morphism in B canonically induced from the 

action

([x′, y′] ⊗ [x, y]) � x′ ⊗ x

= φM([x′, y′] ⊗ [x, y]) ⊗ x′ ⊗ x → φM([x′, y′]) ⊗ φM([x, y]) ⊗ x′ ⊗ x

Id ⊗bφM([x,y]),x′⊗Idx−−−−−−−−−−−−→ φM([x′, y′]) ⊗ x′ ⊗ φM([x, y]) ⊗ x → y′ ⊗ y. (A.9)
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