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Abstract

This thesis is based on the author’s work [1–3] conducted from September 2009 to May

2012 at Northeastern University, Boston, MA, USA, and also at Max-Planck-Institut für

Physik, Munich, Germany as a visiting student, under supervision of Professor Tomasz

Taylor.

In this thesis, we focus on the massive superstring states. Starting from a short re-

view on the first massive level open string states in ten dimensions, we investigate the

four-dimensional physical open string states under N = 4, 2, 1 compactifications. We find

these physical states split into certain supermultiplets by working out explicitly their su-

persymmetry transformations. We then focus on the universal states which are common

to all compactifications, their scattering amplitudes are the most appealing and important

for these scattering processes could generate model-independent stringy signals which could

be tested at the Large Hadron Collider if the fundamental string mass scale is as low as a

few TeVs. Finally, we explore some general properties of higher level massive superstring

states and give the first example of the use of the on-shell recursion relations of scattering

amplitudes in superstring theory.
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1 Introduction

String theory is perhaps the most successful and also the most ambitious approach to the unified theory of

particle physics, gravity, and quantum physics today. The fact that string theory easily includes the gauge

interactions and also gravitational force at quantum level, assures string theory describe all the four known

fundamental forces – gravitational, electromagnetic, weak and strong interactions, and also matter particles

in a mathematically consistent system. This fact leads many physicists to believe that string theory is the

correct fundamental description of the nature.

String theory was originally invented as a model for describing the spectrum and the S-matrix of hadrons.

The famous Veneziano amplitudes [4] contains an infinite number of string excitations, where the hadronic

particles essentially follow the Regge trajectories of vibrating strings,

j = j0 + α′M2 , (1.1)

with the spin j and α′ the Regge slope parameter which indicates the fundamental string scale M2
string = α′−1.

As a theory of hadrons, the string scale has to be chosen of order of the relevant hadronic mass, i.e.,

Mstring = O(GeV). However, due to several difficulties within the theory, and QCD was recognized to be

the correct theory of strong interactions, and string theory as a model for hadrons was left aside.

In 1974 a radical change of paradigm in string theory took place, when Scherk and Schwarz proposed

string theory as a fundamental theory for quantum gravity [5]. The massless spin two closed string excitation

has all properties of the graviton particle in the quantized version of general relativity. As pointed out by the

authors, this observation seemingly implies that the string scale now has to be identified with the fundamental

scale of gravity – the Planck scale MPlanck ' 1019 GeV. If this is the case, the masses of all string excitations

are as high as Planck scale and thus not accessible for direct production and discovery at current accelerators

like the LHC.

The situation drastically changes when one compactifies the ten-dimensional superstring theory to four

spacetime dimensions to make contact with the Standard Model of particles physics (for a review see [6]).

Meanwhile, the uniqueness of string theory was destroyed during the compactification, since string com-
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pactifications allow for a huge number of these possible ground states, which could be as large as order

of 10500 [7, 8], which was referred as the landscape problem. Each of these vacua in the string landscape

corresponds to a different universe with different physics and different cosmological properties.

However, after compactification, the string scale Mstring is not necessarily at the order of the Planck

mass, it is a free parameter, which can be as low as a few TeV [9, 10].1 This is particularly true in D-brane

compactifications, where the Standard Model is living on a lower dimensional brane, that might be embedded

into the internal, compact six-dimensional Calabi-Yau space used for compactification.

In this brane world scenario the elementary particles, such as quarks, leptons, gluons, photons, weak

bosons and the Higgs particles arise as open string excitations, whose ends are attached to the world volumes

of the intersecting D-branes. Specifically, gauge bosons are due to strings attached to stacks of D-branes

and chiral matter due to strings stretching between intersecting D-branes. Hence, now the colored quarks

and gluons are elementary open strings, from which it follows that there exist higher spin Regge excitations

of the quarks, gluons, and of all Standard Model fields.

It has been shown in [13, 14] that the production cross sections of gluons and quarks at the LHC into

massive string excitations can be computed in a completely universal, model independent way, allowing for

universal string predictions in case the string scale is low. The corresponding tree level string cross sections

are independent from in the internal geometry and hence independent from the particular location of the

model in the string landscape. This observation nullifies the notorious landscape problem.

At the energy around few TeVs, stringy corrections due to new colored Regge modes will become im-

portant. Their production and subsequent decay will then lead the discovery of these universal heavy string

excitations. Eventually there will be a full tower of elementary open string Regge modes. Direct detection

of such vibrating string modes is possible at the LHC. For a survey of low-mass superstring phenomenology

and early references, see [15, 16]. At first, one would see Regge excitations indirectly, in the excess of pho-

tons [17,18], jets [19,20], heavy quarks [21] and leptons due to the resonant enhancement of their production

rates. In another paper [22] by the author, we discussed the possible signals of low mass string resonances

in e+e− and γγ collisions at future lepton colliders. The effects of Regge resonances and KK gravitons are

1 A low mass string scale below 4 TeV has been already excluded by CMS with recent data of LHC7 run [11,12].
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also discussed in [23–26].

Once the center-of-mass energies of the colliding partons is crossed the mass threshold M , one would also

see free Regge states produced directly, in association with jets, photons and other particles. We will discuss

direct production of the lightest universal Regge particles, i.e., the quanta of fundamental string harmonics

with masses equal M . In fact, the first massive gluonic resonances can be shown to have spin 0,1, and 2,

whereas the first quarks resonances have spin 1/2 and spin 3/2, respectively. These lowest excitations will

be found exactly at mass Mstring, and they are followed by the infinite tower of higher Regge excitations. So

in case Mstring ' O(TeV), these universal string Regge excitations should be easily found at the LHC. These

universal scattering amplitudes involving one massive particle and two or three massless ones are computed.

The amplitudes relevant to the direct production of string resonances at the LHC are p1p2 → p3R, where

p (= g, q, q̄) are partons and R is a massive string state. These universal amplitudes will be one of the main

focus on this thesis.

However, other than these “universal” states, the spectrum of Regge excitations are highly model-

dependent. For example, in the toroidal compactifications of a single ten-dimensional D9-brane one en-

counters 128 bosons and 128 fermions at the first massive level. Most of these particles are tied to N=4

supersymmetry of toroidal compactifications. We then, take a detailed analysis to exploit some of the basic

supersymmetry properties of the first massive level superstring states in four dimensions, originating from

supersymmetric type II compactifications. Besides world-sheet conformal invariance, supersymmetry plays

a key role for the consistency of string theory, both on the world-sheet as well as in target space. In ten

spacetime dimensions, the type IIB(A) superstring exhibits extended (non-)chiral N = 2 spacetime super-

symmetry with in total 32 supersymmetry charges. It follows that all massless as well as all massive closed

string states are organized in supermultiplets of the ten-dimensional N = 2 supersymmetry algebra. This

leads to a very subtle interplay between massive string excitations with different higher spins that belong

to common supersymmetry multiplets. In fact, the covariant world-sheet vertex operators of the higher

spin states must transform into each other when acting on them with the supersymmetry charge operators.

Hence, spacetime supersymmetry must be reflected in the structure of the world-sheet BRST cohomology

on each mass level of the higher spin excitations.
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Going from ten to lower dimensions, parts or all of spacetime supersymmetry can be preserved during

the compactification process. As it is known already for several years [27–30], there exists a deep relation

between the number of spacetime supersymmetries, preserved by the compactification, and the number

of world-sheet supersymmetries of the corresponding internal superconformal field theory. Specifically, for

type II compactifications on six-dimensional Calabi-Yau spaces, which correspond to ĉ = 6 SCFT’s with

(2, 2) world sheet supersymmetry, one obtains in the closed string sector four-dimensional N = 2 effective

supergravity theories with 8 preserved supercharges in the bulk. Second, type II compactification on K3×T 2

with four-dimensional N = 4 spacetime supersymmetry (16 bulk supercharges) can be described by the

direct product of two SCFT’s with central charges ĉ = 4 and ĉ = 2, where the ĉ = 4 part possesses (4, 4)

supersymmetry on the world-sheet. Finally, compactifications on a six-dimensional torus leads to effective

type II supergravity theories with maximal N = 8 supersymmetry (32 bulk supercharges).

However, when also including D-branes and open strings, the number of spacetime supersymmetries

is reduced by half compared to the closed string bulk sector, we just discussed above. First, toroidal

compactifications of type II superstrings lead to Yang-Mills open string sectors with N = 4 supersymmetry

in D = 4. Next, the IIB K3×T 2 orientifolds with D5/D9-branes lead to N = 2 supersymmetric Yang-Mills

theories in four dimensions. These theories originate upon compactification on T 2 from D = 6, IIB theories

on K3 with (1,1) spacetime supersymmetry. And finally, the effective, four-dimensional Yang-Mills theories

of type IIB, Calabi-Yau orientifolds with D3/D7-branes or with D5/D9-branes (or type IIA Calabi-Yau

orientifolds with intersecting D6-branes) possess just N = 1 supersymmetry.

We are going to systematically construct the covariant vertex operators of the lowest massive open string

supermultiplets for all three cases of N = 4, 2, 1 spacetime supersymmetry on the corresponding D-branes.

We will focus in particular on those massive supermultiplets and their SUSY transformations in the universal

sector, which are always present in any four-dimensional orientifold models:

• For N = 4 super Yang-Mills, there is a single massive, spin two supermultiplet with 128 bosonic as

well as 128 fermionic degrees of freedom.

• Finally, for N = 2 super Yang-Mills we are dealing with 40 + 40 massive open string states, being

organized in one spin two plus two spin one massive supermultiplets.
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• The supermultiplets of the universal N = 1 sector contains one spin two supermultiplet and two spin

1/2 representations with in total 12 + 12 bosonic and fermion degrees of freedom.

In this way we extend the analysis of [30] about the relation between world-sheet and spacetime supersym-

metries and their closed string (massless) supermultiplet structure to the case of the massive, open string

supermultiplets. At the same time we are giving here a massive version of the SUSY multiplet analysis

in [31], where it was shown that SUSY Ward identities among scattering amplitudes are valid to all orders

in α′, and where the spinor helicity methods were applied to make efficient use of these Ward identities.

Finally, we go one further step – studying some general properties of arbitrary higher level massive

superstring states, as recently, there is also growing interest in the dynamics of higher spin states in string

theory [32–42]. We are particularly interested in massive particles that couple to massless gauge bosons

according to “(anti)self-dual” selection rules. These particles decay into two gauge bosons with the same (say

++) helicities only and to more gluons in “mostly plus” helicity configurations. We rely on the factorization

techniques [43]. They allow identifying not only the spins of Regge resonances propagating in a given channel,

but also their couplings and decay rates. We construct the vertex operators for all “universal” bosons of

the Neveu-Schwarz (NS) sector in the second massive level. We compute the amplitudes involving one such

state and two or three gluons, focusing on the decays of the (anti)self-dual massive (complex) vector fields.

The amplitudes describing decays of heavy states into gauge bosons are also important for the superstring

generalization of Britto-Cachazo-Feng-Witten (BCFW) recursion relations [44–47] to disk amplitudes with

arbitrary number of external gauge bosons. Recently, it has been argued that the BCFW-deformed full-

fledged string amplitudes have no singularities at the infinite value of the deformation parameter, therefore

BCFW recursion relations should be valid also in string theory [48–53]. This approach to constructing the

scattering amplitudes is however highly impractical because in order to increase the number of external

massless particles from N to N + 1, one needs to compute an infinite number of amplitudes involving one

massive state and N − 1 massless ones, for all mass levels. It may be useful, however, for revealing some

general properties of the amplitudes. We show that at least the four-gluon amplitude can be obtained by a

BCFW deformation of a factorized sum involving on-shell amplitudes of one massive Regge state and two

gauge bosons.
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This thesis is organized as follows. In Chapter 2 we introduce the covariant quantization and the tech-

niques of conformal field theory (CFT) as the tool to construct the physical string states. With some review

of massive superstring states in ten-dimensions, we then present the physical superstring states in four-

dimensions after the compactifications. In Chapter 3 we find all the physical states are connected by the

supersymmetry (SUSY) relations, and they form certain supermultiplets. To understand the structure of

these supermultiplets, we use the massive helicity formalism, and investigate the interplays between individu-

al polarization states. In Chapter 4, we focus on the universal states which common to all compactifications,

compute the scattering amplitudes with the Standard Model (SM) particles, which are zero mode of quan-

tized string. If the fundamental string scale is around a few TeVs, there is a chance of observing the stringy

signals at the Large Hadron Collider (LHC). In Chapter 5, we investigate some general properties of higher

level massive string states. We also give the first example of the use of BCFW recursion relations in the

superstring theory. In the end, we make some final remarks in Chapter 6.
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2 Physical superstring states in the first massive level

As the main focus of this thesis, we are going to discuss the physics of massive superstring states in four

dimensions, especially, which belong to the first massive level. In this chapter, we will first review some basic

knowledge of BRST quantization, and vertex operators of ten-dimensional physical open string states. They

comprise in total 128 + 128 bosonic as well as fermionic states. We verify that these states form a massive

representation of the ten-dimensional (type I) N = 1 SUSY algebra. Next, we consider the SCFT’s of string

vacua in four dimensions, and discuss the relation between the extended world-sheet superconformal algebras

and the spacetime N = 4, 2, 1 SUSY algebras and the covariant vertex operators for the corresponding

supercharge operators. Then we construct the physical massive open string states in NS and R sectors for

the three cases of N = 4, N = 2 and N = 1 supersymmetry in four dimensions respectively.

This chapter is based on the paper [3].

2.1 The first mass level in ten dimensions

The lightest Regge excitations of open superstring theory in ten-dimensional Minkowski spacetime were firstly

constructed in 1987 [54]. Let us briefly review the general method to construct heavy string excitations as

well as the explicit results of [54] and then offer a covariant approach to the excited Ramond sector states.

We are going to use the covariant methods (BRST) to construct the physical states. Physical states

belong to the cohomology of the BRST operator QBRST. In the world-sheet variables of the RNS formalism,

it splits into three pieces of different superghost charge:

QBRST = Q0 + Q1 + Q2 , (2.1)

Q0 =

∮
dz

2πi

(
c (T + Tβ,γ) + b c ∂c

)
, (2.2)

Q1 = −
∮

dz

2πi
γ G = −

∮
dz

2πi
eφ η G , (2.3)

Q2 = − 1

4

∮
dz

2πi
b γ2 = − 1

4

∮
dz

2πi
b e2φ η ∂η . (2.4)
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We denote the c = 15 stress tensor and supercurrent of the matter fields2 i∂Xm, ψn by T and G, respectively,

whereas Tβ,γ captures the β, γ superghost system of c = 11. The latter is partially bosonized in terms of

exponentials eqφ (with φ denoting a free chiral boson) and completed by a pair of h = 1, 0 fermions η, ξ. The

Grassmann odd ghost system (b, c) is well-known from the bosonic string.

States of uniform superghost charge are BRST closed only if they are annihilated by Q0, Q1 and Q2

separately. Closure under Q0 forces vertex operators to be a Virasoro primary of unit weight, while Q2

does not contribute in the ghost pictures considered in this paper. Hence, given a vertex operator ansatz of

suitable conformal weight, only the Q1 constraint involving the supercurrent

G(z) =
1

2
√

2α′
i∂Xm(z)ψm(z) (2.6)

has to be evaluated separately.

2.1.1 Physical states in the NS sector

The lowest mass m2 = −k2 = 1/α′ for Regge excitations assigns conformal weight h = −1 to the plane wave

eik·X which introduces spacetime momentum into vertex operators. In the NS sector of canonical superghost

charge −1, it can combine with the h = 1
2 field e−φ and a h = 3

2 combination of i∂Xm, ψn oscillators to form

a Virasoro primary of unit conformal weight in total. (Hence, neglecting the plane wave eik·X contribution,

the massive states at first mass level always correspond to vertex operators with conformal dimension h = 2.)

The most general h = 1 ansatz for the first massive NS sector states involves three3 h = 3
2 operators

i∂Xmψn, ψmψnψp and ∂ψm along with polarization wavefunctions Bmn, Emnp, Hm:

V (−1)(B,E,H, k, z) =
(
Bmn i∂X

m ψn + Emnp ψ
m ψn ψp + Hm ∂ψ

m
)
e−φ eik·X . (2.7)

The BRST constraints arising from Q1 admit two physical solutions,4 namely a (traceless and symmetric)

2Our normalization conventions for the world-sheet matter fields are fixed by

i∂Xm(z) i∂Xn(w) ∼
2α′ ηmn

(z − w)2
+ . . . , ψm(z)ψn(w) ∼

ηmn

z − w
+ . . . . (2.5)

3The addition of ξmψm∂φe−φ is neglected because it can be absorbed into a total derivative.
4Throughout this and the next chapter, we set vertex operator normalization factor gA =

√
2α′gYM from [13,14] to unity.
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spin two tensor Bmn and a three-form Emnp:

V (−1)(B, k, z) =
1√
2α′

Bmn i∂X
m ψn e−φ eik·X , kmBmn = Bm

m = B[mn] = 0 , (2.8)

V (−1)(E, k, z) =
1

6
Emnp ψ

m ψn ψp e−φ eik·X , kmEmnp = 0 . (2.9)

Both polarizations are transverse and therefore naturally fall into representations of the stabilizer group

SO(9) of massive momenta. The number of degrees of freedom is 9·10
2 − 1 = 44 for Bmn and 9·8·7

1·2·3 = 84 for

Emnp, i.e. we have 44 + 84 = 128 bosonic states in total.

Some of the solutions to the BRST constraint turn out to be QBRST exact:

[
QBRST , e−2φ Σ[mn] ψ

m ψn ∂ξ eik·X
]
∼

(
2 Σ[mn] i∂X

m ψn + Σ[mn kp] ψ
m ψn ψp

)
e−φ eik·X ,

[
QBRST , e−2φ πm i∂X

m ∂ξ eik·X
]
∼

(
πm ∂ψ

m + πm kn i∂X
m ψn

)
e−φ eik·X , (2.10)

[
QBRST , ∂e−2φ ∂ξ eik·X

]
∼

( [ηmn
2α′

+ 2 km kn

]
i∂Xm ψn + 3 km ∂ψ

m
)
e−φ eik·X .

These spurious states parametrized by a two-form Σ[mn], a vector πm and a scalar of SO(9) (i.e. subject to

kmΣmn = kmπm = 0) decouple from physical states.

2.1.2 Excited spin fields and physical states in the R sector

In the R sector, the canonical superghost vacuum is created by the h = 3
8 field e−φ/2. Masses m2 = 1/α′

allow for an h = 13
8 operator to complete fermionic vertex operators for the first mass level. The matter

sector of the R ground states corresponds to h = 5
8 spin fields Sα transforming as left-handed spinors of the

Lorentz group [55, 56]. The right-handed chirality is forbidden by GSO projection. The role of Sα to open

or close branch cuts for the ψm is reflected in the OPE

ψm(z)Sα(w) ∼
γm
αβ̇√

2 (z − w)1/2
Sβ̇(w) + . . . . (2.11)

The nontrivial three-point interactions between ψm and Sα render their covariant correlation functions

inaccessible to the Wick theorem, one has to use techniques of [57, 58] instead to compute higher order
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correlators. Only by breaking SO(1, 9) to its SU(5) subgroup, one can relate the ψm and Sα to a free field

system of chiral bosons H1,2,...,5:

i∂Hk(z) i∂Hl(w) ∼ δkl
(z − w)2

+ i∂Hk(w) i∂Hl(w) + . . . (2.12)

This technique is known as bosonization5 [56]:

ψm ↔ e±iHm , Sα ↔ e±iH1/2 e±iH2/2 e±iH3/2 e±iH4/2 e±iH5/2 . (2.13)

It is clear from this bosonized representation that the subleading term σ(z−w)1/2 of the OPE (2.11) involves

e±3iHk/2 primary operators, in addition to the derivatives ∂e±iHk/2. The covariant description of these new

excited primary fields requires an irreducible vector spinor

Sβ̇m ↔ e±i3H1/2 e±iH2/2 e±iH3/2 e±iH4/2 e±iH5/2 , γm
αβ̇
Sβ̇m = 0 (2.14)

of weight h = 13
8 , where the gamma tracelessness condition subtracts the descendant components ∂Sα ↔

∂(e±iH1/2e±iH2/2e±iH3/2e±iH4/2e±iH5/2). The introduction of Sβ̇m and ∂Sα is the covariant way to disen-

tangle the primary field- and descendant components within the operator ψmψ
nSαγ

αβ̇
n used in [54]. The

completion of the OPE (2.11) to the subleading level reads

ψm(z)Sα(w) ∼
γm
αβ̇
Sβ̇(w)

√
2 (z − w)1/2

+ (z − w)1/2

[
Smα (w) +

2√
2 5

γm
αβ̇
∂Sβ̇(w)

]
+ . . . (2.15)

in D = 10. A more exhaustive list of OPEs involving ψm, Sα and Sβ̇m (and their counterparts of opposite

SO(1, 9) chirality) can be found in appendix B.1.

After the GSO projection, the most general vertex operator for spacetime fermions at the first mass level

involves the h = 13
8 operators i∂XmSα, S

β̇
m and ∂Sα and therefore two vector spinor wavefunctions vαm, ρ̄

m
β̇

5 We should admit that our discussion neglects Jordan-Wigner cocycle factors [56]. These are additional algebraic objects
accompanying the exponentials to ensure that e±iHk and e±iHl associated with different bosons k 6= l anticommute. We
drop cocycle factors to simplify the notation, it suffices to remember that they are implicitly present and that the bosonized
representation of ψµ still obeys Fermi statistics. The instance where they contribute a phase is commented on above (3.27).
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as well as spinor wavefunction uα:

V (−1/2)(v, ρ̄, u, k, z) =
(
vαm i∂X

m Sα + ρ̄m
β̇
Sβ̇m + uα ∂Sα

)
e−φ/2 eik·X . (2.16)

Since ρ̄ is contracted with the excited spin field Sβ̇m, we can regard it as γ traceless, i.e. ρ̄m
β̇
γ̄β̇αm = 0. The

independent Q1 BRST constraints for (2.16) can be summarized as

0 = 2α′ vαm 6kαβ̇ +
√

2 ρ̄m,β̇ + 1
2 u

α γmαβ̇ , (2.17)

0 = 2
√

2 kµ ρ̄
µ

β̇
− 3

2 u
α 6kαβ̇ . (2.18)

Disentangling the SO(1, 9) irreducibles of the former allows to express uα and ρ̄m
β̇

in terms of vαm,

ρ̄m
β̇

= −
√

2α′
(
vmα 6kαβ̇ +

1

10
vαp (6k γ̄p γm)αβ̇

)
, (2.19)

uα =
2α′

5
vβm ( 6k γm)β

α , (2.20)

whereas (2.18) yields an extra constraint on the only independent polarization vαm:

vαm γ
m
αβ̇

= 2α′ km vαm 6kαβ̇ . (2.21)

As recognized in [54], there is a physical solution vαm ≡ χαm of spin 3/2

V (−1/2)(χ, k) =
1√

2α′1/4

(
χαm i∂X

m Sα −
√

2α′ χmα 6kαβ̇ Sβ̇m
)
e−φ/2 eik·X (2.22)

0 = km χαm = χαm γ
m
αβ̇

and one spurious state associated with the gamma trace choice vαm = kmΘα + 1
4Θβ(6kγm)β

α

[
QBRST , e−3φ/2 ∂ξΘα 6kαβ̇ Sβ̇ eik·X

]
∼

( [
km Θα + 1

4 Θβ ( 6k γm)β
α
]
i∂Xm Sα

− 1√
2

[
α′ km Θα 6kαβ̇ + 1

10 Θα γm
αβ̇

]
Sβ̇m +

6

5
Θα ∂Sα

)
e−φ/2 eik·X (2.23)
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which allows to gauge away the uα wavefunction.

2.1.3 Ten-dimensional SUSY transformations

The SUSY charge in open superstring theory is given by the massless gaugino vertex at zero momentum [27]:

Q(−1/2)
α =

1

α′1/4

∮
dz

2πi
Sα e

−φ/2 . (2.24)

It transforms R sector states in their canonical −1/2 superghost picture into canonical NS vertex operators

σe−φ. The contour integral is evaluated by performing OPEs between the Sα and e−φ/2 fields from the

supercharge at point z and the vertex operator V (−1/2)(w) of the fermion in question. Appendix B.1 gathers

the required OPEs for the D = 10 case.

The inverse transformation from the NS sector to the R sector requires the +1/2 picture representative

of the SUSY generator

Q(+1/2)
α =

1

2α′3/4

∮
dz

2πi
i∂Xm γ

m
αβ̇
Sβ̇ e+φ/2 . (2.25)

The latter allows to write down the ghost neutral N = 1 SUSY algebra in ten dimensions,

{
Q(+1/2)
α , Q(−1/2)

β

}
= (γm C)αβ Pm , Pm =

1

2α′

∮
dz

2πi
i∂Xm . (2.26)

Let us list the SUSY variations of the physical D = 10 vertex operators. The NS sector states (2.8) and

(2.9) have already been discussed in [54]

[
ηαQ(+1/2)

α , V (−1)(B, k)
]

= V (−1/2)
(
χαm = 1√

2
Bmn (η 6k γn)α

)
, (2.27)

[
ηαQ(+1/2)

α , V (−1)(E, k)
]

= V (−1/2)
(
χαm = 1

12
√
α′

[
Emnp (η γnp)α − 1

3 Enpq (η γm γ
npq)α

− α′

3 kmEnpq (η 6k γnpq)α
] )

. (2.28)

In addition, we use the covariant OPEs from appendix B.1 to compute the SUSY variation of the massive
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gravitino (2.22):

[
ηαQ(−1/2)

α , V (−1/2)(χ, k)
]

= V (−1)
(
Bmn = α′√

2
(η 6k χ(m) kn) + 1√

2
(η γ(m χn))

)

+ V (−1)
(
Emnp = 3α′1/2 (η γ[m χn) kp] − 3

2 α
′1/2 (η γ[np 6k χm])

)
. (2.29)

2.2 CFTs of supersymmetric string vacua in four dimensions

In this section we will first review some basic facts about extended supersymmetry algebras in four spacetime

dimensions and about the general relation between extended spacetime supersymmetries and world-sheet

supersymmetries. In part, we are following the work in references [28–30]. Our conventions for indices w.r.t.

Lorentz symmetry SO(1, 3) and R-symmetries SO(6) or SU(2) are gathered in appendix A.

2.2.1 The four-dimensional spacetime supersymmetry algebra

The N supercharges QIa as well as the complex conjugate operators Q̄ȧ
Ī

satisfy the N -extended supersym-

metry algebra (I, Ī = 1 . . . ,N )

{QIa , Q̄ḃJ̄} = CIJ̄ (σµ ε)a
ḃ Pµ ,

{QIa , QJb } = εabZIJ . (2.30)

Pµ is the momentum operator and the ZIJ are central charges, which are antisymmetric in I, J and can

therefore appear in the N ≥ 2 supersymmetry algebra only.

Next let us discuss the representations of the extended supersymmetry algebras, namely how the super-

charges in general act on massless and on massive states. Let us first recall the case of massless states. Here

we can choose a frame where the momenta are kµ = (E, 0, 0, E), the supercharges are

QI1 ≡ QI , Q̄1̇
Ī ≡ Q̄I , whereas 0 = Q2

1 = Q̄2̇
Ī . (2.31)
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In terms of QI and Q̄I the supersymmetry algebra takes the form

{
QI , Q̄J

}
= δIJ ,

{
QI , QJ

}
=

{
Q̄I , Q̄J

}
= 0 , (2.32)

where we have rescaled the supersymmetry charges by
√
E. The 2N supercharges QI and Q̄I build an

SO(2N ) Clifford algebra

Γ2I−1 = QI + Q̄Ī , Γ2I = i(QI − Q̄Ī) ,

{Γi,Γj} = 2δij , i, j = 1, . . . , 2N (2.33)

whose representations have dimension 2N . The generators for SO(2N ) rotations are

Λij =
1

4i
[Γi , Γj ] . (2.34)

This group contains a SU(N )× U(1) subgroup specified by the following generators

ΛIJ =
1

2
[QI , Q̄J̄ ] − 1

2N δIJ [QK , Q̄K̄ ] for SU(N ) ,

Λ =
1

4
[QI , Q̄I ] for U(1) . (2.35)

For massless states, this SU(N ) commutes with the SO(2) helicity group. Hence this group classifies massless

states. The eigenvalue of the supercharge under the U(1), which is called intrinsic helicity, is the same as

under spacetime helicity. Therefore one can define a new generator Λ′ through a shift by the z component

j3 of the spin, called superhelicity,

Λ′ = j3 − Λ , (2.36)

which commutes with QI .

Next let us consider massive states rotated into their rest frame kµ = (m, 0, 0, 0). Now also the second

helicity components of the supercharge spinors become active, i.e. give rise to nonzero supersymmetry
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transformations on massive states. We will denote them as follows:

QI2 ≡ Q̃I , Q̄2̇
Ī ≡ ¯̃QĪ . (2.37)

The supersymmetry algebra between the Q̃ looks like

{
Q̃I , ¯̃QJ̄

}
= mCIJ̄ ,

{
Q̃I , Q̃J

}
=
{ ¯̃QI , ¯̃QJ

}
= 0 . (2.38)

Now the (QI , Q̄Ī) and (Q̃I , ¯̃QĪ) build an SO(4N ) Clifford algebra on the states without central charges.

Consequently, the dimension of massive representations is a multiple of 22N . The maximal subalgebra

that commutes with the SO(3) little group of the massive states is USp(2N ). Therefore massive states

without central charges build representations of USp(2N ). As for the massless states one can consider an

SU(N ) × U(1) subgroup with generators Λtot = Λ + Λ̃ where the Λ̃ are defined from the Q̃ as in (2.35).

In section 3.2 we will introduce an organization scheme for massive SUSY representations based on spinor

helicity methods which keeps track of the spin quantum numbers along a reference axis of choice.

However, in the presence of central charges ZIJ , the operators QI and Q̃I generate a smaller SO(2N )

Clifford algebra, whose maximal subalgebra is SO(3) × Sp(N ). Therefore states with central charges only

build representations of Sp(N ).

2.2.2 CFT realization of extended D = 4 SUSY

As it is well known, there is a beautiful relation between the N -extended spacetime supersymmetry algebras

and the n-extended internal superconformal algebras with corresponding Kac-Moody symmetry g. We will

assume in the following that we are dealing with holomorphic spacetime supercharges that all originate

from the right-moving sector of the compactified string theory, as it is always the case for heterotic string

compactifications. As we will discuss, for purely holomorphic supercharges, the massive BPS states with non-

vanishing central charges are of perturbative nature. However in type II compactifications, the supercharges

can originate from the left-moving as well as the right-moving sector of the string theory. In this case, some

of the massive BPS states with central charges are non-perturbative, as they are given in terms of wrapped
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type II D-branes. These non-perturbative states will not be discussed in this paper.

In SCFT, the holomorphic supercharges QI and Q̄Ī can be always realized by the world-sheet fields of

the uncompactified four-dimensional Minkowski spacetime together with those of the internal Kac-Moody

symmetries. This fact allows for a completely model-independent realization of the spacetime supersym-

metry algebra without any reference to ”geometrical” details of the internal SCFT. To be more specific,

compactifications to four-dimensional Minkowski spacetime which allow for a CFT description, still have

SO(1, 3) vectors i∂Xµ and ψµ in their world-sheet theory, the first four components of the ten-dimensional

ancestors i∂Xm and ψm. Similarly, the ten-dimensional SO(1, 9) spin field Sα factorizes into separate h = 1
4

and h = 3
8 primaries Sa and Σ, the former being a Weyl spinor of SO(1, 3) and the latter falling into

representations of the R-symmetry. In fact, both SO(1, 3) chiralities can occur, i.e.

Sα ≡ Sa ΣI ⊕ S ḃ Σ̄I . (2.39)

The number of (ΣI , Σ̄I) species coincides with the number of spacetime supersymmetries, we will discuss

the N = 4, 1, 2 cases below. In each case, the (left- and right-handed) supercharges in their canonical ghost

picture are given by

Q(−1/2)I
a =

1

α′1/4

∮
dz

2πi
Sa ΣI e−φ/2 , Q̄(−1/2),ḃ

J̄
=

1

α′1/4

∮
dz

2πi
S ḃ Σ̄J̄ e

−φ/2 . (2.40)

Independent on the fate of the internal spin fields ΣI , Σ̄I , the interactions of the h = 1
4 spacetime spin fields

Sa, S
ḃ with the NS fermions is governed by

ψµ(z)Sa(w) ∼
σµ
aḃ
S ḃ(w)

√
2 (z − w)1/2

+ (z − w)1/2

[
Sµa (w) +

1√
2
σµ
aḃ
∂S ḃ(w)

]
+ . . . . (2.41)

In lines with the discussion of subsection 2.1.2, one can bosonize the left- and right-handed spin fields

as e±i(H1+H2)/2 and e±i(H1−H2)/2, respectively. In order to reconcile bosonization techniques with SO(1, 3)

symmetry, we align e±3iHj/2 components showing up in the subleading term of the OPE (2.41) into covariant
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excited spin fields S ḃµ, S
µ
a of weight h = 5

4 :

Sµa ↔ e±3iH1/2 e±iH2/2 , S ḃµ ↔ e±3iH1/2 e∓iH2/2 , σ̄ḃaµ Sµa = σµ
aḃ
S ḃµ = 0 . (2.42)

A large list of OPEs between (ψµ, Sa, S
ḃ, S ḃµ, S

µ
a ) including subleading singularities can be found in appendix

B.2.

2.2.3 CFT operators in N = 4 compactifications

The internal SCFT in maximally supersymmetric N = 4 compactifications to D = 4 dimensions can be

understood in terms of free fields i∂Zm,Ψm with m = 4, 5, . . . , 9 which represent the internal components of

the ten-dimensional i∂Xm=0,1,...,9, ψm=0,1,...,9 and transform as vectors of the internal rotation group SO(6).

The corresponding h = 3
8 spin fields ΣI and Σ̄J̄ , responsible for branch cuts of Ψm, transform as spinors

of the SO(6) ≡ SU(4) with left-handed (right-handed) index I (J̄). They enter the dimensional reduction

SO(1, 9)→ SO(1, 3)× SO(6) of the D = 10 SUSY charges

Q(−1/2)I
a =

1

α′1/4

∮
dz

2πi
Sa ΣI e−φ/2 , Q̄(−1/2),ḃ

J̄
=

1

α′1/4

∮
dz

2πi
S ḃ Σ̄J̄ e

−φ/2 (2.43)

where the internal SO(6) ≡ SU(4) is interpreted as the R-symmetry group. The ten-dimensional bosoniza-

tion prescription can be straightforwardly applied to Ψm,ΣI , Σ̄J̄ (e.g. ΣI ↔ e±i(H3+H4+H5)/2), and excited

spin fields ΣIm and Σ̄m
J̄

of weight h = 11
8 are constructed in close analogy to their ten- and four-dimensional

counterparts (2.14) and (2.42):

ΣIm ↔ e±3iH3/2 e±iH4/2 e±iH5/2 , γmJ̄I ΣIm = γ̄IJ̄m Σ̄mJ̄ = 0 . (2.44)

The internal supercurrent is built from the m = 4, 5, . . . , 9 components of its ten-dimensional ancestor (2.6)

Gint =
1

2
√

2α′
i∂Zm Ψm (2.45)
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and gives rise to internal central charge6 c = 9. OPEs among the Ψk,ΣI , Σ̄J̄ and ΣIm, Σ̄
m
J̄

are gathered in

appendix B.3. Identities between six-dimensional gamma and charge conjugation matrices can for instance

be found in the appendix of [58]. The following Fig. 1 aims to give an overview of the conformal fields in

the spacetime and N = 4 internal CFTs7

h

1
2

1

3
2

spacetime

Sa, S
ḃ

ψµ

Sȧµ, S
µ
b , ∂Sa, ∂S

ḃ

i∂Xµ, ψνψλ

ψµψνψλ, ∂ψρ

N = 4 internal

ΣI , Σ̄J̄

Ψm

Σ̄m
Ī
,ΣJm, ∂ΣI , ∂Σ̄J̄

i∂Zm, ΨnΨp

ΨmΨnΨp, ∂Ψm

Figure 1: Conformal fields in the spacetime CFT and the internal CFT of N = 4 supersymmetric compact-
ifications

The higher ghost picture version of the SUSY generators (2.43) is given by

Q(+1/2),I
a =

1

2α′3/4

∮
dz

2πi

[
i∂Xµ σ

µ

aḃ
S ḃ ΣI + Sa i∂Z

m γIJ̄m Σ̄J̄

]
e+φ/2 , (2.47)

Q̄(+1/2),ḃ

J̄
=

1

2α′3/4

∮
dz

2πi

[
i∂Xµ σḃaµ Sa Σ̄J̄ + S ḃ i∂Zm γ̄

m
J̄I ΣI

]
e+φ/2 , (2.48)

their anticommutator with the (−1/2) picture analogues (2.43) yields the following ghost-neutral SUSY

6The underlying OPEs are

i∂Zm(z) i∂Zn(w) ∼
2α′ δ

(6)
mn

(z − w)2
+ . . . , Ψm(z) Ψn(w) ∼

δ
(6)
mn

z − w
+ . . . . (2.46)

7The fermionic bilinear states ψνψλ and ΨnΨp at weight h = 1 by themselves should be eliminated by the GSO projection,
but trilinear combinations Ψmψνψλ and ψµΨnΨp which mix between spacetime components and internal fields would survive
after the GSO projection. That is why we include the bilinears into the bookkeeping.
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algebra with nontrivial central charges ZIJ and Z̄ĪJ̄ :

{
Q(+1/2),I
a , Q̄(−1/2),ḃ

J̄

}
= CI J̄ (σµ ε)a

ḃ Pµ , Pµ =
1

2α′

∮
dz

2πi
i∂Xµ , (2.49)

{
Q(+1/2),I
a , Q(−1/2),J

b

}
= εabZIJ , ZIJ =

1

2α′

∮
dz

2πi
i∂Zm (γm C)IJ , (2.50)

{
Q̄(+1/2),ȧ

Ī
, Q̄(−1/2),ḃ

J̄

}
= εȧḃ Z̄ĪJ̄ , Z̄ĪJ̄ =

1

2α′

∮
dz

2πi
i∂Zm (γ̄m C)ĪJ̄ . (2.51)

The central charges arise due to poles in the operator product expansion of Q(+1/2),I
a and Q(−1/2),J

b caused by

internal free fermions and bosons Ψm and ∂Zm. The latter appear in the internal supercurrent Gintσi∂ZmΨm

and generate an internal Kac-Moody algebra

g = SO(6)× [U(1)]6 (2.52)

with dimension one currents

jmnSO(6)(z) = Ψm Ψn(z) , jmU(1)6(z) = i∂Zm(z) . (2.53)

The fields Zm(z) can be viewed as the coordinates of a (holomorphic) torus compactification on a six-

dimensional torus T 6. Their world-sheet superpartners Ψm generate a U(1)6 spacetime gauge symmetry,

and the six spacetime gauge bosons are the six graviphotons, which arise in any compactification on a

(holomorphic) six-torus. States that carry non-vanishing internal momenta pm on the (holomorphic) six-

torus always have the following field as part of their vertex operator:

|pm〉 ∼ eip
mZm(z) . (2.54)

Switching to the more convenient bispinor basis, the six central charge operators (in the zero ghost picture)

of the N = 4 supersymmetry algebra are nothing else than the free bosons Zm:

ZIJ(z) =
1

2α′
(γm C)IJ i∂Zm(z) . (2.55)

27



It follows that the internal momentum states |pm〉 are precisely those states that carry non-vanishing N = 4

central charges. They break the internal world-sheet SO(6) symmetry to SO(5). At the same time, states

with non-vanishing momenta pm build representations of the spacetime automorphism group for massive

states with central charges, which is Sp(4) ∼= SO(5). On the other hand, states with vanishing internal

momenta, |pm = 0〉, build internal SO(6) representations, respectively at the same time representations of

the group USp(8), which classifies massive states without central charges. The subsequent discussions only

take into account the states at zero internal momentum (pm = 0).

2.2.4 CFT operators in N = 2 compactifications

In superstring compactifications which preserve N = 2 spacetime SUSY, it can be shown along the lines

of [29, 30] that the internal CFT splits into two decoupled sectors with central charges c = 6 and c = 3,

respectively. Starting point are the two supercharges

Q(−1/2),i
a =

1

α′1/4

∮
dz

2πi
Sa Σi e−φ/2 , Q̄(−1/2),ḃi =

1

α′1/4

∮
dz

2πi
S ḃ Σ̄i e−φ/2 , (2.56)

containing two species of spin fields Σi=1,2 and Σ̄i=1,2. The latter turn out to factorize into decoupled

primaries λi and e±iH/2 from the c = 6 and c = 3 sector, respectively:

Σi = λi e+iH/2 , Σ̄i = λi e−iH/2 . (2.57)

The c = 3 part can be represented in terms of a single free chiral boson H subject to (2.12). Its contribution

1
2 (i∂H)2 to the c = 3 energy momentum tensor assigns conformal weight h(e±iH/2) = 1/8 (or more generally,

h(eiqH) = q2/2). Moreover, OPEs of the partial spin fields e±iH/2 introduce h = 1
2 fermions e±iH and excited

spin fields e±3iH/2 of weight h = 9
8 .

On the other hand, the λi fields from the c = 6 sector have weight h(λi) = 1/4 and form an SU(2)
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doublet. Their operator algebra8 gives rise to an SU(2) triplet of h = 1 currents J A=1,2,3:

λi(z)λj(w) ∼ εij

(z − w)1/2
+

1√
2

(z − w)1/2 (τA ε)
ij J A(w) + . . . (2.59)

The τA denote the standard (traceless) SU(2) Pauli matrices
{

( 0 1
1 0 ) ,

(
0 −i
i 0

)
,
(

1 0
0 −1

)}
subject to the mul-

tiplication rule τAτB = δAB + iεABCτ
C .

The currents obey the SU(2) current algebra at level k = 1, we use normalization conventions

J A(z)J B(w) ∼ δAB

(z − w)2
+

i
√

2 εABC JC(w)

z − w + . . . (2.60)

in which their interaction with the spin fields is governed by

J A(z)λi(w) ∼ (τA)ij λ
j(w)√

2 (z − w)
+
√

2 (τA)ij ∂λ
j(w) + . . . (2.61)

λi(z)J A(w) ∼ (τA)ij λ
j(w)√

2 (z − w)
− 1√

2
(τA)ij ∂λ

j(w) + . . . . (2.62)

Note that also the λi and J A fit into a bosonization scheme according to

J A=3 ≡ i∂H3 , J A=1 ± iJ A=2 ≡
√

2 e±i
√

2H3 , λi=1,2 = e±iH3/
√

2 (2.63)

with H3 being nonsingular with respect to the c = 3 boson H. This fixes the choice of the SU(2) Cartan

subalgebra.

The world-sheet supercurrents associated with the two decoupled CFTs,

Gint ≡ Gc=3 + Gc=6 , (2.64)

can be split according to their charges under the h = 1 currents. In the c = 3 sector, we find a free field

8The contraction rules for the antisymmetric εij , εij tensors introduce signs in some of the OPEs:

λi(z)λ
j(w) ∼

+ δji
(z − w)1/2

, λi(z)λj(w) ∼
− εij

(z − w)1/2
, λi(z)λj(w) ∼

− δij
(z − w)1/2

. (2.58)
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representation in terms of internal h = 1 coordinates9 i∂Z±,

Gc=3 =
1

2
√

2α′

(
i∂Z+ e−iH + i∂Z− eiH

)
, (2.66)

The fermions Ψ±(z) = e±iH(z) together with the free bosons Z± generate an internal Kac-Moody algebra

g = SO(2)× [U(1)]2 (2.67)

with dimension one currents

jSO(2)(z) = Ψ+ Ψ−(z) = i∂H(z) , j±U(1)(z) = i∂Z±(z) . (2.68)

As for the N = 4 case, the fields Z±(z) can be viewed as the coordinates of a (holomorphic) torus compact-

ification on a two-dimensional torus T 2.

Also the supercurrent of the c = 6 sector cannot be fully built from the bosonization prescription (2.63),

it additionally requires the introduction of an SU(2) doublet of h = 5/4 fields gi:

Gc=6 =
1√
2

(
eiH3/

√
2 g1 + e−iH3/

√
2 g2

)
=

1√
2
λi gi . (2.69)

The gi decouple from the λi and J A, and their OPE10

gi(z) gj(w) ∼ εij
(z − w)5/2

+
0

(z − w)3/2
+ . . . (2.71)

makes sure that the supercurrents satisfy the required N = 4 superconformal algebra at c = 6. A summary

of operators in the internal SCFTs common to N = 2 compactifications are presented in Fig. 2.

9As usual, the OPEs between i∂Z± are normalized as

i∂Z±(z) i∂Z∓(w) ∼
2α′

(z − w)2
+ . . . , i∂Z±(z) i∂Z±(w) ∼ i∂Z±(w) i∂Z±(w) + . . . . (2.65)

10ε contractions yield signs opposite to the λiλj case:

gi(z) gj(w) ∼
+ δij

(z − w)5/2
, gi(z) gj(w) ∼

− εij

(z − w)5/2
, gi(z) g

j(w) ∼
− δji

(z − w)5/2
. (2.70)
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h

q

c = 6 sector

q3 = 0q3 = −
√

2 q3 = +
√

2

λi=+ λi=−

∂λi=+ ∂λi=−gi

J A=3J A=− J A=+

c = 3 sector

q = 0 q = +1q = −1

i∂H, i∂Z±

eiH/2e−iH/2

∂eiH/2∂e−iH/2 e3iH/2e−3iH/2

eiHe−iH

∂eiH∂e−iH

1
2

1

3
2

Figure 2: Universal operator content of the internal CFT associated with N = 2 spacetime SUSY, including
weight h and charges q3, q under i∂H3 and i∂H, respectively.

The internal supercurrent yields the following higher ghost picture SUSY charges:

Q(+1/2),i
a =

1√
2α′3/4

∮
dz

2πi

[
1√
2
i∂Xµ σ

µ

aḃ
S ḃ λi eiH/2 + i∂Z+ Sa λ

i e−iH/2

− 2
√
α′ gi Sa e

iH/2

]
eφ/2 , (2.72)

Q̄(+1/2),ḃi =
1√

2α′3/4

∮
dz

2πi

[
1√
2
i∂Xµ σ̄ḃaµ Sa λ

i e−iH/2 + i∂Z− S ḃ λi eiH/2

− 2
√
α′ gi S ḃ e−iH/2

]
eφ/2 . (2.73)

The anticommutator of equal chirality generators gives rise to a complex central charge operator, which can

be written in terms of the free bosons Z±:

{
Q(+1/2),i
a , Q(−1/2),j

b

}
= εabZij , Zij =

εij√
2α′

∮
dz

2πi
i∂Z+ , (2.74)

{
Q̄(+1/2),ȧi , Q̄(−1/2),ḃj

}
= εȧḃ Z̄ij , Z̄ij =

εij√
2α′

∮
dz

2πi
i∂Z− . (2.75)

It again follows that the internal momentum states |p±〉 of the two-torus are precisely those states that carry
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non-vanishing N = 2 central charges. They completely break the internal world-sheet SO(2) symmetry.

On the other hand, states with vanishing internal momenta, |p± = 0〉, build internal SO(2) representations,

resp. representations of the group USp(4), which classifies the N = 2 massive states without central charges.

2.2.5 CFT operators in N = 1 compactifications

In this subsection, we summarize universal aspects of internal c = 9 SCFTs describing D = 4 superstring

compactifications which preserve N = 1 SUSY in spacetime [28–30]. The existence of one supercharge

species

Q(−1/2)
a =

1

α′1/4

∮
dz

2πi
Sa Σ+ e−φ/2 , Q̄(−1/2)ḃ =

1

α′1/4

∮
dz

2πi
S ḃ Σ− e−φ/2 (2.76)

with h = 3
8 spin fields Σ± implies that the world-sheet supersymmetry is enhanced to N = 2. This can be

traced back to the existence of a U(1) Kac-Moody current J of h = 1 which emerges from the mutual OPEs

of spin fields with opposite charge:

Σ±(z) Σ∓(w) ∼ 1

(z − w)3/4
±
√

3

2
(z − w)1/4 J (w) + . . . (2.77)

The internal supercurrents G±int can be split into two components of opposite U(1) charge,

Gint =
1√
2

(
G+

int + G−int

)
, (2.78)

subject to the superconformal N = 2 algebra11

J (z)J (w) ∼ 1

(z − w)2
+ J (w)J (w) + . . . (2.79)

J (z)G±int(w) ∼ ± G±int(w)√
3 (z − w)

+ J (w)G±int(w) + . . . (2.80)

G±int(z)G
±
int(w) ∼ G±int(w)G±int(w) + . . . (2.81)

G±int(z)G
∓
int(w) ∼ 3/2

(z − w)3
±
√

3J (w)

2 (z − w)2
+

2Tint(w) ±
√

3 ∂J (w)

4 (z − w)
+ . . . (2.82)

11In contrast to [28–30], we normalize J such that it has canonical two-point functions 〈J (z)J (w)〉 = 1 · (z − w)−2. This
simplifies (subleading) OPE coefficients and normalization factors in vertex operators.
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with internal c = 9 energy momentum tensor Tint. The OPE of alike spin fields gives rise to new h = 3
2

Virasoro primary operators

Σ±(z) Σ±(w) ∼ (z − w)3/4O±(w) + . . . (2.83)

with twice the U(1) charge of the spin fields, and iterated OPEs with Σ± create an infinite tower of further

conformal primaries with higher weights and charges.

A large sector of the internal CFT can be captured by bosonization. Let H(z) denote a canonically

normalized free & chiral boson, then we have the following representation for some for the aforementioned

operators:

J ≡ i∂H , Σ± ≡ e±i
√

3H/2 , O± ≡ e±i
√

3H . (2.84)

However, the internal supercurrent (or energy momentum tensor) cannot be fully bosonized. Instead, we

can represent G±int as

G±int =

√
3

2
e
± i√

3
H
g± , (2.85)

where the h = 4
3 operators g± are local with respect to H and satisfy

g±(z) g∓(w) ∼ 1

(z − w)8/3
+

0

(z − w)5/3
+ . . . (2.86)

g±(z) g±(w) ∼ g±(w) g±(w)

(z − w)1/3
+ . . . . (2.87)

On these grounds, we can understand the OPE of the supercurrent with internal spin fields,

G±int(z) Σ∓(w) ∼
√

3

2

Σ̃∓(w)

(z − w)1/2
+ . . . (2.88)

G±int(z) Σ±(w) ∼ (z − w)1/2 g± e
± 5i

2
√

3 (w) + . . . (2.89)

which introduces excited spin fields Σ̃± of h = 11
8 in case of opposite U(1) charges G±int ↔ Σ∓,

Σ̃± ≡ g∓ e
± i

2
√

3
H
. (2.90)
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Fig. 3 gives an overview of the universal Virasoro primaries in the internal c = 9 SCFT. More detailed OPEs

including subleading singularities can be found in appendix B.4.

h

q

0−
√

3
2 +

√
3

2
−
√

3 +
√

3

O− O+G−int G+
int

Σ− Σ+

∂Σ− ∂Σ+Σ̃− Σ̃+

J

1
2

1

3
2

Figure 3: Conformal fields in the N = 1 internal CFT, together with their weight h and U(1) charge q.

From these OPEs, we obtain the following +1/2 ghost picture version for the SUSY charge

Q(+1/2)
a =

∮
dz

2πi

[ √
3

α′1/4
Sa Σ̃+ +

1

2α′3/4
i∂Xµ σ

µ

aḃ
S ḃ Σ+

]
e+φ/2 , (2.91)

Q̄(+1/2)ḃ =

∮
dz

2πi

[ √
3

α′1/4
S ḃ Σ̃− +

1

2α′3/4
i∂Xµ σ̄ḃaµ Sa Σ−

]
e+φ/2 , (2.92)

which yield the N = 1 SUSY algebra

{
Q(+1/2)
a , Q̄(−1/2),ḃ

}
= (σµ ε)a

ḃ Pµ , Pµ =
1

2α′

∮
dz

2πi
i∂Xµ . (2.93)

2.2.6 Summary of CFT operators

To conclude this section on the internal SCFTs associated with D = 4 compactifications of different super-

charges, Fig. 4 summarizes the field content of the different sectors. This is a good reference to build the

most general ansatz for physical vertex operators.
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h

1
2

1

3
2

spacetime

Sa, S
ḃ

ψµ

Sȧµ, S
µ
b , ∂Sa, ∂S

ḃ

i∂Xµ, ψνψλ

ψµψνψλ, ∂ψρ

Σ±

J

O±, G±int

Σ̃±, ∂Σ±

N = 1 internal N = 2 internal N = 4 internal

λi

J A, i∂H, ∂Z±

e±iH

e±iH/2

e±3iH/2, ∂e±iH/2
gi, ∂λi

∂e±iH

ΣI , Σ̄J̄

Ψm

Σ̄m
Ī
,ΣJm, ∂ΣI , ∂Σ̄J̄

i∂Zm, ΨnΨp

ΨmΨnΨp, ∂Ψm

Figure 4: Conformal fields together with their weight in various decoupling CFT sectors

2.3 Physical states of N = 4, 2, 1 compactifications

2.3.1 Physical states of N = 4 SUSY

Having introduced the CFT setup for the construction of massive string state, let us now turn to explicit

vertex operators on the first mass level. We will first of all examine the four-dimensional field content of

maximally supersymmetric superstring compactifications toD = 4 withN = 4 SUSY. This is the dimensional

reduction of the ten-dimensional multiplet, so we will again find all the 256 states which have been discussed

from the D = 10 viewpoint in Chapter 2.1. They form a massive N = 4 multiplet in four dimensions for

which we will work out the spin and R-symmetry content as well as the SUSY transformations.

NS sector

With the internal CFT operators from Fig. 1 at hand, the following h = 3/2 combinations must be considered

in the most general NS vertex operator at first mass level:

V (−1) =
(
αµν i∂X

µ ψν + eµνλ ψ
µ ψν ψλ + hµ ∂ψ

µ + βmµ i∂Xµ Ψm

+ γmµ ψµ i∂Zm + dmnµ ψµ Ψm Ψn + Y m ∂Ψm + ωmµν ψ
µ ψν Ψm

+ ζmn i∂Zm Ψn + Ωmnp Ψm Ψn Ψp

)
e−φ eik·X . (2.94)
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Requiring vanishing Q1 variation for (2.94) implies the following on-shell constraints for the ten wavefunctions

above:

0 = αµ
µ + kµ hµ + ζm

m 0 = 2α′ Y m + kµ γmµ

0 = α[µν] + 3 kλ eλµν 0 = βmµ − γmµ + 2 kλωmλµ

0 = 2α′ αµν k
ν + hµ 0 = kµ dmnµ + ζ [mn]

(2.95)

This leaves the following 128 physical solutions

• one transverse and traceless spin two tensor

V (−1)
α =

1√
2α′

αµν i∂X
µ ψν e−φ eik·X , kµ αµν = α[µν] = αµ

µ = 0 (2.96)

• 27 transverse vectors (in the vector and two-form representations of the R-symmetry SO(6))

V
(−1)
d =

1

2
dmnµ ψµ Ψm Ψn e

−φ eik·X , kµ dmnµ = 0 (2.97)

V
(−1)
β± =

1

2
√

2α′
β±,mµ

(
i∂Xµ Ψm + i∂Zm ψ

µ

± iα′ εµνλρ kν ψλ ψρ Ψm

)
e−φ eik·X , kµ β±,mµ = 0 (2.98)

• 42 scalar degrees of freedom (scalars, spin two and and three-form with respect to SO(6))

V
(−1)
Φ± =

1

2
√

2α′
Φ±
[

(ηµν + 2α′ kµ kν) i∂Xµ ψν + 2α′ kµ ∂ψ
µ

± iα′

3
εµνλρ ψ

µ ψν ψλ kρ
]
e−φ eik·X (2.99)

V
(−1)
ζ =

1√
2α′

ζmn i∂Zm Ψn e
−φ eik·X , ζ [mn] = ζmm = 0 (2.100)

V
(−1)
Ω = Ωmnp Ψm Ψn Ψp e

−φ eik·X . (2.101)

The 46 spurious NS sector states from ten dimensions are aligned into six representations of SO(1, 3)×SO(6).

They can be constructively obtained as BRST variations of ghost charge −2 objects, see (2.10):

V
(−1)
π(sp) ∼

[
(πµ kν + kµ πν) i∂Xµ ψν + 2πµ ∂ψ

µ
]
e−φ eik·X , kµ πµ = 0 , (2.102)
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V
(−1)
Σ(sp) ∼

[
2 Σ[µν] i∂X

µ ψν + 2α′ Σ[µν kλ] ψ
µ ψν ψλ

]
e−φ eik·X , kµ Σµν = 0 , (2.103)

V
(−1)
Λ1(sp) ∼ Λ1

[
(ηµν + 4α′ kµ kν) i∂Xµ ψν + 6α′ kµ ∂ψ

µ + i∂Zm Ψm
]
e−φ eik·X , (2.104)

V
(−1)
Λ2(sp) ∼ Λm2

(
kµ
[
i∂Xµ Ψm + i∂Zm ψ

µ
]

+ 2 ∂Ψm

)
e−φ eik·X , (2.105)

V
(−1)
Λ3(sp) ∼ Λ

[mn]
3

[
i∂Zm Ψn + α′ kµ ψ

µ Ψm Ψn

]
e−φ eik·X , (2.106)

V
(−1)
Λ4(sp) ∼ Λm4µ

(
i∂Xµ Ψm − i∂Zm ψ

µ − 2α′ kν ψ
µ ψν Ψm

)
e−φ eik·X , kµ Λm4µ = 0 . (2.107)

Each spurious state corresponds to a gauge freedom. The first one (2.102) admits to gauge away the longi-

tudinal component of the rank two tensor αµν whereas the second one (2.103) identifies the antisymmetric

part α[µν] together with the longitudinal three-form eµνλσk[µΣνλ] as unphysical. Similarly, (2.105), (2.106)

and (2.107) eliminate the longitudinal components of (βmµ + γmµ ), dmnµ and ωmµν as well as the antisymmetric

parts βmµ − γmµ and ζ[mn]. The trace of αµν can be gauged away using (2.104).

Once the three- and two-forms eµνλ and ωkµν are reduced to there transverse part, contraction with

εµνλρkρ dualizes them to a scalar and a vector, respectively. As we will see below, supersymmetry suggests

to include these dualized states into the complex combinations (2.98) and (2.99).

R sector

In the R sector, the SCFT operators of appropriate weight give rise to a vertex operator ansatz with six

wavefunctions:

V (− 1
2 ) =

(
vaµ,I i∂X

µ Sa ΣI + ρ̄µ
ḃ,I
S ḃµ ΣI + uaI ∂Sa ΣI

+ yaI Sa ∂ΣI + r̄J̄
m,ḃ

i∂Zm S ḃ Σ̄J̄ + sa,J̄m Sa Σ̄mJ̄

)
e−φ/2 eik·X . (2.108)

The same set of states also exists with opposite chiralities with respect to both SO(1, 3) and SO(6) (e.g.

vaµ,ISaΣI ↔ v̄J̄
µ,ḃ
S ḃΣ̄J̄). However, the BRST constraints for the polarizations in (2.108) decouple from those

of the other chirality sector which we did not display, so the discussion will be limited to the six wavefunctions

shown in (2.108) for the moment. The full list of physical and spurious states follows from doubling the

solutions of the on-shell constraints. Imposing invariance under Q1 yields the following three independent
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constraints:

0 = 2α′ vµ,aI 6kaḃ +
√

2 ρ̄µ
ḃ,I

+ 1
2 u

a
I σ

µ

aḃ
,

0 = 2α′ r̄J̄
m,ḃ
6kḃa +

√
2 sa,J̄m − 1

2 y
a
I γ

IJ̄
m ,

0 = kµ ρ̄
µ

ḃ,I
+ 1

2
√

2
r̄J̄
m,ḃ

γ̄m
J̄I
.

(2.109)

The first two equations can be further disentangled into a trace and a traceless part with respect to the

σµ and γm matrices. Since excited spin fields are σ and γ traceless, the associated wavefunctions satisfy

ρ̄µ
ḃ,I
σ̄ḃaµ = sa,J̄m γ̄m

J̄I
= 0 by construction. Hence, the aforementioned projections simplify the BRST constraints

to

uaI = α′ vbµ,I (6k σ̄µ)b
a

ρ̄µ
ḃ,I

= −
√

2α′
(
vµ,aI 6kaḃ + 1

4 v
a
λ,I (6k σ̄λ σµ)aḃ

)

yaI = − 2α′

3
r̄J̄
m,ḃ

γ̄mJ̄I 6kḃa (2.110)

sa,J̄m = −
√

2α′
(
r̄J̄
m,ḃ
6kḃa + 1

6 r̄
Ī
n,ḃ

(γ̄n γm)Ī
J̄ 6kḃa

)

r̄J̄
m,ḃ

γ̄mJ̄I = 2α′ kµ v
µ,a
I 6kaḃ − vaµ,I σ

µ

aḃ

where ρ̄, u, y and s are expressed in terms of v and r̄. It turns out that both spin 3/2 and spin 1/2 components

of the vector spinors vI as well as the γ traceless components of r̄ give rise to an independent physical solution.

The former is the D = 4 analogue of the ten-dimensional spin 3/2 state (2.22). But additionally, we find

spin 1/2 Dirac fermions (ab, r̄Īm,a) – both in the fundamental spinor- and in the spin 3/2 representations

of the R-symmetry SO(6). To summarize the physical states built from (2.108) and its opposite chirality

counterpart:

• eight transverse and σ traceless spin 3/2 vector spinors

V
(− 1

2 )
χ =

1√
2α′1/4

χaµ,I

(
i∂Xµ Sa −

√
2α′ 6kaḃ Sµḃ

)
ΣI e−φ/2 eik·X , (2.111)

V
(− 1

2 )
χ̄ =

1√
2α′1/4

χ̄Īµ,ȧ

(
i∂Xµ Sȧ −

√
2α′ 6kȧb Sµb

)
Σ̄Ī e

−φ/2 eik·X , (2.112)

0 = kµ χaµ,I = χaµ,I σ
µ

aḃ
= kµ χ̄

µ,J̄

ḃ
= χ̄µ,J̄

ḃ
σ̄ḃaµ (2.113)
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• 48 spin 1/2 fermions (eight in the fundamental and 40 in spin 3/2 representations of SO(6))

V
(− 1

2 )
a =

α′1/4

2
abI

(
(σµ 6k)b

a Sa i∂X
µ − 4 ∂Sb

)
ΣI e−φ/2 eik·X , (2.114)

V
(− 1

2 )
ā =

α′1/4

2
āĪ
ḃ

(
(σ̄µ 6k)ḃȧ S

ȧ i∂Xµ − 4 ∂S ḃ
)

Σ̄Ī e
−φ/2 eik·X , (2.115)

V
(− 1

2 )
r =

1√
2α′1/4

ram,I

(
i∂Zm ΣI Sa −

√
2α′ 6kaḃ S ḃ Σm,I

)
e−φ/2 eik·X , (2.116)

V
(− 1

2 )
r̄ =

1√
2α′1/4

r̄Īm,ȧ

(
i∂Zm Σ̄Ī S

ȧ −
√

2α′ 6kȧb Sb Σ̄mĪ

)
e−φ/2 eik·X . (2.117)

The following spurious solutions have been subtracted to remove internal derivatives ∂ΣI from the vertex

operators:

V
(− 1

2 )

Θ(sp) ∼ Θa
I

[
(/kaḃ σ̄

ḃb
µ + 4kµ δ

b
a) i∂Xµ Sb ΣI − 2

√
2
(
α′ kµ /kaḃ + 1

4 σ
µ

aḃ
)S ḃµ ΣI

+ 6 ∂Sa ΣI + 4Sa ∂ΣI + /kaḃ γ
IJ̄
m i∂Zm S ḃ Σ̄Ī

]
e−φ/2 eik·X , (2.118)

V
(− 1

2 )

Θ̄(sp)
∼ Θ̄Ī

ḃ

[
(/k
ḃa
σµaȧ + 4kµ δḃȧ) i∂Xµ S

ȧ Σ̄Ī − 2
√

2
(
α′ kµ /k

ḃa
+ 1

4 σ̄
ḃa
µ

)
Sµa Σ̄Ī

+ 6 ∂S ḃ Σ̄Ī + 4S ḃ ∂Σ̄Ī + /k
ḃa
γmĪJ i∂Zm Sa ΣJ

]
e−φ/2 eik·X . (2.119)

They are the dimensional reduction of the ten-dimensional spurious state (2.23).

2.3.2 Physical states of N = 2 SUSY

In this section, we will show that the first mass level in compactifications with N = 2 spacetime SUSY is

populated by 80 universal states which are aligned into one 24+24 state multiplet of highest spin two and

two 8+8 state multiplets of maximum spin one.

39



NS sector

According to the CFT operator content shown in Fig. 2, we make the following general ansatz for an NS

state at the first mass level:12

V (−1) =
(
αµν i∂X

µ ψν + eµνλ ψ
µ ψν ψλ + hµ ∂ψ

µ + Y+ ∂e
iH + Y− ∂e

−iH

+ β+
µ i∂X

µ eiH + β−µ i∂X
µ e−iH + γ+

µ ψ
µ i∂Z+ + γ−µ ψ

µ i∂Z−

+ ξµ ψ
µ i∂H + dAµ JA ψµ + ΩA+ JA eiH + ΩA− JA e−iH

+ ζ++ i∂Z
+ eiH + ζ−− i∂Z

− e−iH + ζ−+ i∂Z
− eiH + ζ+− i∂Z

+ e−iH

+ ω+
µν ψ

µ ψν eiH + ω−µν ψ
µ ψν e−iH + ci

j λi gj

)
e−φ eik·X . (2.120)

Requiring BRST invariance under Q1 yields the following on-shell conditions:

0 = αµ
µ + kµ hµ + ζ+− + ζ−+ − α′−1/2 ci

i

0 = 2α′ αµν k
ν + hµ 0 = kµ dAµ + 1√

2α′
(τA)ij ci

j

0 = α[µν] + 3 eµνλ k
λ 0 = Y± + 2α′ γ±µ k

µ

0 = β±µ − γ±µ + 2 kν ω±νµ 0 = kµ ξµ + ζ−+ − ζ+−

(2.121)

These BRST constraints admit 40 physical solutions:

• one transverse and traceless spin two tensor

V (−1)
α =

1√
2α′

αµν i∂X
µ ψν e−φ eik·X , kµ αµν = α[µν] = αµ

µ = 0 (2.122)

• eight transverse vectors three of which form an R-symmetry triplet (note the sign difference in the

pseudovector parts of β± and ω±)

V
(−1)
ξ = ξµ ψ

µ i∂H e−φ eik·X , kµ ξµ = 0 (2.123)

V
(−1)
d = dAµ ψ

µ JA e−φ eik·X , kµ dAµ = 0 (2.124)

12Recall that we have non-Abelian R-symmetry SU(2) in this setting, and i, j = 1, 2 denote its spinor indices whereas
A = 1, 2, 3 are adjoint indices.
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V
(−1)
β± =

1

2
√

2α′
β±µ
(
i∂Xµ e±iH + i∂Z± ψµ

± iα′ εµνλρ kν ψλ ψρ e
±iH ) e−φ eik·X , kµ β±µ = 0 (2.125)

V
(−1)
ω± =

1

2
√

2α′
ω±µ
(
i∂Xµ e±iH + i∂Z± ψµ

∓ iα′ εµνλρ kν ψλ ψρ e
±iH ) e−φ eik·X , kµ ω±µ = 0 (2.126)

• eleven real scalar degrees of freedom

V
(−1)
Φ± =

Φ±

2
√

2α′

[
(ηµν + 2α′ kµ kν) i∂Xµ ψν + 2α′ kµ ∂ψ

µ

± iα′

3
εµνλρ ψ

µ ψν ψλ kρ
]
e−φ eik·X , (2.127)

V
(−1)
φ =

1√
6α′

φ
[
i∂Z+ e−iH + i∂Z− eiH +

√
α′Gii

]
e−φ eik·X , (2.128)

V
(−1)
Ω± = Ω±A e

±iH J A e−φ eik·X , (2.129)

V
(−1)
ζ± =

1√
2α′

ζ± i∂Z± e±iH e−φ eik·X . (2.130)

In addition, we have numerous spurious states:

V
(−1)
π(sp) ∼

[
(πµ kν + kµ πν) i∂Xµ ψν + 2πµ ∂ψ

µ
]
e−φ eik·X , kµ πµ = 0 , (2.131)

V
(−1)
Σ(sp) ∼

[
2 Σ[µν] i∂X

µ ψν + 2α′Σ[µν kλ] ψ
µ ψν ψλ

]
e−φ eik·X , kµ Σµν = 0 , (2.132)

V
(−1)
Λ0(sp) ∼ ΛA0

[
kµ ψ

µ JA + 1√
2α′

(τA)jiG
i
j

]
e−φ eik·X , (2.133)

V
(−1)
Λ1(sp) ∼ Λ1

[
(ηµν + 4α′ kµ kν) i∂Xµ ψν + 6α′ kµ ∂ψ

µ

+ i∂Z+ e−iH + i∂Z− eiH − 2
√
α′Gii

]
e−φ eik·X , (2.134)

V
(−1)

Λ±2 (sp)
∼ Λ±2

[
kµ (i∂Z± ψµ + i∂Xµ e±iH) + 2 ∂e±iH

]
e−φ eik·X , (2.135)

V
(−1)
Λ3(sp) ∼ Λ3

[
2α′ kµ ψ

µ i∂H + i∂Z− eiH − i∂Z+ e−iH
]
e−φ eik·X , (2.136)

V
(−1)

Λ±4 (sp)
∼ Λ±4µ

[
2α′ kν ψ

ν ψµ e±iH + i∂Xµ e±iH − i∂Z± ψµ
]
e−φ eik·X , kµ Λ±4µ = 0 . (2.137)
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They allow to eliminate the longitudinal components of six vectors and of the two-forms ω±µν . The latter

therefore dualize to transverse pseudovectors entering the β±µ and ω±µ states. By combining with the Λ1

spurious state, one can transform the φ solution into a form without internal c = 6 supercurrents:

V
(−1)
φ =

1√
6α′

φ
[

(ηµν + 4α′ kµ kν) i∂Xµ ψν + 6α′ kµ ∂ψ
µ

+ 3 (i∂Z+ e−iH + i∂Z− eiH)
]
e−φ eik·X . (2.138)

R sector

In the R sector of the first mass level in N = 2 scenarios, the vertex operator ansatz in one chirality sector

includes nine SCFT operators:

V (− 1
2 ) =

{
vaµi i∂X

µ Sa λ
i eiH/2 + ρ̄µ

ḃi
S ḃµ λ

i eiH/2 + uai ∂Sa λ
i eiH/2 + r̄+ḃi i∂Z

+ S ḃ λi e−iH/2

+ r̄−ḃi i∂Z
− S ḃ λi e−iH/2 + ωai Sa λ

i ∂eiH/2 + yai Sa ∂λ
i eiH/2

+ ¯̀̇
bi S

ḃ gi eiH/2 + ψai Sa λ
i e−3iH/2

}
e−φ/2 eik·X . (2.139)

The system of BRST constraints can be reduced to the following independent set:

0 = 2 kµ ρ̄
µ

ḃi
+ r̄+ḃi −

√
1
α′

¯̀̇
bi

0 = 2α′ vµ,ai 6kaḃ +
√

2 ρ̄µ
ḃi

+ 1
2 u

a
i σ

µ

aḃ

,

0 = ωai + 2
√

2α′ r̄+ḃi 6kḃa

0 = ψai +
√

2α′ r̄−ḃi 6kḃa

0 = yai −
√

2α′ ¯̀̇bi 6kḃa

. (2.140)

Adding a sector of opposite chirality and internal charge gives rise to 40 physical solutions. All of them

transform in the fundamental representation of the SU(2) R-symmetry:

• four transverse and σ traceless spin 3/2 vector spinors

V
(− 1

2 )
χ =

1√
2α′1/4

χaµ,i

(
i∂Xµ Sa −

√
2α′ 6kaḃ Sµḃ

)
λi eiH/2 e−φ/2 eik·X , (2.141)

V
(− 1

2 )
χ̄ =

1√
2α′1/4

χ̄µ
ḃ,i

(
i∂Xµ S

ḃ −
√

2α′ 6kḃa Sµa
)
λi e−iH/2 e−φ/2 eik·X , (2.142)
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0 = kµ χaµi = χaµi σ
µ

aḃ
= kµ χ̄

µ

ḃi
= χ̄µ

ḃi
σ̄ḃaµ (2.143)

• six spin 1/2 fermions:

V
(− 1

2 )
a =

α′1/4

2
abi

(
(σµ 6k)b

a Sa i∂X
µ − 4 ∂Sb

)
λi eiH/2 e−φ/2 eik·X , (2.144)

V
(− 1

2 )
ā =

α′1/4

2
āȧ,i

(
(σ̄µ 6k)ȧḃ S

ḃ i∂Xµ − 4 ∂Sȧ
)
λi e−iH/2 e−φ/2 eik·X , (2.145)

V
(− 1

2 )
r =

1√
2α′1/4

rai

(
i∂Z+ Sa e

iH/2 −
√

2α′ /kaḃ S
ḃ e3iH/2

)
λi e−φ/2 eik·X , (2.146)

V
(− 1

2 )
r̄ =

1√
2α′1/4

r̄ḃ,i

(
i∂Z− S ḃ e−iH/2 −

√
2α′ /k

ḃa
Sa e

−3iH/2
)
λi e−φ/2 eik·X , (2.147)

V
(− 1

2 )
s =

1√
3α′1/4

sai

(
i∂Z− Sa λ

i eiH/2 +
√
α′ Sa g

i e−iH/2

+
√

2α′ /kaḃ
(
S ḃ ∂λi e−iH/2 − 2S ḃ λi ∂e−iH/2

))
e−φ/2 eik·X , (2.148)

V
(− 1

2 )
s̄ =

1√
3α′1/4

s̄ḃ,i

(
i∂Z+ S ḃ λi e−iH/2 +

√
α′ S ḃ gi eiH/2

+
√

2α′ /k
ḃa(

Sa ∂λ
i eiH/2 − 2Sa λ

i ∂eiH/2
))
e−φ/2 eik·X . (2.149)

Again, there is a spurious fermion which can be used to remove some internal SCFT fields from the vertex

operators:

V
(− 1

2 )

Θ(sp) ∼ Θa
i

[
(/kaḃ σ̄

ḃb
µ + 4kµ δ

b
a) i∂Xµ Sb λ

i eiH/2 − 2
√

2
(
α′ kµ /kaḃ + 1

4 σ
µ

aḃ

)
S ḃµ λ

i eiH/2

+ 6 ∂Sa λ
i eiH/2 + 4Sa ∂λ

i eiH/2 + 4Sa λ
i ∂eiH/2

+ 2
√

2α′ /kaḃ S
ḃ gi eiH/2 −

√
2 /kaḃ i∂Z

+ S ḃ λi e−iH/2
]
e−φ/2 eik·X , (2.150)

V
(− 1

2 )

Θ̄(sp)
∼ Θ̄ḃ,i

[
(/k
ḃa
σµaȧ + 4kµ δḃȧ) i∂Xµ S

ȧ λi e−iH/2 − 2
√

2
(
α′ kµ /k

ḃa
+ 1

4 σ̄
ḃa
µ

)
Sµa λ

i e−iH/2

+ 6 ∂S ḃ λi e−iH/2 + 4S ḃ ∂λi e−iH/2 + 4S ḃ λi ∂e−iH/2

+ 2
√

2α′ /k
ḃa
Sa g

i e−iH/2 −
√

2 /k
ḃa
i∂Z− Sa λ

ieiH/2
]
e−φ/2 eik·X . (2.151)
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2.3.3 Physical states of N = 1 SUSY

This section is devoted to the universal SUSY multiplets common to all D = 4 superstring compactifications

which preserve N = 1 spacetime SUSY. Only the N = 1 SUSY can provide us chiral fermion spectrum

which is phenomenologically most important.

NS sector

By assembling h = 3/2 combinations of the conformal fields of Fig. 3, one arrives at the following general

form of an NS state at mass m2 = 1/α′:

V (−1) =
(
αµν i∂X

µ ψν + eµνλ ψ
µ ψν ψλ + hµ ∂ψ

µ + ξµ ψ
µ J

+ Ω+O+ + Ω−O− + c+G
+
int + c−G

−
int

)
e−φ eik·X . (2.152)

This is BRST invariant if the polarization tensors satisfy

0 = αµ
µ + kµ hµ + 3

2
√
α′

(c+ + c−) 0 = α[µν] + 3 eµνλ k
λ

0 = kµ ξµ +
√

3
2
√
α′

(c− − c+) 0 = 2α′ αµν k
ν + hµ

(2.153)

Twelve physical states solve this system of equations:

• one transverse and traceless spin two tensor

V (−1)
α =

1√
2α′

αµν i∂X
µ ψν e−φ eik·X , kµ αµν = α[µν] = αµ

µ = 0 (2.154)

• one transverse vector

V
(−1)
d = dµ ψ

µ J e−φ eik·X , kµ dµ = 0 (2.155)
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• two complex scalars

V
(−1)
Φ± =

Φ±

2
√

2α′

[
(ηµν + 2α′ kµ kν) i∂Xµ ψν + 2α′ kµ ∂ψ

µ

± iα′

3
εµνλρ ψ

µ ψν ψλ kρ
]
e−φ eik·X , (2.156)

V
(−1)
Ω± = Ω±O± e−φ eik·X . (2.157)

In addition, we have spurious solutions to the BRST constraints:

V
(−1)
π(sp) ∼

[
(πµ kν + kµ πν) i∂Xµ ψν + 2πµ ∂ψ

µ
]
e−φ eik·X , kµ πµ = 0 , (2.158)

V
(−1)
Σ(sp) ∼

[
2 Σ[µν] i∂X

µ ψν + 2α′ Σ[µν kλ] ψ
µ ψν ψλ

]
e−φ eik·X , kµ Σµν = 0 , (2.159)

V
(−1)
Λ0(sp) ∼ Λ0

[
(G+

int − G−int) −
√

3α′ kµ ψ
µ J

]
e−φ eik·X , (2.160)

V
(−1)
Λ1(sp) ∼ Λ1

[
(ηµν + 4α′ kµ kν) i∂Xµ ψν + 6α′ kµ ∂ψ

µ ,

+ 2
√
α′ (G+

int + G−int)
]
e−φ eik·X . (2.161)

The last two spurious states allow to gauge away both the c± scalars and the longitudinal component of the

massive vector ξµσkµ.

R sector

For D = 4 fermions at mass m2 = 1/α′, the most general vertex operators built from N = 1 internal SCFT

fields reads

V (− 1
2 ) =

(
vaµ i∂X

µ Sa Σ+ + ρ̄µ
ḃ
S ḃµ Σ+ + ua ∂Sa Σ+

+ ya Sa ∂Σ+ + ω̄ḃ S
ḃ Σ̃+

)
e−φ/2 eik·X , (2.162)
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see Fig. 3. Invariance under Q1 yields three independent BRST constraints:

0 = 2α′ vµ,a 6kaḃ +
√

2 ρ̄µ
ḃ

+ 1
2 u

a σµ
aḃ
,

0 = kµ ρ̄
µ

ḃ
+ 1

2

√
3

2α′ ω̄ḃ ,

0 = ya + 2
√

α′

3 ω̄ḃ 6kḃa .

(2.163)

They allow one to express any wavefunction in terms of vaµ

ua = α′ vbµ (6k σ̄µ)b
a

ρ̄µḃ = −
√

2α′
(
vaµ 6kaḃ + 1

4 v
a
λ (6k σ̄λ σµ)aḃ

)
(2.164)

ω̄ḃ =

√
α′

3

(
2α′ kµ vaµ 6kaḃ − vaµ σ

µ

aḃ

)

ya =
2α′

3

(
vbµ (σµ 6k)b

a − 2 kµ vaµ

)
.

The same set of states exists with opposite SO(1, 3) chirality and internal U(1) charge. Including them, we

have four physical solutions to (2.164) and four solutions to the conjugate system of equations:

• two transverse and σ traceless spin 3/2 vector spinors

V
(− 1

2 )
χ =

1√
2α′1/4

χaµ

(
i∂Xµ Sa −

√
2α′ 6kaḃ Sµḃ

)
Σ+ e−φ/2 eik·X , (2.165)

V
(− 1

2 )
χ̄ =

1√
2α′1/4

χ̄µȧ

(
i∂Xµ S

ȧ −
√

2α′ 6kȧb Sµb
)

Σ− e−φ/2 eik·X , (2.166)

0 = kµ χaµ = χaµ σ
µ

aḃ
= kµ χ̄

µ
ȧ = χ̄µȧ σ̄

ȧb
µ (2.167)

• two spin 1/2 fermions

V
(− 1

2 )
a =

α′1/4

2
ab
(

(σµ 6k)b
a Sa i∂X

µ − 4 ∂Sb

)
Σ+ e−φ/2 eik·X , (2.168)

V
(− 1

2 )
ā =

α′1/4

2
āḃ

(
(σ̄µ 6k)ḃȧ S

ȧ i∂Xµ − 4 ∂S ḃ
)

Σ− e−φ/2 eik·X . (2.169)
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Spurious solutions can gauge away the internal excitations with wavefunctions ya and ω̄ḃ:

V
(− 1

2 )

Θ(sp) ∼ Θa
[

(/kaȧ σ̄
ȧb
µ + 4kµ δ

b
a) i∂Xµ Sb Σ+ − 2

√
2
(
α′ kµ /kaḃ + 1

4 σ
µ

aḃ

)
S ḃµ Σ+

+ 6 ∂Sa Σ+ + 4Sa ∂Σ+ − 2
√

3α′ /kaḃ S
ḃ Σ̃+

]
e−φ/2 eik·X , (2.170)

V
(− 1

2 )

Θ̄(sp)
∼ Θ̄ḃ

[
(/k
ḃa
σµaȧ + 4kµ δḃȧ) i∂Xµ S

ȧ Σ− − 2
√

2
(
α′ kµ /k

ḃa
+ 1

4 σ̄
ḃa
µ

)
Sµa Σ−

+ 6 ∂S ḃ Σ− + 4S ḃ ∂Σ− − 2
√

3α′ /k
ḃa
Sa Σ̃−

]
e−φ/2 eik·X . (2.171)
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3 Massive supermultiplets in the first massive level

In this chapter, we show explicitly the physical states we constructed in the previous chapter form certain

supermultiplets for cases N = 1, N = 2 and N = 4 respectively. First of all, we study their supersym-

metry transformations; and then, we study in more detail the helicity structure of the various on-shell

supermultiplets. Differently than in the previous chapter, we will start from massive states under N = 1

compactification since this has the simplest field content. This chapter is based on the paper [3].

3.1 Supersymmetry relations of massive supermultiplets

With all the higher order OPEs (c.f., Appendix B) and physical spectrum in hands, we are able to compute

the SUSY transformations by acting with the supercharge operators on the physical states and evaluating

the corresponding contour integral.

3.1.1 N = 1 supermultiplets

N = 1 multiplets are the simplest compare to N = 2, 4 multiplets because of the Abelian R-symmetry group

U(1). The supercharge operators do not carry any R-symmetry indices, only an Abelian charge of ±
√

3/2.

For our convenience, we choose these SUSY parameters to have mass dimension [M−
1
2 ]. As we will verify

case by case, action of the supercharges Qa and Q̄ḃ given by Eqs. (2.76), (2.91) and (2.92) takes bosonic

(fermionic) vertex operators exactly into fermionic (bosonic) vertex operators, including their couplings. The

polarization wavefunction of the Q image state is expressed in terms of ηa, η̄ȧ and the pre-image wavefunc-

tion.13 Once we perform the SUSY variations, besides physical fields in the spectrum, we will also get certain

spurious states. We will drop out all these spurious states in our final results for simplicity.

After performing SUSY variation on all the bosonic and fermionic states in N = 1 SUSY, we find

that these states split into three separate massive supermultiplets – a spin two multiplet {α, χ, χ̄, d}, two

spin- 1
2 multiplets {Φ+, ā,Ω−} and {Ω+, a,Φ−}, see Fig. 5 below. We will show our results of the SUSY

transformations in order.

13In our settings, all the wavefunctions of bosonic fields have mass dimension 0, and all the wavefunction of fermionic fields
have mass dimension 1

2
, see Appendix C for their explicit construction in terms of (massive) spinor helicity variables.

48



Ω+ ←→ ab ←→ Φ−

χaµ ←→ αµν ⊕ dµ ←→ χ̄µ
ḃ

Φ+ ←→ āḃ ←→ Ω−

Figure 5: The three disconnected N = 1 SUSY multiplets at the first mass level: As before, Qa (Q̄ḃ) action
takes states along a left (right) arrow.

SUSY variation of the spin two supermultiplet

The spin two multiplet includes a spin two boson αµν , a vector dµ, and two spin- 3
2 fermions χaµ, χ̄µ,ȧ with

opposite chirality. The SUSY transformation of the bosonic states are:

[
ηaQ(+ 1

2 )
a , V (−1)

α

]
= V

(− 1
2 )

χ

(
χbµ =

1√
2
ηaαµν(/kσ̄ν) b

a

)
, (3.1)

[
η̄ȧQ̄(+ 1

2 ),ȧ, V (−1)
α

]
= V

(− 1
2 )

χ̄

(
χ̄µ,ḃ =

1√
2
η̄ȧαµν(/kσν)ȧ

ḃ

)
, (3.2)

[
ηaQ(+ 1

2 )
a , V

(−1)
d

]
= V

(− 1
2 )

χ

(
χbµ =

−1

2
√

3α′
ηa
[
3dµδ

b
a + (/dσ̄µ + α′kµ/d/k) b

a

])
, (3.3)

[
η̄ȧQ̄(+ 1

2 ),ȧ, V
(−1)
d

]
= V

(− 1
2 )

χ̄

(
χ̄µ,ḃ =

1

2
√

3α′
η̄ȧ
[
3dµδ

ȧ
ḃ

+ (/dσµ + α′kµ/d/k)ȧ
ḃ

])
. (3.4)

The SUSY transformation of the fermionic states are:

[
ηaQ(− 1

2 )
a , V

(− 1
2 )

χ

]
= 0, (3.5)

[
η̄ȧQ̄(− 1

2 ),ȧ, V
(− 1

2 )
χ

]
= V (−1)

α

(
αµν =

1√
2
η̄ȧ
(
σ̄ȧa(µχν)a + α′/k

ȧa
k(µχν),a

))

+ V
(−1)
d

(
dµ =

√
3α′

2
η̄ȧ/k

ȧa
χµ,a

)
, (3.6)

[
ηaQ(− 1

2 )
a , V

(− 1
2 )

χ̄

]
= V (−1)

α

(
αµν =

1√
2
ηa
(
σ(µ|aȧ|χ̄

ȧ
ν) + α′/kaȧk(µχ̄

ȧ
ν)

))

+ V
(−1)
d

(
dµ = −

√
3α′

2
ηa/kaȧχ̄

ȧ
µ

)
, (3.7)

[
η̄ȧQ̄(− 1

2 ),ȧ, V
(− 1

2 )
χ̄

]
= 0. (3.8)

Note that the signs of the SUSY transformations between spin- 3
2 and spin one are sensitive to the chirality,

see the relative signs between (3.3) and (3.4) as well as (3.6) and (3.7). This is necessary for consistent
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closure of the SUSY algebra and can be neatly represented by a chirality matrix γ5 when passing to Dirac

spinor notation.

SUSY variation of the spin 1/2 supermultiplets

The first spin- 1
2 multiplet {Φ+, ā,Ω−} includes a right-handed spin- 1

2 fermion ā and two scalars Φ+,Ω−. It

is governed by the following SUSY transformations:

[
ηbQ(+ 1

2 )

b , V
(−1)
Φ+

]
= 0, (3.9)

[
η̄ḃQ̄(+ 1

2 ),ḃ, V
(−1)
Φ+

]
= V

(− 1
2 )

ā

(
āḃ = −α′− 1

2 Φ+η̄ḃ

)
, (3.10)

[
ηbQ(+ 1

2 )

b , V
(−1)
Ω−

]
= V

(− 1
2 )

ā

(
āḃ = Ω−ηb/kbḃ

)
, (3.11)

[
η̄ḃQ̄(+ 1

2 ),ḃ, V
(−1)
Ω−

]
= 0, (3.12)

and

[
ηbQ(− 1

2 )

b , V
(− 1

2 )
ā

]
= V

(−1)
Φ+

(
Φ+ =

√
α′ηb/kbḃā

ḃ
)
, (3.13)

[
η̄ḃQ̄(− 1

2 ),ḃ, V
(− 1

2 )
ā

]
= V

(−1)
Ω−

(
Ω− = η̄ḃā

ḃ
)
. (3.14)

For {Ω+, a,Φ−} multiplet of opposite R-symmetry charges and fermion chirality, we obtain

[
ηbQ(+ 1

2 )

b , V
(−1)
Φ−

]
= V

(− 1
2 )

a

(
ab = −α′− 1

2 Φ−ηb
)
, (3.15)

[
η̄ḃQ̄(+ 1

2 ),ḃ, V
(−1)
Φ−

]
= 0, (3.16)

[
ηbQ(+ 1

2 )

b , V
(−1)
Ω+

]
= 0, (3.17)

[
η̄ḃQ̄(+ 1

2 ),ḃ, V
(−1)
Ω+

]
= V

(− 1
2 )

a

(
ab = Ω+η̄ḃ/k

ḃb
)
, (3.18)

and

[
ηbQ(− 1

2 )

b , V
(− 1

2 )
a

]
= V

(−1)
Ω+

(
Ω+ = ηbab

)
, (3.19)

50



[
η̄ḃQ̄(− 1

2 ),ḃ, V
(− 1

2 )
a

]
= V

(−1)
Φ−

(
Φ− =

√
α′η̄ḃ/k

ḃb
ab

)
. (3.20)

We will explore the helicity structure of these results in section 3.2.

3.1.2 N = 2 supermultiplets

The charges of N = 2 SUSY are spinors of the internal SU(2) R-symmetry and therefore carry an extra

index i. In this sector, universal states at the first mass level split into three separate massive supermultiplets

– a spin two multiplet {α, χ, χ̄, d, ξ, β±, s, s̄, φ} as well as two spin one multiplets {ω−, ā, r̄,Φ+, ζ−,Ω−A} and

{ω+, a, r,Φ−, ζ+,Ω+
A}, see Fig. 6 below for their structure.

ζ+ ←→ rbi ←→ ω+
µ ⊕ Ω+

A ←→ abi ←→ Φ−

β+
µ ←→ χaµ,i ⊕ s̄ḃ,i ←→ αµν ⊕ dAµ

⊕ ξµ ⊕ φ
←→ χ̄µ

ḃ,i
⊕ sai ←→ β−µ

Φ+ ←→ āḃ,i ←→ ω−µ ⊕ Ω−A ←→ r̄ḃ,i ←→ ζ−

Figure 6: Three disconnected N = 2 SUSY multiplets

SUSY variation of the spin two supermultiplet

The spin two multiplet includes a spin two boson αµν , six vectors ξµ, d
A=1,2,3
µ , β±µ , one scalar φ, two spin- 3

2

fermions χaµ, χ̄µ,ȧ and two spin- 1
2 fermions sa, s̄ȧ. Their SUSY transformations are:

[
ηaiQ

(+ 1
2 ),i

a , V (−1)
α

]
= V

(− 1
2 )

χ

(
χbµ,i =

1√
2
ηai αµν(/kσ̄ν) b

a

)
, (3.21)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V (−1)
α

]
= V

(− 1
2 )

χ̄

(
χ̄µ,ȧ,i =

1√
2
η̄ȧ,iαµν(/kσν)ȧ

ḃ

)
. (3.22)

For the four spin one fields, we have the following results – the SUSY variations of ξµ field read,

[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
ξ

]
= V

(− 1
2 )

χ

(
χbµ,i = − 1

6
√
α′
ηai
[
3ξµδ

b
a + (/ξσ̄µ + α′/ξ/kkµ) b

a

])

+ V
(− 1

2 )
s̄

(
s̄ȧ,i = − 1√

3α′
ηai /ξaȧ

)
, (3.23)
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[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
ξ

]
= V

(− 1
2 )

χ̄

(
χ̄µ,ḃ,i =

1

6
√
α′
η̄ȧ,i
[
3ξµδ

ȧ
ḃ

+ (/ξσ̄µ + α′/ξ/kkµ)ȧ
ḃ

])

+ V
(− 1

2 )
s

(
sai =

1√
3α′

η̄ȧ,i/ξ
ȧa
)
, (3.24)

the SU(2) triplet dAµ transforms to,

[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
d

]
= V

(− 1
2 )

χ

(
χbµ,j = − 1

3
√

2α′
ηai
[
3dAµ δ

b
a + (/d

A
σ̄µ + α′kµ/d

A
/k) b
a

]
(τA)ij

)

+ V
(− 1

2 )
s̄

(
s̄ȧ,j =

1√
6α′

ηai /d
A
aȧ(τA)ij

)
, (3.25)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
d

]
= V

(− 1
2 )

χ̄

(
χ̄µ,ḃ,i = − 1

3
√

2α′
η̄ȧ,i
[
3dAµ δ

ȧ
ḃ

+ (/d
A
σ̄µ + α′kµ/d

A
/k)ȧ

ḃ

]
(τA)ij

)

+ V
(− 1

2 )
s

(
saj =

1√
6α′

η̄ȧ,i/d
A,ȧa

(τA)ij

)
, (3.26)

and the complex vectors β±µ are varied to,14

[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
β+

]
= 0, (3.27)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i, V
(−1)
β+

]
= V

(− 1
2 )

χ

(
χbµ,i =

1

3
η̄ḃ,i
[
3β+

µ /k
ḃb − (kµ/β

+
+ /β

+/kσ̄µ)ḃb
])

+ V
(− 1

2 )
s̄

(
s̄ċ,i =

1√
3
η̄ḃ,i(/β

+/k)ḃċ

)
, (3.28)

[
ηbiQ

(+ 1
2 ),i

b , V
(−1)
β−

]
= V

(− 1
2 )

χ̄

(
χ̄µ,ḃ,i =

1

3
ηbi
[
3β−µ /kbḃ − (kµ/β

−
+ /β

−/kσµ)bḃ
])

+ V
(− 1

2 )
s

(
sci =

1√
3
ηbi (/β

−/k) c
b

)
, (3.29)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
β−

]
= 0 . (3.30)

The SUSY action on the unique scalar field φ is given by

[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
φ

]
= V

(− 1
2 )

s̄

(
s̄ȧ,i =

1√
2
φηai /kaȧ

)
, (3.31)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
φ

]
= V

(− 1
2 )

s

(
sai =

1√
2
φη̄ȧ,i/k

ȧa
)
. (3.32)

14Cocycles would introduce additional minus signs in the computations (and several analogous ones at later points). However,
we are able to eliminate these extra minus signs in a consistent way.
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Now we turn to analyze the fermionic states. For χ and χ̄ at spin- 3
2 , we have SUSY relations,

[
ηaiQ

(− 1
2 ),i

a , V
(− 1

2 )
χ

]
= V

(−1)
β+

(
β+
µ = ηai χµ,a,i

)
, (3.33)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i, V
(− 1

2 )
χ

]
= V (−1)

α

(
αµν =

1√
2
η̄ȧ,i
(
σ̄ȧa(µχ

i
ν),a + α′/k

ȧa
χi(µ|,a|kν)

))

+ V
(−1)
ξ

(
ξµ = −

√
α′

2
η̄ȧ,i/k

ȧa
χiµ,a

)

+ V
(−1)
d

(
dAµ =

√
α′

2
η̄ȧ,i/k

ȧa
χµ,a,j(τ

Aε)ij
)
, (3.34)

and

[
ηaiQ

(− 1
2 ),i

a , V
(− 1

2 )
χ̄

]
= V (−1)

α

(
αµν =

1√
2
ηai
(
σ(µ|aȧ|χ̄

ȧ,i
ν) + α′/kaȧχ̄

ȧ,i
(µ kν)

))

+ V
(−1)
ξ

(
ξµ =

√
α′

2
ηai /kaȧχ̄

ȧ,i
µ

)

+ V
(−1)
d

(
dAµ =

√
α′

2
ηai /kaȧχ̄

ȧ
µ,j(τ

Aε)ij
)
, (3.35)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i, V
(− 1

2 )
χ̄

]
= V

(−1)
β−

(
β−µ = η̄ȧ,iχ̄

ȧ,i
µ

)
. (3.36)

The spin- 1
2 states s and s̄, on the other hand, transform to

[
ηaiQ

(− 1
2 ),i

a , V
(− 1

2 )
s

]
= V

(−1)
ξ

(
ξµ =

√
α′

3
ηai
[
kµδ

b
a + (σµ/k) b

a

]
sib

)

+ V
(−1)
d

(
dAµ =

√
α′

6
ηai
[
kµδ

b
a + (σµ/k) b

a

]
sb,j(τ

Aε)ij
)

+ V
(−1)
φ

(
φ =

1√
2
ηai s

i
a

)
, (3.37)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i, V
(− 1

2 )
s

]
= V

(−1)
β−

(
β−µ = − 1√

3
η̄ȧ,i
(
σ̄ȧaµ + α′kµ/k

ȧa)
sia

)
, (3.38)

and

[
ηaiQ

(− 1
2 ),i

a , V
(− 1

2 )
s̄

]
= V

(−1)
β+

(
β+
µ = − 1√

3
ηai
(
σµaȧ + α′kµ/kaȧ

)
s̄ȧ,i
)
, (3.39)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i, V
(− 1

2 )
s̄

]
= V

(−1)
ξ

(
ξµ =

√
α′

3
η̄ȧ,i
[
kµδ

ȧ
ḃ

+ (σ̄µ/k)ȧ
ḃ

]
s̄ḃ,i
)

+ V
(−1)
d

(
dAµ =

√
α′

6
η̄ȧ,i
[
kµδ

ȧ
ḃ

+ (σ̄µ/k)ȧ
ḃ

]
s̄ḃ,i(τAε)ij

)
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+ V
(−1)
φ

(
φ =

1√
2
η̄ȧ,ir̄

ȧ,i
+

)
. (3.40)

SUSY variation of the spin one supermultiplets

The first spin one multiplet {ω−, ā, r̄,Φ+, ζ−,Ω−A} contains one vector ω−µ , two right-handed fermions āḃ and

r̄ḃ of spin 1/2 each, and three scalars Φ+, ζ− and Ω−A. The SUSY relations for the spin one ω−µ read,

[
ηbiQ

(+ 1
2 ),i

b , V
(−1)
ω−

]
= V

(−1)
ā

(
āḃ,i = − 1√

2α′
ηbi /ω
−
bḃ

)
, (3.41)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
ω−

]
= V

(+ 1
2 )

r̄

(
r̄ḃ,i = − 1√

2
η̄ȧ,i(/ω

−/k)ȧ
ḃ

)
. (3.42)

For the fermions āḃ and r̄ḃ, we have,

[
ηbiQ

(− 1
2 ),i

b , V
(− 1

2 )
ā

]
= V

(−1)
Φ+

(
Φ+ =

√
α′ηbi /kbḃā

ḃ,i
)
, (3.43)

[
η̄ḃ,iQ̄(− 1

2 ),ḃ,i, V
(− 1

2 )
ā

]
= V

(−1)
ω−

(
ω−µ =

√
α′

2
η̄ḃ,i
[
kµδ

ḃ
ċ + (/kσµ)ḃċ

]
āċ,i
)

+ V
(−1)
Ω−

(
Ω−A = − 1√

2
η̄ḃ,i(τAε)

ij āḃj

)
, (3.44)

and

[
ηaiQ

(− 1
2 ),i

a , V
(− 1

2 )
r̄

]
= V

(−1)
ω−

(
ω−µ =

1√
2
ηai
(
σµaȧ + α′kµ/kaȧ

)
r̄ȧ,i
)

+ V
(−1)
Ω−

(
Ω−A =

√
α′

2
ηai /kaȧr̄

ȧ
j (τAε)

ij
)
, (3.45)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i, V
(− 1

2 )
r̄

]
= V

(−1)
ζ−

(
ζ− = η̄ȧ,ir̄

ȧ,i
)
. (3.46)

The results for the scalar fields are:

[
ηbiQ

(+ 1
2 ),i

b , V
(−1)
Φ+

]
= 0, (3.47)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i, V
(−1)
Φ+

]
= V

(− 1
2 )

ā

(
āḃ,i = −α′− 1

2 Φ+η̄ḃ,i

)
, (3.48)
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and

[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
ζ−

]
= V

(− 1
2 )

r̄

(
r̄ȧ,i = ζ−ηai /kaȧ

)
, (3.49)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
ζ−

]
= 0, (3.50)

and

[
ηbiQ

(+ 1
2 ),i

b , V
(−1)
Ω−

]
= V

(− 1
2 )

ā

(
āḃ,j = − 1√

2
ηbi /kbḃΩ

−
A(τA)ij

)
, (3.51)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
Ω−

]
= V

(− 1
2 )

r̄

(
r̄ȧ,j =

1√
2α′

η̄ȧ,iΩ
−
A(τA)ij

)
. (3.52)

The second spin one multiplet {ω+, a, r,Φ−, ζ+,Ω+
A} is just the complex conjugate of the former, so let us

simply list the analogous SUSY transformations:

[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
ω+

]
= V

(+ 1
2 )

r

(
rbi = − 1√

2
ηai (/ω

+/k) b
a

)
, (3.53)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i, V
(−1)
ω+

]
= V (−1)

a

(
abi = − 1√

2α′
η̄ḃ,i/ω

+,ḃb
)
, (3.54)

[
ηbiQ

(− 1
2 ),i

b , V
(− 1

2 )
a

]
= V

(−1)
ω+

(
ω+
µ =

√
α′

2
ηbi
[
kµδ

c
b + (/kσ̄µ) c

b

]
aic

)

+ V
(−1)
Ω+

(
Ω+
A = − 1√

2
ηbi (τAε)

ijab,j

)
, (3.55)

[
η̄ḃ,iQ̄(− 1

2 ),ḃ,i, V
(− 1

2 )
a

]
= V

(−1)
Φ−

(
Φ− =

√
α′η̄ḃ,i/k

ḃb
aib

)
, (3.56)

[
ηaiQ

(− 1
2 ),i

a , V
(− 1

2 )
r

]
= V

(−1)
ζ+

(
ζ+ = ηai r

i
a

)
, (3.57)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i, V
(− 1

2 )
r

]
= V

(−1)
ω+

(
ω+
µ =

1√
2
η̄ȧ,i
(
σ̄ȧaµ + α′kµ/k

ȧa)
ria

)

+ V
(−1)
Ω+

(
Ω+
A =

√
α′

2
η̄ȧ,i/k

ȧa
ra,j(τAε)

ij
)
, (3.58)

[
ηbiQ

(+ 1
2 ),i

b , V
(−1)
Φ−

]
= V

(− 1
2 )

a

(
abi = −α′− 1

2 Φ−ηbi

)
, (3.59)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i, V
(−1)
Φ−

]
= 0, (3.60)

[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
ζ+

]
= 0, (3.61)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i, V
(−1)
ζ+

]
= V

(− 1
2 )

r

(
rai = ζ+η̄ȧ,i/k

ȧa
)
, (3.62)
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[
ηaiQ

(+ 1
2 ),i

a , V
(−1)
Ω+

]
= V

(− 1
2 )

r

(
raj =

1√
2α′

ηai Ω+
A(τA)ij

)
, (3.63)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i, V
(−1)
Ω+

]
= V

(− 1
2 )

a

(
abj = − 1√

2
η̄ḃ,i/k

ḃb
Ω+
A(τA)ij

)
. (3.64)

3.1.3 N = 4 supermultiplet

In N = 4 SUSY, the SUSY parameters ηaI , η̄
Ī
ȧ are chiral spinors of both the SO(1, 3) Lorentz group and

the internal SO(6) R-symmetry group. All the physical states form one big supermultiplet of N = 4. The

structure of the explicit SUSY variations listed in this section is summarized in Fig. 7 below. This diagram

will be refined in section 3.2 to take helicity quantum numbers into account.

Φ+ ↔ āJ̄
ḃ

↔
β−,mµ

Ωmnp−
↔

χaµ,I

r̄J̄
ḃ,m

↔
αµν

dmnµ

ζmn

↔ χ̄µ,J̄
ḃ

ra,mI
↔

β+,m
µ

Ωmnp+

↔ abI ↔ Φ−

Figure 7: N = 4 SUSY multiplet: action of the left-handed SUSY charge QIa transforms a state into (a

combination of) its left neighbors, whereas Q̄ḃ
J̄

action maps states into right neighbors.

The pattern of SUSY variations depicted in Fig. 7 justifies the complex combinations (2.98) of vectors

and (2.102) of scalars: The complex conjugates appear on widely separated positions of the multiplet (i.e.

the β+ and β− are separated by four Q actions whereas Φ+ ↔ Φ− requires eight supercharge applications).

Also, the internal scalar Ωmnp splits into self-dual and anti-self-dual components Ωmnp± which sit at different

points of the multiplet.
There are group theoretic selection rules for the possible outcome of a physical state’s SUSY variations,

based on the SO(1, 3)×SO(6) symmetry. Firstly, according to its eigenvalue under diagonal Lorentz currents,
Q can only change the spin by ± 1

2 . Secondly, transformations have to compatible with the SO(6) quantum
numbers involved. Representation of the SO(6) ≡ SU(4) R-symmetry group are referred to using their
Dynkin Labels [k, p, q].15 The SUSY variation of a state ∈ [k, p, q] aligns into the tensor product with [0, 1, 0] 3
QI or [0, 0, 1] 3 Q̄J̄ of the SUSY charge. Table 1 gives an overview of the R-symmetry representations
involved (see the following subsection for the Ω± splitting).

15 Our conventions for the Dynkin labels [k, p, q] are such that [1, 0, 0] labels the vector representation, and [0, 1, 0] and [0, 0, 1]
are left- and right-handed spinor. A generic representation with labels [k, p, q] has dimension

D[k,p,q] =
1

12
(k + p+ q + 3)(k + p+ 2)(k + q + 2)(k + 1)(p+ 1)(q + 1) , (3.65)

and tensor products act as follows on Dynkin labels:

[k, p, q]⊗ [0, 1, 0] = [k, p, q − 1]⊕ [k, p+ 1, q]⊕ [k + 1, p− 1, q]⊕ [k − 1, p, q + 1], (3.66)

[k, p, q]⊗ [0, 0, 1] = [k, p, q + 1]⊕ [k, p− 1, q]⊕ [k + 1, p, q − 1]⊕ [k − 1, p+ 1, q], (3.67)

[k, p, q]⊗ [1, 0, 0] = [k, p+ 1, q − 1]⊕ [k, p− 1, q + 1]⊕ [k + 1, p, q]

⊕ [k + 1, p− 1, q − 1]⊕ [k − 1, p, q]⊕ [k − 1, p+ 1, q + 1]. (3.68)
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Spin Wavefunctions SO(6) rep. Spin Wavefunctions SO(6) rep.

2 αµν [0,0,0] 3/2 χaµ,I [0,1,0]

1 β±,mµ [1,0,0] 3/2 χ̄µ,J̄
ḃ

[0,0,1]

1 d
[mn]
µ [0,1,1] 1/2 ram,I [1,1,0]

0 ζ(mn) [2,0,0] 1/2 r̄m,J̄
ḃ

[1,0,1]

0 Ω+
mnl [0,2,0] 1/2 abI [0,1,0]

0 Ω−mnl [0,0,2] 1/2 āJ̄
ḃ

[0,0,1]

0 Φ± [0,0,0]

Table 1: R-symmetry content of the massive N = 4 multiplet in SO(6) Dynkin label notation

SUSY transformation of bosonic states

In this subsubsection, we will analyze supercharge acting on the bosonic states. The spin two field αµν

transforms into left- and right-handed spin- 3
2 fermions Qα→ χ and Q̄α→ χ̄ in lines with [0, 0, 0]⊗ [0, 1, 0]→

[0, 1, 0] for the R-symmetry scalar αµν . The SUSY variations of this field are parallel to (2.27) in ten

dimensions:

[
ηaIQ

(+ 1
2 ),I

a , V (−1)
α

]
= V

(− 1
2 )

χ

(
χbµ,I =

1√
2
ηaIαµν(/kσ̄ν) b

a

)
, (3.69)

[
η̄ĪȧQ̄

(+ 1
2 ),ȧ

Ī
, V (−1)
α

]
= V

(− 1
2 )

χ̄

(
χ̄Īµ,ȧ =

1√
2
η̄Īȧαµν(/kσν)ȧ

ḃ

)
. (3.70)

The spin one fields fall into vector and two-form representations [1, 0, 0] and [0, 1, 1] of the R-symmetry,

so their SUSY image belongs to [0, 1, 0] ⊗ [1, 0, 0] → [1, 1, 0] ⊕ [0, 0, 1] and [0, 1, 0] ⊗ [0, 1, 1] → [0, 1, 0] ⊕

[0, 2, 1] ⊕ [1, 0, 1], respectively (note that [0, 2, 1] does not occur in our multiplet). This implies that β±,mµ

can transform into an internal left-handed fermion ram,I ∈ [1, 1, 0], and right-handed spin- 3
2 fermions χ̄Īµȧ or

a spin- 1
2 fermions āĪ

ḃ
, in short: Qβ± → χ̄ + ā + r. For the SO(6) two-form d[mn], we will get the opposite

chirality configuration, Qd→ χ+ a+ r̄. The explicit results for the left-handed QIa are given as follows,16

[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
β+

]
= V

(− 1
2 )

χ̄

(
χ̄Ī
µ,ḃ

=
1

3
√

2
ηbI
[
3β+,m

µ /kbḃ − kµ/β
+,m

bḃ
− (/β

+,m/kσµ)bḃ
]
γIĪm

)

+ V
(− 1

2 )
r

(
rcn,J = − 1

6
√

2
ηbI(/β

+,m/k) c
b

[
6δ(6)
mnδ

I
J + (γmγ̄n)IJ

])
, (3.71)

[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
β−

]
= V

(− 1
2 )

ā

(
āĪ
ḃ

= − 1

2
√
α′
ηbI /β
−,m
bḃ

γIĪm

)
, (3.72)

16There is a subtlety in these computations (and also for some later ones) related to the fact that gamma matrices associated
with spacetime and internal dimensions are anticommuting.
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[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
d

]
= V

(− 1
2 )

χ

(
χcµ,J =

1

6
√
α′
ηbI
[
3dmnµ δ c

b + (/d
mn
σ̄µ + α′kµ/d

mn
/k) c
b

]
(γmγ̄n)IJ

)

+ V
(− 1

2 )
r̄

(
r̄Ī
l,ḃ

=
1

6
√
α′
ηbI/d

mn
bḃ γ

IĪ
n

[
6δ

(6)
ml δ

J̄
Ī + (γ̄mγl)

J̄
Ī

])
, (3.73)

whereas the action of right-handed Q̄ḃ
J̄

yields

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
β+

]
= V

(− 1
2 )

a

(
abI = − 1

2
√
α′
η̄Ī
ḃ
/β

+,m,ḃb
γ̄m,ĪI

)
, (3.74)

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
β−

]
= V

(− 1
2 )

χ

(
χbµ,I =

1

3
√

2
η̄Ī
ḃ

[
3β−,mµ /k

ḃb − kµ/β−,m,ḃb − (/β
−,m/kσ̄µ)ḃb

]
γ̄m,ĪI

)

+ V
(− 1

2 )
r̄

(
r̄J̄n,ċ = − 1

6
√

2
η̄Ī
ḃ
(/β
−,m/k)ḃċ

[
6δ(6)
mnδ

J̄
Ī + (γ̄mγn) J̄

Ī

])
, (3.75)

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
d

]
= V

(− 1
2 )

χ̄

(
χ̄J̄µ,ċ =

1

6
√
α′
η̄Ī
ḃ

[
3dmnµ δḃċ + (/d

mn
σµ + α′kµ/d/k)ḃċ

]
(γ̄mγn) J̄

Ī

)

+ V
(− 1

2 )
r

(
rbJ,p =

1

6
√
α′
η̄Ī
ḃ
/d
mn,ḃb

γ̄n,ĪI
[
6δ(6)
mpδ

I
J + (γmγ̄p)

I
J

])
. (3.76)

Then we are left with the SO(1, 3) scalar fields Φ±, ζ(mn) and Ωmnl. The internal states Ωmnl represent

both self-dual and anti-self-dual three-forms of SO(6). We will denote their irreducible components as

Ω+
mnl ∈ [0, 2, 0] and Ω−mnl ∈ [0, 0, 2], for the self-dual and anti-self-dual part, respectively. Their defining

irreducibility constraint is

Ω−mnl(γ
mnl)IĪ = Ω+

mnl(γ̄
mnl)ĪI = 0 . (3.77)

The SO(6) selection rules constrain QIζ(mn) ∈ [0, 1, 0] ⊗ [2, 0, 0] → [2, 1, 0] ⊕ [1, 0, 1] as well as QIΩ+
mnl ∈

[0, 1, 0] ⊗ [0, 2, 0] → [0, 3, 0] ⊕ [1, 1, 0] and QIΩ−mnl ∈ [0, 1, 0] ⊗ [0, 0, 2] → [0, 1, 2] ⊕ [0, 0, 1]. Thus, we expect

the internal spin- 1
2 fermion r̄ or r by performing the SUSY transformation Qζ → r̄, and Q̄ζ → r. Three-

forms, on the other hand, are mapped to either r or ā, depending on the self-duality property QΩ+ → r or

QΩ− → ā. The supercharges acting on Φ± and ζ(mn) yield

[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
Φ+

]
= 0,

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
Φ−

]
= 0, (3.78)

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
Φ+

]
= V

(− 1
2 )

ā

(
āĪ
ḃ

= −α′− 1
2 Φ+η̄Ī

ḃ

)
, (3.79)

[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
Φ−

]
= V

(− 1
2 )

a

(
abI = −α′− 1

2 Φ−ηbI

)
, (3.80)
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and

[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
ζ

]
= V

(− 1
2 )

r̄

(
r̄m,Ī
ḃ

=
1√
2
ηbIζ

(mn)/kbḃγ
IĪ
n

)
, (3.81)

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
ζ

]
= V

(− 1
2 )

r

(
rm,bI =

1√
2
η̄Ī
ḃ
ζ(mn)/k

ḃb
γ̄n,ĪI

)
. (3.82)

On the three-forms Ω±mnl, we obtain

[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
Ω+

]
= V

(− 1
2 )

r

(
rbk,J = − 1

4
√
α′
ηbIΩ

+
mnl(γkγ̄

mnl)IJ

)
, (3.83)

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
Ω+

]
= V

(− 1
2 )

a

(
abI =

1

2
√

2
η̄Ī
ḃ
Ω+
mnl/k

ḃb
(γ̄mnl)ĪI

)
, (3.84)

and

[
ηbIQ

(+ 1
2 ),I

b , V
(−1)
Ω−

]
= V

(− 1
2 )

ā

(
āĪ
ḃ

=
1

2
√

2
ηbIΩ

−
mnl/kbḃ(γ

mnl)IĪ
)
, (3.85)

[
η̄Ī
ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
Ω−

]
= V

(− 1
2 )

r̄

(
r̄J̄
k,ḃ

= − 1

4
√
α′
η̄Ī
ḃ
Ω−mnl(γ̄kγ

mnl) J̄
Ī

)
. (3.86)

SUSY transformation of fermionic states

In this subsubsection, we investigate the (anti-)supercharge acting on the fermionic states. Following the

strategy outlined before, we first derive a selection rule from group theory and then perform SUSY variations

to get the expression of the bosonic wavefunctions explicitly. All the transformations are symmetric under

simultaneous exchange of chiralities on the supercharges and the states (where Φ+, β+,Ω+ ↔ Φ−, β−,Ω−).

We will only comment on one out of two inequivalent cases in the text but also give the formulae for the

images under chirality reversal.

Since both the spin- 3
2 fermions (χ, χ̄) and the spin- 1

2 states (a, ā) fall into (anti-)fundamental R-symmetry

representations, the SO(6) content of their SUSY variation is [0, 1, 0] ⊗ [0, 1, 0] → [0, 2, 0] ⊕ [1, 0, 0] and

[0, 0, 1]⊗ [0, 1, 0]→ [0, 0, 0]⊕ [0, 1, 1]. The (anti-)supercharge acting on χaµ,I(χ̄
Ī
µ,ȧ) will give us vectors β±,mµ .

In the cases QI χ̄Īµ,ȧ and Q̄J̄χaµ,I of opposite chirality, the spin two field αµν and the vector d
[mn]
µ can emerge.
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Indeed,

[
ηaIQ

(− 1
2 ),I

a , V
(− 1

2 )
χ

]
= V

(−1)
β−

(
β−,mµ =

1√
2
ηaIχµ,a,J(γmC)IJ

)
, (3.87)

[
η̄ĪȧQ̄

(− 1
2 ),ȧ

Ī
, V

(− 1
2 )

χ

]
= V (−1)

α

(
αµν =

1√
2
η̄Īȧ
(
σ̄ȧa(µχν),a,I + α′/k

ȧa
k(µχν),a,I

)
CIĪ

)

+ V
(−1)
d

(
d[mn]
µ = −

√
α′

4
η̄Īȧ/k

ȧa
χµ,a,I(γ̄

mnC) I
Ī

)
, (3.88)

and17

[
ηaIQ

(− 1
2 ),I

a , V
(− 1

2 )
χ̄

]
= V (−1)

α

(
αµν =

1√
2
ηaI
(
σ(µ|aȧ|χ̄

ȧ,Ī
ν) + α′/kaȧk(µχ̄

ȧ,Ī
ν)

)
CIĪ

)

+ V
(−1)
d

(
d[mn]
µ = −

√
α′

4
ηaI /kaȧχ̄

ȧ,Ī
µ (γmnC)IĪ

)
, (3.89)

[
η̄ĪȧQ̄

(− 1
2 ),ȧ

Ī
, V

(− 1
2 )

χ̄

]
= V

(−1)
β+

(
β+,m
µ =

1√
2
η̄Īȧχ̄

ȧ,J̄
µ (γ̄mC)ĪJ̄

)
. (3.90)

The supercharge action on abI and āĪ
ḃ

follows the same selection rules with respect to SO(6) but different

ones with respect to spacetime spin. The corresponding SUSY transformations read

[
ηbIQ

(− 1
2 ),I

b , V
(− 1

2 )
a

]
= V

(−1)
β+

(
β+,m
µ =

√
α′

2
ηbI
[
kµδ

c
b + (/kσ̄µ) c

b

]
ac,J(γmC)IJ

)

+ V
(−1)
Ω+

(
Ω+
mnl =

1

12
√

2
ηbIab,J(γmnlC)IJ

)
, (3.91)

[
η̄Ī
ḃ
Q̄(− 1

2 ),ḃ

Ī
, V

(− 1
2 )

a

]
= V

(−1)
Φ−

(
Φ− =

√
α′η̄Ī

ḃ
/k
ḃb
ab,IC

I
Ī

)
, (3.92)

and

[
ηbIQ

(− 1
2 ),I

b , V
(− 1

2 )
ā

]
= V

(−1)
Φ+

(
Φ+ =

√
α′ηbI/kbḃā

ḃ,ĪCIĪ

)
, (3.93)

[
η̄Ī
ḃ
Q̄(− 1

2 ),ḃ

Ī
, V

(− 1
2 )

ā

]
= V

(−1)
β−

(
β−,mµ =

√
α′

2
η̄Ī
ḃ

[
kµδ

ḃ
ċ + (/kσµ)ḃċ

]
āċ,J̄(γ̄mC)ĪJ̄

)

+ V
(−1)
Ω−

(
Ω−mnl =

1

12
√

2
η̄Ī
ḃ
āḃ,J̄(γ̄mnlC)ĪJ̄

)
. (3.94)

Notice we do not get a vector d
[mn]
µ in the SUSY transformations, although it is allowed by SO(1, 3)×SO(6).

17The notation Mµ1µ2···(µi···µj−1|µj ···µk|µk+1···µl)···µn indicates we symmetrize over the indices µi, · · · , µj−1, µk+1, · · · , µl,
but not over the indices µj , . . . µk enclosed between the bars.
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Now we are left with the internal spin- 1
2 fermions r and r̄. Group theory admits SUSY variations in

[0, 1, 0]⊗ [1, 1, 0]→ [1, 2, 0]⊕ [2, 0, 0]⊕ [0, 1, 1] and [0, 0, 1]⊗ [1, 1, 0]→ [1, 1, 1]⊕ [1, 0, 0]⊕ [0, 2, 0] corresponding

to vectors d
[mn]
µ and internal scalars ζ(mn) in the former case and Q̄r → β±+Ω+ in the latter. The left-handed

supercharge yields

[
ηaIQ

(− 1
2 ),I

a , V
(− 1

2 )
r

]
= V

(−1)
d

(
d[mn]
µ =

√
α′

2
ηaI
[
kµδ

b
a + (σµ/k) b

a

]
r

[m
b,J(γn]C)IJ

)

+ V
(−1)
ζ

(
ζ(mn) =

1√
2
ηaI r

(m
a,J(γn)C)IJ

)
, (3.95)

[
η̄ĪȧQ̄

(− 1
2 ),ȧ

Ī
, V

(− 1
2 )

r

]
= V

(−1)
β+

(
β+,m
µ =

1√
2
η̄Īȧ
(
σ̄ȧaµ + α′kµ/k

ȧa)
rma,IC

I
Ī

)

+ V
(−1)
Ω+

(
Ωmnl+ = −

√
α′

4
η̄Īȧ/k

ȧa
r

[m
a,I(γ̄

nl]C) I
Ī

)
, (3.96)

and the right-handed counterpart reads

[
ηaIQ

(− 1
2 ),I

a , V
(− 1

2 )
r̄

]
= V

(−1)
β−

(
β−,mµ =

1√
2
ηaI
(
σµaȧ + α′kµ/kaȧ

)
r̄m,ȧ
Ī

C ĪI

)

+ V
(−1)
Ω−

(
Ωmnl− = −

√
α′

4
ηaI /kaȧr̄

[m|,ȧ,Ī|(γnl]C)IĪ

)
, (3.97)

[
η̄ĪȧQ̄

(− 1
2 ),ȧ

Ī
, V

(− 1
2 )

r̄

]
= V

(−1)
d

(
d[mn]
µ =

√
α′

2
η̄Īȧ
[
kµδ

ȧ
ḃ

+ (σ̄µ/k)ȧ
ḃ

]
r̄[m|,ḃ,J̄|(γ̄n]C)ĪJ̄

)

+ V
(−1)
ζ

(
ζ(mn) =

1√
2
η̄Īȧr̄

(m|,ȧ,J̄|(γ̄n)C)ĪJ̄

)
. (3.98)

This completes the list of SUSY transformations within the N = 4 multiplet. We will revisit these results

from the spinor helicity viewpoint in section 3.2.

3.2 Helicity structure of massive on-shell multiplets

In this section, we apply the massive version of the spinor helicity formalism [59–61] to obtain a refined

understanding of the structure of the previously constructed SUSY multiplets. A brief summary of the

spinor techniques is collected in Appendix C, including the explicit form of massive wavefunctions associated

with different spin components. The spin quantization axis is chosen covariantly by decomposing the timelike
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momentum k into two arbitrary light-like reference momenta p and q:

kµ = pµ + qµ, k2 = −m2 = 2pq, p2 = q2 = 0. (3.99)

As was explained in detail in [62], the supercharges can be expanded in the basis of the momentum spinors

pa, p
∗ȧ and qa, q

∗ȧ defined by pµσ
µ
aȧ = −pap∗ȧ and qµσ

µ
aȧ = −qaq∗ȧ:

Qa =
[qQ]

[qp]
pa +

[pQ]

[pq]
qa = Q+pa +Q−qa, (3.100)

Q̄ȧ =
〈pQ̄〉
〈pq〉 q

∗ȧ +
〈qQ̄〉
〈qp〉 p

∗ȧ = Q̄+q
∗ȧ + Q̄−p∗ȧ. (3.101)

This defines the supercharge components Q± and Q̄± to be

Q+ ≡
[qQ]

[qp]
, Q− ≡

[pQ]

[pq]
, (3.102)

Q̄+ ≡
〈pQ̄〉
〈pq〉 , Q̄− ≡

〈qQ̄〉
〈qp〉 . (3.103)

The Q+ and Q̄+ raise the spin quantum jz number along the quantization axis by 1/2, while Q− and Q̄−

lower it by 1/2. The corresponding Lorentz generator which is diagonalized with eigenvalues jz reads

Jz =
1

m2
εµνλρ Pµ qνMλρ , (3.104)

where Pµ denotes the translation operator and Mλρ an SO(1, 3) rotation.

A convenient way of organizing representations of the super Poincaré group is to pick a highest weight

state which is annihilated by half the supercharges – either the left-handed Qa or the right-handed Q̄ḃ.

States with this property are referred to as (anti-)Clifford vacua, and we shall use the vacuum eliminated

by the left-handed Qa by convention. The rest of the supermultiplet is then constructed by applying the

nontrivially acting Q̄+ and Q̄−, see the figures in this section. In our notation, each diamond shaped diagram

represents one supermultiplet. The dashed lines connecting bosonic and fermionic states indicate Q± and
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Q̄± applications, and we assign the following directions:

↗ ≡ Q̄+, ↘ ≡ Q̄− and ↖ ≡ Q+, ↙ ≡ Q−. (3.105)

The Clifford vacuum state being annihilated by the left-handed Q± is located on the far left of the diamond,

and we can construct the full supermultiplet by repeated action of Q̄±.18 In this section, we will show how

Q̄± transform all the states in the multiplet from the left side of the diamond all the way to the right. The

SUSY algebras {Q±, Q̄∓} = 1 and {Q±, Q̄±} = 0 19 imply that Q± undoes Q̄± applications and transforms

states from right to left in the diamond.

This section starts with the N = 1 situation to illustrate the methods, and the additional features of

extended SUSY are explained in the later subsections on N = 2, 4 supermultiplets. To make everything

simple and clear, instead of using our old notation of vertex operators in the previous sections, we will use

the “ket” notation to express the states inside the diamonds. For example, the spin two boson with jz = +2

is expressed by

|α,+2〉 ≡ V (−1)
α

(
αµν =

1

2m2
σ̄µȧaσ̄νḃbp∗ȧqap

∗
ḃ
qb

)
, (3.106)

and a combined state {α, d} with jz = +1 is expressed by |α⊕ d,+1〉. The commutators of Qa and Q̄ḃ with

vertex operators are replaced by SUSY transformations acting directly on the states.

3.2.1 N = 1 supermultiplets

According to the strategy outlined above, it suffices to evaluate the anti-supercharge components Q̄± on the

helicity states in the N = 1 supermultiplets. The decomposition Q̄ȧ = Q̄+q
ȧ∗ + Q̄−pȧ∗ corresponds to the

18Alternatively, we can also construct this supermultiplet starting from the anti-Clifford vacuum state on the right side of
this diamond, which is eliminated by the anti-supercharge Q̄±, and the remaining states follow by acting Q± on it.

19To show this, we simply plug the supercharge decompositions (3.100) and (3.101) into the N = 1 SUSY algebra (2.93), and
obtain, {

Q(+ 1
2

)
a , Q̄(− 1

2
),ȧ
}

= pap
∗ȧ{Q+, Q̄−

}
+ paq

∗ȧ{Q+, Q̄+

}
+ qaq

∗ȧ{Q−, Q̄+

}
+ qap

∗ȧ{Q−, Q̄−}
= (σµε) ȧ

a Pµσ(σµε) ȧ
a kµ = pap

∗ȧ + qaq
∗ȧ.

Thus we arrive at, ( {
Q+, Q̄−

} {
Q+, Q̄+

}{
Q−, Q̄−

} {
Q−, Q̄+

} ) =

(
1 0
0 1

)
.
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mass dimension [M−
1
2 ] choices for η̄:

Q̄± = η̄±ā Qā ←→ η̄+
ȧ =

p∗ȧ
〈pq〉 , η̄−ȧ =

q∗ȧ
〈qp〉 . (3.107)

Spin one half supermultiplets

We firstly consider the {Φ+, ā,Ω−} multiplet of highest spin 1/2 whose scalar Clifford vacuum |Φ+〉 is

eliminated by the supercharge Qa. By repeated actions of the anti-supercharge Q̄± on Φ+, we can construct

the remainder of the multiplet, see Fig. 8.
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Figure 8: N = 1 SUSY multiplets with scalar Clifford vacuum: In N = 1 scenarios, the U(1) charge q with
respect to the internal current J is plotted along the horizontal axis. The SUSY charges have eigenvalue
±
√

3/2 under J and therefore change q by a fixed offset.

The spin- 1
2 multiplet is the minimal massive representation of the N = 1 SUSY algebra, since it only

contains four states. Very straightly, we obtain, up to a phase,

Q̄± |Φ+, 0〉 = |ā,± 1
2 〉, (3.108)

and

Q̄± |ā,∓ 1
2 〉 = |Ω−, 0〉, Q̄± |ā,± 1

2 〉 = 0. (3.109)
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The anti-Clifford vacuum |Ω−〉 is then annihilated by Q̄± action,

Q̄± |Ω−, 0〉 = 0. (3.110)

Secondly, we consider the mirror multiplet {Ω+, a,Φ−} which is also summarized in Fig. 8. Starting from

the Clifford vacuum |Ω+〉, c.f. (3.17), we obtain,

Q̄± |Ω+, 0〉 = |a,± 1
2 〉, (3.111)

and

Q̄± |a,∓ 1
2 〉 = |Φ−, 0〉, Q̄± |a,± 1

2 〉 = 0. (3.112)

Spin two supermultiplet

In addition to the two minimal spin 1/2 multiplets, there is a larger multiplet {α, χ, χ̄, d} with spins up to

jz = 2 in each N = 1 scenario. All the left-handed spin 3/2 states |χ, jz〉 with −3/2 ≤ jz ≤ +3/2 are

annihilated by Qa, c.f. (3.5). Hence, the Clifford vacuum transforms in a nontrivial SO(1, 3) representation.

Starting from the four states |χ, jz〉, we build the full spin two multiplet by Q̄± application, see Fig. 9. The

spin- 3
2 states with wavefunction χ̄µȧ of opposite chirality are obtained by |χ̄, jz〉 = Q̄+Q̄−|χ, jz〉, so they form

the anti-Clifford vacua.

The helicity SUSY transformations are such that normalized states are either mapped to equally nor-

malized states or annihilated. This becomes particularly interesting at the intersection points Q̄− |χ, jz〉 ↔

Q̄+ |χ, jz − 1〉 within the diamond where combination states of type |α ⊕ d〉 arise. From the jz = ± 3
2

components, we obtain

Q̄± |χ,± 3
2 〉 = |α,±2〉, (3.113)

Q̄∓ |χ,± 3
2 〉 =

1

2
|α,±1〉 ±

√
3

2
|d,±1〉 ≡ |α± d,±1〉, (3.114)
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Figure 9: N = 1 SUSY multiplets with spin 3/2 Clifford vacuum

whereas Q̄± action on jz = ± 1
2 components yields

Q̄± |χ,± 1
2 〉 =

√
3

2
|α,±1〉 ∓ 1

2
|d,±1〉 ≡ |α∓ d,±1〉, (3.115)

Q̄∓ |χ,± 1
2 〉 =

1√
2
|α, 0〉 ± 1√

2
|d, 0〉 ≡ |α± d, 0〉. (3.116)

We use canonical normalization conventions for vertex operators as well as helicity wavefunctions: Let |ψ, jz〉

denote some physical state with polarization tensor ψ and spin component jz along the quantization axis.

Then, |ψ,+jz〉 has unit scalar product with |ψ,−jz〉 and is orthogonal to all states whose wavefunction

belongs to a different SO(3) representation. We can see from above results that all the states on the right-

hand sides of (3.113) to (3.116) have unit norm. Furthermore, we find that the combined states |α± d,±1〉

obtained from Q̄∓ |χ,± 3
2 〉 are orthogonal to |α∓d,±1〉 from distinct Clifford vacuum components Q̄± |χ,± 1

2 〉,

as expected.

To complete the other half of the diamond, we have,

Q̄± |α,+2〉 = 0, Q̄∓ |α,+2〉 = |χ̄,± 3
2 〉, (3.117)
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and

Q̄± |α± d,±1〉 = |χ̄,± 3
2 〉, Q̄∓ |α± d,±1〉 = 0, (3.118)

Q̄∓ |α∓ d,±1〉 = |χ̄,± 1
2 〉, Q̄± |α∓ d,±1〉 = 0, (3.119)

and

Q̄± |α± d, 0〉 = |χ̄,± 1
2 〉, Q̄± |α∓ d, 0〉 = 0. (3.120)

The diamond is symmetric about the jz = 0 line. In other words, once we obtained all the transformations

for the states in its upper half, the lower half can be filled up by interchanging momentum spinors p ↔ q.

This holds by the construction of the massive helicity wavefunctions in Appendix C, see also [1] and [2].

3.2.2 N = 2 supermultiplets

The new feature of extended N = 2 SUSY is the non-Abelian SU(2) R-symmetry group. The supercharges

are spinors with respect to this SU(2) and therefore carry fundamental indices i. That is why we have to

introduce a bookkeeping Grassmann variable ηi which decouples from the spacetime spinor index structure.

In other words, this ηi is a spinor of the R-symmetry but a scalar with respect to the spacetime SO(1, 3).

We define supercharge components Q̄±(η) which are associated with the choices η̄+
ȧ,i = ηip

∗
ȧ/〈pq〉 and η̄−ȧ,i =

ηiq
∗
ȧ/〈qp〉:

Q̄+(η) = ηi
p∗ȧ
〈pq〉 Q̄

ȧ,i, (3.121)

Q̄−(η) = ηi
q∗ȧ
〈qp〉 Q̄

ȧ,i. (3.122)

In the construction of N = 2 supermultiplets from their Clifford vacua, we obtain states in nontrivial

representations of the SU(2) R-symmetry.20 Their SU(2) tensor structures will be displayed inside the ket

vectors, right after the Jz eigenvalue, separated by a semicolon.21

20In fact, it is a peculiar feature of the first mass level that its Clifford vacua are R-symmetry scalars.
21In the literature, on-shell supersymmetry is usually described by the notion of supercharge eigenstates – Grassmann co-

herent states, firstly in [63], and recently in [62] and also [64]. Our presentation of SUSY transformations including internal
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Spin one supermultiplets

Again, we start our presentation with the smaller multiplets of lower spin. The universal sector due to N = 2

SUSY encompasses two spin one multiplets with scalar Clifford vacua, see Figs. 10 and 11 below.
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Figure 10: N = 2 SUSY multiplet with scalar Clifford vacuum: In N = 2 scenarios, the U(1) charge q with
respect to the internal toroidal directions is plotted along the horizontal axis. Since the world-sheet fields
i∂Z± and eiqH have charge ±1 and q, respectively, the SUSY generators built from e±iH/2 and i∂Z±e∓iH/2

change q by the fixed offset ±1/2.
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Figure 11: conjugate N = 2 SUSY multiplet with scalar Clifford vacuum

The first multiplet {ω+, a, r,Φ−, ζ+,Ω+
A} is constructed from a scalar Clifford vacuum ζ+, c.f. (3.61).

Omitting all the vanishing results, we obtain

Q̄±(ηi) |Φ+, 0; 1〉 = |ā,± 1
2 ; ηi〉, (3.123)

wavefunctions (carrying the R-symmetry quantum numbers) are an equivalent way of expressing their information content.
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and

Q̄±(εj) |ā,± 1
2 , ηi〉 = |ω−,±1; (εη)〉, (3.124)

Q̄∓(εj) |ā,± 1
2 , ηi〉 =

1√
2
|ω−, 0; (εη)〉 ± 1√

2
|Ω−, 0; εj(τAε)

jiηi〉

≡ |ω− ± Ω−A, 0〉, (3.125)

where (εη) = εjε
jiηi. The ω− and Ω− states in the center of the diamond transform to

Q̄∓(ηi) |ω−,±1; (εη)〉 = Q̄±(ηi) |ω− ± Ω−A, 0〉 = |r̄,± 1
2 ; (εη)ηi〉, (3.126)

Q̄∓(ηi) |ω− ± Ω−A, 0〉 = 0, (3.127)

and

Q̄∓(εj) |r̄,± 1
2 ; (εη)ηi〉 = |ζ−, 0; (εη)2〉. (3.128)

Similar results are obtained for the mirror spin one multiplet {ω−, ā, r̄,Φ+, ζ−,Ω−A}, which is constructed

from the scalar Clifford vacuum. The helicity SUSY transformations are

Q̄±(ηi) |ζ+, 0; 1〉 = |r,± 1
2 ; ηi〉, (3.129)

and

Q̄±(εj) |r,± 1
2 ; ηi〉 = |ω+,±1; (εη)〉, (3.130)

Q̄∓(εj) |r,± 1
2 ; ηi〉 =

1√
2
|ω+, 0; (εη)〉 ± 1√

2
|Ω+, 0; εj(τAε)

jiηi〉

≡ |ω+ ± Ω+, 0〉, (3.131)

and

Q̄∓(ηi) |ω+,±1; (εη)〉 = Q̄±(ηi) |ω+ ± Ω+, 0〉 = |a,± 1
2 ; (εη)ηi〉, (3.132)
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Q̄∓(ηi) |ω+ ± Ω+, 0〉 = 0, (3.133)

and

Q̄∓(εj) |a,± 1
2 ; (εη)ηi〉 = |Φ−, 0; (εη)2〉. (3.134)

Spin two supermultiplet

The highest spin state of the first mass level populate a spin two multiplet {α, χ, χ̄, d, ξ, β±, s, s̄, φ} (see

Fig. 12), which is built from a vector Clifford vacuum β+
µ state, c.f. (3.27).
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Figure 12: N = 2 SUSY multiplet with vector Clifford vacuum

The supermultiplet structure is more complicated here due to intersection points in the diamond like

Q̄−(ηi) |β+,+1; 1〉 ↔ Q̄+(ηi) |β+, 0; 1〉. Since jz 7→ −jz reflection can be implemented by p ↔ q exchange,

we will only show the transformations for the upper half of the diamond. Omitting all the trivial relations,

we obtain

Q̄+(ηi) |β+,+1; 1〉 = |χ,+ 3
2 ; ηi〉, (3.135)

Q̄−(ηi) |β+,+1; 1〉 =
1√
3
|χ,+ 1

2 ; ηi〉+

√
2√
3
|s̄,+ 1

2 ; ηi〉 ≡ |χ⊕ s̄,+ 1
2 〉1, (3.136)

Q̄+(ηi) |β+, 0; 1〉 =

√
2√
3
|χ,+ 1

2 ; ηi〉 −
1√
3
|s̄,+ 1

2 ; ηi〉 ≡ |χ⊕ s̄,+ 1
2 〉2, (3.137)
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where |χ⊕ s̄,+ 1
2 〉1 is orthogonal to |χ⊕ s̄,+ 1

2 〉2. For the helicity SUSY transformation of the second column

of Fig. 12, we have

Q̄+(εj) |χ,+ 3
2 ; ηi〉 = |α,+2; (εη)〉, (3.138)

Q̄−(εj) |χ,+ 3
2 ; ηi〉 = −1

2
|α,+1; (εη)〉+

1

2
|ξ,+1; (εη)〉 − 1√

2
|d,+1; (εη)〉

≡ |α⊕ ξ ⊕ d,+1〉1, (3.139)

Q̄+(εj) |χ⊕ s̄,+ 1
2 〉1 = −1

2
|α,+1; (εη)〉+

1

2
|ξ,+1; (εη)〉+

1√
2
|d,+1; (εη)〉

≡ |α⊕ ξ ⊕ d,+1〉2, (3.140)

Q̄+(εj) |χ⊕ s̄,+ 1
2 〉2 = − 1√

2
|α,+1; (εη)〉 − 1√

2
|ξ,+1; (εη)〉

≡ |α⊕ ξ ⊕ d,+1〉3. (3.141)

One can easily check that the three states |α⊕ ξ ⊕ d,+1〉1,2,3 are orthonormal. Moreover,

Q̄−(εj) |χ⊕ s̄,+ 1
2 〉1 = − 1√

6
|α, 0; (εη)〉+

1√
2
|ξ, 0; (εη)〉+

1√
3
|φ, 0; (εη)〉

≡ |α⊕ ξ ⊕ d⊕ φ〉1, (3.142)

Q̄−(εj) |χ⊕ s̄,+ 1
2 〉2 = − 1√

3
|α, 0; (εη)〉 − 1√

2
|d, 0; (εη)〉 − 1√

6
|φ, 0; (εη)〉

≡ |α⊕ ξ ⊕ d⊕ φ〉2. (3.143)

By interchanging p↔ q we get the states

|α⊕ ξ ⊕ d⊕ φ〉′1 = |α⊕ ξ ⊕ d⊕ φ〉1(p↔ q) = − 1√
6
|α, 0; (εη)〉 − 1√

2
|ξ, 0; (εη)〉+

1√
3
|φ, 0; (εη)〉, (3.144)

|α⊕ ξ ⊕ d⊕ φ〉′2 = |α⊕ ξ ⊕ d⊕ φ〉2(p↔ q) = − 1√
3
|α, 0; (εη)〉+

1√
2
|d, 0; (εη)〉 − 1√

6
|φ, 0; (εη)〉, (3.145)

which are the results obtained from Q̄+(ηj) |χ⊕ s̄,− 1
2 〉. Clearly, |α⊕ ξ⊕ d⊕φ〉1(2) is orthogonal to |α⊕ ξ⊕
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d⊕ φ〉′1(2). The helicity SUSY transformations of this column are

Q̄−(ηi) |α,+2; (εη)〉 = Q̄+(ηi) |α⊕ ξ ⊕ d,+1〉1 = |χ̄,+ 3
2 ; (εη)ηi〉, (3.146)

Q̄+(ηi) |α⊕ ξ ⊕ d,+1〉2 = Q̄+(ηi) |α⊕ ξ ⊕ d,+1〉3 = 0, (3.147)

and

Q̄−(ηi) |α⊕ ξ ⊕ d,+1〉1 = 0, (3.148)

Q̄−(ηi) |α⊕ ξ ⊕ d,+1〉2 =
1√
3
|χ̄,+ 1

2 ; (εη)ηi〉 −
√

2√
3
|s,+ 1

2 ; (εη)ηi〉 ≡ |χ̄⊕ s,+ 1
2 〉1, (3.149)

Q̄−(ηi) |α⊕ ξ ⊕ d,+1〉3 =

√
2√
3
|χ̄,+ 1

2 ; (εη)ηi〉+
1√
3
|s,+ 1

2 ; (εη)ηi〉 ≡ |χ̄⊕ s,+ 1
2 〉2. (3.150)

States in the center of the diamond transform as

Q̄+(ηi) |α⊕ ξ ⊕ d⊕ φ〉′1 = Q̄+(ηi) |α⊕ ξ ⊕ d⊕ φ〉′2 = 0, (3.151)

Q̄+(ηi) |α⊕ ξ ⊕ d⊕ φ〉1 = |χ̄⊕ s,+ 1
2 〉1, (3.152)

Q̄+(ηi) |α⊕ ξ ⊕ d⊕ φ〉2 = |χ̄⊕ s,+ 1
2 〉2, (3.153)

where |χ̄⊕ s,+ 1
2 〉1 and |χ̄⊕ s,+ 1

2 〉2 are orthogonal to each other. Now we are left with the transformations

to the anti-Clifford vacuum states |β−〉 in last column of the diamond:

Q̄−(εj) |χ̄,+ 3
2 ; (εη)ηi〉 = Q̄+(εj) |χ̄⊕ s,+ 1

2 〉1 = |β−,+1; (εη)2〉, (3.154)

Q̄+(εj) |χ̄⊕ s,+ 1
2 〉2 = Q̄−(εj) |χ̄⊕ s,+ 1

2 〉1 = 0, (3.155)

Q̄−(εj) |χ̄⊕ s,+ 1
2 〉2 = |β−, 0; (εη)2〉. (3.156)

This completes the helicity SUSY transformations for the upper half of the diamond representing the spin

two supermultiplet of N = 2.
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3.2.3 N = 4 supermultiplet

In N = 4 SUSY, the supercharges carry internal SO(6) ≡ SU(4) spinor indices I or Ī. Similar to N = 2 case,

we introduce the internal spinors ηI and η̄Ī . Then the components of the (right-handed) anti-supercharge

can be written as

Q̄+ = η̄Ī
p∗ȧ
〈pq〉 Q̄

ȧ
Ī , Q̄− = η̄Ī

q∗ȧ
〈qp〉 Q̄

ȧ
Ī . (3.157)

We only have one big spin two supermultiplet in N = 4, see Fig. 13. Starting from the Clifford vacuum Φ+,

c.f. (3.78), the remainder of the multiplet is filled by Q̄± application. Following the symmetry argument

of the last subsections, we will only show the helicity SUSY transformation of the states in the upper half

jz ≥ 0 of the diamond. And again, the internal wavefunctions of the physical states are displayed right

behind the semicolon in the ket.

We start from Clifford vacuum state |Φ+, 0; 1〉 located at the far left of the diamond. The helicity SUSY

transformations read

Q̄+(η̄Ī) |Φ+, 0; 1〉 = |ā,+ 1
2 ; η̄Ī〉, (3.158)

and

Q̄+(ε̄J̄) |ā,+ 1
2 ; η̄Ī〉 = |β−,+1; 1√

2
ε̄J̄(γ̄mC)J̄ Ī η̄

Ī〉, (3.159)

Q̄−(ε̄J̄) |ā,+ 1
2 ; η̄Ī〉 = − 1√

2
|β−, 0; 1√

2
ε̄J̄(γ̄mC)J̄ Ī η̄

Ī〉+
1√
2
|Ω−, 0; 1

12 ε̄
J̄(γ̄mnlC)J̄ Ī η̄

Ī〉

≡ |β− ⊕ Ω−, 0〉, (3.160)

and

Q̄+(ξ̄K̄) |β−,+1; 1√
2
ε̄J̄(γ̄mC)J̄ Ī η̄

Ī〉 = |χ,+ 3
2 ; εĪJ̄K̄L̄η̄

Ī ε̄J̄ ξ̄K̄CL̄L 〉, (3.161)

Q̄−(ξ̄K̄) |β−,+1; 1√
2
ε̄J̄(γ̄mC)J̄ Ī η̄

Ī〉 = − 1√
3
|χ,+ 1

2 ; εĪJ̄K̄L̄η̄
Ī ε̄J̄ ξ̄K̄CL̄L 〉+

√
2√
3
|r̄,+ 1

2 ; r̄β〉

≡ |χ⊕ r̄,+ 1
2 〉1, (3.162)
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Q̄+(ξ̄K̄) |β− ⊕ Ω−, 0〉 =
1√
3
|χ,+ 1

2 ; εĪJ̄K̄L̄η̄
Ī ε̄J̄ ξ̄K̄CL̄L 〉+

1√
6
|r̄,+ 1

2 ; r̄β〉+
1√
2
|r̄,+ 1

2 ; r̄Ω〉

≡ |χ⊕ r̄,+ 1
2 〉2, (3.163)

where

r̄β =

√
3

2
ε̄J̄(γ̄mC)J̄ Ī η̄

Ī ξ̄K̄
(
δ(6)
mnδ

L̄
K̄ +

1

6
(γ̄mγn) L̄

K̄

)
, (3.164)

r̄Ω =
1

48
ε̄J̄(γ̄mnlC)J̄ Ī η̄

Ī ξ̄K̄(γ̄kγ
mnl) L̄

K̄ . (3.165)

Note that r̄β and r̄Ω represent different and mutually orthogonal internal wavefunctions of r̄.

The left-handed spin 3/2 states in the third column of the N = 4 diamond transform to

Q̄+(θ̄M̄ ) |χ,+ 3
2 ; εĪJ̄K̄L̄η̄

Ī ε̄J̄ ξ̄K̄CL̄L 〉 = |α,+2; ε(η̄ε̄ξ̄θ̄)〉, (3.166)

Q̄−(θ̄M̄ ) |χ,+ 1
2 ; εĪJ̄K̄L̄η̄

Ī ε̄J̄ ξ̄K̄CL̄L 〉 = −1

2
|α,+1; ε(η̄ε̄ξ̄θ̄)〉+

√
3

2
|d,+1; dχ〉 ≡ |α⊕ d,+1〉1, (3.167)

Q̄+(θ̄M̄ ) |χ⊕ r̄,+ 1
2 〉1 = −1

2
|α,+1; ε(η̄ε̄ξ̄θ̄)〉 − 1

2
√

3
|d,+1; dχ〉+

√
2√
3
|d,+1; dr̄β 〉

≡ |α⊕ d,+1〉2, (3.168)

Q̄+(θ̄M̄ ) |χ⊕ r̄,+ 1
2 〉2 =

1

2
|α,+1; ε(η̄ε̄ξ̄θ̄)〉+

1

2
√

3
|d,+1; dχ〉+

1√
6
|d,+1; dr̄β 〉

+
1√
2
|d,+1; dr̄Ω〉 ≡ |α⊕ d,+1〉3, (3.169)

Q̄−(θ̄M̄ ) |χ⊕ r̄,+ 1
2 〉1 =

1√
6
|α, 0; ε(η̄ε̄ξ̄θ̄)〉 − 1√

6
|d, 0; dχ〉+

1√
3
|d, 0; dr̄β 〉+

1√
3
|ζ, 0; ζr̄β 〉

≡ |α⊕ d⊕ ζ, 0〉1, (3.170)

Q̄−(θ̄M̄ ) |χ⊕ r̄,+ 1
2 〉2 = − 1√

6
|α, 0; ε(η̄ε̄ξ̄θ̄)〉+

1√
6
|d, 0; dχ〉+

1

2
√

3
|d, 0; dr̄β 〉

+
1

2
|d, 0; dr̄Ω〉+

1

2
√

3
|ζ, 0; ζr̄β 〉+

1

2
|ζ, 0; ζr̄Ω〉

≡ |α⊕ d⊕ ζ, 0〉2, (3.171)
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where we have used the following abbreviations:

ε(η̄ε̄ξ̄θ̄) = εĪJ̄K̄L̄η̄
Ī ε̄J̄ ξ̄K̄ θ̄L̄, (3.172)

dχ =
1

2
√

3
θ̄M̄ (γ̄[mγn]) L̄

M̄ εĪJ̄K̄L̄η̄
Ī ε̄J̄ ξ̄K̄ , (3.173)

dr̄β =
1√
2
θ̄M̄ r̄

[m|,L̄|
β (γ̄n]C)M̄L̄, dr̄Ω =

1√
2
θ̄M̄ r̄

[m|,L̄|
Ω (γ̄n]C)M̄L̄, (3.174)

ζr̄β =
1√
2
θ̄M̄ r̄

(m|,L̄|
β (γ̄n)C)M̄L̄, ζr̄Ω =

1√
2
θ̄M̄ r̄

(m|,L̄|
Ω (γ̄n)C)M̄L̄. (3.175)

Similarly, dχ, dr̄β , dr̄Ω and ζr̄β , ζr̄Ω are two pairs of orthogonal states with respect to the internal R-symmetry.

Thus, the explicit computation confirms that different states located at the same point inside the diamond

(with the same jz) are orthogonal to each other.

Now we are left with the helicity SUSY transformations for the right half of the diamond. After some

manipulations, we obtain

Q̄−(η̄Ī) |α,+2; ε(η̄ε̄ξ̄θ̄)〉 = Q̄+(η̄Ī) |α⊕ d,+1〉1 = |χ̄,+ 3
2 ; ε(η̄ε̄ξ̄θ̄)η̄Ī〉, (3.176)

Q̄−(η̄Ī) |α⊕ d,+1〉2 = Q̄+(η̄Ī) |α⊕ d⊕ ζ, 0〉1

=
1√
3
|χ̄,+ 1

2 ; ε(η̄ε̄ξ̄θ̄)η̄Ī〉 −
√

2√
3
|r,+ 1

2 ; ε(η̄ε̄ξ̄θ̄)η̄Ī γ̄mĪI
(
δ(6)
mnδ

I
J + (γmγ̄n)IJ

)
〉

≡ |χ̄⊕ r,+ 1
2 〉1, (3.177)

Q̄−(η̄Ī) |α⊕ d,+1〉3 = Q̄+(η̄Ī) |α⊕ d⊕ ζ, 0〉2

=
1√
3
|χ̄,+ 1

2 ; ε(η̄ε̄ξ̄θ̄)η̄Ī〉+
1√
6
|r,+ 1

2 ; ε(η̄ε̄ξ̄θ̄)η̄Ī γ̄mĪI
(
δ(6)
mnδ

I
J + (γmγ̄n)IJ

)
〉

+
1√
2
|r,+ 1

2 ; ε(η̄ε̄ξ̄θ̄)η̄Ī γ̄mnlĪI (γkγ̄mnl)
I
J〉

≡ |χ̄⊕ r,+ 1
2 〉2, (3.178)

and

Q̄−(ε̄J̄) |χ̄,+ 3
2 ; ε(η̄ε̄ξ̄θ̄)η̄Ī〉 = Q̄+(ε̄J̄) |χ̄⊕ r,+ 1

2 〉1 = |β+,+1; 1√
2
ε(η̄ε̄ξ̄θ̄)ε̄J̄(γ̄mC)J̄ Ī η̄

Ī〉, (3.179)

Q̄−(ε̄J̄) |χ̄⊕ r,+ 1
2 〉2 = − 1√

2
|β+, 0; 1√

2
ε(η̄ε̄ξ̄θ̄)ε̄J̄(γ̄mC)J̄ Ī η̄

Ī〉
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+
1√
2
|Ω+, 0; 1

12ε(η̄ε̄ξ̄θ̄)ε̄
J̄(Cγmnl)J̄ Ī η̄

Ī〉 ≡ |β+ ⊕ Ω+, 0〉, (3.180)

and

Q̄−(ξ̄K̄) |β+,+1; 1√
2
ε(η̄ε̄ξ̄θ̄)ε̄J̄(γ̄mC)J̄ Ī η̄

Ī〉 = Q̄+(ξ̄K̄) |β+ ⊕ Ω+, 0〉 = |a,+ 1
2 ; ε(η̄ε̄ξ̄θ̄)εĪJ̄K̄L̄η̄

Ī ε̄J̄ ξ̄K̄CL̄L 〉,

(3.181)

and finally we have

Q̄−(θ̄L̄) |a,+ 1
2 ; ε(η̄ε̄ξ̄θ̄)εĪJ̄K̄L̄η̄

Ī ε̄J̄ ξ̄K̄CL̄L 〉 = |Φ+, 0; [ε(η̄ε̄ξ̄θ̄)]2〉. (3.182)

This completes the chain of transformations that take the Clifford vacuum |Φ+〉 into its anti-Clifford coun-

terpart |Φ−〉.
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ā
Ī
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4 Direct production of lightest massive superstrings

In this chapter, we discuss the direct production of the lightest Regge excitations. We will first review

some basic knowledge of intersecting branes realization of the SM and how to compute the string scattering

processes. Then we discuss some factorization properties the of string amplitudes. In Chapter 2, we already

found the full physical fields contents for the first massive level. Here we focus on the universal excitations

of gauge bosons originating from a stack of N D-branes extending into higher dimensions, which include one

spin two particle, one vector and two complex scalars, with only the spin two and a single scalar coupled to

massless gauge bosons directly at the disk level. These Regge excitations of SM fields are independent from

the details of the internal geometry of the compactifications of the ten-dimensional superstring theory. On

the other hand, quarks exist in the excited spin 3/2 and 1/2 states. The amplitudes with only two fermions

are also universal. Next, we compute all amplitudes involving one of the universal Regge excitations and

up to three massless partons. These amplitudes acquire a very simple form in the helicity basis, which

also reveals certain selection rules similar (and related) to the vanishing of “all-plus” amplitudes at the

zero mass level [31]. Finally, we square the appropriately crossed amplitudes for p1p2 → p3R, average over

initial helicities and colors and sum over the colors and spin directions of the outgoing particles. In order

to facilitate phenomenological applications of the partonic cross sections, we tabulate squared amplitudes

according to the production processes: gluon fusion, gluon-quark absorption, quark-antiquark annihilation

and quark-quark scattering.

This chapter is based on the paper [1].

4.1 Intersecting D-branes realization of the SM

In this section we review briefly how the SM is realized by intersecting D-branes.

Large extra dimensions can appear in string theory when the string mass scale Mstring is very low, at

the order of TeV [9,10]. There’s a relation between the Planck mass MPlanck, the string mass scale Mstring

and the sizes of the compactified internal directions Rj . For type II superstring theory, we have [13],

g2
DpMPlanck = 2

5
2πM7−p

string

( d‖∏

i=1

R
‖
i

)− 1
2
( d⊥∏

j=1

R⊥j

) 1
2

(4.1)
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Figure 14: Intersection pattern of four stacks of D6-branes giving rise to the MSSM

Thus, by enlarging some of the transverse compactifications radii R⊥j , the string scale has to become lower

in order to achieve the correct Planck mass.

One of the most common ways to realize the SM is by considering four stacks of D-branes. As it is shown

in Fig. 14, the SM particles can be locally realized as massless open string excitations that live on a local

four stacks of intersecting D-branes. The corresponding SM gauge group is given by

U(3)a × U(2)b × U(1)c × U(1)d. (4.2)

Gauge bosons are originated from open strings attached to the same stack of D-branes; chiral fermions are

due to open string stretching between different stacks of D-branes.

The SM gauge bosons which are in the adjoint representations of the gauge group are originated from

open strings attached to the same stack of D-branes. The SM matter (chiral) fields such as quark and leptons

are due to open string stretching between different stacks of D-branes. They transform under bifundamental

representations of the four gauge group factors, and they can also be in the antisymmetric representation 3

of SU(3)a, in case the color stack of D-branes is intersected by its orientifold image.

In order to combine D-branes with the SM particle content and large extra dimensions, the local setup
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of intersecting D-branes (like the example above) which give rise to the spectrum of the SM have to be

embedded into a global large volume CY-manifold to get a consistent compactification. We will not go

through details of a fully realistic string compactification, since our focusing point – the universal tree-level

open string scattering amplitudes only requires the local information. However, to use the CFT techniques to

compute string amplitudes, we need to assume that the SM D-branes are wrapped around flat, toroidal like

cycles. A fully consistent global orientifold model with all their tadpole and stability conditions satisfied is

beyond the scope of this work, for these consistency conditions depend on the details of the compactification

such as background fluxes. Yet even for models-dependent four-fermion couplings are argued in [13] that

they only depend only on the local structure of the brane intersections, but not on the global Calabi Yau

geometry.

4.2 Tree-level superstring amplitudes

4.2.1 Computation of tree-level superstring amplitudes

n-point string amplitudes are obtained by calculating the n-point correlation functions of associate vertex

operators on the boundary of the disk, which read,

A (n) =
∑

V −1
CKG

∫
(

n∏

i=1

dzi)〈V (z1)V (z2)V (z3)V (z4) · · ·V (zn)〉 (4.3)

where the sum runs over all the cyclic ordering of the n vertices on the boundary of the disk. In three-point

amplitude, there are two different orderings; in four-point amplitude, there are six. In order to cancel the

total background ghost charge −2 of the disk D2, we should choose the vertex operators in the correlator in

appropriate ghost “pictures” which makes the total ghost number to be −2. In addition, the factor VCKG

is defined to be the volume of the conformal Killing group of the disk after choosing the conformal gauge,

which would be canceled by fixing three vertices and introducing respective c-ghost fields into the vertex

operators. Because of PSL(2, R) invariance on the disk, we can fix three vertex operators on the boundary
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of the disk. Mathematically, V −1
CKG can be written as

V −1
CKG = c(zi)c(zj)c(zk)δ(zi − ωi)δ(zj − ωj)δ(zk − ωk) , (4.4)

where ωi, ωj , ωk are totally arbitrary, however it is the most convenient to choose these three position to be

0, 1 and ∞. Then we integrate over other n− 3 points and get the amplitude [27,65] which could be written

in the form

A =
∑
〈c1V (z1)c2V (z2)c3V (z3)

∫
(

n∏

i=4

dzi)V (z4) · · ·V (zn)〉 . (4.5)

Following the conventions in [65], here we list several the most important correlation functions of the

world-sheet fields:

〈c1c2c3〉 = |z12z13z23| , (4.6)

〈e−φ(z1)e−φ(z2)〉 = z−1
12 , (4.7)

〈ψµ(z1)ψν(z2)〉 = ηµνz−1
12 , (4.8)

〈Xµ(z1)Xν(z2)〉D2
= −2α′ηµν ln |z12| , (4.9)

〈
n∏

i=1

eikiX(zi)〉D2
= iCD2

(2π)dδd(Σki)

n∏

i,j=1
1<j

|zij |2α
′ki·kj , (4.10)

where zij = zi− zj and CD2
= 1/(g2α′2) are normalized in [13]. The last two correlators are for the X fields

on the D2 boundary, and are obtained by “doubling trick”. We also need to use,

〈
n∏

i=1

eikiX(zi)

p∏

j=1

∂Xµj (zj)〉D2
= iCD2

(2π)dδd(Σki)

n∏

i,j=1
1<j

|zij |2α
′ki·kj

×
p∏

j=1

[ n∑

i=1
i 6=j

(−2iα′
k
µj
i

zji
) + qµj (zj)

]
, (4.11)

where q’s term are contracted by −2α′ηµjµi(zji)
−2.
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4.2.2 Universality of four-dimensional tree-level amplitudes

Although we have adapted our whole setup to full-fledged ten-dimensional superstring theory with spacetime

filling D9-branes, it turns out that all the results presented in the previous sections except for the four-fermion

amplitude can be taken over to lower dimensional Dp-brane world volumes and compactification geometries.

As we already saw in Chapter 2, dimensional reduction of the spacetime gluon vertex operators simply

replace SO(1, 9) and ten-dimensional world-sheet fields by four-dimensional fields. Correlation functions

involving exclusively the world-sheet fields X and ψ do not depend on their dimensions. Moreover, we do

not have any contractions which would get the dimension of the spacetime D (e.g., identity such as δµµ will

give rise to quantities dependent on the spacetime dimensions D). Thus the n-gluon amplitudes do not

depend on the spacetime dimensions.

Under dimension reduction, the ten-dimensional spin fields Sα can be factorize as Sa ⊗ siint or S ḃ ⊗ s̄jint

into four-dimensional spinors Sa, S
ḃ and internal components siint, s̄

j
int. We already saw that for the four-

dimensional gaugino the internal components (siint, s̄
j
int) ≡ (Σ, Σ̄) in Chapter 2. However, for the chiral matter

that are located at D-brane intersections, siint, s̄
j
int are identified with the boundary changing operators Ξ

and Ξ will be defined in Eq. (4.67), with OPE

〈Ξa∩b(z1) Ξ̄a∩b(z2)〉 =
1

(z1 − z2)3/4
. (4.12)

As we can see, two-point function in both spin fields sector and internal sector are completely determined

by their conformal weights, which shows, the four-dimensional amplitudes involving only two fermion fields

are also universal to all compactifications.

4.3 Parton amplitudes and factorization on massive poles

Regge excitations may appear in resonance channels of SM processes or may be directly produced as external

states. While the first effect has been extensively studied in [13–15] the latter effect will be discussed in this

work. A first look at the couplings of massless SM particles to massive Regge states is made by considering

the factorization of higher–point amplitudes involving massless external states. In what follows we shall
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discuss this factorization on general grounds. We consider scattering amplitudes involving massless SM

model open string fields Φi as external particles. These amplitudes are described22 by the exchange of the

light (massless) SM fields and the tower of infinite many higher Regge excitations.

Due to the extended nature of strings the string amplitudes are generically non–trivial functions of α′ in

addition to the usual dependence on the kinematic invariants and degrees of freedom of the external states.

In the effective field theory description this α′–dependence gives rise to a series of infinite many resonance

channels due to Regge excitations and new contact interactions involving massless SM fields and massive

Regge states. As a consequence of unitarity an N–point tree–level string amplitude23 M(Φ1, . . . ,ΦN ) can

be written as an infinite sum over exchanges of (massive) intermediate string states |J, n〉 coupling to N1 and

N2 external massless string states, with N1 +N2 = N . For each level this pole expansion gives rise to (new)

N1 + 1– and N2 + 1–point couplings between the massive string states |J, n〉 and the N1 and N2 external

massless string states, respectively.

In the following we illustrate this at the four–gluon amplitude, i.e., Φi = gi and N1 = N2 = 2. The latter

gives rise to an infinite series of three–point couplings involving two massless gluons and massive string state

|J, n〉. The general expression for the color ordered four–gluon amplitude is

M(g1, g2, g3, g4) = 2 g2
YM K4(ε1, k1; ε2, k2; ε3, k3; ε4, k4)

×
{
T a1a2a3a4

B(α′s, α′u)

α′t
+ T a2a3a1a4

B(α′t, α′u)

α′s
+ T a3a1a2a4

B(α′s, α′t)

α′u

}
,

(4.14)

22There may be additional resonance channels due to the exchange of KK and winding states, as it is the case for amplitudes
involving at least four quarks or leptons.

23Disk amplitudesM(Φ1, . . . ,ΦN ) involving N open string states Φi as external states decompose into a sum over all possible
orderings ρ of the corresponding vertex operators VΦi along the boundary of the disk

M(Φ1, . . . ,ΦN ) =
∑
ρ∈SN

Mρ(Φ1, . . . ,ΦN )
∑
ρ∈SN

Tr(Ta1ρ . . . T
aNρ ) A(1ρ, . . . , Nρ) , (4.13)

with iρ = ρ(i) and the partial ordered amplitudes A(1ρ, . . . , Nρ). Furthermore, Tai is the Chan–Paton factor accounting for
the gauge degrees of freedom of the two ends of the ith open string.
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with the kinematic factor [66,67]

K4(ε1, k1; ε2, k2; ε3, k3; ε4, k4) = α′tα′u (ε1ε2) (ε3ε4) + α′sα′t (ε1ε4) (ε2ε3) + α′sα′u (ε1ε3) (ε2ε4)

+α′s [ (ε1ε3)(ε2k3)(ε4k1) + (ε1ε4)(ε2k4)(ε3k1) + (ε2ε3)(ε1k3)(ε4k2) + (ε2ε4)(ε1k4)(ε3k2) ]

+α′t [ (ε1ε2)(ε3k2)(ε4k1) + (ε1ε4)(ε2k1)(ε3k4) + (ε2ε3)(ε1k2)(ε4k3) + (ε3ε4)(ε1k4)(ε2k3) ]

+α′u [ (ε1ε2)(ε3k1)(ε4k2) + (ε1ε3)(ε2k1)(ε4k3) + (ε2ε4)(ε1k2)(ε3k4) + (ε3ε4)(ε1k3)(ε2k4) ] .

(4.15)

and the color factor:

T a1a2a3a4 = Tr(T a1T a2T a3T a4) + Tr(T a4T a3T a2T a1) . (4.16)

Above, εi are the polarization vectors and ki the external momenta of the four gluons. Furthermore, we

have the kinematic invariants ŝ = 2α′k1k2, t̂ = 2α′k1k3 and û = 2α′k1k4.

In what follows we shall concentrate on the partial amplitudeM(1234). According to the definition (4.13)

we have: M(1234) = Tr(T a1T a2T a3T a4) A(1, 2, 3, 4). With (c.f. Ref. [13])

B(ŝ, û)

t̂
=

1

t̂û

Γ(ŝ) Γ(1 + û)

Γ(ŝ+ û)
=

∞∑

n=0

γ(n)

ŝ+ n
, (4.17)

and

γ(n) =
1

n!

Γ(α′u+ n)

Γ(α′u+ 1)
=

1

n!

1

α′u

n∏

j=1

(α′u− 1 + j) (4.18)

the amplitude (4.14) can be written as an infinite sum over s-channel poles at the masses of the Regge

excitations:

M(1234)(g1, g2, g3, g4) = 2 g2
YM Tr(T a1T a2T a3T a4) K4(ε1, k1; ε2, k2; ε3, k3; ε4, k4)

∞∑

n=0

γ(n)

α′s+ n
. (4.19)

In (4.19) to each residue at α′s = −n a class of three–point couplings of two massless and one massive Regge

state |J, n〉 of a specific spin J is associated, c.f. Fig. 15.
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Figure 15: Factorization of four-gluon amplitude into pairs of two three-point couplings.

From (4.19) the three–point couplings are determined by the product 2 g2
YM γ(n) K4. To cast the residue

of (4.19) into suitable form non–trivial factorization properties of the kinematic factor (4.15) have to hold.

We shall now evaluate for the amplitude (4.19) the contribution to the residue of the pole in α′s at

α′s = −n, with n = 0, 1, . . .. At the level n = 0 only a massless gluon with polarization εi and spin J = 1 is

exchanged. Hence, we obtain the following residue at α′s = 0

Res α′s=0
α′u=−α′t

M(1234)(g1, g2, g3, g4) = 2 g2
YM Tr(T a1T a2T a3T a4)

× γ(0) K4(ε1, k1; ε2, k2; ε3, k3; ε4, k4)| α′s=0
α′u=−α′t

=
∑

ε(k)

K3,0(ε1, k1; ε2, k2; ε, k) K3,0(ε3, k3; ε4, k4; ε,−k) ,

(4.20)

with the YM three–vertex:

K3,0(ε1, k1; ε2, k2; ε3, k3) = gYM Tr(T a1 [T a2 , T a3 ])

× { (ε1ε2) (ε3k1) + (ε1ε3) (ε2k3) + (ε2ε3) (ε1k2) } .
(4.21)

Furthermore we have applied the completeness relations

∑

a

Tr(T a1T a2T a) Tr(T aT a3T a4) =
1

2
Tr(T a1T a2T a3T a4) , (4.22)

width the sum over the Chan–Paton wavefunction of the intermediate state.

At the n = 1 level exchanges of a spin J = 2 state bij and a J = 0 state eijk occur [43]. For the amplitude
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(4.19) we obtain the following residue at α′s = −1

Res α′s=−1
α′u=1−α′t

M(1234)(g1, g2, g3, g4) = 2 g2
YM Tr(T a1T a2T a3T a4)

× γ(1) K4(ε1, k1; ε2, k2; ε3, k3; ε4, k4)| α′s=−1
α′u=1−α′t

=
∑

e(k)

K3,1(ε1, k1; ε2, k2; e, k) K3,1(ε3, k3; ε4, k4; e,−k)

+
∑

b(k)

K3,2(ε1, k1; ε2, k2; b, k) K3,2(ε3, k3; ε4, k4; b,−k)

(4.23)

with the two three–point vertices

K3,1(ε1, k1; ε2, k2; e, k) = 6 gYM {Tr(T a1T a2T a3) + Tr(T a2T a1T a3)} eijk ε1i ε2j k1k ,

K3,2(ε1, k1; ε2, k2; b, k) = gYM {Tr(T a1T a2T a3) + Tr(T a2T a1T a3)}

× bij { (k1k2) ε1iε2j − k1iε2j (ε1k2)− k2iε1j (ε2k1) + k1ik2j (ε1ε2) } ,

(4.24)

involving two massless gluons and one massive string state eijk and bij , respectively. In (4.23) the second

equality follows by applying results from [68–70].

4.4 Two- and three-particle decay amplitudes

With all the physical vertex operators at hand, we are ready to compute the amplitudes describing two-

and three-particle decays of the bosons – α(J = 2), d(J = 1), Φ±(J = 0), Ω(J = 0) with vertex operators

written as we obtain one complex scalar Φa ≡ Φa+ (Φ
a ≡ Φa−) and one J = 2 particle Ba, with the vertices

given by

V
(−1)
αa =

gA√
2α′

T a e−φ αµν i∂X
µψν eikX , (4.25)

V
(−1)
da = gA T a e−φ ξµ ψ

µ J eikX , (4.26)

V
(−1)
Φa± =

gA

2
√

2α′
T a e−φ

[
(gµν + 2α′kµkν) i∂Xµ ψν + 2α′kµ∂ψ

µ

± i

6
2α′ εµνρλ k

λ ψµ ψν ψρ
]
eikX , (4.27)

V
(−1)
Ωa± = gA T a e−φ O± eikX , (4.28)
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with the on-shell conditions kµαµν = ηµναµν = kµdµ = 0. The vertex operators of fermion χ(J = 3/2) read

V
(− 1

2 )
χαβ

=
gA√

2α′1/4

(
Tαβ
)β1

α1
χaµ

(
i∂Xµ Sa −

√
2α′ 6kaḃ Sµḃ

)
Ξa∩b e−φ/2 eik·X , (4.29)

V
(− 1

2 )

χ̄βα
=

gA√
2α′1/4

(
T βα
)α1

β1
χ̄µȧ

(
i∂Xµ S

ȧ −
√

2α′ 6kȧb Sµb
)

Ξ̄a∩b e−φ/2 eik·X , (4.30)

with the on-shell condition kµ χaµ = χaµ σ
µ

aḃ
= kµ χ̄

µ
ȧ = χ̄µȧ σ̄

ȧb
µ . And for a(J = 1/2), we have

V
(− 1

2 )
aαβ

=
α′1/4gA

2

(
Tαβ
)β1

α1
ab
(

(σµ 6k)b
a Sa i∂X

µ − 4 ∂Sb

)
Ξa∩b e−φ/2 eik·X , (4.31)

V
(− 1

2 )

āβα
=
α′1/4gA

2

(
T βα
)α1

β1
āḃ

(
(σ̄µ 6k)ḃȧ S

ȧ i∂Xµ − 4 ∂S ḃ
)

Ξ̄a∩b e−φ/2 eik·X . (4.32)

All the above vertex operators that describe the physical open string states are normalized by using the

factorization techniques introduced in the previous subsection. The coupling gA = (2α′)1/2g where g is the

gauge coupling.

Our notation for Mandelstam variables are

s = (k1 + k2)2 , t = (k1 + k3)2 , u = (k1 + k4)2 (4.33)

with all momenta incoming and on-shell:

4∑

i=1

ki = 0 , k2
1 = k2

2 = k2
3 = 0 , k2

4 = −m2 = − 1
α′ , (4.34)

which implies the following relation for the dimensionless variables:

α′s+ α′t+ α′u = −1 . (4.35)

The spinor products will be abbreviated as

〈ki|kj〉 = 〈ij〉 , [ki|kj ] = [ij] . (4.36)
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Finally, we recall the string formfactor

Vt = V (s, t, u) =
Γ(1 + α′s)Γ(1 + α′u)

Γ(1 + α′s+ α′u)
, Vs = Vt(t↔ s) , Vu = Vt(t↔ u) . (4.37)

Note that once the kinematic constraint (4.35) is implemented,

Vt =
Γ(1 + α′s)Γ(1 + α′u)

Γ(α′t)
, (4.38)

4.4.1 Massive spin two boson α(J = 2)

We begin with the B-decays into gluons. The two-gluon channel is described by the amplitude

A [α; ε1, ε2] = (2 da1a2a3) (4g
√

2α′) αµν [ (ε2k1)kµ2 ε
ν
1 + (ε1k2)kµ1 ε

ν
2 − (k1k2)εµ2ε

ν
1 − (ε1ε2)kµ1 k

ν
2 ] . (4.39)

In the prefactor, we singled out the color factor,

2 da1a2a3 = Tr(T a1T a2T a3) + Tr(T a2T a1T a3) , (4.40)

which appears after adding the contributions of the two orderings of the vertex operators inserted at the

disk boundary. It is convenient to rewrite the amplitude (4.39) as

A [α; ε1, ε2] = 4g (2 da1a2a3) (2α′)3/2 A [α; ε1, ε2] (4.41)

Substitute the helicity wave functions of α which can be find in Appendix C. We find

A [α;±,±] = 0 , (4.42)

thus non-vanishing amplitudes must necessarily involve two gluons with opposite polarizations. They read:

A [α(−2); +,−] = − 1
4 〈p2〉2[q1]2 ,
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A [α(−1); +,−] = − 1
2 〈p2〉2[q1][p1] ,

A [α(0); +,−] = −
√

6
4 〈p2〉2[p1]2 , (4.43)

A [α(+1); +,−] = + 1
2 〈p2〉〈q2〉[p1]2 ,

A [α(+2); +,−] = − 1
4 〈q2〉2[p1]2 .

As a first check of the above result, we can examine the probability for the decay of unpolarized B into

a specific (+,−) helicity configuration, by computing the sum

+2∑

j=−2

|A[α(j); +,−]|2 =
8

α′
g2(2 da1a2a3)2 , (4.44)

which does indeed turn out to be independent of the choice of reference vectors p and q. Now we can check

if the result is consistent with string factorization. From Ref. [43] we know that only the spin 2 resonance

appears in the s-channel of the four-gluon amplitudeM[g+
1 , g

−
2 , g

−
3 , g

+
4 ], where it yields the following residue

at s = M2 = 1/α′

Ress=1/α′ M[g+
1 , g

−
2 , g

−
3 , g

+
4 ] = 4 g2Tr(T a1T a2T a3T a4)α′〈23〉2[14]2 + . . . , (4.45)

where we picked up just one partial amplitude contribution. In order to compare our B-decay amplitude

with the residue, we compute

+2∑

j=−2

A[α(j); +,−]∗ A[α(j); +,−]
∣∣
(1→3,2→4)

, (4.46)

with the color factor associated to the first ordering in Eq. (4.40), c.f. Eq. (4.22). The simplest way to

perform the sum (4.46) is to set p = k1 and q = k2 because then only Jz = −2 contributes. Indeed, after

combining the spin and color sums we recover Eq. (4.45), thus confirming the correct normalization of the

vertex operator (4.25). Eqs. (4.41) and (4.43) can be also checked by comparing directly with Eq. (25) of

Ref. [43].
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Three-gluon α–decays are described by the following amplitude

A [α; ε1, ε2, ε3] = 4 g2
√

2α′
(
Vt t

a1a2a3a4 + Vs t
a2a3a1a4 + Vu t

a3a1a2a4
)

×
{

1

s

[
(ε2 ε3) (ε1 k2) (kµ3 αµν k

ν
3 ) − (ε1 ε3) (ε2 k1) (kµ3 αµν k

ν
3 ) + (ε1 ε2) (ε3 k2) (kµ1 αµν k

ν
3 )

− (ε1 ε2) (ε3 k1) (kµ2 αµν k
ν
3 ) + (ε1 k3) (ε2 k1) (kµ3 αµν ε

ν
3) − (ε2 k3) (ε1 k2) (kµ3 αµν ε

ν
3)

+ (ε2 k1) (ε3 k4) (kµ3 αµν ε
ν
1) − (ε1 k2) (ε3 k4) (kµ3 αµν ε

ν
2)

+
1

2α′
(ε1 k2) (εµ2 αµν ε

ν
3) − 1

2α′
(ε2 k1) (εµ1 αµν ε

ν
3)

− t

2
(ε1 ε2) (kµ2 αµν ε

ν
3) +

u

2
(ε1 ε2) (kµ1 αµν ε

ν
3)
]

+
1

u

[
(ε1 ε3) (ε2 k3) (kµ1 αµν k

ν
1 ) − (ε1 ε2) (ε3 k2) (kµ1 αµν k

ν
1 ) + (ε2 ε3) (ε1 k3) (kµ1 αµν k

ν
2 )

− (ε2 ε3) (ε1 k2) (kµ1 αµν k
ν
3 ) + (ε2 k1) (ε3 k2) (kµ1 αµν ε

ν
1) − (ε3 k1) (ε2 k3) (kµ1 αµν ε

ν
1)

+ (ε3 k2) (ε1 k4) (kµ1 αµν ε
ν
2) − (ε2 k3) (ε1 k4) (kµ1 αµν ε

ν
3)

+
1

2α′
(ε2 k3) (εµ1 αµν ε

ν
3) − 1

2α′
(ε3 k2) (εµ1 αµν ε

ν
2)

− s

2
(ε2 ε3) (kµ3 αµν ε

ν
1) +

t

2
(ε2 ε3) (kµ2 αµν ε

ν
1)
]

+
1

t

[
(ε1 ε2) (ε3 k1) (kµ2 αµν k

ν
2 ) − (ε2 ε3) (ε1 k3) (kµ2 αµν k

ν
2 ) + (ε1 ε3) (ε2 k1) (kµ2 αµν k

ν
3 )

− (ε1 ε3) (ε2 k3) (kµ1 αµν k
ν
2 ) + (ε3 k2) (ε1 k3) (kµ2 αµν ε

ν
2) − (ε1 k2) (ε3 k1) (kµ2 αµν ε

ν
2)

+ (ε1 k3) (ε2 k4) (kµ2 αµν ε
ν
3) − (ε3 k1) (ε2 k4) (kµ2 αµν ε

ν
1)

+
1

2α′
(ε3 k1) (εµ1 αµν ε

ν
2) − 1

2α′
(ε1 k3) (εµ2 αµν ε

ν
3)

− u

2
(ε1 ε3) (kµ1 αµν ε

ν
2) +

s

2
(ε1 ε3) (kµ3 αµν ε

ν
2)
]

− 1

2

[
(ε1 ε2) εµ3 αµν (kν2 − kν1 ) + (ε2 ε3) εµ1 αµν (kν3 − kν2 ) + (ε1 ε3) εµ2 αµν (kν1 − kν3 )

]}
, (4.47)

with the color factor

ta1a2a3a4 = Tr(T a1T a2T a3T a4)− Tr(T a4T a3T a2T a1)

= i (da1a4nfa2a3n − da2a3nfa1a4n) , (4.48)
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i.e., ta1a2a3a4 = Tr(T a1T a2T a3T a4)−Tr(T a1T a4T a3T a2), ta2a3a1a4 = Tr(T a1T a4T a2T a3)−Tr(T a1T a3T a2T a4)

and ta3a1a2a4 = Tr(T a1T a2T a4T a3) − Tr(T a1T a3T a4T a2). Note that the massless (4.14) and massive (4.47)

amplitudes have different group structures, c.f., Eq.(4.48) and (4.16), respectively. This is explained below.

Generally, under world–sheet parity an N–point open superstring amplitude A (1, . . . , N) (recall the

definition (4.13)) behaves as

A (1, . . . , N) =

(
N∏

i=1

(−1)α
′m2

i+ε

)
A (N, . . . , 1) , (4.49)

with m2
i the masses of the external open string states. Furthermore, for SO(N) representations we have

ε = 1 and ε = 0 for USp(N) representations [71]. Further relations between subamplitudes are obtained by

analyzing their monodromy behavior w.r.t. to contour integrals in the complex plane [72]. As a consequence

for amplitudes involving only massless external string states (m2
i = 0) the full set of relations allows to

reduce the number of independent subamplitudes to (N −3)! [72,73]. On the other hand, the set of relations

for the massless case does not hold in the case if m2
i 6= 0 and new monodromy relations have to be derived.

For the case at hand, i.e., mi = 0, i = 1, 2, 3 and m2
4 = α′−1, the partial amplitudes are odd under the

parity transformation. Hence from (4.49) we deduce:

A (1, 2, 3, 4) = −A (1, 4, 3, 2) ,

A (1, 2, 4, 3) = −A (1, 3, 4, 2) ,

A (1, 3, 2, 4) = −A (1, 4, 2, 3) .

(4.50)

This fact is manifest in the full amplitude (4.47) due to the color factor. After applying the contour arguments

of [72] the following monodromy relation can be established for the case at hand:

A (1, 2, 3, 4)− eiπα′s A (1, 2, 4, 3)− e−iπα′u A (1, 4, 2, 3) = 0 , (4.51)

Together with (4.50) this relation allows to express all six partial amplitudes in terms of one, say A (1, 2, 3, 4):

A (1, 4, 3, 2) = −A (1, 2, 3, 4) ,
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A (1, 2, 4, 3) = −A (1, 3, 4, 2) =
sin(πα′u)

sin(πα′t)
A (1, 2, 3, 4) , (4.52)

A (1, 3, 2, 4) = −A (1, 4, 2, 3) = − sin(πα′s)

sin(πα′t)
A (1, 2, 3, 4) .

Note, that (4.51) differs from the monodromy relation for the massless case, c.f. Eq. (4.8) of [72]. As a

consequence also the solution (4.52) is different than in the massless case, c.f., Eq. (4.10) of [72]. It is easy

to see that the relations (4.52) are indeed satisfied by the result (4.47).

In order to represent the amplitude (4.47) in the helicity basis, we rewrite it as

A [α; ε1, ε2, ε3] = 8 g2
(
Vt t

a1a2a3a4 + Vs t
a2a3a1a4 + Vu t

a3a1a2a4
) √

2α′ A [α; ε1, ε2, ε3] . (4.53)

We find

A [α;±,±,±] = 0 , (4.54)

therefore non-vanishing amplitudes always involve one gluon of a given helicity and two of the opposite one.

They have a very simple form:

A [α(−2); +,+,−] =
1

2
√

2

〈p3〉4
〈12〉〈23〉〈31〉 ,

A [α(−1); +,+,−] =
1√
2

〈p3〉3〈3q〉
〈12〉〈23〉〈31〉 ,

A [α(0); +,+,−] =

√
3

2

〈p3〉2〈3q〉2
〈12〉〈23〉〈31〉 , (4.55)

A [α(+1); +,+,−] =
1√
2

〈q3〉3〈3p〉
〈12〉〈23〉〈31〉 ,

A [α(+2); +,+,−] =
1

2
√

2

〈q3〉4
〈12〉〈23〉〈31〉 .

Similarly to the two-gluon case, we can consider the case of unpolarized B decaying into a specific helicity

configuration of the three gluons. By using Eqs. (4.53) and (4.55), we obtain

+2∑

α=−2

|A (α; +,+,−)|2 = 16 g4 (1− α′s)4

α′3 s t u
|Vt ta1a2a3a4 + Vs t

a2a3a1a4 + Vu t
a3a1a2a4 |2 . (4.56)
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Next, we turn to α-decays into fermions. The quark-antiquark channel is described by the amplitude

A [α;u1, ū2] = (T a)α1
α2

(g
√

2α′) kµ1αµν u
λ
1σ

ν
λρ̇ū

ρ̇
2 , (4.57)

which we rewrite as:

A [α;u1, ū2] = g (T a)α1
α2

(2α′)3/2A [α;u1, ū2] . (4.58)

For the specific (+ 1
2 ,− 1

2 ) helicity configuration of the antiquark-quark pair, we obtain:

A
[
α(−2); +1

2 ,− 1
2

]
= 1

2 〈p1〉〈p2〉[q1]2 ,

A
[
α(−1); +1

2 ,− 1
2

]
= 1

4 〈p2〉[q1]
(
〈q1〉[1q]− 3〈p1〉[1p]

)
,

A
[
α(0); + 1

2 ,− 1
2

]
=

√
6

4 〈2p〉[p1]
(
〈p1〉[1p]− 〈q1〉[1q]

)
, (4.59)

A
[
α(+1); + 1

2 ,− 1
2

]
= 1

4 〈q2〉[p1]
(
〈p1〉[1p]− 3〈q1〉[1q]

)
,

A
[
α(+2); + 1

2 ,− 1
2

]
= 1

2 〈q1〉〈q2〉[p1]2 .

Adding up the moduli squares of the amplitudes, we obtain

+2∑

j=−2

|A [α(j); +1
2 ,− 1

2 ]|2 =
1

2α′
g2 [(T a)α1

α2
]2 , (4.60)

which does not depend on the choice of the reference vectors. As a further check, we can compare our result

with the residue of the two-gluon – quark-antiquark amplitude

Ress=1/α′ M[q−1 , q̄
+
2 , g

−
3 , g

+
4 ] = 2 g2{T a3T a4}α1

α2
α′tu

〈13〉2
〈14〉〈24〉 , (4.61)

which is known to receive contributions from the spin two resonance only [43]. Indeed, the residue is correctly

reproduced by
+2∑

j=−2

A [α(j); +1
2 ,− 1

2 ]∗A [α(j);−,+]
∣∣
(1→3,2→4)

. (4.62)

The amplitude with one gluon in addition to the quark-antiquark pair in the final state can be written
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as:

A [α;u1, ū2, ε3] = 2 g2
[
Vt(T

a3T a4)α1
α2

+ Vu(T a4T a3)α1
α2

] √
2α′ A [α;u1, ū2, ε3] , (4.63)

with:

A
[
α(−2); + 1

2 ,− 1
2 ,+

]
=

1√
2

〈p1〉〈p2〉3
〈12〉〈23〉〈31〉 ,

A
[
α(−1); + 1

2 ,− 1
2 ,+

]
=

1

2
√

2

〈p2〉2
〈12〉〈23〉〈31〉

(
〈q1〉〈p2〉+ 3〈p1〉〈q2〉

)
,

A
[
α(0); + 1

2 ,− 1
2 ,+

]
=

√
3

2

〈p2〉〈q2〉
〈12〉〈23〉〈31〉

(
〈q1〉〈p2〉+ 〈p1〉〈q2〉

)
, (4.64)

A
[
α(+1); + 1

2 ,− 1
2 ,+

]
=

1

2
√

2

〈q2〉2
〈12〉〈23〉〈31〉

(
3〈q1〉〈p2〉+ 〈p1〉〈q2〉

)
,

A
[
α(+2); + 1

2 ,− 1
2 ,+

]
=

1√
2

〈q1〉〈q2〉3
〈12〉〈23〉〈31〉 .

For the gluon with opposite helicity we have:

A
[
α; + 1

2 ,− 1
2 ,−

]
= A∗

[
α; + 1

2 ,− 1
2 ,+

] ∣∣∣
(p↔q),(1↔2)

. (4.65)

The sum of the squared moduli of the corresponding amplitudes reads

+2∑

j=−2

∣∣A [α(j); + 1
2 ,− 1

2 ,+]
∣∣2 = g4

∣∣Vt(T a3T a4)α1
α2

+ Vu(T a4T a3)α1
α2

∣∣2

× (1− α′t)2

α′2s t u
(s+ 4α′tu) , (4.66)

and a similar expression with (k1 ↔ k2, a3 ↔ a4) for the gluon with opposite helicity.

4.4.2 Massive spin one boson d(J = 1)

The spin one vector resonance has a different character than spin two, because it is tied to space–time

SUSY. The internal part of the corresponding vertex operator (4.26) contains the current J , which plays

an important role in the world–sheet SCFT describing superstrings propagating on CYMs. As we have

described in the third section the most natural way of thinking about this particle is as a two–gluino bound
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state. Indeed, with Σ the internal Ramond field associated to the gluino, the current J appears as a sub-

leading term in the OPE (2.77). It is clear that the current J and the existence of the resonance d(J = 1)

is a universal property of all N = 1 SUSY compactifications. At the disk level, this particle does not couple

to purely gluonic processes. Its main decay channel is into two gluinos and its mass will be affected by the

SUSY breaking mechanism. The reason why we include it in our discussion is that it also couples to the

quark sector, therefore it can be a priori directly produced at the LHC.

In the intersecting D–brane models, the internal part of the quark vertex operators contains the boundary-

changing operators [13]

Ξa∩b(z) =

3∏

j=1

ei ( 1
2−θ

j)Hj(z) σθj (z) , Ξ̄a∩b(z) =

3∏

j=1

e−i ( 1
2−θ

j)Hj(z) σ−θj (z) , (4.67)

where σθ is the bosonic twist operator associated to the intersection angle θ. The angles θi are associated

to the three complex planes subject to the N = 1 SUSY constraint:

3∑

k=1

θk = 0 . (4.68)

Note, that in the limit θ → 0 bosonic twist fields σθ become the identity operator and we have:

lim
θj→0

Ξa∩b =

3∏

j=1

e
i
2 Hj = Σ , lim

θj→0
Ξ̄a∩b =

3∏

j=1

e−
i
2 Hj = Σ̄ . (4.69)

Therefore, up to Chan-Paton and normalization factors in this limit the quark vertex operators turn into

the gaugino vertex operators [13]. With the explicit free field representation of the U(1) current J

J = i∂H = i

3∑

j=1

∂Hj , (4.70)

the three-point function relevant to the W coupling to a quark-antiquark pair reads:

〈J (z1) Ξa∩b(z2) Ξ̄a∩b(z3)〉 =

3∑

j=1

(
1
2 − θj

) z
1/4
23

z12 z13
=

√
3 z

1/4
23

2 z12 z13
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= 〈J (z1)Σ(z2) Σ̄(z3)〉 . (4.71)

The corresponding amplitude is:

A [d, u1, ū2] =

√
3

4
g(T a)α1

α2
ξµu

λ
1σ

µ
λρ̇ū

ρ̇
2 ≡

√
3α′

2
g(T a)α1

α2
A [d, u1, ū2] . (4.72)

For the specific (+ 1
2 ,− 1

2 ) helicity configuration of the antiquark-quark pair, we obtain

A
[
d(−1); +1

2 ,− 1
2

]
= 〈p2〉[q1] ,

A
[
d(0); + 1

2 ,− 1
2

]
=
√

2〈p2〉[p1] , (4.73)

A
[
d(+1); + 1

2 ,− 1
2

]
= 〈q2〉[p1] .

From Eq. (4.71) it follows that the W -coupling to two gauginos can be obtained from Eq. (4.72) by the

replacement (T a)α1
α2
→ 4da1a2a. The normalization of the above couplings can be checked by comparing with

Eq. (39) of [43].

The amplitude with one gluon in addition to the quark-antiquark pair in the final state can be written

as:

A [d;u1, ū2, ε3] =
√

3 g2
[
Vt(T

a3T a4)α1
α2

+ Vu(T a4T a3)α1
α2

]
A [ξ;u1, ū2, ε3] . (4.74)

with

A
[
d(−1); + 1

2 ,− 1
2 ,+

]
=

〈p2〉2
〈13〉〈23〉 ,

A
[
d(0); + 1

2 ,− 1
2 ,+

]
=
√

2
〈p2〉〈q2〉
〈13〉〈23〉 , (4.75)

A
[
d(+1); +1

2 ,− 1
2 ,+

]
= − 〈q2〉2

〈13〉〈23〉 .

For the gluon with opposite helicity we have:

A
[
d; + 1

2 ,− 1
2 ,−

]
= A∗

[
d; + 1

2 ,− 1
2 ,+

] ∣∣∣
(p↔q),(1↔2)

. (4.76)
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The sum of the squared moduli of the corresponding amplitudes reads

+1∑

j=−1

∣∣A [d(j); + 1
2 ,− 1

2 ,+]
∣∣2 = 3 g4

∣∣Vt(T a3T a4)α1
α2

+ Vu(T a4T a3)α1
α2

∣∣2 (1− α′t)2

α′2 t u
(4.77)

and a similar expression with (k1 ↔ k2, a3 ↔ a4) for the gluon with opposite helicity.

4.4.3 The universal scalar Φ(J = 0)

It has been originally pointed out in Ref. [43] that the lowest scalar resonance propagating in two-particle

channels of multi-gluon amplitudes must couple to the product of “self-dual” gauge field strengths, with the

coupling to two gluons that is non-vanishing only if they carry the same helicities, say (+,+). Such couplings

arise naturally from N = 1 supersymmetric F -terms
∫
d2θΦWαWα where Wα is the gauge field strength

superfield. The scalar and pseudoscalar components of complex Φ ≡ Φ+ (Φ− = Φ̄) are combined with the

relative weight that enforces this selection rule.

The two-gluon decay of Φ with momentum k is described by the amplitude

A [Φ±, ε1, ε2] = 4g (2da1a2a)
√

2α′
{

(gµν + 2α′kµkν)
[
(ε2k1)kµ2 ε

ν
1 + (ε1k2)kµ1 ε

ν
2

−(k1k2)εµ2ε
ν
1 − (ε1ε2)kµ1 k

ν
2

]
± εµνρλkλεµ1εν2kρ2

}
. (4.78)

In the helicity basis,

A [Φ+,−,−] = A [Φ+,−,+] = A [Φ+,+,−] = 0 , (4.79)

and

A [Φ+,+,+] = 2g(2da1a2a)
√

2α′ [12]2 . (4.80)

The conjugate scalar Φ− couples to (−,−) configuration only, with the complex conjugate coupling. Our

results correctly reproduce Eq. (25) of [43].

The three-gluon decay amplitudes obey similar selection rules:

A [Φ+,−,−,−] = A [Φ+,−,−,+] = A [Φ+,−,+,−] = A [Φ+,+,−,−] = 0 , (4.81)
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while the non-vanishing ones are the “all plus” amplitude

A [Φ+,+,+,+] = 4 g2
(
Vt t

a1a2a3a4 + Vs t
a2a3a1a4 + Vu t

a3a1a2a4
) (α′)−3/2

〈12〉〈23〉〈31〉 (4.82)

and three “mostly plus” amplitudes that can be obtained from

A [Φ+,+,+,−] = 4 g2
(
Vt t

a1a2a3a4 + Vs t
a2a3a1a4 + Vu t

a3a1a2a4
)√
α′

[12]4

[12][23][31]
, (4.83)

by cyclically permuting (1, 2, 3).

The Φ resonance couples to the quark-antiquark pair and one gluon only if the gluon is in appropriate

polarization state: + for Φ+ and − for Φ−. The amplitude reads

A [Φ+,+
1
2 ,− 1

2 ,+] = 2g2
[
Vt(T

a3T a4)α1
α2

+ Vu(T a4T a3)α1
α2

]√
α′

[13]2

[12]
. (4.84)

4.4.4 The Calabi-Yau scalar Ω(J = 0)

The universal Ω scalar in (4.28) is associated to world–sheet operator O± appearing in the N = 1 OPEs

(2.83). Hence the field Ω(J = 0) does not couple to purely gluonic processes at the disk level, similarly to

d(J = 1). It can couple though to two fermions of the same helicity. The coupling to two quarks (color

triplets) is not allowed because Ω is a color octet, but the coupling to two gluinos is non-vanishing and can

be used to determine the normalization factor of the respective vertex operator. The LHC production rate

of this particle is suppressed at least by O(α2
s) compared to other resonances, therefore we do not discuss it

here any further.

4.4.5 Massive spin 3/2 quark χ(J = 3/2)

Massive quarks are color triplets [in general, in the fundamental representation of U(N)]. Their main decay

channels are into a quark and a gluon. For the spin 3/2 resonance
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χ(J = 3/2), the respective amplitude reads

A [χ; ε1, u2] = (T a1)α2
α g
√

2α′(k1µε1ν − k1νε1µ)uλ2σ
µ
λρ̇χ̄

νρ̇

≡ (T a1)α2
α

√
2g α′A?(R; ε1, u2) . (4.85)

In the helicity basis,

A [χ; +,+ 1
2 ] = 0 (4.86)

and:

A
[
χ(− 3

2 );−,+ 1
2

]
= 〈p1〉2[2q] , (4.87)

A
[
χ(− 1

2 );−,+ 1
2

]
=
√

3〈p1〉〈q1〉[q2] , (4.88)

A
[
χ(+ 1

2 );−,+ 1
2

]
=
√

3〈p1〉〈q1〉[p2] , (4.89)

A
[
χ(+ 3

2 );−,+ 1
2

]
= 〈q1〉2[2p] . (4.90)

The above result agrees with Eq. (47) of Ref. [43]. Adding up the moduli squares of the amplitudes, we

obtain:
+3/2∑

j=−3/2

|A (χ(j);−,+ 1
2 )|2 = g2 |(T a1)α2

α |2
2

α′
. (4.91)

The amplitude with one quark and two gluons in the final state reads:

A [χ; ε1, ε2, u3] = 2 g2
√

2α′ [Vt (T a1T a2)α3
α4
− Vu (T a2T a1)α3

α4
]

×
{

1

s

[
(ε2 k1) kµ2 (χ̄µ 6ε1u3) − (ε1 k2) kµ1 (χ̄µ 6ε2u3) + (ε2 k1) kµ1 (χ̄µ 6ε1u3)

− (ε1 k2) kµ2 (χ̄µ 6ε2u3) + (ε1 ε2) kµ1 (χ̄µ 6k2u3) − (ε1 ε2) kµ2 (χ̄µ 6k1u3)

− (ε1 k2) εµ2 (χ̄µ 6k4u3) + (ε2 k1) εµ1 (χ̄µ 6k4u3)
]

+
1

t

[
(ε1 k3) kµ2 (χ̄µ 6ε2u3) − (ε1 k3) εµ2 (χ̄µ 6k2u3)

− 1

2
εµ2 (χ̄µ 6k2 6ε1 6k1u3) − 1

2
kµ2 (χ̄µ 6ε2 6k1 6ε1u3)

]
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+
1

u

[
(ε2 k3) εµ1 (χ̄µ 6k1u3) − (ε2 k3) kµ1 (χ̄µ 6ε1u3)

+
1

2
kµ1 (χ̄µ 6ε1 6k2 6ε2u3) +

1

2
εµ1 (χ̄µ 6k1 6ε2 6k2u3)

]

− 1

2
εµ1 (χ̄µ 6ε2u3) +

1

2
εµ2 (χ̄µ 6ε1u3)

}
. (4.92)

It is convenient to rewrite this amplitude as:

A [χ; ε1, ε2, u3] = 2 g2 [Vt (T a1T a2)α3
α4
− Vu (T a2T a1)α3

α4
]A[χ; ε1, ε2, u3] . (4.93)

We find the selection rule:

A[χ; +,+,+ 1
2 ] = 0 . (4.94)

For two gluons in the (−,−) helicity configuration, the amplitude reads:

A
[
χ(− 3

2 );−,−,+ 1
2

]
=

[3q]3

[12][23][31]
,

A
[
χ(− 1

2 );−,−,+ 1
2

]
=
√

3
[3q]2[p3]

[12][23][31]
,

A
[
χ(+ 1

2 );−,−,+ 1
2

]
=
√

3
[3p]2[q3]

[12][23][31]
, (4.95)

A
[
χ(+ 3

2 );−,−,+ 1
2

]
=

[3p]3

[12][23][31]
.

When the gluons carry opposite helicities, then:

A
[
χ(− 3

2 ); +,−,+ 1
2

]
=
√
α′
〈p2〉3
〈12〉〈13〉 ,

A
[
χ(− 1

2 ); +,−,+ 1
2

]
=
√

3α′
〈p2〉2〈q2〉
〈12〉〈13〉 ,

A
[
χ(+ 1

2 ); +,−,+ 1
2

]
= −
√

3α′
〈q2〉2〈p2〉
〈12〉〈13〉 , (4.96)

A
[
χ(+ 3

2 ); +,−,+ 1
2

]
= −

√
α′
〈q2〉3
〈12〉〈13〉 .

and a similar expression with (1↔ 2) for gluons with flipped helicities.
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The sums of the squared moduli of the amplitudes read:

+3/2∑

j=−3/2

|A [χ(j);−,−,+ 1
2 ]|2 = 4 g4 |Vt (T a1T a2)α3

α4
− Vu (T a2T a1)α3

α4
|2 (1− α′s)3

α′3stu
,

+3/2∑

j=−3/2

|A [χ(j); +,−,+ 1
2 ]|2 = 4 g4 |Vt (T a1T a2)α3

α4
− Vu (T a2T a1)α3

α4
|2 (1− α′t)3

α′2st
, (4.97)

+3/2∑

j=−3/2

|A [χ(j);−,+,+ 1
2 ]|2 = 4 g4 |Vt (T a1T a2)α3

α4
− Vu (T a2T a1)α3

α4
|2 (1− α′u)3

α′2su
.

One important comment is here in order. Since in our conventions all particles are incoming, the helicities

of the final quark and gluons must be reversed in the physical amplitudes describing decays of the excited

quarks. Thus if the χ fermion considered above decays into a number of gluons and only one quark, the

quark must be a left-handed SU(2) doublet associated to the intersection of the QCD and electro-weak

branes [the SU(2) index is just a spectator]. In order to produce a right-handed quark one would have to

start from another χ excitation, an SU(2) singlet associated to a different intersection of the QCD brane.

Thus χ(J = 3/2) and a(J = 1/2) are the massive excitations of chiral fermions. In superstring theory,

there is no conventional “doubling” of massive quarks because chiral fermions generate their own Regge

trajectories.

Massive quark excitations can also decay into more fermions. The minimal case involves one quark and

a fermion-antifermion pair in the final state. The structure of the corresponding amplitudes is similar to

four-fermion processes discussed in Ref. [13]. Although lepton pairs can be produced in this way, we focus on

the case of two quarks and one antiquark, as the most relevant to the direct production of χ(J = 3/2) and

a(J = 1/2) in quark-quark scattering and quark-antiquark annihilation at the LHC. Even in this case, two

qualitatively different computations need to be performed depending whether the processes involve quarks

form the intersection of the QCD brane with a single brane (thus either four SU(2) doublets or four SU(2)

singlets) or from two intersections (amplitudes with both SU(2) doublets and singlets). In order to keep track

of all gauge indices, it is convenient to display them explicitly in the amplitudes. The lower α indices will

label SU(3) triplets (stack a), the upper β indices will label electroweak SU(2) doublets (stack b) and upper

γ (stack c) indices electroweak singlets. Thus, for instance, A [χβα;uα1

β1
, ūβ2
α2
, uα3

β3
] will denote the amplitude
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with the (incoming) Q? Regge excitation of a left-handed quark, q̄1R, q2L and q̄3R. On the other hand,

A [χβα; ūα1
γ1
, uγ2
α2
, uα3

β3
] will denote the amplitude with the same Regge excitation, q̄1L, q2R and q̄3R.

We begin with the case of two stacks, say a and b, intersecting at angles θj = θbj − θaj , j = 1, 2, 3. By

following the lines of [13], we obtain:

A [χβα;uα1

β1
, ūβ2
α2
, uα3

β3
] = (2α′)3/2eφ10

∫ 1

0

dx I(x, θj)

×
{
δα1
α δα3

α2
δβ2

β1
δββ3

Zbainst(x)− δα3
α δα1

α2
δβ2

β3
δββ1

Zbainst(1− x)
}

×
{
x−α

′s (1− x)−α
′u−1

[
(u1u3) (ū2χ̄

µ) k1
µ + 1

4 (u1 6k4 χ̄
µ) (u3σµū2) (4.98)

+ 1
4 (u3 6k4 χ̄

µ) (u1σµū2)
]

+ x−α
′s−1 (1− x)−α

′u
[
− (u1u3) (ū2χ̄

µ) k3
µ + 1

4 (u1 6k4 χ̄
µ) (u3σµū2)

+ 1
4 (u3 6k4 χ̄

µ) (u1σµū2)
]}

.

Here, Zbainst is the instanton partition function [13]. The function I(x, θj), written explicitly in [13], is the

correlation function of four boundary-changing operators and it is symmetric under x→ 1−x. It is convenient

to define:

Qsu = α′eφ10

∫ 1

0

dx Zbainst(x) I(x, θj) x−α
′s (1− x)−α

′u−1 .

Q̃su = α′eφ10

∫ 1

0

dx Zbainst(x) I(x, θj) x−α
′s−1 (1− x)−α

′u . (4.99)

Note that the amplitude (4.98) exhibits kinematical singularities due to the propagation of massless gauge

bosons in the respective channels:

Qsu
u→0−→ − g2

b

u
, Q̃su

s→0−→ − g2
a

s
. (4.100)

where ga = g and gb are the QCD [more precisely U(3)] and electro-weak coupling constants, respectively.
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In order to obtain the helicity amplitudes, it is convenient to rewrite Eq. (4.98) as

A [χβα;uα1

β1
, ūβ2
α2
, uα3

β3
] = δα1

α δα3
α2
δβ2

β1
δββ3

α′A[χ(j); +1
2 ,− 1

2 ,+
1
2 ] − (1↔ 3) , (4.101)

where:

A[χ(− 3
2 ); + 1

2 ,− 1
2 ,+

1
2 ] = Qsu 〈p2〉2[q1][23] + Q̃su 〈p2〉2[3q][12] ,

A[χ(− 1
2 ); + 1

2 ,− 1
2 ,+

1
2 ] =

1√
3
Qsu 〈p2〉[23]

{
2〈q2〉[q1]− 〈p2〉[p1]

}

+
1√
3
Q̃su 〈p2〉[21]

{
2〈q2〉[q3]− 〈p2〉[p3]

}
,

A[χ(+ 1
2 ); + 1

2 ,− 1
2 ,+

1
2 ] =

1√
3
Qsu 〈q2〉[23]

{
2〈p2〉[p1]− 〈q2〉[q1]

}
(4.102)

+
1√
3
Q̃su 〈q2〉[21]

{
2〈p2〉[p3]− 〈q2〉[q3]

}
,

A[χ(+ 3
2 ); + 1

2 ,− 1
2 ,+

1
2 ] = Qsu 〈q2〉2[p1][23] + Q̃su 〈q2〉2[3p][12] .

Finally, we consider the case of three stacks, say a, b and c, intersecting at angles θj = θbj − θaj , νj =

θcj − θaj , j = 1, 2, 3. Then the four-point correlation function of boundary-changing operators depends on

the additional set of angles: I = I(x, θj , νj) [13], however the rest of the computation is very similar to the

two-stack case. Let us define Rsu and R̃su as the integrals (4.99) with I(x, θj) replaced by I(x, θj , νj) in the

integrand, i.e., Qsu → Rsu, Q̃su → R̃su upon I(x, θj) → I(x, θj , νj). Then the relevant amplitude can be

written as

A [χβα; ūα1
γ1
, uγ2
α2
, uα3

β3
] = δα1

α δα3
α2
δγ2
γ1
δββ3

α′A[χ(j);− 1
2 ,+

1
2 ,+

1
2 ] , (4.103)

where:

A[χ(− 3
2 );− 1

2 ,+
1
2 ,+

1
2 ] = Rst 〈p1〉2[q2][13] + R̃st 〈p1〉2[3q][21] ,

A[χ(− 1
2 );− 1

2 ,+
1
2 ,+

1
2 ] =

1√
3
Rst 〈p1〉[13]

{
2〈q1〉[q2]− 〈p1〉[p2]

}

+
1√
3
R̃st 〈p1〉[12]

{
2〈q1〉[q3]− 〈p1〉[p3]

}
,
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A[χ(+ 1
2 );− 1

2 ,+
1
2 ,+

1
2 ] =

1√
3
Rst 〈q1〉[13]

{
2〈p1〉[p2]− 〈q1〉[q2]

}
(4.104)

+
1√
3
R̃st 〈q1〉[12]

{
2〈p1〉[p3]− 〈q1〉[q3]

}
,

A[χ(+ 3
2 );− 1

2 ,+
1
2 ,+

1
2 ] = Rst 〈q1〉2[p2][13] + R̃st 〈q1〉2[3p][21] .

4.4.6 Massive spin 1/2 quark a(J = 1/2)

The amplitude describing the decay of a(J = 1/2) into one quark and a gluon is given by

A [a; ε1, u2] = (T a1)α2
α g α′(k1µε1ν − k1νε1µ)kν3 u

λ
2σ

µ
λρ̇χ̄

ρ̇

≡ (T a1)α2
α

√
2g α′A(a; ε1, u2) . (4.105)

The selection rule

A[a;−,+ 1
2 ] = 0 (4.106)

is complementary to Eq. (4.86) of its higher spin partner χ(J = 3/2). The non-vanishing amplitudes are:

A[a(− 1
2 ); +,+ 1

2 ] = 〈p2〉[12]2 , (4.107)

A[a(+ 1
2 ); +,+ 1

2 ] = 〈q2〉[12]2 . (4.108)

The amplitude with one quark and two gluons in the final state is given by a lengthy expression similar

to Eq. (4.92), however, as usual, it simplifies in the helicity basis. It is convenient to write it as:

A [a; ε1, ε2, u3] = g2 (α′)−1[Vt (T a1T a2)α3
α4
− Vu (T a2T a1)α3

α4
]A[a; ε1, ε2, u3] . (4.109)

In this case, the selection rule complementary to (4.94) is

A[a;−,−,+ 1
2 ] = 0 . (4.110)
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For two gluons in the (+,+) helicity configuration, the amplitude reads:

A[a(− 1
2 ); +,+,+ 1

2 ] =
〈p3〉

〈12〉〈23〉〈31〉 ,

A[a(+ 1
2 ); +,+,+ 1

2 ] =
〈q3〉

〈12〉〈23〉〈31〉 . (4.111)

When the gluons carry opposite helicities, then

A[a(− 1
2 ); +,−,+ 1

2 ] = α′
3/2 [q1][13]2

[12][23]
,

A[a(+ 1
2 ); +,−,+ 1

2 ] = −α′3/2 [p1][13]2

[12][23]
, (4.112)

and a similar expression with (1↔ 2) for gluons with flipped helicities.

The sums of the squared moduli of the amplitudes read:

+1/2∑

j=−1/2

∣∣A [a(j); +,+,+ 1
2 ]
∣∣2 = g4 |Vt (T a1T a2)α3

α4
− Vu (T a2T a1)α3

α4
|2 1− α′s
α′3stu

,

+1/2∑

j=−1/2

∣∣A [a(j); +,−,+ 1
2 ]
∣∣2 = g4 |Vt (T a1T a2)α3

α4
− Vu (T a2T a1)α3

α4
|2 t

2(1− α′u)

su
, (4.113)

+1/2∑

j=−1/2

∣∣A [a(j);−,+,+ 1
2 ]
∣∣2 = g4 |Vt (T a1T a2)α3

α4
− Vu (T a2T a1)α3

α4
|2u

2(1− α′t)
st

.

The amplitudes describing Q-decays into two quarks and one antiquark are described by formulas similar

to (4.101), (4.102) in the two-stack case and (4.103), (4.104) in the three-stack case. All what one has to do

in order to obtain the corresponding amplitudes is to replace Eqs. (4.102) and (4.104) by

A[a(− 1
2 ); +1

2 ,− 1
2 ,+

1
2 ] = Qsu 〈p1〉〈23〉[13]2 + Q̃su 〈p3〉〈21〉[13]2 ,

A[a(+ 1
2 ); +1

2 ,− 1
2 ,+

1
2 ] = Qsu 〈q1〉〈23〉[13]2 + Q̃su 〈q3〉〈21〉[13]2 , (4.114)

and

A[a(− 1
2 );− 1

2 ,+
1
2 ,+

1
2 ] = Rst 〈p2〉〈13〉[23]2 + R̃su 〈p3〉〈12〉[23]2 ,
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A[a(+ 1
2 );− 1

2 ,+
1
2 ,+

1
2 ] = Rst 〈q2〉〈13〉[23]2 + R̃su 〈q3〉〈12〉[23]2 , (4.115)

respectively.

4.5 Cross sections for the direct production

After discussing the amplitudes (and their squared moduli) involving one lowest Regge excitation (R, mass

M = 1/α′) and three massless partons (p = g, q, q̄), we collect the results for the subprocesses p1(k1)p2(k2)→

p3(k3)R(k4) relevant to the production of Regge resonances at the LHC. For the applications to jet-associated

Regge production, we square the moduli of the amplitudes, average over helicities and colors of the incident

partons and sum over spin directions (helicity of p3 and Jz of R) and colors of the outgoing particles. In all

these processes, quark flavor is a spectator.

The kinematic Mandelstam variables s, t and u have been defined in Eq. (4.33) in such a way that after

reverting to the conventional (+−−−) metric signature, and crossing to the physical (outgoing) momenta,

k3 → −k3, k4 → −k4, they become

s = (k1 + k2)2 , t = (k1 − k3)2 , u = (k1 − k4)2 , (4.116)

satisfying the constraint

s+ t+ u = M2 (4.117)

due to the momentum conservation k1 + k2 = k3 + k4 and on-shell conditions k2
1 = k2

2 = k2
3 = 0, k2

4 = M2.

Their physical domain is

s > M2 , t < 0 , u < 0 . (4.118)

There are some subtleties encountered when analyzing the flow of gauge charges in the scattering ampli-

tudes, related to the presence of massless and massive intermediate states expected either to acquire masses

due to quantum effects or to be eliminated by electro-weak symmetry breaking. For example, quark-quark

elastic scattering processes involve exchanges of massless abelian (“color singlet”) gauge bosons associated

106



to the U(1) “baryon number” subgroup of U(N) [13]. However, it is well-known that the U(1) anomaly

generates their masses at the one loop level, and certainly affects whole Regge trajectory. Other processes,

like multi-gluon scattering can be also affected by mass shifts on such a deformed Regge trajectory. In

the processes involving external Regge excitations, this problem becomes even more pronounced because

massless color singlets contribute to all processes with one or more external quark-antiquark pairs. As an

example, consider the α(J = 2) decay into one gluon and one quark-antiquark pair, described by Eqs. (4.63)

and (4.64). Let us focus on the prefactor

Vt(T
a3T a4)α1

α2
+ Vu(T a4T a3)α1

α2
=
[
2da3a4an(Vt + Vu) +

i

2
fa3a4an(Vt − Vu)

]
(T an)α1

α2
(4.119)

which multiplies the function∼ 〈12〉−1〈23〉−1〈31〉−1. Now consider the limit 〈12〉 → 0 (s → 0, allowed in

the decay channel). Since Vt = Vu = 1 in this limit, the amplitude exhibits a massless pole 〈12〉−1, with

the residue ∼ da3a4an(T an)α1
α2

. The pole is due to intermediate gauge bosons, produced in the B decay

together with one free gluon [see Eq. (4.41)], and subsequently decaying into the quark-antiquark pair.

Note that the U(1) generator (T an = QAIIN , QA = 1/
√

2N) is among these gauge bosons and there is no

obvious way to remove it from the disk amplitude. A formal N → ∞ limit would help in that respect by

suppressing such singlet contributions. When collecting the squared amplitudes describing direct production

of Regge resonances, we set the number of colors to N = 3, but we display the abelian coupling QA = 1/
√

6

explicitly. We always assume that the external partons are either color octet gluons or color triplet quarks

(or antitriplet antiquarks), however we allow the possibility of color singlet Regge excitations α0 and Φ0

labeled by an additional subscript 0.

The following formulas, valid for general N , are useful for summing over the non-abelian color indices:

∑

a1,a2,a3

da1a2a3da1a2a3 =
(N2 − 1)(N2 − 4)

16N
,

(
da1a20 =

QA
2
δa1a2

)

∑

a1,a2

f i1a1a2f i2a1a2 = N δi1i2 ,
(
fa1a20 = 0

)

∑

a1,a2,a3,a4

ta1a2a3a4ta1a2a3a4 = − (N2 − 1)(N2 − 4)

8
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∑

a1,a2,a3,a4

ta1a2a3a4ta2a3a1a4 = 0 (4.120)

In the Tables below, we collect the squared amplitudes for all disk-level production mechanisms of Regge

resonances, listed in order of the initial two-particle channels: gg followed by gq and qq̄. The quark-quark

channel can be obtained from qq̄ by trivial crossing. Except for the case of four-fermion processes, we factored

out the QCD coupling factor g4.
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Table 1: Gluon fusion

subprocess |M|2/g4

gg → gα 5
8

(
V 2
s + V 2

t + V 2
u

) (s−M2)4+(t−M2)4+(u−M2)4

M2stu

gg → gα0
3
4Q

2
A(Vs + Vt + Vu )

2 (s−M2)4+(t−M2)4+(u−M2)4

M2stu

gg → gΦ 5
8

(
V 2
s + V 2

t + V 2
u

)
s4+t4+u4+M8

M2stu

gg → gΦ0
3
4Q

2
A(Vs + Vt + Vu )

2 s4+t4+u4+M8

M2stu

gg → q̄a 1
4

[
3
32 (Vt + Vu)2 + ( 5

96 +
Q2
A

8 )(Vt − Vu)2
] (s−M2)M6+(t−M2)u3+(u−M2)t3

M2stu

gg → q̄χ
[

3
32 (Vt + Vu)2 + ( 5

96 +
Q2
A

8 )(Vt − Vu)2
] (s−M2)3M2+(t−M2)3u+(u−M2)3t

M2stu
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Table 2: Quark-gluon absorption

subprocess |M|2/g4

qg → qα − 1
16

[
(Vs − Vu)2 + ( 5

9 +
4Q2

A

3 )(Vs + Vu)2
] [(s−M2)2+(u−M2)2](tM2+4su)

M2stu

gq → qα0 −Q
2
A

12 (Vs + Vu)2 [(s−M2)2+(u−M2)2](tM2+4su)
M2stu

qg → qΦ − 1
4

[
(Vs − Vu)2 + ( 5

9 +
4Q2

A

3 )(Vs + Vu)2
]
s2+u2

M2t

qg → qΦ0 −Q
2
A

3 (Vs + Vu)2 s2+u2

M2t

qg → qd − 3
16

[
(Vs − Vu)2 + ( 5

9 +
4Q2

A

3 )(Vs + Vu)2
] (s−M2)2+(u−M2)2

su

qg → qd0 −Q
2
A

4 (Vs + Vu)2 (s−M2)2+(u−M2)2

su

gq → ga − 1
16

[
(Vs + Vu)2 + ( 5

9 +
4Q2

A

3 )(Vs − Vu)2
] (t−M2)3M2+(u−M2)3s+(s−M2)3u

M2stu

gq → gχ − 1
4

[
(Vs + Vu)2 + ( 5

9 +
4Q2

A

3 )(Vs − Vu)2
] (t−M2)M6+(u−M2)s3+(s−M2)u3

M2stu
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Table 3: Quark-antiquark annihilation

subprocess |M|2/g4

q̄q → gX |M(q̄q → gX)|2 = − 8
3 |M(qg → qX)|2(s→ u, u→ t, t→ s)

X = α, d,Φ

{
− t2

4 (su|Qsu + Q̃su|2 + ut|Qsu|2 + st|Q̃su|2)

q̄q → q̄a + t2

12

[
su(Qsu + Q̃su)(Qus + Q̃us)

∗ + utQsuQ̃
∗
us + stQ̃suQ

∗
us

]

− u2

4 (st|Rst + R̃st|2 + ut|Rst|2 + su|R̃st|2
}

+
{
s↔ u

}

q̄q → q̄′a′ − t24 (su|Qsu + Q̃su|2 + ut|Qsu|2 + st|Q̃su|2) +
(
Q→ R ; u↔ t

)

{
− (M2−t)2

4 (su|Qsu + Q̃su|2 + ut|Qsu|2 + st|Q̃su|2) + t(M2−t)
6 |uQsu − sQ̃su|2

+ (M2−t)2

12

[
su(Qsu + Q̃su)(Qus + Q̃us)

∗ + utQsuQ̃
∗
us + stQ̃suQ

∗
us

]

q̄q → q̄χ + t(M2−t)
18 (uQsu − sQ̃su)(uQ̃us − sQus)∗

− (M2−u)2

4 (st|Rst + R̃st|2 + ut|Rst|2 + su|R̃st|2) + u(M2−u)
6 |tRst − sR̃st|2

}

+
{
s↔ u

}

q̄q → q̄′χ′ − (M2−t)2

4 (su|Qsu + Q̃su|2 + ut|Qsu|2 + st|Q̃su|2) + t(M2−t)
6 |uQsu − sQ̃su|2

+
(
Q→ R ; u↔ t

)
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5 Physics of higher massive level superstrings

In the previous chapter, we presented a detailed discussion of the “universal” part of the first massive level,

common to all D-brane embeddings of the standard model. In this chapter, we extend it to the second

massive level, and discuss some general properties of higher levels. We are particularly interested in massive

particles that couple to massless gauge bosons according to “(anti)self-dual” selection rules. These particles

decay into two gauge bosons with the same (say ++) helicities only and to more gluons in “mostly plus”

helicity configurations. We rely on the factorization techniques. They allow identifying not only the spins

of Regge resonances propagating in a given channel, but also their couplings and decay rates.

To start, we perform the spin decomposition of the well-known four-gluon maximally helicity violating

(MHV) amplitude in the s-channels of (−−) and (−+) gluons. We examine decay rates of heavy states

into two gluons, for masses much larger than M , i.e. in the large n limit. We find that for any particle

with spin j ≤ n+ 1, the maximum partial decay width into two gluons is n-independent – it never exceeds

M . Particles with j ∼ √n = Mn/M have largest widths. We also find that for j ∼ n, the decay rate into

two gluons is exponentially suppressed. We then study the second massive level in detail. We construct

the vertex operators for all “universal” bosons of the NS sector. We compute the amplitudes involving one

such state and two or three gluons, focusing on the decays of the (anti)self-dual massive (complex) vector

fields. As were argued that the BCFW-deformed full-fledged string amplitudes have no singularities at the

infinite value of the deformation parameter, therefore BCFW recursion relations should be valid also in string

theory [48–53]. In the last section of this chapter, we show that at least the four-gluon amplitude can be

obtained by a BCFW deformation of a factorized sum involving on-shell amplitudes of one massive Regge

state and two gauge bosons.

This chapter is base on the paper [2].

5.1 Properties of higher massive level superstring

In this section, we study the general properties of higher massive level (universal) superstring states by

factorization of the four-gluon amplitudes. The amplitudes describing the scattering of massless superstring

states (zero modes) encode many important properties of massive excitations. The spin content of interme-
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diate massive particles, their decay rates etc. can be extracted by factorizing massless amplitudes on their

Regge poles [43]. We are primarily interested in the properties of particles that couple to gauge bosons,

i.e. of those that can be detected at particle accelerators if the fundamental string mass scale happens to

be sufficiently low. As we will see below, even the simplest, four-gluon amplitudes contain some interesting

information.

We will be using the helicity basis to describe gluon polarizations. For four gluons, all non-vanishing

amplitudes can be obtained from a single, maximally helicity violating (MHV) configuration. Our starting

point is the well-known MHV amplitude [74,75]

M(g−1 , g
−
2 , g

+
3 , g

+
4 ) = 4g2〈12〉4

[ Vt
〈12〉〈23〉〈34〉〈41〉Tr(T a1T a2T a3T a4 + T a2T a1T a4T a3)

+
Vu

〈13〉〈34〉〈42〉〈21〉Tr(T a2T a1T a3T a4 + T a1T a2T a4T a3)

+
Vs

〈14〉〈42〉〈23〉〈31〉Tr(T a1T a3T a2T a4 + T a3T a1T a4T a2)
]
, (5.1)

where the Veneziano “formfactor” function reads

Vt = V (s, t, u) =
Γ(1− s/M2)Γ(1− u/M2)

Γ(1 + t/M2)
. (5.2)

Here, M2 = 1/α′ is the fundamental string mass scale. s, t, u are the Mandelstam variables defined in

Eq. (4.33).

The momenta and helicities are specified for incoming particles, therefore they need appropriate crossing

to the relevant physical domains. In particular, u < 0 and t < 0 describing a g1g2 → g3g4 scattering process

with s > 0 can be expressed in terms of the scattering angle in the center of mass frame:

u = −s
2

(1 + cos θ), t = −s
2

(1− cos θ), (5.3)

so that θ = 0 describes forward scattering. Finally, a1, . . . , a4 are the gluon color indices. For future reference,
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it is convenient to absorb the gauge coupling g into the color factors and define the combinations:

Sa1a2
a3a4

= 4g2Tr({T a1T a2}{T a3T a4}) , Aa1a2
a3a4

= 4g2Tr([T a1T a2 ][T a3T a4 ]) . (5.4)

which are symmetric and antisymmetric, respectively, in the color indices of initial (and final) gluons.

Using the expansion in terms of s-channel resonances

B(−s/M2,−u/M2) = −
∞∑

n=0

M2−2n

n!

1

s− nM2

[
n∏

J=1

(u+M2J)

]
, (5.5)

we obtain, near the nth level pole (s→ nM2),

Vt(n) = V (s, t, u) ≈ 1

s− nM2
× M2−2n

(n− 1)!

n−1∏

J=0

(u+M2J). (5.6)

The spin content of Regge resonances can be disentangled by analyzing the angular distributions of scattered

gluons, that is by decomposing the residue of each Regge pole in the basis of Wigner d-matrix elements

d
(j)
m′,m(θ).24 In this context, d

(j)
m′,m(θ) describe the angular distribution (in the center of mass frame) of the

final gluons with the helicity difference m = λ3 − λ4, produced in a decay of spin j resonance; m′ = λ2 − λ1

is the helicity difference of incident gluons [43]. Thus m, m′ = 0,±2.

We begin with the amplitude M(g−1 , g
+
2 , g

+
3 , g

−
4 ) which can be obtained from (5.1) by interchanging

2↔ 4. Near the lowest mass pole, associated to the ”fundamental” n = 1 string mode,

M(g−1 , g
+
2 , g

+
3 , g

−
4 )

n=1−−−→ Sa1a2
a3a4

M2

s−M2
d

(2)
2,2 (5.7)

which reflects the obvious fact [1] that in order to create two gluons with opposite helicities (+−) one needs

a resonance with j ≥ 2, which is the highest spin at this level. At the next n = 2 level,

M(g−1 , g
+
2 , g

+
3 , g

−
4 )

n=2−−−→ −Aa1a2
a3a4

M2

s− 2M2
(
2

3
)(d

(3)
2.2 + 2d

(2)
2,2), (5.8)

24Appendix D contains a brief introduction to Wigner d-matrices.
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in agreement with [21]. Near the n = 3 string resonance, we find,

M(g−1 , g
+
2 , g

+
3 , g

−
4 )

n=3−−−→ Sa1a2
a3a4

M2

s− 3M2

3

56
(9d

(4)
2,2 + 21d

(3)
2,2 + 26d

(2)
2,2) (5.9)

In general, at the nth massive level, states with all spins from 2 up to n+1 appear in the s-channel, decaying

into two opposite helicity gluons. The residues of Regge poles factorize as

Ress=nM2M(g−1 , g
+
2 , g

+
3 , g

−
4 ) =

n+1∑

j=2

∑

a

F aj+−;a1a2
(F aj+−;a3a4

)∗d
(j)
2,2(θ) (5.10)

where F are the matrix elements for the decay of a spin j resonance, in the mj = 2 eigenstate (in the the

center of mass frame), into two gluons moving along the ±z axis, with helicities ±1, respectively [43]. In the

above expression, the sum over intermediate color indices appears after rewriting the color factors as

Sa1a2
a3a4

=
∑

a

(4
√

2gda1a2a)(4
√

2gda3a4a) (5.11)

−Aa1a2
a3a4

=
∑

a

(
√

2gfa1a2a)(
√

2gfa3a4a) (5.12)

where f are the gauge group structure constants while d are the symmetrized traces:

da1a2a3 = STr(T a1T a2T a3) . (5.13)

The matrix elements involve totally symmetric group factors at odd levels and antisymmetric ones at even

levels. This can be understood as a consequence of world-sheet parity [1, 43]. Note that the numerical

factors multiplying d-functions in Eqs.(5.7)-(5.9) and at higher n are positive, as required by unitarity, c.f.,

Eq.(5.10).

The amplitude M(g−1 , g
+
2 , g

−
3 , g

+
4 ) can be obtained from (5.1) by interchanging 2 ↔ 3, however there is

no need to repeat calculations because it can be also obtained fromM(g−1 , g
+
2 , g

+
3 , g

−
4 ) by interchanging the
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color indices a3 ↔ a4 combined with the reflection θ → π − θ, for which





d
(j)
2,2(− cos θ) = (−1)d

(j)
2,−2(cos θ) j odd

d
(j)
2,2(− cos θ) = d

(j)
2,−2(cos θ) j even

As a result, d
(j)
2,2 → d

(j)
2,−2 and the coefficients acquire alternating (−1)n+j+1 signs, for instance

M(g−1 , g
+
2 , g

−
3 , g

+
4 )

n=3−−−→ Sa1a2
a3a4

M2

s− 3M2

3

56
(9d

(4)
2,−2 − 21d

(3)
2,−2 + 26d

(2)
2,−2). (5.14)

Next, we turn to the amplitude M(g−1 , g
−
2 , g

+
3 , g

+
4 ). This case is very interesting because the resonances

appearing in the s-channel couple only to (anti)self-dual gauge field configurations, i.e. to gluons in (++)

or (−−) helicity configurations. In the previous work [1], we discussed the first massive level and identified

a complex scalar Φ (2 degrees of freedom Φ ≡ Φ+ and Φ̄ ≡ Φ−) which couples to gluons according to the

selection rules

A [Φ+,−,−] = A [Φ+,+,−] = A [Φ−,+,+] = A [Φ−,+,−] = 0. (5.15)

This scalar is the sole resonance contributing to

M(g−1 , g
−
2 , g

+
3 , g

+
4 )

n=1−−−→ Sa1a2
a3a4

M2

s−M2
d

(0)
0,0 . (5.16)

At higher levels, there are more such particles, with higher spins:

M(g−1 , g
−
2 , g

+
3 , g

+
4 )

n=2−−−→ −Aa1a2
a3a4

2M2

s− 2M2
(d

(1)
0,0), (5.17)

M(g−1 , g
−
2 , g

+
3 , g

+
4 )

n=3−−−→ Sa1a2
a3a4

3M2

s− 3M2
(
3

4
d

(2)
0,0 +

1

4
d

(0)
0,0), (5.18)

M(g−1 , g
−
2 , g

+
3 , g

+
4 )

n=4−−−→ −Aa1a2
a3a4

4M2

s− 4M2
(

8

15
d

(3)
0,0 +

7

15
d

(1)
0,0), (5.19)

M(g−1 , g
−
2 , g

+
3 , g

+
4 )

n=5−−−→ Sa1a2
a3a4

5M2

s− 5M2
(
125

336
d

(4)
0,0 +

125

252
d

(2)
0,0 +

19

144
d

(0)
0,0). (5.20)
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In order to proceed to higher n, we first note that, in this case,

d
(l)
0,0(θ) = Pl(cos θ), (5.21)

see Appendix A, therefore the resonance coefficients can be obtained by decomposing the angular dependence

in the basis of Legendre polynomials:

M(g−1 , g
−
2 , g

+
3 , g

+
4 )

odd n−−−−→ Sa1a2
a3a4

M2

s− nM2

n−1∑

k=0,2···

c
(n)
k Pk(cos θ) , (5.22)

M(g−1 , g
−
2 , g

+
3 , g

+
4 )

even n−−−−→ −Aa1a2
a3a4

M2

s− nM2

n−1∑

k=1,3···

c
(n)
k Pk(cos θ) . (5.23)

The above expansions involve even Legendre polynomials only for odd n and odd ones for even n, reflecting

the g3 ↔ g4 (a3 ↔ a4, θ → π− θ) symmetry of the amplitude. A straightforward, but tedious computation,

outlined in Appendix B of [2], yields the following coefficients:

c
(n)
k =

n

(n− 1)!

n−1−k
2∑

j=0

(n−1−k−2j)∑

i=0

(−1)n−1−k−2j

22j+i−1

(2k + 1)(k + j + 1)!(k + 2j + i)!

i!j!(2k + 2j + 2)!

× (n)k+2j(n− 2)is(n− 1, k + 2j + i), (5.24)

where s(n, k) is the Stirling number of the first kind, defined through the expansion of the Pochhammer

symbol:

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1)...(x+ n− 1) =

n∑

k=0

(−1)n−ks(n, k)xk. (5.25)

We want to see how the decay rates of Regge resonances at a given mass level n depend on their spin j

and in general, on the n, j dependence of their partial widths into two gluons, in the large n limit. It has been

often suggested that string perturbation theory breaks down at energies much higher than the fundamental

string mass, with the onset of non-perturbative effects marked by large widths of Regge particles, covering up

the mass gap between subsequent resonances. To that end, we examine the k-dependence of the coefficients

c
(n)
k , see Eq.(5.24), in the large n limit. Since we could not find a compact expression for Stirling numbers,

we had to resort to numerical methods. On Fig. 16, we plot c
(n)
k as a function of k for two typical values,
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Figure 16: The coefficients of Pk(cos θ) at the 1024th and 2500th massive levels. On the x-axis, we mark
multiples of

√
n to display the peaks at k ≈ 2

√
n

n = 322 and n = 502. For small k, roughly k ∼ √n, one finds a sharp peak at k ≈ 2
√
n, with c

(n)

2
√
n
≈ √n/2.

For large k ∼ n, the coefficients are exponentially suppressed. For example,

c
(n)
n−1 =

nn(n− 1)!

(2n− 2)!

large n−−−−→
( 2n√

e

)−2n

, (5.26)

see Appendix B. Since
∑n−1
j odd c

(n)
j =

∑n−1
j even c

(n)
j = n, we conclude that the sums are saturated by spins

ranging from 0 to j ∼ √n, with the maximum cmax ∼
√
n.

The partial width of mass Mn =
√
nM , spin j resonance Rn,j into a pair of gluons is given by [43]

Γ(Rn,j → gg) = g2δ
c
(n)
j M2

32(2j + 1)πMn
(5.27)

where δ ∼ 1 is the gauge group factor. In the denominator, the number 2j+1 comes from averaging over spin

components, and provides additional suppression for large j, however we will not take it into account because

it is purely statistical. Thus the width size is determined by the ratio c
(n)
j M2/Mn. From our discussion of the

coefficients, it follows that the largest possible widths are n-independent, (2j + 1)Γ(n → ∞, j ∼ √n) ∼ M ,

the same as for low-lying Regge resonances. We conclude that the leading order (disk) approximation

gives a perfectly sensible result for the decays of higher level Regge resonances. Note that the exponential

suppression of direct decays of very high spin (j ∼ n) particles into two massless gluons is akin to the

Sudakov formfactor. These particles will cascade into lower mass, lower spin states, decaying at the end into
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a large number of gluons.

5.2 The Second Massive Level: Physical States, Vertices and Amplitudes

The second massive level has been previously discussed in Ref. [37], in the context of ten-dimensional heterotic

superstrings. Here, we focus on four-dimensional open string excitations, especially on those that can be

created by the fusion of gauge bosons associated to strings ending on D-branes. Such particles appear in the

NS sector and are universal to the whole landscape of models because their vertices do not contain internal

parts associated to compact dimensions. We will be using the Old Covariant Quantization (OCQ) method

for identifying the physical states, which is equivalent to the covariant quantization (BRST) as we did in

Chapter 2. However it’s more straightforward in analyzing the physical open string states in the NS sector.

As a warm-up, we start from the first massive level universal fields, which have been already worked out in

Chapter 2, using it as a check of the method. Then we study in detail of the second massive level universal

open string states. We compute the amplitudes involving one such state and two or three gluons, focusing

on the decays of the (anti)self-dual massive (complex) vector fields.

5.2.1 The first massive level

In the NS sector, the four-dimensional string states are created by SO(3, 1) Lorentz-covariant creation

operators acting on the vacuum. At the first massive level, their numbers must add up to −3/2, therefore

the states can be written as

|n = 1〉 =
(
χ1µψ

µ

− 3
2

+ χ2µνα
µ
−1ψ

ν
− 1

2
+ χ3µνρψ

µ

− 1
2

ψν− 1
2
ψρ− 1

2

)
|0; k〉, (5.28)

where |0; k〉 is the open string vacuum state in the NS sector. Here, the Greek letters denote D = 4 spacetime

indices. Note that χ3µνρ is totally antisymmetric due to anticommuting ψ operators. The physical state

conditions are:

(L0 −
1

2
)|n = 1〉 = 0, L1|n = 1〉 = 0, G 3

2
|n = 1〉 = G 1

2
|n = 1〉 = 0, (5.29)
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where the superconformal Virasoro generators read,

Lm =
1

2

∑

n

: αλm−nαnλ : +
1

4

∑

r

(2r −m) : ψλm−rψrλ : +aδm,0, (5.30)

Gr =
∑

n

αλnψ(r−n)λ, (5.31)

and a = 0 in the NS sector. The first condition in (5.29) gives the mass shell condition k2 = 1/α′ = M2

for the first massive level, as expected. By using the commutation relations of the bosonic and fermionic

operators: [αµm, α
ν
n] = mηµνδm,−n, {ψµr , ψνs } = ηµνδr,−s, the three remaining conditions of Eqs.(5.29) yield:

√
2α′χ1µk

µ + χ2µνη
µν = 0, (5.32)

χ1µ +
√

2α′χ2µνk
ν = 0, (5.33)

χ2µν − χ2νµ + 6
√

2α′χ3µνρk
ρ = 0. (5.34)

In order to simplify the above constraints, it is convenient to decompose

χ2µν = S2(µν) +A2[µν], (5.35)

where S2(µν) and A2[µν] are the symmetric and antisymmetric parts of χ2µν respectively. Then the symmetric

and antisymmetric parts decouple in (5.32)-(5.34). The symmetric one is subject to





√
2α′χ1µk

µ + S2(µν)η
µν = 0

χ1µ +
√

2α′S2(µν)k
ν = 0

, (5.36)

which is fairly easy to resolve. We obtain the following solutions:

1. S2(µν) = αµν and χ1µ = 0, where αµν is a spin-2 field satisfying αµνk
ν = αµνη

µν = 0.

2. S2(µν) =
√

2α′(kµξν + ξµkν) and χ1µ = 2ξµ, where ξµ represents a spin-1 field satisfying ξµk
µ = 0.

3. S2(µν) = ηµν + 2α′kµkν and χ1µ =
√

2α′kµ.
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In this way, we obtain a spin-2 field, a vector field and a scalar field. At this point, let us count the physical

degrees of freedom to make sure we are not losing any states. We started from one symmetric Lorentz

2-tensor S2(µν) which has 10 d.o.f. and one Lorentz vector χ1µ which has 4 d.o.f.. On the other hand,

Eqs.(5.36) gave us 1 + 4 = 5 constraints. Thus we are left with 14 − 5 = 9 d.o.f., which are exactly the

degrees of freedom of a spin-2 field (5 d.o.f.), a vector field (3 d.o.f.) and a scalar (1 d.o.f.).

The antisymmetric part of χ2µν is also easy to handle. Eqs.(5.32)-(5.34) boil down to

A2[µν] + 3
√

2α′χ3µνρk
ρ = 0. (5.37)

The solutions are:

1. χ3µνρ = iεµνρσk
σ, A2[µν] = 0, and εµνρσ is the Levi-Civita symbol.

2. χ3µνρ = εµνρσξ
′σ and A2[µν] = −3εµνρσk

ρξ′σ. ξ′µ is another spin-1 field satisfying ξ′µk
µ = 0.

In this way, we obtain a pseudo-vector (3 d.o.f.) and a pseudo-scalar (1 d.o.f.). To recapitulate, we started

from a 3-form χ3µνρ (4 d.o.f.) and an antisymmetric 2-tensor A2[µν] (6 d.o.f.). Eq.(5.37) gave us 6 constraints.

Thus we are left with 10− 6 = 4 d.o.f., which are exactly what we get.

In order to construct the vertex operators, we use the state-operator correspondence and replace the

bosonic and fermionic creation operators with world-sheet bosons and fermions as follows:

αµ−m → i

√
1

2α′
1

(m− 1)!
∂mXµ, (5.38)

ψµ−r →
1

(r − 1
2 )!

∂r−
1
2ψµ. (5.39)

Therefore, we have the following vertices, universal to all D = 4 compactifications, which satisfy the physical

state conditions. They are: a spin-2 field,

Vα = αµν

√
1

2α′
i∂Xµψνe−φeikX , (5.40)
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with αµνk
ν = αµνη

µν = 0; one spin-1 field and one pseudo spin-1 field,

Vξ = (ξµkν + kµξν)i∂Xµψνe−φeikX + 2ξµ∂ψ
µe−φeikX , (5.41)

Vξ′ = εµνρσξ
′σψµψνψρe−φeikX − 3εµνρσk

ρξ′σi∂Xµψνe−φeikX , (5.42)

with ξµk
µ = ξ′µk

µ = 0; plus one scalar and one pseudo-scalar,

Vps =
√

2α′iεµνρσk
σψµψνψρe−φeikX , (5.43)

Vs =
[
(ηµν + 2α′kµkν)

√
1

2α′
i∂Xµψν +

√
2α′kµ∂ψ

µ
]
e−φeikX . (5.44)

It is well known that not all fields satisfying the physical state conditions like (5.29) appear in the

spectrum. Actually, both spin-1 vertices (5.41) and (5.42) represent such null, spurious states, decoupled

from the rest of the spectrum.25 This can be demonstrated by computing their two-point correlation functions

and showing that they do not contain poles appropriate to physical propagators. It is also easy to show that

they do not couple to two gauge bosons in any helicity configuration: the three-point amplitude involving

two gauge bosons and one such massive state is zero.

To summarize, at the first massive level of NS sector, we have a total of 7 universal degrees of freedom.

They are a spin-2 field αµν , plus a scalar and a pseudoscalar. As explained in [1], it is natural to combine

Eqs.(5.43) and (5.44) into one vertex of a “self-dual” complex scalar,

VΦ± =
[
(ηµν + 2α′kµkν)

√
1

2α′
i∂Xµψν +

√
2α′kµ∂ψ

µ ± i

6

√
2α′εµνρσk

σψµψνψρ
]
e−φeikX , (5.45)

which satisfies the selection rules written in Eq.(5.15). We will find similar complex vector resonances at the

second level.

25A spurious state is defined to be a state that is orthogonal to all the physical states, and a null state is defined to be a
spurious state that satisfies the physical state conditions [65].
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5.2.2 The second massive Level

At the second level, the number of creation operators add up to −5/2:

|n = 2〉 =
(
ζ1µψ

µ

− 5
2

+ ζ2µνα
µ
−1ψ

ν
− 3

2
+ ζ ′2µνα

µ
−2ψ

ν
− 1

2
+ ζ3µνρα

µ
−1α

ν
−1ψ

ρ

− 1
2

+ ζ ′3µνρψ
µ

− 1
2

ψν− 1
2
ψρ− 3

2

+ ζ4µνρσα
µ
−1ψ

ν
− 1

2
ψρ− 1

2

ψσ− 1
2

+ ζ5µνρσγψ
µ

− 1
2

ψν− 1
2
ψρ− 1

2

ψσ− 1
2
ψγ− 1

2

)
|0; k〉. (5.46)

The physical state conditions are:

1. (L0 − 1
2 )|n = 2〉 = 0,

2. L2|n = 2〉 = L1|n = 2〉 = 0,

3. G 5
2
|n = 2〉 = G 3

2
|n = 2〉 = G 1

2
|n = 2〉 = 0,

with the superconformal Virasoro generators written in (5.30) and (5.31). Here again, the first condition

amounts to k2 = 2/α′ = 2M2. To solve the remaining constraints, it is convenient to decompose the tensors,

especially those of higher rank, into representations that are symmetric or antisymmetric in groups of Lorentz

indices. This is most succinctly done by using Young tableaux. Our analysis parallels to the discussion of

the heterotic case (in ten dimensions) presented in [37]. The tensors ζ2µν and ζ ′2µν can be decomposed into

symmetric and antisymmetric parts:

ζ2µν = S2(µν) +A2[µν], ζ ′2µν = S′2(µν) +A′2[µν]. (5.47)

The rank 3 tensors ζ3µνρ and ζ ′3µνρ can be decomposed as

ζ3µνρ → S3(µνρ) +B3(µ[ν)ρ] +D3[µ(ν]ρ) +A3[µνρ], (5.48)

ζ ′3µνρ → S′3(µνρ) +B′3(µ[ν)ρ] +D′3[µ(ν]ρ) +A′3[µνρ], (5.49)

corresponding to

µ ⊗ ν ⊗ ρ = µ ν ρ ⊕ µ ν
ρ

⊕ µ ρ
ν

⊕
µ
ν
ρ
, (5.50)
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or by dimensions,

4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ 4 . (5.51)

Due to the (anti)commutation properties of the creation operators in (5.46), we can set D3[µ(ν]ρ) = A3[µνρ] =

S′3(µνρ) = B′3(µ[ν)ρ] = 0. We are left with

ζ3µνρ = S3(µνρ) +B3(µ[ν)ρ], ζ ′3µνρ = D′3[µ(ν]ρ) +A′3[µνρ]. (5.52)

Similarly, the rank 4 tensor ζ4µνρσ can be decomposed as

µ ⊗ ν ⊗ ρ ⊗ σ = µ ν ρ σ ⊕ µ ν ρ
σ

⊕ µ ν σ
ρ

⊕ µ ρ σ
ν

⊕ µ ν
ρ σ

⊕ µ ρ
ν σ

⊕
µ ν
ρ
σ

⊕
µ ρ
ν
σ

⊕
µ σ
ν
ρ

⊕
µ
ν
ρ
σ

, (5.53)

or by dimensions,

4 ⊗ 4 ⊗ 4 ⊗ 4 = 35 ⊕ 45 × 3 ⊕ 20 × 2 ⊕ 15 × 3 ⊕ 1 . (5.54)

Here again, we can ignore all but the last four Young diagrams. Actually, due to the anticommutation

of ψ operators in the respective term of (5.46), the three 3-row diagrams would lead to the same state,

therefore we are allowed to pick just one of of them, say the one symmetric in µ and ν. Thus the 4-tensor

is decomposed as

ζ4µνρσ → B4(µ[ν)ρσ] +A4[µνρσ]. (5.55)

Finally, the term involving completely antisymmetric ζ5µνρσγ must necessarily involve one internal index,

therefore we do not discuss it any further.

The second physical state condition, L2|n = 2〉 = L1|n = 2〉 = 0, yields,

2ζ1µ +
√

2α′(S2(µν) −A2[µν])k
ν = 0, (5.56)

A′3[µνρ] +
√

2α′(B4(σ[µ)νρ] +A4[σµνρ])k
σ = 0, (5.57)
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(S2(µν) +A2[µν]) + 2(S′2(µν) +A′2[µν]) +
√

2α′(2S3(ρµν) +B3(ρ[µ)ν] +B3(µ[ρ)ν])k
ρ = 0, (5.58)

3

2
ζ1µ + 2

√
2α′(S′2(µν) −A′2[µν])k

ν + (S3(νρµ) +B3(ν[ρ)µ])η
νρ

+
ηνρ

2
(D′3[ν(µ]ρ) −D′3[µ(ν]ρ)) = 0. (5.59)

We are left with the third set of conditions. From G 5
2
|n = 2〉 = 0, we obtain,

√
2α′ζ1µk

µ + (S2(µν) + 2S′2(µν))η
µν = 0. (5.60)

From G 3
2
|n = 2〉 = 0, we obtain,

ζ1µ +
√

2α′(S2(µν) +A2[µν])k
ν + 2S3(µνρ)η

νρ + (B4(µ[ν)ρ] +B4(ν[µ)ρ])η
νρ = 0, (5.61)

(B4(ρ[σ)µν] −B4(ρ[µ)σν] +B4(ρ[µ)νσ])η
ρσ + 2A′2[µν] +

√
2α′(D′3[µ(ν]ρ) +A′3[µνρ])k

ρ = 0. (5.62)

Finally, G 1
2
|n = 2〉 = 0 yields,

A4[µνρσ] = 0, (5.63)

ζ1µ +
√

2α′(S′2(µν) +A′2[µν])k
ν = 0, (5.64)

S2(µν) +
√

2α′(S3(µνρ) +B3(µ[ν)ρ])k
ρ = 0, (5.65)

A2[µν] + 2A′2[µν] +
√

2α′(D′3[ρ(µ]ν) −D′3[µ(ρ]ν) + 2A′3[µνρ])k
ρ = 0, (5.66)

3
√

2α′B4(µ[ν)ρσ]k
σ +B3(µ[ν)ρ] +

1

2
B3(ν[µ)ρ] −

1

2
B3(ρ[µ)ν] +D′3[ν(ρ]µ) +A′3[µνρ] = 0. (5.67)

First, we take care of simplest conditions. We get A4[µνρσ] = 0 directly from Eq.(5.63). Similarly,

Eq.(5.67) requires A′3[µνρ] = 0. Thus, Eq.(5.57) now reads

B4(σ[µ)νρ]k
σ = 0. (5.68)
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Furthermore, by examining all equations involvingB4(µ[ν)ρσ], we find the consistency conditionB4(µ[ν)ρσ]k
σ =

0 which, together with Eq.(5.68), impose transversality of B4(µ[ν)ρσ] with respect to all indices:

B4µ1µ2µ3µ4
kµi = 0, (i = 1, 2, 3, 4). (5.69)

Notice that now, Eq.(5.67) becomes

B3(µ[ν)ρ] +
1

2
B3(ν[µ)ρ] −

1

2
B3(ρ[µ)ν] +D′3[ν(ρ]µ) = 0 (5.70)

Next, Eq.(5.59) splits into

S2(µν) + 2S′2(µν) +
√

2α′2S3(ρµν)k
ρ = 0, (5.71)

A2[µν] + 2A′2[µν] +
√

2α′(B3(ρ[µ)ν] +B3(µ[ρ)ν])k
ρ = 0. (5.72)

Note also that Eq.(5.66) becomes

A2[µν] + 2A′2[µν] +
√

2α′(D′3[ρ(µ]ν) −D′3[µ(ρ]ν))k
ρ = 0. (5.73)

After multiplying both sides by kµ, we obtain

(A2[µν] + 2A′2[µν])k
µ = 0. (5.74)

On the other hand, Eq.(5.59)− 1
2×Eq.(5.61)−ηµν2 ×Eq.(5.67) gives us

ζ1µ + 2
√

2α′(S′2(µν) −A′2[µν])k
ν − 1

2

√
2α′(S2(µν) +A2[µν])k

ν = 0. (5.75)

After inserting this into Eq.(5.56) and Eq.(5.64) we find

− 4A′2[µν]k
ν −A2[µν]k

ν = 0. (5.76)
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In this way, we obtain

A2[µν]k
µ = A′2[µν]k

µ = 0. (5.77)

Taking into account all equations allows decoupling ζ1µ, S2(µν), S
′
2(µν) and S3(µνρ) from other fields.

After removing all the dependent relations, we obtain the following set:





2ζ1µ +
√

2α′S2(µν)k
ν = 0

S2(µν) +
√

2α′S3(µνρ)k
ρ = 0

2S′2(µν) +
√

2α′S3(µνρ)k
ρ = 0

√
2α′S′2(µν)k

ν + 2S3(µνρ)η
νρ = 0

. (5.78)

The solutions are enumerated below:

1. S3(µνρ) = σµνρ and S2(µν) = S′2(µν) = ζ1µ = 0. σµνρ is a spin-3 field which satisfies

σµνρk
ρ = σµνρη

µν = 0, (5.79)

and its vertex operator reads

Vσ =
1

2α′
σµνρi∂X

µi∂Xνψρe−φeikX . (5.80)

2. S3(µνρ) =
√

2α′(πµνkρ + πµρkν + πνρkµ), S2(µν) = 4πµν , S′2(µν) = 2πµν , and ζ1µ = 0, where πµν is a

spin-2 field satisfying πµνk
ν = πµνη

µν = 0. The corresponding spin-2 vertex operator is

Vπ =
(√ 1

2α′
(πµνkρ + πµρkν + πνρkµ)i∂Xµi∂Xνψρ

+ 4πµν

√
1

2α′
i∂Xµ∂ψν + 2πµν

√
1

2α′
i∂2Xµψν

)
e−φeikX . (5.81)

3. S3(µνρ) = ζ̃3µνρ, S2(µν) = ζ̃2µν , S′2(µν) = ζ̃ ′2µν and ζ1µ = ζ̃1µ, where

ζ̃3µνρ = ηµνξρ + ηµρξν + ηνρξµ + c(2α′)(kµkνξρ + kµξνkρ + ξµkνkρ), (5.82)
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ζ̃2µν = (4c− 1)
√

2α′(kµξν + ξµkν), (5.83)

ζ̃ ′2µν =
1

2
(4c− 1)

√
2α′(kµξν + ξµkν), (5.84)

ζ̃1µ = 2(4c− 1)ξµ, (5.85)

with c = 7/8. ξµ is a vector field satisfying ξµk
µ = 0. The corresponding vector vertex operator reads

V
(1)
ξ =

(
ζ̃3µνρ

1

2α′
i∂Xµi∂Xνψρ + ζ̃2µν

√
1

2α′
i∂Xµ∂ψν

+ ζ̃ ′2µν

√
1

2α′
i∂2Xµψν + ζ̃1µ

1

2
∂2ψµ

)
e−φeikX . (5.86)

4. S3µνρ = ζ̂3µνρ, S2µν = ζ̂2µν , S′2µν = ζ̂ ′2µν and ζ1µ = ζ̂1µ, where

ζ̂3µνρ =
[√

2α′(ηµνkρ + ηµρkν + ηνρkµ) + d(2α′)
3
2 kµkνkρ

]
ϕ, (5.87)

ζ̂2µν =
[
4ηµν − 2α′(2− 4d)kµkν

]
ϕ, (5.88)

ζ̂ ′2µν =
[
2ηµν − α′(2− 4d)kµkν

]
ϕ, (5.89)

ζ̂1µ =
[
− 2(3− 4d)

√
2α′kµ

]
ϕ, (5.90)

with d = 9/8. ϕ is a scalar field, and its vertex operator is

Vϕ =
(
ζ̂3µνρ

1

2α′
i∂Xµi∂Xνψρ + ζ̂2µν

√
1

2α′
i∂Xµ∂ψν

+ ζ̂ ′2µν

√
1

2α′
i∂2Xµψν + ζ̂1µ

1

2
∂2ψµ

)
e−φeikX . (5.91)

Let us check if we identified all independents degrees of freedom. We started from a totally symmetric

3-tensor S3 (20 d.o.f.), two symmetric 2-tensors S2 and S′2 (20 d.o.f.) and one vector ξ1 (4 d.o.f.), a total

of 44 d.o.f. The set (5.78) contains 4 + 10 + 10 + 4 = 28 constraints. Thus we are left with 16 independent

d.o.f., which are one spin-3 field σ (7 d.o.f.), one spin-2 field π (5 d.o.f.), one vector ξ (3 d.o.f.) and one

scalar ϕ (1 d.o.f.). Next, we examine the vertex operators to check if any of the above degrees of freedom

happens to represent a null state. Indeed, we find that the spin-2 field π and the scalar ϕ are null states.
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They do not couple to two massless gluons in any helicity configurations, just like the two vectors found at

the first massive level, c.f., Eqs.(5.41) and (5.42).

Now we turn to remaining fields. With our previous analysis, after eliminating all the dependent relations,

we arrive to the following set:





(B4(ρ[σ)µν] −B4(ρ[µ)σν] +B4(ρ[µ)νσ])η
ρσ + 2A′2[µν] +

√
2α′D′3[µ(ν]ρ)k

ρ = 0

B4(µ[ν)ρσ]k
µ = B4(µ[ν)ρσ]k

σ = 0

A2[µν] + 2A′2[µν] +
√

2α′(B3(ρ[µ)ν] +B3(µ[ρ)ν])k
ρ = 0

A2[µν] + 2A′2[µν] +
√

2α′(D′3[ρ(µ]ν) −D′3[µ(ρ]ν))k
ρ = 0

B3(µ[ν)ρ] +
1

2
B3(ν[µ)ρ] −

1

2
B3(ρ[µ)ν] +D′3[ν(ρ]µ) = 0

B3(µ[ν)ρ]k
ρ = 0

. (5.92)

The solutions are:

1. B3µνρ = η⊥µνξρ − 1
4ξµη

⊥
νρ − 1

4ξνη
⊥
µρ, D

′
3µνρ = 1

2ξµη
⊥
νρ − 2ξνη

⊥
µρ, B4 = A2 = A′2 = 0, where ξµ is a spin-1

wavefunction satisfying ξµk
µ = 0.

2. B3µνρ = − 1
2D
′
3µνρ = kσεσµργπ

′γληλν + kσεσνργπ
′γληλµ, B4 = A2 = A′2 = 0, where π′µν is another

spin-2 field satisfying π′µνk
ν = π′µνη

µν = 0.

3. B4µνρσ = xυ(µEν)ρσ,
26 B3µνρ = y

√
2α′kµυ

τEτνρ, D
′
3µνρ = −y

√
2α′(υτEτµνkρ + 1

2υ
τEτρνkµ −

1
2υ

τEτρµkν), A′2µν = −(x + 2y)υτEτµν , A2µν = (2x + 8y)υτEτµν , where the vector υ is transverse,

υµk
µ = 0, and the 3-form Eµνρ = i

6

√
2α′εµνρσk

σ. Although only one massive vector field υ is involved

in our solution, we still have two parameters x, y available, thus we get two pseudo-vectors, υµ(x1, y1)

and υµ(x2, y2). There is a natural choice for the coefficients x, y, dictated by the complexification of

vector fields, to be made after discussing the helicity-dependence of their couplings to gauge bosons.

26The choice of the wave function of B4µνρσ is not unique. Indeed we find another solution with B4µνρσ = 2η⊥µνυ
τEτρσ ,

where η⊥µν ≡ ηµν − kµkν/k2 and Eµνρ is the same 3-form. However, this solution does not give us an extra physical field.
When we compute the scattering amplitudes involving the physical fields subject to these two solutions, we find the results are
exactly the same. That is to say, these two different solutions represent the same physical vector state. We will stick to the
first solution in our later discussions.

129



Let us count the number of degrees of freedom again. We started from a hook 4-index tensor B4 with 15

d.o.f., two hook 3-tensors, B3 and D′3, with 20× 2 = 40 d.o.f., and two antisymmetric 2-tensors A2, A′2 with

6× 2 = 12 d.o.f. The set (5.92) contains 6 + 12 + 6 + 6 + 20 + 6 = 56 constraints27,28. We are left with 11

d.o.f.: two vector fields ξµ and υµ (3 d.o.f. each) and one spin-2 field π′ (5 d.o.f.).

The vertex operators of these physical fields are:

V
(2)
ξ =

[
ξµη
⊥
νρ

1

2α′
(ψµi∂Xνi∂Xρ − 1

2
i∂Xµi∂Xνψρ) +

5

2
ξµη
⊥
νρψ

µψν∂ψρ
]
e−φeikX , (5.93)

Vπ′ = (kσεσµργπ
′γληλν + kσεσνργπ

′γληλµ)
[( 1

2α′
)
i∂Xµi∂Xνψρ − 2∂ψµψνψρ

]
e−φeikX , (5.94)

and

Vυ(x,y) =
x√
2α′

[(
υτEτµνi∂

2Xµψν − 2υτEτµνi∂X
µ∂ψν

)
+ υ(µEν)ρσi∂X

µψνψρψσ
]
e−φeikX

+
y√
2α′

[
kµυ

τEτνρi∂X
µi∂Xνψρ − 2(2α′)υτEτµ(νkρ)ψ

µψν∂ψρ

+
(
8υτEτµνi∂X

µ∂ψν − 2υτEτµνi∂
2Xµψν

)]
e−φeikX . (5.95)

To summarize, we identified one spin-3 field, two spin-2 fields, four vector fields (two vectors and two

pseudo-vectors), and one real scalar satisfying the physical state conditions. The scalar ϕ and the spin-2

field φ are null states; all other fields are physical. Thus the number of universal physical degrees of freedom

at the second level of NS sector is 24. The spin-3 field and the spin-2 field π couple to two massless gluons

with opposite helicities – these are the particles responsible for the Regge pole in Eq.(5.8). The four spin-1

fields will pair up to form two complex vectors that can decay into two gluons with the same helicities only,

c.f., the pole in Eq.(5.17).

27Relation B4(µ[ν)ρσ]k
µ = B4(µ[ν)ρσ]k

σ = 0 give total 8 + 4 = 12 constraints. First of all B4(µ[ν)ρσ]k
µ = 0 kills the second

box in the first row, so we are left with a Young diagram , which corresponds to 4×3×2
3×2

= 4 constraints. In addition,

B4(µ[ν)ρσ]k
σ = 0 kills the box in the third row, so we are left with , which gives us 3×4×2

3
= 8 more constraints. The

subtlety here is when one of the antisymmetric indices is eliminated, once we calculate the dimensions of the Young diagram,
the number we put in the first box is 3 instead of 4.

28Similarly to the previous case, B3(µ[ν)ρ]k
ρ = 0 represents 6 constraints. B3(µ[ν)ρ]k

ρ = 0 corresponds to so it gives us
3×4

2
= 6 constraints. Note that again the number we put in the first box is 3 instead of 4 because one of the antisymmetric

indices is eliminated.
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Both even- and odd-parity particles couple to (++) and (−−) gluon helicity configurations. The relative

normalization of their couplings is dictated by supersymmetry which forbids non-vanishing “all-plus” and

“all-minus” scattering amplitudes [31]. Thus similarly to the scalar Φ at the first level, the vectors and

pseudo-vectors of the second level must combine to form complex vector fields that couple to gluons with

the selection rules similar to Eq.(5.15). To that end, we introduce two complex vector fields, Ξ±1,2, with the

vertices

VΞ±1
= V

(1)
ξ ± Vυ(x1,y1)(ξ)

= CT a
{[( 3

2α′
ξ(µηνρ) +

21

8
ξ(µkνkρ)

)
i∂Xµi∂Xνψρ

+ 5ξ(µkν)i∂X
µ∂ψν +

5

2
ξ(µkν)i∂

2Xµψν +
5

2
ξµ∂

2ψµ
]

±
{ x1√

2α′

[(
ξτEτµνi∂

2Xµψν − 2ξτEτµνi∂X
µ∂ψν

)
+ ξ(µEν)ρσi∂X

µψνψρψσ
]

+
y1√
2α′

[
kµξ

τEτνρi∂X
µi∂Xνψρ − 2(2α′)ξτEτµ(νkρ)ψ

µψν∂ψρ

+
(
8ξτEτµνi∂X

µ∂ψν − 2ξτEτµνi∂
2Xµψν

)]}}
e−φeikX . (5.96)

VΞ±2
= V

(2)
ξ ± Vυ(x2,y2)(ξ)

= CT a
{[
ξµη
⊥
νρ

1

2α′
(ψµi∂Xνi∂Xρ − 1

2
i∂Xµi∂Xνψρ) +

5

2
ξµη
⊥
νρψ

µψν∂ψρ
]

±
{ x2√

2α′

[(
ξτEτµνi∂

2Xµψν − 2ξτEτµνi∂X
µ∂ψν

)
+ ξ(µEν)ρσi∂X

µψνψρψσ
]

+
y2√
2α′

[
kµξ

τEτνρi∂X
µi∂Xνψρ − 2(2α′)ξτEτµ(νkρ)ψ

µψν∂ψρ

+
(
8ξτEτµνi∂X

µ∂ψν − 2ξτEτµνi∂
2Xµψν

)]}}
e−φeikX . (5.97)

The coefficients (x1, y1) and (x2, y2) will be fixed by requiring that Ξ+
1,2 couple to two gluons in (++)

configurations and to three gluons in mostly plus configurations only (at least two gluons carrying positive

helicities). The overall normalization factors C will be fixed by the usual factorization arguments.
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5.2.3 Complex vector couplings to two gluons

Three-point amplitudes with one massive vector (with the momentum and color indices labeled by 1) and

two massless gluons are very simple because the positions of three vertices can be fixed by using PSL(2, R)

invariance of the disk world-sheet and there are no integrals involved in the computations. The three-point

amplitude of the pseudo-vector (vertex Vυ(x,y)) and two gluons reads

A (3)(υ(x,y)(ξ), ε2, ε3) = CD2C
√

2α′g2fa1a2a3(2α′)
3
2

{
4xεµνρε

µ
2 ε
ν
3k
ρ
3(ξ · k3)

− (x+ 2y)ξρερµν
[
εµ2k

ν
3 (ε3 · k2) + εµ3k

ν
3 (ε2 · k3) +

1

α′
εµ2 ε

ν
3

]}
. (5.98)

where CD2
= g−2α′−2 is the universal disk factor [65]. In the helicity basis, this corresponds to

A (3)(ξ,+,+) = (
x

6
− y

3
)CD2

C
√

2α′g2fa1a2a3(2α′)2[23]2(ξ · k2), (5.99)

A (3)(ξ,+,−) = 0, (5.100)

A (3)(ξ,−,−) = −(
x

6
− y

3
)CD2

C
√

2α′g2fa1a2a3(2α′)2〈23〉2(ξ · k2). (5.101)

The three-point amplitude of the vector ξ(1) (vertex V
(1)
ξ ) and two gluons is

A (3)(ξ(1), ε2, ε3) = CD2
C
√

2α′g2fa1a2a3(2α′)2
{(

3ξ(µηνρ) +
21

4
α′ξ(µkνkρ)

)[ 1

2α′
εµ2 ε

ν
3k
ρ
3

− 1

2α′
εµ2 ε

ν
3k
ρ
2 − εµ2kν2kρ3(ε3 · k2)− εµ3kν2kρ2(ε2 · k3) + kµ2 k

ν
2k

ρ
3(ε2 · ε3)

]

+
5

2
ξ(µkν)

[
εµ2k

ν
3 (ε3 · k2) + εµ3k

ν
2 (ε2 · k3)− kµ2 kν3 (ε2 · ε3)

]}
. (5.102)

The corresponding helicity amplitudes are

A (3)(ξ(1),+,+) =
5

8
CD2

C
√

2α′g2fa1a2a3(2α′)2[23]2(ξ · k2), (5.103)

A (3)(ξ(1),+,−) = 0, (5.104)

A (3)(ξ(1),−,−) =
5

8
CD2

C
√

2α′g2fa1a2a3(2α′)2〈23〉2(ξ · k2). (5.105)
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The three-point amplitude of the vector ξ(2) (vertex V
(2)
ξ ) and two gluons is

A (3)(ξ(2), ε2, ε3) = CD2C
√

2α′g2fa1a2a3(2α′)2
{[

(ξ · ε2)(η⊥µνk
µ
3 k

ν
3 )(ε3 · k2) + (ξ · k3)(η⊥µνk

µ
3 k

ν
3 )(ε2 · ε3)

− (ξ · ε3)(η⊥µνk
µ
3 k

ν
3 )(ε2 · k3) +

1

α′
(ξ · ε2)(η⊥µνε

µ
3k

ν
3 )
]
− 1

2

[
(ξ · k3)(η⊥µνε

µ
2k

ν
3 )(ε3 · k2)

+ (ξ · k3)(η⊥µνk
µ
3 k

ν
3 )(ε2 · ε3)− (ξ · k3)(η⊥µνε

µ
3k

ν
3 )(ε2 · k3) +

1

2α′
(ξ · k3)(η⊥µνε

µ
2 ε
ν
3)

+
1

2α′
(ξ · ε3)(η⊥µνε

µ
2k

ν
3 )
]

+
5

2

1

2α′
[
(ξ · ε3)(η⊥µνε

µ
2k

ν
3 )− (ξ · k3)(η⊥µνε

µ
2 ε
ν
3)
]}
. (5.106)

The corresponding helicity amplitudes are

A (3)(ξ(2),+,+) = −5

8
CD2

C
√

2α′g2fa1a2a3(2α′)2[23]2(ξ · k2), (5.107)

A (3)(ξ(2),+,−) = 0, (5.108)

A (3)(ξ(2),−,−) = −5

8
CD2C

√
2α′g2fa1a2a3(2α′)2〈23〉2(ξ · k2). (5.109)

In the basis of complex vectors Ξ±1,2(x, y), the above amplitudes correspond to

A (3)(Ξ±1 (ξ),+,+) =
[5
8
± (

x1

6
− y1

3
)
]
CD2

C
√

2α′g2fa1a2a3(2α′)2[23]2(ξ · k2), (5.110)

A (3)(Ξ±1 (ξ),+,−) = 0, (5.111)

A (3)(Ξ±1 (ξ),−,−) =
[5
8
∓ (

x1

6
− y1

3
)
]
CD2

C
√

2α′g2fa1a2a3(2α′)2〈23〉2(ξ · k2). (5.112)

and

A (3)(Ξ±2 (ξ),+,+) =
[
− 5

8
± (

x2

6
− y2

3
)
]
CD2

C
√

2α′g2fa1a2a3(2α′)2[23]2(ξ · k2), (5.113)

A (3)(Ξ±2 (ξ),+,−) = 0, (5.114)

A (3)(Ξ±2 (ξ),−,−) =
[
− 5

8
∓ (

x2

6
− y2

3
)
]
CD2C

√
2α′g2fa1a2a3(2α′)2〈23〉2(ξ · k2). (5.115)

By requiring that Ξ+
1,2 couple to (+,+) only (and respectively, Ξ−1,2 to (−,−) only), we obtain the following
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constraints:

5

8
− (

x1

6
− y1

3
) = 0, (5.116)

−5

8
− (

x2

6
− y2

3
) = 0. (5.117)

5.2.4 Complex vector couplings to three gluons

We consider four-point amplitudes involving one massive vector and three gluons.29 The kinematic variables

are defined in Eq.(4.33). Now, k1 is the momentum of the massive particle, k2
1 = 2M2, and the Mandelstam

variables satisfy

s+ t+ u = 2M2 =
2

α′
. (5.118)

All other quantum numbers associated to the massive vector will be also labeled by 1.

We begin with the amplitudes involving three all-plus and all-minus gluons,(+ + +) and (−−−), respec-

tively. For all-plus configurations, they contain the common factors

F (jz = +1,+,+,+) = CD2
C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 〈qp〉
m

{ (1− α′u)

α′2
[2q][q3]

〈34〉〈42〉

+
(1− α′s)
α′2

[3q][q4]

〈23〉〈42〉 +
(1− α′t)
α′2

[4q][q2]

〈23〉〈34〉
}
, (5.119)

F (jz = 0,+,+,+) = CD2
C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 〈qp〉√
2m

{ (1− α′u)

α′2

(
[2q][p3] + [3q][p2]

)

〈34〉〈42〉

+
(1− α′s)
α′2

(
[3q][p4] + [4q][p3]

)

〈23〉〈42〉 +
(1− α′t)
α′2

(
[4q][p2] + [2q][p4]

)

〈23〉〈34〉
}
, (5.120)

F (jz = −1,+,+,+) = CD2C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 〈qp〉
m

{ (1− α′u)

α′2
[2p][p3]

〈34〉〈42〉

+
(1− α′s)
α′2

[3p][p4]

〈23〉〈42〉 +
(1− α′t)
α′2

[4p][p2]

〈23〉〈34〉
}
. (5.121)

Here, T a1a2a3a4
n=2 is a universal factor that combines Chan-Paton factors with the kinematic variables in the

29The original four-point string amplitudes are very tedious, so we will only present the helicity amplitudes in this paper,
which look much simpler.

134



following way

T a1a2a3a4
n=2 = Tr(T a1T a2T a3T a4 + T a4T a3T a2T a1)

+
1

Vt

Vs
α′s− 1

Tr(T a2T a3T a1T a4 + T a4T a1T a3T a2)

+
1

Vt

Vu
α′u− 1

Tr(T a3T a1T a2T a4 + T a4T a2T a1T a3). (5.122)

Furthermore, p and q are the light-like reference vectors used to define the quantization axis for the polar-

ization vector ξ. We obtain

A (4)(Ξ±1 (jz),+,+,+) =
[5
8
± (

x1

6
− y1

3
)
]
F (jz,+,+,+), (5.123)

A (4)(Ξ±2 (jz),+,+,+) =
[
− 5

8
± (

x2

6
− y2

3
)
]
F (jz,+,+,+) (5.124)

For all-minus configurations, the analogous expressions read

F (jz = +1,−,−,−) = CD2C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 [pq]

m
×
{ (1− α′u)

α′2
〈2p〉〈p3〉
[34][42]

+
(1− α′s)
α′2

〈3p〉〈p4〉
[23][42]

+
(1− α′t)
α′2

〈4p〉〈p2〉
[23][34]

}
, (5.125)

F (jz = 0,−,−,−) = CD2
C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 [qp]√
2m
×
{ (1− α′u)

α′2

(
〈3q〉〈p2〉+ 〈2q〉〈p3〉

)

[34][42]

+
(1− α′s)
α′2

(
〈4q〉〈p3〉+ 〈3q〉〈p4〉

)

[23][42]
+

(1− α′t)
α′2

(
〈4q〉〈p2〉+ 〈2q〉〈p4〉

)

[23][34]

}
, (5.126)

F (jz = −1,−,−,−) = CD2
C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 [pq]

m
×
{ (1− α′u)

α′2
〈2q〉〈q3〉
[34][42]

+
(1− α′s)
α′2

〈3q〉〈q4〉
[23][42]

+
(1− α′t)
α′2

〈4q〉〈q2〉
[23][34]

}
. (5.127)
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and

A (4)(Ξ±1 (jz),−,−,−) =
[5
8
∓ (

x1

6
− y1

3
)
]
F (jz,−,−,−), (5.128)

A (4)(Ξ±2 (jz),−,−,−) =
[
− 5

8
∓ (

x2

6
− y2

3
)
]
F (jz,−,−,−). (5.129)

Note that the constraints (5.116,5.117) on the parameters x, y automatically ensure the decoupling of Ξ+

from all-minus configurations and of Ξ− from all-plus ones.

Next, we turn to mostly plus configuration (+ + −). For each jz = 0,±1, there are two kinematic

structures common to these amplitudes:

K1(jz = +1,+,+,−) = CD2
C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 〈pq〉
2m

[23]2

[24][34]

1− α′u
α′

[2q][q3], (5.130)

K2(jz = +1,+,+,−) = CD2
C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 [pq]

2m
(−)〈p4〉2[23]2, (5.131)

and

K1(jz = 0,+,+,−) = CD2
C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 1

2
√

2

〈pq〉
m

× [23]2

[24][34]

1− α′u
α′

(
[2p][q3] + [3p][q2]

)
, (5.132)

K2(jz = 0,+,+,−) = CD2C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 1

2
√

2

[pq]

m
2〈p4〉〈q4〉[23]2, (5.133)

and lastly

K1(jz = −1,+,+,−) = CD2C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 〈pq〉
2m

(−)[23]2

[24][34]

1− α′u
α′

[2p][p3], (5.134)

K2(jz = −1,+,+,−) = CD2C
√

2α′g3T a1a2a3a4
n=2 Vt(2α

′)3 [pq]

2m
〈q4〉2[23]2. (5.135)

We obtain

A (4)(Ξ±1 (jz),+,+,−) =
[5
8
± (

x1

6
− y1

3
)
]
K1(jz) +

[23

16
± (

7x1

12
+

5y1

6
)
]
K2(jz), (5.136)
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A (4)(Ξ±2 (jz),+,+,−) =
[
− 5

8
± (

x2

6
− y2

3
)
]
K1(jz) +

[13

16
± (

7x2

12
+

5y2

6
)
]
K2(jz). (5.137)

For the opposite, (−−+) helicity configurations,

A (4)(Ξ±1 (jz),−,−.+) =
[5
8
∓ (

x1

6
− y1

3
)
]
K1(−jz)∗ +

[23

16
∓ (

7x1

12
+

5y1

6
)
]
K2(−jz)∗, (5.138)

A (4)(Ξ±2 (jz),−,−,+) =
[
− 5

8
∓ (

x2

6
− y2

3
)
]
K1(−jz)∗ +

[13

16
∓ (

7x2

12
+

5y2

6
)
]
K2(−jz)∗. (5.139)

Note that the conditions (5.116) and (5.117) imply vanishing K1 parts of the (Ξ+,−,−,+) and (Ξ−,+,+,−)

amplitudes. By requiring that their K2 parts also vanish, we obtain

23

16
− (

7

12
x1 +

5

6
y1) = 0, (5.140)

13

16
− (

7

12
x2 +

5

6
y2) = 0, (5.141)

which, combined with Eqs.(5.116) and (5.117) fixes the relative weights of vectors and pseudo-vectors to





x1 = 3

y1 = −3/8

,





x2 = −3/4

y2 = 3/2

. (5.142)

To summarize, at the second massive level we identified two complex vectors, Ξ1,2, with the vertex

operators written in Eqs.(5.96) and (5.97) and the parameters x and y given in Eq.(5.142), which satisfy the

following selection rules:

A
[
Ξ+,−,−

]
= A

[
Ξ±,+,−

]
= A

[
Ξ−,+,+

]
= 0, (5.143)

for three-point amplitudes and

A
[
Ξ+,−,−,−

]
= A

[
Ξ−,+,+,+

]
= 0, (5.144)

A
[
Ξ+,+,−,−

]
= A

[
Ξ+,−,+,−

]
= A

[
Ξ+,−,−,+

]
= 0, (5.145)
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A
[
Ξ−,−,+,+

]
= A

[
Ξ−,+,−,+

]
= A

[
Ξ−,+,+,−

]
= 0, (5.146)

for four-point amplitudes.The overall vertex normalization can be fixed by the usual factorization argument.

It is

C =
2

5

√
α′g. (5.147)

5.3 Factorization and BCFW reconstruction of the four-gluon amplitude

In this section, we consider the s-channel residue expansion of the partial four-gluon MHV amplitude,

M(p−, q−, k1 +, k2 +), with the external momenta p, q, k1, k2 and the respective Chan-Paton factor

4g2Tr(T apT aqT a1T a2), with the coupling constant g included. We want to compare the residues with the

factorized sum30

F (p−, q−, k1 +, k2 +) ≡
∑

mj , j<n

(p−, q−|mj , j, n)
1

s− n (k2−, k1−|mj , j, n)∗ , (5.148)

where s = 2p · q (we also define u = 2q ·k1 and t = 2q ·k2), and (p+, q+|mj , j, n) are the three-point on-shell

amplitudes involving two gluons and one string state at mass level n, with the spin quantum numbers j, mj .

The purpose of this exercise is to compare the three-point amplitudes with those evaluated in the previous

Sections and to show explicitly how the four-gluon amplitude can be reconstructed by a BCFW deformation

of the factorized sum:

F (p−, q−, k1 +, k2 +)
BCFW−→ M(p−, q−, k1 +, k2 +) . (5.149)

The four-gluon amplitude is given by

M(p−, q−, k1 +, k2 +) =
〈pq〉4

〈pq〉〈q1〉〈12〉〈2p〉
Γ(1− s)Γ(1− u)

Γ(1− s− u)

= 〈pq〉2[12]2
1

s
B(1− s,−u) (5.150)

30In this Section, we set the mass scale M = 1.
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By using the well-known expansion of the Beta function:

M(p−, q−, k1 +, k2 +) = 〈pq〉2[12]2
1

s

∞∑

n=1

1

n− s
(u+ 1)n−1

(n− 1)!
, (5.151)

we find the residue associated to the mass level n is

Ress=nM(p−, q−, k1 +, k2 +) = −〈pq〉2[12]2
(u+ 1)n−1

n!
. (5.152)

Note that the Pochhammer symbol contracts Lorentz indices across the s-channel (recall u = 2q · k1). The

flow of Lorentz indices is due to the propagation of higher spin states in the s-channel. The first non-trivial

contraction occurs at level n = 2, where it is due to massive vector particles discussed in the previous Section.

At a given mass level n, not all spins j propagate: only the even ones for odd n and the odd ones for even

n, up to j = n − 1. For instance, at the next n = 3 level, both j = 0 and j = 2 contribute. We want to

compare Eq.(5.152) with the residues of the factorized sum (5.148).

In the factorized sum (5.148), two pairs of gluons, (p, q) and (k1, k2) are coupled through intermediate

Regge particles propagating in the s-channel. The Lorentz indices are transferred by the wave functions of

intermediate particles, depending on a fixed spin quantization axis defined by the choice of reference vectors.

The most convenient spin quantization axis is the direction of motion of the (p, q) pair in its center of mass

frame, which is imposed by choosing p and q as the reference vectors for the massive wave functions, see

Appendix C. In this case, the angular momentum conservation dictates that only mj = 0 states propagate

in the factorized sum. Let us illustrate this point on the example of a massive vector particle.

In the previous Section, Eq.(5.112), we found that, up to a numerical factor,

(p−, q−|m, j = 1, n = 2) = 〈pq〉2(ξm · q) . (5.153)

Indeed, with the choice of (p, q) as the reference vectors for the polarization vectors ξm, one finds

ξ−1 · q = ξ+1 · q = 0 , ξ 0 · q =
1√
2

(p− q)q =

√
s

2
=

1√
2
, (5.154)
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where
√

2 =
√
Mn appear from the wave function normalization factors. On the other hand, with the same

choice of the reference vectors,

(k2−, k1−|m = 0, j = 1, n = 2) = 〈12〉2 1√
2

(p− q)k1 (5.155)

= −〈12〉2 1√
2

(u+ s/2) = −〈12〉2 1√
2

(u+ 1) .

In this way, we obtain

(p−, q−|0, 1, 2)(k2−, k1−|0, 1, 2)∗ = −〈pq〉2[12]2
(u+ 1)

2
, (5.156)

in agreement with the residuum (5.152) for n = 2.

It is clear that for the above choice of reference vectors, the residues at s = n of the factorized sum have

the form 〈pq〉2[12]2 times a function of

a ≡ (p− q)k2 = −(p− q)k1 = u+
s

2
= u+

n

2
, (5.157)

where the last step follows from the on-shell condition for the massive particle. We can obtain the factorized

sum by simply setting u = a− n
2 in Eq.(5.151)

F (p−, q−, k1 +, k2 +) = 〈pq〉2[12]2
∞∑

n=1

Res(s=n , u=a−n2 )M(p−, q−, k1 +, k2 +)

s− n

= 〈pq〉2[12]2
∞∑

n=1

1

n− s
(a− n

2 + 1)n−1

n!
. (5.158)

We checked the above result also at the n = 4 level, by combining the on-shell amplitudes involving spin

j = 0 and j = 2 Regge states, according to Eq.(5.148). It is convenient to introduce the generating function

gF (x) =

∞∑

n=1

(a− n
2 + 1)n−1

n!
xn−1 , (5.159)
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so that

F (p−, q−, k1 +, k2 +) = 〈pq〉2[12]2
∫ 1

0

x−s gF (x) . (5.160)

It is easy to see that the generating function (5.159) satisfies

d

dx

[
xgF (x)

]
= (1 + x2

4 )−1/2 e2aArcSinh( x2 ) . (5.161)

We want to stress again the the factorized sum is evaluated by using on-shell amplitudes involving one massive

state and two gluons. We will show how to reconstruct the four gluon amplitude of Eq.(5.151), which involves

intermediate particles propagating off-shell, by applying a BCFW deformation to F , Eq.(5.158).

It has been argued recently that the BCFW recursion relations, originally formulated for pure Yang-Mills

theory [44–47], hold also in string theory [48–53]. The arguments rely crucially on proving the absence of an

essential singularity at z → ∞ (z is the deformation parameter) of the full-fledged string amplitudes. The

proof is straightforward for four-gluon amplitudes but becomes increasingly complex for more gluons. Note

that in the string case, there is an infinite number of intermediate states propagating in any channel, as

seen explicitly in the factorized sum (5.148). This should be contrasted with the Yang-Mills case [76], where

there are no massless on-shell states propagating in the s-channel of the deformed (− − + +) amplitude.

In order to force the s-channel resonances on-shell, we apply the BCFW deformation

p→ p̂ = p− zv , k2 → k̂2 = k2 + zv , (5.162)

where the light-like vector

vµ = 〈p|σµ|2] (5.163)

and z is the deformation parameter. Since ŝ = s− 2z vq, the resonance poles appear at

z =
s− n
2vq

. (5.164)
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Under this deformation

a = (p− q)k2 → â = a− z vq = a− s

2
+
n

2
= u+

n

2
. (5.165)

Upon a→ â, the generating function (5.159) transforms into

gF (x)
BCFW−→ gM (x) =

∞∑

n=1

(u+ 1)n−1

n!
xn−1 , (5.166)

which satisfies

d

dx

[
xgM (x)

]
= (1− x)−u−1 . (5.167)

In this way, we obtain

M(p−, q−, k1 +, k2 +) = 〈pq〉2[12]2
∫ 1

0

x−s gM (x)

= 〈pq〉2[12]2
1

s
B(1− s, u) , (5.168)

where we used Eq.(5.167) to integrate by parts. As usual with world-sheet duality, it is rewarding to see how

the massless gluon pole appears in the u-channel after summing over the s-channel exchanges of massive

string states.

Apart from providing the first explicit example of a BCFW construction in string theory, the above

example seems of little or no practical importance. After all, what more can we learn by dissecting the

Veneziano-Virasoro-Shapiro amplitude? It would be interesting, however, to construct all multi-gluon string

disk amplitudes by using the BCFW recursion relations. Unfortunately, it is not so easy: starting from five

gluons, a standard BCFW deformation, like in Eq.(5.162), yields on-shell poles in two channels, and the step

leading from the factorized sums to the actual amplitude becomes quite cumbersome. Even in bosonic string

theory, it is not clear how to combine much simpler factorized sums with five external tachyons to the well

known five-tachyon amplitude.
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6 Epilogue

My Ph.D. researches were mainly focused on both formal and phenomenological aspects of superstring

scattering amplitudes. Specifically, we investigated the supersymmetry relations and coupling properties of

the higher spin massive superstring states. Focusing on the first massive level universal superstring states

and under the assumption of a low mass string scale as low as a few TeVs, we studied their scattering

amplitudes in four dimensions and and obtain its possible collider signals explicitly.

Elementary particles are quantized vibrations of fundamental strings, and the SM particles are zero mode

massless open strings. In the intersecting branes settings, gauge bosons are due to strings attached to same

stacks of D-branes and chiral matters are due to strings stretching between different stacks of intersecting D-

branes. The main motivation of my works is originated from the idea of low mass strings – we could test the

string theory if the fundamental string scale is as low as a few TeVs. It has been shown that the production

cross sections of gluons and quarks at the LHC can be computed in a model independent way, allowing for

universal string predictions in case the fundamental string scale is low. The corresponding tree-level string

cross sections are independent of the internal geometry and hold for all compactifications, in particular, no

matter how many supercharges are preserved in the compactification. In this way, the landscape problem is

circumvented. This property allows testing the low mass string scenario at the LHC.

Once the center of mass energies of the colliding partons exceed the fundamental string scale, the string

excitations can be produced directly. In my first paper [1], we discussed the direct production of lightest

Regge particles. There are certain higher spin Regge excitations at the first massive level, which are also

completely universal. Computing production cross sections is important to identify these massive states

at the LHC, since the angular distribution of their decay products is directly related to these higher spin

universal Regge states. We identified these states by using BRST constraints and computed full-fledged

superstring disk amplitudes of one massive Regge state with two or three gluons / quarks. Then in my

second paper [22], which however is not the focus of this thesis, we discussed the possible signals of low

mass string resonances in e+e− and γγ collisions at future lepton colliders. Then we go further in my

third paper [2] to explore the properties of higher level superstring resonances. Starting from the four-gluon

amplitude, we investigated the resonant structures of higher level massive superstring states. For Regge
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states with masses far above the fundamental string scale, we discussed the spin-dependence of their decay

rates into massless gauge bosons. To illustrate the use of BCFW recursion relations in superstring theory, we

showed that the four-gluon amplitude can be obtained by a BCFW deformation of a factorized sum involving

on-shell amplitudes of one massive Regge state and two gauge bosons. Finally in my fourth paper [3], we

expanded our discussion in [1] and investigated the SUSY relations for the physical superstring states in the

first massive level. We obtained explicitly the supermultiplets of four-dimensional superstring states under

N = 4, 2, 1 compactifications.

Along the line of my previous works, there are various topics to be explored in the future: the practical use

of the superstring version on-shell recursion relations; explore the general connections of massive superstring

amplitudes with field theory amplitudes; investigate the massive loop amplitudes; carry out the superstring

scattering processes in a fully consistent compactification; etc.

The recent discovery of the “Higgs-like” particle at the LHC [79, 80] indicates another great success of

human pure thinking. However, even this new particle is confirmed to be the Higgs particle and totally

complete the standard model, there are still many unsolved problems, such as dark matter, dark energy,

hierarchy and naturalness problems, etc. Right now we are at the best moment to explore the unknowns

of the physics beyond the standard model. I am very proud that I am one of these people, and we are so

confident that we will succeed again!
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Appendix

A Notation and convention

Various types of indices appear in this article, so it is essential to keep the notation as clear and unambiguous

as possible. Here is a list of occurring index classes together with the preferably used alphabets and letters:

• In ten dimensions, vector indices of SO(1, 9) are taken from the middle of the Latin alphabet m,n, p, ....

The corresponding Weyl spinor indices are Greek letters from the beginning of the alphabet, α, β, γ, ...

for left-handed spinors, and their dotted version α̇, β̇, γ̇, ... for the right-handed counterparts.

• Vectors in four-dimensional Minkowski spacetime have indices from the middle of the Greek alphabet

µ, ν, λ, ρ, .... Spinor indices of SO(1, 3) are lower case Latin letters a, b, c, ... for left-handed Weyl spinors

and upper case ȧ, ḃ, ċ for right-handed Weyl spinors.

• The R-symmetry group of N = 4 spacetime SUSY is SO(6) ≡ SU(4). We will use m,n, p . . . as vector

indices and I, J,K (Ī , J̄ , K̄) as left-handed (right-handed) spinor indices. Confusions with the D = 10

vector indices are excluded by the context.

• In case of N = 2 spacetime SUSY, we denote the fundamental indices of the SU(2) R-symmetry by

i, j, k and the corresponding adjoint indices by A,B,C.

• Chan-Paton generators carrying the color degrees of freedom of the vertex operator are suppressed

throughout this work since they are the same for all members of the SUSY multiplet.

• Also, the coupling gA =
√

2α′gYM of vertex operators is suppressed, i.e. set to unity.

All these symmetry groups involve their metrics ηmn, ηµν , δ
(6)
mn as well as gamma matrices and charge conju-

gation matrices as Clebsch-Gordan coefficients:

• γm
αβ̇
, γ̄α̇βm and Cα

β̇ , Cα̇β in D = 10

• σµ
aḃ
, σ̄ȧbµ and εab, ε

ȧḃ in D = 4

• γIJ̄m , γ̄m
ĪJ

and CI J̄ , CĪ
J for the internal SO(6) of N = 4 SUSY
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• standard Pauli matrices τA
i
j and εij for the SU(2) R-symmetry of N = 2 SUSY

Our conventions for the slash notation is

6kαβ̇ = km γ
m
αβ̇
, 6kβ̇α = km γ̄β̇αm in D = 10

6kaḃ = kµ σ
µ

aḃ
, 6kḃa = kµ σ̄ḃaµ in D = 4

. (A.1)

The totally antisymmetric ε tensors are normalized to having nonzero ±1, e.g. εµνλρ for D = 4 vectors and

εABC for the adjoint representation of SU(2).

The signature of the Dirac algebras is negative in lines with the Wess & Bagger conventions:

γm
αβ̇
γ̄nβ̇γ + γn

αβ̇
γ̄mβ̇γ = − 2 ηmn δγα (A.2)

σµ
aḃ
σ̄νḃc + σν

aḃ
σ̄µḃc = − 2 ηµν δca (A.3)

γIJ̄m γ̄nJ̄K + γIJ̄n γ̄mJ̄K = − 2 δ(6)
mn δ

I
K . (A.4)

On the other hand, the SU(2) Pauli matrices obey the multiplication rule

(τA)ij (τB)jk = δAB δ
i
k + iεABC (τC)ik (A.5)

Useful material on spinors in various spacetime dimensions can be found in [65], the present conventions

closely follow [57,58].

B Operator product expansions

This appendix gathers the operator product expansions needed to evaluate the BRST constraints and SUSY

variations. Before taking a closer look at the interacting SCFTs, let us display the free field OPEs for the

sake of completeness, namely

i∂Xµ(z) eik·X(w) ∼
[

2α′ kµ

z − w + i∂Xµ(w) + (z − w) i∂2Xµ(w) + . . .

]
eik·X(w) (B.1)
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i∂Xµ(z) i∂Xν(w) eik·X(w) ∼
[

2α′ ηµν

(z − w)2
+

2α′ kµ i∂Xν(w)

z − w + i∂Xµ i∂Xν(w) + . . .

]
eik·X(w)

(B.2)

as well as

ψµ(z)ψν(w) ∼ ηµν

z − w + ψµ ψν(w) + (z − w) ∂ψµ ψν(w) + . . . (B.3)

They are valid in any number of compactification dimensions. Another universal feature is the superghost

CFT, governed by

eq1φ(z) eq2φ(w) =(z − w)−q1q2
[
e(q1+q2)φ(w) + q1 (z − w) ∂φ e(q1+q2)φ(w)

+ 1
2 (z − w)2

[
q1 ∂

2φ + q2
1 (∂φ)2

]
e(q1+q2)φ(w) + . . .

]
. (B.4)

The following subsections consider the interacting RNS CFT of the ψ fermion and its spin fields S as well as

its excited versions. The OPEs were pioneered in [56] and can be checked by means of correlation functions

gathered in [57,58].

B.1 Spacetime CFT in D = 10

Evaluating the BRST conditions on the most general fermion vertex operator at the first mass level requires

OPEs

ψm(z)Sα(w) ∼
γm
αβ̇
Sβ̇(w)

√
2 (z − w)1/2

+ (z − w)1/2

[
Smα (w) +

2 γm
αβ̇√
2 5

∂Sβ̇(w)

]
+ . . . (B.5)

ψm(z) ∂Sα(w) ∼
γm
αβ̇
Sβ̇(w)

2
√

2 (z − w)3/2
− Smα (w)

2 (z − w)1/2
+

4 γm
αβ̇
∂Sβ̇(w)

5
√

2 (z − w)1/2
+ . . . (B.6)

ψm(z)Sβ̇n(w) ∼ ηmn S
β̇(w)

(z − w)3/2
+

γ̄β̇αm Snα(w)√
2 (z − w)1/2

− 2 ηmn ∂S
β̇(w)

5 (z − w)1/2
+ . . . (B.7)

in D = 10. The corresponding SUSY variations are computed by means of

Sβ̇(z)ψm(w) ∼ γ̄β̇αm Sα(w)√
2 (z − w)1/2

+ (z − w)1/2

[
Sβ̇m(w) +

3 γ̄β̇αm ∂Sα(w)

5
√

2

]
+ . . . (B.8)
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Sβ̇(z)ψm ψn ψp(w) ∼ − 1

2
√

2 (z − w)3/2
γ̄β̇αmnp Sα(w) − 3

2 (z − w)1/2
(γ̄[mn)β̇ α̇ S

α̇
p](w)

+
1

10
√

2 (z − w)1/2
γ̄β̇αmnp ∂Sα(w) + . . . (B.9)

Sβ̇(z) ∂ψm(w) ∼ γ̄β̇αm Sα(w)

2
√

2 (z − w)3/2
− Sβ̇m(w)

2 (z − w)1/2
+

7 γ̄β̇αm ∂Sα(w)

10
√

2 (z − w)1/2
+ . . . (B.10)

for the NS sector and

Sα(z)Sβ(w) ∼ (γmC)αβ ψm(w)√
2 (z − w)3/4

+ (z − w)1/4 (γmC)αβ ∂ψm(w)

2
√

2

− (z − w)1/4 (γmnpC)αβ ψm ψn ψp(w)

12
√

2
+ . . . (B.11)

Sα(z)Sβ̇m(w) ∼ Cα
β̇ ψm(w)

(z − w)7/4
− Cα

β̇ ∂ψm(w)

2 (z − w)3/4
− (γnp C)α

β̇ ψm ψn ψp(w)

4 (z − w)3/4
+ . . . (B.12)

Sα(z) ∂Sβ(w) ∼ 3 (γmC)αβ ψm(w)

4
√

2 (z − w)7/4
+

7 (γmC)αβ ∂ψm(w)

8
√

2 (z − w)3/4

+
(γmnpC)αβ ψm ψn ψp(w)

48
√

2 (z − w)3/4
+ . . . (B.13)

for the R sector.

B.2 Spacetime CFT in D = 4

In D = 4 spacetime dimensions, h = 1
4 spin fields Sa, S

ḃ of both chiralities are present. The OPEs between

spinors and vectors or p-forms treat both chiralities on equal footing, e.g.

ψµ(z)Sa(w) ∼
σµ
aḃ
S ḃ(w)

√
2 (z − w)1/2

+ (z − w)1/2

[
Sµa (w) +

σµ
aḃ√
2
∂S ḃ(w)

]
+ . . . (B.14)

ψµ(z)S ḃ(w) ∼ σ̄ḃaµ Sa(w)√
2 (z − w)1/2

+ (z − w)1/2

[
S ḃµ(w) +

σ̄ḃaµ√
2
∂Sa(w)

]
+ . . . (B.15)

that is why we only display one chiral half of further OPEs:

ψµ(z) ∂Sa(w) ∼
σµ
aḃ
S ḃ(w)

2
√

2 (z − w)3/2
− Sµa (w)

2 (z − w)1/2
+

σµ
aḃ
∂S ḃ(w)

2
√

2 (z − w)1/2
+ . . . (B.16)

ψµ(z)S ḃν(w) ∼ ηµν S
ḃ(w)

(z − w)3/2
+

σ̄ḃaµ Sνa(w)√
2 (z − w)1/2

− ηµν ∂S
ḃ(w)

(z − w)1/2
+ . . . (B.17)
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Four-dimensional SUSY variations of NS operators require

S ḃ(z)ψµ(w) ∼ σ̄ḃaµ Sa(w)√
2 (z − w)1/2

+ (z − w)1/2 S ḃµ(w) + . . . (B.18)

S ḃ(z)ψµ ψν(w) ∼ − (σ̄µν)ḃȧ S
ȧ(w)

2 (z − w)
+
√

2 σ̄[ν|ḃa S|µ]
a (w) +

1

2
(σ̄µν)ḃȧ ∂S

ȧ(w) + . . . (B.19)

S ḃ(z)ψµ ψν ψλ(w) ∼ − 1

2
√

2 (z − w)3/2
σ̄ḃaµνλ Sa(w) − 3

2 (z − w)1/2
(σ̄[µν)ḃȧ S

ȧ
λ](w)

+
1√

2 (z − w)1/2
σ̄ḃaµνλ ∂Sa(w) + . . . (B.20)

S ḃ(z) ∂ψµ(w) ∼ σ̄ḃaµ Sa(w)

2
√

2 (z − w)3/2
− S ḃµ(w)

2 (z − w)1/2
+

σ̄ḃaµ ∂Sa(w)√
2 (z − w)1/2

+ . . . . (B.21)

With two R sector states involved, the OPEs are sensitive to their relative chirality:

Sa(z)Sb(w) ∼ εab
(z − w)1/2

− 1

4
(z − w)1/2 (σµνε)ab ψµ ψν(w) + . . . (B.22)

Sa(z)S ḃ(w) ∼ (σµε)a
ḃ ψµ(w)√
2

+ (z − w)
(σµε)a

ḃ ∂ψµ(w)

2
√

2

− (z − w)
(σµνλε)a

ḃ ψµ ψν ψλ(w)

12
√

2
+ . . . (B.23)

Sa(z)S ḃµ(w) ∼ (σνε)a
ḃ ψµ ψν(w)√

2 (z − w)1/2
+ . . . (B.24)

Sa(z)Sµb (w) ∼ εab ψ
µ(w)

(z − w)
− εab ∂ψ

µ(w)

2
− (σνλε)ab ψ

µ ψν ψλ(w)

4
+ . . . (B.25)

Sa(z) ∂Sb(w) ∼ εab
2 (z − w)3/2

+
(σµνε)ab ψµ ψν(w)

8 (z − w)1/2
+ . . . (B.26)

Sa(z) ∂S ḃ(w) ∼ (σµε)a
ḃ ∂ψµ(w)

2
√

2
+

(σµνλε)a
ḃ ψµ ψν ψλ(w)

12
√

2
+ . . . (B.27)

B.3 Internal CFT for N = 4 SUSY

The internal components of the ten-dimensional NS fermion are denoted by Ψm with vector index m for

the SO(6) R-symmetry. Accordingly, the associated h = 3
8 spin fields ΣI , Σ̄J̄ have SO(6) spinor indices

I, J̄ = 1, 2, 3, 4. Their mutual OPEs can be covariantly expressed in terms of SO(6) gamma matrices:

Ψm(z) ΣI(w) ∼ γIJ̄m Σ̄J̄(w)√
2 (z − w)1/2

+ (z − w)1/2

[
ΣIm(w) +

2 γIJ̄m
3
√

2
∂Σ̄J̄(w)

]
+ . . . (B.28)
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Ψm(z) Σ̄nJ̄(w) ∼
δmn(6) Σ̄J̄(w)

(z − w)3/2
+

γ̄m
J̄I

Σn,I(w)√
2 (z − w)1/2

−
2 δmn(6) ∂Σ̄J̄(w)

3 (z − w)1/2
+ . . . (B.29)

Ψm(z) ∂ΣI(w) ∼ γIJ̄m Σ̄J̄(w)

2
√

2 (z − w)3/2
− ΣIm(w)

2 (z − w)1/2
+

2 γIJ̄m ∂Σ̄J̄(w)

3
√

2 (z − w)1/2
+ . . . (B.30)

We need the following OPEs for computing SUSY transformations of bosons:

Σ̄J̄(z) Ψm(w) ∼ γ̄m
J̄I

ΣI(w)√
2 (z − w)1/2

+ (z − w)1/2

[
Σ̄mJ̄ (w) +

γ̄m
J̄I

3
√

2
∂ΣI(w)

]
+ . . . (B.31)

Σ̄J̄(z) Ψm Ψn(w) ∼ − (γ̄mn)J̄
Ī Σ̄Ī(w)

2 (z − w)
+
√

2 γ̄[n|J̄I Σ
m]
I (w) +

1

6
(γ̄mn)J̄

Ī ∂Σ̄Ī(w) + . . . (B.32)

Σ̄J̄(z) Ψm Ψn Ψp(w) ∼ − 1

2
√

2 (z − w)3/2
γ̄mnp
J̄I

ΣI(w) − 3

2 (z − w)1/2
(γ̄[mn)J̄

Ī Σ̄
p]

Ī
(w)

+
1

2
√

2 (z − w)1/2
γ̄mnp
J̄I

∂ΣI(w) + . . . (B.33)

Σ̄J̄(z) ∂Ψm(w) ∼ γ̄m
J̄I

ΣI(w)

2
√

2 (z − w)3/2
− Σ̄mI (w)

2 (z − w)1/2
+

5 γ̄k
J̄I
∂ΣI(w)

6
√

2 (z − w)1/2
+ . . . . (B.34)

Again, OPEs between R sector states depend on the relative chirality:

ΣI(z) Σ̄J̄(w) ∼ CI J̄
(z − w)3/4

− 1

4
(z − w)1/4 (γmn C)I J̄ Ψm Ψn(w) + . . . (B.35)

ΣI(z) ΣJ(w) ∼ (γm C)IJ Ψm(w)√
2 (z − w)1/4

+ (z − w)3/4 (γm C)IJ ∂Ψm(w)

2
√

2

− (z − w)3/4 (γmnp C)IJ Ψm Ψn Ψp(w)

12
√

2
+ . . . (B.36)

ΣI(z) ΣJm(w) ∼ (γn C)IJ Ψm Ψn(w)√
2 (z − w)3/4

+ . . . (B.37)

ΣI(z) Σ̄mJ̄ (w) ∼ CI J̄ Ψm(w)

(z − w)5/4
− CI J̄ ∂Ψm(w)

2 (z − w)1/4
− (γnp C)I J̄ Ψm Ψn Ψp(w)

4 (z − w)1/4
+ . . . (B.38)

ΣI(z) ∂Σ̄J̄(w) ∼ 3CI J̄
4 (z − w)7/4

+
(γmn C)I J̄ Ψm Ψn(w)

16 (z − w)3/4
+ . . . (B.39)

ΣI(z) ∂ΣJ(w) ∼ (γm C)IJ Ψm(w)

4
√

2 (z − w)5/4
+

5 (γm C)IJ ∂Ψm(w)

8
√

2 (z − w)1/4

+
(γmnp C)IJ Ψm Ψn Ψp(w)

16
√

2 (z − w)1/4
+ . . . (B.40)
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B.4 Internal CFT for N = 1 SUSY

Most of the OPEs relevant for the internal c = 9 SCFT described in subsection 2.2.5 can be derived from

the CFT of a free boson:

i∂H(z) eiqH(w) ∼
[

q

z − w + i∂H(w) + . . .

]
eiqH(w) (B.41)

eiqH(z) i∂H(w) ∼
[

q

z − w + (q2 − 1) i∂H(w) + . . .

]
eiqH(w) (B.42)

eiq1H(z) eiq2H(w) ∼ (z − w)q1q2
[
1 + q1 (z − w) i∂H + . . .

]
ei(q1+q2)H(w) (B.43)

This allows to reproduce (2.77) and (2.83) from the bosonized representations (2.84) of the operators J , Σ±

and O±. Moreover, we have

Σ±(z)J (w) ∼ ±
√

3 Σ±(w)

2 (z − w)
∓ ∂Σ±(w)

2
√

3
+ . . . (B.44)

Σ±(z)O∓(w) ∼ (z − w)−3/2 Σ∓(w) − (z − w)−1/2 ∂Σ∓(w) + . . . (B.45)

The excited spin fields Σ̃± = g∓e±iH/
√

12 are canonically normalized

Σ̃±(z) Σ̃∓(w) ∼ 1

(z − w)11/4
± i∂H(w)

2
√

3 (z − w)7/4
+ . . . (B.46)

Σ̃±(z) Σ̃±(w) ∼ g∓ g∓ e
± iH√

3 (w)

(z − w)1/4
+ . . . (B.47)

such that the mutual singularities between standard and excited spin fields are given by

Σ̃±(z) Σ±(w) ∼ (z − w)1/4 g∓ e
± 2i√

3
H

(w) + . . . (B.48)

Σ̃±(z) Σ∓(w) ∼
√

2

3

G∓int(w)

(z − w)1/4
+ . . . (B.49)

Moreover, in presence of the internal supercurrents G±int =
√

3
2e
±iH/

√
3g±,

G±int(z) Σ̃±(w) ∼
√

3

2

Σ±(w)

(z − w)5/2
+

√
2

3

∂Σ±(w)

(z − w)3/2
+ . . . (B.50)
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G±int(z) Σ̃∓(w) ∼
√

3

2

g± g± e
± i

2
√

3
H

(w)

(z − w)1/2
+ . . . (B.51)

Σ̃±(z)J (w) ∼ ± Σ̃±(w)

2
√

3 (z − w)
+ . . . (B.52)

C Spinor helicity methods for massive wavefunctions

Before we proceed to introduce the massive version of the spinor helicity formalism, we will make a short

review for the helicity formalism of massless spinors. For massless spin- 1
2 spinors, we use the following

notations,

|i〉 = |ki〉 = u+(ki) = v−(ki) =

(
0

k∗ȧi

)
, (C.1)

|i] = |ki] = u−(ki) = v+(ki) =

(
ki,a
0

)
, (C.2)

[i| = [ki| = ū+(ki) = v̄−(ki) = (kai , 0) , (C.3)

〈i| = 〈ki| = ū−(ki) = v̄+(ki) =
(
0, k∗i,ȧ

)
. (C.4)

Here the momentums with spinor indices denote two component commutative spinors. They are defined by

P ȧa = pµσ̄
µȧa = −p∗ȧpa, (C.5)

Paȧ = pµσ
µ
aȧ = −pap∗ȧ, (C.6)

where p∗ȧ = (pa)∗ and p∗ȧ = (pa)∗. Spinor indices could be raised (lowered) by εab (εab) or a, b with dots,

pa = εabpb, p∗ȧ = εȧḃp∗
ḃ
. (C.7)

Then we can define the notations for the spinor products,

〈pq〉 = 〈p|q〉 = ū−(p)u+(q) = p∗ȧq
∗ȧ, (C.8)

[pq] = [p|q] = ū+(p)u−(q) = paqa, (C.9)
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so that simply we have

[pq] = −[qp], 〈pq〉 = −〈qp〉, (C.10)

〈pq〉∗ = −[pq], 〈pp〉 = [pp] = 0, (C.11)

and

〈pq〉[qp] = −2(p · q). (C.12)

C.1 Massive spin one boson

A spin J particle contains 2J + 1 spin degrees of freedom associated to the eigenstates of Jz. The choice

of the quantization axis z can be handled in an elegant way by decomposing the momentum k into two

arbitrary light-like reference momenta p and q:

kµ = pµ + qµ, k2 = −m2 = 2pq, p2 = q2 = 0. (C.13)

Then the spin quantization axis is chosen to be the direction of q in the rest frame. The 2J + 1 spin

wavefunctions depend of p and q, however this dependence drops out in the amplitudes summed over all spin

directions and in “unpolarized” cross sections.

The massive spin one wavefunctions ξµ (transverse, i.e., ξµk
µ = 0) are given by the following polarization

vectors [59,60], up to a phase factor,

ξµ+(k) =
1√
2m

p∗ȧσ̄
µȧaqa, (C.14)

ξµ0 (k) =
1

2m
σ̄µȧa(p∗ȧpa − q∗ȧqa), (C.15)

ξµ−(k) = − 1√
2m

q∗ȧσ̄
µȧapa. (C.16)

153



C.2 Massive spin two boson

The massive spin two boson αµν satisfies the following conditions,

αµν(k, λ) = ανµ(k, λ), (C.17)

kµα
µν(k, λ) = 0, (C.18)

gµνα
µν(k, λ) = 0, (C.19)

where λ expresses the helicity of αµν . We do the same decomposition of the momentum, and the wavefunction

of a spin two boson can be written as [59],

αµν(k,+2) =
1

2m2
σ̄µȧaσ̄νḃbp∗ȧqap

∗
ḃ
qb , (C.20)

αµν(k,+1) =
1

4m2
σ̄µȧaσ̄νḃb

[
(p∗ȧpa − q∗ȧqa)p∗

ḃ
qb + p∗ȧqa(p∗

ḃ
pb − q∗ḃ qb)

]
, (C.21)

αµν(k, 0 ) =
1

2
√

6m2
σ̄µȧaσ̄νḃb

[
(p∗ȧpa − q∗ȧqa)(p∗

ḃ
pb − q∗ḃ qb)− p

∗
ȧqaq

∗
ḃ
pb − q∗ȧpap∗ḃqb

]
, (C.22)

αµν(k,−1) =
1

4m2
σ̄µȧaσ̄νḃb

[
(q∗ȧqa − p∗ȧpa)q∗

ḃ
pb + q∗ȧpa(q∗ȧqa − p∗ḃpb)

]
, (C.23)

αµν(k,−2) =
1

2m2
σ̄µȧaσ̄νḃbq∗ȧpaq

∗
ḃ
pb . (C.24)

C.3 Massive spin 1/2 fermions

Massive spin- 1
2 fermions satisfy the Dirac equation,

(/k +m)u(k) = 0, (C.25)

(/k −m)v(k) = 0, (C.26)

where u(k) and v(k) are positive and negative energy solutions with momentum kµ, which correspond to

fermion and anti-fermion wavefunctions respectively. Since we do not deal with the wavefunctions of the

negative energy solutions, we will only present u(k) wavefunction here. u(k) satisfies the spin-sum relations,
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orthogonal condition and the normalization condition,

∑

spin

u±(k)ū±(k) = −/k +m, (C.27)

ū±(k)u∓(k) = 0, (C.28)

ū±(k)u±(k) = 2m, (C.29)

Writing the four component spinor u(k) as

u =

(
χa
η̄ȧ

)
(C.30)

and plugging it into the Dirac equation, we get

kµ




0 σµaȧ

σ̄µȧa 0



(
χa
η̄ȧ

)
= −m

(
χa
η̄ȧ

)
. (C.31)

The Dirac equation is decomposed to,

kµσ̄
µȧaχa = −mη̄ȧ, (C.32)

kµσ
µ
aȧη̄

ȧ = −mχa. (C.33)

Making the same decomposition of the momentum kµ = pµ + qµ, we can obtain the wavefunction of the

massive spin- 1
2 fermion [60],

u+(k) =

( 〈qp〉
m qa
p∗ȧ

)
, (C.34)

u−(k) =

(
pa

[qp]
m q∗ȧ

)
. (C.35)
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C.4 Massive spin 3/2 fermions

A massive spin- 3
2 fermion are described by a Rarita-Schwinger spinor-vector ΨA,µ which satisfies equations,

(i/∂ −m)ABΨB,µ = 0, (C.36)

(γµ)ABΨB,µ = 0, (C.37)

∂µΨB,µ = 0, (C.38)

where A and B are spinor indices. Again we only consider the positive energy solution U , it satisfies,

(6k +m)ABU(k)B,µ = 0, (C.39)

ŪA,µ(k, λ)UA,µ(k, λ
′
) = 2mδλλ′ . (C.40)

The wavefunction of U can be written as [60],

UA,µ(+
3

2
) =

1√
2m

( 〈qp〉
m qa
p∗ȧ

)
(p∗
ḃ
σ̄µḃbqb) , (C.41)

UA,µ(+
1

2
) =

σ̄µḃb√
6m

[( 〈qp〉
m qa
p∗ȧ

)
(p∗
ḃ
pb − q∗ḃ qb) +

( 〈qp〉
m pa
−q∗ȧ

)
(p∗
ḃ
qb)

]
, (C.42)

UA,µ(−1

2
) =

σ̄µḃb√
6m

[(
pa

[qp]
m q∗ȧ

)
(p∗
ḃ
pb − q∗ḃ qb) +

( −qa
[qp]
m p∗ȧ

)
(q∗
ḃ
pb)

]
, (C.43)

UA,µ(−3

2
) =

1√
2m

(
pa

[qp]
m q∗ȧ

)
(q∗
ḃ
σ̄µḃbpb) . (C.44)

D Wigner d-matrix

The Wigner D-matrix (a.k.a. Wigner rotation matrix), introduced in 1927 by Eugene Wigner, is a dimension

2j + 1 square matrix, which is in an irreducible representation of groups SU(2) and SO(3). The matrix is

defined to be:

D
(j)
m′,m(α, β, γ) = 〈jm′|R(α, β, γ)|jm〉 = e−im

′αd
(j)
m′,m(β)e−imγ , (D.1)
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where α, β, γ are Euler angles, and djm′,m(β), known as Wigner reduced (or small) d−matrix, is given by a

general formula [77,78]:

d
(j)
m′,m(β) =

√
(j +m′)!(j −m′)!
(j +m)!(j −m)!

∑

s

(−)j−m
′−s

×




j +m

j −m′ − s







j −m

s



(

cos
β

2

)m′+m+2s(
sin

β

2

)2j−m′−m−2s

. (D.2)

The sum over s is over such values that the factorials are non negative. Two important relations follow from

the above expression:

d
(l)
0,0(θ) = Pl(cos θ), (D.3)

where Pl(cosθ) is the Legendre polynomial, and

d
(j)
m′,m(θ) = (−1)j−md

(j)
m′,−m(θ + π). (D.4)

For j ≤ 4, the following Wigner d-matrices appear in the factorized four-gluon amplitudes:

• d(j)
0,0(θ)

d
(0)
0,0(θ) = P0(cos θ) = 1, (D.5)

d
(1)
0,0(θ) = P1(cos θ) = cos θ, (D.6)

d
(2)
0,0(θ) = P2(cos θ) =

1

2
(3 cos2 θ − 1), (D.7)

d
(3)
0,0(θ) = P3(cos θ) =

1

2
(5 cos3 θ − 3 cos θ), (D.8)

d
(4)
0,0(θ) = P4(cos θ) =

1

8
(35 cos4 θ − 30 cos2 θ + 3). (D.9)

• d(j)
2,±2(θ)
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d
(2)
2,±2(θ) =

(
1± cos θ

2

)2

, (D.10)

d
(3)
2,±2(θ) =

1

4
(3 cos3 θ ± 4 cos2 θ − cos θ ∓ 2), (D.11)

d
(4)
2,±2(θ) =

1

4
(7 cos4 θ ± 7 cos3 θ − 6 cos2 θ ∓ 5 cos θ + 1). (D.12)

• d(j)
2,±1(θ)

d
(2)
2,±1(θ) =

1

2
sin θ(1± cos θ), (D.13)

d
(3)
2,±1(θ) =

√
10

8
sin θ(±3 cos2 θ + 2 cos θ ∓ 1), (D.14)

d
(4)
2,±1(θ) =

√
2

8
sin θ(±14 cos3 θ + 7 cos2 θ ∓ 8 cos θ − 1). (D.15)
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