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Abstract

This thesis is based on the author’s work [143] conducted from September 2009 to May
2012 at Northeastern University, Boston, MA, USA, and also at Max-Planck-Institut fir
Physik, Munich, Germany as a visiting student, under supervision of Professor Tomasz

Taylor.

In this thesis, we focus on the massive superstring states. Starting from a short re-
view on the first massive level open string states in ten dimensions, we investigate the
four-dimensional physical open string states under N' = 4, 2,1 compactifications. We find
these physical states split into certain supermultiplets by working out explicitly their su-
persymmetry transformations. We then focus on the universal states which are common
to all compactifications, their scattering amplitudes are the most appealing and important
for these scattering processes could generate model-independent stringy signals which could
be tested at the Large Hadron Collider if the fundamental string mass scale is as low as a
few TeVs. Finally, we explore some general properties of higher level massive superstring
states and give the first example of the use of the on-shell recursion relations of scattering

amplitudes in superstring theory.
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1 Introduction

String theory is perhaps the most successful and also the most ambitious approach to the unified theory of
particle physics, gravity, and quantum physics today. The fact that string theory easily includes the gauge
interactions and also gravitational force at quantum level, assures string theory describe all the four known
fundamental forces — gravitational, electromagnetic, weak and strong interactions, and also matter particles
in a mathematically consistent system. This fact leads many physicists to believe that string theory is the
correct fundamental description of the nature.

String theory was originally invented as a model for describing the spectrum and the S-matrix of hadrons.
The famous Veneziano amplitudes [4] contains an infinite number of string excitations, where the hadronic

particles essentially follow the Regge trajectories of vibrating strings,

j:j0+O/M2 ; (11)

2 _ /-1

with the spin j and o’ the Regge slope parameter which indicates the fundamental string scale M. «

string —
As a theory of hadrons, the string scale has to be chosen of order of the relevant hadronic mass, i.e.,
Mging = O(GeV). However, due to several difficulties within the theory, and QCD was recognized to be
the correct theory of strong interactions, and string theory as a model for hadrons was left aside.

In 1974 a radical change of paradigm in string theory took place, when Scherk and Schwarz proposed
string theory as a fundamental theory for quantum gravity [5]. The massless spin two closed string excitation
has all properties of the graviton particle in the quantized version of general relativity. As pointed out by the
authors, this observation seemingly implies that the string scale now has to be identified with the fundamental
scale of gravity — the Planck scale Mpranac =~ 1012 GeV. If this is the case, the masses of all string excitations
are as high as Planck scale and thus not accessible for direct production and discovery at current accelerators
like the LHC.

The situation drastically changes when one compactifies the ten-dimensional superstring theory to four

spacetime dimensions to make contact with the Standard Model of particles physics (for a review see [6]).

Meanwhile, the uniqueness of string theory was destroyed during the compactification, since string com-



pactifications allow for a huge number of these possible ground states, which could be as large as order
of 10°% [7,)§], which was referred as the landscape problem. Each of these vacua in the string landscape
corresponds to a different universe with different physics and different cosmological properties.

However, after compactification, the string scale Mgying is not necessarily at the order of the Planck
mass, it is a free parameter, which can be as low as a few TeV |9, 1()]E| This is particularly true in D-brane
compactifications, where the Standard Model is living on a lower dimensional brane, that might be embedded
into the internal, compact six-dimensional Calabi-Yau space used for compactification.

In this brane world scenario the elementary particles, such as quarks, leptons, gluons, photons, weak
bosons and the Higgs particles arise as open string excitations, whose ends are attached to the world volumes
of the intersecting D-branes. Specifically, gauge bosons are due to strings attached to stacks of D-branes
and chiral matter due to strings stretching between intersecting D-branes. Hence, now the colored quarks
and gluons are elementary open strings, from which it follows that there exist higher spin Regge excitations
of the quarks, gluons, and of all Standard Model fields.

It has been shown in [13}[14] that the production cross sections of gluons and quarks at the LHC into
massive string excitations can be computed in a completely universal, model independent way, allowing for
universal string predictions in case the string scale is low. The corresponding tree level string cross sections
are independent from in the internal geometry and hence independent from the particular location of the
model in the string landscape. This observation nullifies the notorious landscape problem.

At the energy around few TeVs, stringy corrections due to new colored Regge modes will become im-
portant. Their production and subsequent decay will then lead the discovery of these universal heavy string
excitations. Eventually there will be a full tower of elementary open string Regge modes. Direct detection
of such vibrating string modes is possible at the LHC. For a survey of low-mass superstring phenomenology
and early references, see [15/16]. At first, one would see Regge excitations indirectly, in the excess of pho-
tons [17118], jets [19,/20], heavy quarks |21] and leptons due to the resonant enhancement of their production
rates. In another paper [22] by the author, we discussed the possible signals of low mass string resonances
+

in eTe” and 77y collisions at future lepton colliders. The effects of Regge resonances and KK gravitons are

L A low mass string scale below 4 TeV has been already excluded by CMS with recent data of LHC7 run [11}/12].
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also discussed in [23H26].

Once the center-of-mass energies of the colliding partons is crossed the mass threshold M, one would also
see free Regge states produced directly, in association with jets, photons and other particles. We will discuss
direct production of the lightest universal Regge particles, i.e., the quanta of fundamental string harmonics
with masses equal M. In fact, the first massive gluonic resonances can be shown to have spin 0,1, and 2,
whereas the first quarks resonances have spin 1/2 and spin 3/2, respectively. These lowest excitations will
be found exactly at mass Mg;,ing, and they are followed by the infinite tower of higher Regge excitations. So
in case Mgiring =~ O(TeV), these universal string Regge excitations should be easily found at the LHC. These
universal scattering amplitudes involving one massive particle and two or three massless ones are computed.
The amplitudes relevant to the direct production of string resonances at the LHC are p1ps — p3R, where
p (= g,q,q) are partons and R is a massive string state. These universal amplitudes will be one of the main
focus on this thesis.

However, other than these “universal” states, the spectrum of Regge excitations are highly model-
dependent. For example, in the toroidal compactifications of a single ten-dimensional D9-brane one en-
counters 128 bosons and 128 fermions at the first massive level. Most of these particles are tied to N'=4
supersymmetry of toroidal compactifications. We then, take a detailed analysis to exploit some of the basic
supersymmetry properties of the first massive level superstring states in four dimensions, originating from
supersymmetric type II compactifications. Besides world-sheet conformal invariance, supersymmetry plays
a key role for the consistency of string theory, both on the world-sheet as well as in target space. In ten
spacetime dimensions, the type IIB(A) superstring exhibits extended (non-)chiral N' = 2 spacetime super-
symmetry with in total 32 supersymmetry charges. It follows that all massless as well as all massive closed
string states are organized in supermultiplets of the ten-dimensional ' = 2 supersymmetry algebra. This
leads to a very subtle interplay between massive string excitations with different higher spins that belong
to common supersymmetry multiplets. In fact, the covariant world-sheet vertex operators of the higher
spin states must transform into each other when acting on them with the supersymmetry charge operators.
Hence, spacetime supersymmetry must be reflected in the structure of the world-sheet BRST cohomology

on each mass level of the higher spin excitations.

11



Going from ten to lower dimensions, parts or all of spacetime supersymmetry can be preserved during
the compactification process. As it is known already for several years [27H30], there exists a deep relation
between the number of spacetime supersymmetries, preserved by the compactification, and the number
of world-sheet supersymmetries of the corresponding internal superconformal field theory. Specifically, for
type II compactifications on six-dimensional Calabi-Yau spaces, which correspond to ¢ = 6 SCFT’s with
(2,2) world sheet supersymmetry, one obtains in the closed string sector four-dimensional ' = 2 effective
supergravity theories with 8 preserved supercharges in the bulk. Second, type II compactification on K3 x T2
with four-dimensional N' = 4 spacetime supersymmetry (16 bulk supercharges) can be described by the
direct product of two SCFT’s with central charges ¢ = 4 and ¢ = 2, where the ¢ = 4 part possesses (4,4)
supersymmetry on the world-sheet. Finally, compactifications on a six-dimensional torus leads to effective
type II supergravity theories with maximal A/ = 8 supersymmetry (32 bulk supercharges).

However, when also including D-branes and open strings, the number of spacetime supersymmetries
is reduced by half compared to the closed string bulk sector, we just discussed above. First, toroidal
compactifications of type II superstrings lead to Yang-Mills open string sectors with N' = 4 supersymmetry
in D = 4. Next, the I[IB K3 x T? orientifolds with D5/D9-branes lead to A/ = 2 supersymmetric Yang-Mills
theories in four dimensions. These theories originate upon compactification on 72 from D = 6, IIB theories
on K3 with (1,1) spacetime supersymmetry. And finally, the effective, four-dimensional Yang-Mills theories
of type IIB, Calabi-Yau orientifolds with D3/D7-branes or with D5/D9-branes (or type ITA Calabi-Yau
orientifolds with intersecting D6-branes) possess just N/ = 1 supersymmetry.

We are going to systematically construct the covariant vertex operators of the lowest massive open string
supermultiplets for all three cases of N' = 4,2, 1 spacetime supersymmetry on the corresponding D-branes.
We will focus in particular on those massive supermultiplets and their SUSY transformations in the universal

sector, which are always present in any four-dimensional orientifold models:

e For N' = 4 super Yang-Mills, there is a single massive, spin two supermultiplet with 128 bosonic as

well as 128 fermionic degrees of freedom.

e Finally, for N' = 2 super Yang-Mills we are dealing with 40 + 40 massive open string states, being

organized in one spin two plus two spin one massive supermultiplets.

12



e The supermultiplets of the universal N' = 1 sector contains one spin two supermultiplet and two spin

1/2 representations with in total 12 + 12 bosonic and fermion degrees of freedom.

In this way we extend the analysis of [30] about the relation between world-sheet and spacetime supersym-
metries and their closed string (massless) supermultiplet structure to the case of the massive, open string
supermultiplets. At the same time we are giving here a massive version of the SUSY multiplet analysis
in [31], where it was shown that SUSY Ward identities among scattering amplitudes are valid to all orders
in o/, and where the spinor helicity methods were applied to make efficient use of these Ward identities.
Finally, we go one further step — studying some general properties of arbitrary higher level massive
superstring states, as recently, there is also growing interest in the dynamics of higher spin states in string
theory [32H42]. We are particularly interested in massive particles that couple to massless gauge bosons
according to “(anti)self-dual” selection rules. These particles decay into two gauge bosons with the same (say
-++) helicities only and to more gluons in “mostly plus” helicity configurations. We rely on the factorization
techniques [43]. They allow identifying not only the spins of Regge resonances propagating in a given channel,
but also their couplings and decay rates. We construct the vertex operators for all “universal” bosons of
the Neveu-Schwarz (NS) sector in the second massive level. We compute the amplitudes involving one such
state and two or three gluons, focusing on the decays of the (anti)self-dual massive (complex) vector fields.
The amplitudes describing decays of heavy states into gauge bosons are also important for the superstring
generalization of Britto-Cachazo-Feng-Witten (BCFW) recursion relations [44H47] to disk amplitudes with
arbitrary number of external gauge bosons. Recently, it has been argued that the BCFW-deformed full-
fledged string amplitudes have no singularities at the infinite value of the deformation parameter, therefore
BCFW recursion relations should be valid also in string theory [48-53]. This approach to constructing the
scattering amplitudes is however highly impractical because in order to increase the number of external
massless particles from N to N + 1, one needs to compute an infinite number of amplitudes involving one
massive state and N — 1 massless ones, for all mass levels. It may be useful, however, for revealing some
general properties of the amplitudes. We show that at least the four-gluon amplitude can be obtained by a
BCFW deformation of a factorized sum involving on-shell amplitudes of one massive Regge state and two

gauge bosons.
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This thesis is organized as follows. In Chapter [2| we introduce the covariant quantization and the tech-
niques of conformal field theory (CFT) as the tool to construct the physical string states. With some review
of massive superstring states in ten-dimensions, we then present the physical superstring states in four-
dimensions after the compactifications. In Chapter [3| we find all the physical states are connected by the
supersymmetry (SUSY) relations, and they form certain supermultiplets. To understand the structure of
these supermultiplets, we use the massive helicity formalism, and investigate the interplays between individu-
al polarization states. In Chapter 4] we focus on the universal states which common to all compactifications,
compute the scattering amplitudes with the Standard Model (SM) particles, which are zero mode of quan-
tized string. If the fundamental string scale is around a few TeVs, there is a chance of observing the stringy
signals at the Large Hadron Collider (LHC). In Chapter |5 we investigate some general properties of higher
level massive string states. We also give the first example of the use of BCFW recursion relations in the

superstring theory. In the end, we make some final remarks in Chapter [6}
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2 Physical superstring states in the first massive level

As the main focus of this thesis, we are going to discuss the physics of massive superstring states in four
dimensions, especially, which belong to the first massive level. In this chapter, we will first review some basic
knowledge of BRST quantization, and vertex operators of ten-dimensional physical open string states. They
comprise in total 128 + 128 bosonic as well as fermionic states. We verify that these states form a massive
representation of the ten-dimensional (type I) N' =1 SUSY algebra. Next, we consider the SCFT’s of string
vacua in four dimensions, and discuss the relation between the extended world-sheet superconformal algebras
and the spacetime N = 4,2,1 SUSY algebras and the covariant vertex operators for the corresponding
supercharge operators. Then we construct the physical massive open string states in NS and R sectors for
the three cases of N'=4, N/ =2 and N = 1 supersymmetry in four dimensions respectively.

This chapter is based on the paper [3].

2.1 The first mass level in ten dimensions

The lightest Regge excitations of open superstring theory in ten-dimensional Minkowski spacetime were firstly
constructed in 1987 [54]. Let us briefly review the general method to construct heavy string excitations as
well as the explicit results of [54] and then offer a covariant approach to the excited Ramond sector states.

We are going to use the covariant methods (BRST) to construct the physical states. Physical states
belong to the cohomology of the BRST operator Qprst. In the world-sheet variables of the RNS formalism,

it splits into three pieces of different superghost charge:

Qprst = Qo + @1 + Q2 (2.1)
dz
Qo = ff,(c(:m:rm) + beoe) | (2.2)
21
Q = - d—Z.sz—fd—Z.e%G, (2.3)
271 T
_ ol fde o 1 [de o
@ = —7¢5507 = 4f2m'be nom . (2:4)
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We denote the ¢ = 15 stress tensor and supercurrent of the matter ﬁeldﬂ 10X™ ™ by T and G, respectively,
whereas T, captures the 3,7 superghost system of ¢ = 11. The latter is partially bosonized in terms of
exponentials e?® (with ¢ denoting a free chiral boson) and completed by a pair of h = 1,0 fermions 7, . The
Grassmann odd ghost system (b, ¢) is well-known from the bosonic string.

States of uniform superghost charge are BRST closed only if they are annihilated by Qg, @1 and Q-
separately. Closure under Qg forces vertex operators to be a Virasoro primary of unit weight, while Qs
does not contribute in the ghost pictures considered in this paper. Hence, given a vertex operator ansatz of

suitable conformal weight, only the )1 constraint involving the supercurrent

G(z) = 2\/12? 10X m(2) Y™ (2) (2.6)

has to be evaluated separately.

2.1.1 Physical states in the NS sector

2:

The lowest mass m —k? = 1/’ for Regge excitations assigns conformal weight h = —1 to the plane wave

e'*X which introduces spacetime momentum into vertex operators. In the NS sector of canonical superghost

3

5 combination of :0.X™, 9" oscillators to form

charge —1, it can combine with the h = % field e~ and a h =

kX" contribution,

a Virasoro primary of unit conformal weight in total. (Hence, neglecting the plane wave e°
the massive states at first mass level always correspond to vertex operators with conformal dimension h = 2.)

The most general h = 1 ansatz for the first massive NS sector states involves threﬁ h = % operators

10X™Y", Y™YPp™PP and OY™ along with polarization wavefunctions B, Emnp, Hm:
VOB, E, H,k,2) = ( Buni0X™ 0" 4+ By 0™ 0767 + Hy 0™ ) =% €% (2.7)

The BRST constraints arising from (1 admit two physical solutionsﬁ namely a (traceless and symmetric)

20ur normalization conventions for the world-sheet matter fields are fixed by

2 ! omn
OX™(2) i0X™ (w) ~ ﬁ o, Y RY(w) ~ :ﬁw

+o (2.5)

3The addition of &,9™d¢e~? is neglected because it can be absorbed into a total derivative.
4Throughout this and the next chapter, we set vertex operator normalization factor ga = v/2a/gyn from [13,|14] to unity.

16



spin two tensor B,,, and a three-form E,,,;:

— 1 . m . n _— 1k- m m
v 1)(B,k,z)=7ﬁ3mnza)( e e X k"B, = Bp™ = By = 0,  (28)
1 )
V(*l)(E7 ]4;7 Z) — 6 Emnp wm ¢n wp efcb ezk~X , Em Emnp =0. (2.9)

Both polarizations are transverse and therefore naturally fall into representations of the stabilizer group
S0O(9) of massive momenta. The number of degrees of freedom is 2% — 1 = 44 for By, and 23T = 84 for

Ernp, i.e. we have 44 + 84 = 128 bosonic states in total.

Some of the solutions to the BRST constraint turn out to be QpgrsT exact:

[QBRST ; 6_2¢ E[mn] ’L/)m ’L/)n 85 eik'X ] ~ (2 Z[rnn] i0X™ ’L/)n + E[mfn kp] ’L/)m T/)n ’L/)p) 6_¢ eik.X )

[QBRST , e 2P, i0X™ OF eth X ] ~ (ﬂ‘m o™ + o kp i0X™ YY" ) e~ P et X (2.10)

[Qprst , O 2209¢e™X ] ~ ( [nm" + 2k, kn} OX™ Y™ + 3k, adyn) o= ik X

2a/

These spurious states parametrized by a two-form ¥,,,, a vector 7, and a scalar of SO(9) (i.e. subject to

k™Y = k™ my = 0) decouple from physical states.

2.1.2 Excited spin fields and physical states in the R sector

In the R sector, the canonical superghost vacuum is created by the h = % field e=#/2. Masses m? = 1 /o’
allow for an h = % operator to complete fermionic vertex operators for the first mass level. The matter
sector of the R ground states corresponds to h = % spin fields S, transforming as left-handed spinors of the
Lorentz group [55,56]. The right-handed chirality is forbidden by GSO projection. The role of S, to open

or close branch cuts for the ¢™ is reflected in the OPE
_ SB(w) + ... (2.11)

The nontrivial three-point interactions between " and S, render their covariant correlation functions

inaccessible to the Wick theorem, one has to use techniques of [57,/58] instead to compute higher order

17



correlators. Only by breaking SO(1,9) to its SU(5) subgroup, one can relate the ¢»™ and S, to a free field

system of chiral bosons Hi 2. 5:

wm VN e:l:iHm , Sa PN e:tiHl/Q e:l:ng/Q e:l:iH3/2 6:|:iH4/2 e:l:iH5/2 . (2.13)

It is clear from this bosonized representation that the subleading term o(z —w)'/? of the OPE (2.11)) involves

oE3iHk/2 +iH} /2

primary operators, in addition to the derivatives de The covariant description of these new

excited primary fields requires an irreducible vector spinor
Sﬁl & eTiBH1/2 oFiHa/2 (HiHa/2 oHiHa/2 o+iHs/2 m gh _ (2.14)

13

of weight h = 3, where the gamma tracelessness condition subtracts the descendant components 95, <>

O(eEiH1/2¢Ei /2o EiHs /2 xiHa/2%iH5/2) - The introduction of S8 and 85, is the covariant way to disen-

tangle the primary field- and descendant components within the operator wmwswg/? used in [54]. The

completion of the OPE (2.11)) to the subleading level reads

™GB (1) .
Y™ (2) So(w \/;“(iw)m + (z—w)¥? | 8™ (w) + %yggasﬁ(w) + ... (2.15)

in D = 10. A more exhaustive list of OPEs involving ¥™, S, and Sfl (and their counterparts of opposite
SO(1,9) chirality) can be found in appendix [B.1]
After the GSO projection, the most general vertex operator for spacetime fermions at the first mass level

involves the h = % operators i0X™S,, S,él and 0S5, and therefore two vector spinor wavefunctions vg,, ﬁgl

5 We should admit that our discussion neglects Jordan-Wigner cocycle factors [56]. These are additional algebraic objects
accompanying the exponentials to ensure that eTiHr and eT*Hi associated with different bosons k # | anticommute. We
drop cocycle factors to simplify the notation, it suffices to remember that they are implicitly present and that the bosonized
representation of ¥* still obeys Fermi statistics. The instance where they contribute a phase is commented on above .
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as well as spinor wavefunction u®:
VEYD (y, puk, 2) = (vg; i0X™ So + P SB 4 oy asa) e~ 92 gtk X (2.16)

Since p is contracted with the excited spin field S8

v, we can regard it as vy traceless, i.e. ﬁg“_yfif‘ = 0. The

independent ;7 BRST constraints for (2.16]) can be summarized as

0=2d"vg, Kog + \@ﬁm,ﬂ + %uo"ymag, (2.17)

0=2V2k. 0l — Ju Kys - (2.18)
Disentangling the SO(1,9) irreducibles of the former allows to express u®* and ﬁg”” in terms of vy,

_ 1 _
pro= —V2d (v’"c' K + mvg(%v”'ym)ag> ; (2.19)

W= B (s (2.20)
whereas yields an extra constraint on the only independent polarization vy :
U Vop = 20" K™ g, Ko - (2.21)
As recognized in [54], there is a physical solution v2, = x&, of spin 3/2

VYD (4 k) = (3 0X™ So = V2a/ X K S ) €02 R (2.22)

1
\/50/1/4

0=FE"Xm = Xm Vag
and one spurious state associated with the gamma trace choice v%, = £, 0% + %@B (Kym) g™

[QBRST s 6734)/2 8€ Ch kaf} Sﬁ eik.X] ~ ( [k'm 0% + % @,3 (k’}/m)ﬁa] i0X™ Sa

[ K™ O% K 5 + 15070 ] SE o+ g CH asa) em9/2 X (2.23)

Sl
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which allows to gauge away the u® wavefunction.

2.1.3 Ten-dimensional SUSY transformations

The SUSY charge in open superstring theory is given by the massless gaugino vertex at zero momentum [27]:

1 dz
(=1/2) _ el —¢/2
)8 = i/ % " Sa e . (2.24)

It transforms R sector states in their canonical —1/2 superghost picture into canonical NS vertex operators
oe~?. The contour integral is evaluated by performing OPEs between the S, and e~?/2 fields from the
supercharge at point z and the vertex operator V(=1/ 2)(w) of the fermion in question. Appendix gathers
the required OPEs for the D = 10 case.

The inverse transformation from the NS sector to the R sector requires the 4+1/2 picture representative
of the SUSY generator

gtz - 1 jf 920X,y G802 (2.25)

T 2a3/4 | 2mi af

The latter allows to write down the ghost neutral /=1 SUSY algebra in ten dimensions,

L f92 iox,, . (2.26)

(+1/2) (=1/2)\ _ (im -
{ Qu ) Q,B } (v C)aﬁ P, P, O o

Let us list the SUSY variations of the physical D = 10 vertex operators. The NS sector states (2.8) and

(2.9) have already been discussed in [54]

[0 QYD VEVBLE)] = VEUD (i = J5Ban (i K97)" ) (2.27)
[1° QG2 VENER)] = VOV (x5 = Gl [Buny 07™)® = § Bupg (177"
- %/ km Enpq (77 %,anq)a] ) . (228)

In addition, we use the covariant OPEs from appendix to compute the SUSY variation of the massive
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gravitino (2.22)):

[~ Q2 v (k)] = vEY (an = S5 (0 K X(m) by + T3 (1m Xn)))
+ V(_l) (Emnp = 30/1/2 (77 Vim Xn) kp - %all/Z (n’Y[np ka])) . (2'29)

2.2 CFTs of supersymmetric string vacua in four dimensions

In this section we will first review some basic facts about extended supersymmetry algebras in four spacetime
dimensions and about the general relation between extended spacetime supersymmetries and world-sheet
supersymmetries. In part, we are following the work in references [28-30]. Our conventions for indices w.r.t.

Lorentz symmetry SO(1,3) and R-symmetries SO(6) or SU(2) are gathered in appendix

2.2.1 The four-dimensional spacetime supersymmetry algebra

The N supercharges Q! as well as the complex conjugate operators Q% satisfy the AM-extended supersym-

metry algebra (I,I=1...,N)

{0, Q%) = Cl(o"e). Py,

{Q.. &) = ewZ. (2.30)

P* is the momentum operator and the Z!7 are central charges, which are antisymmetric in I,.J and can
therefore appear in the N' > 2 supersymmetry algebra only.

Next let us discuss the representations of the extended supersymmetry algebras, namely how the super-
charges in general act on massless and on massive states. Let us first recall the case of massless states. Here

we can choose a frame where the momenta are k* = (E,0,0, E), the supercharges are

ol = o', Qb = Q;, whereas 0=0Q?=07. (2.31)

21



In terms of Qf and Q; the supersymmetry algebra takes the form

1
6J,

{o", 9,}

{o', 9’} = {21, 9,} =0, (2.32)

where we have rescaled the supersymmetry charges by vE. The 2N supercharges Q! and Q; build an

SO(2N) Clifford algebra

Tyry = Q'+07, Ty = i(Q' -9y,
{T,,T;} = 26, 4,7=1,....2N (2.33)
whose representations have dimension 2. The generators for SO(2A) rotations are

1
Aij = [T Iyl (2.34)

This group contains a SU(N) x U(1) subgroup specified by the following generators

1 - 1 _
Ay = 519095 = 557 65(QF, Q] for SUW),
A = i [QF, Qy] for U(1) . (2.35)

For massless states, this SU(N') commutes with the SO(2) helicity group. Hence this group classifies massless
states. The eigenvalue of the supercharge under the U(1), which is called intrinsic helicity, is the same as
under spacetime helicity. Therefore one can define a new generator A’ through a shift by the z component
43 of the spin, called superhelicity,

N =3 — A, (2.36)

which commutes with Q7.
Next let us consider massive states rotated into their rest frame k* = (m,0,0,0). Now also the second

helicity components of the supercharge spinors become active, i.e. give rise to nonzero supersymmetry
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transformations on massive states. We will denote them as follows:

ol = o', & = 9;. (2.37)

The supersymmetry algebra between the Q looks like

{Q17éj}=mc§, {of, QJ}:{éla éJ}:O- (2.38)

Now the (Q,Q;) and (O, Q;) build an SO(4N) Clifford algebra on the states without central charges.
Consequently, the dimension of massive representations is a multiple of 22V, The maximal subalgebra
that commutes with the SO(3) little group of the massive states is USp(2N'). Therefore massive states
without central charges build representations of USp(2N). As for the massless states one can consider an
SU(N) x U(1) subgroup with generators Ay = A + A where the A are defined from the Q as in .
In section we will introduce an organization scheme for massive SUSY representations based on spinor
helicity methods which keeps track of the spin quantum numbers along a reference axis of choice.

However, in the presence of central charges Z!7, the operators Q7 and Q! generate a smaller SO(2N)
Clifford algebra, whose maximal subalgebra is SO(3) x Sp(N). Therefore states with central charges only

build representations of Sp(N).

2.2.2 CFT realization of extended D =4 SUSY

As it is well known, there is a beautiful relation between the N -extended spacetime supersymmetry algebras
and the n-extended internal superconformal algebras with corresponding Kac-Moody symmetry g. We will
assume in the following that we are dealing with holomorphic spacetime supercharges that all originate
from the right-moving sector of the compactified string theory, as it is always the case for heterotic string
compactifications. As we will discuss, for purely holomorphic supercharges, the massive BPS states with non-
vanishing central charges are of perturbative nature. However in type II compactifications, the supercharges
can originate from the left-moving as well as the right-moving sector of the string theory. In this case, some

of the massive BPS states with central charges are non-perturbative, as they are given in terms of wrapped
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type II D-branes. These non-perturbative states will not be discussed in this paper.

In SCFT, the holomorphic supercharges Qf and Qj can be always realized by the world-sheet fields of
the uncompactified four-dimensional Minkowski spacetime together with those of the internal Kac-Moody
symmetries. This fact allows for a completely model-independent realization of the spacetime supersym-
metry algebra without any reference to ”geometrical” details of the internal SCFT. To be more specific,
compactifications to four-dimensional Minkowski spacetime which allow for a CFT description, still have
SO(1,3) vectors i0X* and 9" in their world-sheet theory, the first four components of the ten-dimensional
ancestors 10X™ and ™. Similarly, the ten-dimensional SO(1,9) spin field S, factorizes into separate h = i

and h = % primaries S, and 3, the former being a Weyl spinor of SO(1,3) and the latter falling into

representations of the R-symmetry. In fact, both SO(1,3) chiralities can occur, i.e.

Se = S,x! @ Sty . (2.39)

The number of (X!,%) species coincides with the number of spacetime supersymmetries, we will discuss
the A/ =4, 1,2 cases below. In each case, the (left- and right-handed) supercharges in their canonical ghost

picture are given by

1 dz ~(— i 1 dz i =
(=21 _ _ = f 2% I _—¢/2 (=1/2),b _ a4z e —¢/2
9)8 = i/ 742m, S, X' e , QJ i %27”,5 Yje . (2.40)

Independent on the fate of the internal spin fields X/, X7, the interactions of the h = % spacetime spin fields

Sas Sb with the NS fermions is governed by

ot S (w)

Vol —wyiz * (z—w)'/? | Si(w) + LUZ;,%”Z’(w) F oo (2.41)

¥#(2) Sa(w) NG

In lines with the discussion of subsection 2:1.2] one can bosonize the left- and right-handed spin fields

as e (HHH2)/2 anq eFi(H1—=H2)/2 yegpectively. In order to reconcile bosonization techniques with S0(1,3)

symmetry, we align e*3"1i/2 components showing up in the subleading term of the OPE (2.41) into covariant
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excited spin fields Sﬁ, SH of weight h = g:

m +3iH,/2 +iHs/2 b +3iH,/2  FiH2/2 _ba qu _ b gb _
SE e 1/2 pFitl2/2 S, © e /2 gFill2/2 T, SafcrabS“fO. (2.42)

A large list of OPEs between (¢*, S,, Sl;7 Sz, SH) including subleading singularities can be found in appendix

B2

2.2.3 CFT operators in NV = 4 compactifications

The internal SCFT in maximally supersymmetric N' = 4 compactifications to D = 4 dimensions can be
understood in terms of free fields {02, U™ with m = 4,5, ...,9 which represent the internal components of
the ten-dimensional i9X™=01-+9 qym=0.1,9 and transform as vectors of the internal rotation group SO(6).
The corresponding h = % spin fields X! and X7, responsible for branch cuts of ¥, transform as spinors
of the SO(6) = SU(4) with left-handed (right-handed) index I (J). They enter the dimensional reduction

S0O(1,9) — SO(1,3) x SO(6) of the D = 10 SUSY charges

1 dz —(— i 1 dz ;-
—1/2)I I _—¢/2 (=1/2),b _ b —¢/2
QL ——,1/4%—27” Sy xle /2 Q5 = ,1/4%ﬂ5 Sye (2.43)

where the internal SO(6) = SU(4) is interpreted as the R-symmetry group. The ten-dimensional bosoniza-
tion prescription can be straightforwardly applied to U™ %! %5 (e.g. B! eﬂ(H3+H4+H5)/2), and excited

spin fields ! and i’}? of weight h = % are constructed in close analogy to their ten- and four-dimensional

counterparts ([2.14]) and (2.42)):

Zyln oy EBiHs/2 (EiHs/2 ejm:Hs/z7 ,y‘rjyl an _ '77171j i? -0. (2.44)

The internal supercurrent is built from the m =4,5,...,9 components of its ten-dimensional ancestor ([2.6)
1 m

Ginp = —— 102, ¥ (2.45)

24/ 2a’
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and gives rise to internal central Chargeﬁ c = 9. OPEs among the U* ©1 ¥ ; and %! | 7’}3 are gathered in
appendix Identities between six-dimensional gamma and charge conjugation matrices can for instance

be found in the appendix of [58]. The following Fig. [1] aims to give an overview of the conformal fields in

the spacetime and N = 4 internal CFT{|

h/\
R L JRZEE NN
) E?,E{n, 821,82j
S@, St 98,080
1--F---- TOXH, Vo =mmmmmmmmm e 10Z™, PP - - - -,
A P commmmmm oo W oo
W
S,, St
spacetime N =4 internal

Figure 1: Conformal fields in the spacetime CFT and the internal CFT of N' = 4 supersymmetric compact-
ifications

The higher ghost picture version of the SUSY generators (2.43)) is given by

1 dz . b . m J 5
O = i § o (10Xl SPS 4 Siozm ol s ] ol (247)
— 1/2 7[') 1 dZ . .a O b - =m
QI = i g [0l S8y SPi0z, g 0] ol (245)

their anticommutator with the (—1/2) picture analogues (2.43)) yields the following ghost-neutral SUSY

6The underlying OPEs are

90 §0) ©)
o Srmn + .. \Ijm(z) \I]n(w) ~ Senn

02 (:)i0Zn(w) ~ 2w

+ ... (2.46)

"The fermionic bilinear states ¥”1* and ¥™WUP at weight h = 1 by themselves should be eliminated by the GSO projection,
but trilinear combinations ¥™)¥* and # ¥ TP which mix between spacetime components and internal fields would survive
after the GSO projection. That is why we include the bilinears into the bookkeeping.
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algebra with nontrivial central charges Z77 and Z;;:

1/2),0  A(=1/2)b\ _ ~I _ b _ 1 dz .
{Q<(1+/) , O} }—C 7(0"€)" Py, Pu_ﬁj{%za)(“, (2.49)
(+1/2),] (*1/2)”] — ZIJ ZIJ — L di 8zm C IJ 2 50
{Qa B Qb } Eab 5 20/ 2ri 1 (’Y’m ) 5 ( . )

S(+1/2),a  A(—1/2),b Wb S - 1 dz . _
[Qirt/Da QB — bz, ; 17= 50 P 5 10Zm (V" C)is - (2.51)

The central charges arise due to poles in the operator product expansion of Q,(1+1/ 2T and Qg_l/ 27 caused by
internal free fermions and bosons ¥ and 97,,. The latter appear in the internal supercurrent Gin,0i02Z,, ¥

and generate an internal Kac-Moody algebra

g=S0(6) x [U(1)]° (2.52)
with dimension one currents
j?g(ﬁ)(z) =UmUn(z), j{]”(l)s(z) =402 (z). (2.53)

The fields Z,,,(z) can be viewed as the coordinates of a (holomorphic) torus compactification on a six-
dimensional torus T°. Their world-sheet superpartners W™ generate a U(1) spacetime gauge symmetry,
and the six spacetime gauge bosons are the six graviphotons, which arise in any compactification on a
(holomorphic) six-torus. States that carry non-vanishing internal momenta p™ on the (holomorphic) six-

torus always have the following field as part of their vertex operator:
p™) o~ e Em(z) (2.54)

Switching to the more convenient bispinor basis, the six central charge operators (in the zero ghost picture)

of the ' = 4 supersymmetry algebra are nothing else than the free bosons Z™:
1
zZM(z) = S (Ym C)7i02™ (2) . (2.55)
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It follows that the internal momentum states |[p™) are precisely those states that carry non-vanishing N' = 4
central charges. They break the internal world-sheet SO(6) symmetry to SO(5). At the same time, states
with non-vanishing momenta p™ build representations of the spacetime automorphism group for massive
states with central charges, which is Sp(4) = SO(5). On the other hand, states with vanishing internal
momenta, [p™ = 0), build internal SO(6) representations, respectively at the same time representations of
the group USp(8), which classifies massive states without central charges. The subsequent discussions only

take into account the states at zero internal momentum (p™ = 0).

2.2.4 CFT operators in N/ = 2 compactifications

In superstring compactifications which preserve A/ = 2 spacetime SUSY, it can be shown along the lines
of |29/130] that the internal CFT splits into two decoupled sectors with central charges ¢ = 6 and ¢ = 3,

respectively. Starting point are the two supercharges

) 1 dz . _ i 1 dz . _.
—1/2),0 __ T —¢p/2 —1/2),bi __ by —¢/2
QL1 _a/1/4f—2m o S _70/1/47{7%@'5 Sie9/? (2.56)

containing two species of spin fields %*=12 and X?=12. The latter turn out to factorize into decoupled

primaries A\’ and e**"/2 from the ¢ = 6 and ¢ = 3 sector, respectively:

$i = N HiH/2 S )i —iH/2 (2.57)

The ¢ = 3 part can be represented in terms of a single free chiral boson H subject to (2.12)). Its contribution
1(i0H)? to the ¢ = 3 energy momentum tensor assigns conformal weight h(e**#/2) = 1/8 (or more generally,
h(e*t) = ¢%/2). Moreover, OPEs of the partial spin fields e**///2 introduce h = 1 fermions ="/ and excited
spin fields e*3H/2 of weight h = %

On the other hand, the A’ fields from the ¢ = 6 sector have weight hA(A\) = 1/4 and form an SU(2)
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doublet. Their operator algebraﬁ gives rise to an SU(2) triplet of h = 1 currents J4=123:

gl

)N (W) ~ 1

(z —w)Y? (r48)7 TA(w) + ... (2.59)

The 74 denote the standard (traceless) SU(2) Pauli matrices {(93), (9 5%), (§ %)} subject to the mul-

tiplication rule 747p = dap + icapcTC.

The currents obey the SU(2) current algebra at level k = 1, we use normalization conventions

5AB N i\/iEABC Jc(w)

A B
~ 2.
TR Iw) ~ e (2.60)
in which their interaction with the spin fields is governed by
) AYi . \J ) )
TA(2) X(w) M + \/5(7"4)1]» oN (w) + ... (2.61)
V2(z —w)
; (1) M (w) L Avi ay
N(2) TA(w) ~ —=L—~L . — LLON(w) + ... 2.62
@I~ TR N w) (262
Note that also the \* and J4 fit into a bosonization scheme according to
JAZ = oH,, JATL £ igATr = ReEVEs \iml2 _ EiHs/V2 (2.63)

with Hs being nonsingular with respect to the ¢ = 3 boson H. This fixes the choice of the SU(2) Cartan
subalgebra.

The world-sheet supercurrents associated with the two decoupled CFTs,

Gint = Ge=3 + Ge=s , (2.64)

can be split according to their charges under the h = 1 currents. In the ¢ = 3 sector, we find a free field

8The contraction rules for the antisymmetric eij,sij tensors introduce signs in some of the OPEs:

_ i
TN
(z — w)1/2

+ 67
(z —w)t/2’

Xi(2) X (w) ~ Ai(2) Aj(w) ~ ﬁ N(2) Aj(w) ~ (2.58)
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representation in terms of internal h = 1 coordinated’] i0Z*,

Gz = 5 (i0zT e ™ + 0z M), (2.66)

V2!

The fermions U (z) = T (2) together with the free bosons Z* generate an internal Kac-Moody algebra
g=S0(2) x [U(1)]? (2.67)
with dimension one currents
Jso@)(2) = WU (2) =i0H(2), i, (2) =i0Z*(z) . (2.68)

As for the N' = 4 case, the fields Z(z) can be viewed as the coordinates of a (holomorphic) torus compact-
ification on a two-dimensional torus 72.
Also the supercurrent of the ¢ = 6 sector cannot be fully built from the bosonization prescription (2.63]),

it additionally requires the introduction of an SU(2) doublet of h = 5/4 fields g;:

Goeg = E (ezHa/\/ig1 + e—sz/\/igz) _ E Nog; . (2.69)

The g; decouple from the A and 74, and their OPH|

9i(2) gj(w) ~ + + ... (2.71)

makes sure that the supercurrents satisfy the required A/ = 4 superconformal algebra at ¢ = 6. A summary

of operators in the internal SCFTs common to N = 2 compactifications are presented in Fig. 2}

9As usual, the OPEs between idZ* are normalized as
2a/

i0Z%(2)i0Z2F (w) ~ o

+ ..., i0Z%(2)i0ZF (w) ~ 0ZF(w)idZE(w) + ... . (2.65)

10¢ contractions yield signs opposite to the /\i)\j case:

) + 6t . . _gid . —&
9'(2) gj(w) ~ m, g'(z) g’ (w) ~ G_wp2 9i(2) g’ (w) ~ m (2.70)

30



ha

R e Rt - Be—iH= = n - - - e deiHl -~
LONET gt N : : :
' ' ' e~ 3iH/2 ' de—iH/2 | peiH/2 ' e3iH /2
1--f--- ga=----- JA=T3 - JAT e - - - - i0H,i0Z*% ----- F----
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Figure 2: Universal operator content of the internal CFT associated with A" = 2 spacetime SUSY, including
weight h and charges ¢s, ¢ under i0H3 and i0H, respectively.

The internal supercurrent yields the following higher ghost picture SUSY charges:

Qgﬂ/z),z‘ _ m 7{ % [\}5 i0X,, UZE Si’ NoetH/2 4 gzt s, N\ iH/2
- 2Va! ¢* S, eiH/Q} e?/? (2.72)
Q(+1/2),in' _ b j{ % [1 iOXH Fha g \ig—iH/2 + 0z b \i gif/2
V2ar3/a 2w | V2 poa
S NEE S%‘"Hﬂ} e?/? (2.73)

The anticommutator of equal chirality generators gives rise to a complex central charge operator, which can

be written in terms of the free bosons Z+:

(+1/2),i (=1/2),5 — Z?] Z?] _ Eij fﬁ 8Z+ 274
{Qa ) Qb } €ab ’ \/50/ i ? ) ( . )
gt dz

{ QU2 Q1/Dbi Y — cab zig - Zi 02 . (2.75)

\/éo/ %

It again follows that the internal momentum states [p®) of the two-torus are precisely those states that carry

31



non-vanishing A/ = 2 central charges. They completely break the internal world-sheet SO(2) symmetry.
On the other hand, states with vanishing internal momenta, |[p* = 0), build internal SO(2) representations,

resp. representations of the group USp(4), which classifies the A/ = 2 massive states without central charges.

2.2.5 CFT operators in N' = 1 compactifications

In this subsection, we summarize universal aspects of internal ¢ = 9 SCFTs describing D = 4 superstring
compactifications which preserve N/ = 1 SUSY in spacetime [28430]. The existence of one supercharge
species

1 dz ~ ; 1 dz
-1/2) _ + —¢/2 —1/2)b z by— —¢/2
Q((l /)—7,1/424—2 Z_SaE e ¢/ , o=1/2) =i P o iS Y e (2.76)

with h = % spin fields ©% implies that the world-sheet supersymmetry is enhanced to N' = 2. This can be
traced back to the existence of a U(1) Kac-Moody current J of h = 1 which emerges from the mutual OPEs
of spin fields with opposite charge:
L V3
2

YER)EF(w) ~ ——— *

(z — w)3/4 (z—w)* T(w) + ... (2.77)

The internal supercurrents Gflt can be split into two components of opposite U(1) charge,

Gint = % (Gitm + Gi:lt) ) (2.78)

subject to the superconformal N = 2 algebrd]
J(2) T (w) ~ ﬁ + J(w) T(w) + ... (2.79)

= (w
T(2) GE (w) ~ i\/g(zt(_zu) + T(w) GEw) + ... (2.80)
Giszlt(z)Giint(w) ~ Giﬁ;t(w)Git(w) + .. (2.81)
Gijr:lt(z)Git(w) ~ (Z?:/i})‘g =+ 2@{%)2 Qﬂnt(wi(j_ﬁaj(w) + (2.82)

'In contrast to [28}30], we normalize J such that it has canonical two-point functions (J(2)J(w)) = 1- (2 — w)~2. This
simplifies (subleading) OPE coefficients and normalization factors in vertex operators.
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with internal ¢ = 9 energy momentum tensor Tj,;. The OPE of alike spin fields gives rise to new h = %

Virasoro primary operators
SEQ)SFw) ~ (z—w)rPO0F(w) + ... (2.83)

with twice the U(1) charge of the spin fields, and iterated OPEs with % create an infinite tower of further
conformal primaries with higher weights and charges.

A large sector of the internal CFT can be captured by bosonization. Let H(z) denote a canonically
normalized free & chiral boson, then we have the following representation for some for the aforementioned

operators:

J = i0H, XE = EVAHR2 - of = FVEH (2.84)

However, the internal supercurrent (or energy momentum tensor) cannot be fully bosonized. Instead, we

can represent Giﬂ;t as

3 4Li
G = \/; gt (2.85)

where the h = % operators g* are local with respect to H and satisfy

7= (2) 6F (w) (2_10)8/3 + (z—?u)5/3 T (2.86)
+ w + w
7 (2) g (w) g(z(_)j)l(/?,) T (2.87)

On these grounds, we can understand the OPE of the supercurrent with internal spin fields,

Gin(2) ST (w)  ~ ;m + . (2.88)
GE ()T (w) ~ (z—w)/?g* * Vi (w) + ... (2.89)

11

which introduces excited spin fields ©* of h = % in case of opposite U(1) charges Git +— 3T,

St = gFetaall (2.90)
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Fig. |3| gives an overview of the universal Virasoro primaries in the internal ¢ = 9 SCFT. More detailed OPEs

including subleading singularities can be found in appendix [B.4}

ha
5 F---- O mmmmmmmmmmes e e bommomes Gymmmbemm oo ot --
; o) ¥ : ¥t oxt ;
I il * ------------- J s * --------------
A e e ... S e . 1o
I X I Dny I
I I I I I q
—V3 —3 0 +4 +V3

Figure 3: Conformal fields in the AN/ =1 internal CFT, together with their weight h and U(1) charge q.

From these OPEs, we obtain the following +1/2 ghost picture version for the SUSY charge

dz V3 ~ 1 i
+1/2) + . L b v+ +¢/2
Q{(l "= 7{ 27 la/1/4 Sa X7 A 20/3/4 10X, Ule}S DS (2.91)
_ ; dz V3 e 1 '
+1/2)b _ b — ; ~ba - +¢/2
Q( / ) — % [ a/1/4 S ) + W Z@X” O'N Sa 3 ] e / 5 (292)
which yield the /=1 SUSY algebra
{QCF1/2) | QUL2b Y = (g b P po=1 § ¥ ax, (2.93)
o ; o P2l f omi

2.2.6 Summary of CFT operators

To conclude this section on the internal SCFTs associated with D = 4 compactifications of different super-
charges, Fig. [ summarizes the field content of the different sectors. This is a good reference to build the

most general ansatz for physical vertex operators.
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Figure 4: Conformal fields together with their weight in various decoupling CFT sectors

2.3 Physical states of N’ =4,2,1 compactifications
2.3.1 Physical states of N' =4 SUSY

Having introduced the CFT setup for the construction of massive string state, let us now turn to explicit
vertex operators on the first mass level. We will first of all examine the four-dimensional field content of
maximally supersymmetric superstring compactifications to D = 4 with N' = 4 SUSY. This is the dimensional
reduction of the ten-dimensional multiplet, so we will again find all the 256 states which have been discussed
from the D = 10 viewpoint in Chapter 2.1l They form a massive N' = 4 multiplet in four dimensions for

which we will work out the spin and R-symmetry content as well as the SUSY transformations.

NS sector

With the internal CFT operators from Fig. [l|at hand, the following h = 3/2 combinations must be considered

in the most general NS vertex operator at first mass level:

vD :(awiaX“ WA a0 + R, OUP BT iOXE W,
AT 0T 4+ TR, T, + YO, 4 W R,

4 CMi0Z,, U, + QTP D, \1/,,) e=b e X (2.94)
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Requiring vanishing Q)1 variation for (2.94)) implies the following on-shell constraints for the ten wavefunctions

above:
0=oa," + k*h, + G 0=2a"Y™ + ko
0=ap. + 3k exuw 0=01 — 9 + 2k, (2.95)
0=20"a,, k" + hy, 0=Fkrdim + ¢tmml

This leaves the following 128 physical solutions

e one transverse and traceless spin two tensor

1 .
V(_l) = 7/ O‘MV ZaX“ ’l/]’/ €_¢ eZk.X , kH 05/“/ - a[ﬂy] = au“ =0 (296)

* V2«

e 27 transverse vectors (in the vector and two-form representations of the R-symmetry SO(6))

-y 1 ;
v = 3 A" Wy Uy e e R =0 (2.97)
v — 1 £m (i j p

pn B (i0XH Wy + 10 Zy, 1)

2y2a/

£ i e M ko, Yhrih, Uy ) e ? et X kB =0 (2.98)

e 42 scalar degrees of freedom (scalars, spin two and and three-form with respect to SO(6))

_ 1
ViV = —— ®F | (g + 20 K, k) iOXP Y+ 20 Ky, DY

2v/2a’
10! VoA —¢ ik-X
£ S VY kﬂ} e de (2.99)
_ 1 ;
V{( 1) _ = Cmn Zazm v, e—¢ e’Lk'X, C[mn] — Cmm -0 (2100)
Véfl) =Q"P Y, v, ¥, e Pt X (2.101)

The 46 spurious NS sector states from ten dimensions are aligned into six representations of SO(1,3) x SO(6).

They can be constructively obtained as BRST variations of ghost charge —2 objects, see (2.10)):

yl

mpg (muky + kym)idX Y + 2m, aw”} e %X ktm, =0, (2.102)
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Vi ~ [QE[W] OXH Y 4 200 Sy ki 9 w*} R X ks, =0, (2.103)

Vi ~ A [ + 407k ) iDXP 9”4 6ol k998 4 07, U ] e X (2.104)
-1 m i . i

Vi ~ A (ke [i0X" Wy + i0Z0 "] + 200, ) e+ X | (2.105)
(1) fran] Z

VA3(Sp) ~ A3 [ 102V, + o kudj v, v, ] i X , (2.106)

Vi ~ Al (iaX“\I' — 10Zm PH = 20" ky P Uy ) PN KA, =0 (2.107)

Each spurious state corresponds to a gauge freedom. The first one (2.102)) admits to gauge away the longi-
tudinal component of the rank two tensor o, whereas the second one (2.103)) identifies the antisymmetric
part «ap,,) together with the longitudinal three-form e, x0k(, %, ) as unphysical. Similarly, (2.105), (2.106])

and (2.107) eliminate the longitudinal components of (5}7 + ™, d;'™ and wyy;, as well as the antisymmetric

parts 8" —~,;" and (). The trace of o, can be gauged away using (2.104)).
Once the three- and two-forms e, and wﬁy are reduced to there transverse part, contraction with

E“VApkp dualizes them to a scalar and a vector, respectively. As we will see below, supersymmetry suggests
to include these dualized states into the complex combinations (2.98]) and (2.99)).
R sector

In the R sector, the SCFT operators of appropriate weight give rise to a vertex operator ansatz with six

wavefunctions:

vED = (v i0x" S, 2" + ﬁglsng + uf 95, %!

+yp 8. 08! + 7 02" SP Sy + su S, Sj}ﬂ)e—w ek X (2.108)

The same set of states also exists with opposite chiralities with respect to both SO(1,3) and SO(6) (e.g.

UZJS(LZI > ’L_/Z&Si)ij). However, the BRST constraints for the polarizations in (2.108[) decouple from those

of the other chirality sector which we did not display, so the discussion will be limited to the six wavefunctions
shown in (2.108]) for the moment. The full list of physical and spurious states follows from doubling the

solutions of the on-shell constraints. Imposing invariance under ()1 yields the following three independent
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constraints:
0 =2a/ v }éab—l—fpbl %u‘}agb,
0= 92a/ Fi,z; B 1+ asud 1ye AT (2.109)
0=ky ﬁg,l + ﬁ fi,zﬂ% :

The first two equations can be further disentangled into a trace and a traceless part with respect to the

o* and 7, matrices. Since excited spin fields are o and ~ traceless, the associated wavefunctions satisfy

ﬁg s 2‘1 = s%:bj 7'7; = 0 by construction. Hence, the aforementioned projections simplify the BRST constraints
to

uf =o' vy (K" )"

ﬁgJ =—v2d (vf’a Ki + 1057 (kff’\gu)ab)
yo = _2%/ R R (2.110)
sl = V3l (P, B+ b (5 ) K

P =20 ko Ky — ot

where p, u,y and s are expressed in terms of v and 7. It turns out that both spin 3/2 and spin 1/2 components
of the vector spinors v; as well as the v traceless components of 7 give rise to an independent physical solution.
The former is the D = 4 analogue of the ten-dimensional spin 3/2 state . But additionally, we find
spin 1/2 Dirac fermions (ab,f{;’a) — both in the fundamental spinor- and in the spin 3/2 representations

of the R-symmetry SO(6). To summarize the physical states built from (2.108) and its opposite chirality

counterpart:

e cight transverse and o traceless spin 3/2 vector spinors

1 .
Vy b = /i Xo 1 (iaX“ Se — V2d K S“b) yle=9/2 gtk X (2.111)
(-3) _ L A iaxn gd ab S ,—d/2 ik X
"x = 2o/ Xwa (ZaX‘ §* - Vad §¢ S{f) Bpem?2e (2.112)
0=k X5 =Xty = ka " =X ol (2.113)
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e 48 spin 1/2 fermions (eight in the fundamental and 40 in spin 3/2 representations of SO(6))

(-3) o't/ b aQ iave I —¢/2 ik-X

Va =5 ((O'H )p® Sqi0XH — 485’1,) e e , (2.114)
(-1 O/1/4 _ . . SN\ .

Va V=5 af (0 1)Pa 8% i0X" — 408" ) Bpeo/2e X, (2.115)
(-1 1 A b svm - ik-
_1 1 7 _ . . _ )

A N T (i@Zm Sr8% — V2al kS, E}n) e (2.117)

a

The following spurious solutions have been subtracted to remove internal derivatives %! from the vertex

operators:

Vs~ 0 [(k o + 4k 00X Sy 2! — 2v2 (oK by + Lot SEY
+ 605,35 + 485,057 + k] 077 S0 Sy | e X, (2.118)
Vit ~ O [ ok, + 4k 68)iox, 575, — 22 (' kub™ + Lbe) S0%;

+ 60S°S; + 45°05; + K AT i0Zm Sa EJ} e /2 gtk X (2.119)

They are the dimensional reduction of the ten-dimensional spurious state ([2.23)).

2.3.2 Physical states of N =2 SUSY

In this section, we will show that the first mass level in compactifications with N/ = 2 spacetime SUSY is
populated by 80 universal states which are aligned into one 24424 state multiplet of highest spin two and

two 848 state multiplets of maximum spin one.
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NS sector

According to the CFT operator content shown in Fig. 2] we make the following general ansatz for an NS

state at the first mass level{™]

v = <aW IOXM P + e YV Y + b, PP + Y, 0 + Y_ 9e M
+ Blioxre™ + prioXre ™ 4 T ri0ZT + vy WHi0Z”
+ & riOH + A Tavt + QY Taet + QA gye
+ Cpi0Z e 4 ¢ _iozm e ™ 4 L0z e 4+ (o _i0ZT e

+wh gt e ot em 4 eI N gj) e=? etk X (2.120)
Requiring BRST invariance under ), yields the following on-shell conditions:

0=a,* + k*h, + (- + (4 — o/ 12 ¢

0 =20, k” + hy 0=Fktdy + \/217/ ()% e? (2.121)
0=ap, + 3euwrk? 0=Y: + 2y k"
0=3F — 7F + 2k Wi, 0=k + 4+ — Gy
These BRST constraints admit 40 physical solutions:
e one transverse and traceless spin two tensor
AR \/% QU 10X P ¥ e=? X k' o = apu) = ot =0 (2.122)

e cight transverse vectors three of which form an R-symmetry triplet (note the sign difference in the

pseudovector parts of A% and w?)

VOV =g ptioH e X pig, =0 (2.123)
(=1) _ ;A —¢ ik-X A _
Vi =di gt Jae PNk dy =0 (2.124)
12Recall that we have non-Abelian R-symmetry SU(2) in this setting, and 4,5 = 1,2 denote its spinor indices whereas
A =1,2,3 are adjoint indices.
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Vs = BE (i0X" T+ 97*E yt

B 92 /2 7
£ il e oy iy ap, e ) em? e X kB =0 (2.125)
_ 1 ,
vy = wi (10X" =T 1 i97% gr
©w 2v/2a) "
F il ey hyap, e ) e e X k* wf =0 (2.126)

e cleven real scalar degrees of freedom

v = 232:0/ [(mw + 20" ky k) i0XP Y + 20k, Oyt
+ igl € uvap WM Y kp} ek X (2.127)
vy :\/%QS[WZJ“ 4977 e 4 Vol G| e et X (2.128)
VTY = Qf e gA o0 ik X (2.129)
vl = \/% ¢FigzE FH e0 kX (2.130)

In addition, we have numerous spurious states:
Vi ~ [(m + k,m)idX Y + 2 aw} P X i, =0, (2.131)
Vi) ~ 2B X" e¥ + 20 Sy ky ettt | e e kg, =0, (2.132)
Vzgo_(i;) ~ [ kuv"* Ja + \/T(TA) G } I (2.133)
Vi ~ A1 [ + 407k ) i0XP 47+ 60/ by, 00"

+i9Zt e 4 9zt — 2/ G] e ik X (2.134)
AN [kﬂ (10Z% yt + i9XH ety 4 23&”1} e~d el X (2.135)
V[E;(i;) ~ Aj {20/ k,"i0H + i0Z~ e — 0zt efiH] e ?ethX (2.136)

VY o AE [zo/ ky ¥ P eFH 4 jaxH R zE W] GRX AR, =0, (2137)
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They allow to eliminate the longitudinal components of six vectors and of the two-forms wi,. The latter
therefore dualize to transverse pseudovectors entering the ﬂ,f and wff states. By combining with the A;

spurious state, one can transform the ¢ solution into a form without internal ¢ = 6 supercurrents:

Vil = O | (M + 40" ky k) i0XP ¥ + 60k, O

1
vV 6a/

+ 3(i0Z e + 07~ eiH)} e~ et X, (2.138)

R sector

In the R sector of the first mass level in N' = 2 scenarios, the vertex operator ansatz in one chirality sector

includes nine SCFT operators:

y(=3) ={vfﬁ-iaX“ So Nieifl/2 4 i SN /2 | 098, N /2 4 p gzt b\ =i/
’ bi K v +bi
+ 741077 SN e 2wt § X 92 4y 5, oN €1/

4 0y, Shglet/2 oo G, N3/ } e /2 ik X (2.139)
The system of BRST constraints can be reduced to the following independent set:

) 0=wf + 2v2a' 7,
0:21@,,;3;.;_ + Ty — \/%gl}i

0=2a"v"" J; + V2p} + juia

; 0=vf + V2a'F_;, o - (2.140)

0=ys — V2ol K

Adding a sector of opposite chirality and internal charge gives rise to 40 physical solutions. All of them

transform in the fundamental representation of the SU(2) R-symmetry:

e four transverse and o traceless spin 3/2 vector spinors

_1 1 ; o )

V)S é) = W XZJ- (’LaX“ Sa — \/50/ kai) S”b> )\Z 61H/2 67¢/2 elk'X 5 (2141)
_1 1 i i . .

V)_( 2) = W Xg;i (z@Xﬂ Sb — \/50/ kba S,u.a) )\7’ 677]H/2 €7¢'/2 €lk.X 5 (2142)
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a a - i =ba
0=k Xui = X 00y = ku Xj, = X5, 0, (2.143)

e six spin 1/2 fermions:

0/1/4

vy = 5 a?((aﬂ K)p® S, i0XH — 4asb)AieiH/2e—¢/2 etk X (2.144)
1y VA o N ,
Vi = ad,i((aﬂ Jys; Stioxm — 485@)/\’ ¢ iH/2 o= 0/2 gik X (2.145)
_1 1 . ; . . .
AL S (107 Suc? — V3o k5 8P ) et X (2.146)
(0%
_1 1 : . ba Y . )
TARE W ryg (1077 8P HI2 o Bl S, e HHI ) X /2 (2.147)
i
VS(—%) _ 1 st (102 S, N /2 4 ol S, gt e i1/
\/g /4t
(e
+ V20l By (ST ON €T 2 §h N g 2 ) ) 0l kX (2.148)
_1 1 P . s
Vg( D= 5 (g7t 8PN emiH/2 + Va/ St gt ett/?
V3a/t/4 b
- :
T+ VZa (S 0N €2 — 2.8, N gt tI2) ) e/ X (2.149)

Again, there is a spurious fermion which can be used to remove some internal SCFT fields from the vertex

operators:

vie) o e [(;éab G+ Ak, 00)i0XM Sy N 2 — 92 (of KRy + Lot ) ShAT e
+ 60S, N et/2 1 48, 9N /2 4+ 4§, NP Hett /2
+ 2V2a 5t g' et — 2k 0z " S A e_iH/Z} e 9/ kX (2.150)
VE_E ~ (:)bﬂ (kba Ugd + 4]{;“ 52) ZaXﬂ Sd )\1 e—iH/Q _ 2\/5 (O/ ku, %ba + %6’2‘1) Sg )\i e—iH/2

+ 6656 e iH/2 + 455 O\ e~ iH/2 + 451} N\ ge—iH/2

+ 22/ kba S, gt e i/2 _ \@kba 07~ S, )\ieiH/2] o—9/2 ik X (2.151)
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2.3.3 Physical states of N =1 SUSY

This section is devoted to the universal SUSY multiplets common to all D = 4 superstring compactifications

which preserve A/ = 1 spacetime SUSY. Only the N' = 1 SUSY can provide us chiral fermion spectrum

which is phenomenologically most important.

NS sector

By assembling h = 3/2 combinations of the conformal fields of Fig. [3| one arrives at the following general

form of an NS state at mass m? = 1/a/:

VED = (00X 0" + eun ¥ 99 + b, 08 + 00T

+ Q07 + Q.07 + ¢y Gl + -Gy, )efaseik-x'

int

This is BRST invariant if the polarization tensors satisfy

0=oa,* + kth, + Q%/E(c++c,) 0=ap + 3euwrk
0=~k*¢, + 2\\737 (c— —cy) 0=2dau k" + hy,

Twelve physical states solve this system of equations:

e one transverse and traceless spin two tensor

1 .
Vi = —== 0 10XH Y e et X k' oy = ap) = ot =0

V2a!

e one transverse vector

Vi =dur Je? e X prd, =0
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(2.153)

(2.154)

(2.155)



e two complex scalars

_ o+
vV = —— [(n,w + 20/ Ky k) iOX" Y + 20k O

2v/2a/
ia! oo AL | ¢ ik X
+ ?ﬁpuxplb VYt k }e e , (2.156)
ng;l) =QFOte? X (2.157)

In addition, we have spurious solutions to the BRST constraints:

View ~ [(m ky + kym)idX"yY 4+ 2m, 811)“] e et X, krm, =0, (2.158)
Vil ~ [2 S I0XP Y + 20 S ey 9 47 w,\} 0k X iy, =0, (2.159)
Visew ~ Do [(Ghe = Goy) = VBaZk, vt T |0t (2.160)

V/{il) ~ Al [(nﬂu + 404/ k'u ku) i0X" W/ + 60/ kH a,(/)ﬂ ’

+ 2V (G, + Gy e Pe™X . (2.161)

int

The last two spurious states allow to gauge away both the ¢* scalars and the longitudinal component of the

massive vector &,0k,,.

R sector

For D = 4 fermions at mass m? = 1/a/, the most general vertex operators built from A = 1 internal SCFT

fields reads

vOED —(upioxr 5,5 + g SEyt + w08, 3t

+ Y S, 08t + @, S i:+) e=9/2 gih X | (2.162)
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see Fig. |3l Invariance under ), yields three independent BRST constraints:

a = 1, a
0=2a"v"® ki + V20 + Juta

0=k, p + 51/307 @ » (2.163)

0=y* + 2\/%5)5 kim.

They allow one to express any wavefunction in terms of vy

u® = o UZ (Kat)p®
Puiy = — 20/ (vﬁ K. + ivi (5 Uu>az‘;) (2.164)
@ =5 (200K Ky — o)

2a/ a a
e CACH S LR

a

Y

The same set of states exists with opposite SO(1,3) chirality and internal U(1) charge. Including them, we

have four physical solutions to (2.164)) and four solutions to the conjugate system of equations:

e two transverse and o traceless spin 3/2 vector spinors

_1 1 ; .
AR Jaar/a X (iaX“ Sa — V2d Ky Sﬂb) St ek X (2.165)
«
Vi = NI X (iaXu 5% — V2 pab Sub> N e 2 kX (2.166)
«
0=k'xp = x50t =k Xs = X405 (2.167)
e two spin 1/2 fermions
-5 _ oty . —¢/2 ik-X
Vit ="—a ((au )0 Sqi0XH — 4asb)z+e 9/2 ik X (2.168)
(-1 0/1/4 . . . )
vi = ai (@ K)o 5% i0X" — 408" ) £ e 02X (2.169)

46



Spurious solutions can gauge away the internal excitations with wavefunctions y* and w;:

Vo) ~ 0% [ (ki + 4k, 00)i0X" S5 — 2V3 (/W fryy + 30%) ShE*
+ 605, + 45,05F - 2V3alf,; SPEH e 02 ek, (2.170)
Do 0 [ ok + Ak 60X, SUTT = 2v2 (o kB + L) s

L 605 T + 45008 — 2VBal B S, 5 | e/ ik X (2.171)
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3 Massive supermultiplets in the first massive level

In this chapter, we show explicitly the physical states we constructed in the previous chapter form certain
supermultiplets for cases N' = 1, N/ = 2 and A = 4 respectively. First of all, we study their supersym-
metry transformations; and then, we study in more detail the helicity structure of the various on-shell
supermultiplets. Differently than in the previous chapter, we will start from massive states under AV = 1

compactification since this has the simplest field content. This chapter is based on the paper [3].

3.1 Supersymmetry relations of massive supermultiplets

With all the higher order OPEs (c.f., Appendix [B]) and physical spectrum in hands, we are able to compute
the SUSY transformations by acting with the supercharge operators on the physical states and evaluating

the corresponding contour integral.

3.1.1 N =1 supermultiplets

N = 1 multiplets are the simplest compare to A" = 2, 4 multiplets because of the Abelian R-symmetry group
U(1). The supercharge operators do not carry any R-symmetry indices, only an Abelian charge of ++/3/2.
For our convenience, we choose these SUSY parameters to have mass dimension [M *%]. As we will verify

case by case, action of the supercharges Q, and ob given by Egs. (2.76)), (2.91) and (2.92)) takes bosonic

(fermionic) vertex operators exactly into fermionic (bosonic) vertex operators, including their couplings. The
polarization wavefunction of the Q image state is expressed in terms of %, 7, and the pre-image wavefunc-
tionE Once we perform the SUSY variations, besides physical fields in the spectrum, we will also get certain
spurious states. We will drop out all these spurious states in our final results for simplicity.

After performing SUSY variation on all the bosonic and fermionic states in A/ = 1 SUSY, we find
that these states split into three separate massive supermultiplets — a spin two multiplet {«, x, X, d}, two
spin—% multiplets {®7,a,Q~} and {QT,a,®}, see Fig. [5| below. We will show our results of the SUSY

transformations in order.

131n our settings, all the wavefunctions of bosonic fields have mass dimension 0, and all the wavefunction of fermionic fields
have mass dimension %, see Appendix [C| for their explicit construction in terms of (massive) spinor helicity variables.
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X —> au @ dy — X,

ot aj, — Q"

Figure 5: The three disconnected N' =1 SUSY multiplets at the first mass level: As before, Q, (Qi’) action
takes states along a left (right) arrow.

SUSY variation of the spin two supermultiplet

The spin two multiplet includes a spin two boson «,,, a vector d,, and two spln—f fermions xj;, X, with

opposite chirality. The SUSY transformation of the bosonic states are:

[ aQ VX X = 77 auu(k5y)ab>7 (31)
[ﬁaQ(Jr%)’d’V V)E_E) naauu(kay)dj)); (32)

e —2\/? n*[3d,.8,° + (doy + o'k di), ]), (3.3)

7@ D V) = VP (K5 = 300 + (o + o Ry’ 1) (3.4)
The SUSY transformation of the fermionic states are:
[ aQa 2) V( 2)] 0’ (35)
1y (=1 _ 1
[%Q( 3) 7V>£ z)] = VY (O‘xw = \/5 (o(ux,,)a—l—a% K (uXv) a))
_ V3a!
—|—Vd( 2 (du =5 Ua%aaXu a) (3.6)
an(-1) (=D - 1
[ Q. 2 7V>2 2 ] = VOE 1) (a“y = —217 ( (maa\Xz/) + « %aak(uxu)))
(-1) 3 .
Vi (= = ) (3.7)
_ . 1
(701 = 0 (3.8)

Note that the signs of the SUSY transformations between spin—% and spin one are sensitive to the chirality,

see the relative signs between and as well as ) and (3.7). This is necessary for consistent
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closure of the SUSY algebra and can be neatly represented by a chirality matrix v®> when passing to Dirac

spinor notation.

SUSY variation of the spin 1/2 supermultiplets

1

The first spin—% multiplet {®T,a, Q™ } includes a right-handed spin-5 fermion @ and two scalars ®*, Q™. It

is governed by the following SUSY transformations:

1 _
[ang+2)7 Vq§+1):| = 07
QU V] = v (3 = e ey,
[P VAT = Vi (@ = 7Ry,

1,00, Vi~V =,

and

For {Q7", a,®~} multiplet of opposite R-symmetry charges and fermion chirality, we obtain

[anl()"‘%)’ ngil)] _ Va(_%) (ab — _a/—%@—nb)7
[ﬁi)Q(-‘r%)J)’ ngil)] =0,
LR ol

QDY VD] = Vi (o = tik”),
and

[anlgf%%Va(*%)} — ngzl) <Q+ — nbab>,
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(3.13)

(3.14)

(3.15)
(3.16)
(3.17)

(3.18)

(3.19)



(7,080 v =y (@‘ - \/07775}61”’%). (3.20)
We will explore the helicity structure of these results in section

3.1.2 N =2 supermultiplets

The charges of N/ = 2 SUSY are spinors of the internal SU(2) R-symmetry and therefore carry an extra
index 4. In this sector, universal states at the first mass level split into three separate massive supermultiplets
— a spin two multiplet {a, x, X,d, &, BE, s, 5, ¢} as well as two spin one multiplets {w™,a,7, ®*,(~,Q,} and

{wh,a,r,®,¢*, Q% }, see Fig. |§| below for their structure.

¢t e wle . e e e o
A
o, B d
+ a 5. 1224 " oM a _
B — Xpui D 5 — — X; . D s; — B
2 K 5T P é‘u P ¢ b,i H
o+ — aj, ; — w, @0y — Tp i — ¢~

Figure 6: Three disconnected A/ = 2 SUSY multiplets

SUSY variation of the spin two supermultiplet

, one scalar ¢, two Spin—%

The spin two multiplet includes a spin two boson «,,, six vectors ¢, d;‘:l’273, f

fermions Xj;, Xu,a and two spin—% fermions s, 5;. Their SUSY transformations are:

a (8 1r(— -3) L v
[ Q" VT = WP (s = e (k). ). (3:21)
_ S(+1Y.a.4 _ (—=3)( - 1 _ N
(72 Q200 VD] = V2 (Xu)dvi = gl (ko) b)' (3.22)

For the four spin one fields, we have the following results — the SUSY variations of &, field read,

[nggt(;r%)’i?v&(—l)] — VX(ié)(XZ,z _ Sgﬂaab + (ga,u + O/gkku)ab]>

b af

=) (3.23)

1

+ Vg(ii) (5a,i = -

o1



a.i [36u0% + ({5, + O/Zkku)diy])

vy
v (ga_ L o aa
+ Vs (81 ﬁnd,ig )7
the SU(2) triplet di} transforms to,
a +l K 1 A _ A '3
e v = v 2>(x 5= =g B! + (7 ok ), (7))
l
’ (aJ mnz daa(TA) )
= AHEh.a 3 a A Ayva i
[%,iQ(Jré)’ ’ ,Vd( Y :Vg( 2)( 3\/—%1[ df(; ,;+(d a-p.+0/kp.d k) 5](7'A) j)
(-3) 1 _ 4Aaa i
(S 6a/77a,2d (TA) ])7

and the complex vectors ﬁi are varied tom

(*1)] — 07

el v

(7, QU0 Vi) =

= g BB = (" + 7 )]
}n,”(m) ).

b = g 38 s — O™ + ko))

The SUSY action on the unique scalar field ¢ is given by

[ aQH‘ )Z (* )]

[ﬁa,iQH%)’d’i, Vdffl)]

S AL (Ea,z‘ = %@7?%@)7
vy (8? = %@%,i%aa)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

M Cocycles would introduce additional minus signs in the computations (and several analogous ones at later points). However,
we are able to eliminate these extra minus signs in a consistent way.
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Now we turn to analyze the fermionic states. For y and x at spim—%7 we have SUSY relations,

el W) = Véil)(ﬁi = n?xu,a,¢>7
7,0 D40 D] = VD (a0 = %m,i (38X + O H N b))
+ Vg(fl) (fu = _Ta/ﬁd,ikda)(;,a>
O \/fnkx (o)),

and

—1y; —1 a,i —a,t
[77? ((l 2)717‘/}(( 2)] = Vag—l) Oy = 7777(;1(0'(#@[1”21/7) +alkaaX(;l kl,))>

(
PV (6 = Yk,
(

The spin—% states s and 3, on the other hand, transform to

1y, _1 _ / a i
[U?Qz(z 2) 5 s( 2)] = va( = (gu = \/gnz [kﬂéab + (U,U«k")ab} Sb)
! ..
VI (= 8 b + (00" s (r2))

and

!/

7 QD VI = VI (6 =\ S s + (@)

4 . . ;. ..
VIO (dit =) ST [k, + @l ] () )

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)



-1 |
=+ V¢( ) (¢ = ﬁn[l’ir'i' ) (340)

SUSY variation of the spin one supermultiplets

The first spin one multiplet {w™, @, 7, ®*,{, Q2 } contains one vector w,, , two right-handed fermions a; and

7 of spin 1/2 each, and three scalars ®*, ¢~ and Q. The SUSY relations for the spin one w,, read,
8% (=1 1)/ 1 7
[7771,)91(; 2) 7V°E— )] — V&( )(ai),i = —4%20/ nf¢bb>7 (341)
_ .. _ 1 1 _ a
[ﬁa,iQH%)’a’la Vw(—l)] = Vf(Jrz)(Fb,i = —ﬁﬁa,i(ﬁ/’ k) l;)- (3.42)
For the fermions a; and 7;, we have,
—_ 1y, 1 _ -
[k Ve = var (@ = Ve, (3.4
=y (=3 _ _ o _ ; S
[ni),iQ( 2)’b’z7va( 2)] = Vu(rl) (w“ -V 3771},1'[1%5})& + (kau)bc‘}aw)
+ Véi”(Qg = fiﬁé .(TAs)iJ‘af?), (3.44)
and
a3 (=3 - -_1 4 ~ai
[ Qe 27, Ve 2 } :VUE_ )<wu = ﬁm (Uuad+a/kukaa)r )
— - o a —a 17
+ V(05 =\ Snikaart (1a2)Y ). (3.45)
[0, 04 VIR = VI (¢ = ). (3.46)
The results for the scalar fields are:
1y, —
o= vt =0, (3.47)
[ﬁb,iQH%)’B’ia Ve ] = A (ab,z‘ = *a/7%@+775,i)’ (3.48)
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and

1y, _ _1 _ _ a
@ VEN] = VIR (o = s ) (3.49)
[71a,i Q)4 VY] =0, (3.50)

and

+1y 1 (=) /_ 1 _ i
[775?91(, 2) ’,Vg& )] =V ? (ai),j = —ﬁnfkbeA(TA) j)? (3.51)
A1y ag (- -5 (= L o i
[na,iQ(ﬂ)’a’Z,Véfl)] = Vf( 2)(Ta,j = 7 Ua,iQA(TA)Zj)' (3.52)

The second spin one multiplet {w™,a,r,®~, ¢, Q1 } is just the complex conjugate of the former, so let us

simply list the analogous SUSY transformations:

e R e e L] (35)
[, Q01 V(D] = v (ai’ = —\/;—a,ﬁg,i%*’bb), (3.54)
@ P V) = v (o = S Tt + (o))
+ vt (f = —% H(rag) ans ). (3.55)
[, @D Vi) = v (@ = \/Jﬁz,,iki’baé), (3.56)
ol v =Y (¢ =mers), (3.57)
[0 Q4 VR = v (= %_aﬂ(f}fﬁ“ + k)t
+ Ve (QX = %/ﬁd,i%dara,j(TAg)ij)v (3.58)
QiR vn] = Va(*%)(a? _ _O/*%qrnf) (3.59)
[7;,, Qv =, (3.60)
el v =o, (3.61)

[na,ig(%)’a’i, Vg(fl)] =y?) (rf‘ = C+ﬁa,i%da), (3.62)
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1 1 1 ,
[ QP V] = WP (v = =l )Y, (3.63)

_ A(+1).b.4 - -1 1 _ bb 4
[nbﬂg(-‘-g)ybv 7V§g+1)] — Va( 2)(a3’, — _7277&72_% QX(TA) j)' (3.64)

3.1.3 N =4 supermultiplet

In N' = 4 SUSY, the SUSY parameters n?,ﬁg are chiral spinors of both the SO(1,3) Lorentz group and
the internal SO(6) R-symmetry group. All the physical states form one big supermultiplet of A' = 4. The
structure of the explicit SUSY variations listed in this section is summarized in Fig. [7] below. This diagram

will be refined in section [3.2] to take helicity quantum numbers into account.

8 : e o By

—m - m

_ ) X,Uf I X ) )

+ _J 12 - mn b 12 b _

P > a g ~ iy du — Jam gy aj > P
- b,m Cmn I +

Figure 7: N = 4 SUSY multiplet: action of the left-handed SUSY charge Q! transforms a state into (a
combination of) its left neighbors, whereas Ql} action maps states into right neighbors.

The pattern of SUSY variations depicted in Fig. [7| justifies the complex combinations of vectors
and of scalars: The complex conjugates appear on widely separated positions of the multiplet (i.e.
the 8T and B~ are separated by four Q actions whereas ®* <+ ®~ requires eight supercharge applications).
Also, the internal scalar Q™"? splits into self-dual and anti-self-dual components Q[""” which sit at different

points of the multiplet.

There are group theoretic selection rules for the possible outcome of a physical state’s SUSY variations,
based on the SO(1, 3) x SO(6) symmetry. Firstly, according to its eigenvalue under diagonal Lorentz currents,
@ can only change the spin by :I:%. Secondly, transformations have to compatible with the SO(6) quantum
numbers involved. Representation of the SO(6) = SU(4) R-symmetry group are referred to using their
Dynkin Labels [&, p, Q]E The SUSY variation of a state € [k, p, ¢] aligns into the tensor product with [0, 1, 0] >
Q% or [0,0,1] > Qj of the SUSY charge. Table [1| gives an overview of the R-symmetry representations
involved (see the following subsection for the Q¥ splitting).

15 Qur conventions for the Dynkin labels [k, p, q] are such that [1,0, 0] labels the vector representation, and [0, 1,0] and [0, 0, 1]
are left- and right-handed spinor. A generic representation with labels [k, p, ¢] has dimension

1
12

and tensor products act as follows on Dynkin labels:

Digpg = —=k+p+q+3)(k+p+2)(k+q+2)(k+1)(p+1)(¢g+1), (3.65)

(k,p,ql ®[0,1,0] = [k,p, g — 1] D [k,p+ 1, gl ®[k+1,p—1,q ® [k — 1,p,q+ 1], (3.66)

(k,p,ql ®[0,0,1] = [k, p, g+ 1 D [k,p— L,gl® [k +1,p,q -1 @[k —1,p+1,4], (3.67)

(k,p,q] ®[1,0,0] = [k,p+1,g— 1D [k,p—1,g+1] D [k + 1,p,q]
©k+lp—1¢-1&k-1,pqSk—-1,p+1,q+1] (3.68)
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l Spin ‘ Wavefunctions ‘ SO(6) rep. H Spin ‘ Wavefunctions ‘ SO(6) rep. ‘

2 Qv 0,0,0] 3/2 Xo 1 [0,1,0]
1 £m 1,0,0] 3/2 X! [0,0,1]
1 i [0,1,1] 1/2 e [1,1,0]
0 ¢mm) [2,0,0] 1/2 ! [1,0,1]
0 Q. [0,2,0] 1/2 al [0,1,0]
0 Q. [0,0,2] 1/2 a; [0,0,1]
0 o+ [0,0,0]

Table 1: R-symmetry content of the massive N'= 4 multiplet in SO(6) Dynkin label notation

SUSY transformation of bosonic states

In this subsubsection, we will analyze supercharge acting on the bosonic states. The spin two field oy,
transforms into left- and right-handed spin-2 fermions Qo — y and Qa — ¥ in lines with [0,0,0]®[0,1,0] —
[0,1,0] for the R-symmetry scalar a,,. The SUSY variations of this field are parallel to (2.27) in ten
dimensions:

1
g QL VD] =P (b, = —snfag (K5),)), (3.69)

7 = +l ,aQ _ _1 7 _ NG

QY VD] = VI (s = ke (ko). (3.70)
The spin one fields fall into vector and two-form representations [1,0,0] and [0,1, 1] of the R-symmetry,
so their SUSY image belongs to [0,1,0] ® [1,0,0] — [1,1,0] & [0,0,1] and [0,1,0] ® [0,1,1] — [0,1,0] ®
[0,2,1] @ [1,0,1], respectively (note that [0,2,1] does not occur in our multiplet). This implies that Bf’m

can transform into an internal left-handed fermion 77, ; € [1,1,0], and right-handed spin—% fermions )‘(id or

a spln—f fermions a , in short: QB* — ¥ + a4+ r. For the SO(6) two-form d™"| we will get the opposite

chirality configuration, Qd — x + a + 7. The explicit results for the left-handed QI are given as followsm

N /g m m ,m I
[7719+) V( 1)]:VX( 2)(Xi,i) 3\f771[3ﬂ+ Ky — ; *(iﬁ %Uu)bb}VrIrLI)

o B0 + ()] (371)
el VY] = v (a] = — o). (3.72)

16 There is a subtlety in these computations (and also for some later ones) related to the fact that gamma matrices associated
with spacetime and internal dimensions are anticommuting.
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[l b é)(Xu, ——np[3d7" 8, + (4" 6+ o ke d ™ ), (vm%)IJ)

6f
+V (= 6\Fmd’£"7£[[ 655087 + Gmn)f”]), (3.73)
whereas the action of right-handed Qbf yields

[nb Q(Jr V( 1)] =V %)(al} = Q\ﬁ bﬁ+mbb7m II) (3.74)
OV =P (W = 3[% 35K k" = (5" ) )

+ VD (R = f@ﬁg (B8 [66800,7 + i) 7)) (3.75)
v = W (3 - 6%775 a7+ (™" bl ] G )

VR = ™5 1 655087, + (i) ). (3.76)

Then we are left with the SO(1,3) scalar fields o, (™) and Q. The internal states ,,; represent
both self-dual and anti-self-dual three-forms of SO(6). We will denote their irreducible components as
Qf . €10,2,0] and Q. , € [0,0,2], for the self-dual and anti-self-dual part, respectively. Their defining
irreducibility constraint is

) =

mnl

Q- (v (F T =0 . (3.77)

The SO(6) selection rules constrain Q¢(™™ € [0,1,0] ® [2,0,0] — [2,1,0] @ [1,0,1] as well as Q'Q €
[0,1,0] ® [0,2,0] — [0,3,0] & [1,1,0] and Q'Q . €[0,1,0] ® [0,0,2] — [0,1,2] & [0,0,1]. Thus, we expect
the internal spin—% fermion 7 or 7 by performing the SUSY transformation Q¢ — #, and Q¢ — r. Three-
forms, on the other hand, are mapped to either r or a, depending on the self-duality property QQ* — r or

Q0™ — a. The supercharges acting on ®* and ¢(™") yield

7o 1y _
el v =0 e v <o 79)
[ﬁgggfém v = v %)(dgz _a/—%@ﬁbf» (3.79)
_1 1
[ bl VD) — (az} _ _O/—acp—nl;), (3.80)
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and

+l T _ 1 . = 1 mn _
[77? l() 3) 7VC( 1)] _ ‘/F( 2)(7“?71 _ EW?C( )%b67£1)7 (3.81)
T AL (- D/ m T ~(mm) ybb
[n[{Q(f 5) 7‘/4( 1)] — er( 3) (7“1 b 7 IC }é ’Ynj[>- (382)

On the three-forms anl, we obtain
_ ) 1

[IQ gg+1)] =V (TZ,J: 4\/»771 Qv )7 (3.83)

_FAED)D (-1 - _ bb

A QD] = Vi (af = S0t kG ) (3.84)
and

(+5).1 /(1) (L oy mniyIT

(19, Vo'l =Va (ab QﬂnIanzkbb(V ) )a (3.85)

_TA(+3)b 1 (=3 (7 L i = mniy J

Oy v = v (rii):—mnngnl('yk'y 7). (3.86)

SUSY transformation of fermionic states

In this subsubsection, we investigate the (anti-)supercharge acting on the fermionic states. Following the
strategy outlined before, we first derive a selection rule from group theory and then perform SUSY variations
to get the expression of the bosonic wavefunctions explicitly. All the transformations are symmetric under
simultaneous exchange of chiralities on the supercharges and the states (where ®*, 8T QT < &~ 57, Q7).
We will only comment on one out of two inequivalent cases in the text but also give the formulae for the
images under chirality reversal.

Since both the spin-2 fermions (x, ¥) and the spin-1 states (a,a) fall into (anti-)fundamental R-symmetry
representations, the SO(6) content of their SUSY variation is [0,1,0] ® [0,1,0] — [0,2,0] @ [1,0,0] and
[0,0,1] ®[0,1,0] — [0,0,0] & [0, 1,1]. The (anti-)supercharge acting on XZ,I(X{;,&) will give us vectors Bfﬁm.

In the cases Q' y! X p,q and o) o 4,1 of opposite chirality, the spin two field a,, and the vector du I can emerge.
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Indeed,

I - —,m 1 a m
[77 Qa 2) V( 2)] Vé, 1) (6;17 _ EUIXM,G,J(’Y C)IJ>, (387)
A — 1 —T(=aa ¢
[ﬁaQ( 3).a V( 2)] V(,S 1) (alﬂ/ — ﬁni (U(u Xo)al + a/%aak(MXy)’a,I)CIl)
- mn f ~mn
VD (! = R X (7 C) ). (3.88)

andT_7|

w\»-l

_1 1 —a,T —a,
Qe Vi = v (g = " (Caary + o'Kask Wiy Ct)

—1 mn \% O/ —a mn
+ Vd( )(dL ] == 4 nr ‘%aaXp,I( C)If)’ (389)
P (_1yg _1 _ 1
[0 v =V5(+1)(B,f’m = \/inixzj( mC)fJ)- (3.90)

The supercharge action on a% and dbf follows the same selection rules with respect to SO(6) but different

ones with respect to spacetime spin. The corresponding SUSY transformations read

ey P VP = v (g = Y VOl bl + (ko) ae, (77 C))

(=1) [+ 1 17
+ Vo (O mn1C)" ), 3.91
( mnl 12\/5771@5,](’7 l ) ) ( )
oy = va P = vy (‘I’_ = Va’ﬁf%bbab,fc%), (3.92)
and
L B o
I bol 3), ! 2>} — vy (¢+ _ \/Jn’}%bl;ab’lC%)a (3.93)
_FA(=1)b -1 - —m \F b 1-¢,J (=m
Qv = v (B = 2 Yo ot + (o)t (57 C) )
(-1) — iy - bJ
V(s = 135 Gt (3.94)

Notice we do not get a vector dLmn] in the SUSY transformations, although it is allowed by SO(1,3) x SO(6).

The notation MHI/’Q"'(Hi"'Hj—l‘Hj"'Hk‘Hk+1"'Hl)"'Hn indicates we symmetrize over the indices p;, s MG —1, k1, NS

but not over the indices pj, ... ux enclosed between the bars.
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Now we are left with the internal spin-% fermions 7 and 7. Group theory admits SUSY variations in
[0,1,0]®][1,1,0] = [1,2,0]®[2,0,0]®[0,1,1] and [0,0,1]®][1,1,0] — [1,1,1]®[1,0,0]® [0, 2, 0] corresponding
to vectors d,[fm] and internal scalars (™) in the former case and Or — AT +QT in the latter. The left-handed

supercharge yields

g Q8 VD) = Vi (dm) = L [k, + (o)l (71O )

VD (0 = S0, (395)
A PV v (B = sl (e + b))

+V Y (QT’” = —Ta/ﬁf:%darl}(?”” ) ff), (3.96)

1 1 _ 1 n,a ~T
QP V) <V (557 = o (s + 0 bk )

- mn \/a a —[m|,a,I n
+Vg§,1) Qrnt = —kaaar[ bt (y I]C)If), (3.97)

_ Ve

) = 2 ko, + @)% e (570 )

~ 1
4y (¢tmn) :ﬁﬁéf(m"a"]l(ﬁ/")C)fj) (3.98)

This completes the list of SUSY transformations within the N' = 4 multiplet. We will revisit these results

from the spinor helicity viewpoint in section [3.2

3.2 Helicity structure of massive on-shell multiplets

In this section, we apply the massive version of the spinor helicity formalism [59H61] to obtain a refined
understanding of the structure of the previously constructed SUSY multiplets. A brief summary of the
spinor techniques is collected in Appendix [C] including the explicit form of massive wavefunctions associated

with different spin components. The spin quantization axis is chosen covariantly by decomposing the timelike
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momentum k into two arbitrary light-like reference momenta p and g:

k* = pt + ¢*, k2 = —m? = 2pq, pP’=¢*=0. (3.99)

As was explained in detail in [62], the supercharges can be expanded in the basis of the momentum spinors

Pa,p** and qq, ¢** defined by p,ot, = —pap}; and q,oh, = —qaq}:

Qa = @pa + @qa = Q-l-pa + Q—Q(lv (3100)

[qp] [pa]
~Na @ *Q @ *A ) *@ 3 *Q
Q" = <pq>q + <qp>p =Qq "+ Q p. (3.101)

This defines the supercharge components Q1 and Q. to be

_ g9 _ [p9
e lap]’ o= [pg]’ (3.102)
S (1%)) 5 _ {99Q)
O = (pg)”’ o= (qp) (3.103)

The Q, and O, raise the spin quantum j, number along the quantization axis by 1/2, while Q_ and Q_

lower it by 1/2. The corresponding Lorentz generator which is diagonalized with eigenvalues j, reads
— 1 Ky Ap
Jz = ﬁ e P'U‘ qy M)\p s (3104)

where P, denotes the translation operator and M), an SO(1,3) rotation.

A convenient way of organizing representations of the super Poincaré group is to pick a highest weight
state which is annihilated by half the supercharges — either the left-handed Q, or the right-handed Qi’.
States with this property are referred to as (anti-)Clifford vacua, and we shall use the vacuum eliminated
by the left-handed Q, by convention. The rest of the supermultiplet is then constructed by applying the
nontrivially acting @ and Q_, see the figures in this section. In our notation, each diamond shaped diagram

represents one supermultiplet. The dashed lines connecting bosonic and fermionic states indicate Q4 and
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Q. applications, and we assign the following directions:
S =0, N =0 and N = Qy, v =0_. (3.105)

The Clifford vacuum state being annihilated by the left-handed Q. is located on the far left of the diamond,
and we can construct the full supermultiplet by repeated action of Qiﬁ In this section, we will show how
Q- transform all the states in the multiplet from the left side of the diamond all the way to the right. The
SUSY algebras {Q4,Q+} =1and {Q4,04} = Olﬂimply that Q4 undoes Q. applications and transforms
states from right to left in the diamond.

This section starts with the N’ = 1 situation to illustrate the methods, and the additional features of
extended SUSY are explained in the later subsections on N' = 2,4 supermultiplets. To make everything
simple and clear, instead of using our old notation of vertex operators in the previous sections, we will use
the “ket” notation to express the states inside the diamonds. For example, the spin two boson with j, = +2
is expressed by

— v 1 _paa —vbb_x *
o, 42) = VIV (o = — a4 My gupias ) (3.106)

and a combined state {«, d} with j, = 41 is expressed by |« @ d, +1). The commutators of Q, and Ob with
vertex operators are replaced by SUSY transformations acting directly on the states.
3.2.1 N =1 supermultiplets

According to the strategy outlined above, it suffices to evaluate the anti-supercharge components Q- on the

helicity states in the A" = 1 supermultiplets. The decomposition Q% = Q, ¢%* + Q_p%* corresponds to the

18 Alternatively, we can also construct this supermultiplet starting from the anti-Clifford vacuum state on the right side of
this diamond, which is eliminated by the anti-supercharge Q4 , and the remaining states follow by acting QO+ on it.

19To show this, we simply plug the supercharge decompositions (3.100)) and (3.101)) into the A” = 1 SUSY algebra (2.93), and
obtain,

1 _ . . _ . _ . _ . _
{082,004} = pp {0y, O} + puq™{Q+, O } +00a**{Q—, 01} + qup™*{Q, O}

= (%), " Puo (o) ok = Pap™® + 4aq™*.

(1803 18r3)-(5 9)

Thus we arrive at,
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. . _1 . —
mass dimension [M 2] choices for 7:

Qi =n7 Q" «+— =%, n =7 (3.107)

Spin one half supermultiplets

We firstly consider the {®*, a, 2~} multiplet of highest spin 1/2 whose scalar Clifford vacuum |®%) is
eliminated by the supercharge Q®. By repeated actions of the anti-supercharge Q4 on ®*, we can construct

the remainder of the multiplet, see Fig. 8]

Jzp

... a(~1) .-

[

q
| | | | [}
T —
V3 V3/2 0 ~V3/2 V3
Figure 8: N =1 SUSY multiplets with scalar Clifford vacuum: In N = 1 scenarios, the U(1) charge ¢ with

respect to the internal current J is plotted along the horizontal axis. The SUSY charges have eigenvalue
+4/3/2 under J and therefore change ¢ by a fixed offset.

The spin-% multiplet is the minimal massive representation of the A" = 1 SUSY algebra, since it only

contains four states. Very straightly, we obtain, up to a phase,

Q:I: ‘(I)+70> = |d7i%>7 (3108)

and

Qi la,F3)=1Q7,0), Qi |a,+3) =0. (3.109)

64



The anti-Clifford vacuum |27) is then annihilated by Q4 action,

Q4 |27,0) =0. (3.110)

Secondly, we consider the mirror multiplet {Q",a, ®~} which is also summarized in Fig. Starting from

the Clifford vacuum |Q1), c.f. (3.17), we obtain,

Q. |97,0) = |a, £3), (3.111)

and

Qs la,F3) =27,0),  Qu [a,£3) =0. (3.112)

Spin two supermultiplet

In addition to the two minimal spin 1/2 multiplets, there is a larger multiplet {«, x, X, d} with spins up to
j. = 2 in each N/ = 1 scenario. All the left-handed spin 3/2 states |x,j,) with —3/2 < j, < +3/2 are
annihilated by Q,, c.f. . Hence, the Clifford vacuum transforms in a nontrivial SO(1, 3) representation.
Starting from the four states |x, j.), we build the full spin two multiplet by Q. application, see Fig. @ The
spin-% states with wavefunction ¥/ of opposite chirality are obtained by |, j.) = 9,9 _|x, ), so they form
the anti-Clifford vacua.

The helicity SUSY transformations are such that normalized states are either mapped to equally nor-
malized states or annihilated. This becomes particularly interesting at the intersection points Q_ |y, 7.) ¢
Q. |x,j. — 1) within the diamond where combination states of type | & d) arise. From the j, = +3

components, we obtain

Qu X, £3) = |, £2), (3.113)
- 1 3
O |x,+3) = §|a7i1)i§|d,i1> = |a +d,£1), (3.114)
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X(+3) <21 oz x(+3)
I3 a(+l) @d(+1) <zl
1 i Ll
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x(=3) DRI PPt X(=3)
BRI a(—2) -eT
| | | )q
V3/2 0 V32
Figure 9: N' =1 SUSY multiplets with spin 3/2 Clifford vacuum
whereas Q4 action on j, = i% components yields
~ 3 1
- L1 1
Q= [x, £35) = —=la,0) £ —|d,0) = |[a £ d,0). (3.116)

V2 V2

We use canonical normalization conventions for vertex operators as well as helicity wavefunctions: Let |1, j.)
denote some physical state with polarization tensor ¢ and spin component j, along the quantization axis.
Then, |¢,47.) has unit scalar product with |[¢),—j,) and is orthogonal to all states whose wavefunction
belongs to a different SO(3) representation. We can see from above results that all the states on the right-
hand sides of to have unit norm. Furthermore, we find that the combined states |a £ d, £1)
obtained from O« |x, :l:%> are orthogonal to |aFd, £1) from distinct Clifford vacuum components Q. |x, :l:%>,
as expected.

To complete the other half of the diamond, we have,

Q:i: |a7+2> =0, Q$ ‘Oéa +2> = |>_<7:l:%>a (3117)
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and

Oy latd £1) = [y, £3), O+ la+d, £1) =0, (3.118)
Oz laFd,+1) =[x, £3),  QilaFd +1) =0, (3.119)

and
Q:I: |O[:|:d,0> = |>Za:t%>7 Q:I: |aq:d70> =0. (3120)

The diamond is symmetric about the j, = 0 line. In other words, once we obtained all the transformations
for the states in its upper half, the lower half can be filled up by interchanging momentum spinors p < q.

This holds by the construction of the massive helicity wavefunctions in Appendix [C] see also 1] and [2].

3.2.2 N =2 supermultiplets

The new feature of extended A/ = 2 SUSY is the non-Abelian SU(2) R-symmetry group. The supercharges
are spinors with respect to this SU(2) and therefore carry fundamental indices i. That is why we have to
introduce a bookkeeping Grassmann variable n; which decouples from the spacetime spinor index structure.
In other words, this 7); is a spinor of the R-symmetry but a scalar with respect to the spacetime SO(1,3).

We define supercharge components Q4 () which are associated with the choices 7‘); . = mip;/{pq) and 1, ; =

niq;/{qp):

A _ . Pi AHai
Qi(n) =mi ) o, (3.121)
3 I
Q-(n) = ) Q" (3.122)

In the construction of A/ = 2 supermultiplets from their Clifford vacua, we obtain states in nontrivial
representations of the SU(2) R—symmetrym Their SU(2) tensor structures will be displayed inside the ket

vectors, right after the J, eigenvalue, separated by a semicolonE

20n fact, it is a peculiar feature of the first mass level that its Clifford vacua are R-symmetry scalars.
21Tn the literature, on-shell supersymmetry is usually described by the notion of supercharge eigenstates — Grassmann co-
herent states, firstly in [63], and recently in [62] and also |64]. Our presentation of SUSY transformations including internal
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Spin one supermultiplets

Again, we start our presentation with the smaller multiplets of lower spin. The universal sector due to A = 2

SUSY encompasses two spin one multiplets with scalar Clifford vacua, see Figs. [10| and [11] below.

jz/\
- wt(+1) -~
() <l o () e
¢H(0) <2 I wt(0) 930) <2l ()
R 1y .- T 1y -7
- ri(—3) DR .- a; (~3) -
-~ wH-1) .-
| : | } | )q
2 3/2 1 1/2 0
Figure 10: N'= 2 SUSY multiplet with scalar Clifford vacuum: In A" = 2 scenarios, the U(1) charge ¢ with
respect to the internal toroidal directions is plotted along the horizontal axis. Since the world-sheet fields
i0Z* and €'" have charge +1 and ¢, respectively, the SUSY generators built from e**#/2 and i0Z*eTH/2
change ¢ by the fixed offset +1/2.
jzl\
- w™(+1) -~
",’ &1('1’%) <::: :::> 771(—|—%) \\~~
o+ (0) <I7_ 222w (0) Q40 <17 2= (0)
- ai (=) . Lemn T (=2) -
BRRD w(-1) -7
| l | | | )q
0 —1/2 -1 —3/2 —2

Figure 11: conjugate N' = 2 SUSY multiplet with scalar Clifford vacuum

The first multiplet {w™*,a,r,®~, (T, 2%} is constructed from a scalar Clifford vacuum ¢*, c.f. (3.61).

Omitting all the vanishing results, we obtain

Qi (n) |2F,0:1) = |a, £5;ms), (3.123)

wavefunctions (carrying the R-symmetry quantum numbers) are an equivalent way of expressing their information content.
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and

Q1 (¢j) |a, £5,m) = [w™, £1; (en)),
. . 1
O+(¢j)la, £5,m;) = ﬁlw ,0; (677)>i$|9 ,0; €5 (Tag) ;)

= |lw” £025,0),
where (en) = €;e7'n;. The w™ and ™ states in the center of the diamond transform to

Q= (mi) |w™, £1; (en)) = Qu(n) [w™ £ Q,0) = |7, £5; (en)mi),

Q (i) [w™ £ 0y, 0) =0,

and

Qx(5) 7, £33 (em)mi) = |¢7, 03 (en)?).

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

Similar results are obtained for the mirror spin one multiplet {w™,a,7, ®*,(~,Q}, which is constructed

from the scalar Clifford vacuum. The helicity SUSY transformations are

Qu(ni) [¢F,051) = |r, £5;m:),

and
Qux(e) r,£5;m) = |wt, £1; (en)),
Our(e5) Ir, £ L3ms) = —= et 05 (en) £ —=[2F, 05 ¢; (rae) )
V2 V2
=|wt £0Q7,0),
and

O+ (m) lwt, £1; (en)) = Qu(my) [wt £QT,0) = |a, £3; (en)mi),
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Jz4

and

Q:F(ni) |w+ + Q+a 0> =0, (3133)

Q= (&) la, £5; (en)ms) = | €7, 05 (en)?). (3.134)

Spin two supermultiplet

The highest spin state of the first mass level populate a spin two multiplet {a, ¥, X, d, ¢, BT, s,5, ¢} (see

Fig. , which is built from a vector Clifford vacuum B, state, c.f. (3.27).

Figure 12: N = 2 SUSY multiplet with vector Clifford vacuum

The supermultiplet structure is more complicated here due to intersection points in the diamond like

Q_(n:) 18T, +1;1) < Qi (mi) |BT,0;1).

Since j, — —j, reflection can be implemented by p <+ ¢ exchange,

we will only show the transformations for the upper half of the diamond. Omitting all the trivial relations,

we obtain

Qi (i) 167, +151)

Q_(m:) 8%, +1;1)

Q+(7h) |ﬁ+a 0; 1>

=X, +3;m), (3.135)

1 V2, _
:ﬁ|xa+%;m>+ﬁls,+é;m>E|x®s,+%>1, (3.136)
1

V2 L

= ﬁb(a‘%;m) - \/§|§a+%;7h> =|x® §,+%>2, (3.137)
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where |y @ 5, +3)1 is orthogonal to |x @5, +3)2. For the helicity SUSY transformation of the second column

of Fig. [12] we have

Qi (e5) b, +5:m) = v, +2; (em)),
Q-(e) [ im) = —glo+1 ) + g6 +1s ) = 5l +1:(en)
=la®®d +1),
Q(e) [x® 5151 = —glo -+ ) + g6 +1s (o) + 5l +1: (en)
=la® @ d +1)s,
Q) I 5442 = ~ sl L (en) = 5 e+ en)

=|la®Dd, +1)s.

One can easily check that the three states |a @ & @ d, +1)1 2 3 are orthonormal. Moreover,

1

Q-(e) ¥ ® 5. +5)1 = —lon 0 en) + %If,o; (en)) + %w,o; (em)

la® D dD P,

O_(e)[x @5, +1) = —%\a,o; (en) — %w,o; (en) — %w,o; (em)

la®EDAD P)s.

By interchanging p <> ¢ we get the states

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

0@ERdDd), = adE@d® d)i(p < q) = —%m,o; (en) — %m (en) + %w,o; (en)),  (3.144)

1

0 @EDdD ), =aEDd® §)a(p & q) = ﬁ|a,o;<en>>+%|d,o;<en>>—%w,o;(en», (3.145)

which are the results obtained from Q. (n;) |x @ 3, —3). Clearly, |a® & ® d® ¢)q(2) is orthogonal to [a ® £ ®
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d® ¢>’1(2). The helicity SUSY transformations of this column are

O_(m) o, +2; (en)) = Qs (i) la ® E D d, +1)1 = |X, +3; (em)mi),

and

O (m)|la®E®d,+1); =0,

_ 1 2

Q*(nl) |Ol @SEB d7+1>2 = %b& +%a (577)771> - g'sv—’_év (677)771> = |>Z @ 37+%>17
3 V2o 1 1 e 1
Q_(mi)|la®E®d,+1)5 = ﬁb@ +3; (em)ni) + ﬁ|87+§; (em)ni) =X @ s, +3)2.

States in the center of the diamond transform as

Qi) e @ddd)) = Qr(n)lad B da d)y =0,
Q+(7h‘) |O‘€B§@d®¢>l = |)_(@57+%>17

Or(m)|adéddd d)s = |)—(@5,+%>2,

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)
(3.152)

(3.153)

where | @ s, —4—%)1 and |y @ s, +%>2 are orthogonal to each other. Now we are left with the transformations

to the anti-Clifford vacuum states |$7) in last column of the diamond:

O () IX,+2; (emni) = Q€)X B 5, +5)1 = |B7, +1;(en)?),
Qu() XD s, +35)2=0_()[x®s,+3)1 =0,

Q_(e) X s,+3)2=87,0; (en)?).

(3.154)
(3.155)

(3.156)

This completes the helicity SUSY transformations for the upper half of the diamond representing the spin

two supermultiplet of N' = 2.
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3.2.3 N =4 supermultiplet

In NV = 4 SUSY, the supercharges carry internal SO(6) = SU (4) spinor indices I or I. Similar to N = 2 case,
we introduce the internal spinors n; and ﬁf . Then the components of the (right-handed) anti-supercharge

can be written as

A I Pi Aa A T 94 Aa
_ i o Q 3.157
O+ =1 (pq) < o-=1 (qp) < (8.157)

We only have one big spin two supermultiplet in N' = 4, see Fig. Starting from the Clifford vacuum ®¥,
c.f. , the remainder of the multiplet is filled by Q4 application. Following the symmetry argument
of the last subsections, we will only show the helicity SUSY transformation of the states in the upper half
j» > 0 of the diamond. And again, the internal wavefunctions of the physical states are displayed right
behind the semicolon in the ket.

We start from Clifford vacuum state |®*,0;1) located at the far left of the diamond. The helicity SUSY

transformations read

Q. (") |2F,0;1) = |a, +1;77), (3.158)
and
Q. (@) [a,+5:7") = 18741 L& (3nC) i), (3.159)
- - 1 L 1 B -
Q—(GJ) |(Z, +%anl> = _ﬁ‘ﬁ 505 12€J(’ymc)anI> + 72|§2 707 %GI('YmnlO)JIWI>
=" @ 0,0, (3.160)
and
Q4 (EM)187, 41 J5€ (3 C) i) = X, +5i ekl €€ CL), (3.161)

=[x®7,+3), (3.162)
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= [XDT,+3), (3.163)
where
_ 3_Fiim o N 7
rg = 76‘](’7 C) " €5 (68) 5 + g(vm%)fgL), (3.164)
= 1 _J (= _T¢K (=~ _.mn L
Fo = 15 (i C) ' € (k™) " (3.165)

Note that 7g and 7 represent different and mutually orthogonal internal wavefunctions of 7.

The left-handed spin 3/2 states in the third column of the /' = 4 diamond transform to

QO (M) |y, +3:er7r i € EXCE) = |a, +2; £(7E€0)), (3.166)
S ai 1 T JZR ~L 1 = V3 _
Q-(07) I, +asersrrm € €7 CL) = —5la, +1;e(fegd)) + <-|d, +15dy) = |a® d, +1)1, (3.167)
. _ 1 - 1 V2
O (0 |x 7, +1) = —§|Oé’+1§€(776§9)> - Tﬁ‘d’ +15dy) + %|d,+1;d7—.5>
=la®d,+1)s, (3.168)
0L (@) |x B 7, +1) = Lo, +1;e(TEED)) + —m|d, 113 dy) + —=|d, +1:dr,)
202 2v3 V6 ’
1
+ ﬁ|d,+1;dm> =|a®d,+1)3, (3.169)
O (B™) |x & 74 1)1 = —[ov, 0; £(TEED)) — —=|d, 0: ) + —=|d, 0; ) + —=C,0:Cr,)
V6 V6 V3 SNV G
=|la®dd®(,0), (3.170)
O (@) |x 7, +1)s = — |, 0;e(TEED)) + —=d, 05 dy) + —|d, 0; dr,)
V6 NG 2/3 s
00 dr) + =16, 056) 4 216.0: Gra)
) » Yy UTro 2\/?; Y ] ) » Y STQ
=la®d®(,0)9, (3.171)
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where we have used the following abbreviations:

d _7@]\_4 =[mn] 7L€____—I_—J_* ,
XT3 (V") i errrL €€
1 M —[m|,L|  —n 1 ~w7_iml|,L _n
dr/ﬂ - 729M g ‘Ll(’y ]C) VIL> d?g = EGMTS% ‘Ll(’}/ ]C)Mi,
1 AM —(m|,L| (—n 1 AM —(m|,L| / —n
Ts = 720M7«é IL‘(’Y )C)an C’FQ - ﬁeM’r‘é |L|(7 )C)NIE-

(3.172)

(3.173)
(3.174)

(3.175)

Similarly, dy, dr,, dr, and (r,, Gr, are two pairs of orthogonal states with respect to the internal R-symmetry.

Thus, the explicit computation confirms that different states located at the same point inside the diamond

(with the same j,) are orthogonal to each other.

Now we are left with the helicity SUSY transformations for the right half of the diamond. After some

manipulations, we obtain

O_ () |, +2:e(7€€0)) = Q1 (77) |a @ d, +1)1 = |x, +3;e(77€€0)i7"),

O (M) |a@d+1)y =0 (1) |a®d® (¢ 0)

1, o r V2 e T _
= —|X, +3;e(7E€)i’y — ﬁlh+é;€(n€€9)nlvn(55§3ﬁﬁ + (YmAn) )

w

= |X o, +%>17
(i) |a®d,+1)3 = O4(7") |a ® d ® (,0)

1 = 1 L
= ﬁlx, +3;e(neé)n’y + %In +1:e(me€0)i' 7 (68).6% ; + (mAn) "))

—_

+—|r, +3; e(E€0) " A (Ve Vmnt) 5)

5

V2

X &7, +3)2,
and

Q (&)X, +3;e(mee0)’) = Q1 (&) [x @7, +5) = |84, +1; L5e(7e0)e (3mC) 511",

Q () [xer,+3)2 = —%lﬁﬂ 0; J5e(Me€h)e’ (3, C) 1')
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(3.176)

(3.177)

(3.178)

(3.179)



1 - .
+ﬁ|ﬂ+,0; e(Me0)e’ (Cymm) ji") = |BT @ QF,0), (3.180)

and

Q- (%) 1B, +1; Jze(Me€0)e’ (3 C) 110") = Q4+ (€5) 8% @ QF,0) = |a, +5:e(7e0)e 50" €' EXCE),
(3.181)

and finally we have

Q_(0") |a, +1;e(e€f)ersrpi’ e €K CEY = |07, 0; [e(7€€0))?). (3.182)

This completes the chain of transformations that take the Clifford vacuum |®T) into its anti-Clifford coun-

terpart |[®7).
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4 Direct production of lightest massive superstrings

In this chapter, we discuss the direct production of the lightest Regge excitations. We will first review
some basic knowledge of intersecting branes realization of the SM and how to compute the string scattering
processes. Then we discuss some factorization properties the of string amplitudes. In Chapter [2| we already
found the full physical fields contents for the first massive level. Here we focus on the universal excitations
of gauge bosons originating from a stack of N D-branes extending into higher dimensions, which include one
spin two particle, one vector and two complex scalars, with only the spin two and a single scalar coupled to
massless gauge bosons directly at the disk level. These Regge excitations of SM fields are independent from
the details of the internal geometry of the compactifications of the ten-dimensional superstring theory. On
the other hand, quarks exist in the excited spin 3/2 and 1/2 states. The amplitudes with only two fermions
are also universal. Next, we compute all amplitudes involving one of the universal Regge excitations and
up to three massless partons. These amplitudes acquire a very simple form in the helicity basis, which
also reveals certain selection rules similar (and related) to the vanishing of “all-plus” amplitudes at the
zero mass level |31]. Finally, we square the appropriately crossed amplitudes for p1ps — psR, average over
initial helicities and colors and sum over the colors and spin directions of the outgoing particles. In order
to facilitate phenomenological applications of the partonic cross sections, we tabulate squared amplitudes
according to the production processes: gluon fusion, gluon-quark absorption, quark-antiquark annihilation
and quark-quark scattering.

This chapter is based on the paper [1].

4.1 Intersecting D-branes realization of the SM

In this section we review briefly how the SM is realized by intersecting D-branes.
Large extra dimensions can appear in string theory when the string mass scale Mgsying is very low, at
the order of TeV [9,/10]. There’s a relation between the Planck mass Mpjgner, the string mass scale Miring

and the sizes of the compactified internal directions R;. For type II superstring theory, we have [13],

d 1 do 1
5 7_ -3 3
95 Mpianc = 25nM, P ( II RL') ( I1 Rji) (4.1)
i=1 j=1
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(c) right

U(3)

(a) baryonic

(d) leptonic // \ U(l)g

Figure 14: Intersection pattern of four stacks of D6-branes giving rise to the MSSM

Thus, by enlarging some of the transverse compactifications radii Rj-, the string scale has to become lower
in order to achieve the correct Planck mass.

One of the most common ways to realize the SM is by considering four stacks of D-branes. As it is shown
in Fig. the SM particles can be locally realized as massless open string excitations that live on a local

four stacks of intersecting D-branes. The corresponding SM gauge group is given by
UB)e xU2)y x U(1)e x U(1)g. (4.2)

Gauge bosons are originated from open strings attached to the same stack of D-branes; chiral fermions are
due to open string stretching between different stacks of D-branes.

The SM gauge bosons which are in the adjoint representations of the gauge group are originated from
open strings attached to the same stack of D-branes. The SM matter (chiral) fields such as quark and leptons
are due to open string stretching between different stacks of D-branes. They transform under bifundamental
representations of the four gauge group factors, and they can also be in the antisymmetric representation 3
of SU(3)a, in case the color stack of D-branes is intersected by its orientifold image.

In order to combine D-branes with the SM particle content and large extra dimensions, the local setup
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of intersecting D-branes (like the example above) which give rise to the spectrum of the SM have to be
embedded into a global large volume CY-manifold to get a consistent compactification. We will not go
through details of a fully realistic string compactification, since our focusing point — the universal tree-level
open string scattering amplitudes only requires the local information. However, to use the CFT techniques to
compute string amplitudes, we need to assume that the SM D-branes are wrapped around flat, toroidal like
cycles. A fully consistent global orientifold model with all their tadpole and stability conditions satisfied is
beyond the scope of this work, for these consistency conditions depend on the details of the compactification
such as background fluxes. Yet even for models-dependent four-fermion couplings are argued in [13] that
they only depend only on the local structure of the brane intersections, but not on the global Calabi Yau

geometry.

4.2 Tree-level superstring amplitudes
4.2.1 Computation of tree-level superstring amplitudes

n-point string amplitudes are obtained by calculating the n-point correlation functions of associate vertex

operators on the boundary of the disk, which read,

oW =3 Viga /(H dzi)(V(21)V (22)V (23)V (24) - - V(2n)) (4.3)
i=1

where the sum runs over all the cyclic ordering of the n vertices on the boundary of the disk. In three-point
amplitude, there are two different orderings; in four-point amplitude, there are six. In order to cancel the
total background ghost charge —2 of the disk D5, we should choose the vertex operators in the correlator in
appropriate ghost “pictures” which makes the total ghost number to be —2. In addition, the factor Vokg
is defined to be the volume of the conformal Killing group of the disk after choosing the conformal gauge,
which would be canceled by fixing three vertices and introducing respective c-ghost fields into the vertex

operators. Because of PSL(2, R) invariance on the disk, we can fix three vertex operators on the boundary
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of the disk. Mathematically, V(;KIG can be written as
VC_KlG = c(z;)e(z)e(zr)0(z — wi)d(zj — w;i)d(zr — wi) , (4.4)

where w;, w;,w;, are totally arbitrary, however it is the most convenient to choose these three position to be
0, 1 and oo. Then we integrate over other n — 3 points and get the amplitude [27}/65] which could be written

in the form

o = (aV(21)eV (22)esV (23) /(H dz)V(z4) - V(zn)) - (4.5)
=4

Following the conventions in [65], here we list several the most important correlation functions of the

world-sheet fields:

(crcac3) = |z12213203] (4.6)
(e (z1)e () = 215, (4.7)
(W (20)9" (22)) = 1" 2y (4.8)
(XH(21) X" (22)) Dy, = =207 In |212], (4.9)
<ﬁeikiX<Zi>>D2 = iCp, (2m)*6%(3k;) ﬁ 2452 kicks (4.10)
i=1 ig=1
1<

where z;; = z; — z; and Cp, = 1/(g*a/?) are normalized in [13]. The last two correlators are for the X fields

on the Dy boundary, and are obtained by “doubling trick”. We also need to use,

n p n
(] e* 0 ] 0X"(2))) b, = iCp, (2m) 6% (Shi) [ li**
i=1 j=1

i,j=1
1<y
p n LM
ALY .
X H [Z(fma 5) + 4" (2)] (4.11)
=g

where ¢’s term are contracted by —2a/ntiti(z;;) 72
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4.2.2 Universality of four-dimensional tree-level amplitudes

Although we have adapted our whole setup to full-fledged ten-dimensional superstring theory with spacetime
filling D9-branes, it turns out that all the results presented in the previous sections except for the four-fermion
amplitude can be taken over to lower dimensional Dp-brane world volumes and compactification geometries.

As we already saw in Chapter [2] dimensional reduction of the spacetime gluon vertex operators simply
replace SO(1,9) and ten-dimensional world-sheet fields by four-dimensional fields. Correlation functions
involving exclusively the world-sheet fields X and 1 do not depend on their dimensions. Moreover, we do
not have any contractions which would get the dimension of the spacetime D (e.g., identity such as of will
give rise to quantities dependent on the spacetime dimensions D). Thus the n-gluon amplitudes do not
depend on the spacetime dimensions.

Under dimension reduction, the ten-dimensional spin fields S,, can be factorize as S, ® si, or St ® E{Ht

i g
int> Sint-

into four-dimensional spinors S, St and internal components s We already saw that for the four-

dimensional gaugino the internal components (si,, 5/ .) = (X, %) in Chapter However, for the chiral matter

that are located at D-brane intersections, si ,, sijnt are identified with the boundary changing operators =

and = will be defined in Eq. (4.67)), with OPE

(B4 (20) 27 (23) = ﬁ : (4.12)

As we can see, two-point function in both spin fields sector and internal sector are completely determined
by their conformal weights, which shows, the four-dimensional amplitudes involving only two fermion fields

are also universal to all compactifications.

4.3 Parton amplitudes and factorization on massive poles

Regge excitations may appear in resonance channels of SM processes or may be directly produced as external
states. While the first effect has been extensively studied in [13-15] the latter effect will be discussed in this
work. A first look at the couplings of massless SM particles to massive Regge states is made by considering

the factorization of higher—point amplitudes involving massless external states. In what follows we shall
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discuss this factorization on general grounds. We consider scattering amplitudes involving massless SM
model open string fields ®; as external particles. These amplitudes are describedlﬂ by the exchange of the
light (massless) SM fields and the tower of infinite many higher Regge excitations.

Due to the extended nature of strings the string amplitudes are generically non—trivial functions of o’ in
addition to the usual dependence on the kinematic invariants and degrees of freedom of the external states.
In the effective field theory description this a/—dependence gives rise to a series of infinite many resonance
channels due to Regge excitations and new contact interactions involving massless SM fields and massive
Regge states. As a consequence of unitarity an N—point tree—level string amplitud@ M(Pq,...,Px) can
be written as an infinite sum over exchanges of (massive) intermediate string states |J,n) coupling to Ny and
Ny external massless string states, with N7 + No = N. For each level this pole expansion gives rise to (new)
N7 4+ 1- and N3 + 1-point couplings between the massive string states |J,n) and the N; and Ny external
massless string states, respectively.

In the following we illustrate this at the four—gluon amplitude, i.e., ®; = g; and N; = Ny = 2. The latter
gives rise to an infinite series of three—point couplings involving two massless gluons and massive string state

|J,n). The general expression for the color ordered four—gluon amplitude is

M(91,92,93,94) = 2 gy Kaler, ki;ea, kojes, ksieq, ka)
X Tarazasaq M _|_T112a3a1a4 M + T 3010204 M
a't o's ao'u ’

(4.14)

22There may be additional resonance channels due to the exchange of KK and winding states, as it is the case for amplitudes
involving at least four quarks or leptons.

23Disk amplitudes M(®1, ..., Py ) involving N open string states ®; as external states decompose into a sum over all possible
orderings p of the corresponding vertex operators Vg, along the boundary of the disk

M(@1,.., ON) = Y Mp(®1,...,0n) Y Tr(T ... T*Ne) A(1y,...,N,) , (4.13)
pPESN PESN

with i, = p(¢) and the partial ordered amplitudes A(1,,...,N,). Furthermore, T% is the Chan—Paton factor accounting for
the gauge degrees of freedom of the two ends of the ith open string.
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with the kinematic factor [66,67]

Ky(e1, k1560, ka;e3, k3seq, kg) = o'ta’u (e162) (e364) + ’sa’t (e184) (£2e3) + a'sa’u (e1€3) (e224)
+a's [ (e163)(e2ks)(eak1) + (e164)(62ka)(e3k1) + (£283)(e1k3)(eakz) + (e264)(€1ka)(e3K2) |
+O/t [ (6162)(63k2)(54k1) + (6164)(62k1)(53k4) + (6283)(61k2)(84k3) + (8384)(61](34)(82/{33) ]

+O/’LL [ (5152)(83k1)(€4/€2) + (5153)(62k1)(€4]€3) + (5254)(61k2)(€3]€4) + (5354)(€1k3)(€2]€4) ] .
(4.15)

and the color factor:

T@1020304 — Ty(TUTO2TWT%) 4 Ty(TUT®T2T) . (4.16)

Above, ¢; are the polarization vectors and k; the external momenta of the four gluons. Furthermore, we
have the kinematic invariants § = 2o’k ks, t = 20/k1ks and 4@ = 2a’k; ka.
In what follows we shall concentrate on the partial amplitude M ;934y. According to the definition (4.13)

we have: M 934y = Tr(TT*2T*T) A(1,2,3,4). With (c.f. Ref. [13])

1 TET(1+4a) < v(n)
I'(3+a) 2. 3

s
—~
o

~33
=

, (4.17)

k>
~
>

n=0

and

1 T(@u+n) 1 1 L

() =~ Tutl) ol ou H(O/U—H‘j) (4.18)

the amplitude (4.14) can be written as an infinite sum over s-channel poles at the masses of the Regge

excitations:

o0
n
M 1230y (91,92, 93, 94) = 2 gy pp Te(TT2T*T™) Ky(en, ks €2, kas €3, ks ea, ka) %—i}n . (419)

n=0

In (4.19) to each residue at o’s = —n a class of three—point couplings of two massless and one massive Regge

state |J,n) of a specific spin J is associated, c.f. Fig.
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Figure 15: Factorization of four-gluon amplitude into pairs of two three-point couplings.

From ([4.19)) the three—point couplings are determined by the product 2 g2 ,, v(n) K4. To cast the residue
of (4.19)) into suitable form non—trivial factorization properties of the kinematic factor (4.15)) have to hold.
We shall now evaluate for the amplitude (4.19) the contribution to the residue of the pole in o's at

/

a’s = —n, withn =0,1,.... At the level n = 0 only a massless gluon with polarization ¢’ and spin J = 1 is

exchanged. Hence, we obtain the following residue at a’s =0

Res ,a’jfolt M(1234)(91392393ag4) = 2 g}z/M Tr(TalTazTaSTa4)
X 7(0) Kaler, kisen, kaies kaieas ka)| ormo (4.20)
= ZK3,0(€1J€1;€2J€2;€, k) K30(e3, kssea, kase, —k)
e(k)
with the YM three—vertex:
Kso(e1, k162, kase3,k3) = gy Te(T[T2,T])
(4.21)
X { (8162) (€3k1) + (5153) (62k3) + (5253) (Ele) } .
Furthermore we have applied the completeness relations
1
> T(TUTT®) Te(TT*T) = 5 Te(TTTT) (4.22)

width the sum over the Chan—Paton wavefunction of the intermediate state.

At the n = 1 level exchanges of a spin J = 2 state b and a J = 0 state /¥ occur [43|. For the amplitude
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4.19) we obtain the following residue at o’s = —1
g

Res oy Mi234)(91,92,93,94) = 2 gy pp Te(TUT*2T*T)

a/u=1—a't

X (1) Ky(er, k1sea,koses, kgsea, ka)| aram—a

a’u=1—a't

4.23
= Y Ksiler, kiiez, kose k) Ksi(es, ksica, kase, —k) (4.23)
e(k)
+ Y Ksaler, kisea, kosb k) Kso(es, ksia, kb, —k)
b(k)
with the two three—point vertices
K371(€1, kil;é‘g, kg;e,k‘) = 6 gy m {TI‘(TalTazTas) + Tr(Ta2Ta1Ta3)} €ijk €1i €25 klk s
(4.24)
K372(€1, kl; 2, kz; b, k) = 4gvym {Tr(TalTaQTa3) + TI'(TazTalTa?’)}

X

b9 { (kik2) e1ig2j — kiicay (e1k2) — kaiers (e2k1) + kiikoj (182) }

involving two massless gluons and one massive string state e”* and b¥, respectively. In (4.23]) the second

equality follows by applying results from [68H70].

4.4 Two- and three-particle decay amplitudes

With all the physical vertex operators at hand, we are ready to compute the amplitudes describing two-
and three-particle decays of the bosons — a(J = 2), d(J = 1), &4 (J = 0), Q(J = 0) with vertex operators
written as we obtain one complex scalar ®* = $+ (6a = ®%7) and one J = 2 particle B, with the vertices

given by

v = % T e~ a,, i0X " e (4.25)
Vi = ga T e ¢, g T X (4.26)
ViD= %T“ e | (gun + 20k, k) i0X 0 + 20'k, 00"

+ ém' € o K ww)ﬂ} eihX (4.27)
Vé:il) =ga T e ? OF hX (4.28)
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with the on-shell conditions k", = 9" o, = k*d, = 0. The vertex operators of fermion x(J = 3/2) read

(*l gA [ B a . p —a — 1k-
ng = V2a/1/4 (TB )a11 X (z@X“ Sa — V20 Kap SHb) EON0 /2 ek X ) (4.29)
v 3 _ ﬁi‘im (T2)5 Xt (iaXM Si — Vool peb Sub) Zanb o=6/2 ik X (4.30)

with the on-shell condition k" x§ = X, (TZ[-) =k, xt =x4 6zb. And for a(J = 1/2), we have

1 11/4 ]

Vig 2 — %(Tg)fjl a? ((au K)y® S, i0XH — 485b) ZaMb o=9/2 ik X (4.31)
1 11/4 o , ) SN )

vie =2 29“‘ (T2)% ab((aﬂ )b, St iox" — 4asb)5a“be—¢/2 ek X (4.32)

All the above vertex operators that describe the physical open string states are normalized by using the

1/2

factorization techniques introduced in the previous subsection. The coupling g4 = (2a’)'/?g where g is the

gauge coupling.

Our notation for Mandelstam variables are
s=(ki+ka)?, t=(ki+ks3)?, wu=(k +k)? (4.33)
with all momenta incoming and on-shell:
Zki:(), k=ki=ki=0, ki=-m?’=-1, (4.34)
which implies the following relation for the dimensionless variables:
ads+at+au=-1. (4.35)
The spinor products will be abbreviated as

(Rilk) = (ig) s [Kalky] = [id] - (4.36)
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Finally, we recall the string formfactor

I(1+4 o's)I'(1 4 o'u)

W = V(S,t,u) = 1"(1 +a/s+alu)

, Vei=Vit+s), Vu=Vi(t < u).

Note that once the kinematic constraint (4.35)) is implemented,

I(14 o's)T(1 4 o'u)
L(a't) ’

‘/;::

4.4.1 Massive spin two boson «(J = 2)

We begin with the B-decays into gluons. The two-gluon channel is described by the amplitude

,!Z{[OZ;E1,€2] = (2 dalaga;;) (4gv 20/) Oy [(Egkl)kgﬁlf + (Elkg)k‘lffg — (k‘le)ggE? — (5152)/45/1”{;5} .

In the prefactor, we singled out the color factor,

2da1a203 — Tr(TalTaQTa?’) + Tr(TaszTag) ,

(4.37)

(4.38)

(4.39)

(4.40)

which appears after adding the contributions of the two orderings of the vertex operators inserted at the

disk boundary. It is convenient to rewrite the amplitude (4.39)) as

A a;er,e0] = 4g (2d19293) (20/)%/% Alas ey, €]

Substitute the helicity wave functions of o which can be find in Appendix [C] We find

Ala; £,£] =0,

(4.41)

(4.42)

thus non-vanishing amplitudes must necessarily involve two gluons with opposite polarizations. They read:
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Ala(=1);+,-] = —32)*q1]lp1] ,

Ala(0);+, ] = = p2)*[p1]* (4.43)
Ala(+1);+,-] = +3(2)(a2)[p1)* ,
Ala(+2)i+,-] = —3(a2)?[p1]* .

As a first check of the above result, we can examine the probability for the decay of unpolarized B into

a specific (+, —) helicity configuration, by computing the sum

/

+2 )
> A+ -1 = —gh(dme)? (4.44)
j=—2

which does indeed turn out to be independent of the choice of reference vectors p and q. Now we can check
if the result is consistent with string factorization. From Ref. [43] we know that only the spin 2 resonance
appears in the s-channel of the four-gluon amplitude /\/l[gf7 o 193 gj], where it yields the following residue

at s=M? =1/’
Ress—1/0r M7, 95,9591 = 4> Te(T“ T T T*) o/ (23)%[14)° + ..., (4.45)

where we picked up just one partial amplitude contribution. In order to compare our B-decay amplitude

with the residue, we compute

+2
Z .A[CY(]), +, 7]* A[a(j)v +, 7] ‘ (1-3,2—4) ’ (446)

j=—2

with the color factor associated to the first ordering in Eq. (4.40), c.f. Eq. (4.22). The simplest way to
perform the sum (4.46) is to set p = k1 and ¢ = ko because then only J, = —2 contributes. Indeed, after
combining the spin and color sums we recover Eq. (4.45)), thus confirming the correct normalization of the

vertex operator (4.25). Eqgs. (4.41) and (4.43) can be also checked by comparing directly with Eq. (25) of

Ref. [43].
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Three-gluon a—decays are described by the following amplitude

daier,e0,83] = 4g>V2a0 (V1910290 4 |/, 02000s |, fasarazas )
1
X {S [(6263) (e1 ko) (kY v k5) — (e1e3) (eakr) (kY cyu k) + (e1€2) (e3 ko) (KY cy k)

— (e162) (e3 k1) (K5 apw k5) + (e1ks) (e k1) (kS cyu€5) — (e2k3) (€1 k2) (K5 au €5)
+ (e2 k1) (e3 ka) (KY v 1) — (€1 k2) (€3 ka) (BE vy €3)

1
+ = (e1ka) (eh v e5) —

5o (e2 k1) (7 v €3)

20/

t
-5 Ere) (b aues) + 5

5 (e162) (K v €3)

+ % |:(€1 63) (EQ k‘3) (kilf Ay k'ly) — (El 82) (83 k‘g) (k)ij Ay k‘i’) + (82 83) (51 k‘3) (kij Oy k‘g)

— (e263) (e1k2) () v k5) + (e2k1) (e3 k) (KY apuuel) — (e3k1) (e2 k) (K apu €f)
+ (e ko) (€1 ka) (K cn 5) — (e2k3) (€1 ka) (K aun €5)

b o (k) (S g e) — 5 (eaka) (ef )

- % (e2€3) (K v ef) +

5 (e263) (k5 apel)

g [Erea) eoh) (B am k) — (c2e0) (o1 k) (B BE) + (6120) (o0 ) (K v 1)
— (eres) (2 ko) (W o ) + (eaka) (e k) (6 o 28) — (e ko) () (4 s 8)
+ (erk) (o) (4 g o8) — (2o ) (e2 o) (6 o <0)
N

v 1 12
e (e3 k1) (Y apuey) — o (e1k3) (e auweg)

u v S v
- 5 (e1e3) (kY aues) + 3 (e1€3) (K5 auy €5)

DN | =

(e162)ef apy (ks — kY) + (e2e3) ey apw (ky — k3) + (e163) e v (KT — kg)}} ;o (447)

with the color factor

farazasas  — (TR TAT)  Tp(TU TS TRTY)

Z‘ (da1a4nfa2a3n _ dagagnfa1a4n)
)

(4.48)
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ie., t?1020804 = Ty(T o2 ) _Ty(TW T T T%2) 02030104 — Ty(T0ToaTo2Tas) _Ty(T* T2 %4)
and t#3010204 = Ty(T* T2 TeTe%) — Ty(T*T*T*T). Note that the massless (4.14) and massive (4.47)
amplitudes have different group structures, c.f., Eq.(4.48|) and (4.16]), respectively. This is explained below.

Generally, under world-sheet parity an N—point open superstring amplitude &7(1,...,N) (recall the

definition (4.13])) behaves as

N

A(1,...,N)= (H(—na/m?ﬁ) #(N,...,1) (4.49)

with m? the masses of the external open string states. Furthermore, for SO(IV) representations we have
e =1 and € = 0 for USp(N) representations [71]. Further relations between subamplitudes are obtained by
analyzing their monodromy behavior w.r.t. to contour integrals in the complex plane [72]. As a consequence
for amplitudes involving only massless external string states (m? = 0) the full set of relations allows to
reduce the number of independent subamplitudes to (N —3)! [72}{73]. On the other hand, the set of relations
for the massless case does not hold in the case if m? # 0 and new monodromy relations have to be derived.

For the case at hand, i.e., m; = 0, i = 1,2,3 and m? = o’/~!, the partial amplitudes are odd under the

parity transformation. Hence from (4.49)) we deduce:

JZ{(1a27374) = —d(1a47372) )
(1,2,4,3) = —o/(1,3,4,2) , (4.50)
(1,3,2,4) = —o/(1,4,2,3) .

This fact is manifest in the full amplitude (4.47)) due to the color factor. After applying the contour arguments

of |72] the following monodromy relation can be established for the case at hand:

(1,2,3,4) — ™ o7(1,2,4,3) — e ™ 7(1,4,2,3) =0, (4.51)

Together with (4.50]) this relation allows to express all six partial amplitudes in terms of one, say <7 (1, 2, 3,4):

%(174a372) = _%(1’27374)7
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sin(ma’u

o (1,2,4,3) = —/(1,3,4,2) = —————2/(1,2,3,4 4.52
( e ’3) ( 73’ ) ) Sin('ﬂ-a/t) ( Y ’37 )7 ( 5 )
sin(mas)
o(1,3,2,4) = —/(1,4,2,3) = ————=97(1,2,3,4) .
( 737 3 ) ( ) ) 73) Sin(ﬂ'a/t) ( Y 737 )

Note, that (4.51)) differs from the monodromy relation for the massless case, c.f. Eq. (4.8) of [72]. As a
consequence also the solution (4.52)) is different than in the massless case, c.f., Eq. (4.10) of [72]. Tt is easy
to see that the relations (4.52) are indeed satisfied by the result (4.47).

In order to represent the amplitude (4.47) in the helicity basis, we rewrite it as

oo e1,€9,€3] = 8g2(Vt (01420304 4 |/ 402030104 4 ) 403010204 ) V2a! Alaser,ea,€3] . (4.53)

We find

Ala;+,+,£] =0, (4.54)

therefore non-vanishing amplitudes always involve one gluon of a given helicity and two of the opposite one.

They have a very simple form:

Ala(=2);+,+,-] = 2\1/5 <12><g'§;’>>>4<31> ’
Ala(=1);+,+,-] = % <1<§>3<>233<>3<q3>1>’
Ala(0);+,+, -] = ? m’ o
Ala(+1);+,+,-] = % m
Ala(+2);+,+,-] = 1 o

2v/2 (12)(23)(31) -

Similarly to the two-gluon case, we can consider the case of unpolarized B decaying into a specific helicity

configuration of the three gluons. By using Eqs. (4.53)) and (4.55)), we obtain

(1—a's)*

a,3 s |‘/t ta1a2a3a4 4 ‘/s ta2a3a1a4 4 Vu ta3a1a2a4 2 . (456)

+2
S | (a;+,+, ) = 16g*

a=-—2
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Next, we turn to a-decays into fermions. The quark-antiquark channel is described by the amplitude

o ur, o) = (T)g(gV2) ko, ui\aipﬂg , (4.57)
which we rewrite as:
o [ ur, te) = g (T2 (20/)%? Ala; ug, Ua) (4.58)

For the specific (+%, f%) helicity configuration of the antiquark-quark pair, we obtain:

Ala(=2);+3,-3] = 3 D@2,
Ala(=1);+5,-3] = § ®2)lal] ((aD)[1q] = 3(p1)[17]) ,

Alo(0)i+5,-3] = 5 @)1 (@D [p] - (g1){1q]) . (4.59)
Ala(+1);+5,-3] = 4 (@)p1] (p1)[1p] - 3(q1)[1q]) ,

(a1){g2)[p1] .

=

Adding up the moduli squares of the amplitudes, we obtain

+2
S Ifal) 43, — 4 = 5 g7 (T2 (1.60)

j=—2

which does not depend on the choice of the reference vectors. As a further check, we can compare our result

with the residue of the two-gluon — quark-antiquark amplitude

- = — azag o 13 2
Ress:l/a’ M[Ql aQS_aQS vgz_] = 292{T 5T 4}(1; a’tu<1<4><>24> ) (461)

which is known to receive contributions from the spin two resonance only [43]. Indeed, the residue is correctly

reproduced by

+2
Z "Q{[O[(])v +%7 7%]* "Q{[a(])a R +} |(14)3’2*>4) : (462)

j=—2

The amplitude with one gluon in addition to the quark-antiquark pair in the final state can be written
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as:

o uy, U, €3] = 2 g° [V}(T‘“T““)g; + Vu(T“T‘ls)Zﬂ V2o Ala;u, iz, €3]

with:

Alos+}, -3, -] = A o5 +1, -3, 4] |

L ne®
V2 (12)(23)(31) 7

1 (p2)? (g1)(p2) + 3(p1) (g2
>3 12) (2330 (b (02 + 301 (a2)
? % ((q1)(p2) + (p1)(q2)) ,
2\1/5 i ><<‘12>><31> (3(q1)(p2) + (p1)(q2)) .
1 (q1)(g2)®

V2 (12)(23)(31)

(pe3q),(1632)

The sum of the squared moduli of the corresponding amplitudes reads

+2
> | eG); +3

j=—2

_%’_‘_”2 =

4 a ag\ a as\oq |2
g [Va(TT)3) + V(T T3 |

1—a't)?
L(—a't)

2 (s +4a'tu) ,

stu

and a similar expression with (k1 <> ks, a3 <> a4) for the gluon with opposite helicity.

4.4.2 Massive spin one boson d(J = 1)

(4.63)

(4.64)

(4.65)

(4.66)

The spin one vector resonance has a different character than spin two, because it is tied to space-time

SUSY. The internal part of the corresponding vertex operator (4.26) contains the current 7, which plays

an important role in the world—sheet SCFT describing superstrings propagating on CYMs.

As we have

described in the third section the most natural way of thinking about this particle is as a two—gluino bound
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state. Indeed, with X the internal Ramond field associated to the gluino, the current J appears as a sub-
leading term in the OPE (2.77). It is clear that the current J and the existence of the resonance d(J = 1)
is a universal property of all ' = 1 SUSY compactifications. At the disk level, this particle does not couple
to purely gluonic processes. Its main decay channel is into two gluinos and its mass will be affected by the
SUSY breaking mechanism. The reason why we include it in our discussion is that it also couples to the
quark sector, therefore it can be a priori directly produced at the LHC.

In the intersecting D—brane models, the internal part of the quark vertex operators contains the boundary-

changing operators [13]

3
aﬁb(z> _ H e—i(%—ei)Hj(z) O_pi (Z) , (4.67)

Jj=1

[1h

Haﬁb H ez(f—GJ)H (z) ” (Z) ,

where o4 is the bosonic twist operator associated to the intersection angle #. The angles #* are associated

to the three complex planes subject to the N’ =1 SUSY constraint:

0k =0. (4.68)

b
Il w0
_

Note, that in the limit # — 0 bosonic twist fields g9 become the identity operator and we have:

lim 200 = He% i=%, lim 297 = He =5 (4.69)

03 —0 09 —0

Therefore, up to Chan-Paton and normalization factors in this limit the quark vertex operators turn into

the gaugino vertex operators [13]. With the explicit free field representation of the U(1) current J

3
J =i0H =i Y 0H; (4.70)

j=1
the three-point function relevant to the W coupling to a quark-antiquark pair reads:

1/4

23:(1 BN SCE
2

212213 2212 213

<j(21) Eaﬁb(zz) Eaﬁb

j=1
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= (J(21)2(22) B(z3)) -
The corresponding amplitude is:
= \/g a\«a —p 3a/ a\a —
ﬂ[d’ularuﬂ] = T g(T )a; fuui\o—f\t,{)ug = 7 g(T )a; A[da u17u2] .

For the specific (—l—%7 —%) helicity configuration of the antiquark-quark pair, we obtain

Ald(-1);+3,-3] = )],
Ald(0);+3,—3] = V2(p2)[p1],

Ald(+1);+3,-3] = (a2)[p1] .

(4.71)

(4.72)

(4.73)

From Eq. (4.71) it follows that the W-coupling to two gauginos can be obtained from Eq. (4.72) by the

replacement (7¢)5! — 4d**“2¢. The normalization of the above couplings can be checked by comparing with

Eq. (39) of [43].

The amplitude with one gluon in addition to the quark-antiquark pair in the final state can be written

as:

ﬂ[d, U1,1_L2,€3] = \/§92 [Vt(T‘IS‘T(M)g; + Vu(Ta‘lTas)g;] A[f;ul,ﬂz,&;] .

with

AN 3] =
Afdy+h -3+ = VEEEEL.
Ald(+1);4+4,-3,4] = _<1<3‘1>2<>23>.

For the gluon with opposite helicity we have:

Afd +3 b -] = A+ b+

(prq),(162)

96

(4.74)

(4.75)

(4.76)



The sum of the squared moduli of the corresponding amplitudes reads

2 (1 —a't)?

+1
D2 | ()45, =5, 4" = 3¢ VT T + Va (@ T2 =5

j=—1

(4.77)

and a similar expression with (k1 <> ko, a3 <> a4) for the gluon with opposite helicity.

4.4.3 The universal scalar ¢(J = 0)

It has been originally pointed out in Ref. [43] that the lowest scalar resonance propagating in two-particle
channels of multi-gluon amplitudes must couple to the product of “self-dual” gauge field strengths, with the
coupling to two gluons that is non-vanishing only if they carry the same helicities, say (4, +). Such couplings
arise naturally from A = 1 supersymmetric F-terms f d?0 ®WW,, where W is the gauge field strength
superfield. The scalar and pseudoscalar components of complex ® = ®, (®_ = ®) are combined with the
relative weight that enforces this selection rule.

The two-gluon decay of ® with momentum k£ is described by the amplitude

APy, e1,60] = 4g (2d***%) V2! { (guv + 20 kuky) [(e2k1) kb el + (e1ko) kel
—(hyko)ele? — (2122) KN KY] £ ok eliel kY } . (4.78)

In the helicity basis,

'Q{[(I)+7_,_] :M[(I)Jrv_v—’_] :d[@+a+7_] =0 9 (479)

and
[Py, +,+] = 29(2d"*2*)V2a/ [12)% . (4.80)
The conjugate scalar ®_ couples to (—, —) configuration only, with the complex conjugate coupling. Our

results correctly reproduce Eq. (25) of [43].

The three-gluon decay amplitudes obey similar selection rules:

“Q{[(b-i-a ) _7_] = “Q{[(b-i-a ) _7+] = “Q{[(b+a _7+7_] = “Q{[(b+a+7 _7_] = 0 ) (481)
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while the non-vanishing ones are the “all plus” amplitude

"N—3/2
AP = 4q%(V, 101920304 V, 102030104 4 |/ 143010204 L 182
[, +,+,+] 9} (Vi + + ) 3 5T (4.82)
and three “mostly plus” amplitudes that can be obtained from
&7[‘1) +,+ } 4 2(V $0102a3a4 | Y/ 4A2030104 4 |/ 43014204 )F [12]4 (4 83)
o ’ v O oalral] .
+5 T T g f [12] [23] [31]

by cyclically permuting (1,2, 3).
The ® resonance couples to the quark-antiquark pair and one gluon only if the gluon is in appropriate

polarization state: + for ®* and — for ®~. The amplitude reads

Ay, +5, =54 = 2¢° [Vi(TBT )3 + Vo (THT®)2: | V! (4.84)

4.4.4 The Calabi-Yau scalar Q(J = 0)

The universal €2 scalar in is associated to world-sheet operator OF appearing in the N' = 1 OPEs
(2.83). Hence the field (J = 0) does not couple to purely gluonic processes at the disk level, similarly to
d(J = 1). It can couple though to two fermions of the same helicity. The coupling to two quarks (color
triplets) is not allowed because € is a color octet, but the coupling to two gluinos is non-vanishing and can
be used to determine the normalization factor of the respective vertex operator. The LHC production rate
of this particle is suppressed at least by O(a?) compared to other resonances, therefore we do not discuss it

here any further.

4.4.5 Massive spin 3/2 quark x(J = 3/2)

Massive quarks are color triplets [in general, in the fundamental representation of U(N)]. Their main decay

channels are into a quark and a  gluon. For the spin 3/2  resonance
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x(J = 3/2), the respective amplitude reads

d;enug] = (T*)32g V2 (kiuer, — kwery) upof X7

(T°)22V/2g o/ A*(Rs €1, uz) -

In the helicity basis,

[x;+,+3] =0

and:

(4.85)

(4.86)

(4.87)
(4.88)
(4.89)

(4.90)

The above result agrees with Eq. (47) of Ref. [43]. Adding up the moduli squares of the amplitudes, we

obtain:

+3/2 5
S G-+ = RIS
j=—3/2

The amplitude with one quark and two gluons in the final state reads:

dxier ez, us] = 2¢°V2 [V (TUT*)38 — Vo (T2T™)g3 ]

g

®w | =

[(52 ki) kY (X #1us) — (€1 k2) Ky (Xu fous) + (e2k1) KY (Xu #1us)

— (e1k2) by (X gous) + (e122) kY (Xu Kouz) — (e162) kY (Xpu Krus)

— (erk2) el (Xu Kaus) + (e2k1) el (Xu %4”3)}

+

S

[(51 k3) kb (Xu dous) — (e1ks) el (X Kous)

ey (X Ko 71 Frus) — % kY (Xu #2 ¥ ¢1u3)}

DN | =
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b L [(ehs) el (R ki) — (e2hs) B (R )

+ %kit ()Zu 71 Ko fouz) + %5‘; (5(;1 K1 #2 %2“3):|
1

-3 et (X f2uz) + % et (X #1u3) } :

It is convenient to rewrite this amplitude as:

x;€1,€2,u3] = QQQ[W(T‘“T‘”)ZE — Vo (T*2T*)%3 | Alx; €1, €2, us] -

4

We find the selection rule:

Al +,++3] =0

For two gluons in the (—, —) helicity configuration, the amplitude reads:
| n BB
AR = =43 = g
1y. 17 _ [39)%[p3]
Alx(=3)i— - +3] = ﬁm 7
2
Al(rg)i— = +g] = ﬁm |
3,13
Alx(+5)i— = +3] = “2][[2@”3” |

When the gluons carry opposite helicities, then:

3
A=+, - ] = VB

2
Alx(=3)+,—+3] = \/@m ’

2
AlX(+3)i+—+3] = \/@m ’

3
AlX(+3)i+ - +3] = _\@<1<2q>2<>13> .

and a similar expression with (1 <> 2) for gluons with flipped helicities.

100

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)



The sums of the squared moduli of the amplitudes read:

+3/2

3
JZ{ % ,] J— _1_1 2 — 494 ‘/;f TalTaz asz Vu Ta2Ta1 as |2 (1 B O/S) ,
2 Qg Qg 3
P a'’stu
372 (1—a't)3
S NGt AR = A V(TR Ve (TRT R P (407)
j=—3/2
372 (1—a'u)?
X ] ;_7+7+7 = g t ! 2ol — u 2 ! 3 - 5
o 112 4| Ve (T T*)% — V,, (TT* )38 |2 .
P a’“su

One important comment is here in order. Since in our conventions all particles are incoming, the helicities
of the final quark and gluons must be reversed in the physical amplitudes describing decays of the excited
quarks. Thus if the x fermion considered above decays into a number of gluons and only one quark, the
quark must be a left-handed SU(2) doublet associated to the intersection of the QCD and electro-weak
branes [the SU(2) index is just a spectator]. In order to produce a right-handed quark one would have to
start from another x excitation, an SU(2) singlet associated to a different intersection of the QCD brane.
Thus x(J = 3/2) and a(J = 1/2) are the massive excitations of chiral fermions. In superstring theory,
there is no conventional “doubling” of massive quarks because chiral fermions generate their own Regge
trajectories.

Massive quark excitations can also decay into more fermions. The minimal case involves one quark and
a fermion-antifermion pair in the final state. The structure of the corresponding amplitudes is similar to
four-fermion processes discussed in Ref. [13]. Although lepton pairs can be produced in this way, we focus on
the case of two quarks and one antiquark, as the most relevant to the direct production of x(J = 3/2) and
a(J = 1/2) in quark-quark scattering and quark-antiquark annihilation at the LHC. Even in this case, two
qualitatively different computations need to be performed depending whether the processes involve quarks
form the intersection of the QCD brane with a single brane (thus either four SU(2) doublets or four SU(2)
singlets) or from two intersections (amplitudes with both SU(2) doublets and singlets). In order to keep track
of all gauge indices, it is convenient to display them explicitly in the amplitudes. The lower « indices will
label SU(3) triplets (stack a), the upper § indices will label electroweak SU(2) doublets (stack b) and upper
v (stack ¢) indices electroweak singlets. Thus, for instance, </ [Xﬁ;ugll,ﬂﬁ2 ug?] will denote the amplitude

ey Qg
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with the (incoming) Q* Regge excitation of a left-handed quark, Gig, g2z, and gsg. On the other hand,

W[X?ﬁ U )2

S (X?,ug:] will denote the amplitude with the same Regge excitation, qi1,q2r and G3g.

We begin with the case of two stacks, say a and b, intersecting at angles 6; = 0y; — 0,5, 7 = 1,2,3. By

following the lines of [13], we obtain:

X5 udt,ulz,ug] = (2/)% e 01 dz I(z,67)
x {85162203200, Zh (@) — 93000200200, Zh (1 = ) |
x {x’“ls (1— )"t [(urug) (w2x") k,, + ¢ (u1 ks X*) (uzo,iz) (4.98)
+ 1 (us fa X") (ur0,102) |
+ 2 T (1= ) = (ugug) (Gax*) k) 4 % (u fa XP) (us0,tiz)

+ 4 (s o X (wr0,2) ] |

Here, Z%¢, is the instanton partition function [13]. The function I(z,67), written explicitly in [13], is the

correlation function of four boundary-changing operators and it is symmetric under z — 1—z. It is convenient

to define:

1
Qeu = ale?n / do 282 (x) I(z,07) 2= (1 —z)=@"u "1
0

1
Qou = ale®r /0 dz 28 (x) I(2,07) 2=~ (1 — )~ . (4.99)

Note that the amplitude (4.98)) exhibits kinematical singularities due to the propagation of massless gauge

bosons in the respective channels:

2 ~ 2
Qun = — % 5,2 _da (4.100)
u S

where g, = g and g, are the QCD [more precisely U(3)] and electro-weak coupling constants, respectively.
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In order to obtain the helicity amplitudes, it is convenient to rewrite Eq. (4.98) as

A XSGt ul ul] = 02100305205, of Alx(j);+3, -1+ — (1+3),

where:

A (=2)i+3, =3, +3] = Quu 92)*[q1][23] + Qsu (12)*[3q][12]

Al(=1)i+3, -4, +1] = %qu (v2)[23]{2(a2)lg1] ~ p2)[p1]
+ 2= Qu 20211 {2(6203) — G253}

_ L

5@ (a2 23{202)p1] - (62l

+ =G (2 20{202) 53] — (02)(03]}

AX(+3)i+3, -3 3] = Quu (a2)°[p11[23] + Quu (92)*[3p)[12] -

Finally, we consider the case of three stacks, say a, b and c, intersecting at angles 0; = 0y;

(4.101)

(4.102)

= 0aj, v =

0cj — 0aj, 7 =1,2,3. Then the four-point correlation function of boundary-changing operators depends on

the additional set of angles: I = I(x,67,17) [13], however the rest of the computation is very similar to the

two-stack case. Let us define R, and Ry, as the integrals (4.99) with I (x,09) replaced by I(x,67,17) in the

integrand, i.e., Qsu — Rsu;, Qsu — Reu upon I(z,67) — I(x,69,17). Then the relevant amplitude can be

written as

32{[)(5% T I TRE

Y17 Ta2?

I,

ug] = 030030005, o Alx(i); 5. +3,+

=

where:

Alx(=2); =1, +3,+1] = Ry (01)%[q2][13] + Ry (p1)*[3¢][21] ,
A=) =4 +5+3] = =R 1) 13{20a0la2] — 1) 1p21}

+ =R o012{200) (03] - 1) 3]}

(4.103)



A+ =5, 5, +5) = —= Ra () 131 {201) [p2] — (a1)[g2]} (4.104)

+ =R a2 {20003 ~ (@la3]}

A (+3); =3, +3,+4] = Rt (q1)*[p2][13] + Rt (q1)%[3p][21] .

4.4.6 Massive spin 1/2 quark a(J =1/2)

The amplitude describing the decay of a(J = 1/2) into one quark and a gluon is given by

JZ{[CL;ELUQ] = (Tal)g2 ga/(kluely — k1V€1M)k‘§ ué‘a’;p-ip
= (T")%V2gd/ A(a;e1,us) . (4.105)
The selection rule
Ala; —,+3] =0 (4.106)

is complementary to Eq. (4.86] of its higher spin partner x(J = 3/2). The non-vanishing amplitudes are:

Ala(=3); +,+3] = (p2)[12)? (4.107)

Ala(+3);+, +1] = (¢2)[12)> . (4.108)

The amplitude with one quark and two gluons in the final state is given by a lengthy expression similar

to Eq. (4.92), however, as usual, it simplifies in the helicity basis. It is convenient to write it as:

Aaser,ea,uz] = g> () Ve (TUT*)% — V, (TT*)2% | Alas 1, €2, us) - (4.109)

In this case, the selection rule complementary to (4.94) is

Ala; —,—,+3]=0. (4.110)
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For two gluons in the (+,+) helicity configuration, the amplitude reads:

1y. 1= <p3>
Ala(=3);+,+,+1] = (12)(23)(31)
(a3
(12)(23)(31)

Ala(+3)i+,+ 4} = &

(4.111)

When the gluons carry opposite helicities, then

372 [q1][13]2
[12][23] ~

32 [p1][13]?
“ T3]

A[a(_%)§ +, - +%] = «

Ala(+3);+,—, +3] = (4.112)

and a similar expression with (1 <> 2) for gluons with flipped helicities.

The sums of the squared moduli of the amplitudes read:

+1/2
SO | laG)+,+ 5T = g Ve (TOT92)38 — V, (T2T)% |2

yq

3 b
o' stu
j=-1/2

1—a's

+1/2 . 1712 4 @1 e o e s o 2t2(1_a/u)

D |l = 3 = g VT TG - Vi (TR P

j=—1/2

+1/2 , ,
1 2 aiaz\o agzay o u(1—a't

S |aly I = gt VT v e P

j=—1/2

. (4.113)

The amplitudes describing Q-decays into two quarks and one antiquark are described by formulas similar

to (4.101)), (4.102) in the two-stack case and (4.103)), (4.104]) in the three-stack case. All what one has to do

in order to obtain the corresponding amplitudes is to replace Eqgs. (4.102)) and (4.104) by

Ala(=1); 42, =1 +1] = Quu (p1)(23)[13)> + Quu (p3)(21)[13]2

Ala(+3): 45,543 = Quu (@)(23) 13 + Qu (g3)2L)[13] (4.114)

and

Ala(—1); 4, +4,+4] = Ry (2)(13)[23 + R (p3)(12)[232 |
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Ala(+3); =3, +3,4+4] = Ryt (2)(13)[232 + Ruy (g3)(12)[23)2 | (4.115)

respectively.

4.5 Cross sections for the direct production

After discussing the amplitudes (and their squared moduli) involving one lowest Regge excitation (R, mass
M = 1/a’) and three massless partons (p = g, ¢, 7), we collect the results for the subprocesses p1 (k1)pa(k2) —
p3(k3)R(k4) relevant to the production of Regge resonances at the LHC. For the applications to jet-associated
Regge production, we square the moduli of the amplitudes, average over helicities and colors of the incident
partons and sum over spin directions (helicity of ps and J, of R) and colors of the outgoing particles. In all
these processes, quark flavor is a spectator.

The kinematic Mandelstam variables s,t and u have been defined in Eq. in such a way that after
reverting to the conventional (+ — — —) metric signature, and crossing to the physical (outgoing) momenta,

ks — —k3, kg — —ky4, they become

s = (kl —+ kg)z s t= (kl — k3)2 5 u = (k‘l — k4)2 5 (4116)

satisfying the constraint

s+t+u=M? (4.117)

due to the momentum conservation ki + ko = k3 + k4 and on-shell conditions k% = k% = k:g =0, k2 = M2
Their physical domain is

s >M*, t<0, u<0O0. (4.118)

There are some subtleties encountered when analyzing the flow of gauge charges in the scattering ampli-
tudes, related to the presence of massless and massive intermediate states expected either to acquire masses
due to quantum effects or to be eliminated by electro-weak symmetry breaking. For example, quark-quark

elastic scattering processes involve exchanges of massless abelian (“color singlet”) gauge bosons associated
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to the U(1) “baryon number” subgroup of U(N) [13]. However, it is well-known that the U(1) anomaly
generates their masses at the one loop level, and certainly affects whole Regge trajectory. Other processes,
like multi-gluon scattering can be also affected by mass shifts on such a deformed Regge trajectory. In
the processes involving external Regge excitations, this problem becomes even more pronounced because
massless color singlets contribute to all processes with one or more external quark-antiquark pairs. As an

example, consider the a(J = 2) decay into one gluon and one quark-antiquark pair, described by Eqs. (4.63)

and (4.64). Let us focus on the prefactor
V(T T2 4V, (TT%)2 = [2d%%% (V, + V) + %f“g‘““" (Vi — V)] (T)2 (4.119)

which multiplies the function~ (12)71(23)7(31)~!. Now consider the limit (12) — 0 (s — 0, allowed in
the decay channel). Since V; = V,, = 1 in this limit, the amplitude exhibits a massless pole (12)~!, with
the residue ~ @®®%» (7)1, The pole is due to intermediate gauge bosons, produced in the B decay
together with one free gluon [see Eq. }, and subsequently decaying into the quark-antiquark pair.
Note that the U(1) generator (7% = Qally, Q4 = 1/v/2N) is among these gauge bosons and there is no
obvious way to remove it from the disk amplitude. A formal N — oo limit would help in that respect by
suppressing such singlet contributions. When collecting the squared amplitudes describing direct production
of Regge resonances, we set the number of colors to N = 3, but we display the abelian coupling Q4 = 1/v/6
explicitly. We always assume that the external partons are either color octet gluons or color triplet quarks
(or antitriplet antiquarks), however we allow the possibility of color singlet Regge excitations g and ®g

labeled by an additional subscript 0.

The following formulas, valid for general IV, are useful for summing over the non-abelian color indices:

ajasa, aaa'_(NZ_l)(NQ_ZL) aaO_%aa
m%:agdludl“_ T L S
Z fi1a1a2fi2a10«2 =N 51'11'2 , (fa1a20 — 0)
ay,a2

§ t1110203a4ta1a2a3¢14 I

a1,a2,a3,a4
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Z 101020304 402030104 _ () (4.120)

a1,a2,a3,a4

In the Tables below, we collect the squared amplitudes for all disk-level production mechanisms of Regge
resonances, listed in order of the initial two-particle channels: gg followed by gq and ¢q. The quark-quark
channel can be obtained from ¢ by trivial crossing. Except for the case of four-fermion processes, we factored

out the QCD coupling factor g*.
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Table 1: Gluon fusion

subprocess M2/ g*
—M?3)* —M2)4 _M2)4
99 = ga | (V24 VP4 vp) bRt )

2y4 T2YV4 1 (0 A2)4
99 = goo | 2QA(Vi+ Vi + V)7 B AU M) (u M)

5 4 4 4 M8
g9 = g9® | S(VZ+VE+V7) gl

4 4 4 8
99— 9% | 2QA(Vi+Vy +V,)? s

2 s— M2)MS MU (u—M2)t3
99+ an | F[H Vi Va) + (55 + (Vi - Va)?] SRR et

- 2 s—M2)3 M2 M2y (u— M2)3
99 = ax | [SVi+ V)2 + (& + Ca)(V; — V)2 L MM M) S (u M)
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Table 2: Quark-gluon absorption

subprocess |IM|?/g*

a9+ qa | = [(Ve = Vi)? + (5 + 292) (v, + V,)?) Lo Ol o)
9q— qao | —Sa(V, + V)2 LM o MM +dsu)

49— q® | —[(Ve— Va2 + (3 + %) (v, 4 V,)?] o

g9 — Py | —LA(V, + V)2

ag = ad | =& [(Va— V)2 + (§ + 280)(V, + V,,)?] (=ML H My

g9 = qdy | —Za(V, + V)2 oM wm )

90— g0 | = [(Vet Va)? + (5 + 250)(V; — V)2 L2 G M) (oo M)
99 — gx _% [(Vs TV 4 (g n %)(VS _ Vu>2] (t—Mz)Mﬁ—&-(uN;é\;I:Jsa-&-(s—1\/[2)u3
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Table 3: Quark-antiquark annihilation

subprocess |IM|?/g*
qq—gX | IM(qq—= gX)]? = —§IM(qg = ¢X)]P(s » u, u—t, t =)
X =a,d®
{= G (suQuu+ Quul? + utlQuul? + st Quul?)
qq — qa % [Su(qu + qu)(Qus + Qus)* + UthuQZs + StQGUQZQ]
— %(sﬂRst + Rst|2 + ut|Rgt]? + su|RSt|2} + 95 u}
4q — 7d | 5 (sulQeu + Qoul® + ut|Quul® + t|Quul?) + (Q —R; u+ t)
2 ~ ~ 2 ~
M(sumsu + Qoul? + ut|Quul? + st Quul?) + 2 uQuu — 5Quul?
+ QLD [5u(Quu + Qo) (Qus + Qus)* + utQuu Qi + 5tQsu Q]
qq — QX + t(M (uqu - Squ)(uQus sQus) ,
JM;“( H Rt + Rat]? + ut| Rt + su|Rat|?) + 2= R, — sR5t|2}
+ {s — u}
= = (M2 —t)? 2 2 —t
qq—>QX _f(SU‘qu"'QmA +Ut|qu‘ +St|Q u‘ ) ‘uqu_stu|
+ (Q —R; u+ t)
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5 Physics of higher massive level superstrings

In the previous chapter, we presented a detailed discussion of the “universal” part of the first massive level,
common to all D-brane embeddings of the standard model. In this chapter, we extend it to the second
massive level, and discuss some general properties of higher levels. We are particularly interested in massive
particles that couple to massless gauge bosons according to “(anti)self-dual” selection rules. These particles
decay into two gauge bosons with the same (say ++) helicities only and to more gluons in “mostly plus”
helicity configurations. We rely on the factorization techniques. They allow identifying not only the spins
of Regge resonances propagating in a given channel, but also their couplings and decay rates.

To start, we perform the spin decomposition of the well-known four-gluon maximally helicity violating
(MHV) amplitude in the s-channels of (——) and (—+) gluons. We examine decay rates of heavy states
into two gluons, for masses much larger than M, i.e. in the large n limit. We find that for any particle
with spin j < n + 1, the maximum partial decay width into two gluons is n-independent — it never exceeds
M. Particles with j ~ \/n = M, /M have largest widths. We also find that for j ~ n, the decay rate into
two gluons is exponentially suppressed. We then study the second massive level in detail. We construct
the vertex operators for all “universal” bosons of the NS sector. We compute the amplitudes involving one
such state and two or three gluons, focusing on the decays of the (anti)self-dual massive (complex) vector
fields. As were argued that the BCFW-deformed full-fledged string amplitudes have no singularities at the
infinite value of the deformation parameter, therefore BCFW recursion relations should be valid also in string
theory [48-53]. In the last section of this chapter, we show that at least the four-gluon amplitude can be
obtained by a BCFW deformation of a factorized sum involving on-shell amplitudes of one massive Regge
state and two gauge bosons.

This chapter is base on the paper [2].

5.1 Properties of higher massive level superstring

In this section, we study the general properties of higher massive level (universal) superstring states by
factorization of the four-gluon amplitudes. The amplitudes describing the scattering of massless superstring

states (zero modes) encode many important properties of massive excitations. The spin content of interme-
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diate massive particles, their decay rates etc. can be extracted by factorizing massless amplitudes on their
Regge poles |43]. We are primarily interested in the properties of particles that couple to gauge bosons,
i.e. of those that can be detected at particle accelerators if the fundamental string mass scale happens to
be sufficiently low. As we will see below, even the simplest, four-gluon amplitudes contain some interesting
information.

We will be using the helicity basis to describe gluon polarizations. For four gluons, all non-vanishing
amplitudes can be obtained from a single, maximally helicity violating (MHV) configuration. Our starting

point is the well-known MHV amplitude [74.[75]

Vi
T og7.qF. g = 4¢%(12)4 —tTr a1 a2 as a4y pazpalpasas
Vi
—T TazTalTasTa4 TalTazTa4Ta3
T iEh e ’ )
Vs
—T TalTO«BTGzTLM TagTalTa4Ta2 51
+ i) @ + Y

where the Veneziano “formfactor” function reads

T(1— s/M?)D(1 — u/M?)

Vi=V(s,t,u) = T(1+ t/M?)

(5.2)

Here, M? = 1/a’ is the fundamental string mass scale. s,t,u are the Mandelstam variables defined in
Eq. .

The momenta and helicities are specified for incoming particles, therefore they need appropriate crossing
to the relevant physical domains. In particular, u < 0 and ¢t < 0 describing a g1 g2 — g3g4 scattering process

with s > 0 can be expressed in terms of the scattering angle in the center of mass frame:

u:—%(1+cos9), t:—g(l—cosﬁ), (5.3)
so that # = 0 describes forward scattering. Finally, aq, ..., a4 are the gluon color indices. For future reference,
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it is convenient to absorb the gauge coupling g into the color factors and define the combinations:

Sa182 — A2 Ty ({TT*2 T4 T*Y) | Adraz — g2 Ty ([T T42][T3T%]) . (5.4)

azaq azaq

which are symmetric and antisymmetric, respectively, in the color indices of initial (and final) gluons.

Using the expansion in terms of s-channel resonances

B(—s/M?,—u/M?) = = M= S_nM2 [H (u+ M2J) ] (5.5)
J=1

!
—  nl
we obtain, near the nth level pole (s — nM?),

1 M2-2n n—1

s—nM2? " (n—1)! H(“+M2J>- (5.6)
J=0

Vi(n) =V (s, t,u) =~

The spin content of Regge resonances can be disentangled by analyzing the angular distributions of scattered
gluons, that is by decomposing the residue of each Regge pole in the basis of Wigner d-matrix elements
dﬁ,{?,m(e) In this context, dfi27m(9) describe the angular distribution (in the center of mass frame) of the
final gluons with the helicity difference m = A3 — A4, produced in a decay of spin j resonance; m’ = Ay — \;
is the helicity difference of incident gluons [43]. Thus m, m’ = 0, £2.

We begin with the amplitude M(g;, g5, 94,9, ) which can be obtained from by interchanging

2 <> 4. Near the lowest mass pole, associated to the ”fundamental” n = 1 string mode,

n=1 aiaz M? d(2)

M(g7 .95+ 93+91) Staa; 5z (5.7)

which reflects the obvious fact [1] that in order to create two gluons with opposite helicities (+—) one needs

a resonance with j > 2, which is the highest spin at this level. At the next n = 2 level,

_ 2., (3
Mgy 9393 .97) "= —ALE o5 (5)(ds) + 2d57), (5.8)

24 Appendix @ contains a brief introduction to Wigner d-matrices.
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in agreement with [21]. Near the n = 3 string resonance, we find,

_ _\ n=3 M? 3
M(gl ag;agg_ag4 ) n—> Sa1a2

4 3 2
g g (o + 21d5 + 26d57) (5.9)

In general, at the nth massive level, states with all spins from 2 up to n+ 1 appear in the s-channel, decaying

into two opposite helicity gluons. The residues of Regge poles factorize as

n+1
Res,_narz M7, 0893, 00) = O O FY 00y (F 000 dS)(0) (5.10)
Jj=2 a

where F' are the matrix elements for the decay of a spin j resonance, in the m; = 2 eigenstate (in the the
center of mass frame), into two gluons moving along the +z axis, with helicities 1, respectively [43]. In the

above expression, the sum over intermediate color indices appears after rewriting the color factors as

Sgraz = Y (42" 20) (4v/2gd* M%) (5.11)

a

—Ager = Y (V2gfmee)(Vag o) (5.12)

a

where f are the gauge group structure constants while d are the symmetrized traces:

010205 _ STr(TalTazTas) ) (5.13)

The matrix elements involve totally symmetric group factors at odd levels and antisymmetric ones at even
levels. This can be understood as a consequence of world-sheet parity [1,/43]. Note that the numerical
factors multiplying d-functions in Eqs.— and at higher n are positive, as required by unitarity, c.f.,
Eq.(5.10)).

The amplitude M(gy, 95,95 ,94) can be obtained from by interchanging 2 <+ 3, however there is

no need to repeat calculations because it can be also obtained from M (g7, g;' , g;’ , gy ) by interchanging the
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color indices az <> a4 combined with the reflection § — 7 — 6, for which

dé{%(— cosf) = (—1)d§f),2(cos 0) j odd
dé]%(_ cost) = dg)_z(cos 0) j even

As a result, dé]% — dgj )72 and the coefficients acquire alternating (—1)"*7%1 signs, for instance

n=3 M? 3

ajaz

@304 5 3M? 56

Mgy, 95,95 ,91)

(94", —21d5) , + 26457 ,).

(5.14)

Next, we turn to the amplitude M (g7 , g5 , gé" , gi‘). This case is very interesting because the resonances

appearing in the s-channel couple only to (anti)self-dual gauge field configurations, i.e. to gluons in (4++)

or (——) helicity configurations. In the previous work [1], we discussed the first massive level and identified

a complex scalar @ (2 degrees of freedom ® = ®, and ® = ®_) which couples to gluons according to the

selection rules

ANy, — =[O, +, | =L [P_,+,+]=F[®_,+,—] =0.

This scalar is the sole resonance contributing to

_ =1 M 0
M(g1 .95 .95 .94) = SZ;SES_M2dé,3 :

At higher levels, there are more such particles, with higher spins:

n=2 2M* e

M9y, 95,99 ,95) — —Agégim( 0,0)>
2
_ _ + 4y n=3 a1 a 3M 3 (2) 1 (O)
M(91,95,95594) SaéafS_SMg(Zdo,o‘FZdo,o)»
- n=4 way AM? 8 3 T
M7 ,95 95 95) — *Aaéaim(ﬁdé,é IR (().,()))»
2
— o= ot gty =5, gaap  OMT 125 ) 125 ) 19 )
M(gl 792 593 7g4 ) Sa3a4 s — 5M2 (336d0,0 252d0,0 + 144d070)'
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In order to proceed to higher n, we first note that, in this case,

d(8) = Pi(cos ), (5.21)

see Appendix A, therefore the resonance coefficients can be obtained by decomposing the angular dependence

in the basis of Legendre polynomials:

—1
- odd n aia M2 5 n
M(gl a92 791-3"_’92_) Saglazs_nMg Z C](c )Pk(COSH) ) (522)
k=0,2--
M2 n—1
Mgi 9593 9f) = —ARE — s D o Pilcost) (5.23)
k=1,3--

The above expansions involve even Legendre polynomials only for odd n and odd ones for even n, reflecting
the g3 <> g4 (a3 <> a4, 0 — m—0) symmetry of the amplitude. A straightforward, but tedious computation,

outlined in Appendix B of [2], yields the following coefficients:

n—1—k

(o 3 “”z’fz” (=1)"1=k=20 (2k 4 1)(k 4+ j + DIk + 25 +9)!
S O VI S 22i+i-1 12k + 25 + 2)!
x (n)*2 (n —2)is(n — 1,k +2j + 1), (5.24)

where s(n, k) is the Stirling number of the first kind, defined through the expansion of the Pochhammer
symbol:
n
(@)= —=—=—"=2(z+1)...(z+n—-1)= Z(—l)"‘ks(n, k). (5.25)
k=0

We want to see how the decay rates of Regge resonances at a given mass level n depend on their spin j
and in general, on the n, j dependence of their partial widths into two gluons, in the large n limit. It has been
often suggested that string perturbation theory breaks down at energies much higher than the fundamental
string mass, with the onset of non-perturbative effects marked by large widths of Regge particles, covering up
the mass gap between subsequent resonances. To that end, we examine the k-dependence of the coefficients
cfcn), see Eq. 1) in the large n limit. Since we could not find a compact expression for Stirling numbers,

we had to resort to numerical methods. On Fig. we plot cl(cn) as a function of k for two typical values,
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Figure 16: The coefficients of P;(cos#) at the 1024th and 2500th massive levels. On the x-axis, we mark
multiples of /n to display the peaks at k = 2/n

n = 322 and n = 502. For small k, roughly k ~ y/n, one finds a sharp peak at k ~ 2,/n, with cé% /2 \/n/2.

For large k ~ n, the coefficients are exponentially suppressed. For example,

C

(n) n" (n — 1)' large n ( 2n ) —2n

N Ve

see Appendix B. Since Z;’;é q c;") = Z?;ien cg.”) = n, we conclude that the sums are saturated by spins

ranging from 0 to j ~ y/n, with the maximum cpyax ~ /7.
The partial width of mass M,, = \/nM, spin j resonance R, ; into a pair of gluons is given by [43]

C;n)M2
32(2j + )7 M,

2

L(R,; —g9) =970 (5.27)

where d ~ 11is the gauge group factor. In the denominator, the number 2541 comes from averaging over spin
components, and provides additional suppression for large 7, however we will not take it into account because
it is purely statistical. Thus the width size is determined by the ratio cg.n)M 2/M,,. From our discussion of the
coefficients, it follows that the largest possible widths are n-independent, (25 + 1)I'(n — 00,j ~ /n) ~ M,
the same as for low-lying Regge resonances. We conclude that the leading order (disk) approximation
gives a perfectly sensible result for the decays of higher level Regge resonances. Note that the exponential
suppression of direct decays of very high spin (j ~ n) particles into two massless gluons is akin to the

Sudakov formfactor. These particles will cascade into lower mass, lower spin states, decaying at the end into
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a large number of gluons.

5.2 The Second Massive Level: Physical States, Vertices and Amplitudes

The second massive level has been previously discussed in Ref. [37], in the context of ten-dimensional heterotic
superstrings. Here, we focus on four-dimensional open string excitations, especially on those that can be
created by the fusion of gauge bosons associated to strings ending on D-branes. Such particles appear in the
NS sector and are universal to the whole landscape of models because their vertices do not contain internal
parts associated to compact dimensions. We will be using the Old Covariant Quantization (OCQ) method
for identifying the physical states, which is equivalent to the covariant quantization (BRST) as we did in
Chapter 2] However it’s more straightforward in analyzing the physical open string states in the NS sector.
As a warm-up, we start from the first massive level universal fields, which have been already worked out in
Chapter [2] using it as a check of the method. Then we study in detail of the second massive level universal
open string states. We compute the amplitudes involving one such state and two or three gluons, focusing

on the decays of the (anti)self-dual massive (complex) vector fields.

5.2.1 The first massive level

In the NS sector, the four-dimensional string states are created by SO(3,1) Lorentz-covariant creation
operators acting on the vacuum. At the first massive level, their numbers must add up to —3/2, therefore

the states can be written as

|TL = 1> = (Xluwi% + XQMValile% + X&yyp@[]li%wi%'(ﬁi%) ‘0, k>, (528)

where |0; k) is the open string vacuum state in the NS sector. Here, the Greek letters denote D = 4 spacetime
indices. Note that x3,., is totally antisymmetric due to anticommuting 1) operators. The physical state

conditions are:

(Lo—)ln=1)=0, Lin=1=0, Gsln=1)=Cyln=1)=0, (5.29)
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where the superconformal Virasoro generators read,

1
Sy +1 Z(ZT —m) e a0, (5.30)

n I

A P(r—m)r; (5.31)

Q
Il
:M N —

and a = 0 in the NS sector. The first condition in (5.29) gives the mass shell condition k? = 1/a/ = M?
for the first massive level, as expected. By using the commutation relations of the bosonic and fermionic

operators: [a, o] = mnH* 0, —pn, {VF, Y} = "6, _,, the three remaining conditions of Egs.(5.29) yield:

V2o x1k" + X2 =0, (5.32)
le. =+ V 2CV/X2H1/]’€V == O; (533)
X2uv — X2vu + 6v 20/X3/Lupkp =0. (534)

In order to simplify the above constraints, it is convenient to decompose

Xouv = SQ(H,V) + A2[;u/]; (535)

where Sy(,,,) and Agj,,,) are the symmetric and antisymmetric parts of x2,.,, respectively. Then the symmetric

and antisymmetric parts decouple in (5.32)-(5.34). The symmetric one is subject to

Vv QCY/XlHkM + SQ(MV)HMV =0
: (5.36)

X1p + \/ﬂSQ(W)k” =0
which is fairly easy to resolve. We obtain the following solutions:
1. So(u) = o and x1, = 0, where oy, is a spin-2 field satisfying o, k" = a,,n"" = 0.
2. Soquy = V2d/ (kuéy + €uky) and X1, = 2€,,, where &, represents a spin-1 field satisfying &, k" = 0.

3. So(uw) = M + 2’k Ky, and X1, = V2a'ky,.
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In this way, we obtain a spin-2 field, a vector field and a scalar field. At this point, let us count the physical
degrees of freedom to make sure we are not losing any states. We started from one symmetric Lorentz
2-tensor Sy(,,) which has 10 d.o.f. and one Lorentz vector xi, which has 4 d.o.f.. On the other hand,
Eqs. gave us 1 + 4 = 5 constraints. Thus we are left with 14 — 5 = 9 d.o.f., which are exactly the
degrees of freedom of a spin-2 field (5 d.o.f.), a vector field (3 d.o.f.) and a scalar (1 d.o.f.).

The antisymmetric part of 2., is also easy to handle. Egs.(5.32)-(5.34) boil down to
AQ[;LV] + 3mx3uupkp =0. (537)

The solutions are:
1. X3uvp = €uwpok?, Ao = 0, and €50 is the Levi-Civita symbol.
2. X3uwp = Epvpo€’? and Agjy) = —3c,p0kPE'7. €, is another spin-1 field satisfying &, k" = 0.

In this way, we obtain a pseudo-vector (3 d.o.f.) and a pseudo-scalar (1 d.o.f.). To recapitulate, we started
from a 3-form x3,,, (4 d.o.f.) and an antisymmetric 2-tensor Ay, (6 d.o.f.). Eq. gave us 6 constraints.
Thus we are left with 10 — 6 = 4 d.o.f., which are exactly what we get.

In order to construct the vertex operators, we use the state-operator correspondence and replace the

bosonic and fermionic creation operators with world-sheet bosons and fermions as follows:

1 1
Iz ; m oy p
o, =i/ o, (m_l)!a XH (5.38)

1

Therefore, we have the following vertices, universal to all D = 4 compactifications, which satisfy the physical

state conditions. They are: a spin-2 field,

1 .
Vo = ]/ @iaXW/ﬂ’e"be’kx, (5.40)
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with o, k" = a,n*” = 0; one spin-1 field and one pseudo spin-1 field,

Ve = (Euky + K &,)i0X e PR X 4 2 Oute 0 e (5.41)

Ver = €pol TP PPe™ e X — e, o kPE 710X 1Y e~ PR X (5.42)

with &, k* = 5;143“ = 0; plus one scalar and one pseudo-scalar,

Vips = V201 1y po KO P e~ PR X (5.43)
1 ,
Vi = [ + 20"k ) SAOX"Y + V2alk e Pe X (5.44)

It is well known that not all fields satisfying the physical state conditions like appear in the
spectrum. Actually, both spin-1 vertices and represent such null, spurious states, decoupled
from the rest of the Spectrumﬁ This can be demonstrated by computing their two-point correlation functions
and showing that they do not contain poles appropriate to physical propagators. It is also easy to show that
they do not couple to two gauge bosons in any helicity configuration: the three-point amplitude involving
two gauge bosons and one such massive state is zero.

To summarize, at the first massive level of NS sector, we have a total of 7 universal degrees of freedom.

They are a spin-2 field a,,, plus a scalar and a pseudoscalar. As explained in [1], it is natural to combine

Eqs.(5.43) and (5.44]) into one vertex of a “self-dual” complex scalar,
1 . v i o v —¢ 1
Vo, = |0 + 20'kuk)\| 570X )" + V20 k00" £ V20 kUMY plemeet X (5.45)

which satisfies the selection rules written in Eq.(5.15). We will find similar complex vector resonances at the

second level.

25A spurious state is defined to be a state that is orthogonal to all the physical states, and a null state is defined to be a
spurious state that satisfies the physical state conditions [65|.
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5.2.2 The second massive Level

At the second level, the number of creation operators add up to —5/2:

|n = 2> = (Cl;ﬂbﬁ% + C2;waliﬂ/]Z% + Cé;waﬁsz% + <3,u.upalilazl¢i% + Céwp%/f’i%wi%i/)f%

+ C4,uupaalilwiéwli;wil + CS#VpawwﬁleL'@bileLwil) ‘07 k>
2 2 2 2 2 2 2

The physical state conditions are:

2. Lyln=2) =Lijn=2) =0,

3. Gsln=2)=Galn=2) =G1|n=2) =0,

(5.46)

with the superconformal Virasoro generators written in (5.30) and (5.31). Here again, the first condition

amounts to k% = 2/a’ = 2M?. To solve the remaining constraints, it is convenient to decompose the tensors,

especially those of higher rank, into representations that are symmetric or antisymmetric in groups of Lorentz

indices. This is most succinctly done by using Young tableaux. Our analysis parallels to the discussion of

the heterotic case (in ten dimensions) presented in [37]. The tensors (3, and (3, can be decomposed into

symmetric and antisymmetric parts:

Conw = Sa(u) + Azfuls  Copw = Sa) + Ay

The rank 3 tensors (3., and (3, can be decomposed as

Guvp = S3(uvp) + Bs(uiv)pl + Dsjuip) + Asfuvpl;

/

Céuup - S3(Wﬂ) + Bé(u[l/)p] + Dé[u(u]p) + Ag[xwp]’

corresponding to

n

R[v|®[p]= u@“”‘@“p‘@y,
wl®[v]®[p] )

- ]
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(5.48)

(5.49)

(5.50)



or by dimensions,

424R04=200200200 4. (5.51)

Due to the (anti)commutation properties of the creation operators in (5.46|), we can set Ds,(1],) = As[uvp] =

S/

3(uvp) — B = 0. We are left with

(r[v)p]

Guvp = S3(uvp) + Bs(u)l» Céuup - Dg’»[#(ﬂ]p) + Aé[/wp]' (5.52)

Similarly, the rank 4 tensor (4., can be decomposed as

viplglulvlol olulplol] g lulv g lule
1%

(polv]®lp]®le]=[ulv]pla]®

Q=

a v plo o
ulv] [ulo] [u]o]
®|p| @©lv| Dlv| ED, (5.53)
0] e va o]
or by dimensions,
4949404=35045x3H20x2H15x3d 1. (5.54)

Here again, we can ignore all but the last four Young diagrams. Actually, due to the anticommutation
of ¢ operators in the respective term of (5.46)), the three 3-row diagrams would lead to the same state,
therefore we are allowed to pick just one of of them, say the one symmetric in g and v. Thus the 4-tensor

is decomposed as

<4/M/p0' — B4(H[l/)p0'] + A4[p,1/po’]- (555)

Finally, the term involving completely antisymmetric (5,0, must necessarily involve one internal index,
therefore we do not discuss it any further.

The second physical state condition, Lajn = 2) = Li|n = 2) = 0, yields,

2C1u + V20! (o) — Agpu))k” =0, (5.56)
Aé[#”ﬂ] + 20/(34(‘7[#)”/3] + A4[U;wp])kg =0, (557)
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(Sa(u) + Azpur)) + 2S5 + Adppy) + V20 (253(ow) + Bs(olpuyw) + Bs(uipy)) k=0, (5.58)
3 — ) v
§Clﬂ +2 20/(Sé(uv) - IQ[/.LV])k + (53(W)H) + B3(1/[p)u])77 g

vp

n
+ 5 (D3 ~ D) = 0- (5.59)

We are left with the third set of conditions. From G |n = 2) = 0, we obtain,

V 20{’(1Mk# + (Sz(l“/) + 255(’“/))77[“/ =0. (560)
From G3|n = 2) = 0, we obtain,
i+ V20 (Sa(un) + Aopu))K” + 2530)0”” + (Ba(uivy) + Bawiwe) )" = 0, (5.61)
(Ba(oloyur) = Batpluyor) + Ba(pluyve))177 + 245),,) + V20! (Dyp 1) + Aspu)” =0. - (5.62)
Finally, G1|n = 2) = 0 yields,
Afwpe] = 0, (5.63)
Cl,u + V 20/(5&(”1/) + AIQ[HV])kV = 0, (564)
Sa(uw) + V20! (S30p) + Bs(up)e) ) = 0, (5.65)
Al + 2450, + V20 (Dapy10) = Dapuor) + 2450, )K= 0, (5.66)
i 1 1
3V20" Baulu)polk” + Bauivy) + 5 Bswinel = 5 Bs(onn + Dol + Asfue) = 0- (5.67)

First, we take care of simplest conditions. We get Ay[,p0) = 0 directly from Eq.(5.63)). Similarly,

Eq. || requires Ag[wp] = 0. Thus, Eq. dj now reads

Bi(oluyak” = 0. (5.68)
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Furthermore, by examining all equations involving By(,[),s], We find the consistency condition By(,[,),01k7 =

0 which, together with Eq., impose transversality of By(,[,),0] With respect to all indices:
By popspa B =0, (i=1,2,3,4). (5.69)
Notice that now, Eq. becomes
1 1 ,
Buiypl + 585000 — 58300001 + Do) =0 (5.70)

Next, Eq.(5.59) splits into

52(#’/) + 255(/41/) + v 20/253(”“/)]{:/) =0, (571)
Agfuw] + 245),,) + V20! (Bs(plpy] + Bs(upy))K” = 0. (5.72)

Note also that Eq.(5.66]) becomes
Al + 2450, + V20 (Dy1y10) = Dapu(p)uy) = 0. (5.73)

After multiplying both sides by k*, we obtain
(Agfu) + 2A’2[W])k" =0. (5.74)
On the other hand, Eq.—%xEq. —% ><Eq. gives us
G+ 2V (S} ) — A — V307 (Sagu) + Asfu)K = 0. (5.75)
After inserting this into Eq. and Eq. we find

— 4A’2[#U]]€V - AQ[“U]]{?V - 0 (576)
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In this way, we obtain

k= Al kM =0. (5.77)

2[pv]

Ay

nv]

Taking into account all equations allows decoupling (i, Sa(uv), S5 ) and S3(,,,) from other fields.

(nv

After removing all the dependent relations, we obtain the following set:

21, 4 V20! Sy k” = 0

Sa(uv) + V20 S50 k" = 0

(5.78)
25&(/“/) + V 2a/S3(Ml/p)kp = 0
V 2&’55(“”)]{1” + 2S3(,u,l/p)77yp = O
The solutions are enumerated below:
1. S30up) = Ouvp and So(,y) = Sé(w) = (ip = 0. oy is a spin-3 field which satisfies
Uuupkp - Guypn'uy - 07 (579)
and its vertex operator reads
1 )
V, = ﬁawiaxwawie—%w. (5.80)
2. Sy(uvp) = V2 (muky + mupky + Tupky), So(uy = 4T, Sé(;w) = 21, and (i, = 0, where 7, is a

spin-2 field satisfying m,, k" = 7, n"*" = 0. The corresponding spin-2 vertex operator is

1 . Ay
Ve= (\/ Taf(ﬂ"wkp + Tupky + mpk, )10 X I0X PP

1 1 .
+ 4\ 5 1OX O + 2my @iawwu)e*%mx. (5.81)

3. SS(;wp) = 53;;11/)7 SQ(,U,V) = 52;1”; Sé(uy) = ééuy and Clu = él;u where

63/wp = 77/Lv§p + 77,up§l/ + angu + C(2a/)(kukl/§p + kugvkp + fukukp)v (5-82)
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Cop = (dc — 1)V2a/ (kL& + €4y, (5.83)
Cop = %(40 — V2 (ks + &), (5.84)

Cip = 2(4c — 1)€,, (5.85)

with ¢ = 7/8. £, is a vector field satisfying £,k" = 0. The corresponding vector vertex operator reads

I R 1 .
v = (cgwp@zaxwax U + o\ | 5 710X O

~ L. w5 L W\ — i
+Cé,w\/2282X’¢ +C1M§82z/ﬂ)e et (5.86)

4. SS;wp = CSMVpu S2py = CQ,LLV? Sép,y = Cémj and Clu = Cl;u where

Coup = (V20! kp + gk + ph) + d(207) 2 Kbk o, (5.87)
Copr = [A — 20/ (2 — 4d) kK ], (5.88)
Copw = [200 — & (2 — 4d)kyk | o, (5.89)

Cip = [ —2(3 = 4d)V2a'k,] o, (5.90)

with d = 9/8. ¢ is a scalar field, and its vertex operator is

S N 1 )
v, = (Cgm,p@zaX”zﬁX WP+ <2W\/27a,zaX~aw

S | y
+ Copuw Ta,ZaQX“T/J +C1u§32¢”)6 Pt X, (5.91)

Let us check if we identified all independents degrees of freedom. We started from a totally symmetric
3-tensor S3 (20 d.o.f.), two symmetric 2-tensors Sz and 5% (20 d.o.f.) and one vector & (4 d.o.f.), a total
of 44 d.o.f. The set contains 4 + 10 + 10 + 4 = 28 constraints. Thus we are left with 16 independent
d.o.f., which are one spin-3 field o (7 d.o.f.), one spin-2 field 7 (5 d.o.f.), one vector £ (3 d.o.f.) and one
scalar ¢ (1 d.o.f.). Next, we examine the vertex operators to check if any of the above degrees of freedom

happens to represent a null state. Indeed, we find that the spin-2 field 7 and the scalar ¢ are null states.
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They do not couple to two massless gluons in any helicity configurations, just like the two vectors found at

the first massive level, c.f., Eqs.(5.41]) and (5.42).

Now we turn to remaining fields. With our previous analysis, after eliminating all the dependent relations,

we arrive to the following set:

(Ba(oloyu) = Baolnor] + Baoluywo))177 + 245, + V20! Dip ) = 0
Ba(upw)polk" = Ba(uiv)polk” =0
Asjy) + 2457, + V20! (Bsppuy) + Bs(uipyn) )k =0
(5.92)
! / / o
A2[[Ll/] + 2A2[#V] + \/@(Dg[p(#]y) — D3[u(p]u))kp =0

1 1
Ba(uivyol + 5Bswinn = 5 Ba(oln) T Da(oy) =0

Bs(up)pk” =0
The solutions are:
1. B3y, = n,fl,gp - if,m,fp - %&,nip, D3,y = %funlfp - 2§,,njp, By = Ay = Ay =0, where &, is a spin-1
wavefunction satisfying £, k* = 0.
2. B3y = *%Déwp = k%opupryT™ v + k€0 py ™y, Bs = Az = A = 0, where 7, is another

spin-2 field satisfying k" = m,,n"" = 0.

3. Bayvpe = 200, B3y, = yV2o'k,vTEL,,, ng,p = —yv2d (VT E-k, + %UTETpl,k:M —
LT E k), Ay, = — (7 + 2y)V" Erpy Azpy = (22 + 8y)vT By, where the vector v is transverse,

v, k* = 0, and the 3-form E,,,, = %\/ 20/¢e,,p0k7 . Although only one massive vector field v is involved
in our solution, we still have two parameters z, y available, thus we get two pseudo-vectors, v, (1, y1)
and v, (z2,y2). There is a natural choice for the coefficients z, y, dictated by the complexification of

vector fields, to be made after discussing the helicity-dependence of their couplings to gauge bosons.

26 The choice of the wave function of Bapvpo is not unique. Indeed we find another solution with B4pypo = 2nﬁuvTE7-pg,
where nf;,/ = N — kuky/k? and E,., is the same 3-form. However, this solution does not give us an extra physical field.
When we compute the scattering amplitudes involving the physical fields subject to these two solutions, we find the results are
exactly the same. That is to say, these two different solutions represent the same physical vector state. We will stick to the
first solution in our later discussions.
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Let us count the number of degrees of freedom again. We started from a hook 4-index tensor B4 with 15
d.o.f., two hook 3-tensors, B3 and Dj, with 20 x 2 = 40 d.o.f., and two antisymmetric 2-tensors Ay, A} with
6 x 2 =12 d.o.f. The set contains 6 +12+6 +6 + 20+ 6 = 56 constraint@lﬂ We are left with 11
d.o.f.: two vector fields ¢, and v, (3 d.o.f. each) and one spin-2 field 7’ (5 d.o.f.).

The vertex operators of these physical fields are:

(2) _ I oy L. S0y 5 1 v —¢ _ikX
Ve = iy 5 (Wi0XVIOX? = SIOXPIOX ) + S €y, b0 awp}e etk X (5.93)
1 ‘
Vir = (K€ pipm™ ™ r0 + k7 Eaupy™  ir0) [(Z—O/)iaX“iaX”w” - Qawwuw} e PeihX (5.94)
and
Vo) = ;O/ [(UTETM@?XW;" — 207 B i0X OP) + v(uEy)pgiaX“w”wpw} e PeihX

v [kuvTEﬂ,pi@X"iaX”z/)p—2(2&')UTEW(,,kp)¢“1/)”3w"

/

5

(807 Brpud0X 00" — 207 Bryi0? X1 [0 mX. (5.95)

To summarize, we identified one spin-3 field, two spin-2 fields, four vector fields (two vectors and two
pseudo-vectors), and one real scalar satisfying the physical state conditions. The scalar ¢ and the spin-2
field ¢ are null states; all other fields are physical. Thus the number of universal physical degrees of freedom
at the second level of NS sector is 24. The spin-3 field and the spin-2 field 7 couple to two massless gluons
with opposite helicities — these are the particles responsible for the Regge pole in Eq.. The four spin-1

fields will pair up to form two complex vectors that can decay into two gluons with the same helicities only,

c.f., the pole in Eq.(5.17).

2"Relation By

WpolkH = Ba(uw)ps1k® = 0 give total 8 + 4 = 12 constraints. First of all By(,[,),01k* = 0 kills the second

4X3x2
3Xx2

box in the first row, so we are left with a Young diagram E, which corresponds to = 4 constraints. In addition,

Biy(uv)pe1k? = 0 kills the box in the third row, so we are left with Hj, which gives us &SXZ = 8 more constraints. The
subtlety here is when one of the antisymmetric indices is eliminated, once we calculate the dimensions of the Young diagram,
the number we put in the first box is 3 instead of 4.

28Gimilarly to the previous case, B3(u[v)p)k? = O represents 6 constraints. Bz(,[.)p]
3x4

5~ = 6 constraints. Note that again the number we put in the first box is 3 instead of 4 because one of the antisymmetric
indices is eliminated.

kP = 0 corresponds to [I]so it gives us
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Both even- and odd-parity particles couple to (++) and (——) gluon helicity configurations. The relative
normalization of their couplings is dictated by supersymmetry which forbids non-vanishing “all-plus” and
“all-minus” scattering amplitudes [31]. Thus similarly to the scalar ® at the first level, the vectors and
pseudo-vectors of the second level must combine to form complex vector fields that couple to gluons with
the selection rules similar to Eq. . To that end, we introduce two complex vector fields, 3 o, with the

vertices

Vz

1
= V;g( it Vo(ary) ()
3 21 I
= CT&{ [(ﬂf(unw) + gg(ukl'kp))laX%aX L

) 5
4-5&#kwiaX”5¢”4-§§mkuﬂazxﬂw”-kﬁfu32¢”]

+ { [(ST T/,LVZaQXMdJ 2§TETNV7;8XM8¢V) + g(pEu)paiaquywpwo]

\/20/
+ U [k €7 Ery pi0XPOX P — 2(20) )7 By iy 0707 00

é

+ (87 By iOX 00" — 27 Eypyyyi0® X19")] }}e—%ikx. (5.96)

2
uizﬁ)iwmmﬁ>

=2

= OT“{[ (W‘z@X”zaX" - fzaX“zaX"w”) + g,m P OF]

6“ l/p2 /

[(57 THV232X“¢ 2§TETMVZ-8X#8¢U) + f(uEu)paiaXMT/)”?/)pi/)a]

b B [k B i XM iOX P — 2200 )T By py b1 )

(€7 Eryuy 0X1 00" — 267 Bryi0?X ")) } fe0e™X, (5.97)

The coefficients (z1,y1) and (x2,y2) will be fixed by requiring that EIQ couple to two gluons in (4++)
configurations and to three gluons in mostly plus configurations only (at least two gluons carrying positive

helicities). The overall normalization factors C' will be fixed by the usual factorization arguments.
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5.2.3 Complex vector couplings to two gluons

Three-point amplitudes with one massive vector (with the momentum and color indices labeled by 1) and

two massless gluons are very simple because the positions of three vertices can be fixed by using PSL(2, R)

invariance of the disk world-sheet and there are no integrals involved in the computations. The three-point

amplitude of the pseudo-vector (vertex V,,, ,y) and two gluons reads

o) (Vi) (£), €2,€3) = Cp,CV2a/g? f*172%8 (20/)% {4$5uup€g€§k§(f - k3)

1
— (z +2y)& eppn [5 K5 (€5 - ko) + €5 kY (62 - k3) + aegeg] }

2

where Cp, = g~2a’~2 is the universal disk factor [65]. In the helicity basis, this corresponds to

D (g +.4) = (5 — §)C00,OV27g2 720 (20! [23(& - o),

AP €~ =) = (G — 5)Cp,OVIG [0 (2/)* (23)°(€ - ko).

The three-point amplitude of the vector £y (vertex Vg(l)) and two gluons is

/ a1a2az: 21 1 v
‘Q{(s) (g(l)a €2, 63) = CDZC 2a/g2f 1 3(20/)2{(35(;”71/@ + Za/g(p,kl/kp)) [@6563]{‘5
€5kl — kS kS (€3 - ko) — €5 k5 kS (€2 - k) + kh kS KE (€2 - €3)]

_ L oon
20/62

5
+ 58k [€5K5 (€5 - ko) + ek (€3 - ks) — kbR (€2 - €5)] }

The corresponding helicity amplitudes are

5
AP (), + +) = gOp,OV20/g f119292 (20! [23]%(€ - ko),
%(3) (5(1)7 +, 7) =0,

A (&), - —) = chgcx/ﬂffamas (20/)2(23)2(& - k).
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(5.98)

(5.99)
(5.100)

(5.101)

(5.102)

(5.103)
(5.104)

(5.105)



The three-point amplitude of the vector §(9) (vertex V;Z)) and two gluons is

A3 (E2), €2, €3) = Cp,CV2ag? fo1293 (20/)2{ [(€ - €2)(mp, K5 RS ) (€5 - ko) + (€ - k3) (mpn, k5 k5 ) (€2 - €3)

— (& €3) (1 K5 k5 (e2 - ka) +
+ (€ - ka) (K k5 ) (2 - €3) —

1 T
(€ ) )] +

2¢

The corresponding helicity amplitudes are

—~

[\

Q‘»—t

‘ -

«

€ ks) (b bk (e - Kis) + = (€ - i) (7 €el)

20/

(6 es) (i e k) = (& - ko) i ehe)] |-

5
P (2, +,+) = =5 Cp,CV207g 2 20/ [23]°(€ - ha),

d(?)) (5(2)7 +7 _) - 07

o3 (&), - —) = —gCDQC@gQ f19203(20/)2(23)2(£ - ky).

In the basis of complex vectors Eli’Q (z,y), the above amplitudes correspond to

and

%(3)(Ei(£)7 +7+) = [_ 8 + (
S O(EEE),+,-) =0,
oSS, ) = [~ 2 F

1 Y1

6 3

T1 Y1
6 3

3

3

)] Cp,CV2a/ g? f42295 (20/)?[23]2 (€ - k2),

)] Cp,CV2a/ g2 f1292 (20/)2(23)2(€ - ko).

To Y2 )} CDQCMQQfalagag (20/)2[23]2(5 . ]{32)7

T2 Y2 )} C’D2C’\/@g2f‘““2a3 (2a/)2<23>2(€ . kg).

(€ e2) i 5RE)] — 5 (6 k) bR s - o)

(5.106)

(5.107)
(5.108)

(5.109)

(5.110)
(5.111)

(5.112)

(5.113)
(5.114)

(5.115)

By requiring that Z, couple to (+,+) only (and respectively, Z;, to (=, —) only), we obtain the following
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constraints:

5 T Y1
Z — 2 =0 5.116
-G -5=0 (5.116)
5 xT9 Y2
_2_ 92y _ o 5.117
(G- (5.117)

5.2.4 Complex vector couplings to three gluons

We consider four-point amplitudes involving one massive vector and three gluons@ The kinematic variables
are defined in Eq.(4.33)). Now, ki is the momentum of the massive particle, k? = 2M?, and the Mandelstam
variables satisfy

2
s+t+u=2M"==. (5.118)
«

All other quantum numbers associated to the massive vector will be also labeled by 1.
We begin with the amplitudes involving three all-plus and all-minus gluons,(+++) and (— — —), respec-
tively. For all-plus configurations, they contain the common factors

(1 —a'u) [24][¢3]
o2 (34)(42)

(1-a's) [3q]l¢4] | (1 —a't) [4q][q2] }
o (23)(42) T o2 (23)(34) )

F(jo = +1,+,+,+) = CDQC\/@g?’zf;;Ws“m(za’)B@{

m

(5.119)

F (e = 0,4, +,+) = Cp,CVaaTg T 520304V, (203 {2) {
V2m

{
(1—a's) ([3q][p4] + [4q][p3]) (1 — a't) ([4¢][p2] + [2¢][p4]
o2 (23)(42) o2 (23)(34)

0/2

+

y(]z _ _17 +,+,+) _ CD2C\/@.QSZLEL:1;2(13¢14V%(2O/)3%{ (1 _O/Z/U) <[§f;g EZ?L

(1—a’s) [3pllp4] (1 —a't) [4p][p2]
* a2 (23)(42) + a’? <23><34>}' (5.121)

Here, .7,152%3% is a universal factor that combines Chan-Paton factors with the kinematic variables in the

29The original four-point string amplitudes are very tedious, so we will only present the helicity amplitudes in this paper,
which look much simpler.
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following way

%azlgzaga4 — TI‘(Tal T2 a3 Taq + Ta4Ta3Ta2Ta1)
1V

+ Vt a’'s—1
1V,

+ Vt o’u—1

Tr(TTST T + TUT T4 T)

Tr(Te T T2 % 4 T4 2T %), (5.122)

Furthermore, p and g are the light-like reference vectors used to define the quantization axis for the polar-

ization vector £&. We obtain

Y

5

AW (EF(52), +,+,4) = 5 (2 I 23+, +,+), (5.123)
@) (=% (4 R ) .

A V(ET(J2), 4 +) = [ - st (%~ )NZ (jzr +,+,+) (5.124)

For all-minus configurations, the analogous expressions read

Fle = +1, -, =) = Cp,OVEg T v (2o LA (L) %ﬁg’f

(1—a's) B3p)(p4) | (1 —a't) (4p)(p2) }
o2 [23][42] o2 [23)34) I

(5.125)

o _ 7 3 grarazasas s lap] (1—o/u) ((39)(p2) + (29)(p3))
FUe = 0,770 7) = Co, OV2alg Z2gr 0 Vi(2elY Vam { o [34][42]
(1—a’s) ((4g)(p3) + Ba)(p4) | (1 —a/t) ((40)(p2) + (20) (p4))
o 32 " B3I5d] } (5.126)
Pl = 1, =) = Cp,OVEg Tgsev 2 LA (L) <[§%Z§]>
(1—a's) (3q){(q4) | (1—a't) (4g){(q2)
o2 342 T a2 2334 2 (5.127)
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and

JZ{M)(E%(]z)a T _) = [g + (E - 3)]9(]“ T T _)7 (5128)
%(4)(52i(.72)5 T T _) = [_ g + (% - %)}y(]w T T _)- (5.129)

Note that the constraints (5.116[{5.117) on the parameters z,y automatically ensure the decoupling of =+
from all-minus configurations and of Z~ from all-plus ones.
Next, we turn to mostly plus configuration (+ 4+ —). For each j, = 0,41, there are two kinematic

structures common to these amplitudes:

3(pg) 237 1-du

2 = —) = 1,3 graiazazas n3\Pq)
s =+l 4 0) = Op OV T M Ve 24]34] o 24](¢3], (5.130)
%(]Z = +17 +7 +7 _) = CDQC\/@g3ZLa:1;2a3a4W(2a/)3%(_)<p4>2[23}2’ (5131)
and
] aiazazay / 1 (pg
H(j. = 0,4, 4, —) = Cp,CV2a/ ¢> T,11229294 Y, (20, )32\@<m>
[23]° 1-a'u
X oapy o (2l + Brlle2)), (5.132)
Haljs = 04,4, -) = Op,OVadTg 7oy 00 L o) quyos?, (5,139
2v/2 m
and lastly
|, = — —) = /.3 graiazazas /3@%1-@’11
M= = ~Lobohi2) = O, OV201g Zg Vi 20) om [24][34] o 2p][p3], (5.134)
Ho(je = —1, 4+, -) = CDQC\/@QB%“;S”WW(za’)?’%<q4>2[23]2. (5.135)
We obtain
5, (% 23 Tx; 5
4)(=x(; VY= [= 7172171 . a9 1Ty ﬂ )
A WEF(G:) 4 ) = [ £ (5 = NG + [35 = (G5 + 5] #a0), (5.136)
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+ =) A (). (5.137)

23 Tz 5
4) (=t 1 Y1 s
gD (ET (), — —+) = [g (K - g)]%/l( J2)" + [E (ﬁ ?)]%(_Jz) ) (5.138)
_ 5 T Yo 13 Try  5Ys .
O EE () 4) = [= D (B2 iy (2 (T2 By 1
GG = [ 2w (2 gy 4 [ (T2 My ()
Note that the conditions ((5.116)) and (5.117)) imply vanishing .#; parts of the (¥, — — +) and (27, +, +, —)

amplitudes. By requiring that their J#5 parts also vanish, we obtain

23 7 5

(= =z = .14
16 (12$1+6y1) 0, (5.140)
13 7 5

(= Z = 141
= (502 51) =0, (5.141)

which, combined with Eqgs.(5.116)) and ([5.117) fixes the relative weights of vectors and pseudo-vectors to

T = 3 T = —3/4
, . (5.142)

y1=—3/8 Y2 = 3/2

To summarize, at the second massive level we identified two complex vectors, Z; 2, with the vertex

operators written in Egs.(5.96)) and (5.97) and the parameters « and y given in Eq.(5.142]), which satisfy the

following selection rules:

g [EY, — ~] = B, +,-]| = [E7,+,+] =0, (5.143)

for three-point amplitudes and

o [E—i_’ T T _] = [E_7+’+’ +] =0, (5144)

o [EX +,—, -] = [2t,—,+, -] = [E*,—,—,+] =0, (5.145)
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g[E, -+, 4= [E,+,—,+] = [E7,+,+,-] =0, (5.146)

for four-point amplitudes.The overall vertex normalization can be fixed by the usual factorization argument.
It is

C = %x/&g. (5.147)

5.3 Factorization and BCFW reconstruction of the four-gluon amplitude

In this section, we consider the s-channel residue expansion of the partial four-gluon MHV amplitude,
M(p—,q—,k1+,ko+), with the external momenta p, ¢, ki, k2 and the respective Chan-Paton factor
4g*Tr (T T T4 T%), with the coupling constant g included. We want to compare the residues with the

factorized sumPY

F(p77q77k1 +7k2 +) = Z (p77q7|m]7]an) (kQ 77k17|mj7j7n)* ) (5148)

- s—n
mj, J<n

where s = 2p- ¢ (we also define u = 2¢- k; and t = 2q- k), and (p+, ¢ +|m;, j,n) are the three-point on-shell
amplitudes involving two gluons and one string state at mass level n, with the spin quantum numbers j, m;.
The purpose of this exercise is to compare the three-point amplitudes with those evaluated in the previous
Sections and to show explicitly how the four-gluon amplitude can be reconstructed by a BCFW deformation
of the factorized sum:

BCFW

F(p_aq_vkl +7k2 +) — M(p_aq_vkl +7k2 +) . (5149)

The four-gluon amplitude is given by

(pg)* (1 —s)T(1 —u)
(pg)(q1){(12)(2p) T(1—s—wu)

(pg)*[12]? % B(1—s,—u) (5.150)

M(p*,Q7,]€1+,k2+) =

30In this Section, we set the mass scale M = 1.
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By using the well-known expansion of the Beta function:

I 1 (u+1)
M i+, ko +) = (pg)?[12)% = nol 5.151
(p 4 —, 1+a 2+) <pq>[ } snz::ln_s (n—l)' ) ( )
we find the residue associated to the mass level n is
1),
Res,— M (p—,q—, k1 +, ko +) = —(pg)*[12]? (@ Dna . 5.152
n'

Note that the Pochhammer symbol contracts Lorentz indices across the s-channel (recall v = 2¢ - k1). The
flow of Lorentz indices is due to the propagation of higher spin states in the s-channel. The first non-trivial
contraction occurs at level n = 2, where it is due to massive vector particles discussed in the previous Section.
At a given mass level n, not all spins j propagate: only the even ones for odd n and the odd ones for even
n, up to j = n — 1. For instance, at the next n = 3 level, both 5 = 0 and j = 2 contribute. We want to
compare Eq. with the residues of the factorized sum .

In the factorized sum , two pairs of gluons, (p,q) and (ki1, k2) are coupled through intermediate
Regge particles propagating in the s-channel. The Lorentz indices are transferred by the wave functions of
intermediate particles, depending on a fixed spin quantization axis defined by the choice of reference vectors.
The most convenient spin quantization axis is the direction of motion of the (p, ¢) pair in its center of mass
frame, which is imposed by choosing p and ¢ as the reference vectors for the massive wave functions, see
Appendix C. In this case, the angular momentum conservation dictates that only m; = 0 states propagate
in the factorized sum. Let us illustrate this point on the example of a massive vector particle.

In the previous Section, Eq.(5.112)), we found that, up to a numerical factor,

Indeed, with the choice of (p, q) as the reference vectors for the polarization vectors &,,, one finds
1 NE 1
4. — . =0 , . = — — =—=—, 5.154
§1rq =&1q o4 ﬁ(p a)q 7 (5.154)
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where /2 = \/M,, appear from the wave function normalization factors. On the other hand, with the same

choice of the reference vectors,

(kQ 77]‘:1 7|m:07j = ]_,TL: 2)

(12)? % (P — @)k (5.155)

= —(12)2 —=(u+s/2)=—(12)> —=(u+1) .

Sl
Sl

In this way, we obtain

(u+1)
2 )

(p—,q—10,1,2)(kz —, k1 —[0,1,2)* = —(pqg)*[12]? (5.156)

in agreement with the residuum (5.152f) for n = 2.
It is clear that for the above choice of reference vectors, the residues at s = n of the factorized sum have

the form (pq)?[12]? times a function of
s n
a=p-gk=—-(p-h =utg=utg, (5.157)

where the last step follows from the on-shell condition for the massive particle. We can obtain the factorized

sum by simply setting u = a — 5 in Eq.(5.151)

= 11es(s:n, u:a—%)M(pqu g k1 -+, ko +)

F(p—,q—ki+.kat) = (pg)*[12*> p—
_ (pq)2[12]22 nis(a* %T: l)n—l . (5.158)

We checked the above result also at the n = 4 level, by combining the on-shell amplitudes involving spin

j =0 and j = 2 Regge states, according to Eq.([5.148]). It is convenient to introduce the generating function

> a— g + 1 n—1 _
gr() = 3 OB ot g (5.159)
n=1 ’
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so that
1

Flp—q—,k1+,ka+) = <pQ>2[12]2/0 x % gr(x) . (5.160)

It is easy to see that the generating function ([5.159) satisfies
d z2\— aArcSinh(%
%[xgp(ac)} =01+%) 1/2 g2aArcSinh(3) (5.161)

We want to stress again the the factorized sum is evaluated by using on-shell amplitudes involving one massive
state and two gluons. We will show how to reconstruct the four gluon amplitude of Eq.7 which involves
intermediate particles propagating off-shell, by applying a BCFW deformation to F', Eq.(5.158).

It has been argued recently that the BCFW recursion relations, originally formulated for pure Yang-Mills
theory [441-47], hold also in string theory [48-53]. The arguments rely crucially on proving the absence of an
essential singularity at z — oo (z is the deformation parameter) of the full-fledged string amplitudes. The
proof is straightforward for four-gluon amplitudes but becomes increasingly complex for more gluons. Note
that in the string case, there is an infinite number of intermediate states propagating in any channel, as
seen explicitly in the factorized sum . This should be contrasted with the Yang-Mills case |76], where
there are no massless on-shell states propagating in the s-channel of the deformed (— — ++) amplitude.

In order to force the s-channel resonances on-shell, we apply the BCFW deformation
p—>p=p—2zv, ko — ko = ko + 20, (5.162)

where the light-like vector

vt = (p|o*|2] (5.163)
and z is the deformation parameter. Since § = s — 2z vq, the resonance poles appear at

s—mn
= . 5.164
*= g (5.164)
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Under this deformation

a=(p-qks = a=a—zvg=a— -+ =ut- . (5.165)
2 2 2
Upon a — a, the generating function (5.159)) transforms into
o~ (Ut Dn1 o
r(@) " gur(e) = 30 WDt g (5.166)
n=1
which satisfies
d e
. [zgm(z)] = (1 —2)" L. (5.167)
In this way, we obtain
1
Mp-q—kitdad) = (o127 [ o gu(a)
0
1
= (pa)’[12]" - B(1 = s,u) , (5.168)

where we used Eq. to integrate by parts. As usual with world-sheet duality, it is rewarding to see how
the massless gluon pole appears in the u-channel after summing over the s-channel exchanges of massive
string states.

Apart from providing the first explicit example of a BCFW construction in string theory, the above
example seems of little or no practical importance. After all, what more can we learn by dissecting the
Veneziano-Virasoro-Shapiro amplitude? It would be interesting, however, to construct all multi-gluon string
disk amplitudes by using the BCFW recursion relations. Unfortunately, it is not so easy: starting from five
gluons, a standard BCFW deformation, like in Eq.7 yields on-shell poles in two channels, and the step
leading from the factorized sums to the actual amplitude becomes quite cumbersome. Even in bosonic string
theory, it is not clear how to combine much simpler factorized sums with five external tachyons to the well

known five-tachyon amplitude.
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6 Epilogue

My Ph.D. researches were mainly focused on both formal and phenomenological aspects of superstring
scattering amplitudes. Specifically, we investigated the supersymmetry relations and coupling properties of
the higher spin massive superstring states. Focusing on the first massive level universal superstring states
and under the assumption of a low mass string scale as low as a few TeVs, we studied their scattering
amplitudes in four dimensions and and obtain its possible collider signals explicitly.

Elementary particles are quantized vibrations of fundamental strings, and the SM particles are zero mode
massless open strings. In the intersecting branes settings, gauge bosons are due to strings attached to same
stacks of D-branes and chiral matters are due to strings stretching between different stacks of intersecting D-
branes. The main motivation of my works is originated from the idea of low mass strings — we could test the
string theory if the fundamental string scale is as low as a few TeVs. It has been shown that the production
cross sections of gluons and quarks at the LHC can be computed in a model independent way, allowing for
universal string predictions in case the fundamental string scale is low. The corresponding tree-level string
cross sections are independent of the internal geometry and hold for all compactifications, in particular, no
matter how many supercharges are preserved in the compactification. In this way, the landscape problem is
circumvented. This property allows testing the low mass string scenario at the LHC.

Once the center of mass energies of the colliding partons exceed the fundamental string scale, the string
excitations can be produced directly. In my first paper |1], we discussed the direct production of lightest
Regge particles. There are certain higher spin Regge excitations at the first massive level, which are also
completely universal. Computing production cross sections is important to identify these massive states
at the LHC, since the angular distribution of their decay products is directly related to these higher spin
universal Regge states. We identified these states by using BRST constraints and computed full-fledged
superstring disk amplitudes of one massive Regge state with two or three gluons / quarks. Then in my
second paper [22|, which however is not the focus of this thesis, we discussed the possible signals of low
mass string resonances in ete”™ and 7 collisions at future lepton colliders. Then we go further in my
third paper |2] to explore the properties of higher level superstring resonances. Starting from the four-gluon

amplitude, we investigated the resonant structures of higher level massive superstring states. For Regge
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states with masses far above the fundamental string scale, we discussed the spin-dependence of their decay
rates into massless gauge bosons. To illustrate the use of BCFW recursion relations in superstring theory, we
showed that the four-gluon amplitude can be obtained by a BCFW deformation of a factorized sum involving
on-shell amplitudes of one massive Regge state and two gauge bosons. Finally in my fourth paper [3], we
expanded our discussion in [1] and investigated the SUSY relations for the physical superstring states in the
first massive level. We obtained explicitly the supermultiplets of four-dimensional superstring states under
N =4,2,1 compactifications.

Along the line of my previous works, there are various topics to be explored in the future: the practical use
of the superstring version on-shell recursion relations; explore the general connections of massive superstring
amplitudes with field theory amplitudes; investigate the massive loop amplitudes; carry out the superstring
scattering processes in a fully consistent compactification; etc.

The recent discovery of the “Higgs-like” particle at the LHC [79,/80] indicates another great success of
human pure thinking. However, even this new particle is confirmed to be the Higgs particle and totally
complete the standard model, there are still many unsolved problems, such as dark matter, dark energy,
hierarchy and naturalness problems, etc. Right now we are at the best moment to explore the unknowns
of the physics beyond the standard model. T am very proud that I am one of these people, and we are so

confident that we will succeed again!
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Appendix

A Notation and convention

Various types of indices appear in this article, so it is essential to keep the notation as clear and unambiguous

as possible. Here is a list of occurring index classes together with the preferably used alphabets and letters:

e In ten dimensions, vector indices of SO(1,9) are taken from the middle of the Latin alphabet m, n, p, ....
The corresponding Weyl spinor indices are Greek letters from the beginning of the alphabet, «, 8,7, ...

for left-handed spinors, and their dotted version ¢, 37 4, ... for the right-handed counterparts.

e Vectors in four-dimensional Minkowski spacetime have indices from the middle of the Greek alphabet
W, Uy A, p, ... Spinor indices of SO(1, 3) are lower case Latin letters a, b, ¢, ... for left-handed Weyl spinors

and upper case a, b, ¢ for right-handed Weyl spinors.

e The R-symmetry group of N = 4 spacetime SUSY is SO(6) = SU(4). We will use m,n,p... as vector
indices and I, J, K (I, J, K) as left-handed (right-handed) spinor indices. Confusions with the D = 10

vector indices are excluded by the context.

e In case of N' = 2 spacetime SUSY, we denote the fundamental indices of the SU(2) R-symmetry by

1, j, k and the corresponding adjoint indices by A, B, C.

e Chan-Paton generators carrying the color degrees of freedom of the vertex operator are suppressed
throughout this work since they are the same for all members of the SUSY multiplet.
e Also, the coupling ga = v2a’gyn of vertex operators is suppressed, i.e. set to unity.
All these symmetry groups involve their metrics ™", n#¥, 57(,?21 as well as gamma matrices and charge conju-
gation matrices as Clebsch-Gordan coeflicients:
o e and C.P,C% in D =10
. J“-,ézb and £4p,% in D = 4

ab

o 77{;]7,*7}3} and C! 7, C;”7 for the internal SO(6) of N' = 4 SUSY
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e standard Pauli matrices 74%; and €% for the SU(2) R-symmetry of N' =2 SUSY

Qur conventions for the slash notation is

Kop=km ™, Koo =kmape in D=10
. " . (A.1)

The totally antisymmetric & tensors are normalized to having nonzero +1, e.g. e***? for D = 4 vectors and
eapc for the adjoint representation of SU(2).

The signature of the Dirac algebras is negative in lines with the Wess & Bagger conventions:

AT T = g (A2)
n —vbe v —pbe _ v sc
ol 07 4 o a7 = =20 6 (A.3)
Vo Anic T W Tmgae = = 2000 8 - (A4)

On the other hand, the SU(2) Pauli matrices obey the multiplication rule

(1a)'5 (tB) k = 6aB b}, + icapc (T9)% (A.5)

Useful material on spinors in various spacetime dimensions can be found in [65], the present conventions

closely follow [57,,58].

B Operator product expansions

This appendix gathers the operator product expansions needed to evaluate the BRST constraints and SUSY
variations. Before taking a closer look at the interacting SCFTs, let us display the free field OPEs for the

sake of completeness, namely

20/ kM

i0XH(2) e* X (w) + i0XM(w) + (2 —w)id® X (w) + ... | e*X(w) (B.1)
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X" (2) i0X" (w) X (w) (2;[715)”2 g 2OOXT) L oxmiox ) + ... | X (w)
(B.2)
as well as
PR W)~ T ) + (2 w) O () + (B.3)

They are valid in any number of compactification dimensions. Another universal feature is the superghost

CFT, governed by

eN19(2) @20(W) — (5 _ )~ 0142 [e(qﬁtn) W) 1 gy (2 — w) B el11T92) $(w)

+1 - w)? [0 0% + ¢ (99)] el o) 4] (B.4)

The following subsections consider the interacting RNS CFT of the ¢ fermion and its spin fields S as well as
its excited versions. The OPEs were pioneered in [56] and can be checked by means of correlation functions

gathered in [57,[58].

B.1 Spacetime CFT in D =10

Evaluating the BRST conditions on the most general fermion vertex operator at the first mass level requires

OPEs
m ’YZTB Sé(w) 1/2 m 270% B
’L/) (Z) Sa(w) ~ m + (Z — U}) Sa (w) + \/55 0S8 (’LU) + ... (B5)
. 7 S” (w) S () 47, 059 (w)
V(2 08alw) ~ 2v/2 (2 — w)3/2 C 2(z—w)l/? M 5vV2 (2 — w)l/2 L (B-6)
Y (2) g (w) ~ Tmn S° (w) + '_Y?na Sna(w) _ 2 Nmn 9s” (w) + .. (B.7)

(z — w)3/2 V2 (2 —w)l/2 5(2 —w)l/?
in D = 10. The corresponding SUSY variations are computed by means of

775? Sa(w)

V2 (2 —w)l/?

3 Wvéza 084 (w)

Tz S )+

S°(2) oy (w)
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—1 o 3

Sﬂ(z)lbmlﬁnf/fp(w) ~ W%nnpsa(w) T 2—w)i (’_Y[mn)Ba S;'j(w)
1 Ba
+ vanpasa(w) + ... (Bg)
; Vot Sa (w) Sty (w) 774 0Sa(w)
§%(2) O (w)  ~ 2\}5(2’—74})3/2 T iz 10\7@(2«—10)1/2 + ... (B.10)
for the NS sector and
Sa(2) o)~ lentul) (o (2C BUnl)
— (z—w)V/? (Y™ C)ap m n hp(w)
( ) s o (B.11)
‘ Co’ Ym(w)  CoP Opm(w) (47 C)o® Y 1 p(w)
So(2) S8 (w) ~ Gt T 2w 1o w)i/i + ... (B.12)
3(Y"C)ap Ym(w) 7(v"C)ap OPm(w)
Soz(z) aSﬁ(’lU) 43/5(2_610)7/4 ;ﬂ(ziw)?’/‘l
(7" C)a Ym Yn Vp(w) + ... (B.13)

482 (2 — w)3/4

for the R sector.

B.2 Spacetime CFT in D =14

In D = 4 spacetime dimensions, h = i spin fields S, Sb of both chiralities are present. The OPEs between

spinors and vectors or p-forms treat both chiralities on equal footing, e.g.

Uui; Si’(w) 1/2 Uui; b
VM (z) Sa(w) ~ W + (z—w)? | SH(w) + ﬁ St (w) | + ... (B.14)
. ~ba S, . ~ba
V,(2) SP(w) M + (z—w)'/? [SZ(w) + % AS,(w) | + ... (B.15)
that is why we only display one chiral half of further OPEs:
o S (w) S (w) o*, 98°(w)
YH(2) 08, (w) 2\/§(bz—w)3/2 T 2(z—w)l2 2\/§b(z_w)1/2 (B.16)
. b ~ba j
Pu(z) SE(w) ~ M S°(w) y n Sva(W) 1, dS®(w) + ... (B.17)

c-wp T RGe-w | (- w)P
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Four-dimensional SUSY variations of NS operators require

b (0 CatSaw) i
S%(2) Yp(w) \/i(z—‘w)l/z + ( )28 (w) + ...
S¥(2) v (w)  ~ W + V2alle gl (w) 4 %(a—w)%asd(w) +o
. L 5 o
SP(2) b by Pa(w)  ~ Wae—w) Fpiy Sa(w) — w2 (1)’ S5 (w)
1 ia
- V2 (2 —w)l/2 Tir OSa(w) + ...
. a-ba (W b w 5.ba o (W
5H(2) 5, ) i 5alv) 5u) i 05a(w)

22 (2 — w)3/2 N 2(z —w)l/2 + V2 (2 — w)1/2

With two R sector states involved, the OPEs are sensitive to their relative chirality:

Sal2) So(w) ~ i 1w (b (w) +
Sul2) SP(w) ~ W ; (mw

C ew) (owwai%pywxw) L
Sa(2) Sh(w) ~ (";;)Z:fuw@f)’:gv)
Sa(2) S (w) ~ 5((121{"31) _ sabf);w‘(m - (memw:wyww)
Sa(2) 05 (w) (0'“5>z;i}9§%(w) N (a“”%)ai;%pyw(w) L

B.3 Internal CFT for N =4 SUSY

+ ...

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

The internal components of the ten-dimensional NS fermion are denoted by W,, with vector index m for

the SO(6) R-symmetry. Accordingly, the associated h = % spin fields ¥/, % 7 have SO(6) spinor indices

I,J =1,2,3,4. Their mutual OPEs can be covariantly expressed in terms of SO(6) gamma matrices:

1T 5 (0 J
W, (2) 2 (w) M b —w) | S ) + 233;% 9% ; (w)
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_ RYREDY ’(IU) AT E"J(w) 25mn 9% *(w)
m n ~ (6) J rYJI _ (6) J
T () Ej(w) (z — w)3/2 * V2 (2 —w)l/2 3(z —w)l/? e (B.29)

1 S5(w) S (w) 2917 0% 5(w)
U, (2) 08 (w) ~ Qé(zjw)w - e 3\/75(27‘;)1/2 + o (B.30)

We need the following OPEs for computing SUSY transformations of bosons:

~m I w B ~m
$(2) U (w) ~ \/% +o(z—w)? | S (w) + ;\% o (w)| + ... (B.31)
Sy v ~ ST B ) 4 L, T08 ) e (B22)
SJ(Z) TP ()~ W ,—Y?In;ﬁ Ef(w) — 2(2_7311))1/2 (,—Y[mn)jf 21}] (w)
1 —mnp
+ m’)/jl 821(10) + ... (B33)
50U (w) ~ — W Spw) 5908 w) (B.34)

W2 (z—w)d2  20z—w)2  6y/2(z —w)l/?

Again, OPEs between R sector states depend on the relative chirality:

V)~ T e G ) e ) ¢ (B.35)
J (Z _ w)3/4 4 Ymn 7 . )
LT gm (y OV 9w (w
— (z—w)¥ (Ymnp C) ™ U™ WP (w)
( > 12v/2 + o (B.36)
n 1J w
2 (2) 57 (w) (v \%)(Z E’Z )‘1;74( ) (B.37)
_ Cl-um(w ! o™ (w anI'\I’m‘I/n\I/p’w
2l (z) 7 (w) (ZJ_ w)§/4> _ 2(2 0 w)§/4) (O 4)(;_ . (w) (B.35)
I I_\pm gy
ZI(Z> 8ij(w) ~ 4(23_015)7/4 + ('YWTLH?()Z i‘i});i ( ) (B.gg)
(7m C)IJ \I’m(w) 5 (’Ym C)IJ oo™ (w)
»1(z) 07 (w) a2 (o )/ + S5 —u) A
L+ O O U™ U TP () (B.40)

16v/2 (2 — w)1/4
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B.4 Internal CFT for N =1 SUSY

Most of the OPEs relevant for the internal ¢ = 9 SCFT described in subsection [2.2.5] can be derived from

the CFT of a free boson:

OH (2) e () ~ [Zf’w + i0H (w) + } 4H (1) (B.41)
¢t (2)i0H (w) ~ wa + (¢® — 1)idH(w) + } el (w) (B.42)
() B (W)~ (= w) [T 4 (2 w)iOH 4 ] e () (B.43)

This allows to reproduce ([2.77) and (2.83) from the bosonized representations ([2.84)) of the operators 7, ¥+

and OF. Moreover, we have

+/3 X% (w) OXF (w)

Y5\ (2) I (w B.44
(2) I (w) 5e—w) T 25 (B.44)
SER)OF(w) ~ (z—w)322F (w) — (z—w) V2O F(w) + ... (B.45)
The excited spin fields yE = gFetiH/ V12 are canonically normalized
. - 1 10H (w)
YE(z) 2F ~ B.46
(Z) (w) (Z_w)11/4 2\/3(2’—’11))7/4 ( )
4 iH
Sk () 9T gt e Vi (w)
Y (2) ¥ (w) (= w)/i + ... (B.47)
such that the mutual singularities between standard and excited spin fields are given by
SER)SFw) ~ (2 —w)igT ei%H(w) + ... (B.48)
- 2 Gi,(w)
+ F ~ “ int
Y (2) 2T (w) \/g (o= w)i/A + ... (B.49)
Moreover, in presence of the internal supercurrents Giint = \/gei”{/ V3 +
- 3 2E(w) \/5 L= (w)
+ +
: % ~ - - B.
Gmt(z) (w) 2 (Z _ ’UJ)5/2 + 3 (Z _ w)5/2 + ( 50)
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3 g* g F 23" (w)

G (2)SF(w) ~ 5 G + ... (B.51)
~ o+ w
Y ) T(w) ~ iQ\gé—)w) + ... (B.52)

C Spinor helicity methods for massive wavefunctions

Before we proceed to introduce the massive version of the spinor helicity formalism, we will make a short
review for the helicity formalism of massless spinors. For massless spin—% spinors, we use the following

notations,

i) = D) = i) = o- ) = (1 ). 1)
= = ) = o ) = (7). (€2)
il = [l = @ (k) = - (k) = (K2,0), (©3)
(i = (il = (k) = 02 (k) = (0,k7,) ()

Here the momentums with spinor indices denote two component commutative spinors. They are defined by

Paa —_ pﬂc—rp,aa —_ 7p*¢'1pa’ (05)

Py = p,ﬁfd = *papj';v (06)

*

where p*@ = (p®)* and p% = (p,)*. Spinor indices could be raised (lowered) by £ (g,5) or a,b with dots,

pa — €abpb, p*[z _ E[szz. (07)

Then we can define the notations for the spinor products,
(pa) = (pla) = u—(p)u+(q) = piq™*, (C.8)
[pg] = [plq] = @+ (p)u—(q) = p"qa, (C.9)
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so that simply we have

lpa) = —[ap],  (pa) = —{ap), (C.10)
(pe)" = —[pal,  (pp) = [pp] =0, (C.11)

and
(pa)[ap] = —2(p - q). (C.12)

C.1 Massive spin one boson

A spin J particle contains 2J + 1 spin degrees of freedom associated to the eigenstates of J,. The choice
of the quantization axis z can be handled in an elegant way by decomposing the momentum k into two

arbitrary light-like reference momenta p and g:

kt = p* + ¢*, k2 = —m? = 2pq, pP’=¢*=0. (C.13)

Then the spin quantization axis is chosen to be the direction of ¢ in the rest frame. The 2J 4 1 spin
wavefunctions depend of p and ¢, however this dependence drops out in the amplitudes summed over all spin
directions and in “unpolarized” cross sections.

The massive spin one wavefunctions £, (transverse, i.e., {,k* = 0) are given by the following polarization

vectors [59}/60], up to a phase factor,

1 .
Y (k) = —=—p;5""qa, C.14
£+( ) ﬂmpaa' q ( )
1.
14 — T =paa * %
& (k) = 5" (Pipa — dida); (C.15)
1 .
§8(k) = ——=—q;0"""pa. (C.16)

V2m
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C.2 Massive spin two boson

The massive spin two boson a*” satisfies the following conditions,

at (k,A) = oM (k, \), (C.17)
ko (k, \) = 0, (C.18)
Gt (k,X) =0, (C.19)

where )\ expresses the helicity of a*”. We do the same decomposition of the momentum, and the wavefunction

of a spin two boson can be written as [59],

1 q j * *
o (k, +2) = 557" piqupian (C.20)
v 1 _uaa =vi * * * * * *
o (k, +1) = 55 ® (Pipa — €5aa)P} a0 + Pda(Dip — G} )] » (C.21)
v 1 _uaa —vbb * * * * * * * *
o (k, 0) = o """ [(phpa — 459a) (PiP6 — 4} W) — P30ai Py — 4PaPED)] (C.22)
v 1 _paa =vi * * * * * *
o (k, =1) = 555 * (g5ga — PaPa)G Dy + ToPal(@5qa — PEPS)] » (C.23)
nv 1 —ua',a—l/i)b * *
at(k, =2) = 550" T gipagype - (C.24)

C.3 Massive spin 1/2 fermions

Massive Spin—% fermions satisfy the Dirac equation,

(k +m)u(k) =0, (C.25)

(k —m)v(k) =0, (C.26)

where u(k) and v(k) are positive and negative energy solutions with momentum k*, which correspond to
fermion and anti-fermion wavefunctions respectively. Since we do not deal with the wavefunctions of the

negative energy solutions, we will only present u(k) wavefunction here. u(k) satisfies the spin-sum relations,

154



orthogonal condition and the normalization condition,

Z us (k)ug (k) = —F +m, (C.27)

spin

s (k)us (k) = 0, (C.28)

gt (k)uyg (k) =2m, (C.29)

Writing the four component spinor u(k) as

u= (;CZ) (C.30)

and plugging it into the Dirac equation, we get

0 o5
. (j;;) — —m (;g) (C.31)

Fhaa
The Dirac equation is decomposed to,
ko, = —mi®, (C.32)
kuobyil® = —mxa. (C.33)

Making the same decomposition of the momentum k* = p* + ¢*, we can obtain the wavefunction of the

massive spin-3 fermion [60],

uy (k) = (wn?q) (C.34)

u_ (k) = <[q£“*d>. (C.35)

“m 4
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C.4 Massive spin 3/2 fermions

A massive spin—% fermion are described by a Rarita-Schwinger spinor-vector U4+# which satisfies equations,

(i —m)A gUBH =, (C.36)
() WP =0, (C.37)
9, B =0, (C.38)

where A and B are spinor indices. Again we only consider the positive energy solution U, it satisfies,

(¥ +m)ApU(k)PH =0, (C.39)

Ua (b, VU (ke X') = 2mé (C.40)

The wavefunction of U can be written as [60],

3 1 Ga i

UA’H(+§) = 2’I’I’L< 7;*& (pi)o’ubbqb) ’ (041)
IR N L aC lap)
U (+3) = NG ( T;*a )(pi,*pb—q?jqz;)+ (fq*d)(p}jqz)) ; (C.42)
A,;L 1 5’““ pa * * _qa *

UM (=) = T | Ll s ) B3P0 = G00) +  fapl v ) (G5P0) | (C.43)

3 1 Pa o
U3 = Jm ) (@0 ) C.44
9" v (Mnf]q*“)(q”a 7o) (C.44)

D Wigner d-matrix

The Wigner D-matrix (a.k.a. Wigner rotation matrix), introduced in 1927 by Eugene Wigner, is a dimension
2j + 1 square matrix, which is in an irreducible representation of groups SU(2) and SO(3). The matrix is

defined to be:

DY) (a,B,7) = (jm/|R(av, B,7)|jm) = e ™ *d)  (8)e™"™, (D.1)
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where «, 8, are Euler angles, and dfn,’m(ﬁ), known as Wigner reduced (or small) d—matrix, is given by a

general formula [77,[78]:

) _ A = m) s
dm”m“)‘\/mmﬁ(jm)l 2.0

S

j +m ] - m ﬂ m’+m+2s ﬂ 2j—m’—m—2s
X (cos 2) <sin 2) . (D.2)

j—m' —s s

The sum over s is over such values that the factorials are non negative. Two important relations follow from
the above expression:

di(0) = Pi(cos0), (D.3)

where P;(cosf) is the Legendre polynomial, and

49

m’,

n(0) = (=1)77"d)

m/,—m

(0 + ). (D.4)

For j < 4, the following Wigner d-matrices appear in the factorized four-gluon amplitudes:

d3(8) = Po(cos8) = 1, (D.5)

dé}g(@) = Py (cosf) = cos¥b, (D.6)
(2) 1 2

dp(0) = Pa(cosf) = 5(3 cos”“ 0 — 1), (D.7)
(3) 1 3

dyo(0) = P3(cos) = 5(5 cos” 6§ — 3 cosh), (D.8)

1
d(8) = Py(cos ) = g(35cos’ 0 —30cos®6 +3). (D.9)

157



1+ cosd
2 :|:2
1
d§%0(0) = 5
1
Ay (0) =
@) 1
dy11(0) = 3 sinf(1 £ cos b)),
V10
A5k (0) = Yo
4 V2
dy(0) = -
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(3cos® 0 + 4cos? O — cos O F 2),

(7cos @+ 7cos® — 6cos® 0 F 5cosf +1).

(D.10)

(D.11)

(D.12)

(D.13)
(D.14)

(D.15)
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