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Statistical average of the axial current is evaluated on the basis of the covariant Wigner function. In the
resulting formula, chemical potential μ, angular velocity Ω and acceleration jaj enter in combination
μ� ðΩ� ijajÞ=2. The limiting cases of zero mass and zero temperature are investigated in detail. In the
zero-mass limit, the axial current is described by a smooth function only at temperatures higher than the
Unruh temperature. At zero temperature, the axial current, as a function of the angular velocity and
chemical potential, vanishes in a two-dimensional plane region.
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I. INTRODUCTION

Recently many remarkable effects related to the properties
of relativistic fluids have been discovered at the theoretical
level. The nature of these effects, on one hand, is associated
with fundamental properties of matter, and, on the other
hand, they are expected to be observable experimentally.
Two best known examples of this kind are the chiral
magnetic (CME) and the chiral vortical effect (CVE)
manifested in electromagnetic and axial currents, respec-
tively. For detailed discussion of the effects we refer the
reader to the rich existing literature, see in particular [1–14].
In [11,15] the mean value of the axial current was

calculated on the basis of the ansatz for the covariant
Wigner function proposed in [16]. The resulting formula
reduces to the standard formula for the CVE in the
approximation linear in vorticity.
Moreover, as is emphasized in [15], the entire series of

expansion in the thermal vorticity can be summed up. The
result contains information on corrections to the standard
CVE. Some of these higher order terms have been derived
earlier within other approaches [1,2]. Here we demonstrate
that the formula obtained can be greatly simplified and
reduced to a form in which the angular velocity and
acceleration enter as a real and imaginary chemical poten-
tials, respectively. Due to this, the axial current acquires

features inherent in theories with imaginary chemical
potential, in particular, periodic discontinuities or cusps
appear at a temperature below the Unruh temperature.
According to [17] for linearly accelerated systems, the
Unruh temperature is the lowest possible temperature. Our
observation on existence of discontinuities in the behavior
of the axial current at temperatures below the Unruh
temperature supports this conclusion. We also investigated
how this boundary varies with the rotation. Note that
existence of a boundary temperature proportional to the
Unruh temperature was also derived in [18] starting from
the condition of positivity of energy density.
Despite the fact that the results obtained relate to the

theories of weakly interacting fermions, we give arguments
in favor of their validity, even in the case of strong
coupling, at least on a qualitative level.
Evaluation of the axial current might have important

phenomenological implications. Indeed, the appearance of
a significant baryon polarization in heavy ion collisions can
be one of most important experimental signatures of the
CVE. In particular, papers in Refs. [19–22], relate the
polarization of baryons to an anomalous axial charge of
quarks. On the other hand, the polarization effects can be
investigated within the framework of the relativistic hydro-
dynamics of baryons [23–25], based on the Wigner
function introduced in [16], from which the CVE can also
be derived. Note that the carriers of the axial charge differ in
the two approaches. This situation served as a motivation
for us to study the effects in the axial current [15,16],
connected with a finite mass of particles. An interesting
phenomenon, which we find in this case, is the existence of
a planar two-dimensional domain in the coordinates Ω, μ,
where the axial current vanishes. Qualitatively, such a
picture is associated with the above-mentioned observation
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that the angular velocity plays the role of a new
chemical potential.
The system of units ℏ ¼ c ¼ k ¼ 1 is used.

II. ANALYSIS OF THE EFFECTS OF MOTION
OF THE MEDIUM ON THE BASIS OF THE

WIGNER FUNCTION

As is known, kinetic properties of amediumcan be derived
from the quantum field theory using theWigner function, see,
e.g., [26]. In the Ref. [16] an ansatz for the Wigner function
was proposed to describe media with fermionic constituents
in the state of a local thermodynamic equilibrium. Moreover,
it was checked that the ansatz reproduces correctly some
known limiting cases. Based on this ansatz, the effects
associated with thermal vorticity were investigated in various
physical quantities [11,15,16,18]. In particular, in [11,15], the
axial current was first calculated, while an exact formula
within the framework of this formalism was obtained in [15].
The Wigner function in [16] is expressed in terms of the

distribution function Xðx; pÞ, which has the form of a
modified Fermi-Dirac distribution

Xðx;pÞ¼
�
exp½βμpμ−ζ�exp

�
−
1

2
ϖμνΣμν

�
þI

�
−1
; ð2:1Þ

where ζ ¼ μ
T, ϖμν is the thermal vorticity tensor, and

Σμν ¼ i
4
½γμ; γν�. Mean values of various physical quantities

can be found by integrating the trace of the operator of
the quantity considered with the function Xðx; pÞ over the
momentum space. Thus, for the axial current we have the
following formula [16]

hj5μi¼−
1

16π3
ϵμανβ

Z
d3p
ε

pαftrðXΣνβÞ− trðX̄ΣνβÞg; ð2:2Þ

where h·i denotes statistical averaging with normal order-
ing, X̄ describes the contribution of antiparticles and differs
from (2.1) in sign of ζ and ϖ. The matrix traces in (2.2)
were exactly found in [15] in formula (4.3)

trðXΣνβÞ ¼
��

exp

�
ðβpÞ− ζ −

gω
2T

þ i
ga
2T

�
þ 1

�
−1

−
�
exp

�
ðβpÞ− ζ þ gω

2T
− i

ga
2T

�
þ 1

�
−1
�

×
T

2ðgω − igaÞ
½ϖνβ − isgnðϖμαϖ̃

μαÞϖ̃νβ� þ c:c:;

ð2:3Þ

where ϖ̃νβ is the tensor dual to ϖνβ, while gω and ga are
scalar quantities that depend on acceleration aμ ¼ uν∂νuμ

and vorticity ωμ ¼ 1
2
ϵμναβuν∂αuβ

gω ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 − ω2Þ2 þ 4ðωaÞ2
q

þ a2 − ω2

�
1=2

;

ga ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 − ω2Þ2 þ 4ðωaÞ2
q

− a2 þ ω2

�
1=2

; ð2:4Þ

where a2 ¼ aμaμ, ω2 ¼ ωμω
μ and ðωaÞ ¼ ωμaμ.

Substituting (2.3) into (2.2), we obtain

hj5μi ¼
ωμ þ isgnðωaÞaμ

2ðgω − igaÞ
Z

d3p
ð2πÞ3

× fnFðEp − μ − gω=2þ iga=2Þ
− nFðEp − μþ gω=2iga=2Þ
þ nFðEp þ μ − gω=2þ iga=2Þ
− nFðEp þ μþ gω=2 − iga=2Þg þ c:c:; ð2:5Þ

which is another form of Eq. (4.6) from [15]. Here nFðEÞ ¼
ðeE=T þ 1Þ−1 is the Fermi-Dirac distribution.
It is useful to consider a particular case by going into

the comoving reference system, in which aμ ¼ ð0; aÞ and
ωμ ¼ ð0;ΩÞ, and assuming that Ωka, that is, the accel-
eration directed along the rotation axis. Then a2 ¼ −jaj2,
ω2 ¼ −Ω2 and ðωaÞ2 ¼ Ω2jaj2, which leads to gω ¼ Ω,
ga ¼ jaj. Then (2.5) leads to

hj5i ¼ 1

2

Z
d3p
ð2πÞ3

�
nF

�
Ep − μ −

Ω
2
þ i

jaj
2

�

− nF

�
Ep − μþΩ

2
þ i

jaj
2

�

þ nF

�
Ep þ μ −

Ω
2
þ i

jaj
2

�

− nF

�
Ep þ μþ Ω

2
þ i

jaj
2

�
þ c:c:

�
eΩ; ð2:6Þ

where eΩ ¼ Ω
Ω is the unit vector in the direction of the

angular velocity.
Equation (2.6) demonstrates that Ω and jaj come in a

certain combination with the chemical potential. Thus, the
effect of rotation and acceleration reduces to a modification
of the chemical potential and introduction of a kind of an
imaginary chemical potential. This conclusion is worthy of
further discussion, but we note that the possibility of
considering angular velocity as a chemical potential has
already been discussed in the literature [27]. It is interesting
to note that, according to Eq. (2.6), the axial current
turns out to be formally a periodic function of acceleration

jaj, that is, it does not change with jaj
2
→ jaj

2
þ 2πTn,

n ¼ 0;�1;�2… Apparently, this behavior is similar to
the Roberge-Weiss periodicity existing in theories with an
imaginary chemical potential, where the partition function
also turns out to be periodic with respect to the imaginary
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chemical potential [28,29] (without obvious relation of the
period to the phase transition, as boost appears instead of
particle number). It should be also noted that for jaj > 2πT
we go beyond the allowed acceleration values, as follows
from [17,18], as well as the analysis given below.
In the limiting case of massless fermions, m ¼ 0, the

integrals in (2.5) can be found analytically and expressed in
terms of polylogarithms in the sameway as was done in [15].
Using the following property of the polylogarithms [30]

Li3ð−eaþibÞ − Li3ð−e−a−ibÞ

¼ −
1

6

�
aþ 2πi

�
b
2π

−
	
b
2π

þ sgnðbÞ
2


��
3

−
π2

6

�
aþ 2πi

�
b
2π

−
	
b
2π

þ sgnðbÞ
2


��
; ð2:7Þ

we obtain

hj5μi ¼
�
1

6

�
T2 þ a2 − ω2

4π2

�
þ μ2

2π2

�
ωμ þ

1

12π2
ðωaÞaμ þ ωμ

�
−

4πTga
g2a þ g2ω

�
T2

6
þ μ2

2π2
−

g2a
8π2

−
g2ω
8π2

�	
ga
4πT

þ 1

2




− 2T2

	
ga
4πT

þ 1

2



2

þ 8πT3ga
3ðg2a þ g2ωÞ

	
ga
4πT

þ 1

2



3
�
þ aμsgnðωaÞ

�
−

4πTgω
g2a þ g2ω

�
T2

6
þ μ2

2π2
þ g2a
8π2

þ g2ω
8π2

�	
ga
4πT

þ 1

2




þ 8πT3gω
3ðg2a þ g2ωÞ

	
ga
4πT

þ 1

2



3
�
; ð2:8Þ

where b·c is the integer part. Note that in [15] the particular
case j b

2π þ sgnðbÞ
2

j < 1 was considered under which for-
mula (2.7) leads to the Eq. (4.9) from [15], which means
that resulting formula Eq. (4.11) from [15] corresponds to
the case T > ga

2π. Due to contributions from b ga
4πT þ 1

2
c for

T < T̃U, where T̃U is

T̃U ¼ ga
2π

; ð2:9Þ

the formula (2.8) has discontinuities or cusps. More
precisely, according to (2.8) the axial current (its projec-
tions, modulus and derivatives) have discontinuities (or
cusps) at ga

2
¼ ð2nþ 1ÞπT, n ¼ 0; 1; 2… These disconti-

nuities look like Roberge-Weiss phase transitions found in
theories with imaginary chemical potential, which also
repeat periodically [28,29]. For T > T̃U the formula (2.8)
takes the form of Eq. (4.11) from [15], derived in
approximation T > T̃U

hj5μi ¼
�
1

6

�
T2 þ a2 − ω2

4π2

�
þ μ2

2π2

�
ωμ þ

1

12π2
ðωaÞaμ:

ð2:10Þ

It is interesting to note that in the case of Ωka or Ω ¼ 0

the condition T > T̃U results in T > jaj
2π, that is, the temper-

ature is to be greater than the Unruh temperature TU ¼ jaj
2π.

The appearance of the Unruh temperature in Eq. (2.8) is a
direct consequence of the fact that in (2.5) and (2.6) the
acceleration enters as an imaginary chemical potential. If
both acceleration and angular velocity are nonzero and
directed arbitrarily, the boundary temperature is generalized

to TU → T̃UðΩ; jaj; θÞ, where θ is the angle between a and
Ω in the comoving reference system.
According to [17], the Unruh temperature is the mini-

mum temperature that an accelerated medium can have.
Apparently, this fact is the reason why the behavior of the
axial current in Eq. (2.8) changes qualitatively at T < T̃U.
A similar result on the existence of a boundary temperature
proportional to the Unruh temperature on the basis of the
sameWigner function [16] was recently obtained in [18] by
considering the energy-momentum tensor and the condition
of positivity of the energy density. We note, however, that
in [18] the boundary temperature is twice that of the Unruh
temperature.
In [17] the boundary of possible values of acceleration

and temperature for medium without rotation has the form

of a straight line TU ¼ jaj
2π in the plane jaj; T: this boundary

is shown on the left side of the Fig. 1 with a blue dot-dashed
line. The region below this line, following [17], is for-
bidden. Using the condition that the axial current remains a
continuous smooth function of temperature and acceler-
ation, as a criterion for determining possible values, we can
study how the boundary of allowed values moves as the
angular velocity modulusΩ and angle between acceleration
and angular velocity θ change. This condition is equivalent
to the requirement T > T̃U, Eq. (2.9), as was shown before.
In this case, at Ωka, the result [17] is reproduced and the

boundary is given by the line TU ¼ jaj
2π corresponding to

the blue dot-dashed line on the left side of Fig. 1. For
perpendicular Ω⊥a, the boundary shifts and becomes
according to Eq. (2.9)

T̃U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 − Ω2

p
2π

; ð2:11Þ
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for jaj > Ω and 0 for jaj < Ω, which corresponds to the red
solid line on the left side of Fig. 1. For intermediate values
of the angle θ, the boundary is between the boundaries for
Ω⊥a and Ωka, which corresponds to the black dashed line
on the Fig. 1.
Note that (2.10) in the first order in ωμ leads to the

standard formula for CVE [11,15], while ð− ω2

24π2
Þωμ is

consistent with the results of [1,2] (see also [31] for
recent progress in the geometric approach, developed
in [1]).

III. EFFECTS OF FINITE MASS

There exist various approaches to calculating the
polarization of baryons in heavy ion collisions. In
particular, in the [19–22] the axial charge of quarks,
acquired by them due to the CVE, is considered, and
this charge is associated with the polarization of
baryons. On the other hand, in [23–25], the polarization
is calculated on the basis of the Wigner function for a
medium consisting of baryons, assuming equilibrium of
the spin degrees of freedom.
Note that the CVE, which is essential for calculating

the polarization in [19–22], arises in the approach of
Refs. [23–25] as well. However, in [19–22], quarks
are considered as carriers of the axial charge, while in
[23–25] they are baryons, that is, particles with differ-
ent masses. In view of this, it is useful to consider the
effects of a finite mass in an axial current.
The most characteristic features in the behavior of the

axial current arise at T ¼ 0. For simplicity, we also assume
that aμ ¼ 0. Going into the comoving reference frame, we
obtain ga ¼ 0 and gω ¼ Ω in (2.4). The integrals in (2.6)
can be evaluated analytically, and we get a simple formula

hj5i ¼ 1

6π2

�
θ

�
μþ Ω

2
−m

���
μþΩ

2

�
2

−m2

�
3=2

− θ

�
μ −

Ω
2
−m

���
μ −

Ω
2

�
2

−m2

�
3=2

þ θ

�
−μþΩ

2
−m

���
μ −

Ω
2

�
2

−m2

�
3=2

− θ

�
−μ −

Ω
2
−m

���
μþ Ω

2

�
2

−m2

�
3=2

�
eΩ;

ð3:1Þ

where θ is the Heaviside function. From (3.1) it follows, in
particular, that for Ω < 2ðm − jμjÞ the axial current is zero.
This is in accord with the absence of chemical-potential
effect if μ is smaller than the corresponding physical
masses. Moreover, we find out that in case of a rotating
medium, this is true for the “effective” chemical potential
incorporating the angular velocity.
The behavior of j5 ¼ jhj5ij, see Eq. (3.1), as a function of

Ω and μ is shown in Fig. 1 on the right. For Ω ≫ m and
μ ≫ m the axial current asymptotically tends to its value

at zero mass Eq. (2.10), j5ðm ¼ 0Þ ¼ ð Ω2

24π2
þ μ2

2π2
ÞΩ, as it

should be. In general, due to the effects associated with the
mass, j5 in the massive case is always smaller than in the
massless limit, as can be seen from Fig. 1 on the right.

IV. BEYOND THE APPROXIMATION
MADE: DISCUSSION

Equations (2.6) and (2.8) exhibit features which are
challenging to explain theoretically on general grounds.
Moreover, the results are obtained in a certain approxima-
tion which utilizes exclusively various moments from the

FIG. 1. Left: curves corresponding to the appearance of instability in axial current on the plane jaj; T. The dot-dashed blue line
corresponds to the angles θ ¼ 0; π (also Ω ¼ 0) between the acceleration and the angular velocity, solid red—to the angle θ ¼ π=2, the
dashed black—to the angles 0 < θ < π=2 (and also π=2 < θ < π). The area below these curves, presumably, is the forbidden region of
the values of acceleration and temperature. Right: axial current (3.1), as a function of the chemical potential and angular velocity at zero
temperature. The value of j5 ¼ jhj5ij is normalized to its value (2.10) at zero mass.
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Fermi distribution valid for noninteracting Fermi gas.
And a crucial question is whether the results survive with
account of interaction. At this section, we comments briefly
on these questions, emphasizing the possibility of validity
of the results, at least qualitatively, beyond the approxi-
mation of noninteracting fermions. A full answer would
require efforts which go beyond the scope of the
present paper.
The first question is, how the imaginary acceleration, ijaj

arises in Eq. (2.6) at all. Indeed, originally, see [17] and
references therein, the acceleration jaj enters the density
operator ρ̂ as a real number. For example, in the absence
of rotation,

ρ̂ ¼ ð1=ZÞ expð−Ĥ=T0 þ jaj0K̂z=T0Þ; ð4:1Þ

where Ĥ is the Hamiltonian and K̂z is the generator of a
Lorentz boost along the z-axis (z-axis is directed along
acceleration, for the connection of T0, jaj0 with T; jaj look
[17]). In this sense, the Eq. (4.1) looks as a straightforward
generalization of the standard textbook equilibrium density
operator.
However, when applied to a spinor field in an irreducible

representations the boost operator results in a complex
number, see, e.g., [32]. Indeed, the angular momentum Ĵ
and boost generator K̂ are combined into

N̂ ¼ Ĵ þ iK̂; N̂† ¼ Ĵ − iK̂; ð4:2Þ

where the corresponding eigenvalues N ≠ 0, N† ¼ 0 for
left-handed spinors and N† ≠ 0, N ¼ 0 for right-handed
spinors. This leads to opposite signs of the (imaginary)
acceleration for left- and right-handed fermions. Thus,
emergence of the imaginary acceleration in Eq. (2.6) is
rooted in general rules of constructing Lorentz-invariant
Lagrangian of fermionic fields and, apparently, is not
specific for the approximation of free fields.
Turn now to the question of validity of the results obtained

beyond the approximation of noninteracting fermions.
Consider first the axial current hj5i in Eq. (2.10) for
aμ ¼ 0, evaluated in the scheme considered in the leading
approximation [11,15]:

hj5i ¼
�
μ2

2π2
þ T2

6
þ Ω2

24π2

�
Ω: ð4:3Þ

In fact, the result (4.3) goes back to calculations of
Vilenkin [1] and refers to the current of noninteracting
relativistic fermions in a rotating frame at finite chemical
potential μ and temperature T. On the other hand, as it was
clarified rather recently (see for references, e.g., the volume
[4]), Eq. (4.3) is valid as well in case of strongly interacting
media, in the hydrodynamic approximation. This “miracu-
lous” coincidence of the results in the noninteracting and
strong-coupling cases can be demonstrated in two steps

(for a recent review see [33]). First, moments from the
Fermi distribution turn to capture the effect of the chiral
anomaly and, second, the anomaly, being topological in
nature, does not receive contributions from higher loops.
The derivation is easiest to outline in case of the μ2 term

in Eq. (4.3), see, e.g., [34]. Indeed, it is straightforward to
argue, see, e.g., [9], that in the hydrodynamic approxima-
tion the standard electromagnetic potential Aα in vertices is
replaced by the combination:

eAα → eAα þ μuα:

As a result of this substitution the μ2 term in Eq. (4.3) is
generated as an extension of the standard triangle anoma-
lous graph. Generalized Adler-Bardeen theorem guarantees
the absence of higher-order corrections.
An independent, anomaly-related evaluation of the T2−

and Ω2− terms in Eq. (4.3) requires consideration of
noninertial frames, or nontrivial gravitational fields and
is much more involved. The point is that consideration of
motion with permanent acceleration introduces space-time
with a boundary, or horizon. The crucial observation [35]
is that while the gravitational chiral anomaly [36] is
negligible in the bulk, it turns to be crucial on the edge,
or on the horizon. Effectively, the anomaly becomes two-
dimensional and pumps chiral fermions into the bulk.
Inside the bulk the flow of particles is conserved. This
mechanism represents an alternative (or dual) description of
the Hawking radiation of the chiral fermions. If one starts
with field theory at T ¼ 0 the axial current, supported by
the gravitational chiral anomaly coincides with (4.3)
provided that

T2 → T2
H; ð4:4Þ

where TH is the temperature of the Hawking radiation in
case of the rotating black hole.
In this sense, the expression (4.3) which is formally

derived in the no-interaction approximation [1] reproduces,
upon the substitution (4.4) the Hawking radiation of chiral
fermions which is a general dynamic phenomenon man-
ifested in interacting case as well.
Moreover, the phenomenological analysis of Sec. II

indicates clearly instability of the axial current if the
temperature of the medium T is chosen below the
Unruh, or Hawking temperature. In the approximation
considered, the instability is entirely due to the imaginary
acceleration. On the other hand, the instability is nothing
else but another manifestation of the Unruh, or Hawking
radiation. This chain of arguments supports phenomeno-
logical introduction of the imaginary acceleration in case
of chiral fermions.
In any case the term with μ2 remains stable, and

since the effects observed look like an addition to the
chemical potential (like emergence of a covariant
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derivative), it is likely that they will also remain in the
theory with interaction.
The coefficient 1=2 in front of Ω in this “modified

chemical potential”, μþΩ=2 can be interpreted as a
consequence of the equivalence principle according to
which spin and angular momentum precess with the same
angular velocity [37]. In other words, the spin precession is
twice slower than in the case of magnetic field. This factor
of 1=2, in turn, destroys the balance producing a zero mode
in the electromagnetic case. There is no zero mode in the
gravitomagnetic field and, as a result, the axial anomaly in
gravitational field is proportional to the curvature rather
than connection.
Note that the fundamental Uð1Þ chiral anomaly is

manifested phenomenologically in two different types of
instability of chiral media. First, in presence of external
electric, E ≠ 0 and magnetic, B ≠ 0, fields such thatR
d3xðE · BÞ ≠ 0 chiral imbalance of fermions is devel-

oped. In other words, there is transition

ðhelicalmagnetic fieldÞ → ðchiral imbalanceÞ:

However, the inverse process

ðchiral imbalanceÞ → ðhelicalmagnetic fieldÞ;

is also possible, for recent analysis and further references
see, e.g., [38]. In the gravitational case, we discussed so far
production of chiral imbalance stimulated by an external
gravitational field. According to [35] the Hawking radiation
of chiral fermions can be considered as a manifestation of
the gravitational chiral anomaly. A reversed process, that is
a decay of the chiral imbalance into a gravitational field
would be most amusing to observe. In perspective, such
studies might be made possible by progress in lattice
simulations.

V. CONCLUSIONS

Basing on the ansatz for the Wigner function proposed in
[16], we obtained simple formulas for the axial current in
the general case of massive fermions, see Eqs. (2.5) and
(2.6). In these formulas, the angular velocity and

acceleration enter the Fermi-Dirac distribution in combi-
nation with the chemical potential. The zero-mass limit
(2.8), (2.10), which is consistent in the linear approxima-
tion with the standard formula for the CVE, was studied. It
is shown that in this case the axial current has a series of
discontinuities and cusps at a temperature lower than the
Unruh temperature, which look like Roberge-Weiss phase
transitions in theories with imaginary chemical potential. In
more general case of an arbitrary mutual orientation of the
acceleration and angular velocity, the temperature (2.9)
appears as a boundary, instead of the Unruh temperature
and the boundary of allowed values of acceleration and
temperature shifts as is shown in Fig. 1 on the left,
which can be considered as a possible generalisation of
the prediction for this boundary in [17] for accelerated
medium without rotation.
Dependence of the axial current on the mass of con-

stituents implied by Eq. (2.5) was investigated. In the limit
T ¼ aμ ¼ 0, (2.5) reduces to (3.1), and the axial current, as
a function of the angular velocity and chemical potential,
vanishes in the two-dimensional region Ω < 2ðm − jμjÞ, as
is shown in Fig. 1 on the right.
The obtained results are based on the assumption that the

fermion interaction is weak, but, given the connection
between the effects studied and the quantum anomalies and
also the Unruh effect, as well as the fact of conservation of
the chiral effects in the hydrodynamic approximation, we
can assume that at least in part they can be transferred to
strong-coupling case.
One can see, that the Wigner-function approach in the

zero-mass limit reproduces, after the integration over
momenta, the anomaly induced contribution to the axial
current, establishing the relation between different
approaches to polarization. One can even say, that the
thermodynamical approach contains the “hidden anomaly."
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