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We will first present the dynamics of cooling flows for a homogeneous model by solving the
corresponding Navier-Stokes equations for a spherical symmetric steady inflow. As a result we
get the velocity profiles. The presence of a cooling flow modifies the electronic gas pressure on
the lines of sight through the central cluster regions. As a second point, we outline a modified
Kompaneets equation which takes into account the additional effect of the accelerated electron
media in the cooling flow inside the cluster frame. This effect is different from the kinematic
SZ-effect. We find a slight change in the spectral form of the thermal SZ-effect.

1 Introduction

We briefly recall the standard thermal SZ-effect. 12,11,2 The inverse Compton scattering of the
CMB photons off the hot intracluster plasma (electrons) is described by the Kompaneets 7

equation, which gives the change in time of the CMB photon occupation number n:
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where x = hν
kT is the dimensionless frequency, Te the electron temperature, T the CMB temper-

ature, ne the electron density and σT the Thomson scattering cross section.
Due to only weak scattering, the photon occupation number n is still of Planckian form. Inte-
gration along the line of sight over the cluster dimension, assuming ∂I
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c

∂I
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field intensity I is related to n through I = i0 x3n, i0 = 2(kT )3
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, gives the frequency dependent

intensity change due to the scattering off the electrons:
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where the integral is the Comptonization parameter y describing the cluster properties and the
function g(x) defines the spectral shape of the thermal SZ-effect for Te � T :
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)
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In some clusters there is evidence for the existence of cooling flows 1,3,4,5 in the central
regions. The aim of this note is to examine their influence on the thermal SZ-effect. Indeed,
one would expect a contribution due to the moving electron media in the cooling flow. As it is
pointed out in section 3, this effect has clearly to be distinguished from the kinematic SZ-effect.



This note is organised as follows: In section 2 we briefly outline the dynamics of a simple
homogeneous cooling flow model. In section 3 we describe the modification to the standard
Kompaneets equation (1) due to the inclusion of a cooling flow and in section 4 we present our
preliminary results.

2 A homogeneous cooling flow model

We present a simple steady homogeneous cooling flow model to study its dynamics. In order
to quantify the influence on the SZ-effect we shall mainly be interested in the velocity profiles.
The cluster is expected to be in a relaxed state, so that hydrostatic equilibrium allows us to use
an isothermal β- model. For spherical symmetry the Euler equations read:

4πr2ρ(r)v(r) = ṁ = const (4)
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where M(r) is the cluster mass inside the radius r, v(r) the velocity of the inward directed
cooling flow and ṁ the mass deposition rate which enters as a parameter in our model. H(θ) is
an analytical approximation to the optically thin cooling function 10, which describes the overall
energy loss.
θ is the square of the isothermal sound speed cs which is introduced by the ideal gas law as
follows:
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where µ is the mean molecular weight and mH the hydrogen mass.
By eliminating the density ρ in the equations (4)-(6), we end up with the following system of
two ordinary coupled differential equations: 8
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Both equations have singularities at the sonic radius rs, where 5θ(rs) = 3v2(rs). Fig.1 illustrates
the dynamics 6 for a mass deposition rate ṁ = 100M�. The velocity v(r) and the isothermal
sound speed cs(r) are plotted as a function of the radius r.

3 SZ-effect from a modified Kompaneets equation with cooling flow contribution

It is important to note that the Kompaneets equation (1) describes a static scatterer, assuming
that in the average the electrons are macroscopically at rest. This is no longer true for the
electrons in an accelerated cooling flow, where the macroscopic velocity v(r) �= 0 from equation
(8) describes the dynamics.
The Kompaneets equation (1) has to be modified in such a way, that the (macroscopic) bulk
velocity of the moving electron media is explicitly taken into account. Psaltis et al. (1997)
gave a very detailed analysis of Compton scattering by static and moving media. They made
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Figure 1: The velocity v(r) and the isothermal sound speed cs(r) of a cooling flow with ṁ = 100 M�, plotted as
a function of the radius r.

a careful distinction between the electron rest frame, the fluid frame (comoving with the fluid)
and the system frame. Moreover, they showed that it is necessary to use the correct relativistic
differential scattering cross section in order to obtain a photon kinetic equation that is correct
to first order in ε/me, Te/me and V , where ε is the photon energy, Te and me are the electron
temperature and rest mass, and V is the electron bulk velocity in units of the speed of light
measured in the system frame. Moreover, they avoided the use of the diffusion approximation
because this may lead to an inaccuracy.
Starting from the Boltzmann equation in the system frame, introducing the proper Lorentz
transformations, expanding to the appropriate orders and assuming that the velocity distribution
in the fluid frame is a relativistic Maxwellian, they end up with the zeroth moment of the
radiative transfer equation with emission and absorption included. 9

If the radiation field (CMB) is isotropic in the system frame and if there is no bulk velocity of
the electrons, no absorption and emission, their equation reduces to:
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where the first two terms on the right side describe the effect of systematic down-scattering and
up-scattering of the photons by electrons. The third term describes the diffusion in energy pro-
duced by the thermal motion of the electrons and the last one the induced Compton scattering.
Equation (10) reduces to the Kompaneets equation (1) by neglecting higher order terms.

Allowing for a bulk velocity V ≡ v/c the equation becomes: 9
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where we neglected the term of induced Compton scattering from equation (10) and kept only



first order terms in ε to describe the effect of the bulk velocity.
Equation (11) shows that if the radiation field is isotropic in the system frame, Comptonization
of the bulk motion of the electrons inside the cluster is described entirely by second order terms
in V . All first order terms in V vanish identically. The effect is clearly different from the kine-
matic SZ-effect, where the cluster as a whole moves through the CMB radiation.

We express the cooling flow (CF) contribution to the SZ-effect as follows:
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where the first term on the right hand side is given by equation (1) and the second term is due
to the moving electron media.
By changing to the variables used in equation (1) we find from equation (11) the cooling flow
contribution:
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Integrating over the cluster cooling flow region (CF) gives:
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Assuming a Planckian photon field for n, we find:
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where we introduced again the macroscopic electron bulk velocity v(r) from equation (8).

In order to simplify the computation, we assume that the velocity profiles for v(r) from fig.1
can be analytically expressed as follows:

v(r) =
a

r
, (16)

where the parameter a is given by a = rs v(rs). This parameter is essentially determined by the
initial value conditions for equation (8), which depend on the input values of v(rcool), cs(rcool)
and ṁ, rcool being the radius of the cooling flow region.
Moreover, to get a first idea of the cooling flow contribution from equation (15) we allow ne

to be constant in the cooling flow region. We thus end up with the evaluation of the following
integral:

2a2

rcool∫
rs

1
r2

dr, (17)

where we limit the cooling flow region from rcool to the sonic radius rs along the line of sight
through the cluster centre. Finally, assuming rcool � rs, we get the cooling flow contribution to
the SZ-effect from equation (15):

∆I(x)CF = i0 gCF (x)
2
3

neσT

c2
rsv

2(rs), (18)

where gCF (x) denotes the term in square brackets in equation (15).



4 Preliminary results

For a rough estimate of the effect produced by equation (15), we allow ne to be constant
in the cooling flow region. The parameters rs and v(rs) in equation (18) depend on the mass
deposition rate ṁ and the initial value conditions in equation (8) and (9). We choose rs = 10 kpc
and v(rs) = 3000 km/s. In fig. 2 we compare the thermal SZ-effect from equation (2) with the
cooling flow contribution from equation (18) for two different values of ne. Adding up the cooling
flow contribution as outlined in equation (12), yields the corresponding fig. 3.
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Figure 2: The thermal SZ-effect compared with the CF-contribution. CF contribution 1: ne = 104/m3, CF
contribution 2: ne = 107/m3
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Figure 3: The total SZ-effect from equation (12) compared with the thermal SZ-effect for ne = 107/m3. The
Comptonization parameter is y = 10−4.



5 Summary and Outlook

We showed that the Kompaneets equation (1) can be modified to include the effect of a simple
homogeneous cooling flow. This effect is different from the kinematic SZ-effect. The cooling
flow contribution strongly depends on the specific dynamics of the cooling flow and its central
cluster density.
Clumps on the line of sight or high density central region from the accumulated mass might give
rise to an observable effect in the future. Moreover, higher infall velocities as for instance in a
merging process might also affect the crossover frequency and lead to a measurable effect.
A more detailed analysis will be presented elsewhere.
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