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The phenomena of diffractive interactions are briefly introduced. Basic
ideas for theoretical descriptions are discussed and recent results on the ex-
perimental side with interpretations from the theoretical side are presented.
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1. Introduction

The name diffraction in high-energy particle physics originates from the
analogy of the concepts in optics with the description of nuclear high-energy
scattering physics introduced in the Fifties by Landau, Pomeranchuk, Fein-
berg et al. [1]. In the Born approximation the same equation for the elastic
scattering amplitude can be derived from the scattering of a plane wave
passing through and around an absorbing disk, resulting in a “diffraction”
pattern for hadron–hadron scattering. In the Good and Walker picture [2]
diffractively-produced systems of dissociated particles were predicted to have
the same quantum numbers as the initial beam particle. This means that
only the quantum numbers of the vacuum are exchanged in diffractive in-
teractions. Taking into account possible dissociation of the beam particles,
different classes of diffractive events can be distinguished in hadron–hadron
scattering: elastic scattering with both beam particles staying intact (Fig. 1),
single diffractive dissociation (SD), in which one beam particle dissociates
(Fig. 12), double diffractive dissociation (DD) in which both beam particles
dissociate and double pomeron exchange (DPE) (Fig. 12).

In the 1960s, one of the mysteries of strong interaction physics was the
enormous proliferation of strong interacting particles or hadrons, which in
addition, exhibit a striking property: the more massive the particles, the
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Fig. 1. Elastic scattering with the exchange of a Regge trajectory α(t) (left).
Schematic Chew–Frautschi plot [3] and the parameterization of the most important
Regge trajectories: pion (π), reggeon (IR) and pomeron (IP ) (right).

higher their spin with a linear correlation between the square of the par-
ticle mass and its spin (Fig. 1). In Regge Theory [4] this correlation is
described in the complex angular momentum plane by linear Regge trajecto-
ries: α(t) = α(0) + α′ · t, which are exchanged between the beam particles as
illustrated in the elastic scattering diagram in Fig. 1. In Regge phenomenol-
ogy diffraction corresponds to the exchange of the pomeron trajectory, which
has the quantum numbers of the vacuum. In this framework the total cross
section dependence on the center-of-mass energy,

√
s, is determined by the

intercept of the trajectory, ∼ sα(0)−1, and the elastic and diffractive cross
sections are expected to increase with s as s2(α(t)−1), such that the ratio to
the total cross section rises with s.

In order to describe the rising behavior of the total cross section the
pomeron trajectory was postulated with an intercept of αIP (0) ≈ 1. In con-
trast to all other trajectories no particle has been identified on the pomeron
trajectory. As the pomeron trajectory has the largest intercept of all Regge
trajectories, pomeron trajectory exchanges dominate at high energies and its
parameters have been derived from fits to the data of soft diffractive interac-
tions, for example in [5–7]. In Fig. 2 it can be seen that complications arise
when applying these parameterizations to even higher energies, where the
predictions overestimate considerably the measurements [8]. Different ap-
proaches have been developed, for instance by taking into account multiple-
pomeron trajectory exchanges in the eikonal approximation [9, 10] or by
renormalizing the diffractive cross section parameterization such that the
probability for a diffractive interaction to occur does not exceed unity [8,22].
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Fig. 2. Measured SD cross section in pp and p̄p scattering as a function of
√

s

compared to standard (dashed) and renormalized [8] predictions from Regge phe-
nomenology.

1.1. Conventions in diffractive scattering

The study of hadronic structures is conveniently performed in deep in-
elastic scattering (DIS) ep collisions. In Fig. 3 the relevant four vectors for
the calculation of the kinematic variables are indicated for diffractive DIS.
The virtuality of the photon, Q2, reflects the resolving power for probing
the structure in the scattering process. The variable x, the Bjorken scaling
variable, denotes in the Quark Parton model the longitudinal momentum
fraction of the scattered parton with respect to the proton. The longitu-
dinal momentum fraction of the proton carried by the diffractive exchange
is usually named xIP , taken from the notion that a pomeron, as a virtual
particle on the pomeron trajectory, is exchanged. The variable β is defined
relative to the diffractive exchange and gives in the Quark Parton model the
longitudinal momentum fraction of the scattered parton relative to xIP . The
squared four-momentum transfer at the proton vertex is given by the vari-
able t. Traditionally the quantity xIP is referred to as ξ in hadron–hadron
scattering.
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From the measured inclusive DIS cross section the proton structure func-

tion can be unfolded via: d2σ
dxdQ2 = 2πα2

xQ4 [1 + (1 − y)2]σr(x,Q2) , where σr

is the reduced cross section and is identical to F2 in the kinematic regions

where FL can be neglected: σr(x,Q2) = F2(x,Q2)− y2

1+(1−y)2
FL(x,Q2) . The

total γ∗p cross section is related to F2 by: σtot(γ
∗p) = 4π2α

Q2(1−x)
F2(x,Q2) .

For diffractive interactions two more kinematic variables are needed to
describe the full kinematics: xIP (= ξ) and t. If t cannot be measured be-
cause of the selection method applied, the diffractive contribution is inte-
grated over t and the diffractive structure function of the proton is given by:

σ
D(3)
r (xIP , β,Q2) = F

D(3)
2 (xIP , β,Q2) − y2

1+(1−y)2 F
D(3)
L (xIP , β,Q2) .

One possible factorization ansatz for the complex calculations of physics
processes in the framework of QCD is the factorization of the cross sec-
tion into parton density functions and the cross section of the hard sub-
process. The QCD factorization theorem is expected to hold also in diffrac-
tive DIS [11–13] and conditional diffractive parton density functions can be
defined, which should be universal if probed by different processes at the
same xIP and t. For photoproduction (PHP) and p̄p collisions this QCD
factorization is presumed to be violated [11]. An additional factorization as-

sumption, Regge factorization, decomposes F
D(3)
2 into a universal pomeron

flux fIP/p and a universal pomeron structure function F IP
2 :

F
D(3)
2 (xIP , β,Q2) ∼ fIP/p(xIP ) F IP

2 (β,Q2) with fIP/p(xIP ) ∼ 1

(xIP )2αIP (t)−1
.

The pomeron flux comprises the soft part of the diffractive interaction and
depends only on the diffractive kinematic variables xIP and t, while the
pomeron structure function is only a function of the quantities β and Q2.
Both factorization ansatzes can be tested by experiments in both DIS and
PHP in ep collisions and with different processes in p̄p scattering.

(p) (p’)

(k)

(k’) k (k′)= (scattered) e momentum,
p (p′)= (scattered) p momentum,
s = (k + p)2 ,
Q2 = −q2 = −(k − k′)2 ,
W 2 = (q + p)2 ,
Mx = mass of system X,
ν = q·p

mp

, y = q·p
k·p

,

x = Q2

2p·q
, xIP = q·(p−p′)

q·p
= ξ,

β = Q2

q·(p−p′) , t = (p − p′)2 .

Fig. 3. Kinematic variables at HERA.



Hard Diffraction at HERA and the Tevatron 603

Several models for the description of diffractive interactions are avail-
able, only some of them are outlined here. One of the most commonly used
is the Ingelman–Schlein model [14] which assumes Regge factorization by
parameterizing the pomeron flux with cross section dependencies as mea-
sured in soft diffractive hadron–hadron scattering. The pomeron structure
function is derived by QCD fits based on the DGLAP evolution equations.
This ansatz is also known as resolved IP model (see details in [15]).

Another set of models, the color dipole models, employ the fluctuations
of the photon into a qq̄ or qq̄g color dipole, scattering off the proton via two-
gluon exchange (Fig. 4). The cross section for the dipole-proton interaction
can be derived from inclusive DIS measurements. Including unitarization
effects through saturation (see [17] for more details) leads to a good descrip-
tion of the data [19]. In this framework diffractive exchanges possess no
universal nature, but depend on the type of process.

Simultaneous QCD fits to F2 and F
D(3)
2 have been used in a model [16],

in which the diffractive exchange is represented by the exchange of two
gluons or two sea quarks. By relating the pomeron flux back to the proton
parton density functions of gluons and sea quarks at the relevant scale for
the scattering, these fits do not assume Regge factorization.

Fig. 4. Schematic drawing of diffractive interactions in color dipole models in lowest
order.

Soft color interactions between the partons, as implemented in Monte
Carlo simulations [20], have also been successful in the reproduction of
the measurements. The diffractive interaction (or an effective pomeron ex-
change) is in this case not an intrinsic part of the proton, but a dynamical
effect of the interaction. The framework of parton re-scattering processes
provide a theoretical basis [21] for the soft color interaction model.

A phenomenological approach is taken in the Deep Sea model [22], in
which the asymptotic dependence of the proton parton density functions
for gluons and quarks in the sea region at small x are used at low Q2 to
derive the essential parameters for the soft diffraction dependencies and at
higher Q2 to predict relations for hard diffraction, for instance between F2

and F
D(3)
2 which can be compared to measurements [22].
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2. Measurements at HERA

Diffractive events can be selected at HERA by different methods: either
by directly measuring the leading proton [25,26] or by requiring the presence
of a rapidity gap [24], which is a natural consequence of the kinematics of
diffractive events. The MX method [23] can also be employed to determine
the diffractive contribution on a statistical basis. The result of the three
different methods differ by the contribution from proton dissociation and
non-diffractive interactions like, for example, IR exchanges.

The ratio of the diffractive cross section to the total cross section has been
measured in different MX ranges and for various values of Q2 as a function of
W (Fig. 5). The diffractive contribution, as determined by the MX method,
is approximately independent of W , which is in clear contrast to the ex-
pectation from Regge phenomenology as the total cross section is predicted
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to rise as (W 2)αIP (0)−1 and the diffractive contribution as (W 2)2(αIP (t)−1).
The values of αIP (0) were derived separately from each set of measurements
(Fig. 5) and the nearly constancy in the W dependence translates into a fac-
tor of approximately two difference in αIP (0) between the total cross section
measurements and the diffractive cross section. In the framework of Regge
phenomenology, no Q2 dependence is expected for αIP (0). Within the exper-
imental uncertainties of the diffractive measurements the tendency to rise
with Q2 can be approximated by one average value for αIP (0), which turns
out to lie significantly above the αIP (0) value extracted from soft diffrac-
tive hadron–hadron interactions. All these results are indications that the
parameters for a (universal) pomeron trajectory as derived from soft diffrac-
tion measurements cannot be applied directly to hard diffraction as well.
The flat behavior of the ratio σdiff/σtot is built-in, for example, in the dipole
saturation model [19] and the Deep-Sea model [22].

The inclusive diffractive DIS cross section measurements have been used
to unfold the diffractive structure function of the proton and xIP σr is shown
in Fig. 6 for diffractive data selected by requiring a rapidity gap or a lead-
ing proton. The large amount of data and the high precision have been
used to extract diffractive parton density functions assuming Regge factor-
ization with one averaged αdiff

IP (0) determined simultaneously in the QCD
fits to the selected diffractive events (see details in [15]). The line in Fig. 6
demonstrates the good description of the data within the experimental un-
certainties. An equally good description is possible with the color dipole
models, for example the BEKW model [18], which is shown in Fig. 7 [23].

This figure displays xIP F
D(3)
2 as derived from measurements using the MX

method.
The large data sets available up to now have even allowed the

observation of charged current events with a rapidity gap at high Q2

(> 200 GeV2) [33, 34]. In total nine events were identified and the data
distributions have been found to be consistent with expectations obtained
by MC simulations employing diffractive parton density functions [33]. The
extracted diffractive parton density functions are also used to predict cross
sections for the production of some hadronic final states (see details in [15]).
As expected from QCD factorization, diffractive dijet and D∗ production
in DIS can be well described by these diffractive parton density functions.
In diffractive PHP a factor of approximately two discrepancy is observed,
not only for the resolved photon contribution, but also astonishingly for the
direct photon contribution. It is also noteworthy that in the related case
of leading baryon production factorization violation is visible in inclusive
measurements of the transition from PHP to the DIS regime (Fig. 9) [28,30]
and in associated dijet production [29].
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3. Measurements at the Tevatron

Tests of QCD factorization can be performed at the Tevatron by com-
paring different processes such as dijet production to J/Ψ production [35] or
dijet production at different center-of-mass energies [36] or in SD and DPE
interactions [37]. A comparison between HERA and Tevatron data can be
carried out by predicting diffractive dijet production at the Tevatron using
diffractive parton densities derived from HERA measurements. At leading
order an effective structure function for dijet production can be defined as
Fjj ∼ x[g(x) + 4/9

∑
(q(x) + q̄(x)], which can be unfolded from the ratio of

diffractive to non-diffractive dijet production RSD
ND(x) ∼ FD

jj /Fjj by multi-
plying it with Fjj as calculated from parameterizations of the proton parton
density functions. The comparison with the expectations from the diffractive
parton densities determined by the H1 Collaboration shows a discrepancy
of the order of a factor of 10 (Fig. 10, left) [27, 38]. Using earlier published
ZEUS measurements for the determination of the diffractive parton densities
via QCD fits, a smaller discrepancy is observed [39], which is confirmed by
QCD fits to the recently published ZEUS data [40].

While the H1 measurements were performed for xIP < 0.05, the CDF
data were taken in the range of 0.035 < xIP < 0.095, suggesting a substantial
contribution from IR or even π exchanges in the data sample. A way to
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F∼
D JJ

 (
β)

H1 2002 σr
D QCD Fit (prel.)

IR only

Fig. 10. Left: Diffractive structure function, FD
jj , for dijet production as mea-

sured by the CDF Collaboration in p̄p collisions [38]. The curves represent predic-
tions for FD

jj as derived from published and preliminary diffractive parton densities
[27, 41]. The contribution from additional Reggeon exchanges from the prelimi-
nary parameterization is also indicated. Right: Power m from a power law fit to
the xIP (= ξ) dependence of the diffractive structure function FD(3)(xIP , β, Q2)|β ∼
1/(xIP )m derived from the CDF dijet data and from HERA DIS data.
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test the influence of possible IR or π exchanges in the CDF data is given
by the analysis of the xIP (= ξ) dependence, which was performed with a
power law fit ∼ 1/(xIP )m to the data (Fig. 10, right). According to Regge
phenomenology the power m would be expected to be mIP ≈ 1.1 for pomeron
exchanges, mIR ≈ −0.2 for reggeon exchanges and mπ ≈ −1.2 for pion
exchanges. The CDF dijet data reveal only positive values for m close to
mIP , proving the dominance of diffractive (IP ) exchanges in the selected
events. In addition the xIP (= ξ) dependence analyzed as a function of β
exhibits the same behavior as extracted from diffractive DIS data selected
with the three different selection methods at HERA [41–43].

The available dijet data sample has grown considerably with the arrival of
data from Run II [44]. The left plot in Fig. 11 demonstrates the independence
of the ratio on xIP (= ξ), which means that the diffractive structure function
FD

jj stays the same when going from the low xIP regime in which IP exchanges
dominate to high xIP values where strong contributions from IR or even π
exchanges would be expected. The independence of the ratio on Q2 as given
by different jet ET regions (Fig. 11, right) indicates that the evolution of
the diffractive structure function FD

jj is similar to that of the proton.
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Another factorization test within the Tevatron data can be performed by
using single diffractive and DPE events. If factorization holds then the ratio
RSD

ND(x) on the anti-proton side should be the same as the ratio RDPE
SD (x) on

the proton side (left plot in Fig. 12). However a discrepancy of a factor of
approx. 5 is revealed in the right hand plot in Fig. 12 indicating again that
factorization is broken. The extracted FD

jj is in relatively good agreement

with the one expected from HERA [44, 45]. This result is compatible with
the assumption that additional gaps should be free from any survival proba-
bility [22] as observed in recent measurements of soft diffractive interactions
by the CDF Collaboration [45].
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A large effort is underway on the theoretical side to model the gap sur-
vival probability, which is an important ingredient to estimate the cross sec-
tion for a prominent discovery channel at the LHC, namely diffractive Higgs
production in DPE [46]. Several aspects of factorization breaking in terms
of gap survival probability are reproduced by different approaches (see for



612 K. Borras

example [22] and models employing multi-pomeron exchanges in the eikonal
approximation [9, 47]). Exclusive dijet and χc production at the Tevatron
studied by the CDF Collaboration [44, 45] are excellent testing grounds for
these Higgs production calculations. Predictions for diffractive dijet produc-
tion in PHP and DIS at HERA can also be calculated within this model [48]
and reveal unitarity effects occurring even in moderate kinematic regions,
which are strongly related to the gluon density function (Fig. 13). Another
way to explore such effects and hence to probe the gluon density is given by
the study of exclusive (diffractive) vector meson production.

4. Exclusive vector meson production at HERA

Two approaches to the description of vector meson (VM) production in
ep collisions are illustrated in Fig. 14. Within the vector dominance model
(VDM) the process can be viewed as a fluctuation of the photon into a vector
meson (ρ, φ or ω), which subsequently scatters diffractively on the proton
(left plot). Using Regge phenomenology the cross section can be described
as the convolution of the probability for the photon to fluctuate into the
VM and the cross section σ(VM p → VM p), which is expected to result in an
approximate W 0.22 dependence. Using the t dependence of the differential
cross section dσ/dt ∼ W 4(αIP (t)−1) the parameters of the pomeron trajectory
can be unfolded.

e (k) e (k/)

γ (q=k-k/)
ρ,ω,φ,J/ψ,ϒ

p (P) p (P/)

Pomeron (t)

e (k) e (k/)

γ∗  (q=k-k/)

p (P) p (P/)

g (x1P) g (x2P)

ρ,ω,φ,J/ψ,ϒ

Fig. 14. Models for vector meson production in ep collisions at HERA (see text for
explanation).

Within two-gluon exchange models (Fig. 14, right), small qq̄ dipole con-
figurations can be calculated using pQCD. In such models the cross section
is directly connected to the gluon density of the proton: σ(γ∗p → VM p) ∼
1/Q6 [xg(x,Q2)]2. The increase of the gluon density for small x (or equiva-
lently large W ), leads to a strong increase of the cross section with W (W 0.8)
and to a Q2 dependence which is milder than 1/Q6. The t dependence is
expected to be universal and exponential, ∼ ebt, with b2g ≈ 4 GeV−2. Only
a small slope α′

IP ≈ 0 is expected. The small dipole size configuration is
dominant in processes with longitudinal polarized photons, γ∗

L, and the pro-
duction of heavy VM like the J/Ψ .



Hard Diffraction at HERA and the Tevatron 613

)2 (GeVV
2 + M2Q

0 5 10 15 20 25 30

δ

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6  98-00 (prel.)φZEUS 
 96-97 (prel.)ρZEUS 
 94-95ρZEUS 

 96-00ψZEUS J/

ZEUS

Figure 3: (top) Ex
lusive � 
ross se
tion as a fun
tion of W for four values of Q2.The solid lines are a result of a �t to the form � / W Æ. (bottom) Extra
ted valuesof Æ 
ompared with results from other VMs. The inner error bars represent thestatisti
al un
ertainties, while the outer error bars represent the quadrati
 sum ofthe statisti
al and systemati
 un
ertainties. The overall normalization un
ertaintyof +10:4�6:6 % is not in
luded in the error bar in the upper plot.16
Fig. 15. Cross section for VM production in PHP as a function of W (left). De-
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VM [50].

The left plot in Fig. 15 displays the W dependence of the PHP produc-
tion cross sections for different VMs and reveals for the light VMs a behavior
expected from VDM+Regge, while for heavier VMs the involved scale be-
comes hard and the dependence expected from pQCD calculations becomes
visible. The production of VMs has been analyzed in the DIS regime and
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Fig. 16. Dependence of the slope, b, of the exponential t behavior of the VM
production cross sections (left) [50] and pomeron trajectory parameters for different
VM production processes as a function of Q2 + M2

VM (right) [51].
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the W dependence fitted to a power law ∼ W δ. The power δ is presented
in the right hand plot and exhibits a rising behavior which converges to the
expected pQCD value with increasing Q2 +M2

VM (a measure of the hardness
of the scale). The same is true for the extracted b values for assuming an
exponential t dependence of the production which converge at large values
of Q2 + M2

VM to the predicted b2g value (Fig. 16, left). On the right hand
side of Fig. 16 the measurements of the pomeron trajectory parameters are
compiled for different VM production processes [51] and demonstrate the
smallness of α′

IP compared to the value of ≈ 0.25 extracted from soft diffrac-
tive hadron scattering data.

It is a pleasure to thank my colleagues from the ZEUS, H1 and CDF
Collaboration, for their hard work to achieve these important results on
diffraction, for helpful discussions during the preparation of this report and
last but not least for providing so nice figures to illustrate complicated topics.
I am grateful to J. Cole for reading the manuscript. Many thanks to the
organizers for this very interesting symposium.
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