Higher-Spin Gauge Fields and Duality

D. Francia® and C.M. Hull®

¢ Dipartimento di Fisica, Universita di Roma Tre, INFN, Sezione di Roma III, via
della Vasca Navale 84, 1-00146 Roma, Italy

*Theoretical Physics Group, Blackett Laboratory, Imperial College of Science and
Technology, London SW7 2BZ, U.K.

ABSTRACT. We review the construction of free gauge theories for gauge fields in arbitrary
representations of the Lorentz group in D dimensions. We describe the multi-form calculus
which gives the natural geometric framework for these theories. We also discuss duality
transformations that give different field theory representations of the same physical degrees
of freedom, and discuss the example of gravity in D dimensions and its dual realisations in
detail.

Based on the lecture presented by C.M. Hull at the First Solvay Workshop on Higher-Spin Gauge
Theories, held in Brussels on May 12-14, 2004



36 FraNncia, HULL

1 Introduction

Tensor fields in exotic higher-spin representations of the Lorentz group arise as massive modes in string
theory, and limits in which such fields might become massless are of particular interest. In such cases,
these would have to become higher-spin gauge fields with appropriate gauge invariance. Such exotic
gauge fields can also arise as dual representations of more familiar gauge theories |1], [2]. The purpose
here is to review the formulation of such exotic gauge theories that was developed in collaboration with
Paul de Medeiros in [3], [4].

Free massless particles in D-dimensional Minkowski space are classified by representations of the
little group SO(D — 2). A bosonic particle is associated with a tensor field A;;.. x in some irreducible
tensor representation of SO(D — 2) and in physical gauge (i.e. in light-cone gauge) the particle is
described by a field A;;...x depending on all D coordinates of Minkowski space and satisfying a free wave
equation

0A=0. (1)

For D = 4, the bosonic representations of the little group SO(2) are classified by an integer, the spin
s, while for D > 4 the representation theory is more involved, although it is common to still refer to
generic tensors as being of ‘higher spin’.

The main topic to be considered here is the construction of the Lorentz-covariant gauge theory
corresponding to these free physical-gauge theories. The first step is finding the appropriate covariant
tensor gauge field. For example, an n’th rank antisymmetric tensor physical-gauge field A;,.. i, =
Aliy..i) (where 4,5 = 1,..., D — 2) arises from a covariant n’th rank antisymmetric tensor gauge field
Apy o = Ay, (Where pv = 0,1,...,D — 1) with gauge symmetry A = dX, while a graviton
represented by a traceless symmetric tensor h;; = hj; with h;" = 0 arises from a covariant tensor gauge
field h,, which is symmetric but not traceless, with the usual gauge transformations corresponding
to linearised diffeomorphisms. The general rule is to replace an irreducible tensor representation of
SO(D — 2), given by some tensor field A;;...r with suitable trace-free constraints, by the corresponding
tensor field A,...., with the same symmetry properties as A;j...k, but with no constraints on the traces,
so that it can be viewed as a tensor representation of GL(D,R). There are some subtleties in this step
which we shall return to shortly. The covariant gauge field must transform under gauge symmetries that
are sufficient to remove all negative-norm states and to allow the recovery of the physical-gauge theory
on gauge fixing.

The next step is the construction of a gauge-invariant field equation and action. For antisymmetric
tensors or gravitons, this is straightforward, but for generic higher spin representations the situation is
more complicated. One of the simplest cases is that of totally symmetric tensor gauge fields Ay, .. 4, =
A(uy..un)- For these, covariant field equations were found by Fronsdal in [5] and reformulated in a
geometric language by de Wit and Freedman in [6], but these suffered from the drawback that the gauge
fields were constrained, corresponding to a partial fixing of the gauge invariance. This was generalised
to arbitrary representations by Siegel and Zwiebach 7], and the duality properties analysed. Covariant
field equations and actions have very recently been constructed for totally symmetric tensor gauge fields
by Francia and Sagnotti [8], [9] (for a review see the contribution to these proceedings [10]). These have
an elegant geometrical structure, being constructed in terms of covariant field strengths, but have the
surprising feature of being non-local in general. Nonetheless, on partially fixing the gauge invariance the
non-locality is eliminated and the field equations of [5], |6] are recovered. It appears that this non-locality
is inescapable in the covariant formulation of higher-spin gauge theories, and it would be interesting to
understand whether this has any physical consequences.

Recently, this has been generalised to general higher spin gauge fields in any tensor representation
131, [4], 111], |[12]. The formulation of [3], |4] uses an elegant mathematical structure, the multiform
calculus, developed in (3], [4] and in [13], [14], [15]. It is the approach of [3|, [4] which will be reviewed
here. The theory is formulated in terms of covariant field strengths or curvatures, and is non-local but
reduces to a local theory on gauge-fixing.

In general, it turns out that a given particle theory corresponding to a particular irreducible tensor
representation of SO(D — 2) can arise from a number of different covariant field theories, and these
covariant field theories are said to give dual realisations of the same theory [1], |[2]. For example,
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consider an n-form representation of SO(D — 2) with field A;,. ;,. This is equivalent to the fi-form
representation, where 7 = D — 2 — n and so the theory could instead be represented in terms of an n-
form field Anzn = %67;1_”17-1]‘1,”]'” AJ1Jn  One can then construct a covariant gauge theory based on an
n-form gauge field A, ..., or a n-form gauge field flmm‘%. These are physically equivalent classically,
as they both give equivalent theories in physical gauge. The key feature here is that n-form and 7fi-form
representations are equivalent for SO(D —2) but distinct for GL(D,R). For the general case, there are a
number of distinct representations of GL(D,R) that give rise to equivalent representations of SO(D —2)
and so lead to dual formulations of the same physical degrees of freedom. Such dualities [1], [2] can be
considered in multi-form gauge theories and in general interchange field equations and Bianchi identities
and will also be briefly reviewed here.

2  Young Tableaux

Representations of GL(D,R) can be represented by Young tableaux, with each index p of a tensor T,......
corresponding to a box in the diagram; see [16] for a full discussion. Symmetrized indices are represented
by boxes arranged in a row, so that e.g. a 2nd rank symmetric tensor h,, is represented by [T 7],
while anti-symmetrized indices are represented by boxes arranged in a column, so that e.g. a 2nd rank
anti-symmetric tensor By, is represented by . A general 3rd rank tensor E,., can be decomposed

into a totally symmetric piece F(,,,) represented by the tableau [T T ] , a totally anti-symmetric
piece Ej,,,) represented by the tableau E , and the remaining piece Dyvp = Euvp — Euvp) — Efuvp),

which is said to be of mixed symmetry, is represented by the “hook” tableau: . This satisfies

Diyvp) = 0 and D) = 0 and is an irreducible representation of GL(D,R). As another example, a
fourth-rank tensor R, o with the symmetries of the Riemann tensor corresponds to the diagram EE

The same diagrams can be used also to classify representations of SO(D), but with the difference
that now all traces must be removed to obtain an irreducible representation. For example, the diagram
[T 1 now regarded as a tableau for SO(D) corresponds to 2nd rank symmetric tensor h,, that is
traceless, 6*“h,u, = 0. The hook tableau Bj now corresponds to a tensor D,,, that is traceless,

0"?D,p = 0. Similarly, the diagram EE now corresponds to a tensor with the algebraic properties
of the Weyl tensor.

Then given a field in physical gauge in a representation of SO(D — 2) corresponding to some Young
tableau, the corresponding covariant field in the construction outlined above is in the representation
of GL(D,R) corresponding to the same Young tableau, now regarded as a tableau for GL(D,R). For
example, a graviton is represented in physical gauge by a transverse traceless tensor h;; (with 6% h;; = 0)
of SO(D —2) corresponding to the Young tableau [T ], so the covariant formulation is the GL(D, R)
representation with tableau [T ], which is a symmetric tensor h,, with no constraints on its trace.

It will be convenient to label tableaux by the lengths of their columns, so that a tableau with columns
of length n1,ns,...,n, will be said to be of type [n1,na,...,np]. It is conventional to arrange these in
decreasing order, ny > na > ... > ny.

3 Duality

Free gauge theories typically have a number of dual formulations. For example, electromagnetism in flat
D dimensional space is formulated in terms of a 2-form field strength F' = 1F,, da* A dz” satisfying
dF =0 and d % F =0, where *F denotes the Hodge dual D — 2 form with components

FVPémemquz : ()

N[ =

*Fuyup_g

The equation dF' = 0 can be interpreted as a Bianchi identity and solved in terms of a 1-form potential
Aas F=dA, with d *F = 0 regarded as a field equation for A. Alternatively, one can view d *F =0
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as the Bianchi identity dF =0 for F = «F, and this implies that F' can be written in terms of a D — 3
form potential A with F = dA. Then dF = 0 becomes d * F = 0 which can be regarded as a field
equation for A. The theory can be formulated either in terms of the one-form A or in terms of the D — 3
form potential A, giving two dual formulations.

This can be understood from the point of view of the little group SO(D — 2). In physical gauge or
light-cone gauge, the degrees of freedom are represented by a transverse vector field A; in the D — 2
dimensional vector representation of SO(D —2), with ¢ = 1... D — 2. This is equivalent to the (D — 3)-
form representation of SO(D — 2), so the theory can equivalently be formulated in physical gauge in
terms of a (D — 3)-form

A"jlu.jn = €jleniAi . (3)
where n = D — 3. These representations of SO(D — 2) can be associated with Young tableaux. The
vector representation of SO(D —2) is described by a single-box Young tableau, [ , while the (D — 3)-
form is associated with a tableau that has one column of D — 3 boxes. For example in D = 5, this is a
one-column, two-box tableau, E .

In physical gauge, changing from a 1-form field A; to a D — 3 form field Aj1<“jn is the local field
redefinition and so is a trivial rewriting of the theory. However, these lead to two different formu-
lations of the covariant theory: the same physical degrees of freedom can be obtained either from a
covariant 1-form gauge field A, transforming as a vector under SO(D — 1,1), or from a D — 3 form
gauge field AH1 .un- The one- form field has a gauge symmetry d A = d\ while the D — 3 form field has
a gauge symmetry 64 = dX and these can be used to eliminate the unphysical degrees of freedom and
go to physical gauge. Thus two formulations that are equivalent in physical gauge correspond to two
covariant formulations that are distinct covariant realisations of the theory.

This is the key to understanding the generalisations to other gauge fields in other representations of
the Lorentz group. A scalar field is a singlet of the little group, and this is equivalent to the D — 2 form
representation of SO(D — 2), represented by a tableau with one column consisting of D — 2 boxes. The
scalar field ¢ then has a dual covariant formulation as a D — 2 form gauge field ¢u,...pp_,-

For spin 2, the graviton in D dimensions is a field h,, which is a symmetric second rank (with
trace) represented by the Young tableau [T ] for GL(D,R). The reduction to physical gauge gives
a transverse, symmetric, traceless tensor of SO(D — 2) h;j;, corresponding to the SO(D — 2) tableau
T 1- (Recall that for GL(D,R), each box in the tableau represents an index in the D-dimensional
representation and has a trace in general, while for SO(D — 2) each box in the tableau represents an
index in the (D — 2)-dimensional representation and traces are removed using the SO(D — 2) metric, so
that the symmetric tensor h;; satisfies 6 h;; = 0.) The physical gauge graviton h;; can be dualized on
one or both of its indices giving respectively

Dil"'ink = Eil“"inl hlk 5 (4)

Cilminjlm]‘n = €iy-vinl €j1-gnk hlk . (5)
These give equivalent representations of the little group SO(D —2) , with appropriate trace conditions.
The tracelessness condition §*h;; = 0 implies Dyiy...ipk) = 0, while the symmetry h(;;) = 0 implies the
tracelessness 8" D;,...;.x = 0. Then D is represented by the [n, 1] hook diagram with one column of
lengthn =D —3 and one of length one, so that in dimension D = 5, D;j;i corresponds to the “hook”
tableau for SO(D — 2): E}j . The field C,...4,,j,-.-jn corresponds to the tableau for GL(D — 2, R)

of type [n,n] with two columns each of n = D — 3 boxes, so that for D = 5 C;;x corresponds to
the “window”, the two-times-two tableau: EE . However, it turns out that Cy,...i,j;...5,, is not in

the [n,n] representation for SO(D — 2). In general, the [m,m] representation of GL(D — 2,R) would
decompose into the representations [m, m]@®[m—1, m—1]®[m—2,m—2|®.... of SO(D—2), corresponding
to multiple traces. For m = n = D — 3, it turns out that all the trace-free parts vanish identically, so
that only the [1,1] and singlet representations of SO(D — 2) survive resulting from n — 1 and n traces
respectively, so that

Cil-uinjlmjn _ 5[1‘1 1 ... 6%71]‘”71 Cin]jn] + (5[2-1 b1 . .5% 1Jn 15, C

in]



HIGHER-SPIN GAUGE FIELDS AND DUALITY 39

for some Cj;, C with traceless C;. The definition and the tracelessness of h;; then imply that taking
n traces of Cj,...i, 4.5, gives zero, so that C' = 0 and Cj; is traceless and in the representation [1,1],
and in fact Cj; is proportional to hi;.
For arbitrary spin in dimension D the general form for a gauge field in light-cone gauge will be
Diiy iy 1 iny)
corresponding to an arbitrary representation of the little group SO(D —2), described by a Young tableau
with an arbitrary number of columns of lenghts nq,ng - - -:

nm] My Mg ... np

J

Dual descriptions of such fields can be obtained by dualising any column, i.e. by replacing one of
length m with one of length D — 2 — m (and re-ordering the sequence of columns, if necessary), or
by simultaneously dualising a number of columns [2|. Then any of the equivalent physical gauge fields
can be covariantised to a gauge field associated with the same tableau, but now viewed as defining
a representation of GL(D,R). The set of Young tableaux for these dual representations of the same
theory define distinct representations of GL(D,R), but all reduce to equivalent representations of the
little group SO(D — 2).

In fact, there are yet further dual representations. For SO(D — 2), a column of length D — 2 is a
singlet, and given any tableau for SO(D — 2), one can obtain yet more dual formulations by adding
any number of columns of length D — 2, then reinterpreting as a tableau for GL(D,R) [7]. Thus for a
vector field in D = 5, there are dual representations with gauge fields in the representations of GL(D,R)
corresponding to the following tableaux:

1, [ ]7 ]~-~; 57 %7 %

4 Bi-forms

Before turning to general gauge fields in general representations, we consider the simplest new case, that
of gauge fields in representations corresponding to Young tableaux with two columns. It is useful to
consider first bi-forms, which are reducible representations in general, arising from the tensor product
of two forms, and then at a later stage project onto the irreducible representation corresponding to a
Young tableau with two columns. In this section we review the calculus for bi-forms of [3] and generalise
to multi-forms and general tableaux in section 7.

A bi-form of type (p,q) is an element T of X??, where X?? = AP ® A? is the GL(D,R) - reducible
tensor product of the space AP of p-forms with the space A? of ¢-forms on RP. In components:

T=———=Tuppvy-vgdc"* Ao Ada?® @ da¥ A - Adz™ . (6)

and is specified by a tensor Ty, ... v, Which is antisymmetric on each of the two sets of p and ¢
indices Ty - ppr - vg = Tlpg-pplivr--vq)» @0d N0 other symmetries are assumed. One can define a number
of operations on bi-forms: here we only describe the ones needed for the forthcoming discussion, referring
to [3] for a more complete development.
Two exterior derivatives, acting on the two sets of indices, are defined as
d: XP9 - XpTha left derivative
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d: XPe — Xpatt right derivative whose action
on the elements of X9 is

oTdl 1 pplor g AT A AT A N datP @ T A Adxt
1 (7)

1 v 1% v
p'—qla[miA“Mpm.uyq]dx“l Ao ANda"? @ da” Nda"t Ao Ada

dT = %B[HT
dT =
where the two sets of antisymmetric indices are separated by vertical bars. One can verify that
d>=0=d, dd=dd . (8)
With the help of these two exterior derivatives, one can also define the total derivative
D=d+d, such that D=0, (9)

where the nilpotency of D is a straightforward consequence of the nilpotency of d and d. Such nilpotent
differential operators were considered by [13], [14], [15]. In a similar fashion, restricting to reducible
representations of SO(D — 1, 1), one can introduce two distinct Hodge-duals:

*: XP4 — XxP-pa left dual

F:XP9 — XPP-a right dual
defined as
1 — , Y
*T = p! (D —p)! q!TMI"‘#le'”qu ' 5p+1-“updmup+l Ao ANdeP @ dxt A ANdat
1 (10)
$T = mnl“%wwqe e dat A N dat P @ daP I N A dat P
These definitions imply that
2 = (_1)1-&-;0(D—p)7 32 = (_1)1+q(D—q) , *F = Fx (11)
as can be verified recalling the contraction identity for the Ricci-tensor in D dimensions:
Qp...0pQ e [Oé «
et kSkt1 Deal.uakﬂk_;_ynﬁD = 7(D - k)' ! (6[3:;1 o 553]) ’ (12)

where we are using the “mostly plus” flat background metric.

There are three operations on bi-forms that enter the Bianchi identities and the equations of motion,
and into the projections onto irreducible representations: a trace, a dual trace, and a transposition.

A trace operator acts on a pair of indices belonging to different sets, so that

o XP Xp—l,q—l ,

and is defined by
1 v v v,
T = mn“l YTy opprn g P2 A - A daP @ dx2 A Adat (13)
Combining the 7 operator with the Hodge duals, one can also define two distinct dual traces:

(71)1+D(p+1) 7% XP4 _, xptla-l

o= ,
(14)
&= (71)1+D(¢1+1);T; . xPa _, xp-Latl 7
that antisymmetrize one index in a set with respect to the whole other set:
T= (- T dz dz'? @ dz*? dz’

o 710!((]—1)! [p1 - ppra]--vg OT AN ANdx"™? @dx™ N---Nax™?
(_1)q+1 (15)

ol = datt A AdatP @ dat A - AdxT

= 1)igl Lo lapwaovs
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Again, the proof of relays on the identity . For example, for a (2,3) form in D = 5 one has
(omitting combinatorial factors):

P1pP2
#* T~ Tpipsrqiaags€ P3P4AD5

1P241
p4aps

P1P2q1 P4P5 [P1p24q1]
paps€ L anaras ~ Ipipz.arasasfarasag - (16)

P
Tx T ~ Tpipyaia2a3€

7k T~ Tpipya1q2a3€

Finally, the transposition operator simply interchanges the two sets of indices:

t: Xpaq N XQ»P
so that
(tT)mqum-wp =Ty pipr vy

and

1

tT = —Ty o vgpyp, d Ao Adz”? @ dx"t A -+ AdxhP . 17
141 1 qH1Hp
pq

The bi-forms are a reducible representation of GL(D,R). It is useful to introduce the Young sym-
metrizer )}, o which projects a bi-form T' of type (p, ¢) onto the part T = Yip,q T lying in the irreducible
representation corresponding to a tableau of type [p, g], with two columns of length p and g, respectively
(we use round brackets for reducible (p, ¢) bi-forms and square ones for irreducible representations). The
projected part T satisfies the additional constraints (for p > q):

~»
Il

o 0,

t

. 18)
T, if p=gq. (

~»
Il

5 D-Dimensional Linearised Gravity

It is straightforward to formulate gauge field theories of bi-forms; a gauge field A in the space X?'? can
be thought of as a linear combination of terms arising from the tensor product of a p-form gauge field
and a g-form gauge field. It transforms under the gauge transformation

bA=da? "4 da? T}, (19)
with gauge parameters that are themselves bi-forms in X?~%? = X P97 (Clearly,
F=ddA (20)

is a gauge invariant field-strength for A. This is a convenient starting point for describing gauge fields
in irreducible representations. We now show how to project the bi-form gauge theory using Young
projections to obtain irreducible gauge theories, starting with one of the simplest examples, that of
linearised gravity in D dimensions.

The graviton field is a rank-two tensor in an irreducible representation of GL(D,R) described by a
Young tableau of type [1,1], i.e. a two-column, one-row Young tableau, [T ] . The starting point
in our case is thus a bi-form h € X!, corresponding to a 2nd rank tensor huv, and we would like to
project on the GL(D,R)—irreducible tensor of type [1,1]: h= Yi1,1) b using the Young projector YV 1.
Then the constraints become

q
> ©

SRS )

(21)
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In this case, the two conditions are equivalent and simply imply that his symmetric, EW = h(u). The
gauge transformation for the graviton is the Young-projection of ll, which gives 6 b, = 9(,\,) where
Ap = at’o + ag’l. The invariant field strength is given by

R=ddh . (22)

This is the [2,2] Young tableau EE describing the linearized Riemann tensor. The nilpotency of
the exterior derivatives and the irreducibility imply that the Bianchi identities

dR=0, dR=0, (23)

cR=0, (24)
are satisfied, while acting with the 7 operator gives the Einstein equation in D > 4 E| :
TR=0. (25)

or in components, R,, = 0.

We now return to the issue of duality. In Section 3 we described the triality of linearised gravity in
D dimensions, for which there are three different fields that can be used for describing the degrees of
freedom of the graviton. The discussion can be expressed succinctly in terms of bi-forms. In light-cone
gauge the fields are tensors in irreducible representations of SO(D — 2), and so are trace-less. The
graviton arises from projecting a [1,1] form h onto a symmetric tensor /le i that is traceless fALZZ = 0. Now
one can easily dualise the field h in one or both indices, by applying , where the x-operator is now

the SO(D — 2)-covariant dual. The dual light-cone fields are
D ==xh, (26)
C =x >T<77, , (27)
and all have the same number of independent components.
In the covariant theory one dualises the field strengths rather than the gauge fields and this is easily

analysed using the bi-form formalism developed. Indeed, starting from the [2,2] field strength R one
can define the Hodge duals

S xR, (28)
G =#**R, (29)

which are respectively of type [D — 2,2] and [D — 2, D — 2], associated with the tableaux:

D -2 X D -2

The other possible dual, S = %R is not independent, since S=tS (this would not be the case for
the generalisation to a general (p, g)-form with p # ¢). In components:

L hop
Sprepp_grive = iRaszEaﬁul”'quQ ) (30)
1 _asys
GHl"'HD—2V1"‘VD—2 = ZRQ 7 €afpr-pp_2€yévyivp_o - (31)

1Note that acting on a tensor in an irreducible representation with d or d gives a reducible form in general, so
that a Young projection is necessary in order to obtain irreducible tensors.

2The operator dd, unlike d and d separately, sends irreps to irreps, so that ddh = Y ddh and the Young
projection is automatically implemented.

3In D = 3 the field equation Ryuv = 0implies Ry p0 = 0 which only has trivial solutions; a non trivial equation
is instead 72 R = 0, with 72 R the Ricci-scalar [2], [1]. This can be generalized to (p,q)-forms, as we shall see
later.
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From these definitions, and the algebraic and dynamical constraints satisfied by the linearised Riemann
tensor R, one can deduce a set of relations that must be obeyed by the bi-forms S and G. We will give
examples of certain relations between Bianchi identities and equations of motion, referring to [3], [2], [1]
for a more complete discussion. The definitions S = * R and G = * % R, and the relations imply
that xS = (fl)DR7 and * * G = R. Then, using the definitions given in Section 4, it follows that

cR=0 = oxS5S=0 = x0x8=0 = 75=0; (32)

cR=0 = o0%xxG=0 = x0%xxG=0 = 7xG=0 = *7xG=0 = 6G=0. (33)

That is to say, the Bianchi identity o R = 0 for R implies the equation of motion 7.5 = 0 for S and the
Bianchi identity ¢ G = 0 for G. The equation of motion 7 R = 0 for R in D > 3 implies that

TR=0 = *7*xS=0 = o¢5=0, (34)

and
TR=0 = 7%#+xG=0 = 7°3%G=0. (35)
giving the Bianchi identity o S = 0 for S and the field equation 7”72 G = 0 for G H
Other consequences for S and G can be deduced starting from properties of R and making use of
identities involving the various bi-form operators (see [3]). In particular the Bianchi identities d S =
dS=0and dG=dG =0 imply that S and G can be expressed as field-strengths of gauge potentials
Dand C respectively, which are in irreducible representations of type [D — 3,1] and [D — 3, D — 3]

S=ddD, G=ddC, (36)

whose linearized equations of motion are 7S = 0 and 727G = 0. Although these relations can
be derived for gravity straightforwardly, as in [2], the bi-form formalism simplifies the discussion and
generalises to general multi-form representations in a way that elucidates the geometric structure and
allows simple derivations and calculations.

6 General Bi-Form Gauge Theories

The discussion of gravity extends straightforwardly to arbitrary (p,q)-forms, where without loss of
generality we assume p > ¢. First, one can restrict from a (p, ¢)-form T to T = YVip,q T which is in [p, q]
irrep of GL(D,R) satisfying the constraints . Then one can define a field strength F = d dT of type
[p+1,q + 1] that is invariant under the gauge transformations given by the projection of :

6T = Vi (daP ™17 4 da™?™h), (37)
and satisfies the Bianchi identities
dF =dF =0, cF=0, (38)

together with ¢t ' = F' if p = q. We now turn to the generalisation of the “Einstein equation” 7 R = 0.
The natural guess is
TF=0, (39)

However, we have seen that for gravity in D = 3, the Einstein equation 7 R = 0 is too strong and
only has trivial solutions, but that the weaker condition 72 R = 0 (requiring that the Ricci scalar is
zero) gives a non-trivial theory. For the dual field strength G, the field equation was 7°73G =0 in D
dimensions. Then it is to be expected that the “Einstein equation” 7 R = 0 will be generalised to [p, q]
forms by taking 7 F' = 0 for large enough space-time dimension D, but for low D a number of traces

4Note that the equation 7™ G = 0 only has trivial solutions for n < D—3, so that this is the simplest non-trivial
field equation [2].
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of the field strength may be needed to give an equation of motion 7" F' = 0 for some n. It was shown
in 3] that the natural equation of motion

TF=0 for D>p+q+2, (40)

is non trivial for D > p+ ¢ + 2, but for D < p+ ¢ + 2 that 7 F = 0 is a non-trivial field equation for
n=p+q+3— D, and so we will take

PraB-DPp_09  for D<p4+q+2. (41)

A [p, g]-Young tableau can be dualized on one of the two columns, or on both, so that three duals
of the field strength can be defined:

S=x«FexPrbatl = S=gpexrttPmal = G=%x FeXxPrbPrarl = (49)

and the algebraic and differential identities and equations of motion for F' give analogous properties for
S, S and G. In particular, the equations of motion are

rS=0, e g =g, FPrpa2tn g —q | (43)

For example, gravity in D = 3 with p = ¢ = 1 has dual formulations in terms of a [1,1] field strength
G for a [0,0] form or scalar field C' with field equation 7 G = 0 giving the usual scalar field equation
0, 0" C =0, or to a [2,1] field strength S for a [1,0] or vector gauge field D,,, with the usual Maxwell
equation 7.5 = 0. Then this D = 3 gravity theory is dual to a scalar field and to a vector field, and all
describe one physical degree of freedom.

7 Multi-Forms

The previous discussion generalizes to the case of fields in arbitrary massless representations of SO(D —
1,1), including higher-spin gauge fields described by mixed-symmetry Young tableaux. As for the case of
forms and bi-forms, the starting point is the definition of a larger environment, the space of multi-forms,
in which a series of useful operations are easily defined. Then, by suitable Young projections, one can
discuss the cases of irreducible gauge fields and their duality properties. In the following we shall confine
ourselves to describing the main steps of the construction; further details are given in [3], [4].
A multi-form of order N is characterised by a set of N integers (p1, p2, ..., pn) and is a tensor of rank
>~ p; whose components
T#%

=T}, (44)

.4.;1‘%1.‘.#{\[4..#1]}71\[ #%)1][“{\,”1])\]1\/] ’
are totally antisymmetrized within each of N groups of p; indices, with no other symmetry a priori
between indices belonging to different sets. It is an element of XP1PN = APl @ ... ® APN  the
GL(D,R)-reducible N-fold tensor product space of p;-forms on RP. The operations and the properties
introduced in Section 4 generalize easily to multi-forms. For an extensive treatment see again [3]; here
we restrict our attention to the operations previously discussed.

One can define an exterior derivative acting on the i — th set of indices,
d(z) :XPI-“Pz‘mPN _ Xpl-»-Pz‘+1-»-PN

; (45)

generalizing the properties of d and ci; summing over the d™’s one can then define the total derivative

N
D=Y dY, (46)
i=1

such that
DNt =0. (47)

5The last equation follows from the result 77 T = 0 = (1P~P=9+" x §)T = 0, valid for a general [p,q]-form
T, applied to the case of the [p+1,q+1]-form F. Here n is the exponent such that 7™ F = 0 is non trivial. So, if
D >p+q+2then n =1, and the e.o.m. for the dual tensor G reduces to T°~P~4-1G =0 (3] .
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Similarly, for representations of SO(D — 1,1) or SO(D) one can define N Hodge-duals:
*('L) :Xpl,m,pi,“.,pN _ Xpl,m,D—pi,m,pN 7 (48)

each acting in the usual fashion on the i-th form, and so commuting with any %79,
The operators 7, o, 6 and t generalize to a set of operators, each acting on a specific pair of indices;

lhe trace ope ators
T('L]) . Xpl csPiseesPgs-- PN e Pi—15-Pj—15--sPN
. seesPisee s Py XP EREREY 4% EREEE) ERREE) (49)

are defined as traces over the i-th and the j-th set; the dual-traces are
O.(ij) = (_1)1+D(m+1) (0 T(ij)*(i) . XPLoPis PPNy X PLioPit 1o sPj—15PN

(50)

&(ij) = (_1)1+D(Pj+1) «(7) T(ij)*(j) . XPLroPiseoPjs PNy X PLosPim1ssPjtl PN

while the transpositions £(9) generalize the action of the ¢ operator to exchanges between the subspaces
AP and APi in XP1roPirPj PN .

75(Z‘j) . X PLoPise PPNy X PLyosPjsesPis PN (51)
The Young symmetrizer Y, .. ] Projects a multi-form of type (p1,...,pn) onto the irreducible rep-
resentation associated with a Young tableau of type [p1,...,pn].

8 Multi-Form Gauge Theories

With the machinery of the last section, one can naturally extend the construction of gauge theories
for general tensor gauge fields. The starting point is a multi-form gauge field of type (p1,...,pn) with
gauge transformation

N
5T = Zd(l) afil)a-“:pi—l»-n:PN ) (52)
i=1

The restriction to irreducible representations of GL(D,R) can be implemented using the Young sym-
metrizer Vj,, ... p ] Projecting onto the representation characterised by a Young tableau with N columns
of length p1,p2,...,pn (these are conventionally arranged in order of decreasing length, but this is not
essential here). Then this projects a multi-form 7" onto

T=Ypy,.om T (53)
which satisfies the constraints
eI T =0 if  pi>pj
IR ’ (54)
t” T=T if Di = Dj

The field strength is a multi-form in the irreducible representation of type [p1 + 1,...,pn + 1] defined
ad]

N
1 ~
FEHd“)T:NDNT, (55)
i=1
and is invariant under the Young projection of the gauge transformation for T'
N
o (i) P1s--sPi—15--sPN
0T = Vip....on] Zd Q) : (56)
i=1
6More generally, one can define a set of connections s, = (Higsk d(i))f, corresponding to each subs‘et
Sk = {é1,...,ix} C {1,...,N}. These are gauge-dependent w.r.t. transformations involving parameters o’ ,

j € Sk , while are invariant under transformations with parameters a® ,i & Sy, . For a given k there are in general
W inequivalent possible I'g, ; in particular, the totally gauge-invariant field strenght F' can be regarded

both as the top of this hierarchy of connections (the one with k = 0), or as a direct function of the connection
Ts,, being F = ([T,es, d) s, |4 -
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By construction, the field strength satisfies the generalized Bianchi identities
dYF=0, (57)
cF=0. (58)

The simplest covariant local field equations are those proposed in [3] and these in general involve more
than two derivatives. For N even, a suitable field equation is

Yoo s v pog, (59)
(4150050 N)
(permutations)
where the sum is over all permutations of the elements of the set {1,... N}. For N odd, one first needs to

define 9 F, which is the derivative 9, F of F regarded as a rank N 4 1 multi-form of type [p1,...,pn,1].
Then the equation of motion is:

Z Flriz)  (in—2in—1) [(NN+D) g 0 (60)
(i1,0iN)
(permutations)
Here the sum is over the same set of permutations of the elements of the set {1, ... N} as in the even case,

so that the extra index is left out. These are the field equations for large enough space-time dimension
D; as for the case of bi-forms, for low dimensions one needs to act with further traces.

These field equations involving multiple traces of a higher-derivative tensor are necessarily of higher
order in derivatives if N > 2. This is unavoidable if the field equation for a higher-spin field is to be
written in terms of invariant curvatures. In physical gauge, these field equations become O0%A = 0 where
A is the gauge potential in physical gauge, O is the D-dimensional d’Alembertian operator and a = N/2
if N is even and a = (N +1)/2 if N is odd. The full covariant field equation is of order 2a in derivatives.
In order to get a second order equation, following [8/9], one can act on these covariant field equations
with 072 to obtain equations that reduce to the second order equation OA = 0 in physical gauge. In
the even case the equation is of order N in derivatives, and so it is possible to write a second-order
field equation dividing by o2 L, Similarly, for N odd, it is necessary to divide by 03 ~1, In this
way, one can write second-order, non-local field equations [4]:

o o 1
geven = E ’T<11“) .. .T(lN_llN>7ﬂ71 F=0 y

( (1114-;11\_1) y 0=

permutations

(61)
Godd = E Flini2) (N N+1) N+1718F:0.
(215--9%N) o2
(permutations)

These then are the covariant field equations for general representations for high enough D (for low
D, the appropriate field equations require further traces [4], as we saw earlier for the case of bi-forms.)
These are non-local, but after fixing a suitable gauge, they become local. On fully fixing the gauge
symmetry to go to light-cone gauge, the field equations reduce to the free equation OA = 0, while
partially fixing the gauge gives a Fronsdal-like local covariant field equation with constraints on the
traces of the gauge field and parameters of the surviving gauge symmetries. It would be interesting to
understand if the non-locality of the full geometric field equation has any physical consequences, or is
purely a gauge artifact. As in the Fronsdal case, only physical polarizations are propagating [9}4}/12].

It is worth noting that these equations are not unique. As was observed in [8], and analysed in detail
for the case s = 3 in the totally symmetric representation, one can write other second-order equations,
with higher degree of non locality, by combining the least singular non-local equation with its traces
and divergences. The systematics of this phenomenon was described in [4], where it was shown in the
general case how to generate other field equations starting from . The idea is to define a new tensor
F(™ = g™ [ by taking m partial derivatives of the field strenght F, take a suitable number of traces
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of the order N +m tensor 9™ F, and divide for the right power of the D’ Alembertian operator. One can
then take linear combinations of these equations with the original equations (61J).

Given a field strength F' of type [p1 + 1,p2 + 1,...,p~n + 1], one can choose any set of columns of
the Young tableau and dualise on them to obtain a dual field strength. The field equations and Bianchi
identities for F' then give the field equations and Bianchi identities for the dual field strength, and the
new Bianchi identities imply that the dual field strength can be solved for in terms of a dual potential.
There are then many dual descriptions of the same free higher-spin gauge theory.
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