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Abstract

While bound states of heavy quarks QQ̄ called quarkonia have been studied for

nearly a half-century, their production is still not well understood. We examine how

techniques from Effective Field Theories (EFTs) of the strong force can be used to

probe the production of the J/ψ(cc̄). The focus will be to study how quarkonia

are produced in jets, highly-collimated sprays of hadrons ubiquitous at particle col-

liders. We review the study of quarkonium production using Non-relativistic QCD

(NRQCD) and the study of jet substructure observables using the Soft-Collinear

Effective Theory (SCET). The concept of Fragmenting Jet Functions (FJF), which

describe a hadron’s energy distribution inside a jet of measured substructure, is ex-

tended to jets where the angularity is measured or where the transverse momenta of

a hadron relative to the jet axis is measured. Predictions of the energy distribution

of J/ψ in jets at the LHC using FJFs are compared with the latest LHCb data using

various extractions of the non-perturbative NRQCD long-distance-matrix-elements

(LDMEs) in the literature. These distributions are also calculated using a modifi-

cation of the Pythia Monte Carlo, which is shown to have an unphysical model

of quarkonium production and gives results consistent with our FJF calculations.

Our predictions of the energy of J/ψ produced in jets fit the data much better than

default Monte Carlo results. We also demonstrate that LDMEs extracted from high

transverse momentum data do a better job at predicting the LHCb measurements.
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Introduction

Experiments at the Large Hadron Collider (LHC), shown in Fig. 1.1 aim to answer

a number fundamental questions in physics. What is the origin of mass? Do extra

dimensions of space exist? What is the nature of dark matter? Can the theories

of the strong and electro-weak forces be described by an underlying Grand-Unified-

Theory? While many of the exciting discoveries that may be made at the LHC

involve the search for new particles, this thesis will focus on uncovering the origins

of an old one. The J/ψ was discovered nearly a half-century ago in 1974, providing

the first experimental evidence of a 4th charm quark and confirming several key

predictions of the evolving theory of the strong force, Quantum Chomodynamics

(QCD). Although its discovery was a major milestone for particle physics, as we will

discuss in Chapter 2, its production is, ironically, still not well-understood. This

thesis develops a new formalism with which to study how J/ψ are produced at

the extreme conditions of the LHC. In this introduction, we will briefly review the

basic ideas of the Standard Model and the theory of QCD. We will then discuss the

essential ideas of resummation and effective theories, two approaches to quantum

field theoretic calculations which will be important for a proper understanding of
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Figure 1.1: The Large Hadron Collider (LHC), a 14 TeV center-of-mass energy
proton-proton collider in Geneva, Switzerland. Image courtesy of https://home.

cern/topics/large-hadron-collider.

later chapters.

1.1 Quantum Chromodynamics

Our knowledge of elementary particle physics is encapsulated by the Standard Model

(SM). The SM describes the quantum behavior of the electromagnetic force and

strong and weak nuclear forces through the interaction of the elementary particles

shown in Fig. 1.2. The elementary particles fall into two general categories: fermions,

particles with half-integer spin that obey Fermi-Dirac statistics and bosons, integer-

spin particles that obey Bose-Einstein statistics. Fermions can then be divided into

leptons, elementary particles such as the electron and its corresponding neutrino,

and quarks such as the up and down. Quarks and leptons bind together to form

atoms, the building blocks of everyday matter. Atomic nuclei consist of protons

and neutrons, which are made of combinations of up and down quarks. Bosons are

divided into vector bosons, particles such as the photon and gluon whose exchange

mediates forces, and scalar bosons which include the recently discovered Higgs, which

is responsible for giving particles mass. Each elementary particle carries a set of
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Figure 1.2: The elementary particles described by the Standard Model of Particle
Physics (SM).

intrinsic properties which are described by their quantum numbers, some of which

are shown in Fig. 1.2.

This work will largely focus on how quarks (specifically the charm quark) and

gluons interact via the strong force as described by QCD. The stem chromo in QCD

refers to a special quantum number held by quarks and gluons (the vector boson

or force carrier particle of the strong force) called color. Each quark (anti-quark)

carries one of three colors (anti-colors) which include red (r), blue (b), and green

(g), and each gluon carries some linear combination of color and anti-color such as

(rb̄ + br̄)/
√

2. Quarks and gluons form bound states called hadrons. Hadrons are

3



further divided into mesons, bound states whose quantum numbers can be formed

by qq̄ pairs, and baryons, whose quantum numbers are determined by combinations

of qqq or q̄q̄q̄. In recent years, more exotic quark states such as the tetraquark and

pentaquark have also been observed [34].

The Lagrangian of QCD is given by

LQCD =
∑

f

q̄i(i /Dij −mfδij)qj −
1

4
Ga
µνG

µν
a , (1.1)

where
∑

f is a sum over quark flavors (up, down, etc.), mf is the quark mass, i, j

represent indices in color-space, δij is a Kronecker delta in color-space, and a is an

index of the adjoint representation of the Lie group SU(3) (for color-space). The

gauge covariant derivative is given by

/Dij = γµ(∂µδij + igsT
a
ijA

a
µ), (1.2)

where gs is the strong coupling constant, the matrices T a are generators of SU(3)

and Aaµ is the gauge field (the gluon). The gauge field strength tensor is given by

Ga
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν (1.3)

where fabc are the structure constants of SU(3) defined via the commutation relation

[Ta, Tb] = ifabcTc. (1.4)

A key feature of QCD lies in the nature of its coupling constant, which in perturbative

calculations is generally expressed via αs = g2
s/4π. In quantum field theory (QFT),

coupling constants run with the renormalization scale µ. This scale is generally

chosen to be the dominant scale in the process such as the momentum transfer in a

collision. By studying the basic interactions of quarks and gluons at one-loop, one

can derive the QCD β-function, which describes the evolution of the coupling with
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µ. The β-function is written as

β(αs) = µ
dαs
dµ

= −2αs

[(αs
4π

)(11

3
NC −

2

3
Nf

)
+O(α2

s) + . . .

]
, (1.5)

where NC is the number of colors and NF is the number of quark flavors. At this

order, the β-function can be solved using separation of variables for the coupling as

a function of the energy scale µ ∼ Q

1

αs(Q2)
=

1

αs(Q2
0)

+
β0

4π
log

(
Q2

Q2
0

)
, (1.6)

where β0 = 11CA − 2NF/3 where CA = N = 3 and where αs(Q
2) and αs(Q

2
0) are

the coupling at two energy scales Q and Q0. This coupling will vary widely and

perturbation theory in αs will only be reliable when αs � 1. Let us define the

scale at which the coupling is infinite as ΛQCD and choose this as our starting scale

Q0 = ΛQCD
1

αs(ΛQCD) =∞ =⇒ 1/αs(ΛQCD) = 0 =⇒ αs(Q
2) =

4π

β0 log (Q2/Λ2
QCD)

. (1.7)

The evolution of αs(Q
2) is shown in Fig. 1.3. For Q � ΛQCD, QCD is perturbative

and the coupling αs(Q
2) decreases with increasing Q2. This phenomenon is called

asymptotic freedom and says that at energies well above ΛQCD ∼ 0.5 GeV, quarks

and gluons are quasi-free particles. In this context, we often refer to quarks, anti-

quarks, and gluons collectively as partons. The key consequence of asymptotic

freedom is that at the extremely high energies of modern colliders, the perturbative

expansion of QCD should have greater and greater accuracy. At energies below

ΛQCD, QCD is non-perturbative and the coupling becomes large. As we will discuss in

Chapter 3, at these scales, partons exhibit confinement and are trapped in colorless

1 The choice of αs(ΛQCD) = ∞ was for simplicity as one could just as easily pick αs(ΛQCD) = 1
or any other value that would not be suitable for a perturbative expansion.
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Figure 1.3: The running of the strong coupling αs(Q) as shown in Ref.[3] where
the focus was extracting the strong coupling from 3-jet differential cross-sections as
a function of the 3-jet invariant mass and the 3 jets with the highest transverse mo-
menta are selected. The plot also shows previous measurements of αs and compares
the 3-jet extraction with world averages of the coupling.

hadrons. This means that hadrons look like fundamental particles in scattering

processes.

Much of this work is built upon the idea that high precision calculations of scatter-

ing cross-sections and decay rates can be made tractable through the use of Effective

Field Theories (EFTs). The concept of an EFT is quite simple: calculations in

QCD can be made computationally simpler by removing degrees of freedom that are

far above the energy scale of the physics one is interested in studying.

1.2 Effective Field Theories (EFT)

1.2.1 What is an EFT?

The computational complexity of QCD is often immense. This makes QCD ill-suited

for many practical calculations of interesting phenomena. In practice, physicists
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adopt effective approaches that focus on the dynamics of certain degrees of freedom

in a particular energy regime. In introductory classical mechanics, calculations of

everyday falling objects can be made simple by working under the assumption that

the force of gravity on an object from the earth is constant. This is done by saying

that, relative to the size and distance travelled of ordinary falling objects, the surface

of the earth can be approximated as an infinite flat plane.

In the multipole expansion in classical electrodynamics, calculations of the elec-

trostatic potential can be made simpler in the limit that r � s where s is the size

of the distribution and r is the distance from the charge distribution at which the

potential is calculated. By expanding the potential in s/r � 1, the distribution can

be approximated as a point of charge Q at lowest order in the expansion. Correc-

tions can then be systematically included as powers of O(sn/rn) which contain finer

details of the structure of the charge distribution. These terms containing successive

powers of s/r, the power counting parameter, are referred to as the point charge

(O(1)) term, the dipole moment (O(s/r)), quadrupole moment (O(s2/r2)), and so

forth.

EFTs refer to effective descriptions of physics at particular energy/length scales

as applied to QFTs such as QCD. This work will focus on two specific EFTs:

1. Non-relativistic Quantum Chromodynamics (NRQCD) — A well-established

EFT which describes heavy mesons such as quarkonia (e.g. J/ψ(cc̄), Υ(bb̄),

etc.) as non-relativistic bound states. We discuss NRQCD in depth in Chap-

ter 2.

2. Soft-Collinear Effective Theory (SCET) — An EFT developed in the last

15 years that we will use to describe jets, tightly collimated sprays of highly

boosted particles found in many events at high energy colliders. We introduce

SCET in Chapter 3.
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Figure 1.4: The Drell-Yan process can be factorized into PDFs for each incom-
ing hadron and a partonic-cross section of the form dσ̂(ab → l+l−) which can be
calculated in perturbation theory.

We will now briefly discuss three important concepts in EFT calculations: the fac-

torization of observables, the basics of constructing an EFT, and the resummation

of potentially large logarithms using renormalization group equations (RGE).

1.2.2 Factorization of Observables

The concept of factorization is fundamental to most applications of QCD. Observ-

ables such as cross-sections are said to factorize if they can be calculated as a product

or convolution of perturbatively calculable functions and universal non-perturbative

pieces. The term universal here implies that the function is independent of the pro-

cess and can thus be used in other related calculations. Factorization theorems also

separate observables into functions describing physics at several well-separated en-

ergy scales. An example of a well-known factorization theorem in high-energy physics

is the hard-scattering of hadrons in the Drell-Yan process A+B → l+ + l−+X where

A and B are hadrons, l+, l− are leptons, and X represents any other leptons/hadrons.

Fig. 1.4 shows this process at lowest order. Ref. [35] proved that the cross-section
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can be written (to all orders in perturbation theory) as

dσ(AB → `+`−X)

dQ2dy
=
∑

a,b

∫
dxAdxBfa/A(xA, µ)fb/B(xB, µ)

dσ̂(ab→ `+`−X)

dQ2dy
, (1.8)

where fa/A(xA, µ) and fb/B(xB, µ) are parton distribution functions (PDF) which give

the density of the parton a(b) with momentum fractions xA(xB) of the hadrons A(B).

The dσ̂/dQ2dy is the partonic cross-section differential in the invariant mass Q2 of

the `+`− pair and the rapidity y of the lepton pair. This partonic cross-section is

calculable in perturbative QCD and governs high-energy scale physics. The PDFs are

universal non-perturbative functions describing low-energy fluctuations that must be

extracted from experiment. The factorization scale µ essentially separates the high

and low energy regimes and is chosen to be of the order of the hard scale Q in order

to minimize potentially large logarithms. All-orders factorization theorems in QCD

are complex and have only been rigorously proven in a small number of cases. We

will see how factorization theorems play a key role in EFTs in the following sections.

1.2.3 Constructing Effective Theories

Perturbative calculations of processes that contain several different physical scales

(such as particle masses, momentum cut-offs, etc.) µ1, µ2, . . . inevitably involve

logarithms of ratios of these scales log (µ1/µ2), . . . . In certain regions of phase space,

these physical scales may be widely separated µ1 � µ2, causing these logarithms to

become large. Let us consider the example of the weak decay of D0 → K−+ π+. At

the partonic level, this process looks like (cū) → (sū) + (ud̄) where the ū acts as a

spectator quark. The lowest order amplitude for this process can be written as

M(c→ sud̄) =

(
g2√

2

)2

VcsV
∗
ud

1

k2 −m2
W

(
gµν − kµkν

m2
W

)

× [ū(ps)γµPLu(pc)] [ū(pu)γνPLv(pd̄)] ,

(1.9)
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where g2 is the weak coupling constant, pc,s,u,d̄ are quark external momenta, Vij are

elements of the CKM matrix, kµ is the exchanged 4-momentum, mW is the mass

of the W -boson, and u, v, ū, v̄ are Dirac spinors. To make calculations simpler, we

can work in the limit that k2 � m2
W since the final state quarks need to be within

bound states. This allows us to expand the amplitude by writing the propagator as

−1/m2
W (1 +O(k2/m2

W )) yielding

M(c→ sud̄) ≈− 4GF√
2
VcsV

∗
ud [ū(ps)γµPLu(pc)] [ū(pu)γνPLv(pd̄)] , (1.10)

where GF/
√

2 = g2
2/(8m

2
W ) is the so-called Fermi constant. By expanding the prop-

agator, we have removed the W -boson as a degree of freedom from the theory, re-

placing it with a four-fermion interaction. This amplitude can be calculated in a

simpler version of the full weak theory where tree-level diagrams are replaced with

four-point interactions from an effective theory of the weak force as shown in Fig. 1.5.

High-energy degrees of freedom are removed and an EFT is established through a

procedure called matching.

The Lagrangian of this EFT is first constructed by considering the most general

LEFT whose terms satisfy basic desired symmetries. This will take the form

LEFT = −4GF√
2
VcsV

∗
ud

∑

j

Cj(µ)OEFT
j (µ), (1.11)

where in this case there will be 2 such 4-quark operators, OEFT
j , and Cj(µ) are

perturbatively calculable coefficients that describe physics at the scale mW . These

coefficients for each of the terms in the EFT Lagrangian are extracted through a

matching calculation. This procedure involves comparing calculations of the same

physical quantity in the full theory and EFT. At tree-level, this matching is trivial

(see Fig. 1.5) and yields coefficients of 1. At one-loop level, the matching calculation

involves diagrams containing single gluons connecting the external quark lines and
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Figure 1.5: An example of how a full theory tree-level process is matched onto a
tree-level EFT process for the D0 → K−π+ example at the quark level described
in the text. A one-loop matching procedure would involve additional diagrams that
connect quark lines with a gluon.

looks, schematically, like

〈
sud̄
∣∣Lfull |c〉(1) =

〈
sud̄
∣∣LEFT |c〉(1)

=
∑

j

[
C

(0)
j (µ)

〈
sud̄
∣∣O(1)

j (µ) |c〉+ C
(1)
j (µ)

〈
sud̄
∣∣O(0)

j (µ) |c〉
]
,

(1.12)

where (0) and (1) denote leading-order (LO) and next-to-leading-order (NLO) con-

tributions, respectively. The matching coefficients in this case look like Cj(µ) =

1 + O[αs(mW )]. Having written down an effective Lagrangian and performed the

matching at a given order in αs, we now have the essential elements needed for

constructing an EFT.
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1.2.4 Resummation of Logarithms

The matrix element
〈
sud̄
∣∣Lfull |c〉 can ultimately be written in the following schematic

form

〈f | iLfull |i〉 ∼ 1 + αsL+ α2
sL

2 + α3
sL

3 + . . .

+αs + α2
sL+ α3

sL
2 + . . .

+α2
s + α3

sL+ . . .

(1.13)

where one can show that L ∼ log (m2
W/m

2
c) where mc is the charm quark mass.

Since mc � mW , powers of the logarithms, L, are generally large enough such that

L ∼ 1/αs.
2 Thus, powers of αnsL

m ∼ αn−ms become increasingly important and

can spoil perturbation theory. However, higher powers of these logarithms can be

included without performing the full calculation at n-loops through the use of RGEs.

RGEs can be used to resum these logarithms in a simple but powerful way. In

the full theory, the matrix elements contain powers of L, a logarithm of a ratio of

scales. Thus no single choice of the renormalization scale µ will minimize all of the

large logarithms. However, in our EFT formalism, matrix elements of the full theory

are factorized via
〈
sud̄
∣∣ iLEFT |c〉 = Cj(µ)

〈
sud̄
∣∣OEFT

j (µ) |c〉 (1.14)

=

(
1 + αs log

(
m2
W

µ2

)
+ . . .

)(
1 + αs log

(
µ2

m2
c

)
+ . . .

)
. (1.15)

The logarithms L have now been factorized into two separate logarithms that are

independently minimized by the choices of µ = mW in the coefficients Cj(µ) and

µ = mc in the matrix elements of OEFT
j (µ). We can simultaneously resum powers of

both of these logarithms using RGEs. In the one-loop calculation, the UV poles in

the EFT can be used to derive RGEs for the Cj(µ) coefficients

µ
d

dµ
Cj(µ) = γCjiCi(µ), (1.16)

2 Here, the external momentum pc has been put on-shell.
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where, as shown in Appendix C, γji is the coefficient’s anomalous dimension which

is in this case a 2× 2 matrix calculated to a given order in perturbation theory.3 Let

us ignore the indices i, j for the purpose of clarity. Solving this RGE then yields an

equation of the form

C(µ) = exp

[∫ αs(mW )

αs(µ)

dα

β(αs)
γC(αs)

]
C(mW ) = UF (µ,mW , γ

C)C(mW ), (1.17)

where C(µ) and C(mW ) are coefficients evaluated at two different scales. This de-

scribes the evolution of the coefficients from the scale at which their logs are min-

imized down to an arbitrary scale µ, which can ultimately be set to µ = mc. In

our EFT where we have essentially interpreted mW = ∞, this running down to the

scale mc resums large logarithms of m2
W/m

2
c . If the anomalous dimensions are cal-

culated at lowest order, we can see explicitly how these logarithms are resummed by

expanding the evolution kernel

UF (µ,mW , γ
C) ∼ 1 + αsL+ α2

sL
2 + α3

sL
3 + . . . , (1.18)

This shows that the logarithms of the form αnsL
m for n = m, corresponding to the

first row of Eq. (1.13), have been included without doing an n-loop calculation. This

is called leading-logarithmic (LL) resummation and it requires that the anomalous

dimension and QCD beta function be known to 1-loop order. Higher orders of

resummation would include additional rows of Eq (1.13). The second and third

rows, for example, shows the form of logs that would be included in next-to-leading-

logarithmic (NLL) and next-to-next-to-leading-logarithmic (NNLL) resummation.

Each subsequent row includes terms of order αnsL
m where m = n, n − 1, n − 2, . . . .

In Appendix C, Table C.1 contains additional details on the ingredients needed for

various fixed order and resummed calculations.

3 Anomalous dimensions are a feature of quantum theories that deal with the scaling dependence
of Green’s functions in the theory on the renormalization scale, µ.
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1.3 Outline of this Work

The remainder of this thesis will focus on the use of EFTs to study the production

of the J/ψ in jets in e+e− and pp collisions. In Chapter 2, the history of quarkonium

production theory is reviewed and the basic elements of NRQCD are discussed. In

Chapter 3, we introduce the physics of jets and comment on how jet substructure is

studied both analytically and experimentally. We then introduce SCET, a modern

EFT used for calculating jet processes. Chapters 1, 2, and 3 cover background

material that is important for understanding later chapters of this thesis. Chapters 4

and 5 then present the original results of the author with collaborators, much of which

is published in Refs. [36–38].

Chapter 4 first reviews the Fragmenting Jet Function (FJF) formalism, which

describes the energy distribution of a hadron produced within a jet where the sub-

structure of that jet is measured. The formalism is extended to jets where the

angularity (a jet substructure observable to be defined in Chapter 3) of the jet con-

taining an identified hadron is measured in Section 4.4. FJFs are then extended to

jets where the transverse momentum of a hadron in the jet relative to the jet axis is

measured in Section 4.5. In both of these cases, one-loop perturbative calculations

of matching coefficients of the FJFs onto traditional fragmentation functions (FFs)

are performed.

In Chapter 5, the FJF formalism is applied to the study of J/ψ production. Using

the perturbative results calculated in Section 4.4, a phenomenological FF extracted

from e+e− for B mesons, and NRQCD FFs for J/ψ, we calculate resummed cross-

sections for the production of these hadrons in jets where the angularity of the jet is

measured. These analytic results are then compared with Monte Carlo simulations.

While the B meson calculations are consistent with Monte Carlo predictions, the en-

ergy distributions for the J/ψ are not. A way to reconcile the discrepancy between

14



analytic and Monte Carlo results using a modification of the Pythia Monte Carlo

is introduced, which has important implications for future quarkonium production

calculations. The FJFs for jets that contain a hadron whose transverse momentum

relative to the jet axis is measured are shown to be able to discriminate between dif-

ferent ways quarkonia are produced. Finally, we show that analytic results using the

FJF formalism are consistent with recent measurements from the LHCb experiment,

performing much better than state-of-the-art Monte Carlo simulations.

Appendix A discusses important scales and power counting rules in NRQCD.

Appendix B then comments on key symmetries of the SCET Lagrangian. In Ap-

pendix C, renormalization group equations for different classes of functions are de-

rived. Finally, Appendix D outlines properties of plus-distributions and profile func-

tions, which were used in the calculations of Chapters 4 and 5.

15



2

Quarkonium Production

2.1 Introduction & Brief History of Quarkonium

Quarkonia are quark-antiquark pairs pairs bound together by the strong force. Stud-

ies of quarkonia typically focus on cc̄, known as charmonium, and bb̄, known as bot-

tomonium. The large masses of the c, b quarks relative to the light quarks u, d, s

make these heavy quarkonia (notated as QQ) particularly interesting systems to

study. As is discussed in Section 2.4 and Appendix A, heavy quarkonia are charac-

terized by a number of scales, some of which are perturbative, and some of which

are non-perturbative. For example, while the mass of a charm quark is large ∼ 1.5

GeV (a perturbative scale where αs ≈ 0.35), other relevant scales such the radial

excitations of a charmonium state can scale as ∼ 0.5 GeV (a non-perturbative scale

∼ ΛQCD where αs ≈ 0.7).

A wide spectrum of both charmonium and bottomonium states have been ob-

served experimentally and studied extensively. Ironically, although their discovery

was one of the earliest triumphs of the quark model and of QCD, the production of

quarkonia is still not well understood. In this chapter, we will first review the history
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Figure 2.1: Original plot of the BNL group’s J/ψ mass peak at 3.1 GeV. Image
taken from Ref. [4].

of quarkonium physics and introduce the basic spectroscopy of charmonium states.

We will then discuss how our picture of the mechanisms of quarkonium production

has evolved from the earliest models to the modern theory of non-relativistic QCD

(NRQCD). Reviews of NRQCD can be found in Refs. [33, 39, 40].

The first experimental evidence of quarkonia was seen in 1974 with the discovery

of the J/ψ, a charmonium state with mass 3.1 GeV (e.g. Fig. 2.1) and the same

JPC = 1−− quantum numbers as a photon. The J/ψ was found nearly simulta-

neously in decays to e+e− by Ting et al. [4] at Brookhaven National Laboratory’s

Alternating Gradient Synchrotron and to µ+µ− by Richter et al. [41] at SLAC’s

SPEAR experiment, hence the particle’s peculiar two-symbol name. Ting’s group
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Figure 2.2: (Left) Computer reconstruction of the decay of the ψ(2S)→ J/ψπ+π−

at the Mark 1 detector at the SPEAR experiment (shown on right). Courtesy SLAC
National Accelerator Laboratory at http://www.slac.stanford.edu/vault.

named the new particle J supposedly because of its close resemblance to the Chinese

character for Ting’s name, while Richter’s group named the state ψ for the shape of

the decays shown in Fig. 2.2.

The discovery of the J/ψ was a major victory for the nascent form of what

we now know as QCD. Followed just 10 days later by the discovery of the ψ(2S),

another resonant state of charmonium, the J/ψ discovery kicked off the so-called

November Revolution. The J/ψ provided the most compelling evidence yet of the

existence of the charm quark, which had been proposed 10 years earlier by Bjorken

and Glashow in Ref. [42]. At the time, the charm quark was needed to confirm a

number of theoretical phenomena including the GIM mechanism [43]. Proposed in

1970 by Glashow-Iliopoulos-Maiani, the GIM mechanism described a theory of weak

interactions where flavor-changing neutral currents were highly suppressed. Flavor-

changing neutral currents (FCNC) are weak interactions mediated by Z0 bosons that

do not preserve flavor. This occurs, for example when an interaction converts s→ u

in the decays of KL → µ+µ−. While these decays are highly suppressed1, before

1 The branching fraction Br[KL → µ+µ−] = (6.84± 0.11)× 10−9 according to Ref. [44].
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the proposal of the charm quark, this suppression was not predicted by the theory.

The GIM mechanism restored a lepton-quark symmetry through the introduction of

a 4th quark with a charge of 2/3. This symmetry naturally suppresses contributions

from FCNCs.

The first “open flavor” charmed particles (i.e. particles with one charm quark

and one light antiquark) were then found in 1976, with the discovery of the 1865

MeV D0(cū) (via decays to Kπ) and eventually the D±(cd̄, c̄d). As all of these new

particles could be predicted in the quark model proposed in the early 1960’s by Gell-

Mann [45] and Zweig [46], their existence provided strong support for the idea that

quarks are dynamical physical objects as opposed to merely a way to interpret a

curious symmetry amongst particle masses and spins.

Just a few years later, in 1977, experimentalists at Fermilab [47] discovered the

Υ, a bb̄ bound state with a mass of around 9.5 GeV. This provided evidence for the

bottom quark, the fifth quark overall and first in a third generation of quarks.2. The

Υ(2S) was discovered shortly thereafter [49] and was the first of many additional bb̄

states that could be predicted by the quark model. Interestingly, the discovery of

Υ(2S) was published in the same issue of Physical Review Letters as Ref. [50], in

which Steven Weinberg and George Sterman defined the modern concept of jets in

QCD.

2.2 Spectroscopy and Basic Properties

Bound states of cc̄ were predicted to form a spectrum analogous to that of positron-

ium (e+e− bound states), hence the name charmonium first proposed by Appelquist,

et al., in Ref. [51]. Quarkonia are categorized according to their spin and angular

momentum quantum numbers in spectroscopic notation of the form n2S+1LJ where n

2 This kept intact the symmetry between quarks and leptons, as the bottom matched with the τ
lepton, which had been discovered in 1975 [48].
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is the principal quantum number, S is the spin, L is the orbital angular momentum,

and ~J = ~L + ~S is the total angular momentum. Quarkonia are also often classified

according to their JPC quantum numbers, in which the parity is P = (−1)L+1 and

the charge conjugation parity is C = (−1)L+S.

There are a number of basic transitions/decays of charmonia. Above
√
s = 3.74

GeV, charmonia are kinematically allowed to decay to DD̄ meson pairs (mDD̄ = 3.74

GeV). Below this DD̄ threshold, all of the charmonium states predicted by QCD have

been observed experimentally. These particles tend to have very small widths and

decay via electromagnetic/strong interactions to charged leptons/light hadrons and

transition to lower mass quarkonium states. One example is the decay ψ(2S) →

J/ψ(1S)π+π−, a transition to a lower charmonium state which accounts for 33.6%

of the total branching fraction Br[ψ(2S)]. Above the DD̄ threshold, charmonia

generally have larger decay widths and decay predominantly to open-flavor hadrons

via strong interactions. An example of such a decay is ψ(4160) → DD̄, where the

particle is named for its mass of 4160 MeV. Bottomonia have similar properties,

including a corresponding BB̄ threshold at
√
s = 10.56 GeV.

Our focus going forward will be on the J/ψ, a n = 1 S-wave charmonium state.

Not only was the J/ψ the first quarkonium state discovered, but it also has properties

that make it particularly interesting and easy to study experimentally. The J/ψ

has a branching fraction to leptons that is orders of magnitude higher than other

hadrons. Consider the ratio of the branching fractions of leptonic decays of the J/ψ

and φ(1020) meson

Br[J/ψ → µ+µ−]

Br[φ→ µ+µ−]
≈ 20× 103. (2.1)

There are several key reasons for this enhancement. Decays to open-heavy-flavor

such as J/ψ → D0D0 (in analogy to the φ→ K+K− process for strangeness) are not

allowed kinematically because it lies below the DD̄ threshold with mJ/ψ(3.1 GeV) <
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Figure 2.3: The spectrum of experimentally established charmonium (cc̄) states.
Levels are organized horizontally according to their JPC and vertically according to
their mass. The J/ψ is the 3S1 singlet charmonium state. Several hadronic tran-
sitions between charmonium states are also shown such as the ψ(2S) → π+π−J/ψ
process. Graphic is a courtesy of Ref. [5].

mDD̄(3.74 GeV). Thus, the only hadronic decays must be from fragmenting gluons.

Decays to single gluons such as J/ψ → g → π0 are not allowed by color conser-

vation. Gluons, which carry one color and one anti-color, transform as color-octets

under SU(3) transformations. At tree level, they thus cannot decay to a color-singlet

π0. Decays to 2 gluons such as J/ψ → gg → 2 pions are also not allowed by so-

called G-parity3 conservation since both pions and the J/ψ have −1 G-parity. Thus

3 Recall that G-parity is a combination of isospin and charge conjugation operations with eigenval-
ues given by G = (−1)IC where I, C are isospin and charge conjugation eigenvalues, respectively.
J/ψ has C = −1 and I = 0 and thus G = −1. Decays to even numbers of pions are thus G-parity
violating as these have Gnπ = (−1)n.
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J/ψ → ggg → 3 pions is thus the lowest order allowed hadronic decay of the J/ψ.

This process is higher order in the coupling αs, which at high energies such as the

scale 2mc (the only physical scale present in this tree level diagram), is small.

Thus, while many mesons have small branching fractions to leptons, the J/ψ has

a combination of properties that make it decay to µ+µ− comparatively quite often.

This makes the J/ψ particularly easy to observe experimentally. Modern detectors

contain chambers designed specifically to measure the kinematics of muons, which

generally have a clear signal (the signature is often distinguishable by eye). Thus, the

kinematics of the dimuon pairs decaying specifically from J/ψ are easy to reconstruct.

Additionally, the low mass mJ/ψ = 3.1 GeV allows us to easily produce J/ψ with

high transverse momentum. In this region, αs is small and our perturbative QCD

techniques are reliable.

2.3 Models of Quarkonium Production

2.3.1 Potential Models for Charmonia

A potential model of charmonium is appealing for its simplicity and similarity with

positronium. Based on the qualitative features of QCD we make the ansatz

V (r) ∼ −CF
αs
r

+ kr. (2.2)

At short distances, this potential looks like a Coulomb potential where CF is a color-

factor associated with the color configuration of the cc̄. If the quark-antiquark pairs

are in a color-octet state, one can show (by considering a basic qq̄ interaction in QCD)

that CF = −1/6. If they are in a color-singlet state then CF = 4/3. Thus, only the

color-singlet case yields an attractive short-range potential. This is consistent with

experiment, since we always observe particles that are color-singlets.

As r → ∞, the potential is linear in r and becomes extremely large, on the

order of ΛQCD at a distance of 1 fm. The potential is consistent with the flux tube
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Figure 2.4: Flux-tube visualization of a potential model for the strong force.

model shown in Fig. 2.4 with constant string tension (energy density) k. At short-

distances perturbation theory is valid and at long-distances, where the model exhibits

confinement, perturbation theory breaks down.

This static potential can be supplemented with relativistic corrections to account

for fine and hyperfine splittings of different spin states. This includes the 1S0 and

3S1 charmonium states (the ηc and J/ψ) and the splittings of different χc P-wave

states shown in Fig. 2.2. Ref. [52] used a potential model to predict the masses of

various charmonia and bottomonia and found, especially for states below the DD̄

threshold, fairly accurate results. Their predicted mass of mJ/ψ = 3.096 GeV and

mΥ = 9.460 GeV are within 0.03% and 0.003% of the PDG [44] masses, respectively.

However, potential models are purely phenomenological and begin to break down for

the higher mass states. Additionally, we seek a theory that can be derived from the

QCD Lagrangian.

2.3.2 Sources of Quarkonium Production

Quarkonia can be produced in a variety of ways which can be separated into several

categories:

• Non-prompt — Non-prompt sources include decays from B mesons such as
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B± → J/ψ +K+, B± → ψ(2S) +K+, or B0
s → J/ψ + φ, etc.

• Prompt — These are decays that are not from B mesons. This category is

further divided into feed-down and direct contributions (see below).

• Feed-down — These contributions include J/ψ produced from decays from

higher charmonium states such as χc0 → γJ/ψ.

• Direct — These modes will be our primary concern in this work. They in-

volve a variety of processes such as, at the partonic level, gg → J/ψg and are

generally the source of production we refer to when studying calculations of

quarkonium production using the models we describe below.

We do not consider non-prompt sources of J/ψ in this work. While B-meson decays

to J/ψ become extremely prevalent at high transverse momenta (e.g., Ref. [53]),

these decays can generally be separated from prompt sources of J/ψ production in

experimental analyses. Because of their relatively long lifetime, detectors can tag

J/ψ decaying from B mesons by identifying displaced decay vertices.

2.3.3 The Color Singlet Model

Inspired by the concept of QCD factorization and in analogy with positronium, the

Color-Singlet Model (CSM) is perhaps the most intuitive way to approach calculat-

ing quarkonium production cross-sections and decay rates. The CSM describes the

production of quarkonia as the perturbative creation of a heavy QQ̄ state that has

the same angular momentum and color quantum numbers as the J/ψ, namely 3S
[1]
1 .4

This model relies on several basic ideas

1. Factorization — Quarkonium production observables can be factorized into

two pieces: the creation of a heavy QQ̄ pair at short-distance scales and the

4 We have switched notation slightly here, dropping the principle quantum number (which is 1
here) and adding a color-quantum number where [1] denotes a color-singlet state and [8] denotes a
color-octet state.
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non-perturbative binding of this QQ̄ pair into a physical quarkonium bound

state. The former is calculable in perturbation theory and the second is a

universal piece to ultimately be extracted from experiments.

2. Static approximation — The QQ̄ pair is created at roughly threshold energy

(p ≈ 0) and their relative velocity v is very small. Large relative velocities

would disallow the QQ̄ to form a bound state.

3. Quantum Numbers — The QQ̄ pair must be in the physical color state

of the quarkonium. This configuration remains the same through even non-

perturbative stages of production.

The formula for inclusive production of J/ψ in the CSM can ultimately be written

in the following schematic form

σCSM (ij → J/ψ +X) ∼ σ̂
(
ij → cc̄

[
3S

[1]
1

])
×
∣∣RJ/ψ(0)

∣∣2 , (2.3)

where σ̂ is the partonic cross-section for cc̄ production at threshold in the color-

singlet state and |RJ/ψ(0)|2 is the square of the radial wave-function of the cc̄ pair.

This wave-function can be thought of as the probability that the cc̄ pair will collapse

to r = 0 to form a J/ψ. In order to calculate the partonic cross-section for J/ψ

production at hadron colliders at LO, one must calculate the CSM diagrams of

the form shown in Fig. 2.5. An appealing feature of the CSM is that only one

phenomenological parameter, the radial wave-function at the origin, is needed to

calculate J/ψ production. These radial wave-functions can be readily extracted

from measurements of quarkonium decays. A formula analogous to Eq. (2.3) can be

used to calculate the decay rate of the J/ψ into light hadrons or leptons.

For other charmonium excitations, Eq. (2.3) can be generalized to

σCSM

(
ij → Q

[
2S+1L

[1]
J

]
+X

)
∼ σ̂

(
ij → QQ̄

[
2S+1L

[1]
J

])
×
∣∣∣∣
dLRJ/ψ(0)

drL

∣∣∣∣
2

, (2.4)
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+ (c $ c̄) + (c $ c̄) + (c $ c̄)

Figure 2.5: The diagrams contributing to gg → J/ψg or any other 3S
[1]
1 charmo-

nium state at LO in the CSM. The double line denotes the charmonium state and
c↔ c̄ would require switching the directions of each fermion arrow.

where derivatives of the spatial wave-function at the origin are needed for P −wave

quarkonia states such as the χcJ . Despite its simplicity, the CSM ultimately was

proven to be grossly inaccurate by the CDF experiment in the 1990’s (e.g. Fig. 2.6).

Experimentalists found that predictions of the prompt J/ψ and ψ(2S) (also called

the ψ′) production rates by the LO CSM were orders of magnitude below observed

rates [6, 7]. This is referred to as the ψ′ anomaly.

Further attempts were made to reconcile the CSM with measurements at hadron

colliders by including contributions from fragmentation mechanisms. Diagrams for

fragmentation mechanisms have the property that a single “cut” can be made on a

parton such that one side of the cut is a partonic scattering process while the other

side consists of a parton of virtuality order (2mc)
2. Fig. 2.7 shows an example of a

gluon fragmentation mechanism for the production of ηc, a 1S
[1]
0 charmonium state.

Relative to the leading order ηc production diagrams which scale as O(α3
s), this

diagram scales as O(α4
s). Ref. [54] showed that, while fragmentation diagrams such

as Fig. 2.7 are suppressed by orders of αs, at extremely high transverse momentum,

pT , they are enhanced by relative order p2
T/m

2
c . At high enough values of pT , this

factor can easily overcome the relative O(αs) suppression. Ref. [54] found similar
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J/ψ ψ’ = ψ(2S)

(a) (b)

Figure 2.6: Plots from Ref. [6] using data from Ref. [7] which show the LO CSM
predictions for the J/ψ (a) and ψ′ (b) production rates. Both diagrams show that
these predictions (as described in the text) under-predict experimental observations
by orders of magnitude. This helped to motivate the study of fragmentation contri-
butions at high transverse momenta.

results for gluon fragmentation to J/ψ diagrams.

Diagrams contributing to fragmentation are, generally, at least one higher order

in αs than the lowest order non-fragmentation diagrams. However, Ref. [54] showed

that for S-wave quarkonia such as the ηc and J/ψ, gluon fragmentation contributions

were enhanced by a factor of p2
T/m

2
Q in the limit that pT � mQ. Fragmentation

contributions from gluon fragmentation to P -wave quarkonia were then calculated

in Ref. [55]. In the large-pT regime where fragmentation dominates, Ref. [54] also

showed that the cross-section for quarkonium production factorizes via

dσ [A+B → Q+X] (pT ) =

∫
dx
∑

i

dσ̂ [A+B → i+X] (pT/x)×Di→Q(x, µ),

(2.5)

where Q is a quarkonium state, i is a parton type and x is the fraction of i’s mo-

mentum carried by Q. The factor σ̂i is the partonic cross-section for, in Fig. 2.7,

the scattering of gg → gg, and Di→Q is a Fragmentation Function (FF). The FF

describes the fragmentation of the gluon into the a Q = 1S
[1]
0 quarkonium state and
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Figure 2.7: This shows a fragmentation diagram that contributes to ηc(
1S

[1]
0 ) pro-

duction at O(α4
s). Although higher order in the coupling than LO contributions in

the CSM, in the limit that pT � mc, this diagram can be shown to be enhanced by
p2
T/m

2
c . At high pT this enhancement compensates for the αs suppression.

is interpreted as the probability that the ηc carries a fraction x of the gluon’s mo-

mentum. Additionally, Ref. [54] showed that FFs could be calculated perturbatively

at the quark mass scale µ = 2mc. Potentially large logarithms of pT/mc appearing

in the FFs could then be resummed by solving the DGLAP (Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi) equations [56]; the renormalization group equations for FFs

given by

µ
∂

∂µ
Di→Q(z, µ) =

∑

j

∫ 1

z

dx

x
P̃ji(z/x, µ)Dj→Q(x, µ), (2.6)

where P̃ji(x, µ) are the QCD splitting functions originally derived in Ref. [56]. These

functions give the probability for a parton i to fragment into a parton j that carries

a fraction x of its longitudinal momentum. At leading order in αs they can be
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expressed as

P̃qq(x) = CF

(
1 + x2

(1− x)+

+
3

2
δ(1− x)

)
,

P̃gq(x) = TR

(
1 + (1− x)2

x

)
,

P̃qg(x) = CF
(
x2 + (1− x)2

)
,

P̃gg(x) = CA

(
2(1− x+ x2)2

x(1− x)+

+
β0

2CA
δ(1− x)

)
, (2.7)

where β0 was defined is Eq. (1.6), CF = 4/3, TR = 1/2, CA = 3 and the qq and gg

channels make use of plus-distributions, which are defined in Appendix D. Both FFs

and splitting functions will be discussed in much more detail in Chapter 4.

Thus, at high pT , quarkonia production could be factorized into three stages.

Consider the production of ηc (1S
[1]
0 charmonium) as shown in Fig. 2.7. In this

simpler case, the required pieces of production are: the partonic cross-section for

gg → gg∗ where the virtual gluon is not far off-shell, the gluon propagator ∼ 1/q2,

and the FF for g → ηcg. Ref. [54] calculated each of the FFs for the singlet S-wave

quarkonia. For the ηc, they found

Dg→ηc =
1

3π
αs(2mc)

2 |Rηc(0)|2
(2mc)3

(
3z − 2z2 + 2(1− z) log (1− z)

)
(2.8)

where Rηc(0) is the radial wave-function at the origin to be extracted from decay

processes and, at this scale, αs(2mc) ≈ 0.26.

Calculations of the fragmentation contributions to prompt J/ψ production at the

Tevatron were calculated in Ref. [6, 57] and are shown as solid lines in Fig. 2.6. The

inclusion of fragmentation modes improved the shape of the pT spectrum as compared

to Tevatron data. However, when experimentalists isolated direct production, the

LO CSM + fragmentation predictions for the J/ψ production rate were roughly 30

times lower than observed rates. For the ψ′, this disagreement was even worse.
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J/  (2S)

Figure 2.8: Inclusive cross-section for inclusive J/ψ (Left) and ψ(2S) (right) pro-
duction at the Tevatron at

√
s = 1.8 TeV [8]. The cross-sections are for direct J/ψ

(ψ(2S)) production and are differential in pT and for central rapidities |η| < 0.6.
Both plots show that both the LO CSM and LO CSM + fragmentation predictions
are orders of magnitude below the data. With the addition of color-octet production
mechanisms, both the J/ψ and ψ(2S) predictions from NRQCD are in near perfect
agreement with the data.

Additionally, the CSM was found to yield uncanceled infrared (IR) divergences

in the production cross-sections and decay rates of P -wave quarkonia. Consider the

cross-section for inclusive χcJ production

dσCSM(χcJ +X) ∼ dσ̂(QQ̄
[

3P
[1]
J

]
+X)

∣∣R′χcJ (0)
∣∣2 . (2.9)

At NLO, this factorization is spoiled by logarithmic IR divergences coming from soft

gluon emissions at O(α3
s) in the short-distance piece dσ̂ [58, 59]. At this point, the

CSM could be conclusively declared as unable to describe quarkonium production

and decay in modern high-energy hadron colliders.
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2.4 NRQCD — A Modern Theory of Quarkonium Production & De-
cay

2.4.1 Lagrangian of NRQCD

In order to deal with the problems of the CSM, Ref. [60] developed Non-Relativistic

Quantum Chromodynamics (NRQCD), which was based on the idea that a QQ̄

pair could be treated as a non-relativistic, Schrodinger-like approximation of a QCD

bound state. This formalism provided a natural cancellation of the IR divergences in

the P -waves and provided the first model of quarkonium production directly deriv-

able from full QCD. NRQCD has since become the standard theoretical approach

to calculating quarkonium production and decay. In this section, we will outline

the theoretical foundations of the NRQCD factorization approach as developed in

Ref. [60].

Quarkonium production involves several distinct energy scales: the mass M , the

typical momentum Mv, and the typical kinetic energy Mv2 of the heavy QQ̄ pair.

NRQCD factorization is built upon the idea that quarkonia are produced first by the

perturbative creation of a heavy QQ̄ over short-distances of order ∼ 1/M . These

QQ̄ pairs then undergo a non-perturbative transition into physical quarkonia over

long-distances of order ∼ 1/(Mv) and larger. The scale Mv2 then represents the

order of radial and/or orbital angular momentum excitations. As long as the scales

satisfy Mv2 � Mv � M , these stages should be factorizable. For typical charmo-

nia/bottomonia, these scales can indeed shown to be well-separated. This is discussed

in more detail in Appendix A. The average relative velocity of a cc̄ charmonium state

is vc ≈ 0.3 and for a bb̄ bottomonium state is vb ≈ 0.1 [33].

The presence of these well-separated scales motivates the construction of an EFT

that is a simultaneous expansion of QCD in αs and the relative velocity v. By

considering the relativistic behavior of heavy quarks only as power corrections, the
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Lagrangian of this theory should describe the low-energy sector of QCD for heavy

quarks. This theory should also maintain several of the key symmetries of full QCD

such as SU(3) gauge symmetry, rotational symmetry5, and discrete symmetries such

as parity P and charge-conjugation C symmetry. Additionally, the theory should

conserve the numbers of heavy quarks and anti-quarks (so-called heavy quark phase

symmetry). The most general Lagrangian satisfying these symmetries was shown in

Ref. [60] to be

LNRQCD = Llight + Lheavy + δL, (2.10)

where the gluons and Nf flavors of light quarks are described by the usual relativistic

QCD Lagrangian shown in Eq. (1.1) for mu = md = ms = 0 and

Lheavy = ψ†
(
iD0 +

D2

2M

)
ψ + χ†

(
iD0 −

D2

2M

)
χ+ δL. (2.11)

In Eq. (2.11), ψ and χ are heavy quark and anti-quark spinor fields, respectively.

With δL → 0, this Lagrangian is the minimal form of NRQCD and contains a heavy

quark spin symmetry. Thus, this form of LNRQCD can describe splittings between

radial excitations of quarkonium (such as the J/ψ ↔ ψ′) and between orbital angular

momentum excitations (such as the J/ψ ↔ χcJ) but not between spin excitations

(such as ηc ↔ J/ψ). Thus Llight + Lheavy describes the light quarks according to

ordinary QCD and heavy quarks/anti-quarks according to a Schrodinger field theory.

The term δL contains the LO contributions of relativistic effects on the heavy

5 Full Lorentz symmetry will not be manifest in the non-relativistic limit, but is recoverable via
corrections in powers of v.
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quarks and is given by

δL =
c1

8M3

(
ψ†(D2)2ψ − χ†(D2)2χ

)

+
c2

8M2

(
ψ†(D · gE− gE ·D)ψ + χ†(D · gE− gE ·D)χ

)

+
c3

8M2

(
ψ†(iD× gE− gE× iD) · σψ + χ†(iD× gE− gE× iD) · σχ

)

+
c4

2M

(
ψ†(gB · σ)ψ − χ†(gB · σ)χ

)
,

(2.12)

where the ci = 1 + O(αs) are dimensionless coefficients that are sensitive to high-

energy (short-distance) physics and can be found through matching scattering ampli-

tudes in NRQCD with the corresponding expressions in full QCD. The terms E = G0i

and B = 1
2
εijkGjk are the chromo-electric and chromo-magnetic components of Gµν .

We note that the heavy quark spin symmetry of the minimum NRQCD Lagrangian is

now broken by σ dependent terms. In taking the non-relativistic limit, we effectively

removed effects occurring at length scales of 1/M .6 Thus, in order to reproduce the

effects of creation/annihilation of pairs QQ̄, we can explicitly include local 4-fermion

operators in δL of the form

δL4-fermion =
∑

n

fi
Mdn−4

On where On = ψ†K′nχχ†Knψ, (2.13)

where fi are perturbatively calculable functions of αs(2mc) and Kn, K′n are products

of combinations of a spin matrix (1 or σ), color matrix (1 or T a), and/or a polynomial

in the covari ant derivative, D. Each On is a creation/annihilation operator for a

QQ̄ pair. It creates a QQ̄ pair in a color and angular-momentum state dictated

6 Integrating out higher scales ultimately means that the operators in δL will carry a dependence
on µ, the renormalization scale or ultraviolet cutoff of NRQCD. Each matching coefficient ci(µ)
should then depend on µ in such a way that exactly cancels the µ dependence of the operators.
While the evolution of these matrix elements can be considered, the logarithms associated with this
dependence are not generally considered when studying quarkonium production at high pT , where
logarithms of pT /mQ are more important.
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by the form of K′n after annihilating a QQ̄ pair in a state with quantum numbers

given by Kn. Each operator must respect the symmetries of the NRQCD Lagrangian

described above and should have a 1/Mdn−4 mass scaling where dn is the dimension

of the operator On is introduced in order to make the coefficients fn dimensionless.

2.4.2 NRQCD Factorization

Having constructed a Lagrangian for NRQCD, we can now more clearly describe its

picture of quarkonium production. Ref. [60] showed that the cross-section for the

inclusive production of quarkonium can be written schematically in the following

factorized form

dσ(Q+X) =
∑

n

dσ̂(QQ̄[n] +X)× 〈OQ[n]〉, (2.14)

where n ≡ 2S+1L
[1,8]
J describes the quantum numbers of the heavy QQ̄ pair. Here

dσ̂ is a short-distance, perturbatively calculable cross-section for the creation of a

QQ̄ in the state n and 〈OQ[n]〉 are long-distance-matrix-elements (LDMEs) that de-

scribe the non-perturbative hadronization of the QQ̄ pair into a physical quarkonium

state Q. By inserting a projection operator onto the quarkonium state PQ into our

expression for On above, the LDMEs can ultimately be shown to take the form

〈OQ[n]〉 ≡
∑

X,λ

〈0|χ†Km |Q(λ) +X〉 〈Q(λ) +X|χ†Knψ |0〉 (2.15)

where PQ =
∑

X,λ

|Q(λ) +X〉 〈Q(λ) +X| , (2.16)

where
∑

X,λ is a sum over the possible other hadrons, X, in the final state and λ is

the possible polarization states of the quarkonium Q.

NRQCD describes quarkonium production as the perturbative formation of a

QQ̄ pair in a state n where there is no requirement that n match the quantum

numbers of the physical quarkonium state Q as was the case in the CSM. The theory
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assumes that soft gluons at nonperturbative energy scales ≤ Mv are emitted that

change the quantum numbers of the intermediate QQ̄ pair as it transitions into

Q. The scaling of these transitions is dictated by the multipole expansion in the

velocity v. These soft gluon effects are accounted for in the LDMEs, each of which

carries a scaling in v. Derivations of the NRQCD factorization theorem rely on

standard factorization methods in full QCD as well as the separation of the scales

Mv2 � Mv � M . Factorization of production cross-sections in NRQCD has,

however, not been rigorously proven to all-orders in αs.

2.4.3 Power Counting & Selection Rules

Power counting in NRQCD dictates the order in the v expansion at which interme-

diate QQ̄ states contribute to the production of a given quarkonium state Q. In

Appendix A, we explain how writing the NRQCD Lagrangian explicitly in terms of

the vector potential A by working in the Coulomb gauge∇ ·A = 0 makes the power

counting in v manifest. The possible Fock states of a quarkonium state Q have the

schematic form

|Q〉 = ψQ
QQ̄

∣∣QQ̄
〉

+ ψQ
QQ̄g

∣∣QQ̄g
〉

+ . . . , (2.17)

where the dominant Fock state is the color-singlet QQ̄[2S+1L
[1]
J ] state (where the

quantum numbers depend on the the quarkonium state being studied) and higher

Fock states contain dynamical gluons. Each higher Fock state is suppressed by orders

of αs and v. The probability associated with each Fock state is then dictated by their

coupling with the dominant QQ̄ state through transitions described by the terms of

the Lagrangian. Two such such transitions are

1. Chromo-electric Transitions — These come from Lagrangian terms such

as ψ†(igA ·∇)ψ. Transitions between, for example,
∣∣QQ̄g

〉
and

∣∣QQ̄
〉

Fock

states involve selection rules ∆L = ±1 and ∆S = 0. These transitions change

35



the color state from color-singlet to color-octet and from color-octet to either

color-octet or color-singlet.

2. Chromo-magnetic Transitions — These transitions are associated with

terms such as ψ†(∇ × gA) · σψ. They break heavy quark spin symmetry,

have selection rules ∆L = 0 and ∆S = ±1 between Fock states, and have the

same rules for color quantum numbers as the chromo-electric case.

Using these basic transitions, the LDMEs can be shown to have the following scaling

in v

〈OQ[2S+1L
[1,8]
J ]〉 ∼ v3+2L+2E+4M , (2.18)

where E and M represent the minimum number of chromo-electric and chromo-

magnetic transitions needed for the transition of QQ̄[2S+1L
[1,8]
J ] to the quantum num-

bers of Q. For J/ψ, the dominant Fock state is 〈OJ/ψ[3S
[1]
1 ]〉 ∼ v3 and the leading

order color-octet states such as 〈OJ/ψ[3S
[8]
1 ]〉 scale as v7.

Recall that, in the CSM, IR divergences in calculations of χcJ production were

left unregulated (recall Eq. (2.9)). NRQCD naturally provides a solution to this

problem by including both color-singlet and color-octet intermediate states. At LO

in the v expansion of NRQCD, two terms contribute to inclusive χcJ production

dσ(χcJ +X) ∼ σ̂(QQ̄[3P
[1]
J ] +X)× 〈OχcJ [3P

[1]
J ]〉

+ σ̂(QQ̄[3S
[8]
1 ] +X)× 〈OχcJ [3S

[8]
1 ]〉.

(2.19)

NRQCD dictates that both of these terms scale as ∼ v5, since QQ̄[3S
[8]
1 ] can be

reached from the dominant χcJ through a single chromo-electric transition. In the

calculation of χcJ decays, the IR singularities of the color-octet piece match those of

the 3P
[1]
J state as shown in Ref. [60].
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Figure 2.9: Example of diagrams for (a) LO non-fragmentation contributions and
(b) fragmentation contributions to J/ψ production. The relevant scalings in the
coupling and transverse momenta are shown, emphasizing that, while suppressed by
orders of αs, fragmentation diagrams are enhanced by powers of the pT for very high
transverse momenta.

2.4.4 Leading Power NRQCD

Recall from our discussion of the CSM that, at high transverse momenta, fragmen-

tation contributions dominate the production of quarkonia. For S-wave quarkonia

such as the J/ψ and ψ(2S) where pT � mc, the leading CSM contribution scales

as dσ/dp2
T ∼ α3

s(2mc)
4/p8

T [54]. As shown in Fig. 2.4.4, fragmentation modes are

higher order in αs but are enhanced by factors of the pT . This motivates the use

of leading-power factorization (LP), which considers contributions to quarko-

nium production organized in powers of 1/p2
T . Applying LP factorization to the

short-distance piece of the NRQCD factorization formula in Eq. (2.14) yields

dσ̂(QQ̄[n] +X) =
∑

i

dσ̂(i+X) •Di→QQ̄[n](z), (2.20)

where the sum is over parton species, Di→QQ[n] are single parton FFs into heavy QQ

pairs in the intermediate color and angular momentum state n, and • represents a

convolution in the momentum fraction z carried by QQ. The newly factorized short-

distance piece σ̂(i + X) is now completely independent of the intermediate QQ[n]

state. In this formalism, NRQCD power counting dictates that the leading contri-
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Figure 2.10: Basic fragmentation diagrams for the 3S
[8]
1 , 1S

[8]
0 , 3P

[8]
J , and 3S

[1]
1

NRQCD production mechanisms for J/ψ that are most important in the leading
power approximation of NRQCD. The scalings of each mode with the expansion
parameters αs and v are also shown in each case.

butions will be the 〈OJ/ψ(3S
[8]
1 )〉, 〈OJ/ψ(3P

[8]
J )〉, 〈OJ/ψ(1S

[8]
0 )〉, 〈OJ/ψ(3S

[1]
1 )〉 mecha-

nisms. Note that, going forward, we refer to these mechanisms colloquially as the

NRQCD production mechanisms or the LDMEs for J/ψ. Diagrammatic rep-

resentations and relevant scaling are shown in Fig. 2.10. Color-octet contributions

are suppressed by relative order v4 but are enhanced by relative orders of pT and, in

the case of the 3S
[8]
1 for example, by relative order 1/α2

s.

The LP factorization approach allows us to compute fragmentation contributions

beyond fixed order. By solving the leading-order DGLAP equations for the FFs

for each of the J/ψ LDMEs listed above, we can include contributions to the FFs

from leading logarithms of the form log (p2
T/(2mc)

2) to all orders in αs. This RG

evolution will play an important role when we calculate quarkonium production in

jets in Chapters 4 and 5. The first calculation of these fragmentation contribu-

tions to J/ψ production was performed in Ref. [9] where the authors extracted the

〈Oψ′(3S
[8]
1 )〉 LDME from CDF data for prompt ψ′. Their results were a significant

improvement from the LO CSM predictions as can be seen in Fig. 2.11. A more com-

plete calculation of the color-octet fragmentation contributions was then performed

in Refs. [61, 62]. The authors provided the first NRQCD calculations of the P -wave

fragmentation contributions to J/ψ as well as contributions to χcJ and Υ production.
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Figure 2.11: Figure from Ref. [9] showing CDF data for prompt ψ′ production
and theoretical predictions of the total LO CSM contributions (dotted curves), the

CSM + fragmentation contributions (dashed curves) and the 3S
[8]
1 color-octet frag-

mentation contribution (solid curve). Theoretical predictions match CDF data quite
well, which motivates the use of NRQCD to describe quarkonium hadroproduction
at high pT , specifically because of its inclusion of intermediate color-octet states.

The ability of these calculations to predict the pT spectrum of quarkonia at the

Tevatron gave the NRQCD community hope that the addition of color-octet mech-

anisms might finally provide a robust prediction of J/ψ and ψ′ production. The

prevailing sentiment of the community was that the CSM was incomplete and that

the dominant source of S-wave quarkonia at high pT came from g → QQ̄[3S
[8]
1 ] frag-

mentation.

2.4.5 Fragmentation Functions at αs(2mc)

At this point, we can present the analytic expressions for the leading power NRQCD

FFs as first calculated in Ref. [63, 64]. Each FF is calculated at the scale µ = 2mc and
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Figure 2.12: Plot showing the polar anisotropy parameter α = λθ = (σT −
2σL)/(σT + 2σL) resulting from fits of the angular distribution of di-muons in di-
rect ψ′ production (a) and prompt J/ψ production (b) (in pp̄→ J/ψ(→ µ+µ−) +X
events) to the distribution 1 + α cos2 (θ) as a function of the transverse momentum
pT where θ is the angle between the µ+ 3-momentum in the J/ψ rest frame and the
J/ψ 3-momentum in the lab frame. This shows significant disagreement between
theoretical predictions of [10] and Tevatron data [11].

will, in subsequent chapters, be evolved using the LO DGLAP evolution equations

in Eq. (2.6) to a higher energy scale. The FFs are presented in a form consistent

with Ref. [12]

D
3S

[8]
1

g→J/ψ(z, 2mc) =
παs(2mc)

24m3
c

〈OJ/ψ(3S
[8]
1 )〉δ(1− z),

D
1S

[8]
0

g→J/ψ(z, 2mc) =
5α2

s(2mc)

96m3
c

〈OJ/ψ(1S
[8]
0 )〉

(
3z − 2z2 + 2(1− z) log (1− z)

)
,

D
3P

[8]
J

g→J/ψ(z, 2mc) =
5α2

s(2mc)

12m5
c

〈OJ/ψ(3P
[8]
J )〉,

(
1

6
δ(1− z) +

[
1

1− z

]

+

13− 7z

4
log (1− z)− (1− 2z)(8− 5z)

8

)
,

(2.21)
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Figure 2.13: This plot, adapted from Ref. [12], shows the fragmentation functions
in leading power NRQCD plotted as a function of z, the fraction of the fragmenting
parton’s energy carried by the hadron. The curves are normalized (by multiplying
the functions by numbers) such that all of the curves fit on the same plot.

and

D
3S

[1]
1

g→J/ψ(z, 2mc) =
5α3

s(2mc)

864πm3
c

〈OJ/ψ(3P
[8]
J )〉

∫ z

0

dr

∫ (1+r)/2

(r+z2)/2z

dy
1

(1− y)2(y − r)2(y2 − r)2

×
2∑

i=0

zi

(
fi(r, y) + gi(y)

1 + r − 2y

2(y − r)
√
y2 − r

log

(
y − r +

√
y2 − r

y − r −
√
y2 − r

))
,

where the expressions fi(r, y), gi(r, y) are rather complicated polynomials of r ≡

(2mc)
2/s and y ≡ p · q/s and are given explicitly in Eq.(A10) in Ref. [12]. The

integrals overs r and y can only be performed numerically. Evaluated at 2mc, each

of these functions is shown (using an interpolation for the singlet case) in Fig. 2.13.

These functions will be used to calculate cross-sections for J/ψ produced in jets in

Chapter 5.
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2.5 The Polarization Puzzle

2.5.1 Calculating Quarkonium Polarization

A crucial test of NRQCD is to use the LDMEs extracted from the J/ψ (ψ′) production

cross-section to predict the polarization of the J/ψ (ψ′). In this section, we outline

how to calculate the polarization of these particles from the angular distribution of

their decays to leptons.

Given a quantization axis ẑ, we say a particle is unpolarized when a it has an

equal probability 1/(2J + 1) to be found in any of the possible Jz = −J,−(J −

1), . . . ,+J eigenstates (where J is the total angular momentum). Otherwise, the

particle is said to be polarized. The polarization of the J/ψ is interesting both

theoretically and experimentally. Theoretically, polarization gives us insight into the

J/ψ’s production, as it is dependent upon the underlying production mechanisms.

Experimentally, proper predictions of polarization affect the uncertainty of measure-

ments of the kinematic details (and thus the acceptance rates) of the decay products

of the J/ψ in the detector [13].

The polarization of a J/ψ is measured by studying the geometry of J/ψ → µ+µ−

decays. The intermediate state n of the QQ̄[n] pair is reflected in the angular dis-

tribution of the dimuon pair. In the rest-frame of the decaying J/ψ, a spherically

symmetric dilepton angular distribution signals that the J/ψ is, on average, unpo-

larized, while an anisotropic distribution signals an underlying polarization.

Fig. 2.14 shows a coordinate system on which we can define the angular distribu-

tion of the dimuons . The polar angle θ is defined to be between the l+ and a choice

of polarization axis ẑ. The azimuthal angle φ is measured with respect to the pro-

duction plane — the plane containing the directions of the incident beams. There

are three common choices for the polarization axis which are shown in Fig. 2.15:

the Gottfried-Jackson frame [65] where ẑ is chosen along the direction of one of the
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Figure 2.14: The polarization of J/ψ is studied using the angular distribution of
decays to l+l−. This figure from Ref. [13] shows a coordinate system for measuring
this distribution. The polarization axis is chosen to be along z according to several
conventions which are shown in Fig 2.15.

beams, the Collins-Soper frame [66] where ẑ runs long the bi-sector of the acute angle

between the two beams, and the helicity frame, where ẑ is chosen to be along the

direction of the J/ψ’s momentum in the CM frame of the beams. We will work in

the helicity frame. Transversely polarized J/ψ will have Jz = ±1 where the spin of

the particle aligns (anti-aligns) with its momentum. Longitudinally polarized J/ψ

will have Jz = 0. Suppose that the J/ψ is in the angular momentum superposition

state

|J/ψ; J = 1,m〉 = a−1 |J/ψ; 1,−1〉+ a0 |J/ψ; 1, 0〉+ a+1 |J/ψ; 1,+1〉 , (2.22)

where the total angular momentum J = 1, m = −1, 0,+1, and the coefficients am

are the probability amplitudes that the J/ψ will be in a given m state. In Fig. 2.16,

the l+l− pair is produced in the J/ψ rest-frame along the z′ axis and where Jz′ is the

projection of ±1 onto z′. θ and φ are the polar and azimuthal angles between z′ and

the polarization axis z. Using rotation matrix techniques from quantum mechanics,
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Figure 2.15: The three conventions for defining the polarization axis: HX —
helicity frame, GJ — Gottfried-Jackson frame, CS — Collins-Soper frame. In this
figure taken from Ref. [13], b1 and b2 represent the directions of the incoming beams
and Q the direction of the quarkonium.

we can re-express the states in Eq. 2.22 as eigenstates of Jz

|J,m′〉 =
∑

m=−J,...,+J

D(J)
mm′(α, β, γ) |J,m〉, (2.23)

where the Euler angles α, β, γ will be α = −γ = φ and β = θ such that

D(J)
mm′(φ, θ,−φ) = e−iφ(m−m′)d

(J)
mm′(θ). (2.24)

Here, d
(J)
mm′(θ) are the reduced matrix elements (e.g., d

(1)
11 = (1 + cos θ)/2, . . . ). It

can be shown (e.g., Ref. [13]) that the probability, W (θ, φ), that a J/ψ decays into

a l+l− pair with an angular distribution in θ, φ can be written as

W (θ, φ) ∼ 1

3 + λθ

(
1 + λθ cos2 θ + λφ sin2 θ cos 2φ+ λθφ sin 2θ cosφ

)
, (2.25)

where for purely transverse (longitudinally) polarized distributions λθ = +1(−1) and

λφ = λθφ = 0. The symbol λθ is the polar anisotropy parameter and can be expressed

in terms of the probability amplitudes for the J/ψ to be in each Jz eigenstate as

λθ =
1− 3|a0|2
1 + |a0|2

∼ σT − 2σL
σT + 2σL

. (2.26)

Here, a0 is the probability amplitude of the J/ψ to be in the Jz = 0 state and σT (σL)

are the cross-sections for transversely (longitudinally) polarized J/ψ.
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Figure 2.16: The polarization of J/ψ is studied using the angular distribution
of decays to l+l−. Knowing the eigenvalues of J ′z along the axis of production,
basic properties of angular momentum can be used to show that polarization can
be expressed in terms of eigenstates of z a polarization axis fixed by one of the
conventions described in the text. This figure is adapted from Ref. [13].

2.5.2 Predictions & Measurements of Quarkonium Polarization

Where NRQCD factorization holds, the LDMEs should be universal quantities.

Ref. [67] showed that the dominance of the 3S
[8]
1 mechanism meant that for large

transverse momentum, nearly 100% of J/ψ and ψ′ should be transversely polarized.

Because this mechanism comes from the direct fragmentation of a single virtual

gluon, as pT is increased, this gluon gets closer and closer to being on its mass-

shell. Gauge invariance dictates that gluons, which are massless, must always be

transversely polarized. An intermediate QQ̄[3S
[8]
1 ] becomes a physical color-singlet

quarkonium state Q via 2 chromo-electric transitions. Governed by an operator of

the form ψ†(igA · ∇)ψ, chromo-electric transitions occur via soft gluon emissions

and preserve the heavy quark spin symmetry. Thus, the resulting J/ψ or ψ′ should
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〈OJ/ψ(3S
[1]
1 )〉 〈OJ/ψ(3S

[8]
1 )〉 〈OJ/ψ(1S

[8]
0 )〉 〈OJ/ψ(3P

[8]
0 )〉/m2

c

× GeV3 ×10−2 GeV3 ×10−2GeV3 ×10−2GeV3

B & K [14, 15] 1.32± 0.20 0.224± 0.59 4.97± 0.44 −0.72± 0.88
Chao, et al. [18] 1.16± 0.20 0.30± 0.12 8.9± 0.98 0.56± 0.21
Bodwin et al. [22] 1.32± 0.20 1.1± 1.0 9.9± 2.2 0.49± 0.44

Table 2.1: We consider three sets of LDMEs for NRQCD production mechanisms,
listed here in units of GeV3.

be transversely polarized.

Fig. 2.12 shows that fixed order NRQCD predictions that the J/ψ and ψ′ po-

larization is transverse at high-pT is obviously not correct. There are a number of

possible theoretical uncertainties such as the uncertainty in the extraction of the

LDMEs, higher order QCD effects that have been neglected in the calculation of the

short-distance pieces, and higher order spin-symmetry violating terms in NRQCD.

These cannot explain the drastic failure of the polarization prediction. This problem

is known as the polarization puzzle.

There have been numerous extractions of the LDMEs since the publication of

Ref. [10] in 1999. We will discuss three such extractions from Refs. [14, 15, 18, 22].

The results of each of these fits are presented in Table 2.1 and again in Table 5.4 for

convenience in Chapter 5. In Refs. [14, 15], the authors performed fits using NLO

fixed order calculations of direct J/ψ production that included both color-singlet and

color-octet mechanisms to the world’s data on J/ψ production. This included data

from a wide variety of experiments and thus a wide variety of initial states including

pp, pp̄, γγ, γp, e+e−.

We note that Ref. [15] used 1.32 GeV3 for the 3S
[1]
1 LDME, which was extracted

from the electromagnetic partial width Γ[J/ψ → e+e−] in Ref. [68]. As can be seen

in Fig. 2.17 (only LHCb and ATLAS are shown), the predictions of NLO NRQCD

fit the data far better than CSM predictions, which under predicted the production
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Figure 2.17: A sample of 2 (out of 28) plots that show the global fits performed in
Refs. [14, 15] of NLO NRQCD predictions (shown as CS+CO,NLO). The plots show
that the data clearly favor the inclusion of the color-singlet and color-octet modes
predicted at NLO in NRQCD over LO NRQCD and the color-singlet model (shown
as CS, LO and CS, NLO) at both leading and next-to-leading order.

rate an order of magnitude. Predictions of the J/ψ polarization using these fits are

compared with LHCb data in Fig. 2.18, where they are drawn as blue diagonal lines.

Similarly to the comparisons of NRQCD predictions with CDF data in Fig. 2.12,

NRQCD with LDMEs extracted from the global fits of Ref. [15] predicts a strong

transverse polarization at high pT , which does not match the data. LHCb data from

Ref. [16] shows unpolarized J/ψ with perhaps a slight longitudinal polarization at

very high pT .

In 2012, Ref. [18] performed an extraction of the LDMEs from a more restrictive

data set using a fixed order NLO NRQCD calculation of prompt J/ψ production.

Rather than fitting strictly to the pT distribution, Ref. [18] performed a simultaneous

fit of the LDMEs to both the pT and polarization distributions for high pT > 7

GeV data at the Tevatron. Shown in Fig. 2.19, their predictions for direct J/ψ

production also show good agreement in the pT distributions. Their predictions for

the polarization are shown in Fig. 2.18 as a green hatched pattern. While these fits
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Figure 2.18: A comparison of LHCb data [16] for prompt J/ψ production of the
polarization observable λθ with kT factorization (modification of CSM; shown in
diagonal magenta lines) [15] and three different NLO NRQCD predictions as a func-
tion of pT (J/ψ) for the LHCb rapidity range of 2.5 < y < 4. The blue diagonal lines
(NRQCD(1)) are based on global fits of Ref. [15], the red vertical lines (NRQCD(2))
on fits of Ref. [17], and the green hatched pattern (NRQCD(3)) on a high-pT fit from
Ref. [18, 19]. We do not consider the fits of Ref. [17] or from the kT factorization
approach in this work.

do perform better than the polarization predictions of the global fits, they are still

not within experimental errors at high pT .

Finally, Ref. [22] performed a fit of the LDMEs to pT > 10 GeV data for

prompt J/ψ production at both the Tevatron and the LHC. Their analytic pre-

diction was based on NRQCD using the LP power factorization formalism described

in the previous section. This approach allowed them to evolve the FFs from 2mc

to mT =
√
p2
T + (2mc)2, essentially the scale of the pT of the J/ψ, resumming po-

tentially large logarithms of p2
T/(2mc)

2 at leading-logarithmic accuracy. They then

made predictions of the polarization of J/ψ in direct production, which is compared

against CDF and LHC data in Fig. 2.20. In both cases, their calculations of the

polarization improved upon previous predictions, suggesting that the NLO + LP

formalism provides a more accurate description of J/ψ production at high pT .
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Figure 2.19: Cross-sections as a function of pT for the two LDME extractions in
Ref. [18]. Darker bands (NLO Total I) show predictions that use the fits shown
in Table 5.4 for the simultaneous fit of the LDMEs to the polarization and pT for
specifically pT > 7 GeV data from CDF and CMS. The lighter bands show show
upper and lower bounds of fits that fix O(1S

[8]
0 ) = 0 and O(3S

[8]
1 ) = O(3P

[8]
J ) = 0

as the upper and lower bounds, respectively. The top and bottom figures show
comparisons with ATLAS (left) [20] and CMS (right) [21] data.

Ref. [18] and Ref. [22] predict polarization distributions that are much closer to

the unpolarized data than the predictions of the global fits of Ref. [15]. Refs. [18, 22]

enforce a cancellation of the 3S
[8]
1 and 3P

[8]
J mechanisms. Fig. 2.21 shows individual

contributions to the polarization parameter from each NRQCD production mech-

anism. As the 3S
[8]
1 and 3P

[8]
J both have significant transverse components, their

cancellation leaves the 1S
[8]
0 mechanism, which largely mimics the data, as the main

color-octet contribution at high pT .

2.6 Going Forward

Ref. [18] and Ref. [22] showed improvements in the ability of NRQCD to predict the

pT distribution and polarization of the J/ψ in hadron collisions at high pT over the

global fits of Ref. [14]. They expose a more complex relationship amongst the con-

tributions of the different NRQCD production mechanisms where the picture is not
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Figure 2.20: Comparison from Ref. [22] of analytic predictions using NLO NRQCD
+ LP factorization for the anisotropy parameter λθ = (σT − 2σL)/(σT + 2σL) with
data from (a) CDF Run I [11] and CDF Run II [23] and (b) CMS data [24]. Again,
σT (σL) is the cross-section for transversely (longitudinally) polarized production of
the J/ψ.

simply of a dominant 3S
[8]
1 channel at high pT . Ref. [22] also demonstrated the utility

of the LP factorization formalism, which focuses on fragmentation contributions to

J/ψ production.

However, significant differences between the three fits discussed above exposes an

underlying tension in calculations of J/ψ production. The LDMEs, which describe

the non-perturbative evolution of QQ̄[n] states into physical quarkonia, should be

universal. Even amongst different fits to high pT data, radically different results are

found for the LDMEs. These imply different pictures of how quarkonia are produced

and raises a number of intriguing questions: Do the velocity v or αs expansions

in NRQCD have convergence issues? Does LP factorization break down at low

transverse momentum?

Ref. [12] took on these questions and proposed alternative tests of NRQCD that

focus on J/ψ produced within jets. They showed that recently developed jet sub-

structure techniques can be harnessed to use jets as a laboratory in which to study

quarkonium production in a regime where NRQCD factorization is reliable. In Chap-

ter 3, we will discuss the fundamentals of jet physics and how jets provide a new

50



Figure 2.21: Polar anisotropy parameter λθ = (dσT − 2dσL)/(dσT + 2dσL) for J/ψ
production using LDMEs from fits performed in Ref. [18] compared with data from
CDF Run I [25] and Run II [26]. This plot also shows the individual contributions
of each NRQCD production mechanism to the overall polarization. This makes the
cancelation of the transverse components of the 3P

[8]
J and 3S

[8]
1 components at high

pT visible.

realm in which to extract information about the non-perturbative formation of the

J/ψ.
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3

Jets: Nature’s High-Energy Conical Laboratory

3.1 Introduction

Practically ubiquitous in high-energy particle collisions are highly collimated sprays

of radiation called jets. Observed in detectors as clusters of particles in a restricted

angular region, jets are one of the most fundamental predictions of QCD. A natural

consequence of confinement, jets are important for a wide variety of reasons within

both Standard Model (SM) and Beyond the Standard Model (BSM) physics. Jets

are the source of large backgrounds to many interesting processes which motivates

the development of methods by which to veto events containing jets. Jets also pro-

vide a laboratory in which to study the process of hadronization, providing a key

bridge between partonic predictions and observables involving hadrons. Our goal

is to understand how the substructure of jets, the distribution of the momenta of

their constituent particles, can shed light on long outstanding puzzles in quarkonia

production.

In this chapter, we first review the origins of jets in QCD and the history of

jet-related discoveries. We give an overview of how jets are defined and introduce
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observables that are used to classify their substructure. Finally, we explain how

jets are studied using EFTs, focusing on the calculation of jet production cross-

sections in Soft-Collinear Effective Theory (SCET). This introduction to SCET will

be important in Chapter 4 when we discuss the FJF formalism. Using the FFs for

J/ψ calculated in NRQCD, FJFs will allow us to calculate cross-sections for the

production of quarkonia within jets where the substructure of the jet is measured.

3.2 Origins of Jet Physics

Due to asymptotic freedom, quarks and gluons behave as quasi-free particles at

high-energies (short-distances). When these particles, which carry color, are cre-

ated in high-energy collisions and reach a relative distance of 1 fm, they undergo

the non-perturbative process of hadronization. Through the emission of gluons via

bremsstrahlung radiation and their subsequent splittings into qq̄ pairs, these initially

quasi-free particles ultimately result in the formation of many colorless hadrons.

In the discussion of the flux-tube model shown in Fig. 2.4, as the qq̄ move apart,

the tension in the flux-tube causes it to break via the formation of a new qq̄ pair

from the vacuum. Conservation of momenta and the IR structure (i.e., the soft and

collinear limits) of the cross-section in QCD for jet production cause these jets to

be highly collimated. Effects of confinement forces are soft compared to the high

longitudinal momenta of the jet-initiating partons. Thus, the energies and angular

distribution of these partons is reflected in the energies and angular distribution

of the jets. This mapping between partons and hadronic jets makes the study of

partons and the study of jets inseparable. Quark initiated jets were first observed at

SPEAR [69, 70] at the Stanford Linear Accelerator Center (SLAC) in 1972 at
√
s ∼ 4

GeV, followed soon after by studies at the much higher energies of DORIS (
√
s ∼ 5.6

GeV) and PETRA (
√
s ∼ 23.4 GeV) at DESY in Hamburg, Germany. Refs. [71, 72]

had previously predicted that the dominant source of hadron production in e+e−
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(a) 2-jet event (b) 3-jet event

Figure 3.1: Displays of 2-jet (a) and 3-jet (b) events as shown in Ref. [27, 28].

annihilation should come from

e+e− → qq̄ → 2 jets. (3.1)

These events could be easily identified by looking at the angular distribution of

the final state hadrons, which would have radiation accumulated on a central axis

(back-to-back jets) instead of being isotropically distributed. It was also predicted

in Ref. [73] that gluon-initiated jets could be definitively observed in the process

e+e− → qq̄g → 3 jets, (3.2)

which was predicted to be the next-to-leading process for e+e− → hadrons. Events

with gluon jets could have a configuration where the three jets have approximately

equal angular separation. This is often called the Mercedes-Benz configuration.

The gluon jet would then be distinguishable from the quark jets by the larger amount

of radiation present within its cone. In QCD, the probability of g → gg splittings

comes with a color-factor of CA = 3 while q → qg splittings come a with color-factor

of CF = 4/3 (see Eq. (2.7)), making g → gg splittings more likely. Gluon jets, which
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provided the first conclusive evidence of the existence of the gluon, were discovered

at PETRA by several experiments in e+e− annihilation in 1979 in Refs. [28, 74–76].

The ability to identify and reconstruct jets is important to searches for new

physics, as they are often large sources of background. In Higgs searches, for ex-

ample, H → W+W− → l+νl−ν̄ signals are subject to large backgrounds from

tt̄→ W+W−bb̄. As discussed in Ref. [77], jet vetoes can be used to identify and cut

events that contain jets that are emitted by b(b̄) quarks. Highly boosted b quarks

often fragment into jets containing B mesons. This process of identifying the par-

tonic origin of a jet based on its hadronic content is an example of tagging. There

is also interest in developing techniques to separate jets produced by fragmenting

quarks from jets produced by fragmenting gluons. This idea leads to the study of

the detailed substructure of jets, which is the subject of the next section.

3.3 Jet Algorithms & Jet Substructure

3.3.1 Jet Algorithms

Jets are defined in hadronic final states through jet algorithms and recombination

schemes. Jet algorithms are simple sets of iterative rules for defining whether parti-

cles are close enough to be considered within the same jet. Recombination schemes

then dictate how the four-momenta of the particles will be combined. Jet algorithms

can be classified in two broad categories: cone algorithms, and sequential recombi-

nation algorithms.

The first modern jet definition was developed in 1977 by Sterman and Weinberg

in Ref. [50]. A primitive type of cone algorithm, Sterman and Weinberg’s concept of

a jet provided the first divergence-free analytic way to formally define dijet events in

e+e− annihilation. Dijet events were classified as events where at least a fraction 1−ε

of the total event energy was contained within a cone of half-angle δ. This provided

the first consistent way to calculate dijet event cross-sections in perturbative QCD.
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Modern cone algorithms use the concept of iterative cones where a final state particle

is chosen as a seed particle, i, whose momentum is combined with all other particles

j satisfying the condition that

∆R2
ij = (yi − yj)2 + (φi − φj)2 < R2, (3.3)

where R is a cone size parameter, and yi, φi are the rapidity and azimuthal angle of

the ith particle defined via

y ≡ 1

2
log

(
E + pz
E − pz

)
and φ ≡ tan−1 (py/px). (3.4)

Here, all quantities are defined with reference to an axis ẑ along the incident beam

line. The four-momenta of the particles satisfying the above condition are then

summed and the seed i is iterated over all of the particles until a set of so-called

stable cones is found. The stability condition ensures that the jets are insensitive

to the addition of arbitrarily soft particles within or in-between jets or arbitrarily

collinear emissions within jets, a condition called infrared-collinear (IRC) safety. The

process of ensuring IRC safety is discussed in detail in Ref. [29].

Sequential recombination algorithms were first introduced by the JADE collab-

oration [78] with their JADE algorithm. A host of recombination algorithms such

as the kT [79], Cambridge/Aachen [80], and anti-kT [81] have since been developed,

with the anti-kT being the most common algorithm used at modern hadron colliders.

These algorithms mimic the undoing of QCD splittings via the following procedure

1. Define a distance metric dij to measure the angular separation between any

two particles i, j and a metric di,B to measure the angular separation between

each particle and the beam-line.

2. Calculate dij and diB for all particles i, j in the event.
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Figure 3.2: This figure from Ref. [29] shows how two jet algorithms, the SIS-
Cone [30] and anti-kT algorithms, behave when applied to the same event. High-
lighted areas represent jets in the space of the azimuthal angle φ, rapidity y, and
transverse momentum pT with cone size parameter R = 1. f is the so-called overlap
parameter and is defined in [30].

3. For each particle i, if for a given j you find dij < diB, combine the i and j

four-momenta into a single track (called a pseudojet). Otherwise, declare that

i is a jet by itself, remove it from the list of particles, and repeat step 1.

4. When no particles satisfying condition 3 are left, stop iterating.

Calculations in later chapters of this work will make use of cone and anti-kT algo-

rithms. The anti-kT [81] is a specific case of the more general kT algorithm and uses

the following distance metrics

dij = min(p2p
T i, p

2p
Tj)

∆R2
ij

R2
, where diB = p2p

T i, (3.5)

where p = −1, pT i is the transverse momentum of the ith particle relative to the

beam line, and ∆Rij and R are defined in Eq. (3.3). The subtleties of the divergence

structure and implementation of these algorithms is discussed at length in Ref. [29].
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Figure 3.3: An illustration of two characteristic values of the thrust parameter
τ = 1 − T showing (a) pencil-like dijets for τ ∼ 0 and (b) isotropic final state with
0 jets.

3.3.2 Jet Substructure

In addition to being able to identify and reconstruct jets, a quantitative understand-

ing of a jet’s substructure is also useful. Jet substructure observables are contin-

uous variables that are weighted sums over the four-momenta of a jet’s constituent

particles. They are, in many cases, derivative of event shapes, well-established

QCD observables (used largely in e+e− collisions) that allow us to study the geomet-

ric properties of the energy and momentum flow of the entire final state. Perhaps

the most well-established event shape variable is thrust, which quantifies how much

an event looks like a back-to-back dijet configuration. Originally defined in Ref. [82],

thrust cross-sections have been calculated to N3LL accuracy [83], and have been used

to extract the strong coupling αs. Thrust is defined as

T = maxn̂

∑
i |n̂ · ~pi|∑
i |~pi|

. (3.6)

Here, i runs over all of the final state particles in the event and n̂ is the jet axis that

maximizes T , called the thrust axis. In practice, the quantity τ ≡ 1 − T is more

commonly used to characterize dijet events. This is because τ ∼ 0 corresponds to an

event with two back-to-back, highly-collimated, pencil-like jets and τ ∼ 1/2 describes
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a spherically symmetric distribution of final state particles. Fig. 4.2 illustrates these

two thrust values. We will revisit calculations of thrust in our study of hadron

production in jets in Chapter 4.

Jet substructure observables can be divided into several broad categories: ob-

servables that study the radial distribution of particles within a jet, those that focus

on probing highly boosted decay kinematics, and those that aim to probe the color

flow of events. Perhaps the simplest example of a jet substructure observable is the

measurement of the invariant mass s of the jet which is given by

s =

(∑

i∈J

pi

)2

. (3.7)

Other jet-shape observables that study the radial distribution of particles include the

aptly named jet-shape [84] and angularity [85]. The jet-shape observable measures

how energy is distributed within a jet by taking ratios of the transverse energy

contained within cones of radius r inside of a jet of size parameter R > r. The

jet-shape can ultimately be expressed as Er/ER, the ratio of the energy in a jet

of size R contained within an inner cone r such that at r = R, the jet-shape is 1.

Angularities, denoted by τa are a family of jet-shape observables calculated via a

weighted sum over the transverse momentum of all of the particles within an jet,

where the weighting is dictated by the value of a parameter a

τa ≡
1

2EJ

∑

i∈J

|pi⊥|e−ηi(1−a). (3.8)

In this expression, EJ is the jet energy, ηi = log (tan (θ/2)) is the pseudorapidity of

the particle i relative to the jet axis, the sum is over the particles in the jet, and−∞ <

a < 2. Smaller values of a put more emphasis on contributions from particles closer

to the edge of the jet. Additionally, as we will show in Chapter 4, angularities are

directly related to the jet invariant mass when a = 0 via τ0 = s/(2EJ)2. Fig. 3.4(a)
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n̂µ

(a) Angularity (b) Jet shape

Figure 3.4: Diagram (a) shows a sample e+e− cross-section differential in the
angularity τa for different values of a with a < 1. Diagram (b) illustrates the jet-
shape observable as a fraction of transverse energy within a cone of radius r within
a larger jet of radius parameter R with total soft radiation ΛS falling outside of the
jets.

shows, roughly, how a cross-section differential in the angularity might depend on the

parameter a. Fig. 3.4(b) shows a basic illustration of the jet-shape, where a cone of

variable size r is drawn within a cone (or kT ) type jet of radius R in order to measure

how widely the jet’s radiation is distributed. Other jet substructure observables

exist that focus on different aspects of a jet such as the kinematics of decays of its

constituents [86] and the color-flow of particles within jets in an event [87]. These

observables are not the focus of this work.

Jet substructure studies have a number of important applications, from discrim-

inating between jets initiated by quarks vs. gluons, to tagging jets based on their

hadronic content, to probing the very nature of hadronization. In the following

section, we will discuss the EFT that is often used to calculate jet-substructure

observables to high precision, which will be used heavily in Chapters 4 and 5.
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3.4 Soft-Collinear Effective Theory

3.4.1 Introduction

Theoretical predictions of jet observables often involve multiple disparate energy

scales. Consider the following hierarchy

EJ ≈ Q� √s� ΛQCD, (3.9)

where s is the jet invariant mass. Since jets are made up of highly boosted par-

ticles, the energy of a jet is generally far greater than its invariant mass, which is

turn much greater than the scale of non-perturbative physics, ΛQCD. As we dis-

cussed in Chapter 1, calculations of QCD processes involve logarithms of ratios of

the physical scales in the problem. These logarithms can often be so large as to

cause a breakdown of perturbation theory. Renormalization group techniques can

be used to resum these logarithms in a systematic way, drastically improving the

accuracy of a calculation by including the most important terms at higher orders in

αs. EFTs facilitate the resummation of different logarithms by making each function

in a factorization theorem dependent upon a single physical scale.

Developed in Refs. [88–91], Soft-Collinear-Effective Theory (SCET) can be used

to derive powerful factorization theorems for jet processes. SCET is an EFT that

focuses on degrees of freedom that are soft and collinear with respect to light-like jet

directions n in the presence of a much harder interaction.1 Factorization theorems in

SCET have been used to study event-shape distributions in, for example, Refs. [93–

96] and jet substructure observables in Refs. [1, 85, 97]. In Ref. [1], the authors

derived a factorization theorem in e+e− → N jet events where the substructure

of M ≤ N of the jets was measured. Our goal in this section is to develop the

SCET formalism necessary to understand the factorization of a general class of jet

substructure observables τ in e+e− annihilation.

1 See Ref. [92] for a pedagogical introduction to SCET.
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3.4.2 Light Cone Coordinates

A useful set of coordinates for describing the degrees of freedom on SCET can be

constructed from light-like vectors nµi where n2 = 0 called light-cone coordinates.

We can construct a basis of light cone vectors n and n̄ using the properties that

n2 = 0, n̄2 = 0, n · n̄ = 2. (3.10)

The simplest choice (up to re-parameterizations to be discussed later) for n and n̄ is

nµ = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1). (3.11)

We can then decompose any four-momentum pµ using the so-called Sudakov decom-

position

pµ =
nµ

2
n̄ · p+

n̄µ

2
n · p+ pµ⊥ = (p+, p−,p⊥), (3.12)

where p+ = p+ ≡ n · p, p− = p− = n̄ · p, the transverse momentum pµ⊥ = (0, 0,p⊥)

can be expressed in Minkowski form, pµ⊥, or Euclidean form, p⊥, and pµ⊥p⊥,µ = −p2
⊥.

The metric tensor gµ,ν , using the (+,−,−,−) convention, can then be expressed as

gµν =
1

2
nµn̄ν +

1

2
n̄µnν + gµν⊥ and εµν⊥ =

1

2
εµναβn̄αnβ. (3.13)

The square of the four-momentum, pµ, is

p2 = p+p− + p2
⊥ = p+p− − p2

⊥. (3.14)

3.4.3 Momentum Regions in SCET

Fig. 3.5 shows an e+e− → dijets event, which at lowest order in perturbation theory

is initiated by e+e− → γ∗ → qq̄. One can divide the event into two hemispheres (a)

and (b) and consider the two jet directions as n̄µ and nµ. In both hemispheres the

collinear particles are highly collimated but consist of many different hadrons. For
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Figure 3.5: This diagram shows a dijet event divided into two hemispheres a and
b with two light-cone directions nµ and n̄µ. The SCET degrees of freedom are color-
coded. Collinear radiation is shown in blue within the jet boundary and ultra-soft
radiation is shown in green. The underlying hard interaction is shown in red.

a jet with particles whose large momentum component is p−, we see the following

scaling

ΛQCD � pT � p− ≈ Q, (3.15)

where Q is the scale os the center-of-mass energy and p⊥ is the scale of the transverse

momenta of the particles in the jet. In this example, SCET describes three relevant

degrees of freedom that live at each of these well-separated momentum scales. Often

referred to as SCET modes, the momenta of these degrees of freedom scale according

to

(1) n-collinear → pµn ∼ Q(λ2, 1, λ),

(2) n̄-collinear → pµn̄ ∼ Q(1, λ2, λ), (3.16)

(3) ultra-soft → pus ∼ Q(λ2, λ2, λ2).
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Figure 3.6: Modes of SCETI (a) and SCET+ (b) plotted on curves of constant
virtuality p2 of the hard, collinear, collinear-soft, and ultra-soft modes. The relevant
power counting parameter λ is shown in each case. In (b), the diagonal line represents
a line of constant rapidity representing the boundary of a jet of radius parameter R.

Here, the convention is pµ ∼ (p+, p−,p⊥) and λ ≡ pT/Q � 1 is our power counting

parameter. Collinear modes are particles that have scaling p+
c � p⊥c � p−c in

hemisphere (a) or p−c � p⊥c � p+
c in hemisphere (b). Ultra-soft modes, denoted pus,

scale homogeneously in their (+,−,⊥) components such that they can interact with

collinear modes in both jets without changing the scaling of either one. Fig. 3.6(a)

illustrates these modes on curves of constant virtuality p2. The n and n̄-collinear

modes live on the same invariant mass curve but are separated in rapidity, which in

light-cone coordinates can be expressed as y = 1/2 log (p+/p−). The ultra-soft mode

lives at a different virtuality, as shown in the figure.

Processes with this particular set of modes are described by a version of SCET

called SCETI. Different processes may require different sets of modes depending on

the specifics of the kinematics. There are many different versions of SCET, but this

work focuses on two in particular: SCETI and SCET+. SCETI generally describes N

jet processes where the jets are well-separated and will be used to study jets where

the angularity is measured in Section 4.4. SCET+ was developed in Refs. [98, 99],
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originally to study jets that are close together in rapidities. We will utilize SCET+ to

study jet substructure observables that depend on the angle of particles with respect

to a jet’s axis in Section 4.5. In this case, since the collinear and soft modes both

scale as O(λ) in the p⊥ components, certain soft energy scale particles will play an

important role in describing the substructure of the jet. SCET+ thus includes an

additional collinear-soft mode which has a collinear scaling with respect to a soft

energy scale. These modes are illustrated in Fig. 3.6(b), which shows the rapidity

regions within and outside of a jet of radius R. The collinear and collinear-soft modes

live on the same invariant mass hyperbola and the collinear-soft mode scales as

pµcs ∼ ph⊥(r, 1/r, 1) ∼ Q(λr, λ/r, λ). (3.17)

Here, r ≡ tan (R/2) for a jet of radius R and the power counting parameter is

λ = ph⊥/Q, where ph⊥ is the magnitude of the transverse momentum 3-vector of a

given hadron with respect to the jet axis. The scaling with r reflects the sensitivity

of the collinear-soft mode to the boundary of the jet and can be derived by considering

that particles within the jet must satisfy p+/p− < r2 and p+p− ∼ p2
⊥.

3.4.4 Label Momentum Formalism

The power counting of the fields in SCET is manifest in the label momentum

formalism. In SCETI, QCD quark fields are split into collinear and ultra-soft pieces

using qµ(x) = qµn(x) + qµus(x) where qµ is a QCD quark field and qµn, q
µ
us are SCET

collinear and ultra-soft quark fields, respectively. We get manifest power counting

by adopting a formalism where momenta are written as

pµ = pµ` + pµr where pµ` ∼ Q(0, 1, λ), pµr ∼ Q(λ2, λ2, λ2). (3.18)

Here, pl is the label momentum which is defined as pµn = n̄ · pn n
µ

2
+ pµ⊥ where n̄ · pn

contains the O(1) part and pµ⊥ contains the O(λ) part of the light-cone momentum.
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The pr term is called the residual momentum and contains the O(λ2) components

of the light-cone momentum. This can be visualized as a grid where label momenta

are described in a discrete way as the centers of each grid box and residual momenta

represent O(λ2) fluctuations within each box. Working in momentum space where

the fields are expressed (via Fourier transform) as q̃n(p) =
∫
d4xeip·xqn(x), the label

momentum formalism dictates that

q̃n(p)→ q̃n,p`(pr), (3.19)

where integrals over momenta are now expressed as

∫
d4p→

∑

p` 6=0

∫
d4pr. (3.20)

Note that the p` = 0 bin is excluded in order to avoid double counting, since it will

be accounted for when considering ultra-soft modes.2 Conservation of momentum is

now enforced separately over label and residual momenta via

∫
d4x

(2π)4
ei(p`−q`)·xei(pr−qr)·x = δp`,q`δ

4(pr − qr). (3.21)

Using a Fourier transform we write our total collinear quark field as the sum/integral

over label and residual momenta contributions as follows

qn(x) =

∫
d4p

(2π)4
e−ip·xq̃n(p) =

∑

p` 6=0

∫
d4pr
(2π)4

e−ip`·xe−ipr·xq̃n,p`(pr)

=

(∑

p` 6=0

e−ip`·x

)(∫
d4pr
(2π)4

e−ipr·x
)
q̃n,p`(pr)

=
∑

p` 6=0

e−ip`·xqn,p`(x). (3.22)

2 In calculations of amplitudes, these modes will initially be included for simplicity of integration
and later removed using a zero-bin subtraction technique introduced in Ref. [100].
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This notation also dictates that derivatives ∂µ extract O(λ2) fluctuations such that

i∂µqn,p`(x) ∼ λ2qn,p`(x),

since the quark (or gluon) field is only a function of residual momenta. It is then

also convenient to define label momentum operators as

Pµ ≡ nµ

2
n̄ · P + Pµ⊥, with (3.23)

Pµqn,p`(x) ≡ pµ` qn,p`(x).

By introducing this label operator Pµ, the ordinary derivative ∂µ has effectively been

replaced by i∂µqn,p`(x)→ (Pµ+ i∂µ)qn,p`(x). The fields we will actually use in SCET

will be the collinear limits of QCD fields in the label formalism. We can separate

the large and small collinear projections of the quark fields qn,p` along the light-cone

directions using

qn,p` =
/n/̄n

4
qn,p` +

/̄n/n

4
qn,p` ≡ ξn,p` + φn,p` . (3.24)

Using the corresponding equations of motion, the small-component fields φn,p` of this

collinear limit can be removed from the theory at the level of the Lagrangian.

3.4.5 Leading-Order SCET Lagrangian

At leading order in the power counting parameter λ, the SCET Lagrangian can be

written as [91]

LSCET = Lξn + LAn + Lus, (3.25)

where the collinear quark Lagrangian piece Lξn is

Lξn = ξ̄n(x)

(
in ·D + i /Dn⊥Wn(x)

1

in̄ · PW
†
n(x)i /Dn⊥

)
/̄n

2
ξn(x). (3.26)

In this expression, the covariant derivatives Dµ and Dµ
n are given by

Dµ = ∂µ − igAµn − igAµus and iDµ
n = Pµ + gAµn, (3.27)
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and Wn is a Wilson line that is built from collinear gluon fields

Wn(x) =
∑

perms

exp

[
−g 1

n̄ · P n̄ · An(x)

]
. (3.28)

The collinear gluon part of the Lagrangian LAn is given by

LAn =
1

2g2
Tr
{[
iDµ + gAµn, iDν + gAνn

]}2

+ 2 Tr
{
c̄n

[
iDµ, [iDµ + gAµn, cn]

]}

+ τn Tr
{[
iDµ, Aµn

]}
. (3.29)

Here, τn is a gauge fixing parameter for the collinear gluon field Aµn, cn and c̄n are

ghost fields in the collinear limit, and the Dµ covariant derivative is defined as

iDµ = Pµ + in ·Dn̄
µ

2
. (3.30)

The ultra-soft Lagrangian, Lus, then takes the form of the full QCD Lagrangian for

massless ultra-soft quark, gluon, and ghost fields fields with gauge fixing parameter

τus. In this leading order SCET Lagrangian, the only coupling between collinear and

ultra-soft modes comes from the covariant derivatives. When discussing factorization

of jet cross-sections, we will perform a field redefinition to completely decouple these

modes.

The separation of the gauge field Aµ into collinear and ultra-soft pieces requires

enforcing two separate gauge symmetries. This is the reason for the two gauge fixing

parameters τn, τus above. Additionally, there is freedom in how the light-cone basis

of n, n̄, . . . is chosen based on the constraint that n2 = n̄2 = 0 and n · n̄ = 2. The

freedom to re-define the axes (as well as the fields) is a re-parameterization invariance

(RPI) of SCET [101]. These symmetries are discussed briefly in Appendix B.

3.4.6 Factorization in SCET

SCET factorization offers an elegant way to separate perturbatively calculable short-

distance physics from non-perturbative long-distance physics. At leading order in the
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power counting parameter λ, it also allows for a complete decoupling of collinear and

ultra-soft degrees of freedom, providing a framework for organizing the perturbative

resummation of large logarithms. As mentioned earlier, one important application

of SCET factorization is to calculations of cross-sections in which event-shapes or jet

substructure observables are measured.

In this section, we outline how the cross-section for e+e− → γ∗ → qq̄g → 3

jets factorizes when a generic jet substructure observable τ is measured. These τ

can be, for example, the angularity τa of a jet. Here, we leave τ generic in order

to emphasize the wide applicability of this factorization theorem. This process will

take a cross-section dependent upon logarithms of ratios of several widely separated

physical scales and factorize it into functions that are each dependent upon a single

physical scale. These logarithms can then be resummed using the corresponding

RGEs detailed in Appendix C.

Following the convention of Ref. [1], we can write down the differential cross-

section for e+e− → 3 jets in QCD at center of mass energy Q as a function of the

jet 3-momenta p1,2,3 and where the generic jet substructure observable τ (1) of jet 1

is measured as

dσ

dτ 1d3p1,2,3

=
1

2Q2

∑

X

∣∣M(e+e− → γ∗ → qq̄g)
∣∣2 (2π)4δ(4)(Q− pX)

× δN(J (X)),3δ(τ
(1) − τ(J (X)))×

∏

j=1,2,3

δ(3)(pj − p(Jj(J (X)))).

(3.31)

The partonic matrix element is then given by

∣∣M(e+e− → γ∗ → qq̄g)
∣∣2 = |〈X| jµ(0) |0〉Lµ|2 with jµ =

∑

f

q̄fγ
µqf , (3.32)

where the sum is over flavors f , a sum over colors is implied, and Lµ is the leptonic

part of the amplitude. In the above expression, J (X) is a jet algorithm acting on

the final hadronic state |X〉, N(J (X)) is the number of jets found by the algorithm,
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τ(J (X)) measures the shape τ of a jet, and p(Jj(J (X))) is the momentum of the

jet Jj.

In order to work in the SCET formalism, we must match the QCD current, jµ(x),

onto SCET operators. Three-jet operators in SCET can be built from quark jet and

gluon jet fields, which are defined as collinear quarks/gluons multiplied by collinear

Wilson lines

χn ≡ W †
nξn and B⊥n ≡

1

g
W †
n(P⊥ + A⊥n )Wn. (3.33)

By writing the momentum conserving delta function δ(4)(Q− pX) as an integral, the

matching condition can be written as

jµ(x) =
∑

n1,2,3

∑

p1,2,3

ei(p1−p2+p3)·xCµ
αβν(n1,2,3; p1,2,3)χ̄αn1,p1

(gB⊥νn3,p3
)χβn2,p2

(x), (3.34)

where ni are the light-cone directions and pi are label momenta along these directions.

Sums over the Lorentz index ν, Dirac spinor indices α, β as well as implicit color and

flavor indices are all implied. In this schematic derivation of factorization, we will

suppress these indices going forward for convenience of notation. The matching

coefficients C(n1,2,3; p1,2,3) have been calculated for this process in Ref. [102].

The first step in factorizing the cross-section is to decouple the collinear and ultra-

soft degrees of freedom in SCET. This can be done by using the Bauer-Pirjol-Stewart

(BPS) field re-definitions from Ref. [91]

χn(x) = Y †n (x)χ(0)
n (x)

χ̄n(x) = χ̄(0)
n Yn(x)

Aµn(x) = Yn(x)A(0)
n (x)Y †n (x)

(3.35)

where Yn(x) is an ultra-soft Wilson line expressed as a path-ordered exponential of

the ultra-soft gauge field

Yn(x) = P exp

[
ig

∫ ∞

0

dsn · Aus(x+ sn)

]
. (3.36)
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By putting these re-definitions into SCET Lagrangian, covariant derivatives (which

contain the coupling of collinear/ultra-soft modes) are effectively replaced by ordi-

nary derivatives such as χ̄n(in ·D)χ = χ̄(0)(in · ∂)χ(0). In each of these expressions,

the (0) notation denotes that the field has been completely decoupled from ultra-soft

modes at the level of the Lagrangian. Moving forward, we drop this notation and

assume collinear and ultra-soft modes are decoupled.

Having factorized the fields, we next factorize the matrix elements by performing

the sum over the final states, |X〉. This must be done carefully, since the measure-

ments of the number, momenta, and shape of the jets all depend on X through the

jet-algorithm J (X). Once this sum is performed, the matrix elements will be ex-

pressible as vacuum expectation values. By factorizing the vacuum, the expression

can then be re-organized into matrix elements of fields that have the same scaling.

Refs. [96, 97, 103, 104] developed a clever formalism for recasting restrictions on the

final state such as J (X) as operators. This allows measurements of quantities such

as N(J (X)) to become eigenvalues of operators that act on the state |X〉. Ref. [1]

used these results to develop similar techniques for jet substructure measurements

such as the angularity. The method uses an operator that measures the flow of

4-momentum along a particular direction ni and is defined in terms of the energy-

momentum tensor Tµν and thus in terms of fields in QCD/SCET. The restrictions

on the final state |X〉 can then take the form of operators

Number of Jets → δN(Ĵ ),3,

Jet Momenta → δ(3)(pj − p̂(Jj(Ĵ ))),

Substructure Measurement → δ(τ (1) − τ̂ (1)). (3.37)

Since the collinear and ultra-soft modes have been decoupled at the level of the

Lagrangian, the energy-momentum tensor can also be split into T µν → T µνn1,n2,n3
+

T µνus . Ref. [1] showed that, when combined with a few additional constraints, this
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allows us to separate the restrictions on the final state |X〉 into restrictions on purely

collinear states |Xn〉 and ultra-soft states, |Xus〉. The momenta p̂(J (X)) of the

jets must receive negligible contributions from ultra-soft particles and thus the jet

momenta should be built purely from the label momenta of collinear states |Xn〉. All

radiation outside of the jets should then have ultra-soft scaling. This can be enforced

using a cutoff Λ, which scales as a residual momentum, on the out-of-jet radiation.

Additionally, each of the jets must be well-separated and cannot overlap. This allows

one to separate the Kronecker delta δN(Ĵ ),3 into 4 conditions which impose a one-jet

restriction in each collinear direction ni and a zero-jet restriction on all surrounding

ultra-soft momenta. The separation of jets is parameterized by

tij =
tan(θij/2)

tan(R/2)
, (3.38)

where θij is the polar angle between two jets and R is the jet size parameter. Jets

are said to be well-separated if tij � 1. For a 3 jet final state in the Mercedes-Benz

configuration, where θij = 2π/3 for R = 0.7 (a common R at hadron colliders),

Ref. [1] showed that tij = 0.04� 1 and that for any θij > 2R that tij > 2.

With the condition of well-separated jets satisfied and writing the jet momentum

measurements in terms of energies and directions, the measurement functions for the

momenta and jet-shape can be factorized according to

δ(3)(pj − p̂(Jj(Ĵ)))→
∏

j=1,2,3

δ(Ej − ωj/2)δ(2)(Ωj − nj), (3.39)

δ(τ (1) − τ̂ (1))→
∫
dτJdτusδ(τ

(1) − τJ − τus)δ(τJ − τ̂n1)δ(τus − τ̂us), (3.40)

where ωi ≡ n̄i · pi ∼ 2Ei is a short-hand for the label momenta and Ei is the energy

of the ith jet. The sum of the ωi over directions is the center-of-mass energy Q. The

total substructure measurement has been factorized into contributions from collinear

τJ = τ̂n1 and ultra-soft τus = τ̂us particles inside the n̂1 jet.
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The cross-section, which we now write as differential in the substructure variable

τ (1), the jet energies E1,2,3, and the jet directions (solid angles) Ω1,2,3, can then be

written as

dσ

dτ (1)dE1,2,3d2Ω1,2,3

=
1

6Q2

∑

n1,2,3

∑

ω1,2,3

L2 |Cµ(n1,2,3;ω1,2,3)|2
∫
d4xei(Q−

∑
j=1,2,3 ωjnj/2)·x

∫
dτJdτusδ(τ

(1) − τJ − τus)×
∏

j=1,2,3

δ(Ej − ωj/2)δ(2)(Ωj − nj)

× 〈0|χn1,ω1(x)δN(Ĵ ),1δ(τJ − τ̂n1)χn1,ω1
(0) |0〉

× 〈0|χn2,−ω2
(x)δN(Ĵ ),1χn2,−ω2(0) |0〉

× 〈0| (gB⊥n3,ω3
)(x)δN(Ĵ ),1(gB⊥n3,ω3

)(0) |0〉

× 〈0|Y †n2
Y †n3

TAY
†
n3
Y †n1

(x)δN(Ĵ ),0δ(τus − τ̂us)Yn1Y n3T
BYn3Y n2(0) |0〉 , (3.41)

where again the explicit Lorentz, Dirac spinor, and color indices have been suppressed

for notational convenience.

While Eq. (3.41) is, notationally, quite involved, its interpretation is simple. The

key feature of this expression is that all of the fields, operators, and states have

been completely factorized. Each matrix element is a product of only ni-collinear

or only ultra-soft fields with measurements of the substructure being applied only

to ultra-soft and n1-collinear parts of the expression. The matrix elements can be

used to define functions that individually govern physics in the hard, ni-collinear,

or ultra-soft regimes. These functions will be a quark jet function Jn1,ω1(τJ , n1 · k1),

anti-quark jet function Jn2,ω2(n2 · k2), a gluon jet function Jn3,ω3(n3 · k3), and an

ultra-soft function S(τus, r), where ki are residual momenta. As shown in Ref. [1]

(see also Ref. [96]) the n1-collinear quark jet function is defined as

∫
d4k1

(2π)4
e−ik1·xJn1,ω1(τJ , n1 · k1)

(
/n1

2

)
= 〈0|χn1,ω1(x)δN(Ĵ ),1δ(τJ − τ̂n1)χn1,ω1

(0) |0〉 ,

(3.42)
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where similar functions can be defined for the n2-collinear antiquark jet and n3-

collinear gluon jet. The ultra-soft function can be defined as

∫
d4r

(2π)4
e−ir·xS(τus, r) =

1

NCCF
Tr 〈0|Y †n2

Y †n3
TAY

†
n3
Y †n1

(x)δN(Ĵ ),0δ(τus − τ̂us)

× Yn1Y n3T
BYn3Y n2(0) |0〉 ,

where r is a residual momenta. These momenta can ultimately be absorbed into

their respective label momenta using RPI in SCET. Additionally, hard-scale physics

is completely encapsulated by the matching coefficients C(n1,2,3, ω1,2,3). Inserting

these definitions into Eq. (3.41), the cross-section can be written as

1

σ0

dσ

dτ (1)dE1,2,3

= H(Q, µH)×Jn1(τJ , µJ1)⊗Jn2(µJ2)⊗Jn3(µJ3)⊗S(τus, µus), (3.43)

where σ0 is the Born cross-section, H = 1+O(αs) is a hard function calculated using

the matching coefficients C(ni, pi), ⊗ represents convolutions in τJ and τus, and the

directions Ωi have been integrated over. Each piece of this factorization theorem

is a function of logarithms of a different physical scale that are minimized by the

choice of renormalization scale µ = µH , µJ1 , µJ2 , µJ3 , µus, respectively. Dependencies

on other quantities such as momenta have been suppressed.

In order to calculate a cross-section for a particular jet substructure observable, we

calculate the hard, jet, and ultra-soft functions individually in perturbation theory.

The true power of the factorization then lies in the application of RG techniques.

Each function runs with the scale µ and has a corresponding RGE (i.e. RGEs for

hard, jet, and soft functions). By evaluating each function at its characteristic scale

and then evolving using the RGEs to a common scale µ, the logarithms of these

scales are resummed to all orders in αs.

Ref. [1] used this factorization theorem to resum logarithms of the scales that are

functions of the angularity τa. It can, however, be applied to any jet substructure
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observable τ that can be recast as an operator on |X〉 using the momentum flow

operator concept discussed above.3 In a fixed order QCD calculation of this process,

the logarithms of the angularity would not be so cleanly organized and any one choice

of µ would not minimize all of the logarithms.

3 The characteristic scale of, for example, the jet where the angularity was measured was µmeas
J =

ωτ
1/(2−a)
a .
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4

Fragmenting Jet Functions: Introduction &
Developments

4.1 Introduction

In Chapter 2, we introduced how quarkonia such as the J/ψ are studied using

NRQCD. While NRQCD has been used to accurately calculate the pT dependence

of quarkonium production cross-sections, the theory has repeatedly failed to pre-

dict their polarization. In Chapter 3, we outlined how SCET can be used to make

high-precision calculations of jet processes. This chapter builds a connection be-

tween Chapters 2 and 3 in order to study quarkonia that are produced within jets.

This connection will be provided by Fragmenting Jet Functions (FJF). Originally

defined in Ref. [105], FJFs offer a way to study the formation of hadrons within

jets where the substructure of the jets is measured. In 2014, Ref. [12] calculated

the FJFs for the leading-power NRQCD production mechanisms for J/ψ described

in Chapter 2. They found that FJFs could discriminate between the different J/ψ

production mechanisms, opening the door for a new class of observables with which

to study quarkonium production.
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In this chapter, we will examine the FJF formalism, beginning with a brief review

of fragmentation as described by FFs in QCD. We will explain the operator definitions

of the FJF in terms of FFs and jet functions in the language of SCET. The rest of

the chapter will then be dedicated to developing the FJF formalism for the purposes

of studying quarkonia within jets beyond what was done in Ref. [12]. We will extend

FJFs to several different jet substructure observables which will, in Chapter 5, be

applied to J/ψ production. This chapter presents a number of results previously

published by the author and collaborators in [36–38].

4.1.1 Fragmentation Functions

FFs can be broadly defined as dimensionless functions that describe the distribution

of a certain type of particle in the final state. In perturbative calculations, we focus

on partonic FFs, Dh
i (z, µ), which give the number density of the hadron h that have

a fraction z of the energy of the fragmenting parton i. Although the FF describes

non-perturbative physics, at high COM energies, Ref. [35] proved that to all orders

in αs, we can factorize the cross-section of e+e− → h + X into pieces that describe

contributions from individual partons

1

σ0

dσ (e+e− → h+X)

dz
=

∑

i=g,u,ū,d,···

∫ 1

z

dx

x

dσ̂i (e
+e− → i+X)

dx
Dh
i (z/x, µ), (4.1)

which holds at leading power in ΛQCD/Q where where Q the center of mass energy.

FFs are the final state cousins of the more familiar PDFs, fi/h(z, µ). Where, for

PDFs, z represented the fraction of a hadron’s momentum carried by a particular

parton, for FFs, it represents the fraction of a parton’s energy carried by the final

state hadron. Like PDFs, FFs exhibit scaling violation and are thus written as

functions of µ, the renormalization scale, which we define in the MS subtraction

scheme throughout this work. In Eq. 4.1, x is the energy fraction carried by the
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i

h(z)

Di!hd�̂i

Figure 4.1: The information encoded in the fragmentation function as defined in
Eq. (4.1) where the dσ̂i describes the short-distance partonic process and the right
hand side of the diagram, encoded by the Di→h, describes the non-perturabative
hadronization of the parton.

hadron h of the parent parton and z = 2Eh/Q represents the energy fraction carried

by the hadron in the COM frame. Note that at LO, where this process is essentially

e+e− → qq̄, z = x. At higher orders in αs, we will have generally that x ≥ z

since some of the initiating parton’s energy will be carried off by additional emitted

radiation. In Eq. 4.1 the coefficients dσ̂i are perturbatively calculable and describe

the short-distance (high-energy) partonic process. The FFs then describe the long-

distance (low-energy) non-perturbative hadronization of partons i = g, u, . . . into a

specific hadron h as illustrated in Fig. 4.1.

4.1.2 Fragmentation with a Cut on Thrust

Experimentalists studying fragmentation often make additional measurements/cuts

on the final state hadrons in an event. One such example is described in Ref. [31],

where experimentalists working on the Belle collaboration studied light-quark frag-

mentation. In order to eliminate events from their data where hadrons were produced

from the decays of B-mesons, they focused their studies on dijet final-state configu-

rations. One way of requiring that the final state particles in accepted events be in
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Figure 4.2: This plot [31] shows simulated results from Pythia for thrust distribu-
tions for selected 2-pion pairs at the Υ(4S) resonance of

√
s = 10.58 GeV. Shown are

e+e− → B+B− (open diamonds), e+e− → B0B̄0 (open circles), e+e− → cc̄ events
(full triangles), and e+e− → qq̄ for light-quarks q ∈ u, d, s (full squares). The plot is
normalized to the total number of events in all channels and the vertical green line
shows the thrust cut T > 0.8.

a dijet configuration is by making a cut on thrust τ (see discussion in Chapter 3).

The KEKB accelerator, an asymmetric e+e− collider at Belle, has a center-of-mass

energy of 10.58 GeV, corresponding to the Υ(4S) resonance. At this energy, the col-

lider often produces B mesons nearly at rest in the CM frame, meaning that events

containing B’s will generally not have a dijet-like configuration where τ ∼ 0. As

shown in Fig. 4.2, a simple cut on the thrust of τ < 0.2(T > 0.8) for pion pairs

removed 98% of the B data. The measurement of thrust and many other event and

jet shape observables can be incredibly effective at reducing backgrounds and prob-

ing the mechanism of fragmentation. Fragmentation with a cut on thrust has been

studied in this context using SCET in, for example, Ref. [106].

FFs are insufficient for studying the formation of hadrons where event shapes or
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i

h(z)

Jij µ Dj!h

Figure 4.3: The information encoded in the fragmenting jet function as originally
defined for measured jet invariant mass G(s, z, µ). A parton i perturbatively splits
off quarks/gluons and becomes a jet of invariant mass s. The initial splittings are
large angle/high virtuality and are described perturbatively by the Jij(s, z, µ). At
lower parton virtualities, the non-perturbative effects become important, at which
point the emissions are described by the FFs, Di→h(z/x, µ).

jet substructure observables have been measured. This motivated the development

of FJFs, which were originally defined in Ref. [105] to describe hadrons in jets where

the invariant mass s of the jet is measured. Using basic kinematics, cuts on thrust

can be shown to restrict the invariant masses of jets. In Chapter 5 we will study how

FJFs allow us to place restrictions on the substructure of a jet that contains a J/ψ

in order to probe the underlying mechanism of its production.

4.2 Basic Properties of the FJF

4.2.1 Origin of the FJF

FJFs, denoted by Ghi (s, z, µ), possess features of both FFs and jet functions Ji(s, µ).

They describe the probability that a parton i fragments into a jet with invariant mass

s that contains a hadron h carrying a fraction z of the jet’s momentum. Fig. 4.3 gives

a diagrammatic representation of the information encoded by the FJF. As discussed

in Chapter 3, for processes containing a well-separated hierarchy of energy scales,
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SCET provides factorization theorems of cross-sections and decay rates into hard,

collinear, and soft modes. These cross-sections have the following schematic form

dσ = H × S ⊗ J(⊗J)⊗ . . . , (4.2)

where H is a hard function, ⊗ represents convolution, S a soft-function describing

inter-jet soft-scale radiation, and J are jet functions describing radiation collinear to

different jet directions. It was shown in Ref. [105] that a factorization theorem for a

jet production cross-section can be made into a factorization theorem for a jet with

an identified hadron, h, using the following replacement rule

Ji(s, µ)→ 1

2(2π)3
Ghi (s, z, µ)dz, (4.3)

where Ji(s, µ) is the jet function for a jet with a measured invariant mass s that

is initiated by a parton i at the renormalization scale µ. The FJF introduces an

additional dependence on the fraction z of the jet energy carried by the hadron.

We note that the FJFs (like jet functions) also carry an implicit dependence on the

underlying choice of a jet algorithm and thus the cone size parameter R. When

constraining the jet invariant mass it was shown in Ref. [105] that at leading power

in Λ2
QCD/s� 1, the FJF can be matched onto standard FFs, Dh

i , as follows

Ghi (s, z, µ) =
∑

j

∫ 1

z

dx

x
Jij(s, x, µ)Dh

j (z/x, µ) +O
(
Λ2

QCD/s
)
. (4.4)

Here, the coefficients Jij(s, z, µ) are perturbatively calculable matching coefficients

that describe the short-distance production of collinear radiation that ultimately

forms a jet of invariant mass s. The Dh
j (z, µ) then describe the non-perturbative

(long-distance) hadronization of the parton j = g, u, ū, d, . . . into the hadron h.
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4.2.2 Sum Rules

The relationship between FFs, FJFs, and jet functions naturally provides a non-

trivial cross-check of calculations of the FJFs. Basic rules of probability dictate

that

1 =
∑

h

∫ 1

0

dz z Dh
i (z). (4.5)

From this and combinatorial arguments needed when summing over all possible

hadrons h, Ref. [105] derived a sum rule for the Jij coefficients

Ji(s, µ) =
1

2(2π)3

∑

j

∫ 1

0

dz z Jij(s, z, µ) , (4.6)

such that the sum reproduces the jet function Ji(s, µ).

4.2.3 FJFs in the Literature

FJFs also give us an alternative method of measuring FFs, which are usually ex-

tracted from inclusive hadron production cross-sections in e+e− → h + X. Most

importantly, FJFs provide a new way of extracting gluon FFs [107, 108], which are

not well-constrained by e+e−. These FFs will be of particular interest to us when

applying the FJF formalism to quarkonium production.

The matching coefficients Jij(s, z, µ) were calculated at one-loop order in Ref. [2]

where they were used in the calculation of a cross-section resummed to next-to-next-

to-leading-logarithmic (NNLL) accuracy for e+e− → π+X at the Υ(4S) resonance.

FJFs can be defined for a number of other scenarios. FJFs that depend on the total

energy of a jet were defined and calculated in Ref. [109] and a joint resummation

of logarithms of the jet-cone size R and so-called threshold logarithms of 1 − z was

introduced. FJFs for heavy quark fragmentation were developed in Ref. [110]. More

recently, so-called semi-inclusive FJFs were developed in Ref. [111]. FFs in the
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context of jet production have been studied extensively using other similar methods

such as jet fragmentation functions (JFF) in Ref. [108] and fragmentation functions

to a jet (FFJ) in Ref. [112].

4.3 Operator Definitions of FJFs

The operator definition of FJFs can be derived from the QCD definition of a FF. As

discussed in Ref. [2] the bare (un-renormalized) quark FF can be expressed in QCD

as

Dh,bare
q (z) =

1

z

∫
d2p⊥h

∫
dy+d2y⊥
2(2π)3

eik
−y+/2

∑

X

1

2Nc

× Tr
[ n̄

2
〈0|ψ(y+, 0, y⊥) |Xh〉 〈Xh| ψ̄(0) |0〉

]
. (4.7)

Here, the initial quark with momentum kµ fragments into a hadron h with momentum

pµh. We work in a frame where ~k⊥ = 0, p−h = zk−, and the component p+
h =

( ~ph⊥
2 +m2

h)/p
−
h . In this equation, ψ(ψ̄) represent quark (anti-quark) field operators,

the factor 1/(2Nc) for Nc = 3 colors provides an average over the spin and color

of the parton k. The state |Xh〉 describes a hadron h and any other particles X.

Taking the collinear limit and writing the expression in terms of fields in SCET we

can write the un-renormalized FF as [105]

Dh,bare
q (x) =

1

z

∫
d2p⊥h

∑

X

1

2Nc

× Tr
[ n̄

2
δ(p−Xh,r)δ

(2)(p⊥Xh,r) 〈0| [δω,Pδ0,P⊥χn(0)] |Xh〉 〈Xh| χ̄n(0) |0〉
]
,

(4.8)

where pµXh = pµX + pµh and the quark fields have been replaced by gauge invariant

n-collinear quark-jet fields χn (see Eq. (3.33)). The FF in SCET notation is closely
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related to the operator definition of FJF. The quark FJF as given in Ref. [105] as

Ghq (s, z) =

∫
d4ye−ik

+y−/2

∫
dp+

h

∑

X

1

4Nc

× Tr
[ n̄

2
〈0| [δω,Pδ0,P⊥χn(y)] |Xh〉 〈Xh| χ̄n(0) |0〉

]
,

(4.9)

where the argument of χn(y) is associated with residual momenta. By carrying out

integrals over ~y⊥ and y+, we can write the FJF in a form comparable with the FF

in Eq. (4.7)

Ghq (s, z) =
2(2π)3

ωz

∫
dy−

4π
e−iy

−(k+−p+
Xh)/2

∫
d2p⊥h

∑

X

1

2Nc

× Tr
[ n̄

2
δ(p−Xh,r)δ

(2)(p⊥Xh,r) 〈0| [δω,Pδ0,P⊥χn(0)] |Xh〉 〈Xh| χ̄n(0) |0〉
]
,

(4.10)

where ω ≡ k−. This form allows us to see that the integral over y− represents the

measurement or restriction of the jet’s invariant mass s via the delta function

δ(ω(k+ − p+
Xh)), (4.11)

where

s =

(∑

i

pµi

)2

= (kµ)2 = k+k− − k2
⊥ = ωk+. (4.12)

At leading order, one can (cf. Eqs. (2.15,2.23)) of Ref. [2]) show that the bare FFs

can be reduced to

Dq(0)
q (z) = Dg

g(z) = δ(1− z)

Dg(0)
q (z) = Dq

g(z) = 0, (4.13)

where (0) will be used to denote the leading order piece and (1) the next-to-leading

order contribution. The corresponding bare FJFs then can be written as

Gq(0)
q (s, z) = Gg(0)

g (s, z) = 2(2π)3δ(s)δ(1− z)

Gg(0)
q (z) = Gq(0)

g (z) = 0. (4.14)
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Figure 4.4: Feynman diagrams that give non-scaleless contributions to the quark
FJF at NLO in αs. Diagram (b) also has a mirror image that is not explicitly shown.

To calculate the matching coefficients (and ultimately the FJFs) at NLO requires

the evaluation of the diagrams shown in Figs. 4.4 and 4.5 The matching coeffi-

(a) (b)

(c) (d)

Figure 4.5: Non-scaleless diagrams that contribute to the gluon FJF at NLO.
Again, diagram (b) has a mirror image that is not explicitly drawn above.

cients Jij(s, z, µ) and the corresponding FJFs are calculated at NLO for measured

jet invariant mass in Ref. [2]. We will calculate these Jij coefficients at NLO as

functions of several other jet-substructure observables, including the angularity τa in
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Section 4.4 and the transverse momentum of a hadron relative to the jet-direction in

Section 4.5.

4.3.1 Calculating Renormalized FFs & FJFs at One-loop.

At one-loop order, the expressions for Dh
i (z, µ) and Ghi (s, z, µ) contain divergences

and must be renormalized. According to Ref. [35], the FFs are renormalized via

Dh,bare
i (z) =

∑

j

∫ 1

z

dx

x
ZD
ij (z/x, µ)Dh

j (x, µ), (4.15)

where µ is, again, the renormalization scale and the sum over j runs over partons.

The renormalization group equations for these FFs are the DGLAP equations where

d

d log (µ)
Dh
i (z, µ) =

∑

j

∫ 1

z

dx

x
γDij (z/x, µ)Dh

j (x, µ) (4.16)

where the anomalous dimension is calculated using

γDij (z, µ) = −
∫ 1

z

dx

x
(ZD)−1

ik (z/x, µ)
d

d log (µ)
ZD
kj(x, µ). (4.17)

These anomalous dimensions will, ultimately, be calculated in terms of the QCD

splitting functions Pij(z). How we renormalize the FJFs will depend on whether or

not the FJF is a function of the substructure of the jet. The RGEs for measured,

(where the substructure of the jet is probed) and unmeasured (where only the

radius R and energy E of the jet is known) functions are both described in detail in

Appendix C. Working at O(αs), the renormalization procedure for FJFs yields that

the perturbative matching will essentially reduce to (for the case where the invariant

mass is probed1)

Gj(1)
i (s, z, µ) = 2(2π)3δ(s)D

j(1)
i (z, µ) + J (1)

ij (s, z, µ). (4.18)

1 Note that this procedure will hold regardless of the measurement or lack of measurement. One
simply has to replace s with, as we will show τa, p⊥, Ejet, etc.
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4.3.2 Anomalous Dimensions of the FJF

At this point, we make note of an interesting fact about the nature of the anomalous

dimensions of FJFs. Consider the factorization theorem of a jet cross-section where

the replacement rule in Eq. (4.3) has been used to study jets with an identified

hadron

dσ = H ⊗ S ⊗ J1 ⊗ J2 → dσ = H ⊗ S ⊗ J1 ⊗ G2. (4.19)

In order for our observable to make sense, the anomalous dimensions of each piece

of the factorization theorem must have the following consistency relation

γH + γS + γJ1 + γJ2 = 0 → γH + γS + γJ1 + γG2 = 0. (4.20)

This implies that

=⇒ γJ2 = γG2 = −(γH + γS + γJ1), (4.21)

which provides us with a powerful statement: FJFs evolve in µ exactly as ordinary

jet functions. This will ultimately provide yet another non-trivial check on whether

our FJFs are consistent with jet functions calculated in the literature.

4.4 Angularity Dependent FJFs

4.4.1 Angularity in Light-Cone Coordinates

The most natural generalization of the FJFs for measured jet invariant mass s is to

FJFs where the angularity τa is measured. Recall from our discussion in Chapter 3

that angularities are a well-developed jet-substructure observable first introduced

in Ref. [85] and studied within the context of SCET factorization in Ref. [1]. In

light-cone coordinates, angularities can be calculated using

τa =
1

ω

∑

i

(p+
i )1−a/2(p−i )a/2 , (4.22)
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where the sum runs over all of the particles i in a given jet and ω =
∑

i p
−
i represents

the large light-like momentum of that jet. Angularities are a generalization of the jet

invariant mass squared. We can see this by setting a = 0 and using that k+ = s/ω

τ0 =

∑
i p

+
i∑

i p
−
i

=
k+

ω
=

s

ω2
. (4.23)

In this section we will first extend the calculation of Ref. [2] to FJFs where the

angularity of the jet is probed. We will adopt terminology consistent with Ref. [1]

and refer to functions that depend on τa as measured functions and functions that do

not depend on τa as unmeasured. Since this is a one-loop perturbative calculation, we

will consider final states with at most 2 particles. This means we will be calculating

1→ 2 splittings of partons j = g, q, q̄ into other partons (c.f. Fig. 4.6).

After defining the angularity dependent FJF, G(τa, z, µ), we will calculate the

matching coefficients, Jij(τa, z, µ), and perform a cross-check of the results by ver-

ifying that the sum rule in Eq. (4.6) still holds when generalizing s → τa. These

matching coefficients can then be convolved with FFs from the literature in order

to calculate the angularity FJF. In Chapter 5, we will study the z and τa depen-

dence of a cross-section for jets that contain a B meson or J/ψ in e+e− annihilation

using our calculations of the G(τa, z, µ), a phenomenological B-meson FF, and the

leading-power NRQCD FFs.

4.4.2 Defining the Angularity FJF

In Ref. [2], it was shown that the measurement in the definition of the FJF restricts

the invariant mass squared of the jet via the following delta function

δ(ω(k+ − l+ − p+)) = δ(s− ω(l+ + p+)), (4.24)

where again, kµ is the initial parton’s momentum and lµ and pµ represent the mo-

menta of the partons carrying large lightcone components l− = (1 − z)k− and
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kµ = (k+, k�, 0)

p� = zk�

l� = (1 � z)k�

�(⌧a � ⌧̂a(lµ, pµ, !))

Figure 4.6: We consider 1 → 2 splittings at NLO with the momenta shown. A
delta function then provides the measurement of the invariant mass, angularity, etc.

p− = zk− of the parent’s momentum, respectively. We can generalize this mea-

surement function from s → τa and write down the operator definition of the FJF

where the angularity of the measaured jet is restricted

Ghi (τa, z, µ) =

∫
dk+dp+

h

2π

∫
d4y e−ik

+y−/2
∑

X

1

4NC

× Tr
[n/

2
〈0|χn,ω(y)δ(τa − τ̂a)|Xh〉〈Xh|χ̄n,ω(0)|0〉

]

where at this order O(αs) the measurement operator τ̂a is expressed as

δ(τa − ((l+)1−a/2(l−)a/2 − (p+)1−a/2(p−)a/2)/ω) . (4.25)

To calculate Ghi (τa, z, µ) to O(αs) we evaluate the diagrams shown in Figs. 4.4 and 4.5

for the quark and gluon contributions respectively. We note that it can be shown in

pure dimensional regularization that at one-loop the FF can be expressed as

Dj
i (z) = δijδ(1− z) + Tij

αs
2π
Pij(z)

(
1

εUV
− 1

εIR

)
, (4.26)

where Tij is a matrix of SU(3) color factors with Tqq = CF , Tgg = CA, Tqg =

CF , Tgq = TR and Pij(z) are QCD splitting functions defined in Eq. (2.7). For these
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functions, we adopt the following convention

P̄qq(z) = Pqq(z)− γ̄qδ(1− z) =
1 + x2

(1− x)+

,

P̄gq(z) = Pgq(z) =
1 + (1− z)2

z
,

P̄qg(z) = Pqg(z) = z2 + (1− z)2,

P̄gg(z) = Pgg(z)− γ̄gδ(1− z) =
2(1− x+ x2)2

x(1− x)+

, (4.27)

where γ̄q = 3/2 and γ̄g = β0/(2CA). It can easily be verified that the 1/εIR poles in

the calculation of the FJF cancel (as they must) with those in the calculation of the

FFs for values of the angularity parameter a < 1. This justifies

Ghi (τa, z, µ) =
∑

j

∫ 1

z

dx

x
Jij(τa, x, µ)Dj→h

(z
x
, µ
)
, (4.28)

up to power corrections that are functions of the angularity. This is, of course, the

analog of Eq. (4.3) for FJFs that depend on the angularities. The cancellation of IR

divergences in the matching also allows us to perform the perturbative calculations of

the Jij(τa, z, µ) in pure dimensional regularization while setting all scaleless integrals

to zero and interpreting 1/ε poles as ultraviolet divergences.

4.4.3 One-Loop Calculation of Matching Coefficients

With the Jij free of IR divergences and scaleless integrals safely set to 0 in pure

dimensional regularization, the quark FJF can be calculated by evaluating diagrams

(a) and (b) of Fig. 4.4. Diagram (a) of Fig. 4.4 yields

CFαs
2π

(4πµ2)ε(1− ε)
Γ[1− ε]

1− z
1− a/2 ω

2aε/(2−a)(1− z)−2(1−a)ε/(2−a)

×
(

1 +
(1− z)1−a

z1−a

)2ε/(2−a)
1

s
1+2ε/(2−a)
a

, (4.29)

90



and diagram (b) yields

CFαs
2π

2z

1− a/2
(4πµ2)ε

Γ[1− ε]ω
2aε/(2−a) 1

(1− z)1+2(1−a)ε/(2−a)

×
(

1 +
(1− z)1−a

z1−a

)2ε/(2−a)
1

s
1+2ε/(2−a)
a

, (4.30)

where sa = ω2τa. These expressions contain singularities at τa → 0 in (a) and (b) and

z → 1 in (b), but these are regulated in dimensional regularization. By employing

plus-distribution identities of the form

1

(1− z)1+ε
= −1

ε
δ(1− z) +

(
1

1− z

)

+

− ε
(

ln(1− z)

1− z

)

+

+ ... , (4.31)

for the singularities in z and τa the divergent pieces of the above expression can be

written (expanding in ε) as

CFαs
2π

(
δ(sa)δ(1− z)

[
2− a
1− a

1

ε2
+

2− a
1− a

1

ε
ln

(
µ2

ω2

)
+

3

2ε

]

− 1

1− a
2

ε
δ(1− z)

1

ω2

[
1

τa

]

+

− δ(sa)
1

ε
Pqq(z)

)
, (4.32)

where Pqq is the quark-quark splitting function as defined in Eq. (4.27). As expected,

the first four terms of this expression are UV poles that match the UV poles for the

jet function for measured angularities (multiplied by δ(1 − z)) shown in Eq. (3.37)

of Ref. [1]. The final term δ(sa)Pqq(z)/ε is also expected from NLO perturbative

calculations of the FFs in Ref. [2]. Thus, the divergences of our angularity FJF

appear to have the correct structure. Note that in Eq. (4.32) above we rescaled

the renormalization scale µ2 → eγEµ2/4π in accordance with the MS subtraction
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scheme. We can write the finite pieces of the matching coefficients as

1

ω2

Jqq(τa, z, µ)

2(2π)3
=
CFαs

2π

1

ω2

{
δ(τa)δ(1− z)

2− a
1− a

(
−π

2

12
+

1

2
ln2

(
µ2

ω2

))

+ δ(τa)

(
1− z −

[
ln

(
µ2

ω2

)
+

1

1− a/2 ln

(
1 +

(1− z)1−a

z1−a

)]
1 + z2

(1− z)+

+
1− a

1− a/2(1 + z2)

(
ln(1− z)

1− z

)

+

)

+

[
1

τa

]

+

(
1

1− a/2
1 + z2

(1− z)+

− δ(1− z)
2

1− a ln

(
µ2

ω2

))

+
2δ(1− z)

(1− a)(1− a/2)

[
ln τa
τa

]

+

}
. (4.33)

In the limit a→ 0 this becomes

1

ω2

Jqq(τ0, z, µ)

2(2π)3
=
CFαs

2π

{
δ(s)δ(1− z)

(
−π

2

6
+ ln2

(
µ2

ω2

))

+ δ(s)

(
1− z − ln

(
µ2

ω2

)
1 + z2

(1− z)+

+ ln z Pqq(z) + (1 + z2)

(
ln(1− z)

1− z

)

+

)

+
1

ω2

[
1

τ0

]

+

(
1 + z2

(1− z)+

− 2δ(1− z) ln

(
µ2

ω2

))
+ 2δ(1− z)

1

ω2

[
ln τ0

τ0

]

+

}
,

(4.34)

where we have used δ(τ0)/ω2 = δ(s). Using the following distributional identities

1

ω2

[
1

τ0

]

+

=
1

ω2

[
ω2

s

]

+

=
1

µ2

[
µ2

s

]

+

+ ln

(
µ2

ω2

)
δ(s) ,

1

ω2

[
ln τ0

τ0

]

+

=
1

ω2

[
ln(s/ω2)

s/ω2

]

+

=
1

µ2

[
ln(s/µ2)

s/µ2

]

+

+
ln(µ2/ω2)

µ2

[
µ2

s

]

+

+
1

2
ln

(
µ2

ω2

)
δ(s) ,

(4.35)
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which are readily verified by integrating both sides over s, we find that taking a→ 0

limit yields the finite terms

Jqq(s, z, µ)

2(2π)3
=
CFαs

2π

{
δ(s)

(
1− z + ln z Pqq(z) + (1 + z2)

(
ln(1− z)

1− z

)

+

− π2

6
δ(1− z)

)

+
1

µ2

[
µ2

s

]

+

1 + z2

(1− z)+

+ 2δ(1− z)
1

µ2

[
ln(s/µ2)

s/µ2

]

+

}
, (4.36)

which agrees with the calculation in Eq. (2.32) of Ref. [2] for measured jet mass. The

matching coefficient Jqg(τa, z, µ) is closely related to Jqq(τa, z, µ) by substituting z →

1− z. This simplifies the calculation of the FJF since when convolving Jqg(τa, x, µ)

with FFs, the integral over x in Eq. (4.28) no longer hits a pole as z → 0. Thus, the

1/(1− z)1+ε pole we regulated in Jqq(τa, z, µ) can be replaced with the identity

1

z1+ε
=

1

z
− ε ln z

z
+O(ε2) . (4.37)

Thus, Jqg(τa, z, µ) is found from Jqq(τa, z, µ) by taking z → 1−z and simply dropping

δ(z) and plus-function terms which yields

1

ω2

J div
qg (τa, z, µ)

2(2π)3
= − 1

ω2

CFαs
2π

1

ε
δ(τa)Pgq(z) , (4.38)

for the divergent terms where Pgq is given in Eq. (4.27). The finite pieces are then

1

ω2

Jqg(τa, z, µ)

2(2π)3
=
CFαs

2π

1

ω2

{
δ(τa)

(
z +

[ 1

1− a/2 ln

(
z1−a(1− z)1−a

z1−a + (1− z)1−a

)

− ln

(
µ2

ω2

)]
Pgq(z)

)
+

1

1− a/2

[
1

τa

]

+

Pgq(z)

}
.

(4.39)

Once again, these reproduce the matching coefficients of Ref. [2] in the a→ 0 limit.

We calculate Jgg(τa, z, µ) using the diagrams in Fig. 4.5. This yields the following
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divergent terms

1

ω2

J div
gg (τa, z, µ)

2(2π)3
=
CAαs

2π

1

ω2

{
δ(τa)δ(1− z)

[
2− a
1− a

1

ε2
+

2− a
1− a

1

ε
ln

(
µ2

ω2

)
+

β0

2CA

1

ε

]

− 1

1− a
2

ε
δ(1− z)

[
1

τa

]

+

}
− αs

2π

1

ω2
δ(τa)

1

ε
Pgg(z) . (4.40)

The finite terms of Jgg(τa, z, µ) are then

1

ω2

Jgg(τa, z, µ)

2(2π)3
=
CAαs

2π

1

ω2

{
δ(τa)δ(1− z)

2− a
1− a

(
−π

2

12
+

1

2
ln2

(
µ2

ω2

))

+ δ(τa)

(
−Pgg(z)

[
ln

(
µ2

ω2

)
+

1

1− a/2 ln

(
1 +

(1− z)1−a

z1−a

)]

+
1− a

1− a/2
2(1− z + z2)2

z

(
ln(1− z)

1− z

)

+

)

+

[
1

τa

]

+

(
1

1− a/2Pgg(z)− δ(1− z)
2

1− a ln

(
µ2

ω2

))

+
2δ(1− z)

(1− a)(1− a/2)

[
ln τa
τa

]

+

}
. (4.41)

In the limit a → 0, this expression reduces to J (1)
gg (s, z, µ) found in Eq. (2.33) of

Ref. [2].

Finally, the divergent terms of Jgq(τa, z, µ) are

1

ω2

J div
gq (τa, z, µ)

2(2π)3
= − 1

ω2

αsTR
2π

1

ε
δ(τa)Pqg(z) , (4.42)

and the finite terms are

1

ω2

Jgq(τa, z, µ)

2(2π)3
=
αsTR
2π

1

ω2

{
1

1− a/2

[
1

τa

]

+

Pqg(z) + δ(τa)2z(1− z) (4.43)

+ δ(τa)Pqg(z)

[
1

1− a/2 ln

(
z1−a(1− z)1−a

z1−a + (1− z)1−a

)
− ln

(
µ2

ω2

)]}
,
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where Pqg is given in Eq. (4.27) and the expression reduces to J (1)
gq (s, z, µ) of Ref. [2]

as a→ 0.

4.4.4 Summary of Perturbative Results

We can parameterize our perturbative results for Jij(τa, z, µ) as

Jij(τa, z, µ)

2(2π)3
= δijδ(1− z)δ(τa) (4.44)

+ Tij
αs
2π

[
cij0 (z, µ)δ(τa) + cij1 (z, µ)

(
1

τa

)

+

+ c2δijδ(1− z)

(
ln τa
τa

)

+

]
,

(4.45)

where the coefficients are given by

cij0 (z, µ) =
1− a/2
1− a δijδ(1− z)

[
ln2 µ

2

ω2
− π2

6

]
+ cij(z)

− P̄ji
[

ln
µ2

ω2
+

1

1− a/2 ln

(
1 +

(
1− z
z

)1−a
)

+ (δij − 1)
1− a

1− a/2 ln(1− z)

]
,

cij1 (z, µ) = − 2

1− aδijδ(1− z) ln
µ2

ω2
+

1− a
1− a/2 P̄ij ,

c2 =
2

(1− a)(1− a/2)
, (4.46)

with

cqq(z) = 1− z +
1− a

1− a/2(1 + z2)

(
ln(1− z)

1− z

)

+

,

cgg(z) =
1− a

1− a/2
2(1− z + z2)2

z

(
ln(1− z)

1− z

)

+

,

cqg(z) = z ,

cgq(z) = 2z(1− z) , (4.47)

Having already discussed how our results for Jij(τa, z, µ) satisfy

lim
a→0
Jij(τa, z, µ) = ω2Jij(s, z, µ) , (4.48)
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where Jij(s, z, µ) are the matching coefficients for measured jet invariant mass found

in Ref. [2], we can perform one additional consistency check of our results by verifying

that

Ji(τa, µ) =
1

2(2π)3

∑

j

∫ 1

0

dz z Jij(τa, z, µ) . (4.49)

This describes the sum-rule relating the Jij(τa, z, µ) and Ji(τa, µ), the jet functions

for measured jets as calculated in Ref. [1]. We begin by checking the quark jet case

where we see that

Jq(τa) =
1

2(2π)3

∑

j

∫ 1

0

dz z Jqj(τa, z) (4.50)

=
1

2(2π)3

∫ 1

0

dz z (Jqq(τa, z) + Jqg(τa, z)) (4.51)

=
1

2(2π)3

∫ 1

0

dz z (Jqq(τa, z) + Jqq(τa, 1− z)) (4.52)

=
1

2(2π)3

∫ 1

0

dz Jqq(τa, z). (4.53)

Note that the last line is obtained by taking z → 1 − z in the second term of

the second-to-last line. Putting Eq. (4.33) into this integral, we recover the Jq(τa)

calculated in Eq. (3.35) of Ref. [113].

For gluon jets we find that

Jg(τa) =
1

2(2π)3

∫ 1

0

dz z (Jgg(τa, z) + Jgq(τa, z))

=
1

2(2π)3

∫ 1

0

dz
Jgg(τa, z) + Jgq(τa, z)

2
, (4.54)

where in the second line we used that Jgg(τa, z) and Jgq(τa, z) are both symmetric

under z → 1− z. To verify the sum rule in these cases, we backtrack the calculation

of Jgg and Jgq to their d-dimensional expressions before taking the expansion in
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ε = (4− d)/2. We then find

1

ω2

Jgg(τa, z, µ)

2(2π)3
=

1

ω2

(
4πµ2

ω2

)ε
CAαs

2π

1

Γ[1− ε]
1

1− a/2(za−1 + (1− z)a−1)
2ε

2−a

×
(

1

τa

)1+ 2ε
1−a
(

2z

1− z +
2(1− z)

z
+ 2z(1− z)

)

1

ω2

Jgq(τa, z, µ)

2(2π)3
=

1

ω2

(
4πµ2

ω2

)ε
TRαs
2π

1

Γ[1− ε]
1

1− a/2(za−1 + (1− z)a−1)
2ε

2−a

×
(

1

τa

)1+ 2ε
1−a
(

1− 2

1− εz(1− z)

)
.

By then putting these two expressions into Eq. (4.54), we recover the integral expres-

sion for the d-dimensional Jg(τa) found in Eq. (4.22) of Ref. [1]. Our perturbative

results for Jij(τa, z, µ) are independent of R, the jet size parameter. These effects

could be explicitly included in our calculations using a Heaviside-Θ function to im-

pose the phase space constraints required by a given jet algorithm. However, Ref. [1]

showed that terms dependent on the jet-algorithm for cone and kT -type algorithms

are suppressed by powers of τa/R
2. In our study where τa ∼ 10−3 and R ∼ 0.5, these

terms are negligible. This suppression makes sense physically, since for very small τa

the particles in a jet lie essentially all along the jet axis.

4.5 Transverse Momentum Dependent FJFs (TMDFJF)

4.5.1 TMDs & Collinear-Soft Modes

Our next goal is to extend FJFs to transverse momentum dependent (TMD) ob-

servables. TMDs have seen extensive recent developments in EFT literature such as

Refs. [114–122] and they offer promising new techniques for studying jet substructure

and hadron production. In SCET, TMD parton distribution functions (TMDPDF)

have been applied to the study of Higgs production at small transverse momentum

at the LHC [122–127].
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In this section, after motivating the definition of the transverse momentum de-

pendent fragmenting jet function (TMDFJF), the matching coefficients Jij(p⊥, z, µ)

for these TMDFJFs onto FFs are calculated. TMDFJFs will be dependent on the

jet energy EJ = ω/2, the fraction z of the jet’s momentum carried by the identified

hadron, and the transverse momentum ph⊥ of the identified hadron relative to the jet

initiating parton.2

The key difference between the definitions of the TMDFJF and the angularity

FJF arises when we identify the relevant momentum modes. As we discussed in

Section 3.4.3, an additional collinear-soft mode must be included when studying

TMDFJFs because the scaling of the transverse components of soft and collinear

modes are of the same order. This mode describes soft energy modes that are collinear

to the drection of a jet. First introduced in Ref. [98] and further studied in works

such as Ref. [99] this collinear-soft mode has the following scaling

collinear-soft: pµcs ∼ ω(λr, λ/r, λ), λ = p⊥/ω

collinear: pµn ∼ ω(λ2, 1, λ), (4.55)

where r ≡ tan (R/2) for jet cone size R. These new collinear-soft modes can be

systematically included using the SCET+ formalism, whose modes are illustrated in

Fig. 3.6. Originally constructed to study jets that are close together, SCET+ is one of

several extensions of SCET that have additional hierarchies of well-separated energy

scales and layered phase space regions [98, 99, 120, 128]. As we did for angularity

FJFs in Section 4.4, we will extend the definition of FJFs to a different observable (in

this case the transverse momentum p⊥) and calculate the the matching coefficients

onto FFs at one-loop. The TMDFJF will then be applied to quarkonium production

in Chapter 5.

2 In the context of this work, the direction of the jet initiating parton will always correspond to
the direction of the jet axis.
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4.5.2 Definition & Factorization

In the following sections we will perturbatively calculate the matching coefficients

Jij(ph⊥, z, µ) to one-loop order. In order to properly connect the TMDFJF with

definitions of TMD Fragmentation Functions (TMDFFs) in the literature, let us

first re-write the FF from Eq. (4.8) using the delta function identity

δω,p−l
δ(p−r ) = δ(ω − p−). (4.56)

We can then write the quark FF as

Dh
q (z, µ) =

1

z

∑

X

1

2Nc

δ(ω − p−X − p−h ) Tr
[ /̄n

2
〈0|ψ(0)|Xh〉〈Xh|ψ̄(0) |0〉

]∣∣∣
pX⊥=−ph⊥

,

(4.57)

where ψ(x) is a QCD quark field. As defined in Ref. [129], the TMDFF can is given

by

Dh
q (ph⊥, z, µ) =

1

z

∫
d2x⊥
(2π)2

∑

X

1

2Nc

δ(ω − p−X − p−h )

× Tr
[ /̄n

2
〈0|ψ(0, 0, x⊥)|Xh〉〈Xh|ψ̄(0)|0〉

]
,

(4.58)

where it is related to the traditional FFs by

∫
d2ph⊥ D

h
q (ph⊥, z, µ) = Dh

q (z, µ). (4.59)

In this expression, ph⊥ is the transverse momentum of the hadron h with respect to

the direction of the original fragmenting quark. We will enforce that the axis of

the jet coincides with the direction of the jet initiating parton. In the context of

TMDs, we assume that all out-of-jet radiation has ultra-soft scaling. All soft-scaling

radiation will be inside the jet radius. We note that the TMDFF can also be defined

for measurements of the transverse momentum with respect to other axes such as
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the winner-take-all axis [130]. Taking the collinear limit of Eq.(4.58) and matching

onto SCET fields yields an operator definition of the quark TMDFJF

Ghq (p⊥, z, µ) =
1

z

∑

X

1

2Nc

δ(p−Xh;r)δ
(2)(p⊥ + pX⊥ )

× Tr
[ /̄n

2
〈0|δω,Pχ(0)

n (0)|Xh〉〈Xh|χ̄(0)
n (0)|0〉

]
,

(4.60)

where we define z ≡ Eh/EJ and |Xh〉 to represent a collinear final state hadron h

and any other particles X that are within a jet. In Eqs. (4.57) and (4.58), the states

|Xh〉 were completely inclusive states. Once again, the index (0) indicates that the

field has been decoupled from the ultra-soft modes through BPS field redefinitions3

as shown in Eq. (3.35). In Section 4.6, we show that the the expression for the

TMDFJF given in Eq.(4.60) is closely related to the FJF introduced in Ref. [105]

and in Eq.(4.9) above.

Because we are measuring the ph⊥, the TMDFJF must include collinear-soft (csoft)

modes in addition to collinear modes. As discussed in Ref. [128], these contributions

can be made explicit by performing a matching of our TMDFJF onto SCET+ fields

Ghq (p⊥, z, µ) = C†+(µ)C+(µ)
1

z

∑

X

1

2Nc

δ(p−Xh;r)δ
(2)(p⊥ + pX⊥ )

× Tr
[ /̄n

2
〈0|δω,PV † (0)

n (0)χ(0)
n (0)|Xh〉〈Xh|χ̄(0)

n (0)V (0)
n (0)|0〉

]
, (4.61)

where

V (0)
n (x) =

∑

perm

exp

( −g
n̄ · P n̄ · A

(0)
n, cs(x)

)
, (4.62)

are Wilson lines of csoft fields and C+(µ) are matching coefficients from the matching

of SCETI → SCET+. We now perform a second field-redefinition (analagous to

3 While previously we dropped the (0), we leave them in explicitely here for the moment. They
will subsequently be dropped after a further field re-definition is performed when we re-factorize
(i.e. performa an additional factorization of) our TMDFJF.
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the BPS redefinitions used above) as done in Ref. [98]. This procedure completely

decouples purely collinear fields A
(0)
n and χ

(0)
n from csoft gluons from the csoft gluons

via

Ghq (p⊥, z, µ) = C†+(µ)C+(µ)
1

z

∑

X

1

2Nc

δ(p−Xh;r)δ
(2)(p⊥ + pX⊥ )

× Tr
[ /̄n

2
〈0| δω,PV † (0)

n (0)U (0)
n (0)χ(0,0)

n (0) |Xh〉 〈Xh| χ̄(0,0)
n (0)U † (0)

n (0)V (0)
n (0) |0〉

]
,

(4.63)

where the Wilson line Un(x) is defined as

U † (0)
n (x) = P exp

(
ig

∫ ∞

0

ds n · A(0)
n, cs(ns+ x)

)
. (4.64)

In these equations, the superscript (0, 0) denotes that a field has been decoupled from

both ultra-soft and csoft modes. Now that collinear, csoft, and ultra-soft operators

have been factorized, we can perform a similar factorization of the states

|Xh〉 → |Xnh〉|Xcs〉, (4.65)

where Xn are collinear particles, and Xcs are csoft particles. We also separate

∑

X

→
∑

Xn

∑

Xcs

, (4.66)

δ(2)(p⊥ + pX⊥ ) → δ(2)(p⊥ + pXn⊥ + pXcs⊥ ). (4.67)

This allows us to factorize the TMDFJF into

Ghq (p⊥, z, µ) = H+(µ)×
[
Dhq ⊗⊥ SC

]
(p⊥, z, µ) , (4.68)

where H+ is proportional to the square of the matching coefficient and Dhq and SC

are the purely collinear and csoft functions, respectively, of SCET+. They are given

by

H+(µ) = (2π)2Nc C
†
+(µ)C+(µ) , (4.69)
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Dhq (pD⊥, z) ≡
1

z

∑

Xn

1

2Nc

δ(p−Xh;r)δ
(2)(p⊥Xh;r) Tr

[ /̄n
2
〈0|δω,Pχn(0)δ(2)(PXn⊥ + pD⊥)|Xnh〉

× 〈Xnh|χ̄n(0)|0〉
]
, (4.70)

SC(pS⊥) ≡ 1

Nc

∑

Xcs

Tr
[
〈0|V †n (0)Un(0)δ(2)(P⊥ + pS⊥)|Xcs〉〈Xcs|U †n(0)Vn(0)|0〉

]
. (4.71)

Note that the trace is taken over both Dirac and color indices in Dhq (pD⊥, z), but over

color indices only in SC(pS⊥). Now that our expressions are completely factorized and

collinear/csoft/ultra-soft modes are clearly distinguishable, we drop the (0) and (0, 0)

for notational convenience. Let us define the notation ⊗⊥ to represent a convolution

in perpendicular components

Dhq ⊗⊥ SC(p⊥) =

∫
d2p′⊥
(2π)2

Dhq (p⊥ − p′⊥)SC(p′⊥). (4.72)

This procedure also holds for gluon FJFs

Dhg (p⊥, z, µ) =− gµν
1

z

∑

X

ω

(d− 2)(N2
c − 1)

δ(p−Xh;r)δ
(2)(p⊥ + pX⊥ )

× 〈0|δω,PBν,an,⊥(0)δ(2)(PXn⊥ + pD⊥)|Xh〉〈Xh|Bµ,an,⊥(0)|0〉, (4.73)

where iDn⊥ = Pµn⊥+ gAµn⊥ is the standard ⊥-collinear covariant derivative in SCET

and

Bµn,⊥(y) =
1

g

[
W †
n(y)iDn⊥Wn(y)

]
, (4.74)

is the collinear gluon jet field. In these completely factorized expressions, Dhi contains

all of the information about the identified hadron h while SC and H+ depend only on

the initial parton i. Having identified the purely collinear piece Dhi , in the limit p⊥ �

ΛQCD, we can (in analogy with the purely collinear angularity FJF) further factorize

Dhi into the traditional FFs and perturbatively calculable matching coefficients that,
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this case, depend on p⊥ but do not depend on the identity of the hadron h,

Dhi (p⊥, z, µ, ν) =

∫ 1

z

dx

x
Jij(p⊥, x, µ, ν)Dh

j

(z
x
, µ
)

+ O
(

Λ2
QCD

|p⊥|2
)
. (4.75)

Note that this expression depends on a paramter ν, which is a dimensionful scale

analogous to µ that will be defined in the next section.

4.5.3 Perturbative Calculation of TMD Matching Coefficients

The calculation of the matching coefficients Jij at one-loop will once again require

the evaluation of the diagrams shown in 4.4 and 4.5 for the quark and gluon TMD-

FJFs, respectively. We note that these coefficients are directly related to the Iij
in Refs. [120, 122] (through the substitution Iij → Jji), which were matching co-

efficients between TMDPDFs and standard PDFs.4 In order to regulate rapidity

divergences that arise when measuring ph⊥ with respect to the jet-axis, we use the

rapidity regulator formalism developed in SCET in Refs. [122, 134]. This is done by

first modifying the collinear and collinear-soft Wilson lines

Wn =
∑

perms

exp

(
− g w

2

n̄ · P
|n̄ · Pg|−η
ν−η

n̄ · An
)

Vn =
∑

perms

exp

(
− g w

n̄ · P
|n̄ · Pg|−η/2
ν−η/2

n̄ · An,cs
)
, (4.76)

with similar modifications being made to Un. Here we use a regulator η, a book-

keeping parameter w (which we will ultimately set to 1.), and a new dimensional

parameter ν.5 The dependence of our results on ν should, of course, cancel amongst

4 We also note that there exists a more general analogy between the relationship of FJFs to FFs and
the relationship of so-called beam functions to PDFs. Beam functions are the the subject of current
research in SCET and have been studied in a variety of works including Refs. [120, 122, 131–133].

5 Note that this formalism is similar to dimensional regularization (DR), with η, w, and ν playing
the roles of the parameter ε, coupling gs, and scale µ in DR. In this case, however, w is not a real
coupling but merely a calculational tool.
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the terms in our factorization theorem. This will be demonstrated in Chapter 5. For

the quark-quark case we find for the purely collinear piece

Dq,bare,(1)
q (p⊥, z, µ, ν) =

αsw
2CF
π

eγEε

Γ(1− ε)
( ν
ω

)η 1

2πµ2

(
µ2

p2
⊥

)1+ε

×
{

2z

(
1

1− z

)1+η

+ (1− ε)(1− z)
}

=
αsw

2CF
π

{[
− 2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)

+
1

2ε

(
ln

(
ν2

ω2

)
+

3

2

)
δ(2)(p⊥)

]
δ(1− z)− 1

2ε
Pqq(z)δ(2)(p⊥)

+

(
−δ(1− z) ln

(
ν2

ω2

)
+ P̄qq(z)

)
L0(p2

⊥, µ
2) + cqq(z)δ(2)(p⊥)

}

+O(η, ε),

where cqq(z) = (1 − z)/2, the superscript (1) indicates an O(αS) contribution, and

quantities are renormalized unless notated as bare. We write plus functions in the

following form

Ln(p2
⊥, µ

2) =
1

2πµ2
Ln
(

p2
⊥
µ2

)
=

1

2πµ2

(
µ2

p2
⊥

lnn(µ2/p2
⊥)

)

+

. (4.77)

The matching coefficient is then calculated using

J (1)
qq (p⊥, z, µ) = Dq,(1)

q (p⊥, z, µ)−Dq,(1)
q (z, µ)δ(2)(p⊥), (4.78)

where

Dq,(1)
q (z) = −αsCF

π
Pqq(z)

1

2ε
, (4.79)

and where we interpret the 1/ε pole as being IR in origin. The matching coefficient

is given by

Jqq(p⊥, z, µ, ν) = δ(2)(p⊥)δ(1− z)

+
αsCF
π

{(
δ(1− z) ln

(
ω2

ν2

)
+ P̄qq(z)

)
L0(p2

⊥, µ
2) + cqq(z)δ(2)(p⊥)

}
.

(4.80)
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Once again following the procedure of Sec. 4.4, the quark-gluon coefficient Jqg is

found by replacing z → 1− z and dropping all δ(z) and plus-function prescriptions

Jqg(p⊥, z, µ, ν) =
αsCF
π

{
P̄gq(z)L0(p2

⊥, µ
2) + cqg(z)δ(2)(p⊥)

}
, (4.81)

where cqg(z) = cqq(1− z) = z/2. For the gluon-gluon case we find

Dg,bare,(1)
g (p⊥, z, µ, ν) =

αsCAw
2

π

eεγE

Γ(1− ε)
( ν
ω

)η 1

2πµ2

(
µ2

p2
⊥

)1+ε

× 2
[ z

(1− z)1+η
+

(1− z)

z
+ z(1− z)

]
. (4.82)

Performing an expansion first in η → 0 and then in ε→ 0 yields

Dg,bare,(1)
g (p⊥, z, µ, ν) =

αsCAw
2

π

[
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)
]

×
[
− 2

η
δ(1− z)− ln

(
ν2

ω2

)
δ(1− z) + P̄gg(z)

]

=
αsCAw

2

π

{[
− 2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)

+
1

2ε

(
ln

(
ν2

ω2

)
+

1

2
β0

)
δ(2)(p⊥)

]
δ(1− z)

− 1

2ε
Pgg(z)δ(2)(p⊥) +

(
−δ(1− z) ln

(
ν2

ω2

)
+ P̄gg(z)

)
L0(p2

⊥, µ
2)
}
.

(4.83)

The corresponding FF is given by

Dg
g(z) = δ(1− z)− αsCA

π
Pgg(z)

1

2ε
+O(α2

s), (4.84)

where the 1/ε is an IR pole. This yields following for the matching coefficient

Jgg(p⊥, z, µ, ν) = δ(2)(p⊥)δ(1− z) +
αsCA
π

(
δ(1− z) ln

(
ω2

ν2

)
+ P̄gg(z)

)
L0(p2

⊥, µ
2).

(4.85)
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Performing a similar calculation for the gq channel yields, for the purely collinear

piece of the TMDFJF

Dq,bare,(1)
g (p⊥, z, µ, ν) =

αsTFw
2

π

eεγE

Γ(2− ε)
1

2πµ2

(
µ2

p2
⊥

)1+ε

×
(
P̄qg(z)− ε

)

=
αsTFw

2

π

{
− 1

2ε
P̄qg(z)δ(2)(p⊥) + L0(p2

⊥, µ
2)P̄qg(z) + cgq(z)δ(2)(p⊥)

}
,

(4.86)

where cgq(z) = z(1− z). Matching onto the FF given by

Dq
g(z) = −αsTF

π
Pqg(z)

1

2ε
+O(α2

s), (4.87)

results in the following matching coefficient

Jgq(p⊥, z, µ, ν) = δ(2)(p⊥)δ(1− z) +
αsTF
π

{
L0(p2

⊥, µ
2)P̄qg(z) + cgq(z)δ(2)(p⊥)

}
.

(4.88)

4.5.4 Summary of Collinear Perturbative Results

The renormalized TMDFJF matching coefficients can be written generically as

Jij(p⊥, z, µ, ν) = δijδ(1− z)δ(2)(p⊥)

+
αsTij
π

{(
δijδ(1− z) ln

(
ω2

ν2

)
+ P̄ji(z)

)
L0(p2

⊥, µ
2) + cij(z)δ(2)(p⊥),

}
, (4.89)

with

cqq(z) =
1− z

2
, cqg(z) =

z

2
, cgg(z) = 0, cgq(z) = z(1− z), (4.90)

where Tqq = Tqg = CF , Tgg = CA, Tgq = TF , γ̄q = 3/2 and γ̄g = β0/(2CA). Writing

the convolutions of the FFs with the matching coefficients in z we find for the purely
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Figure 4.7: Real gloun emission diagrams that contribute to the collinear-soft func-
tion SiC(p⊥, z, µ, ν) at O(αs). The gluons passing through the shaded oval indicate
they are contained within the phase-space of the jet.

collinear function

Dhi (p2
⊥, z, µ, ν) = Dh

i (z, µ)δ(2)(p⊥) +
αs
π

{[
TiiD

h
i (z, µ) ln

(
ω2(1− z)2

ν2

)

+ f
i/h
P⊗D(z, µ)

]
L0(p2

⊥, µ
2) + f

i/h
c⊗D(z, µ)δ(2)(p⊥)

}
, (4.91)

where

f
i/h
P⊗D(z, µ) =

∑

j

{
δijTii

∫ 1

z

dx

1− x
[
pi(x)Dh

i

(z
x
, µ
)
− 2Dh

i (z, µ)
]

+ (1− δij)Tij
∫ 1

z

dx

x
Pji(x)Dh

j

(z
x
, µ
)}

, (4.92)

with pq(x) = (1 + x2)/x, pg(x) = 2(1− x+ x2)2/x2 and

f
i/h
c⊗D(z, µ) =

∑

j

Tij

∫ 1

z

dx

x
cij(x)Dh

j

(z
x
, µ
)
, (4.93)

4.5.5 Perturbative Calculation of Collinear-Soft Function

Calculating the collinear-soft function requires, at one-loop order, the evaluation of

the diagrams shown in Fig. 4.7 where the real gluon is found in a jet defined by
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a cone or kT -type jet algorithm with jet-size parameter R. Similar soft functions

were calculated for global soft radiation in Refs. [122] and [124] at NLO and NNLO,

respectively in order to study the transverse momentum spectrum of Higgs decays.

The two diagrams in Fig. 4.7 evaluate to the same expression and summing their

contributions yields

S
i,B(1)
C (p⊥) = +g2w2

(
eγEµ2

4π

)ε
νη Ci

∫
dk+dk−dd−2k⊥

2(2π)d−1
(4.94)

× 2

k+(k−)1+η
δ(k2)δ(2)(k⊥ + p⊥) Θalg

= +
αsw

2Ci
π

eγEε

Γ(1− ε)

(
νr

µ

)η
1

η

1

2πµ2

(
µ2

p2
⊥

)1+ε+η/2

. (4.95)

Here, Θalg represents the application of a jet-algorithm, a set of Heaviside-theta

functions which restricts particles to be within the jet radius R. We also use r ≡

tan(R/2), and Cq = CF , Cg = CA. Expanding in η and subsequently expanding in

ε we find

Si,BC (p⊥, µ, ν) = δ(2)(p⊥) +
αsw

2Ci
π

{2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)

+ δ(2)(p⊥)

(
1

2ε2
+

1

2ε
ln

(
µ2

r2ν2

))
− L0(p2

⊥, µ
2) ln

(
µ2

r2ν2

)
+ L1(p2

⊥, µ
2)

− π2

24
δ(2)(p⊥)

}
. (4.96)

Having expanded both the collinear and collinear-soft pieces in η and ε, we can

now set the bookkeeping parameter to ω → 1 and calculate the MS renormalized

collinear-soft function

Si,RC (p⊥, µ, ν) = δ(2)(p⊥)

− αsCi
π

{
L0(p2

⊥, µ
2) ln

(
µ2

r2ν2

)
− L1(p2

⊥, µ
2) +

π2

24
δ(2)(p⊥)

}
.

(4.97)
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Using the regulators outlined above, contributions to SC from virtual gluon emission

diagrams (not shown) are scaleless integrals that can be set to zero and all divergences

are interpreted as being UV in origin. 6

Having now defined the TMDFJF and performed a NLO perturbative calcula-

tion of the matching coefficients Jij(p⊥, z, µ, ν) we will, in Section 5.4, resum the

TMDFJF to NLL order. Using standard Renormalization Group (RG) and Rapidity

Renormalization Group techniques to resum potentially large logarithms of the p⊥,

we will perform a comparison of the TMDFJF with Monte Carlo events generated

in Pythia.

4.6 Alternative Definition of TMDFJF

As an alternative to defining TMDFJFs from the definition of TMDFFs, we can

derive the TMDFJFs from a factorized cross-section in SCET that is differential in

the energy fraction, z, of the jet’s energy carried by the identified hadron and the

hadron’s transverse momentum ph⊥ with respect to the jet’s axis. Ref. [1] showed that

the cross-section for e+e− → dijets can be, for jet functions where a jet substructure

observabled is not measured, factorized according to

dσ ∼ dσ(0) ×H2(µ)× SΛ(µ)× Jqn(ω, µ)× J q̄n̄(ω, µ) , (4.98)

where dσ(0) is the Born cross section, H2(µ) is the hard function found from a match-

ing calculation of a 2-jet operator in QCD onto SCET operators, and Jn(ω, µ) is a

jet function that describes radiation collinear to a jet direction n̂. This jet (which

will contain the identified hadron h) carries energy EJ = ω/2 = Ecm and we restrict

the radiation found outside of the jet radius R to be ultra-soft Eout < Λ. The jet

6 Although not shown here, we explicitly performed the calculations using an alternative set of
regulators where the virtual diagrams are not scaleless. When using a gluon mass, rapidity regulator,
and a dimensional regulator (where the virtual diagrams are not scaleless) IR divergences properly
cancelled and the result was identical to that shown above.
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function can be written as

Jqn(ω, µ) =

∫
dk+

2π

∫
d4x exp(ik+x−/2)

1

NC

Tr

[
/̄n

2
〈0|δω,P δ0,P⊥χn(x)χ̄n(0)|0〉

]
.

(4.99)

In order to study jets that contain identified hadrons, let us consider the following

instantiation of the identity

1 =
∑

X

|X〉〈X| =
∑

X

∑

h∈Hi

∫
dzd2ph⊥
2(2π)3

|Xh(z,ph⊥)〉〈Xh(z,ph⊥)|. (4.100)

The states
∣∣Xh(z,ph⊥)

〉
describe hadrons h and any other particles X where h carries

an energy fraction z of the energy and has transverse momentum component ph⊥ with

respect to the sum of the momenta of X and h. We then sum/integrate over z, p⊥,

particles X, and identified hadrons h of species Hi with the appropriate phase space

and combinatorial factors. Putting this identity into the jet function we find

Jqn(ω, µ) =
∑

h∈Hi

∫
dzd2p⊥
2(2π)3

∫
dk+

2π

∫
d4x exp(ik+x−/2)

1

NC

×
∑

X

Tr
[ /̄n

2
〈0|δω,P δ0,P⊥χn(x)|Xh(z,p⊥)〉〈Xh(z,p⊥)|χ̄n(0)|0〉

]
. (4.101)

Performing the integration over x (the Fourier conjugate of the residual momenta)

and k+ yields

Jqn(ω, µ) =
∑

h∈Hi

∫
zdzd2p⊥ Gq/h(p⊥, z, µ). (4.102)

If we put this expression into Eq.(4.98) we find that

dσ =
∑

h∈Hi

∫
zdzd2p⊥ dσ

(0)H2(µ)× SΛ(µ)× Gq/h(p⊥, z, µ)× J q̄n̄(ω, µ). (4.103)
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This implies that we can write the differential cross-section dσi/h/dzd2p⊥ for the

specific identified hadron h as

dσi/h

dzd2p⊥
= dσ(0)H2(µ)×SΛ(µ)×Gq/h(p⊥, z, µ)×J q̄n̄(ω, µ)+O

(
Λ

EJ
,
Λ2

QCD

p2
⊥

)
. (4.104)

This shows that the replacement rule

dσi/h

dzd2p⊥
= dσ

[
J i(ω, µ)→ Gi/h(p⊥, z, µ)

]
(4.105)

holds when the transverse momentum of the identified hadron is measured.
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5

Applications to Quarkonia in Jets with
Comparisons to Monte Carlo & Data

5.1 Introduction

Jets and heavy flavor production are high priorities at modern collider experiments

as they provide critical tests of our understanding of QCD. In this chapter we explore

the application of the FJF formalism introduced and developed in Chapter 4 to the

production of heavy mesons and quarkonia. Our goal is to understand whether we

can gain a better understanding of quarkonium production by studying how J/ψ are

produced inside jets where the substructure of that jet has been measured using FJFs.

Since FJFs can be matched onto specific FFs, this approach offers an opportunity

to use jet substructure techniques to better understand fragmentation.

In Chapter 2, we introduced NRQCD, the modern theory of quarkonium produc-

tion. While the study of quarkonium is difficult because of the multiple disparate

energy scales involved, we explained how NRQCD provides a formalism where the

FFs for the J/ψ can be calculated perturbatively at the scale mJ/ψ. Ref. [12] cal-

culated the FJFs for the J/ψ production mechanisms that, according to NRQCD,

112



should dominate at high transverse momenta. They showed that the dependence of

these J/ψ FJFs on z, the fraction of a jet’s energy carried by the J/ψ, and that jet’s

energy E, could discriminate between the different J/ψ production mechanisms. This

insight showed that FJFs could be used to develop a powerful new set of observables

for testing the theory of quarkonium production.

This chapter will be organized as follows. In Section 5.2, we will calculate a NLL’

resummed cross-section for e+e− → bb̄ → dijets where one of the b(b̄) subsequently

fragments into a B meson and the angularity of the the jet containing that B is

measured.1 Using the Jij(τa, z, µ) calculated in Chapter 4 and a phenomenological

B-meson FF extracted from e+e− data, we will study the z and τa dependence

of the cross-section. We will then compare our analytic results with Monte Carlo

simulations from Madgraph [135] + Pythia [136] and Madgraph + Herwig [137]. In

both cases, we find reasonable agreement in both the z and τa distributions, giving

support to the angularity FJF formalism for calculating the z distribution and jet

substructure.

In Section 5.3, we will study J/ψ production in e+e− → 3 jets events, again

comparing analytic results from a resummed cross-section containing an angular-

ity FJF with Monte Carlo simulations from Pythia. While analytic and Monte

Carlo predictions are largely consistent for the substructure, they predict fundamen-

tally different z distributions. We discuss how this discrepancy is due to Pythia’s

unphysical handling of quarkonia in its parton shower model and its inability to

fragment gluons directly into quarkonia in its hadronization model. We describe a

way to reconcile analytic and monte carlo predictions by modifying Pythia’s han-

dling of the showering of quarkonium states to make its model more closely resemble

the picture of quarkonium production described by NRQCD. What we call Gluon-

1 NLL’ means that the cross-section is resummed using the anomalous dimensions required for
NLL accuracy and one-loop corrections to the jet, soft, etc. functions are included.
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Fragmentation-Improved-Pythia brings analytic and Monte Carlo predictions into

agreement.

In Section 5.4, we will study the contributions of different NRQCD production

mechanisms to the overall distributions of the transverse momentum and angle of a

J/ψ relative to the axis of a jet. We will do this using TMDFJFs, the extension of the

FJF to transverse momentum dependent measurements developed in Section 4.5. We

will demonstrate that the TMDFJFs have discriminating power between the different

NRQCD color-singlet and color-octet production mechanisms for J/ψ.

Finally, in Section 5.5 we analyze recent LHCb measurements of the distribution

of z(J/ψ), the fraction of the transverse momentum carried by a J/ψ within a jet. We

compare the data to analytic calculations using two distinct approaches. The first

approach utilizes the GFIP method where hard scattering processes in Madgraph

are showered using Pythia and the resulting quark/gluon energy distributions are

then convolved with leading order NRQCD FFs. The second approach uses the

FJF formalism where the energy of the jet is measured and the FJF is resummed

to NLL’ accuracy. These two approaches give consistent results and agree with

LHCb measurements much better than the default Pythia predictions of Ref. [138].

We perform these comparisons for three different extractions of the NRQCD LDMEs

and show that the data favor extractions from exclusively high transverse momentum

data. The results of Sections 5.2 and 5.3 show results previously published by the

author and collaborators in Ref. [36]. Sections 5.4 and 5.5 show results from Ref. [37,

38] (also published by the author), respectively.

5.2 b Quark to B Meson Fragmentation in e+e− → Dijets

As a test of our angularity FJF formalism, we first study e+e− → bb̄ dijet events,

where the b(b̄) fragments into a jet that contains a B(B̄) meson. Ref. [1] showed

that, in SCET, the cross-section for dijet events where the angularity τa of one of
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the jets is probed can be written as

1

σ0

dσ

dτa
= H2(µ)× Sunmeas(µ)× J (b̄)

n̄ (µ)×
[
Smeas(τa, µ)⊗ J (b)

n (τa, µ)
]
, (5.1)

where H2(µ) is the hard function, Sunmeas(µ) and Smeas(τa, µ) are unmeasured and

measured soft functions, respectively, J
(b̄)
n̄ (µ) is the jet function containing the b̄

quark that is not dependent on the angularity (e.g. the unmeasured jet function)

and J
(b)
n (τa, µ) is the τa-dependent measured jet function containing the b quark.

Note that we will not explicitly write the functional dependence of these functions

on scales other than the renormalization scale µ for notational convenience. At NLO

the unmeasured, τa-independent functions are written as

H2(µ) = 1− αs(µ)CF
2π

[
8− 7π2

6
+ ln2 µ

2

ω2
+ 3 ln

µ2

ω2

]
,

Sunmeas(µ) = 1 +
αs(µ)CF

2π

[
ln2 µ2

4Λ2
− ln2 µ2

4Λ2r2
− π2

3

]
,

J
(b̄)
n̄ (µ) = 1 +

αs(µ)CF
2π

Jqalg(µ),

(5.2)

where Λ is a veto on the energy that is not contained within the jets, r ≡ tan (R/2)

and Jqalg(µ) is a jet function that depends on the jet-algorithm. This dependence is

given explicitly in Eq. (A.18) of Ref. [1] and must be included for unmeasured jets,

where (c.f. Section 4.4) there is no suppression of these terms by powers of τa as was

the case for measured jet functions/FJFs. In the analysis below we will use a cone

algorithm.2 Eq. (5.1) can be made into a cross-section for a jet with an identified

hadron using the replacement rule shown in Eq. (4.3) and the factorized form of the

2 So-called non-global logarithms of ratios such as Qτa/(2Λr2) do appear at NNLO in the fixed
order calculation [99] however these logarithms are not needed at NLL’ accuracy and are not
considered here.
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FJF introduced in Eq. (4.4) such that

1

σ0

dσ(b)

dτadz
= H2(µ)× Sunmeas(µ)× J (b̄)

n̄ (µ)

×
∑

j

[(
Smeas(τa, µ)⊗

J (b)
bj (τa, z, µ)

2(2π)3

)
•Dj→B(z)

]
,

(5.3)

where • and ⊗ define two different convolutions

G(z) • F (z) = F (z) •G(z) ≡
∫ 1

z

dx

x
F (x)G

(z
x

)
, (5.4)

and

f(τ)⊗ g(τ) =

∫
dτ ′ f(τ − τ ′)g(τ ′). (5.5)

In order to perform a resummation of this cross-section to NLL’ accuracy, we must

1. Evaluate each piece of the factorization theorem at its characteristic scale.

This is the scale at which the potentially large logarithms in that function are

minimized.

2. Solve the appropriate renormalization group (RG) equations and calculate

anomalous dimensions for each function.

3. Write down the evolution kernels for each function in order to evolve each piece

of the factorization theorem from its characteristic scale to a common scale µ.

We will choose this scale to be the scale of the hard interaction.

The convolution integrals outlined above must be performed over the angularity

of the measured soft function, Smeas, the matching coefficients Jij and the evolution

kernel Π. Following the RG techniques outlined in Appendix C, this process will

involve a convolution over δ and plus distributions, for which we use the plus-function
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techniques developed in Appendix D. Using specifically Eqs. (D.6-D.7), we can write

the cross-section in the following generic form

dσ(τa, z) ≡
1

σ0

dσ(b)

dτadz
= H2(µH)× Sunmeas(µΛ)× J (b̄)

n̄ (µJn̄)× (5.6)

×
∑

j

{(
Θ(τa)

τ 1+Ω
a

)[
δbjδ(1− z) (1 + fS(τa, µSmeas)) + f bjJ (τa, z, µJn)

]
• Dj→B(z, µJn)

2(2π)3

× Π(µ, µH , µΛ, µJn̄ , µJn , µSmeas)

}

+

,

where the plus-distribution is defined in Eq. (D.3).3 We define

Ω(µJn , µSmeas) = ωJn(µ, µJn) + ωSmeas(µ,µSmeas), (5.7)

where the functions ωJn and ωSmeas are given in Appendix C. The expression fS is [1]

fS(τ, µ) = −αs(µ)CF
π

1

1− a





[
ln
µ tan1−a R

2

ωτ
+H(−1− Ω)

]2

+
π2

6
− ψ(1)(−Ω)



 ,

(5.8)

and f ijJ are written in terms of the coefficients cij0 , cij1 and c2 defined the previous

chapter in Eq. (4.46) as

f ijJ (τ, z, µ) = Tij
αs(µ)

2π

(
cij0 (z, µ) + cij1 (z, µ)

(
ln τ −H(−1− Ω)

)

+ c2δijδ(1− z)
((ln τ −H(−1− Ω))2 + π2/6− ψ(1)(−Ω)

2

))
.

(5.9)

In the above expressions, ψ(1) is the di-gamma function and H is the harmonic

number. The evolution kernel Π is written in terms of KF (µ, µ0) and ωF (µ, µ0) in

3 The plus function symbol outside of the outer bracket indicates that the plus prescription is
applied to all τa-dependent quantities, including any implicit dependencies arising from any choice
of characteristic scales µF .
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accordance with the formalism introduced in Appendix C,

Π(µ, µH , µΛ,µJn̄ , µJn , µSmeas) =
∏

F=H,Jn̄,Sunmeas

exp(KF (µ, µF ))

(
µF
mF

)ωF (µ,µF )

(5.10)

× 1

Γ(−Ω(µJn , µSmeas))
(5.11)

×
∏

F=Jn,Smeas

exp(KF (µ, µF ) + γEωF (µ, µF ))

(
µF
mF

)jFωF (µ,µi)

,

where µF , mF and jF are the characteristic scales of each function. We summarize

our choice of these scales in Table 5.1.

The • convolutions in the energy fraction, z, in the above expressions must be

evaluated numerically. We use the phenomenological B-meson FF extracted from

e+e− data in Ref. [139] for the FF of the b quark into a B meson

Db→B(z, µ = mb = 4.5 GeV) ∼ zα(1− z)β with α = 16.87, β = 2.628. (5.12)

The parameters of this FF were determined using a fit to LEP data in Ref. [140] for

the inclusive process e+e− → B +X where χ2
d.o.f. = 1.495.

We do not give errors on these FF parameters as Ref. [140] provided no errors

associated with the extraction. We also neglect the contribution from other frag-

menting partons for our e+e− collider studies as in Ref. [140]. At the LHC, gluon

FJFs will play a prominant role since gg → gg dijet events give a significant contri-

butions to the production of jets containing heavy flavor [108]. As done in Ref. [12],

these FFs are evolved using the associated DGLAP equations.

Fig. 5.1 shows the z distributions of dσ(τ0, z) for τ0 = (1.5, 2.0, 2.5) × 10−3

from our resummed analytic calculation (green) and Monte Carlo simulations using

Madgraph + Pythia (black) and Madgraph + Herwig (red). For each analytic and

Monte Carlo distribution, the graphs are independently normalized such that the

area is 1. For these fixed τa plots we use a z-bin of ± 0.1. Jets are reconstructed in
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Figure 5.1: The z distributions for dσ(τ0, z) at τ0 = (1.5, 2.0, 2.5) × 10−3 for
analytic calculations with theoretical uncertainties (from varying the scale µ up and
down by a factor of 2) are shown in green. Monte Carlo simulations using Madgraph
+ Pythia and Madgraph + Herwig are shown as black and red lines, respectively.

Pythia using the Seedless-Infared-Safe Cone (SISCONE) algorithm in the FastJets

package [141] with jet-size parameter R = 0.6. We simulate e+e− → dijet events

at Ecm = 250 GeV in which each jet has an energy of at least (Ecm − Λ)/2 where

Λ = 30 GeV.4

The central line of the green curve in Fig. 5.1 corresponds to the analytic cal-

culation with each piece of the factorization theorem evaluated at the characteristic

scales listed in Table 5.2. The green band shows an estimate of theoretical uncer-

tainty. For the unmeasured functions, this is calculated by varying the characteristic

of the these functions by ±50%. For the measured functions, the uncertainty is cal-

4 This is different than simply placing a cut Λ on energy outside the jets as we do in our analytic
calculations. The difference between these two methods is an O(α2

s) effect in the soft function, and
thus is beyond the scope of this NLO calculation.
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Function (F ) H2 J b̄n̄ Sunmeas J (τ, z) Smeas(τ)

Scale (µF ) Ecm ωn̄r 2Λr1/2 ωnτ
1/(2−a)(1− z)(1−a)/(2−a) ωnτ/r

1−a

mF ω wn̄r 2Λr1/2 ωn ωn/r
1−a

jF 1 1 1 2− a 1

Table 5.1: The characteristic scales of each piece of the factorization theorem shown
in Eq. (5.1). The scales minimize potentially large logarithms in each function.

culated using profile functions [83, 133, 142]. Profile functions provide a systematic

way of introducing a scale variation that depends on the value of the angularity.

This allows us to avoid poles in the τa distributions by enforcing that angularity

dependent scale freezes at the characteristic scale for high values of τa (where the

factorization theorem breaks down anyway) and at a fixed scale for small values of τa

(where we reach the non-perturbative regime). This method of estimating the theo-

retical uncertainty is used throughout this work. Additional details on these profile

functions are provided in Appendix D. By using the following two plus-distribution

integral identities

∫ 1

z

dx

x

( 1

1− x
)

+
f
(z
x

)
=

∫ 1

z

dx
1

1− x
(1

x
f
(z
x

)
− f(z)

)
+ f(z) ln(1− z), (5.13)

and

∫ 1

z

dx

x

( ln(1− x)

1− x
)

+
f
(z
x

)
=

∫ 1

z

dx
ln(1− x)

1− x
(1

x
f
(z
x

)
− f(z)

)
+ f(z)

1

2
ln2(1− z),

(5.14)

we can re-write the convolutions of the D(z) with f ijJ (τ, z, µ) as

1

Tij

2π

αs(µ)
f ijJ (τ, z, µ) •D(z) = δij f1(τ, z, µ) D(z)

−
∫ 1

z

dx f2(τ, x, µ)
( P̄ji(x)

x
◦D

(z
x

))

+

∫ 1

z

dx
[
cij(x)− 1

1− a/2 ln

(
1 +

(
1− x
x

)1−a
)
P̄ji(x)

x

]
◦D

(z
x

)
,

(5.15)
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where

f2(τ, z, µ) = 2 ln

(
µ

µJ(τ, z)

)
+

1

1− a/2H(−1− Ω) , (5.16)

with

µJ(τ, z) = ωτ 1/(2−a)(1− z)(1−a)/(2−a),

f1(τ, z, µ) =
1− a/2
1− a

(
f2(τ, z, µ)

)2

+
a(1− a/4)

(1− a)(1− a/2)

π2

6
− 1

(1− a)(1− a/2)
ψ(1)(−Ω),

(5.17)

cqq(z) =
1− z
z

,

cgg(z) = 0,

cgq(z) = 2(1− z),

cqg(z) = 1,

and

f(x) ◦ g(x) = f(x)g(x) ,

[f(x)(h(x))+] ◦ g(x) = h(x)[f(x)g(x)− f(1)g(1)] .

Fig. 5.2 shows the differential cross section as a function of z for fixed τ0 where the

measured jet characteristic scale is chosen in two different ways

(Orange Line) → µJ(τ) = µJ(τ, z = 0) = ωτ 1/(2−a) (5.18)

(Green Line) → µJ(τ, z) = ωτ 1/(2−a)(1− z)(1−a)/(2−a) (5.19)

where the orange plot is calculated with a scale independent of z and the green plot

is calculated with the same characteristic scale choice as the green band in Fig. 5.1

that depends on z. Fig. 5.2 clearly shows that the choice of a z dependent scale

µJ(τ, z) gives smaller estimated errors near the peak of the z distribution.
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Figure 5.2: Analytic results for the z distributions of dσ(τ0, z) at τ0 =
(1.5, 2.0, 2.5) × 10−3. The orange curve is calculated using characteristic scale
for the measured jet function does not depend on z whereas the green curve uses a
scale that does depend on z (as in Fig. 5.1).

In Fig. 5.3 we present the results for the τ0 distributions of the differential cross

section dσ(τa, z) for z = 0.4, 0.6, and 0.8 where we use a τa bin of ± 2× 10−4. The

colors and normalizations are consistent with those used in Fig. 5.1. Notice that for

high values of z the τ0 distributions are shifted towards smaller values. This makes

intuitive sense and was expected, since the majority of the energy of the jet in the

z → 1 regime is carried by the B meson resulting in more narrow jets. Figs. 5.1

and 5.3 show that our results are consistent (within the uncertainty bands) with

Monte Carlo simulations, whose uncertainty can be roughly estimated by taking the

the difference between the Pythia and Herwig predictions. Ultimately, this study

of e+e− → bb̄→ dijets gives us confidence that NLL’ resummed analytic calculations
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Figure 5.3: Angularity distributions of dσ(τa, z) for a = 0 at z = 0.4, 0.6, 0.8.
Analytic results are shown as green bands. Monte Carlo results are shown as black
lines for Madgraph + Pythia and red lines for Madgraph + Herwig.

using the FJF formalism can reliably be used to calculate both the substructure of

a jet as well as the distribution of an identified hadron’s energy fraction within that

jet.

5.3 Gluon to J/ψ Fragmentation in e+e− → 3 Jets

In this section, will use the FJF formalism to calculate an NLL’ resummed cross-

section for e+e− → 3 jets where one of the jets, whose angularity is measured,

contains a J/ψ produced via gluon fragmentation. We will compare these results

with Monte Carlo predictions, discuss key discrepancies in the z distributions, and

show how modifications to Pythia’s method of producing J/ψ can bring its predic-

tions of the z distributions into agreement with analytic predictions calculated using

FJFs. In order to calculate a true physically observable quantity, we must include
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contributions from all types of jets fragmenting to J/ψ. However, we expect gluon

fragmentation mechanisms to dominate at high pT at hadron colliders. It is theo-

retically possible to isolate gluon-initiated jets using jet substructure or B-tagging

techniques in processes such as e+e− → bb̄g. The NLL’ resummed cross-section for

this process can be written as

1

σ0

dσ(g)

dτadz
= H3(µH)× Sunmeas(µΛ)× J (b̄)

n1
(µJn1

)× J (b)
n2

(µJn2
)

×
∑

i

{(
Θ(τa)

τ 1+Ω
a

)[
δgiδ(1− z)(1 + fS(τa, µSmeas)) + f giJ (τa, z, µJn3

)
]
• Di→J/ψ(z, µJn3

)

2(2π)3

× Π(µ, µH , µΛ, µJn1
, µJn2

, µJn3
, µSmeas)

}

+

, (5.20)

where we define the exponent Ω as

Ω ≡ Ω(µJn3
, µSmeas) = ωJn(µ, µJn3

) + ωSmeas(µ,µSmeas), (5.21)

and the b-quark initiated jets J
(b)
n1 and J

(b̄)
n2 are unmeasured. The fS term is the same

as Eq. (5.8) with the replacement CF → CA and the f ijJ are written in terms of cij0 ,

cij1 and c2 given in Eq. (4.46). σ0 is the Born cross section for the process e+e− →

bb̄g. Our calculation will restrict the final state partons to be in the Mercedes-Benz

configuration in which all three jets have approximately the same energy. We also

require that the jets have energies large enough such that b-quark mass mb can

be neglected. The hard function piece H3(µ) takes the form 1 + O(αs) where we

do not include the O(αs) corecctions which come from the NLO virtual diagrams

in e+e− → bb̄g. Omitting these corrections will affect the overall normalization of

the cross-section, which will not be important for our discussion of the z and τa

distributions.

As discussed in Chapter 2, the FFs for J/ψ production can be calculated in

NRQCD [60]. Refs. [9, 54, 143, 144] showed that FFs for the various J/ψ production
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mechanisms can be calculated in terms of analytically calculable functions of αs(2mc),

z, and non-perturbative LDMEs to be obtained via fits to data. Recall that NRQCD

dictates that J/ψ production consists of the perturbative creation of a cc̄ pair in a

color and angular momentum state n =2S+1 L
[1,8]
J and the subsequent non-peturbative

evolution of these cc̄ into physical, color-singlet J/ψ(3S
[1]
1 ). In the leading-power

NRQCD approximation, the primary contributions to J/ψ production come from

single parton fragmentation into color-singlet 3S
[1]
1 , and color-octet 1S

[8]
0 , 3S

[8]
1 , or

3P
[8]
J modes.

In Chapter 2, we discussed several different extractions of the LDMEs that have

been performed in the literature. In this section, the LDMEs are taken to be the

central values from the global fits performed in Refs. [14, 15], which are quoted in

Table 2.1. Recall that, in NRQCD, color-octet mechanisms are suppressed by a

factor of v4 relative to the color-singlet mechanism where v is the relative velocity

of the cc̄ pair and has a typical value of vc ∼ 0.3 [60].5 This relative v4 suppression

of the color-octet mechanisms is reflected in the numerical values of the LDMEs

in Table 2.1. In the gluon FF to J/ψ, this relative v4 suppression is, however,

compensated by powers of αs in the color-singlet channel. The leading color-octet

contributions scale as O(α2
s) for the 1S

(8)
0 and 3P

(8)
J channels and O(αs) in the 3S

(8)
1

channel. The color-singlet contribution scales as O(α3
s).

We will now calculate the gluon FJFs for each of the four production mecha-

nisms mentioned above. Each FF will be evolved from the scale µ = 2mc to the

characteristic scale of the measured jet µJn3
(τa) = ωτ

1/(2−a)
a using the DGLAP evo-

lution equations which are solved using Mellin transforms (as done in, for example,

Appendix A of Ref. [12]). For most values of z considered in this section, a z depen-

dent measured jet characteristic scale (as was used for B meson production in the

5 The 3S
[1]
1 scales as v3 and the octet mechanisms as v7.
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Figure 5.4: Angularity distributions of dσ(τa, z) for a = 0 at z = 0, 1, 0.3, 0.5, 0.7.

Analytic calculations are shown as red (green) bands for the 3S
(8)
1 (1S

(8)
0 ) production

mechanisms. Results from Madgraph + Pythia are shown as red (green) dashed
lines for the same mechanisms.

previous section) will not significantly improve scale-associated uncertainties. Since

the z dependent scale also results in negative values for the 3P
(8)
J FF, we will not

use such a scale choice in this section. After evolution, we perform the convolution

[D • fJ ] (z) in z with the Jij matching coefficients derived in Chapter 4.

Fig. 5.4 shows the NLL’ resummed analytic and simulated results from Madgraph

+ Pythia for the differential cross-section as a function of τ0 for various fixed values

of z for the 3S
(8)
1 (red) and 1S

(8)
0 (green) production mechanisms. We see fairly

good agreement between analytic and Monte Carlo results in the peak regions at

low z and notice some qualitative differences in the tail regions, especially for the

1S
(8)
0 channel. At higher values of z, where the number of final state particles is

smaller, differences in the τ0 distributions can be attributed to Pythia’s model of

quarkonium production, which we will soon see is unrealistic. As z → 0, we also
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Figure 5.5: Angularity distributions of dσ(τa, z) for a = +1/2, 0, −1/2, −1 at

z = 0.5. Analytic calculations are shown as red (green) solid lines for the 3S
(8)
1

(1S
(8)
0 ) production mechanisms. Results from Madgraph + Pythia are shown as red

(green) dashed lines for the same mechanisms.

see similar τ0 dependence in the two analytic distributions. This suggests that at

small z, the jet substructure is independent of the production mechanism. Thus, any

attempts to use angularity distributions to extract the various LDMEs should focus

on the range 0.3 < z < 0.7.

Fig. 5.5 shows the τ0 distributions for the 1S
(8)
0 and 3S

(8)
1 mechanisms for different

values of the angularity parameter a = +1/2, 0, −1/2, −1, shown here without scale

uncertainties so as reduce clutter in the plot. We see reasonably good agreement be-

tween analytic results and Pythia. As a is decreased, we also see less discrimination

between the two production mechanisms. Any extraction of LDMEs using angularity

should thus be done with larger values of a, for a < 1 where SCETI factorization

holds, with the caveat that the analytic results are less robust as a→ 1 since power
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corrections grow as 1/(1− a) [95].

In contrast to the angularity distributions, Fig. 5.8 shows that analytic and Monte

Carlo calculations of the z distributions using Madgraph + Pythia yield strikingly

different results, with the Monte Carlo yielding a much harder z-distribution. This

discrepancy is due to Pythia utilizing an unphysical picture of quarkonium produc-

tion that is in need of significant modifications. We will describe two approaches to

simulating the production of J/ψ in jet events:

1. Default Pythia — Out-of-the-box implementation of MadOnia package of

Madgraph. MadOnia generates color-singlet and color-octet cc̄ pairs such as

e+e− → bb̄cc̄[3S
[8]
1 ] hard scale events using NRQCD FFs. These events are then

showered and hadronized into multi-jet events containing J/ψ using Pythia’s

default handling of onia states.

2. Gluon Fragmentation Improved Pythia (GFIP) — A modification of

Pythia that takes hard scale partonic processes from Madgraph such as e+e− →

bb̄g, uses Pythia’s parton shower to evolve the events down to where the gluon

virtuality is 2mc and then convolves the resulting gluon energy distributions

with NRQCD FFs by hand.

We will describe these two processe and their results below in detail. Additionally,

Figs. 5.6 and 5.7 show diagrammatic representations of how each of these methods

handles the showering/fragmentation of octet-onia states.

In the default Pythia approch, we first use Madgraph to generate e+e− →

bb̄ggcc̄[3S
(1)
1 ], e+e− → bb̄gcc̄[1S

(8)
0 ], and e+e− → bb̄cc̄[3S

(8)
1 ]. Madgraph offers flex-

ibility and control over the selection and phase-space contraints of the hard-scale

process, which makes it easier to use for generating hard processes than Pythia.

We restrict our processes to diagrams in which a virtual photon couples to the bb̄.

This mandates that cc̄ pairs plus any additional gluons come from the decay of a
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Pqq(z)

µ Eg = 200MeV

Figure 5.6: A diagrammatic representation of how default Pythia handles the
showering of octet-onia states, via gluon emmissions from a cc̄ state with probability
2Pqq(z). This creates an energy distribution that is, ultimately, much harder than
analytic calcualtions due to the structure of Pqq splitting function.

virtual gluon. We did not simululate 3P
(8)
J channel events in e+e− → bb̄g → bb̄cc̄g

because IR divergences in the matrix elements require much longer running times to

get the same number of events. We then shower and hadronize these hard processes

using Pythia. Analysis is done using Rivet [145]. We require that after shower-

ing there are three jets in the event, two produced from the b-quarks and one from

a gluon, which must also contain the J/ψ. We produce these three-jet events at

Ecm = 250 GeV in the Mercedes-Benz configuration by restricting jet energies via

Ejet > (Ecm − Λ)/3 with Λ = 30 GeV, analagous to what was done in the previous

section.

During Pythia’s parton shower phase, color-singlet J/ψ do not radiate gluons.

Thus, if one produces a J/ψ via the 3S
[1]
1 intermediate cc̄ state within a jet, all

surrounding in-jet radiation is due to the other colored particles in the event [136,

146]. This causes a large majority of these onia to have z ≈ 1. Pythia allows the

color-octet cc̄, on the other hand, to emit gluons with a splitting function 2Pqq(z).

Since Pqq(z) is peaked at z = 1, the color-octet cc̄ pair typically retains most of its

energy after these emissions (c.f. Fig. 5.6). This showering model is quite different

than the picture of a resummed analytic calculation.
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In our NLL’ calculation, the FF is calculated at the scale 2mc, then evolved up to

the jet energy scale using the DGLAP equations. Since this is a gluon FF, the most

important splitting kernel in this evolution is Pgg(z). The resulting evolved FFs are

not significantly changed if we use only this evolution kernel and ignore mixing with

quarks. Thus our analytic calculation describes a highly energetic gluon produced

in the hard process with virtuality of order the jet energy scale, which then showers

by emitting gluons until one of the gluons, at a virtuality ∼ 2mc, hadronizes into

the J/ψ (c.f. Fig. 5.7). Because Pgg(z) is peaked at both z = 0 and z = 1, the z

distribution of the J/ψ is much softer than the default Pythia prediction (c.f. the

dashed colored lines in Fig. 5.8).

While Pythia allows the user to modify the color-factor in front of the split-

ting functions via “TimeShower:octetOniumColFac” parameter, the splitting func-

tion cannot be changed without fundamental programming changes to Pythia’s

parton shower model. In an attempt to soften default Pythia’s z distributions, we

changed this color-factor coefficient parameter in Pythia for a gluon radiating off a

color-octet cc̄ pair from 2Pqq to CAPqq = 3Pqq. While this resulted in a slighter softer

z distribution than the default settings, it still described an unphysical evolution and

was inconsistent with our analytic predictions.

We note that this change did not have significant impact on the τa distributions.

The τa distribution predictions of Pythia are generally in better agreement with

analytic predictions. The variable τa depends on all of the hadrons in the jet and is

therefore less sensitive to the behavior of the J/ψ. This is especially true when the

J/ψ carries a small fraction of the jet energy (small z), which can be seen in Fig. 5.4

where the analytic τa distributions look similar for different color-octet mechanisms.

In an attempt to reconcile the analytic predictions with default Pythia’s z distri-

butions, we developed a procedure for modifying Pythia called Gluon-Fragmentation-

Improved Pythia (GFIP). GFIP aims to make Pythia’s picture of quarkonium
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Figure 5.7: A diagrammatic representation of how gluon-fragmentation-improved-
Pythia (GFIP) handles the showering and hadronization of quarkonium states, by
mimicing our analytic picture of the evolution and fragmentation of a gluon. A hard-
scale gluon is showered down by Pythia to the scale ∼ 2mc. The final state gluon
energy distribution is then convolved with the leading-power NRQCD gluon FFs.

production fall more in line with the physical picture underlying our NLL’ calcula-

tion. We generate e+e− → bb̄g events in Madgraph and allow Pythia to shower but

not hadronize the events. The parton shower evolves the hard-scale partons from the

jet-energy scale down to a scale where the typical invariant mass of a gluon is ∼ 2mc.

GFIP then convolves the resulting gluon energy distribution with the NRQCD FFs

calculated at this scale, which we expect will soften default Pythia’s z distributions

and bring them closer to our NLL’ resummed predictions.

The lower cutoff scale in Pythia’s parton shower is set by “TimeShower:pTmin,”

a parameter that sets the minimum virtuality of the particles in the shower before

the hadronization phase is started. GFIP changes “TimeShower:pTMin” from the

default value of pmin
T = 0.4 GeV to pmin

T = 1.6 GeV which can be shown to correspond

to a virtuality of roughly 2mc. This comes from the basic kinematics of the parton

shower where one can show that in a basic a→ bc splitting that (pmin
T )2 ∼ z(1−z)m2

where m is the mass of the fragmenting parton a and p⊥ is the magnitude of the

transverse momentum of b, c. GFIP then obtains a z distribution for the gluons by

randomly choosing a gluon from the gluon initiated jet and numerically convolving
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Figure 5.8: z distributions of dσ(τa, z) for NLL’ analytic calculations (colored
bands), Pythia (colored dashed lines), and GFIP (solid black lines) for fixed values
of τ0 = (4, 5, 6)× 10−3.

this z distribution with the analytic expressions for the NRQCD FFs. As illustrated

in Fig. 5.7, GFIP’s picture of gluon evolution/fragmentation is much closer to that

of our analytic calculations using FJFs. The black curves in Fig. 5.8 show that z

distributions from GFIP are consistent with our resummed analytic calculations.

It is also interesting to note that Pythia treats radiation off of octet cc̄ pairs the

same regardless of the quantum numbers of the intermediate cc̄ state. In contrast,

GFIP, like our analytic calculation gives different results for all three channels by

applying the FFs at the end of the parton shower phase. GFIP can also be applied

to all four NRQCD production mechanisms including the 3P
(8)
J channel as conver-
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gence issues are absent in this process. As a check of our results, we also tested a

procedure analagous to GFIP for the two-jet events with B mesons discussed in the

previous section. We showered e+e− → bb̄ produced in Madgraph using Pythia

with hadronization turned off. We then convolved the resulting b quark distribution

with the phenomenological FF (see Section 5.2) at the scale 2mb and found results

for B mesons that are consistent with our earlier analytic calculations.

While GFIP is far from a proper modification of Pythia, as we can see from

Fig. 5.8, it shows us that implementing gluon fragmentation (which is not included

in Pythia) yields encouraging similarities to our NLL’ resummed calculation using

the FJF formalism. The modifications provide excellent motivation to continue the

development of the FJF formalism for studying J/ψ production in jets. Additionally,

GFIP suggests that fundmental changes in how Pythia treats heavy quarkonia

are needed and that these changes will yield Monte Carlo predictions in-line with

NRQCD.

A proper modification of Pythia of this type is important since GFIP can only

be used to calculate the z distribution. Because hadronization is applied only to

gluons fragmenting into J/ψ and Pythia’s hadronization module is turned off, GFIP

cannot reproduce the angularity distributions discussed above. Additionally, there

are other jet substructure observables such as the transverse momentum of the J/ψ

relative to the jet axis that should, in light of the analysis of this work, be able to

discriminate between NRQCD production mechanisms. Other observables such as

n-subjettines [86], are most easily calculated numerically using Monte Carlo and a

properly implemented model of quarkonium production using NRQCD FFs will be

needed.
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5.4 Applications of the TMDFJF to Quarkonium Production

In this section, we continue to explore applying the FJF formalism to the production

of heavy quarkonia within jets. Having had success comparing angularity-dependent

FJFs with the GFIP predictions, we now will investigate whether TMDFJFs (see

Section 4.5) can provide discriminating power between different the J/ψ produc-

tion mechanisms in NRQCD. Again, we focus on J/ψ produced within jets initiated

by fragmenting gluons, although our results can be generalized to other quarkonia.

Bulding upon the formalism introduced in Section 4.5, we first discuss the resumma-

tion of potentially large logarithms in the TMDFJF via the use of RG and rapidity

renormalization group (RRG) techniques. Note that we will, in this section, not be

computing a full cross-section, but simply the TMDFJF resummed to NLL’ accuracy

while assuming that out-of-jet radiation has ultra-soft scaling. However, as our goal

is to study the p⊥ and z distributions the J/ψ in a jet, this should be sufficient.

Each of the diagrams in the perturbative calculation of the collinear Jij and

collinear-soft SC pieces discussed in Section 4.5 suffer from infra-red (IR), ultra-

violet (UV) and rapidity divergences (RD) which are addressed as follows

• IR Divergences — IR divergences in the collinear-soft function cancel when

summing over all diagrams. In the matching coefficients Jij, IR divergences

cancel in the matching of the purely collinear piece Dhi of the TMDFJF onto

the standard FFs, Dh
i .

• UV + Rapidity Divergences — These are regulated using a dimensional

regulator and a rapidity regulator in accordance with the techniques developed

in Refs. [122, 134]. Poles from UV and rapidity divergences are removed by

renormalization, where we introduce the dimensionful scales µ (for UV diver-

gences) and ν (for rapidity divergences), each of which has their own set of
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evolution equations (RGEs for µ and RRGEs for ν).

For TMD functions, bare and renormalized quantities are related through the fol-

lowing convolution with the renormalization function Z (where functions are renor-

malized unless notated as bare)

F bare(p⊥) = ZF (p⊥, µ, ν)⊗⊥ F (p⊥, µ, ν), (5.22)

where the function F will be either Dhi or SiC and ⊗⊥ denotes a convolution in

transverse components as defined in Eq. (4.72). This function satisfies the following

RG and RRG equations respectively

d

d lnµ
F (p⊥, µ, ν) = γFµ (µ, ν)× F (p⊥, µ, ν)

d

d ln ν
F (p⊥, µ, ν) = γFν (p⊥, µ, ν)⊗⊥ (p⊥, µ, ν), (5.23)

where γFµ and γFν are the anomalous dimensions associated with RGEs and RRGEs,

respectively. These anomalous dimensions are defined via
[
(2π)2δ(2)(p⊥)

]
× γFµ (µ, ν) = −Z−1

F (p⊥, µ, ν)⊗⊥
d

d lnµ
ZF (p⊥, µ, ν)

γFν (p⊥, µ, ν) = −Z−1
F (p⊥, µ, ν)⊗⊥

d

d ln ν
ZF (p⊥, µ, ν). (5.24)

We find that the renormalization function for the purely collinear piece at O(αs) is

ZD(p⊥, µ, ν) =(2π)2δ(2)(p⊥) + (4π)αsw
2CF

{
− 2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)

+
1

2ε

(
ln

(
ν2

ω2

)
+ γ̄i

)
δ(2)(p⊥) ,

}
(5.25)

where γ̄ is defined in Eq. (4.90). For the collinear-soft piece we find

ZSC (p⊥, µ, ν) =(2π)2δ(2)(p⊥) + (4π)αsw
2CF

{
+

2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)

+
1

2ε

(
ln

(
µ2

r2ν2

)
+

1

ε

)
δ(2)(p⊥).

}
(5.26)
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Using the definitions of Eq. (5.24), the anomalous dimensions in µ are

γDµ (ν) =
αsCi
π

(
ln

(
ν2

ω2

)
+ γ̄i

)
and γSCµ (ν) =

αsCi
π

ln

(
µ2

r2ν2

)
. (5.27)

In calculating the γν , the bookkeeping parameter w plays a role analogous to the

coupling g in the γµ anomalous dimensions6 and has the property

ν
∂

∂ν
w = −η

2
w, (5.28)

thus yielding

γDν (p⊥, µ) = −(8π)αsCi L0(p⊥, µ
2) (5.29)

γSCν (p⊥, µ) = +(8π)αsCi L0(p⊥, µ
2). (5.30)

We can show that the anomalous dimensions satisfy

γDµ (ν) + γSCµ (ν) = γJµ =
αsCi
π

(
ln

(
µ2

r2ω2

)
+ γ̄i

)
, (5.31)

where γJ is the anomalous dimension of the unmeasured quark jet function [1] and

γDν (p⊥, µ) + γSν (p⊥, µ) = 0, (5.32)

both of which must be satisfied for our TMDFJFs to be consistent with the corre-

sponding jet functions. In order to resum our results to NLL’ accuracy, we evolve the

purely collinear and collinear-soft pieces from their characteristic scales to common

scales in µ and ν using the RG and RRG respectively. To perform the evolution,

we first take the Fourier transforms of both the RG and RRG equations as done in

Ref. [122]. We then perform the evolution using the RG and RRG in this transformed

space before finally performing the inverse Fourier transform in order to write the

6 It is not, however a real coupling, but merely a calculational tool used to ensure that the total
γν is independent of ν.
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resummed TMDFJF in momentum space. We first evolve our collinear-soft function

in ν-space, choosing the common scale to be ν = νD, the characteristic ν scale of the

purely collinear part of the TMDFJF (which as shown below νD = 2 exp(−γE)/b).

We then evolve both functions in µ-space to the common scale µ = ωr.7

In order to ultimately make our plots easier to interpret, we study the quantity

Ghi (p⊥, z, µ) which is related to the TMDFJF Ghi (p⊥, z, µ) by a change of variables

from vector transverse momenta (p⊥) to the amplitude (p⊥ = |p⊥|). Performing the

evolutions described above we find,

Ghi (p⊥, z, µ) = (2π)2 p⊥

∫ ∞

0

db bJ0(bp⊥)USC (µ, µSC ,mSC )UD(µ, µD, 1)

× VSC (b, µSC , νD, νSC )FT
[
Di/h(p⊥, z, µD, νD)⊗⊥ SiC(p⊥, µSC , νSC )

]
, (5.33)

where b with b = |b| is the Fourier conjugate variable of p⊥, J0 is a Bessel function

of the first kind and where

UF (µ, µ0,mF ) = exp (KF (µ, µ0))

(
µ0

mF

)ωF (µ,µ0)

, (5.34)

and VF (b, µ, ν, ν0) =

(
µ

µC(b)

)ηF (µ,ν,ν0)

where µC(b) = 2 exp(−γE)/b, (5.35)

are the evolution kernels for RG and RRG evolution, respectively.

The purely collinear term Dhi in Eq.(5.33) is then a convolution of the pertur-

batively calculated short distance coefficients and the standard fFF evaluated at

their characteristic scale (in the case of NRQCD FFs this will again be 2mc) and

evolved to the characteristic scale of the purely collinear term in momentum space,

µ = p⊥. Since the FFs are not dependent on the transverse momentum (and thus

not the Fourier conjugate b), their form is fixed in the evalutation of the b integral in

7 Notice that SC and D have the same characteristic renormalization scale µSC
= µD ≡ µC .
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Eq.(5.33). The scales µF , νF and mF for each of the functions discussed above are

given in Table 5.2. Again, additional details on RG and RRG evolution are provided

in Appendix C. In order to apply the TMDFJFs to quarkonium production, we will

Function (F ) RG scale (µF ) RRG scale (νF ) mF

Di/h µC(b) ω n.a.
SiC µC(b) µC(b)/r νr

Table 5.2: Characteristic scales of the different functions in the factorization theorem.

once again use the NRQCD FFs for the 3S
[1]
1 , 3S

[8]
1 ,1 S

[8]
0 , and 3P

[8]
J production mech-

anisms of J/ψ. Our goal is to see if the z and p⊥ dependence of the TMDFJF can

discriminate between these different mechanisms.

The TMDFJFs as a function of p⊥ for fixed z = 0.3, 0.5, 0.7, and 0.9 and jets of

energies EJ = 100 GeV and EJ = 500 GeV are shown Figs. 5.9 and 5.10, respectively.

In order to make it easier to view all distributions simultaneously, we have rescaled

the 3S
[8]
1 , 1S

[8]
0 , 3P

[8]
J , and 3S

[1]
1 distributions, by factors of 106, 106, 3.0 × 105 and

4.0 × 105, respectively in the eight plots shown in Figs. 5.9 and 5.10. Theoretical

uncertainties are calculated by varying the RRG and RG scales νSC , νD, and µ by

a factor of 2 and 1/2. The dashed central lines in these plots show the choice of

ν = νD = ω and µ = ωr. Note that while these plots show a range of 0 < p⊥ < 20

GeV, it is important that to keep in mind that our calculations are only reliable for

p⊥ ≥ 2mc = 3 GeV.

Figs. 5.9 and 5.10 demonstrate that the TMDFJF does in fact provide discrimi-

nating power between the four production mechanisms. For z = 0.3, all four distri-

butions look similar for both EJ = 100 GeV and 500 GeV. The distributions peak

at roughly the same location and they have same slope for large p⊥. For z ≥ 0.5,

the color-singlet 3S
[1]
1 mechanism and the color-octet 1S

[8]
0 mechanism peak at lower

values of p⊥ and fall more steeply with p⊥ than the 3S
[8]
1 and 3P

[8]
J mechanisms.
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Figure 5.9: The TMDFJF as a function of the p⊥ of the J/ψ for the
3S

[1]
1 , 3S

[8]
1 , 1S

[8]
0 , 3P

[8]
J production mechanisms for jet energies EJ = 100 GeV. Theo-

retical uncertainties are calculated by varying the renormalization scales by factors
of 1/2 and 2.

The 3P
[8]
J gives a slightly harder p⊥ distribution than 3S

[8]
1 and both are significantly

harder than the other mechanisms. 8

In addition to the p⊥ distribution for fixed z, it is also interesting to study z

distribution of the TMDFJF for different fixed values p⊥ (in the perturbative regime).

Fig. 5.11 shows the TMDFJF as a function of z for p⊥ = 10 GeV for jets with energy

8 We note that while the peak regions in the p⊥ distribution for the 3S
[8]
1 and 3P

[8]
J distributions

are at larger values of p⊥ ∼ 6 − 8 GeV where perturbation theory is reliable, the 3S
[1]
1 and 1S

[8]
0

peak regions occur at very low p⊥ where perturbation theory is not reliable. In this region, non-
perturbative effects are likely to be important and could affect the shape of the distributions. We
are interested in examining this problem in future work.
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Figure 5.10: The TMDFJF as a function of the p⊥ of the J/ψ for the
3S

[1]
1 , 3S

[8]
1 , 1S

[8]
0 ,3 P

[8]
J production mechanisms where the jet energies EJ = 500 GeV.

Theoretical uncertainties are calculated by varying the renormalization scales by
factors of 1/2 and 2.

EJ = 100 and 500 GeV. Large logarithms and non-perturbative effects will, of course,

affect these distributions in the z → 0 and z → 1 limits. However, our calculations

should be reliable for intermediate values of z. We notice that while for z < 0.5 the

distributions have similar shapes, in the range 0.5 < z < 0.9, the shapes of all four

mechanisms are different. This observation is consistent with our study of angularity

FJFs, where there was also more differentiation between production mechanisms at

higher values of z. Ultimately, the z dependence of the TMDFJF for fixed p⊥ can

also be used to differentiate between the NRQCD production mechanisms.
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Figure 5.11: The TMDFJF as a function of the z of the J/ψ for the
3S

[1]
1 , 3S

[8]
1 , 1S

[8]
0 ,3 P

[8]
J production mechanisms, with p⊥ = 10 GeV for EJ = 100 and

500 GeV. Theoretical uncertainties are calculated by varying the renormalization
scales by factors of 1/2 and 2.

In addition to studying the transverse momentum distribution, we can use the

TMDFJF formalism to calculate the angle θ at which J/ψ are produced relative to

the jet axis. The average production angle for the J/ψ can be written as

〈θ〉(z) =

∫
θdθ(dσ/dθdz)∫
dθ(dσ/dθdz)

. (5.36)

By using the small angle approximation, we can write down a cross-section differential

in z and the average angle θ via

dσ

dθdz
=

∫
dp⊥ δ

(
θ − 2p⊥

zω

)
dσ

dp⊥dz
. (5.37)

Substituting this into Eq. (5.36) yields an equation for the average angle in terms of

the differential cross sections in p⊥ and z

〈θ〉(z) =
2
∫
dp⊥p⊥(dσ/dp⊥dz)

zω
∫
dp⊥(dσ/dp⊥dz)

. (5.38)

In SCET, the cross-section dσ/dθdz can be factorized into hard, collinear, and soft

pieces. However, the quotient in Eq. (5.38) will not, in general, allow for the cancel-
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Figure 5.12: The quantity f
J/ψ
ω (z) (as defined in the text) as a function of z

relative to the jet axis for each NRQCD production mechanism where the jet has
EJ = ω/2 = 100 GeV(left) and 500 GeV (right). The J/ψ is restricted to have
p⊥ ∈ [5, 20] GeV in the 100 GeV jet and p⊥ ∈ [5, 60] GeV in the 500 GeV jet.

lation of the non-collinear functions because one must sum over the fragmentation

of different partons in the numerator and denominator. However, if we focus on

studying the gluon fragmentation channel (which as we have discussed is the leading

contribution), the Eq. (5.38) can be written as the quotient

〈θ〉(z) ∼ 2
∫
dp⊥ p⊥Ghg (p⊥, z, µ)

zω
∫
dp⊥ Ghg (p⊥, z, µ)

≡ fhω (z), (5.39)

where Ghg (p⊥, z, µ) is the gluon TMDFJF.

Fig. 5.12 shows the function f
J/ψ
ω (z) for fixed z = 0.3, 0.5, 0.7, and 0.9 where

ω = 2EJ = 200 GeV and 1 TeV for J/ψ in jets with p⊥ ∈ [5, 20] GeV and p⊥ ∈ [5, 60]

GeV, respectively. The renormalization scale is again set to µ = ωr. The colored

dashed lines show the results of a fit to the function, C0 exp(−z C1). The results of

the fit for C0 and C1 are shown in Table 5.3 for each production mechanism at both

jet energies. Note that the typical angles are small enough to justify the use of the

small-angle approximation in Eq. (5.37).

Again we see that differences between the various NRQCD mechanisms become

more pronounced as z increases. This shows that the average angle does in fact
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EJ = 100 GeV
2S+1L

[1,8]
J C0 C1

3S
[1]
1 3.92 0.92

3S
[8]
1 3.86 0.84

1S
[8]
0 3.88 0.90

3P
[8]
J 3.75 0.74

EJ = 500 GeV
2S+1L

[1,8]
J C0 C1

3S
[1]
1 3.75 1.68

3S
[8]
1 3.48 1.39

1S
[8]
0 3.66 1.64

3P
[8]
J 3.28 1.20

Table 5.3: Results of fits of the function log (fω(z)) shown in Fig. 5.12 to the function
C0 exp(−z C1).

discriminate between the different octet mechanisms. In particular, the slope on the

log plot on the right side of Fig. 5.12, which is determined by the parameter C1 in

Table 5.3, differs by as much as 20% between the various NRQCD mechansims for

EJ = 100 GeV and and as much as 40% for EJ = 500 GeV. Note, however, that

1S
[8]
0 and 3S

[1]
1 give very similar predictions for this observable.

5.5 FJF/Pythia Predictions vs. LHCb Data on J/ψ Production

In early 2017, the LHCb collaboration published the first study of J/ψ produced

within jets in a collider experiment [32]. They found that the distribution of the

fraction z(J/ψ) of the jet’s transverse momentum carried by the J/ψ strongly dis-

agree with predictions from Pythia. As shown in Fig. 5.13, LHCb saw a stark

contrast between data and predictions from Pythia, which showed a much harder

distribution in z. Based on the discussion presented in Section 5.3, we know that

this Pythia distribution is unphysical due to the way in which onia are created and

showered. In this section, we use versions of the GFIP and FJF formalisms to make

two different improved theoretical predictions of the z(J/ψ) distribution and discuss

the implications of the comparisons between NRQCD and LHCb results.
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Figure 5.13: Differential cross section for prompt J/ψ production within jets as a
function of z(J/ψ), the fraction of the jet’s transverse momentum carried by the J/ψ
produced within it as shown in Ref. [32]. The distribution is normalized such that
the total sum of the bin heights is 1. The plot also shows a leading-order NRQCD-
based prediction from Pythia as well as a breakdown of the Pythia contributions
into single and double parton scattering contributions.

5.5.1 Method 1: GFIP for LHCb

We first generate events in Madgraph corresponding to hard-scale processes for charm

quarks and gluons in pp collisions at
√
s = 13 GeV. In general, we neglect contri-

butions to J/ψ production from non-charm quarks as they are suppressed, either

due to soft gluon emission or by αs evaluated at a large energy scale. We generate

events using the constraints of the the LHCb analysis, where jets are required to

have pseudorapidity 2.5 < η < 4.0, R = 0.5, and pT > 20 GeV. Pythia is then used

to shower the event down to a scale where the final state particles have a virtuality

of ∼ 2mc, but its hadronization module is turned off. We use the anti-kT algorithm

with R = 0.5 to reconstruct jets out of the final state partons, restricting charm

quarks and gluons that will be hadronized to be within the jet.

The z distributions resulting from this shower are shown in Fig. 5.14. As men-
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Figure 5.14: Pythia predictions for c quark and gluon z distributions (where z

is the fraction of the energy of the parton initiating the jet) after showering to the

scale 2mc.

tioned in Section 5.3, the z distribution of the charm (which showers using the Pqq

splitting function) is peaked near z = 1 while the gluon z distribution (which showers

using the Pgg splitting function) is much softer and peaked near z = 0. J/ψ are typ-

ically studied experimentally through their decays to dimuons (e.g. J/ψ → µ+µ−).

LHCb requires that both muons have 2.0 < η < 4.5, p > 5 GeV, and pT > 0.5

GeV. This cut suppresses contributions from low z particles and thus enhances the

contribution from c quark initiated jets, which then dominate at high z. We con-

volve the pT distribution for the gluons with the NRQCD FFs for the 3S
[1]
1 , 3S

[8]
1 ,

1S
[8]
0 and 3P

[8]
J production mechanisms. For the case of charm quark fragmentation,

color-singlet and color-octet FFs start at the same order in αs, so the relative v4

is no longer compensated for as it was for the gluon LDMEs. We thus restrict our

analysis for charm quarks to the 3S
[1]
1 channel.

After convolving with the FFs, we implement the muon cuts by first assuming

the J/ψ are roughly unpolarized. This yields an isotropic angular distribution of

the µ+, µ− in the rest frame of the J/ψ. After boosting these muons back to the
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〈OJ/ψ(3S
[1]
1 )〉 〈OJ/ψ(3S

[8]
1 )〉 〈OJ/ψ(1S

[8]
0 )〉 〈OJ/ψ(3P

[8]
0 )〉/m2

c

× GeV3 ×10−2 GeV3 ×10−2GeV3 ×10−2GeV3

B & K [14, 15] 1.32± 0.20 0.224± 0.59 4.97± 0.44 −0.72± 0.88
Chao, et al. [18] 1.16± 0.20 0.30± 0.12 8.9± 0.98 0.56± 0.21
Bodwin et al. [22] 1.32± 0.20 1.1± 1.0 9.9± 2.2 0.49± 0.44

Table 5.4: We consider three sets of LDMEs for NRQCD production mechanisms,
listed here in units of GeV3.

lab frame, we apply the LHCb cuts mentioned above. In order to combine different

production mechanisms, we give each a weight calculated via

r(i, n) =
dσ̂(pp→ i+X)

∫ 1

0
dzDn

i→J/ψ(z)

dσ̂(pp→ c+X)
∫ 1

0
dzD

3S
[1]
1

c→J/ψ(z)
. (5.40)

where i is the initiating parton, n represents the quantum numbers of the interme-

diate cc̄, and the FFs Dn
i→J/ψ(z) are again calculated at the scale 2mc. We note

that Dn
i→J/ψ(z) ∝ 〈OJ/ψ(n)〉 which means that LDMEs from different fits will enter

the ratios through the FFs at 2mc. For the LDMEs, we use the 3 sets extracted in

Refs. [14, 15, 18, 22] whose values are shown in Table 5.4.

The LHCb data is normalized such that the sum of the heights of the bins is 1.

Due to potentially large corrections that may occur at z → 0 and z → 1, we will

compare our GFIP and FJF methods with LHCb data in the range 0.1 < z < 0.9,

fixing the normalizations of our distributions to the sum of the data in only these bins

accordingly. The results of this application of GFIP are shown in grey in Fig. 5.15.

As we will discuss further below, they compare quite favorably to the LHCb data.

5.5.2 Method 2: FJF for LHCb

In addition to the GFIP method, we also make an analytic calculation of the z(J/ψ)

distribution using FJFs for jets where the energy E and radius R of the jet are

measured combined with hard events generated by Madgraph. In previous sections
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we used a factorization for J/ψ production in jets of the form

dσ[e+e− → jets, h] = H ⊗ S ⊗ J(⊗J)⊗ Gh (5.41)

Resumming such a cross-section involved evaluating each function at its characteristic

scale and then evolving it to a common scale µ using its corresponding RGE. In the

present case, we resum logarithms of mJ/ψ/EJ in the FJF by simply using the LO

DGLAP equations to evolve the FF from 2mc to the jet energy scale, EJ . We allow

Madgraph to calculate the remaining terms in the factorization theorem to LO in

perturbation theory and do not perform NLL’ resummation for the remaining terms

in Eq. (5.41). Since the z(J/ψ) dependence of the cross-section is controlled primarily

by the FJF, these other pieces will affect only the overall normalization.

We next combine the energy distribution of hard partons from Madgraph with

the FJFs for R = 0.5 jets reconstructed using the anti-kT algorithm to generate a

z(J/ψ) distribution for each of the five production mechanisms. The LHCb muon

cuts are implemented by using the GFIP results to calculate the probabilities for

any given z that a µ+µ− will survive the cuts. Taking this probability into account

and weighting the contributions of each NRQCD production mechanism according

to Eq. (5.40) for each of the LDME sets shown in Table 5.4, we find the distribution

shown in red in Fig. 5.15.

5.5.3 Comments on Uncertainties

For both methods, uncertainties are calculated using the uncertainties quoted in the

LDME values of Refs. [14, 15, 18, 22]. For the extraction in Ref. [22], the errors

take into account an error correlation matrix provided in Ref. [147]. The authors of

Ref. [18] also observed that a fixed relationship between the 3S
[8]
1 and 3P

[8]
J LDMEs

must be enforced in order for J/ψ to be unpolarized. When taken into account in

calculating the LDME value uncertainties, this constraint significantly reduces the
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Figure 5.15: Predicted z(J/ψ) distribution using GFIP (gray) and FJF (red) for
the three choices of LDME in Table 5.4 and the LHCb measurements of z(J/ψ).

error bands relative to simply adding each of the errors on the LDMEs in quadrature.

In the absence of a complete factorization theorem, it is difficult to reliably esti-
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mate theoretical uncertainties. For example, when calculating errors from variations

of the renormalization scale, the µ dependence would normally be cancelled between

the hard, jet, and soft functions in the factorization theorem, but the soft functions

have not been calculated. However, because of the way we have fixed the normaliza-

tion to match the LHCb plots, these scale variations, which would simply affect the

overall normalization and not the shapes of the z(J/ψ) distributions, will not affect

the uncertainty.

We also note that our FJF method is more appropriate for n-jet cross sections like

Eq. (5.41) than for the inclusive case. However, inclusive FJFs [111, 112, 148, 149]

differ by a contribution from out-of-jet soft radiation that is suppressed by powers of

αs as well as Λ/pjet
T , where Λ is the scale of out-of-jet soft radiation (see the discussion

following Eq. (4.15) of Ref. [1]). These power corrections will be small for jet radius

R ∼ O(1). Additionally, since our GFIP method uses Pythia (which generates the

final state radiation in an inclusive manner) and gives similar results to the FJF

method, this confirms our expectation that the FJF method is correct up to power

corrections.

Other uncertainties such as underlying event and double parton scattering contri-

butions should ideally be accounted for, especially as z → 0. However, it is unclear

how these should be estimated.

5.5.4 Comparisons of GFIP, FJFs, & Data

For all three extractions of the LDMEs, Methods 1 and 2 both yield results that

are much closer to the LHCb data than the default Pythia predictions of Ref. [32].

This provides support for the picture of quarkonium production we first described in

Section 5.3. The data also seem to favor the LDMEs from the fits of Refs. [18, 22] over

the global fits Ref. [14, 15]. To understand this, consider that LHCb measurement

in Fig. 5.13 steadily decreases as z(J/ψ)→ 1. This behavior is characteristic of the
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3S
[1]
1 and 1S

[8]
0 FJFs whereas the 3S

[8]
1 and 3P

[8]
J FJFs diverge as z → 1. Thus, the

cancellation of the 3S
[8]
1 and 3P

[8]
J mechanisms enforced in the fits of [18, 22], which

results in the 1S
[8]
0 mechanism dominating production at high z, allows our results to

better match the data in this region. Refs. [18, 22] also showed that the cancellation

is critical to ensuring that the J/ψ are unpolarized at high-pT . This cancellation is

not enforced in the global fits, which is why the distribution begins to turn upwards

as z → 1.

The success of this analysis will help motivate further measurements of the J/ψ

in jets. It would be interesting to see comparisons of these analytic methods with

measurements of J/ψ in jets at central rapidities as well as a measurement of the

J/ψ polarization as a function of z(J/ψ). Considering the large uncertainties shown

the second plot of Fig. 5.15, this study also motivates a combined fit of the LDMEs

to data of both LHCb and the high pT data used in Ref. [18].
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6

Conclusions

In this work we have explored a novel way to probe the production of quarkonia. We

used the FJF formalism to study the production of J/ψ in jets at high transverse

momentum in a search for a better way to extract the J/ψ LDMEs at e+e− and

pp colliders. After outlining the basic ideas of QCD, EFTs, and resummation in

Chapter 1, we surveyed the development of quarkonium production theory from the

earliest models such as the CSM to the modern theory, NRQCD, in Chapter 2. We

motivated the need for further study of quarkonium production by discussing the J/ψ

polarization puzzle, one of the most important remaining questions in SM physics.

Chapter 3 explained the essential ideas of jet physics, including how they are

studied both analytically and experimentally. We introduced jet substructure ob-

servables and the basic formalism of SCET. We also schematically outlined how

SCET provides factorization theorems for jet production cross-sections, allowing for

high-precision resummed calculations of many jet processes.

Chapter 4 introduced the formalism of FJFs and extended their definition to jets

where the angularity τa is measured. It also extended FJFs to TMD distributions,

allowing us to study the transverse momentum ph⊥ and angle θ of a hadron relative to
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the axis of the jet. For both the angularity FJFs and TMDFJFs, we calculated the

matching coefficients onto FFs at one-loop. For the TMDFJFs we also calculated

the collinear-soft functions which describe in-jet radiation with a soft energy but

collinear scaling at one-loop.

In Chapter 5, the theoretical developments of Chapter 4 were applied to the

study of heavy mesons and quarkonia. The one-loop calculations of the matching

coefficients performed in Chapter 4 were used along with RG techniques to calcu-

late NLL’ resummed cross-sections for B meson production in e+e− → dijet events

and J/ψ production in e+e− → 3 jets. These analytic calculations were compared

with predictions from Pythia (and Herwig for B mesons) simulations. While good

agreement was found in the B meson case, Pythia produced z (the fraction of the

jet energy carried by the J/ψ) distributions that were much harder than our NLL’

analytic predictions. This disagreement was due to the unphysical manner in which

quarkonium fragmentation is treated in Pythia. The differences between Monte

Carlo and our analytic calculations were resolved through the development of the

GFIP approach. GFIP took hard processes produced in Madgraph, showered them

to the scale 2mc using Pythia and convolved the resulting gluon energy distribution

with NRQCD FFs. This represents a more physical approach that reflects the pic-

ture of quarkonium production described by NRQCD. The authors of Pythia are

now working to implement gluon fragmentation modes of quarkonium production.

Chapter 5 also demonstrated that the TMDFJF can, especially at high values

of z where the J/ψ carries a large fraction of the jet’s energy, discriminate between

different color-octet J/ψ production mechanisms. This was done through an NLL’

resummed calculation of the TMDFJF using the NRQCD LDMEs for J/ψ. This

resummation required a careful implementation of both RG and RRG techniques

in order to resum the UV and rapidity divergences present in calculations of TMD

observables.

152



Finally, we used a combination of Madgraph, Pythia, and NRQCD FFs com-

bined with RG evolved J/ψ FJFs (where the energy of the jet was measured but a

jet substructure observable was not) to make predictions of the z(J/ψ) distributions

at LHCb and compared them with recent data. We also compared results of our

GFIP method for the z(J/ψ) distributions with the LHCb data. In both cases, we

showed that our results agree far better with data than the default Pythia predic-

tions performed in Ref. [32]. We also showed that the data are better described by

LDMEs extracted from fits to larger pT data than by the LDMEs extracted from

global fits of J/ψ production.

These results demonstrate a need for continued study of identified hadrons within

jets as a way of probing fragmentation. While we focused our study on quarkonium

production, the FJF formalism can be used to study the production of any hadron

for which FFs are available. A robust extraction of the NRQCD color-octet LDMEs,

which should be universal, would help improve our understanding of quarkonium

production. A proper understanding of the production of J/ψ would solve the polar-

ization puzzle, a long-outstanding problem in perturbative QCD. Within the SCET

community, the ability of jet substructure techniques to provide a new way of prob-

ing hadron production is a compelling idea that could be applied to other SM and

BSM problems. SCET-related EFT techniques have been applied to heavy dark

matter annihilation in Ref. [150], and jet-substructure techniques have been applied

to searches for potential dark matter candidates in Refs. [151, 152].
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Appendix A

Velocity Scaling in NRQCD

In this Appendix, we follow the steps of Ref. [33] in order to discuss NRQCD power

counting in more detail and give estimations of the values of parameters such as αs

and v. We derive the scaling in v of relevant operators in the NRQCD Lagrangian

and show that, with a particular choice of gauge, the Lagrangian can be written in

form where the power counting in v of the terms is manifest.

The velocity scaling rules of NRQCD can be derived from the self-consistency

of the terms in the Lagrangian and basic qualitative features of quarkonia. Con-

sider first the heavy-quark number operator ψ†ψ. In a quarkonium state Q, the

expectation value of this operator should be 1

〈Q|
∫
d3xψ†ψ |Q〉 ≈ 1 where 〈Q|Q〉 = 1. (A.1)

Since the dimensions of the volume element [d3x] ∼ 1/(Mv)3 (since the approx.

width of the quarkonium state ∼ Mv), we know that [ψ] ∼ (Mv)3/2. Since the

expectation value of the kinetic energy should scale as ∼Mv2

〈Q|
∫
dxψ†

(
D2

2M

)
ψ |Q〉 ∼Mv2 =⇒ [D] ∼Mv. (A.2)
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Operators Estimate

ψ (Mv)3/2

χ (Mv)3/2

D0 Mv2

D Mv
gE M2v3

gB M2v4

gA0 (in Coulomb gauge) Mv2

gA (in Coulomb gauge) Mv3

Figure A.1: Relevant pieces of the NRQCD Lagrangian with estimates of their
scaling in the power counting parameter v as seen in [33].

Since [D0] ∼ (D2/2M), from the Lagrangian we know that [D0] ∼Mv2.

We now consider the scaling in v of the coupling αs using the potential model

presented in Eq (2.2). Since αs is asymptotically free, we can say it depends on the

scale as αs(1/R) where R is the size of the quarkonium. Since R ∼ 1/Mv, by setting

the potential and kinetic energy expressions equal

Mv2 ∼ −CF
αs(1/R)

R
∼ −CF ×Mv × αs(Mv) =⇒ αs(Mv) ∼ v. (A.3)

Knowing how the coupling scales with v, we can make estimates of both v and αs

at the scales relevant to NRQCD namely M, Mv, Mv2. The scale of radial and

orbital angular momentum excitations of charmonium was said to be ∼ Mv2. The

two lowest energy 3S1 state of charmonium, the J/ψ and ψ′, lie about 600 MeV

apart in mass. The difference between the J/ψ and the χcJ , the lowest 3PJ state

of charmonium, is about 400 MeV. The average of these differences ∼ 500 GeV can

be used as a reasonable estimate of the scale Mv2. Using mc = 1.5 GeV as an

estimate for the perturbative mass scale M , Ref. [33] made rough estimates of the

various scales and the value of the coupling αs at these scales. These estimates are

summarized in Fig. A.2.

The remainder of the velocity scaling rules for fields such as A, E, . . . can be
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M Mv Mv2 αs(M) αs(Mv) αs(Mv2)
1.5 GeV 0.9 GeV 0.5 GeV 0.35 0.52 0.68

Figure A.2: Estimates of values of relevant scales in NRQCD for charmonium
where vcc̄ ∼ 0.3 as seen in [33].

estimated by fixing the gauge in LNRQCD. Ref. [153] showed that, in the Coulomb

gauge ∇ ·A = 0, the power counting of the Lagrangian in v becomes manifest if one

re-scales the space-time coordinates ~x and t by 1/(Mv), the heavy-quark fields by

(Mv)3/2, and the gauge field by Mv3/2. The Lagrangian written explicitly in terms

of the gauge field A can be organized as

LNRQCD = L0 + L1 + L2 + . . . , (A.4)

where

L0 = Llight + ψ†
(
i∂0 − gA0 +

∇2

2M

)
ψ + charge conjugate terms

L1 = − 1

M
ψ† (igA ·∇)ψ +

c4

2M
ψ† (∇× gA) · σψ + charge conjugate terms,

(A.5)

and

L2 =− 1

2M
ψ†(gA)2ψ +

c1

8M3
ψ†(∇2)2ψ

+
c2

8M2
ψ†(−∇2gA0)ψ − c3

4M2
(∇gA0)×∇ · σψ

+
c4

2M
ψ†(igA× gA) · σψ

+ charge conjugate terms.

(A.6)

Here, L0,L1,L2, . . . describe quarkonium energy levels suppressed by relative factors

of v0, v1, v2, . . . , respectively. Considering the Fock state expansion in Eq. (2.17), we

see that the dominant state
∣∣QQ̄

〉
will receive its first corrections

∣∣QQ̄g
〉

from, for
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example the interaction ψ†(igA ·∇)ψ in L1. A transition from a higher Fock state

via this term describes the lowest chromo-electric transition.
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Appendix B

Symmetries of Leading Order SCET Lagrangian

When deriving the form of operators in an EFT, symmetries play an important role

in constraining their form. There are two particularly interesting symmetries of the

SCET Lagrangian related to the choice of gauge and light-cone basis. With the

decoupling of the gauge field into collinear and ultra-soft fields via the BPS field

re-definitions, SCET comes with two separate gauge symmetries. Predictions of the

theory are preserved under both collinear and ultra-soft gauge transformations, hence

the inclusion above of two separate gauge fixing parameters τn and τus. Much more

on the details of gauge symmetry in SCET can be found in Ref. [91].

Considerable freedom exists in our choice of the light-cone basis vectors n and n̄.

The conditions that n2 = n̄2 = 0 and n · n̄ = 2 are also satisfied when we perform

the following transformations on the basis vectors

RPII RPIII RPIIII
nµ → nµ + ∆⊥µ nµ → nµ nµ → eαnµ

n̄µ → n̄µ n̄µ → n̄µ + ε⊥µ n̄µ → e−αn̄µ

with ∆⊥µ ∼ λ1 with ε⊥µ ∼ λ0 with α ∼ λ0.
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n̄µ nµ
nµ0

(a) RPII

n̄µ nµ

n̄µ0

(b) RPIII

Figure B.1: Visualization of re-parameterizations of the of the light-cone directions
n and n̄ via RPII (a) and RPIII (b). Along with RPIIII , which can be thought of as
boosts, these transformations are an important symmetry of LSCET

These are three types of so-called Re-parameterization Invariance (RPI) present in

SCET [101, 154]. As shown in Fig. B.1, they can be visualized as changes in the

directions of the basis vectors n and n̄ and, in the case of RPIIII , boosts along the ẑ-

direction. RPI is also manifest as an ambiguity of how we decompose label/residual

momenta where, for example, we said n·p→ n·(pl+pr). Proper SCET operators with

collinear fields will always have the combination Pµ + i∂µ, which is the combination

needed to leave the theory invariant under transformations in how the label operator

Pµ and the derivatives ∂µ extract the label/residual momenta

Pµ → Pµ + βµ and i∂µ → i∂µ − βµ. (B.1)

This means that the theory is invariant under the following transformation of, for

example, the collinear quark fields

ξn,p`(x)→ eiβ(x)ξn,p`+β(x). (B.2)

RPI also requires other restrictions on the fields, light-cone directions, and Wilson

lines not explicitly shown here.
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Appendix C

Renormalization Group & Rapidity
Renormalization Group Techniques

Here we outline the details of using Renormalization Group (RG) and Rapidity

Renormalization Group (RRG) techniques to resum potentially large logarithms.

We begin by discussing the tools needed to calculate resummed expressions for mea-

sured vs. unmeasured functions. Throughout this work we have referred to measured

functions (such as measured jet and measured soft functions) as those that depend

on a measurement of the substructure. In our case this meant measuring the angu-

larity τa of a jet containing an identified hadron. These expressions will be resummed

using RGEs for measured functions, which we will describe below. For FJFs or other

functions that depend on quantities such as the jet energy, the transverse momen-

tum of the identified hadron with respect to the jet axis ph⊥, etc., we utilize RGEs

for unmeasured functions. We provide the tools (such as anomalous dimensions)

necessary to resum expressions to next-to-leading-logarithmic (NLL) and next-to-

leading-logarithmic prime (NLL’) accuracy. NLL’ resummation requires the same

anomalous dimensions as NLL but implies that certain terms next-to-leading-order
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(NLO) terms in the fixed order expansion in the coupling αs have been included. Re-

call that, for angularity FJFs, these terms were critical, as they provided the lowest

order coupling of the z and τa dependencies of the FJF.

C.1 RGE for Unmeasured Functions

Functions F that do not dependent on a substructure measurement are multiplica-

tively renormalized via

F bare = ZF (µ)F (µ) (C.1)

where functions such as F (µ) are assumed to be renormalized quantities unless ex-

plicitly notated as bare. This class of functions satisfies the renormalization group

equation (RGE) of the form

µ
d

dµ
F (µ) = γFµ (µ)F (µ) (C.2)

where γFµ is the anomalous dimension for the evolution of the function F in µ space.

These are calculated in this case from the standard renormalization factor ZF (µ) via

γFµ (µ) = − 1

ZF (µ)
µ
d

dµ
ZF (µ). (C.3)

This anomalous dimension for unmeasured quantities can ultimately be written in

the following generic form

γFµ (µ) = ΓF [α] log

(
µ2

m2
F

)
+ γFµ [α], (C.4)

where µF is related to the characteristic scale of a particular function and the factors

ΓFµ [αs] and γFµ [αs] refer to the cusp and non-cusp parts respectively, of the total

anomalous dimension. The cusp part ΓFµ [αs] is proportional to the cusp anomalous

dimension Γcusp and does not depend on function F (µ) whereas the non-cusp part
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γFµ [αs] will need to be calculated explicitly for a given function. Both pieces have

perturbative expansions in αs

ΓF [αs] =
∞∑

n

(αs
4π

)1+n

ΓnF (C.5)

γFµ [αs] =
∞∑

n

(αs
4π

)1+n

γnF . (C.6)

where the cusp anomalous dimension has a similar expansion

Γcusp[αs] =
∞∑

n

(αs
4π

)1+n

Γncusp (C.7)

and the following two relations are needed to calculate a resummed function [155]

ΓF [αs] =

(
Γ0
F

Γ0
cusp

Γcusp[αs]

)
and

Γ1
cusp

Γ0
cusp

=

(
67

9
− π2

3

)
CA −

10Nf

9
. (C.8)

The solution to the unmeasured RGE can be written as

F (µ) = UF (µ, µ0)F (µ0) (C.9)

where UF is an evolution kernel given by

UF (µ, µ0) = eKF (µ,µ0)

(
µ0

mF

)ωF (µ,µ0)

, (C.10)

where the pieces of the kernel are expressed as

KF (µ, µ0) = 2

∫ α(µ0)

α(µ)

dα

β(α)
ΓF (α)

∫ α

α(µ0)

dα′

β(α′)
+

∫ α(µ0)

α(µ)

dα

β(α)
γF (α), (C.11)

ωF (µ, µ0) = 2

∫ α(µ0)

α(µ)

dα

β(α)
ΓF (α), (C.12)

where resumming to NLL/NLL’ accuracy requires calculating the cusp piece of the

anomalous dimension to two-loop order and the non-cusp piece to one-loop order.
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Fixed/Log Order Matching γH,J,S,... Γcusp β[αs]
LO Tree - - 1-loop

NLO 1-loop - - 2-loop
LL Tree Tree 1-loop 1-loop

NLL Tree 1-loop 2-loop 2-loop
NNLL 1-loop 2-loop 3-loop 3-loop

Table C.1: Orders of the matching calculation, non-cusp anomalous dimensions,
cusp anomalous dimensions, and QCD β-function needed for various fixed order
calculations and logarithmic resummation orders. Adapted from Refs. [1, 2].

At these orders the expressions KF and ωF above are given by

KF (µ, µ0) = − γ0
F

2β0

ln r − 2πΓ0
F

(β0)2

[r − 1 + r ln r

αs(µ)
+

(
Γ1
c

Γ0
c

− β1

β0

)
1− r + ln r

4π

+
β1

8πβ0

ln2 r
]
, (C.13)

ωF (µ, µ0) = − Γ0
F

jFβ0

[
ln r +

(
Γ1
c

Γ0
c

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
, (C.14)

where r ≡ α(µ)/α(µ0) and βn are n-loop coefficients of the QCD β-function,

β(αs) = µ
dαs
dµ

= −2αs

∞∑

n=0

(αs
4π

)1+n

βn , (C.15)

where the one-loop and two-loop coefficients (and the color factor TR = 1/2) are

β0 =
11CA

3
− 2Nf

3
(C.16)

β1 =
34C2

A

3
− 10CANf

3
− 2CFNf , (C.17)

(C.18)

where Nf is the number of quark flavors.
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C.2 RGE for Measured Functions

For measured jets (i.e. when we have probed the substructure) the RGE for objects

such as Smeas and G(τa, z, µ) is slightly more complicated. Since the function must

be renormalized at a given measurement of τa we have the following

F bare(τa) =

∫
dτ ′aZF (τa − τ ′a, µ)F (τ ′a, µ) = [γF (µ)⊗ F (µ)] (τa), (C.19)

where as shown in the text we use convolutions defined via

f(τa)⊗ g(τa) =

∫
dτ ′af(τa − τ ′a)g(τ ′a), (C.20)

the RGE is then given by

µ
d

dµ
F (τa, µ) = [γF (µ)⊗ F (µ)] (τa), (C.21)

where the anomalous dimension is thus given by

γF (τa, µ) = −
[
Z−1
F (µ)⊗ µ d

dµ
ZF (µ)

]
(τa)

= ΓF (αs)

(
ln

µ2

m2
F

− 2

jF

(
Θ(τa)

τa

)

+

)
+ γF (αs)δ(τa) ,

(C.22)

whose solution is of the form

F (τa, µ) = exp (KF + γEωF )
1

Γ(−ωF )

(
µ0

mF

)jFωF [( Θ(τa)

(τa)1+ωF

)

+

⊗ F (τa, µ0)

]
.

(C.23)

C.3 RGE + RRGE for TMD Functions

For the RG evolution in the parameter µ, the formalism for unmeasured functions

above applies in a similar manner to p⊥ dependent functions

µ
d

dµ
FR(p⊥, µ, ν) = γFµ (µ, ν)× FR(p⊥, µ, ν), (C.24)
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for the same set of anomalous dimensions given above. However, following the formal-

ism of [122], our functions must also be evolved in the space of ν, the dimensionful

scale introduced when regulating rapidity divergences. The RRG equation in p⊥

space is given by

ν
d

dν
F (p⊥, µ, µ/ν) = γFν (p⊥, µ, ν)⊗⊥ F (p⊥, µ, µ/ν), (C.25)

where again we use the notation for convolution in transverse components given in

Eq. (4.72) and where the anomalous dimension can be written in the following generic

form,

γFν (p⊥, µ, ν) = ΓFν [αs]L0(p2
⊥, µ

2) + γFν [αs]δ
(2)(p⊥), (C.26)

where

δ(2)(p⊥) =
1

π
δ(p2

⊥). (C.27)

The cusp and non-cusp parts of the anomalous dimension are listed in Table C.2.

Taking the Fourier transform of Eq. (C.25) yields,

d

d ln ν
F̃ (b, µ, ν) = γ̃Fν (b, µ, ν)F̃ (b, µ, ν), (C.28)

where the Fourier conjugate of p⊥ is b where |b| = b and using the form of the

anomalous dimensions in Eq. (5.29,5.30) gives that,

γ̃Fν (b, µ, ν) = −ΓFν [αs]

(2π)2
ln

(
µ

µC(b)

)
+
γFν [αs]

(2π)2
, (C.29)

where µC(b) = 2e−γE/b. Integrating Eq. (C.28) yields

F̃ (b, µ, ν) = F̃ (b, µ, ν0)VF (b, µ, ν, ν0), (C.30)

where

VF (b, µ, ν, ν0) = exp
[
GF (µ, ν, ν0)

]( µ

µC

)ηF (µ,ν,ν0)

, (C.31)
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with

GF (µ, ν, ν0) =
γFν [αs]

(2π)2
ln

(
ν

ν0

)
and ηF (µ, ν, ν0) = −ΓFν [αs]

(2π)2
ln

(
ν

ν0

)
. (C.32)

Function (F ) ΓFν γFν Γ0
F γ0

F

Di/h −(8π)αsCi +O(α2
s) O(α2

s) 0 4Ci(ln(ν2/ω2) + γ̄i)
SiC (8π)αsCi +O(α2

s) O(α2
s) 4Ci 0

Table C.2: Values of the cusp and non-cup parts of the anomalous dimensions for
the collinear and collinear-soft functions.
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Appendix D

Plus-functions and Profile Functions

In this appendix, we introduce and discuss the properties of plus-distributions and

profile functions, both of which are used in the calculations of Chapters 4 and 5.

D.1 Plus-Functions

Under integration, plus-functions give finite answers when convolved with smooth

functions. For a sufficiently smooth function f(z), one common use of plus-functions

is for integrals appearing in QCD calculations that have the form

∫ 1

0

dz
f(z)

(1− z)+

≡
∫ 1

0

dz
f(z)− f(1)

1− z (D.1)

and
∫ 1

0

dz f(z)

[
logn (1− z)

(1− z)

]

+

≡
∫ 1

0

dz (f(z)− f(1))
logn (1− z)

1− z . (D.2)

These functions essentially behave as 1
(1−z)+

= 1
1−z and

[
logn (1−z)

(1−z)

]
+

= logn (1−z)
(1−z) for

z 6= 1. For our calculations of angularity-dependent FJFs in Chapter 4, it is useful
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to define them formally by

[f(τ)]+ ≡ lim
β→0

d

dτ
[θ(τ − β)F (τ)] , (D.3)

where F (τ) is defined via

F (τ) ≡
∫ τ

1

dτ ′f(τ ′) , (D.4)

which yields

L
{( 1

τ 1+ω

)

+

}
= sωΓ(−ω) . (D.5)

By taking the τ ′ → 0 limit in Eq. (D.9), expanding in ω2 on both sides and matching

powers we find the following useful identities:

∫
dτ ′
[ Θ(τ − τ ′)

(τ − τ ′)1+ω

]
+
δ(τ ′) =

[Θ(τ)

τ 1+ω

]
+
, (D.6)

∫
dτ ′
[ Θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[Θ(τ ′)

τ ′

]
+

=
[Θ(τ)

τ 1+ω

]
+

(ln τ −H(−1− ω)) ,

∫
dτ ′
[ Θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[Θ(τ ′) ln τ ′

τ ′

]
+

=
[Θ(τ)

τ 1+ω

]
+

[(ln τ −H(−1− ω))2

2
(D.7)

+
π2/2− ψ(1)(−ω)

2

]
,

where we used the identity from [1]

[Θ(τ)

τ 1+ω

]
+

= − 1

ω
δ(τ) +

∞∑

n=0

(−ω)n
[Θ(τ) lnn τ

τ

]
+
. (D.8)

We can also use Laplace transforms and the definition of a the plus function to show

that

∫
dτ ′′
[ Θ(τ − τ ′′)

(τ − τ ′′)1+ω1

]
+

[ Θ(τ ′′ − τ ′)
(τ ′′ − τ ′)1+ω2

]
+

=
Γ(−ω1)Γ(−ω2)

Γ(−ω1 − ω2)

[ Θ(τ − τ ′)
(τ − τ ′)1+ω1+ω2

]
+
.

(D.9)
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D.2 Profile Functions

For the measured soft and measured jet functions for angularity FJFs, we perform the

scale variations using so-called profile functions. Profile functions allow us to perform

the scale variations of µ in a way that depends on the the angularity τa. They allow

the variation to freeze at the characteristic scale for high values of τa (where the

factorization theorem begins to break down) and at a fixed scale for small values of

τa (where we reach the realm of non-perturbative physics). The profile function for

the measured soft function, µPFS (τ0), and the profile function for the measured jet

function, µPFJ (τ0), are plotted in Fig. D.1 (for the case a = 0). The analytic formulae

for these functions are

µPFS (τa) =

[
1 + εS

g(τa)

g(1)

]
×
{
µmin + ατβa 0 < τa < τmin

ωτa/r
(1−a) τmin ≤ τa

,

µPFJ (τa) =

[
1 + εJ

g(τa)

g(1)

]
×
{

(ωr)(1−a)/(2−a)(µmin + ατβa )1/(2−a) 0 < τa < τmin

ωτ
1/(2−a)
a τmin ≤ τa

,

(D.10)

where we have defined

g(τ) =
1

exp
(

1.26(τmin − τ)/τmin

)
+ 1

, (D.11)

and where α and β are defined to be

β =
τmin

τmin − µminr(1−a)/ω
and α =

ω

βτβ−1
min r

(1−a)
. (D.12)

These choices for α and β ensure that the profile functions and their first derivatives

are continuous. We use the following values for the parameters

τmin = 2µminr
1−a/ω

µmin = 0.3 GeV . (D.13)
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Figure D.1: Profile functions for µPFS (τ0) and µPFJ (τ0), the τ0-dependent renormal-
ization scales that we use in the scale variations of our measured soft function and
measured jet function. Also shown are traditional scale variations done by varying
µ by ±50%.

We define our scale variations via

εS/J = 1/2 → +50% variation,

εS/J = −1/2 → −50% variation,

εS/J = 0 → Canonical scale ,

and take the final scale variation bands as the envelope of the set of bands from the

individual variations.
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H. Jöstlein et al., Measurement of the dihadron mass continuum in p-be
collisions and a search for narrow resonances, Phys. Rev. Lett. 39 (Dec,
1977) 1440–1443.

[50] G. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys.
Rev. Lett. 39 (Dec, 1977) 1436–1439.
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