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1 Introduction

Silicon pixel sensors providing precise timing are currently being developed in view of fu-

ture “4D” tracking applications.

The NA62 Gigatracker, using sensors of 200 um thickness

and 300 umx300 um pixel size has achieved time resolutions of < 150ps at rates of up to

1.5MHz/cm? [1-4]. A time resolution of 100ps has been reported with a sensor of 100 ym

thickness and 800 pumx800 um pixel size [5]. For multiple particles passing silicon sensors of

thickeness between 133 and 285 um, a time resolution of better than 20 ps has been reported [6].



With the introduction of internal amplification inside silicon detectors of 50 um thickness, the so
called Low Gain Avalanche Diode (LGAD) [7-11], time resolutions of 25 ps have been achieved
for single MIPs [12].

The Weightfield2 program [13] allows the detailed simulation of the induced signals in silicon
sensors with strip geometry. A long term goal of these developments are pixel sensors of 10 um
position resolution and 10 ps time resolution [14, 15]. Developments of silicon sensors for increased
timing performance based on 3D sensors are also described in literature [16]. Studies of front-end
electronics for silicon detectors with emphasis on timing aspects can be found in [17] and [18].
Charged particle imaging is widely employed in many areas of science beyond high energy physics,
for example as part of material analysis techniques. Therefore there is a broad interest in the
developments of spatially resolved and time accurate particle detectors [19, 20].

In this report we derive analytic expressions for the time resolution of silicon sensors using the
Landau theory and a version of the PAI model to describe the charge deposit of high energy particles
in the sensor. We first investigate the time resolution for the case where we take the ‘centroid time’
of the signal as a measure of time. It refers to the case where the amplifier peaking time is larger than
the drift time of the electrons and holes in the silicon sensor and allows us to discuss the achievable
time resolution using moderate electronics bandwidth together with optimum filter methods to
extract the time information from the known signal shape. We then derive formulas quantifying
the effect of signal fluctuations due to the finite pixel size and related variations of the weighting
field. We also derive expressions for the time resolution using leading edge discrimination of the
signals with different electronics shaping times. In the last part of the report we discuss the time
resolution of silicon sensors with internal amplification which will be applied in the ATLAS and
CMS experiment upgrades for pileup rejection [8].

2 Energy deposit

A high energy particle passing a silicon sensor will experience a number of primary interactions
with the material, with A being the average distance between these primary interactions. For
relativistic particles we have A =~ 0.212 um in silicon [21]. The electrons created in these primary
interactions will typically lose their energy over very small distances and create a localised cluster of
electron-hole pairs. We call the probability p.,(#) for creating n e-h pairs in a primary interaction
the ‘cluster-size distribution’. Throughout this report we treat n as a continuous variable. We now
divide the silicon sensor of thickness d into N slices of thickness Az = d/N as shown in figure 1a.
In case Az < A, the probability for having zero interactions in Az is 1 — Az/A, the probability to have
one interaction in Az is Az/A and the probability to have more than one interaction is negligible, so
the probability density for finding » electrons in Az is

A A
p(n, Az)dn = (1 — TZ) 6(n)dn + fpclu(n)dn 2.1)
The probability p(n, d) to have n electrons in the entire sensor of thickness d is then given by the N
times self convolution of this expression. Since convolution becomes multiplication if we perform
the Laplace transform, N times self convoluting the above expression results in raising it’s Laplace
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Figure 1. a) The silicon sensor is divided into slices of thickness Az. The electrons and holes produced in
one slice are assumed to move to the boundary of the sensor at constant velocity, which is correct in the limit
of negligible depletion voltage. b) Probability to find n electrons per primary interaction. The straight line
refers to the 1/n? distribution that is the basis for the Landau distribution, the points corresponds to a PAI
model [21, 22].

transform to the power N. So using the Laplace transform P, (s) = L[pc(n)] we have

N
P(s,d) = LIp(n.d)] = LIp(n A2)]" = (1 b Pals) - 1)) 22)
By taking the limit of N — oo we have
p(n,d) = _L_l [ed//l(Pclu(S)—l)] (2.3)

This expression is completely general and correct for any cluster size distribution. Assuming as an
(unphysical) example that each cluster contains exactly ng electrons we have

Peu(n) = 6(n — ng) Peu(s) = e750 P(s,d) = e/ =) 2.4)

The inverse Laplace transform of the last expression is

k
o (4
p(n,d) = Z (/1? e_%é(n —kngp) u=npd/A a = L (2.5)

= k! Ho\Jd/A
where u is the average number of e-h pairs and A is the standard deviation. This is the expected
Poisson distribution showing the 1/vN dependence for the relative fluctuations with N = d/A being
the average number of clusters.

The correct cluster size distribution p.p,(n) is typically calculated using some form of the PAI
model [22] and an example is shown in figure 1b [21]. For this report we also use the Landau theory
as a minimal model that respects basic physics and that allows approximate analytic expressions.
Landau’s approach assumes a 1/E? distribution of the energy transfer for a collision in accordance
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Figure 2. a) Distribution of the number of e-h pairs in 50 um (blue) and 200 ym (orange) of silicon. The
histograms show the PAI model, the solid lines show the Landau theory. b) Ratio of full width half maximum
and most probable values for the Landau and PAI model for different values of silicon thickness. The Landau
theory overestimates the fluctuations by 25-35%.

with Rutherford scattering on free electrons and a lower cutoff energy € chosen such that the average
energy loss reproduces the Bethe-Bloch theory. The resulting cluster size distribution for a MIP in
silicon therefore becomes a 1/n? distribution with a cutoff at n = ny ~ 2.2 electrons, which can be

written as
n
Pen(n) ~ —(2) O(n — ng) Peu(s) = 1 +ngs(Cy =1 +1Inng + In s) (2.6)
n
with ®(x) being the Heaviside step function. Evaluating eq. (2.3) results in
A A d
p(n,d)dn:no—dL(nO—dn+Cy—1—an dn 2.7

where C, = 0.5772... is the Euler-Mascheroni constant and L(x) is the Landau distribution

discussed in A. The most probable number of e-h pairs nyp and the full width of half maximum
NEWHM of p(l’l, d) are

A 4.02
l’lod ( d) NEFWHM - 0 (28)

~ —|(0.2+In— ~
MPE T "2 e 02+1Ind/A

It should be noted that the most probable number of electrons nyp is proportional to the cutoff ng
while the ratio of npwum and nyvp is independent of 7y and depends only on d/ 1.

For a value of 2 = 0.212 um we find an average of N = d/A = 236,472,943, 1415 primary in-
teractions (clusters) for a 50, 100, 200, 300 um silicon sensor. Using the cluster size distribution from
eq. (2.6), the probability that at least one of the /V clusters contains more than 7, electrons is given by

)
pom =1-{1-=2 2.9)

so there is still a 1% chance to have a cluster with more than n; = 73500, 103000, 206000, 309000
electrons for a single MIP passing a 50, 100, 200, 300 um silicon sensor! When performing Monte
Carlo simulations, the cut-off of the cluster size distribution has therefore to be placed beyond these
numbers. The primary electrons producing these large clusters are called delta-electrons and do
not deposit their charge at point-like clusters but short tracks, which has to be considered when
discussing pixels of small size.

Figure 2a shows the distribution of e-h pairs in a 50 yum and a 200 um sensor for the PAI
model together with the curves from the Landau theory. As seen in figure 2b the Landau theory



overestimates the fluctuations by 25-35%. The PAI model predicts a most probable number of
3160, 6710, 14200, 21900 e-h pairs in 50, 100, 200, 300 um of silicon, which is within 10% of the
values from the Landau theory when assuming a cutoff of ng = 2.2. We will use both models for
evaluation of the time resolution in the following.

3 Centroid time of a signal

First we assume the measured time to be defined by the centroid time of the induced detector current
signal i(¢) (figure 3a). Assuming the Laplace Transform of the signal I(s) = L[i(¢)], the centroid
time Ty, of the signal is defined by

Teur =

Jo it _ Jo it O

= 3.1
Ji(ndr q 1(0) G-D

where g = /OOO i(t)dt is the total signal charge. If we consider the signal i(¢) to be processed by an
amplifier having a delta response f(¢) with Laplace Transform F'(s), the amplifier output signal v(t)
is given by

v(t) = /Ot f@—t"i(t")dt' V(s) = F(s)I(s) (3.2)

The centroid time of the output signal is then

V() _ F/(0)I(0)+ FO)I'(0) _ F'(0) [I'(0)
T, = —lim = - = - - =

s—0 V(S) B F(O)](O) - F(O) I(O) = Tamp + Teur 3.3)

This represents the sum of the centroid time of the delta response and the one from the current
signal, and since the shape of the delta response does not vary in time, the centroid time variation
of the amplifier output signal is equal to the centroid time variation of the original input signal and
has no dependence on the amplifier characteristics.

To determine 7 by recording the signal shape and performing the integral of eq. (3.1) is not
very practical, it is easier to simply process the signal with an amplifier that is ‘slow’ compared
to the signal duration, as shown in the following. In case the duration T of the signal i(¢) is short
compared to the ‘peaking time’ ¢, of the amplifier (i(r) = 0 for > T' < 1,,) we can approximate
eq. (3.2) for t > T according to

T T
W(i) = /0 F(& = i)t ~ /O L) = £ i)

g t'i(t")dt’
=q|f@O)-f '(r)/ol— =qlf@) - f' 7wl

~q f(t - Tcur) (34)

The amplifier output is simply equal to the amplifier delta response shifted by the centroid time
of the current signal and scaled by the total charge of the signal. Since the shape of the amplifier
output signal is always equal to the amplifier delta response, we can determine the signal centroid
time either by the threshold crossing time at a given fraction of the signal or by sampling the signal
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Figure 3. a) The centroid time 7 of the signal is defined as the average time when interpreting the signal as
a probability distribution. b) Example of the signal from a single e-h pair in a silicon sensor with negligible
depletion voltage.

and fitting the known signal shape to the samples. For later use we remark that for the sum of two
current signals i(¢) = i1(¢) + i2(¢) with centroid times 7; and 7, we have

B [ ti(t)at T [inn)dt + 7, [ir(t)dt _Tq1 g

[i(dr - [i1(0ydt + [ ir(t)dt it 3-5)
The centroid time for the sum of N signals i(t) = ,1(\]: | ix(t) is therefore given by
1 N
T ; i Tk (3.6)

where g; and 7y are the charges and centroid times of the individual signals ir (7).

4 Silicon sensors without internal gain

4.1 Centroid time resolution of a silicon detector signal

We assume a silicon sensor operated at large over-depletion i.e. at a voltage that is large compared
to the depletion voltage and the electric field can therefore be assumed to be constant throughout the
sensor. Consequently the velocities of electrons and holes are constant and the signal from a single
electron or single hole has a rectangular shape. We assume a parallel plate geometry with one plate
a z = 0 and one at z = d, where a pair of charges +¢g, —¢g is produced at position z and —g moves
with velocity v to the electrode at z = 0 while ¢ moves with velocity v, to the electrode at z = d.
The weighting field of the electrode at z = O is E,, = 1/d and the induced current is therefore

i) = =220/ v - - L2o(d - 2)/m -1 (4.1)

with @(¢) being the Heaviside step function. An example is shown in figure 3b. We have / i(t)dt =
—q and according to eq. (3.1) the centroid time of this signal is then

2 Y
z,u Z)] (4.2)

1
T_ﬁ[q V)



If ny, ny, ...,nyN charges are produced at positions zj, 22, . . ., zy and are moving to the electrodes
with vy and vy, the resulting centroid time of the signal is

N 2 2
1 ¥4 d-z
T(n,no,...,nN) = v an [—k + Q] 4.3)
2d (Zkzl nk) k=1 Vi V2

We now divide the sensor of thickness d into N slices of Az = d/N as shown in figure 1. The
probability to have n; e/h pairs in slice k is given by the Landau distribution p(ny, Az) and if we
assume that all these charges are moving from position zx to the electrodes, we have zx = k Az
and we can proceed to calculate the variance A2 of the centroid time of the signal, i.e. the time
resolution, according to

A=72-7F 4.4)

with T and 72 being the average and the second moment of 7. The evaluation is given in B and we find

4 a> 7 a* 4 &2
Ar =w(d) \|—=— = —— + —— 4.5
r = w )\/180 v 180viva 18012 (43)

2 d % « n%pclu(nl)
o= [/o [CE

We first evaluate the expression for the (unphysical) case where we assume each cluster to have

with

p(n, d)dn (4.6)

exactly n, electronsi.e. pcu(n) = 6(n—n,.). The expression inside the square brackets then evaluates
to n2/(n. + n)>. The probability p(n, d) to find n electrons in d is the Poisson distribution from
eq. (2.5) with it’s peak at n = Nn,. Since the above expression does not vary significantly within
the width of the Poisson distribution, the integral can be approximated by evaluating the expression

/ n’ 1 1
d)r [N ——— x — = —— 4.7
W( ) (ne+Nne)2 \/N \/m ( )

This is a very intuitive result related to the typical behaviour of the relative fluctuation of the Poisson

atn = N n,, and we have

distribution. The evaluation of w(d) for the Landau theory is given in C with the result that for

large values of d/A we have
1

VInd/a

The value of w(d) is given in figure 4a for the Poisson case (wg), the Landau theory (w1), the PAI
model (w;) and for the case where we do not use the r.m.s. value but a Gaussian fit to the measured
times as a measure of the time resolution (w3). As shown in figure 4b the time distribution has
very large tails, so the r.m.s. and a Gaussian fit differ significantly. The three curves wy, wy, w3 are
parametrized in the range of 15 um< d < 300 um as

w(d) ~ ! 4.9)

Va+bInd/Ad+c(Ind/A)?

with ap = 1,b1 = 1.155, Cc1 = 0, a) = 13.7, bz = —4.9, Ccy) = 0.85, asz = 47.7, b3 = —22.8, c3 = 3.37.
The function w(d) shows only a weak dependence on d, like the relative width npwgnm/nvp from

w(d) ~ (4.8)

eq. (2.8). When going from a 50 um to a 300 um sensor this statistical effect improves only
by 20-30 %.
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Figure 4. a) The function w(d) for different values of silicon thickness. w; represents the Landau theory,
wy represents the PAI model and ws applies for the PAI model if we use a Gaussian fit instead of the r.m.s.
as a measure of the time resolution. b) Centroid time distribution for d = 50 um and V = 220V for the PAI
model. The dashed curve represents a Gaussian with a o = A; (w») and the dotted curve is a Gaussian fit to
the histogram (w3).

Neglecting this weak dependence on d, the time resolution at constant electric field i.e. at
constant drift velocity v; and v, scales with d, which represents the trivial fact that the duration
of the signal and therefore also A; scales with d. For a given voltage V, the electric fields in the
thinner sensors, and therefore the velocities of electrons and holes are of course larger, so the time
resolution improves significantly beyond the 1/d scaling for thin sensors.

If we associate v; and v, with the electron and hole velocity, T} = d/v| and T, = d/v, are
the total drift times of electrons and holes, and T}, = d/+/viv; is the total drift time assuming the
geometric mean of the electron and hole velocity, and the time resolution reads as

Ae = w(d) VA]180 [T ~ 1.75T% + T2 (4.10)

To get realistic estimates we use an approximation for the velocity of the electrons and holes
from [26]

un E

1 ()

sat

He E

1+ (#eE B“]l/ﬁe

Vsat

ve(E) =

vh(E) =

5 4.11)

where we chose u, = 1417cm?/Vs, p, = 471cm?/Vs, B = 1.109, B, = 1.213 and
ve, = 1.07 x 107 cm/s and v, = 0.837 x 107 cm/s at 300 K in accordance with the default models
in Sentaurus Device [23]. The resulting drift velocity together with the time that the electrons and
holes need to traverse the sensor (assuming Vg, = 0) are given in figure 5. For a 50 um sensor at
200V the electrons take 0.6 ns and the holes take 0.8 ns to traverse the sensor, so the total signal

duration is < 0.8 ns.
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Figure 6. Time resolution from eq. (4.5) for different values of silicon sensor thickness as a function of
applied voltage V for the Landau model, the PAI model and a Gaussian fit to the PAI model results.

The values for the time resolution according to eq. (4.5) for the Landau theory, the PAI model
and a Gaussian fit to the PAI model are given in figure 6 for 50, 100, 200 and 300 um sensors. A
200 um sensor can achieve a time resolution of < 50 ps for V > 350V and a 50 um sensor can
achieve < 15ps for V > 200 V.

4.2 Multiple particles passing a silicon sensor

In [6] the time resolution for multiple particles crossing a sensor is discussed. The case of n particles
passing the silicon sensor is equivalent to the situation of one particle passing the sensor with a



mean free path between collisions reduced to 1,, = A/n. According to the Landau theory we have
w(d) = 1/+/Ind/A for a single particle, so for n particles the fluctuations reduce according to

A;(n particles) 1

(4.12)

A.(1 particle) | 4 Jnn

ind/a
This function has an extremely weak dependence on n so the improvement of the centroid time
resolution when going from 1 to 100 particles for a 50/100/200/300 pm sensor is only 26/24/23/22 Y.
The centroid time resolution does therefore not significantly change for multiple particles. The signal
to noise ratio does however improve almost linearly with the number of particles passing the sensor,
so when using leading edge discrimination with a threshold set close to the noise level as discussed
in section 4.6, there is in principle no lower bound on the time resolution.

4.3 Noise contribution to the centroid time resolution

As shown in eq. (3.4) the centroid time of a signal can be measured by using an amplifier with a
peaking time 7, that is larger than the total signal time 7. For a 50 um sensor at 250V this signal
time is T =~ 0.8 ns, so an amplifier with peaking time #, > 1.5ns can realise such a measurement.
The problem to solve is therefore to measure the time of a pulse of known shape (the delta
response) that has noise of a known frequency spectrum superimposed. This can be accomplished
by various techniques of constant fraction discrimination or continuous sampling with optimum
filtering methods, both of which will be discussed in this section. For the remainder of the report
we assume an unipolar amplifier with a delta response of

o=+

n
) e"1=11) @(r) (4.13)
P

where ¢, is the peaking time and ©(¢) is the Heaviside step function. The delta response for
n = 2,3,4 is shown in figure 7a. Such an amplifier can be realized by n integration stages with
T = RC = t,,/n and for large values of n it approaches Gaussian shape (semi-gaussian shaping). In
general we can use it to parametrize a measured delta response shape by adjusting n and ¢,, to fit
a specific amplifier delta response. The normalized transfer function and related 3 dB bandwidth

frequency fyw of the above delta response are given by

1 1
W(@i2n f)| = fow =5 ny21/(+h) ] (4.14)

JI+ @ f2ed fn2)t 7 lp

For constant fraction discrimination we set the threshold to a value where f(z) has the maximum
slope of f”(¢s) at time #; which evaluates to

1
=ty (1=1/V0) (1) = — eV"nCl = V! (4.15)
P
Assuming a pulse-height A and a noise of oyeise, the timing error when applying the threshold at
the maximum slope is then
Ohnoise 1 Onoise Ip Onoise 1 V21/(n+D) —
g = = =
TUA (1) A VB2 (5 — Ayl A 27fow eVip(/2-n)(n — )1
(4.16)

~-10-



f(t) f®
Y

VAN . /
03] ol /// \
N IR\ N/

N 'y
D\ /AN ——

F——

g T T b

Figure 7. a) Amplifer response for n = 2,3,4 from eq. (4.13). b) Contribution to the time resolution from
the noise.

as illustrated in figure 7b. This evaluates to

= T, x(0.59,0.57,0.54,0.51)  for  n=2345 4.17)
e 1
= Jmole __ »(0.10,0.12,0.13,0.14)  for  n=234,5
A fow

So for an amplifier with a peaking time of #,=1 ns and n = 2, the time resolution is 60 ps for a signal
to noise ratio of 10 and 20 ps for a signal to noise ratio of 30.

The pulse-height of the silicon sensor signal is given by the total number n of deposited e-h
pairs, so if we write the noise opoise in units of electrons, the average expression for oyoise/A
becomes

Tooe _ [ © e i dydn (4.18)
A 0 n

where p(n, d) is from eq. (2.3). For the Landau theory we use eq. (C.2) to evaluate this expression to

® Onoi O noise A Onoise A 1
noise ) d d — noise d 2 ~ noise 4. 1 9
/0 p Peeddn == s wi(d) y = A .19

For the average time resolution we therefore find

— A 1
o ~‘T“°isen0d [T 1155 d/1 tp, %(0.59,0.57,0.54,0.51) for n=273,45 (4.20)
A 1 1
~ Onoise — % (0.10,0.12,0.13,0.14) for n=12,3,4,5 (4.21)

nod 1+ 1.155Ind/A fiw

For an average cluster distance of 4 = 0.212 um, ny = 2.2 and an amplifier with n = 2, this
expression becomes

0y % Tnoiselelectrons] x 1.6 x 1077,  d =50 um (4.22)
X Opoise|€lectrons] X 3.3 X 1073 tp d =200 um 4.23)

Assuming a 50 um sensor and a peaking time of 2 ns and an Equivalent Noise Charge (ENC) of 50
electrons, the noise contribution to the time resolution is 16.6 ps. Assuming a 200 um sensor and
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Figure 8. a) Sampling the signal at constant frequency. b) Autocorrelation function of f’(¢) for n = 2,3, 4.
For times smaller than 0.5 #,, the samples become highly correlated.

t, = 10ns and ENC of 200 electrons, the contribution to the time resolution is 66 ps. The series noise
of an amplifier for a given white series noise spectral density e2 and detector capacitance C is given by

n*(2n - 2)! 2n
o2 = 2c2/ F(eYdt = ~ 202—(2n) (4.24)

noise
Ip

For constant e2 the noise decreases with 1/ /fp while the time resolution is proportional to #,, so
one favours short peaking times for minimizing the impact of noise, as long as other noise sources
do not become dominant.

Since we know the shape of the delta response, continuous sampling of the signal and fitting
of the known shape to the sample points provides an effective way to determine the time as shown
in figure 8a and investigated in the following. We have to fit the function A f(¢ — 7) to the measured
signal with the amplitude A and time 7 as free parameters. Linearizing this expression for small
values of 7 we have

Afi-1)=rAfO)-Af'Or=a1 fO)—ax f'(t) a1=A a=Ar (4.25)

Finding the best estimate of a1, @ for a signal S1, Sy, ..., Sy sampled at times 7,1, ...,y leads
to the familiar problem of linear regression. We proceed as outlined in [24] where the problem is
stated as a )(2 minimization according to

N N
2= ) D ISi—anf) + anf I VilS; — ai fiy) + axf'(1))] (4.26)
i=1 j=1

The matrix V;; is the inverse of the autocorrelation matrix R;; = R(#; — t;) with R(z) being the
autocorrelation function of the noise. The autocorrelation function of this series noise is

2n|t|) 2tp Kn_12(nlt]/t,) — tKpi12(nlt] /1)

R(1) = Tpoie / F/(+ ) f/)du = oy n! ( (2n -2 2nlil 1pn

Ip
4.27)
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with K, (x) being the modified Bessel function of the second kind. For n = 2, 3 evaluates to

2
t t
R(t) = 0o U1) = 0o 1V |14 2|7| -4 (F) } n=2 (4.28)
P P
(1)
= o—foise e 3t (143 t_ -9 (t_) ] n=3 (4.29)
P p

The autocorrelation function is shown in figure 8b, and we see that for time intervals smaller than
t, /2 the samples become highly correlated. In the following we us ny samples within the peaking
time 7,, so we have sampling time bins of At = t,/n;. We sample the signal in the range of
0 <t <51y, givingt; =i At with 0 <i < 5n,. Defining

Qi(ng) = Y FUZ f(t;) Qalng) = Y F UG /) Q3ne) = D F/t)U (1) (4.30)
ij ij ij

where Ul.‘jl is the inverse of the matrix U;; = U(t; —t;), the covariance matrix elements &;; for a1, a»

are then
2 2 2 2
oo ot o
8]] — O’i — noise sz 822 — A2 O-_;' — Nnoise Ql > 812 — noise Q32 (431)
QIQZ_Q3 Ip QIQZ_Q3 QIQZ_Q3
So for the time resolution we finally have
Oz Onoise Q1(ns) Onoise
T - = c(ny) (4.32)
Ip A \/Ql(ns)QZ(ns) - Q3(ns)2 A *
Using as before the average signal to noise ratio for a sensor of thickness d we find
— 1
07 = Onoise|€lectrons] tp c(ng) (4.33)

nod 1+ 1.155Ind/A

This expression represents the optimum time resolution that can be achieved for a given sampling
frequency. Figure 9 shows the function c(n,) assuming an amplifier with n = 2,3. The horizontal
lines correspond to the numbers of 0.59 and 0.57 from eq. (4.20) when using constant fraction
discrimination at the maximum slope. The families of curves represent a scan of the sampling
phase with respect to the peak of the signal and the solid curve represents the average. The samples
on the largest slope carry the highest weight on time information, while samples around the signal
peak carry very little time information.

We see that sampling at an interval corresponding to half the peaking time (ng; = 2) gives
approximately the same result as the constant fraction discrimination at maximum slope. By
increasing the sampling rate by a factor 10 the time resolution improves approximately by a factor 2.

13-



¢ (nsamples)
2.00

150

LOONN

0.70 NN

0.50

0.30

0.20

nsamples

1.0 15 20 3.0 50 70 100 150 200 300
¢ (nsamples)
2.00

AN
150 \

1.00

0.70 N

y /i)
?ﬁ
/i

0.30

0.20

nsamples

1.0 15 20 3.0 50 70 100 150 200 300

Figure 9. The function c(ny) for an amplifier with n = 2 (top) and n = 3 (bottom). The horizontal line is the
result for constant fraction discrimination at the maximum slope from eq. (4.20).

4.4 Weighting field effect on the centroid time for uniform charge deposit

Up to now we have assumed the sensor readout electrode to be represented by an infinite parallel
plate capacitor, which in practice corresponds to readout pads or pixels that are much larger than the
sensor thickness d. In many practical applications, the granularity is however similar to the sensor
thickness. The shape of the induced signal therefore becomes dependent on the x, y position of the
track and the centroid time will be affected. In this section we investigate this effect by using the
weighting field of a rectangular pixel as presented in [25], shown in figure 10a and detailed in E.

We assume again the sensor to be represented by a parallel plate geometry between z = 0
and z = d and assume charges to move along the z-axis. We also assume normal incidence of the
particle and negligible diffusion. The plate at z = 0 is segmented into pixels such that we find a
weighting field of E,(x, y, z) = —d¢,,(x, y, z)/dz along the z-axis. We first assume a single charge
pair to be produced at position x, y, z with —g moving towards the pixel at z = 0 according to
71(t) = z — vit and +¢ moving towards the plate at z = d according z,(¢) = z + v»¢, so the induced
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a) z=0 z=d b) z=0 z=d

Figure 10. a) A pixel of dimension w,, w, centred at x = y = z = 0 in a parallel plate geometry of plate
distance d. b) Uniform charge deposit of a particle passing the silicon sensor. v is the velocity of charges
moving towards the pixel and v; is the velocity of charges moving away from the pixel.

current becomes
% = Ey[x,y, 21(0)]21(1) ©(z/vi — 1) + Ey[x, y, 22(1)]22(t) ©((d — 2)/v2 — 1) (4.34)
= —ViEy[x,y, 2 = vit]O(z/vi — 1) = v2E[x, y, 2 + v2t]O((d — 2)/v2 — 1) (4.35)

The centroid time of this signal is

[tiydr  q d
(X, y,2) = —F——=—Yi(x,y,2) + —¥a2(x, 5, 2) (4.36)
[idt W v
Z 1 < ’ !’ 1 d 7 ’
Wile = /O bulor T Wy = / bulny.2)d  (437)
z

In case there is not a single pair of charges g, —¢g but a pair of uniform line charges between z = 0
and z = d, as shown in figure 10b, we have

I(x,y,1) d d
20 - / Ewlx.y.z - vitl®(z/vi — )dz - va / Ewlx, v, 2 + v2010((d — 2)/vs — 1)dz
line 0 0

=V [1 = ¢w(x,y,d =vi)]|O(d/vi —t) = v2 y(x, y, v2t) O(d[v2 — 1) (4.38)

where giine is the charge per unit of length. The centroid time of this signal then reads as

T = S+ ) = Tia(ny) + e (4.39)
1[4 1 1
ay(x,y) = E/o Yi(x, y,z)dz = 5" ﬁ/o (d - 2)pw(x,y,2)dz (4.40)
1 [ 1 e
ax(x,y) = E./o Yy (x, y,z)dz = E./o 20w (X, y, 2)dz (4.41)
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a) S/

Figure 11. The functions a;(x, y) and ay(x, y) from eq. (4.39) that determine the centroid time for a signal
from two line charges —giine, qline at position x, y,. The top graph corresponds to a; and the bottom one to
ay. The three plots correspond to pads of size a) w/d = 0.1,b) w/d = 1, ¢) w/d = 10.

The two functions a;(x, y) and a»(x, y) are shown in figure 11. We can see that for large pads the
values for both functions approach the constant value of 1/6 in accordance with eq. (B.5) with some
deviations at the border. For small pads the average of a; and a; is quite different, but the functions
are also quite uniform. For the pad size of w/d =~ 1 the two functions vary significantly across the
pad, which we will quantify next. In case the pixel is uniformly irradiated, the probability to hit
an area dx dy is given by dx dy/(wxw,) and the average centroid time, the second moment and the
standard deviation A; are given by

1 wy /2 wy [2 _ 1 Wy /2 wy [2
T= / 7(x, y)dxdy 72 = / 2(x, y)dxdy — (4.42)
Wx Wy Jow, /2 J-wy /2 Wx Wy Jowy /2 J-wy /2
A2 = oo gr (A A2 22 et TE + el + Ty (4.43)
v% Viv2 v%

where we have defined

1 1 2
c = — //a%dxdy - (w ” //aldxdy) (4.44)
x Wy x "y
2 2
clp = //alazdxdy— —2//a1dxdy //azdxdy (4.45)
Wx Wy (Wy Wy)

2
1 1
o = —— // azdxdy — (W " // azdxdy) (4.46)
x Wy x "y

T =d/v T, =d/v, Ty =d/\viva “4.47)

and

Before moving to the numerical evaluation we investigate the limiting cases for very large and very
small pads. For large pixels we have ¢,, = 1 — z/d and the expressions become

1 1
ai(x,y) = 6 ar(x,y) = 6 for w/d > 1 (4.48)
which results in T = d/6(1/v; + 1/v;) in accordance with eq. (B.5) for an infinitely extended

electrode. Since there is no dependence on x and y, the coefficients ¢y, c12, 22 vanish, which is the
expected result for an infinitely electrode.
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Table 1. Coeflicients ¢y, c12, c2; from eq. (4.43) for different vales of w/d, where w is the size of the square
pixel and d is the thickness of the sensor.

w/d (&%) C12 C11 Cl1 tcCi2+ ¢
0 0 0 0 0
0.01 | 6.13x 10712 | —2.88x 107 | 3.44x 1077 | 3.41x 107’
0.1 | 6.05x1078 | =2.75x107° | 3.18 x 107> | 2.91x 107
0.2 | 9.28x 1077 | =2.06x 107 | 1.17x10™* | 9.68 x 107>
025 | 22x107% | -3.88x 107 | 1.74x 107* | 1.37x10™*
0.5 | 277x107° | —2.44x107* | 55x107* | 3.33x107*
1. | 21x10™* | -1.04x1073 | 1.33x 1073 | 4.99x107*
1.5 | 45x10™* | —=1.78x 1073 | 1.81x 1073 | 4.86x 107
6.13x107% | —=2.18x 1073 | 2.x 1073 434 x 107
7.13x107% | =2.31x 1073 | 1.94x 1073 | 3.41x107*
6.83x107% | =2.14x 1073 | 1.74x 1073 | 2.77 x 107
6.26 x 107* | =1.93x 1073 | 1.54x 1073 | 2.32x107*
10 4.x 107 -12x1073 [ 9.27x107* | 1.27x107*
20 | 2.24x107* | —6.64x 107 | 5.06x 107* | 6.61 x 107
50 | 9.56x 107> | —2.82x 107* | 2.13x 107* | 2.71 x 1073
00 0 0 0 0

A

For very small pads the weighting potential falls to zero very quickly as a function of z, from
it’s value of unity on the pad surface at z = 0. The integrals of the weighting potential over z will
therefore vanish and we have

1
ai(x,y) = 3 ar(x,y)=0 for wld < 1 (4.49)

For this case only the charges moving towards the pad with v; contribute to the centroid time and
the average centroid time becomes T = d/2v;. Since the weighting potential and weighting field are
concentrated around the pixel surface the charges that never enter this area, i.e. the charges moving
with v, towards z = d will not contribute to the signal. The coefficients ¢y, c12, c2p Will again
vanish because a; and a; have no dependence on x, y. Because the two limiting cases are zero, this
means that there will be a pad size where the effect of the weighting field fluctuation is maximal, as
discussed in the following.

The numerical evaluation of eqs. (4.44), (4.45), (4.46) for square pixels of width w for different
ratios of w/d are given in table 1 and the graphical representation of the coefficients is shown in
figure 12. The weighting potential of a pixel as given in eq. (E.1) of the appendix is used. The
weighting field effect on the time resolution is worst for pad sizes corresponding to about 2—3 times
the sensor thickness d, where the ¢ and ¢;» coefficients assume a value around 2 x 1073. The
coeflicient ¢y is related to vy i.e. to the charges moving to the readout pad, ¢y, is related to the
charges moving in opposite direction. Since ci; > ¢y, by a significant factor, the time resolution
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Figure 12. The coefficients ¢y, 12, ¢y for different values of w/d, where w is the width of the square pad
and d is the silicon sensor thickness.
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Figure 13. Standard deviation for the centroid time for sensor thickness of a) d = 200 um and b) d = 50 um
and V = 200V, assuming uniform charge deposit and a square readout pad. The horizontal line represents
centroid time resolution from eq. (4.5) due to Landau fluctuations only. The two curves in the plots represent
the effect of weighting field fluctuations where either the electrons or the holes move towards the readout pad.

will be better if vi > v, i.e. if the electrons are moving towards the pixels. The contribution to the
time resolution from eq. (4.43) is shown in figure 13. In case the holes move towards the pixel we
find a maximum for values of w/d =~ 2, where the contribution becomes similar to the value from
Landau fluctuations. In case the electrons move towards the pixel, the contribution is significantly
smaller with maxima around w/d ~ 1.

The somewhat slow decrease of the effect for pad sizes of w/d > 3 is due to the fact that we
are calculating the standard deviation of the centroid time. As shown in figure 11c) for w/d = 10
there is no variation of the centroid time in the central 70% of the pixel area and the variations take
place only at the edges. The resulting time distribution for uniform illumination is significantly
non-Gaussian with long tails. The true impact on the time resolution therefore depends also on the
method of using the measured time and the algorithm for defining the time resolution.

The final resolution is not given by the square sum of the Landau fluctuations from eq. (4.5)
and the weighting field fluctuations from eq. (4.43), since there is a very strong correlation between
the two. This will be discussed in the next section.
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Figure 14. Silicon sensor with a readout pad centered at x = y = z = 0. v; is the velocity of charges moving
towards the pixel and v; is the velocity of charges moving away from the pixel.

4.5 Centroid time resolution for combined charge fluctuations and weighting field
fluctuations

In this section we consider the Landau fluctuations together with the variation of the x, y position
of the particle trajectory and the related fluctuation of the weighting field, as indicated in figure 14.
The centroid time for a particle that passes the sensor at position x, y and deposits nx charges in the
N detector slices is given by

1

N
D=1 1o

M=

T(ny,ny, ..., AN, X, y) = nit(x, y, kAz) (4.50)

where 7(x, y, z) is from eq. (4.36). Proceeding as detailed in B we calculate T and ﬁ, where in
addition to the integrals over dny, dno, . . ., dny we have to perform the integral 1/(wyw, ) f / Tdxdy
for uniform illumination of a pad, and the final result for the variance is

lewy // é /Od 7(x, y, Z)zdz - (% /Od 7(x, y, Z)dz)
wxlwy // (é /0 e Z)dz)z . [wxlwy // (% /0 et z)dZ) dxdyr

The second line of the expression is equivalent to the one considering the weighting field effect with-

2
72— 72 = w(d)?

dxdy 4.51)

+

out charge fluctuations from the previous section, so the result can be expressed in the following terms

2 2 2 2 2 2
knd®  kind +bﬂ)+(qm , cnd +Qﬂ)

vi viva v2 v? viva v2

M:wwﬁ( (4.52)

2 2
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The coeflicients ¢y, c12, ¢y are the ones from the previous section and the coefficients k11, k12, k2

1 2
ki = // (b1 —a}dxdy — kip= // (b12 — ar1az)dxdy
WxWy WxWy

! / (b — a3)dxdy (4.53)

are given by

ko =
WxWy

with

1 d 1 d z 1 z 2
bu(x,y) = 3/0 Wi(x, y, 2)’dz = Z/o [3 - Z/O Pl y’z,)dz/} & @9

1 d
bia(x,y) = y /O Wi(x, y, 2)Pa(x, y, 2)dz

1 d Z 1 ) ’ 4 1 d ’ ’
_E‘/O [E_E‘/O ¢w(x,y,z)dz} [3[ ¢w(x,y,z)dz] dz

1 [ L1 A e ?
by(x,y) = 3/0 Yo (x, y,2)°dz = 3/0 [3/ dw(x,y, z’)dz’] dz
Z

First we verify the limiting cases for very large pads and very small pads. For large pads we
substitute for the weighting potential the expression ¢,,(x, y,z) = 1 — z/d and find

1 1 1
b - b - b = — d>1 4.55
11(x,y) 20 12(x, y) 20 22(X, ) 20 w/d > (4.55)
which gives k1) = kop = 4/180, k1o = =7/180and c1; = ¢12 = ¢ = 0, so we recuperate eq. (B.19).
For very small pads the integrals of the weighting potential over z will again vanish as discussed
before, and we have

1
bii(x,y) = 3 bipo(x,y)=0  bp(xy)=0 w/d<1 (4.56)
which gives ki1 = 1/12, ki = ky» = 0 and ¢j; = ¢ = ¢33 = 0 and therefore have
T
Ar =w(d) — 4.57)
T '\/ﬁ

For small pads the weighting potential decays very quickly as a function of z, from its value of 1 on
the pad surface to zero. The weighting field, which defines the induced current, is therefore very
large close to the pad and zero for larger values of z. Only when the charges arrive at this position
they will induce a signal. In the limiting case this is equivalent to a delta current signal for each
charge that arrives at z = 0, and we have

N N
1 T
i(ty=¢q > m ot —kAz/vy) T = ng kAz/vy Ar = w(d) — (4.58)
; Zili ; V2

so we indeed recuperate the above expression for A;! We’ll see the same formula later in eq. (5.4)
for silicon sensors with gain.
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Table 2. Coefficients k;y, k12, kpp from eq. (4.52) for different vales of w/d, where w is the size of the square

pixel and d is the thickness of the sensor.

w/d k2o ki2 ki1 kit + kia + kx
0 0 0 5 =833%x107 | £ =833x107?
0.01 8.43 x 1078 -6.43 x 107 8.33 x 1072 8.32x 1072
0.1 537 %107 -2.82x 1073 8.05 x 1072 7.77 x 1072
0.2 3.05x 1074 -7.32x 1073 7.57 x 1072 6.87 x 1072
0.25 5.13%x 107 -9.62x 1073 7.32 x 1072 6.41 x 1072
0.5 2.17x 1073 —1.94 x 1072 6.18 x 1072 4.46 x 1072
1. 6.39 x 1073 -2.96 x 1072 4.73 x 1072 2.41 x 1072
1.5 9.82x 1073 -3.36 x 1072 3.99 x 1072 1.62x 1072
2. 1.22 x 1072 -3.53%x 1072 3.58 x 1072 1.28 x 1072
3. 1.51 x 1072 -3.67 x 1072 3.15x 1072 9.86 x 1073
4. 1.68 x 1072 —3.74 x 1072 2.92x 1072 8.61 x 1073
5. 1.78 x 1072 -3.77 x 1072 2.78 x 1072 7.92x 1073
10 2.%x 1072 -3.83x 1072 2.5% 1072 6.68 x 1073
20 2.12x 1072 -3.86 x 1072 2.35x 1072 6.19x 1073
50 2.29 x 1072 -3.84x 1072 2.2x 1072 6.44 x 1073
0 | 155 =22%x1072 | =l =-389x107% | 35 =2.2x 107 | 135 =5.56x 1073
k
0.16
____________________________________________________ — k11
§Q\\\ --- 4/180
0.05 \\\: \\ -- 1/12
A AR = 2= — k2
00 \\\\ --- —7/180
_____ e Tt — k2
008 — K11+k12+k22
=== 1/180
w/d
0.1 05 1.0 5.0 10.0 50.0

Figure 15. The coefficients k1, k12, koo for different values of w/d, where w is the width of the square pad
and d is the silicon thickness. The dotted lines represent the limit for very small pads and very large pads as
discussed in the text.

The coefficients ki, k12, koo for square pads are listed in table 2 and are shown in figure 15.
The factor k1, related to the charges moving with v towards the pixel, is again larger than k»», so as
stated before the resolution is better if the electrons move towards the pixel. This fact is illustrated
in figure 16 and figure 17 for a 200 um and 50 um sensor. It shows a significant difference for these
two scenarios. In case the electrons move to the pixel the weighting field effect seems not to add
significantly to the time resolution for values of w/d 2 1.
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Figure 16. Centroid time resolution for values of d = 200 um and V = 200V as a function of the pixel size
w assuming the Landau theory for the charge deposit. The ‘c only’ curve refers to the effect from a uniform
line charge. In a) the electrons move towards the pixel while in b) the holes move towards the pixel.
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Figure 17. Time resolution for values of d = 50 yum and V = 200V as a function of the pixel size w assuming
the Landau theory for the charge deposit. The ‘c only’ curve refers to the effect from a uniform line charge.
In a) the electrons move towards the pixel while in b) the holes move towards the pixel.

For pads with w/d > 20 one approaches the scenario of an infinitely extended electrode,
as expected. For smaller pixels the Landau fluctuations and weighting field effect are strongly
correlated and the resolution is significantly worse than expected from the quadratic sum of the
weighting field effect for uniform charge deposit and the Landau fluctuation effects assuming an
infinitely large electrode.

4.6 Leading edge discrimination

Up to this point we have just discussed the centroid time of the detector signals. In this section
we consider the measured time to be determined by leading edge discrimination of the normalized
detector signal. We process the detector signal by an amplifier of a given peaking time, and perform
the so called ‘slewing correction’ for eliminating the timewalk effect from pulseheight fluctuations
by dividing the amplifier output signal by the total signal charge and set the threshold to a given
fraction of this signal. The current signal due to a single charge pair —¢, ¢ at position x, y, z is

iO(x’ Y, %, t) =—-q [V1 Ew(x> Y, Z— V1t)®(Z/V1 - t) + V2 Ew(x’ ¥,z + VZI)G)((d - Z)/V2 - t)] (459)
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The current signal for having n; e/h pairs at z = Az, np e/h pairs at z = 2Az etc. is given by

N

i(ny,ny,...,nN, X, y,1) = Z niio(x, y, kAz, t) (4.60)
k=1

We now process this signal by an amplifier with delta response ¢ f(/t,) where ¢, is the peaking
time, f(1) = 1, ¢ is the amplifier sensitivity in units of [V /C] and f(x) is defined by

flx) = x" ") (4.61)

The amplifier output signal is then given by the convolution of the induced signal and the amplifier
delta response

t t— t/
s(ny,ng,...,nN, X, y,1) =C / f ( , ) i(ny,ny,...,nN,x, y,t")dt’ (4.62)
0 p
N
=cq ) meg(x,y, kAz1) (4.63)
k=1
where g(x, y, z,1) is
—z+ud
g(x,y,2,1) = O(z — vit) —t El(x/d,y/d, u,wy/d, wy/d, 1)du (4.64)
Vilp

d
+®(v1t—z)/ ( VIZI’L” )Efv(x/d,y/d,u,wx/d,wy/d,l)du
4

zZ+vpt

@[(d—z)—vzr][ ! f(

t+z—ud
e )E@(x/d,y/d,u,wx/d,wy/d,1)du
volp

1
t+z—ud
®var — (d - 2)] / f (%) EX(x/d, y/d,u,we/d, wy d, 1)du
z Vatp
d
The weighting field EZ (x, y, z, wx, wy, d) for a pixel is given in eq. (E.5) of E. To perform slewing
corrections we divide the signal by the total charge ¢ > n;x and we get the normalized amplifier

output signal
N

c
h(n,no,...,nN, X, ¥, 1) = ~ Z ni g(x,y, kAz, t) (4.65)
k=1"% ;=1

The average normalized signal and the variance of the signal evaluate to

1
|:/ g(X,y,Sd,t)ds
0
and

1 2
Afl(t) = w(d)2 ct ﬂ [/ g(x, v, sd, 1)*ds — (‘/0 g(x, y,sd, t)ds)

2

- s

() = —< dxdy (4.66)
Wx

dxdy (4.67)
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The time resolution is then defined by (figure 18b)
A1)
G
Here we just discuss the example of an infinitely extended pixel i.e. we use EZ (x, y, z, wy, Wy, d) =
1/d, which evaluates g(x, y, z,7) to

oy (4.68)

nn+1

o t—g(X, ¥, 20) =vi O —vit)[n! =T(n+1,1/t,)]
p

-v1OWit=2)[T(n+1,t/ty) —T(n+ 1, —(z = vit)/(tpv1)]
+v20((d —z)—vat) [n! =T(n+ 1,1/t,]
Ot —(d=-2)[T(n+1Lt/ty)) —-T(n+1,-(d -z —vat)/(tpv2)]

where n and 7, are the parameters defining the amplifier. As an example the average signal h(t)
for a 50 um sensor at 200V for different peaking times is shown in figure 18a. The signal duration
is around 0.8 ns, so for small peaking times of 0.25 and 0.5 ns there is significant ‘ballistic deficit’
while for peaking times > 1 ns the amplifier ‘integrates’ the full signal and the normalized amplitude
becomes unity. In figure 18b the average normalized signal for a peaking time of 0.25 ns is shown,
together with +1 standard deviations.

The resulting time resolution is shown in figure 19a and figure 20a for a 50 um and a 200 um
sensor. We find that for large peaking times, the time resolution indeed approaches the centroid
time value, while for smaller peaking times the time resolution can be significantly better when
setting the threshold at less than 30—40% of the normalized signal. E.g. for the 50 um sensor at
200V, a peaking time of 0.25 ns and a threshold set to 40% of the total signal charge one should
arrive at a resolution that is two times better than the resolution achieved with the centroid time.
For a 200 pum sensor, 7, = 5ns and a threshold at 30% of the signal one also expects a twice better
resolution as compared to the centroid time.

To study the impact of the noise we assume oyise t0 be given in units of electrons. This noise
is superimposed to the signal s(¢) from eq. (4.62), so when normalizing the signal to arrive at A(¢)
we also have to normalize the noise by the total amount of charge deposited in the sensor. The
average normalized noise the becomes

— « Ohoise A 1
= 2 h(n,d)dn = ~ 4.69
@norm /0 p P ddn = oo oG o (4.69)
The contribution of the noise to the time resolution is then
oy = Zoom 4.70)
h (1)

We can therefore express the required noise level when using a threshold of A(z), that matches the
resolution from Landau fluctuations from eq. (4.68), as

d
Ohoise|€lectrons] = Ay(t) nOT (1+1.155Ind/) 4.71)

The numbers are shown in figure 19b and figure 20b. For the 50 um sensor and t, = 0.25ns the
required noise level is 100 electrons and for the 200 um sensor at 7, = 5 ns the required noise is 400
electrons.
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Figure 18. a) Average normalized signal /(r) for amplifier peaking times t, =0.25,0.5,1,2,6ns for a 5S0um
sensor and V=200 V. b) Average normalized signal A(t) for ¢, = 0.25 ns together with the curves A(t) + Ap(¢)
and h(t) — Ap(2).
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Figure 19. a) Time resolution for a sensor of 50um thickness at 200 V bias voltage. The slewing correction
is performed by dividing the signal by the total charge and applying the threshold as a fraction of this charge.
b) ENC needed to match the noise contribution to the effect from the Landau fluctuations.
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Figure 20. a) Time resolution for a sensor of 200um thickness at 200 V bias voltage. The slewing correction
is performed by dividing the signal by the total charge and applying a threshold at a fraction of this charge.
b) ENC needed to match the noise contribution to the effect from the Landau fluctuations.
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Figure 21. Silicon sensor with internal gain. An e-h par is produced at position z, the electron arrives at
z =0attime T = z/vy, the electron multiplies in a high field layer at z = 0 and the holes move back to z = d,
inducing the dominant part of the current signal.

5 Silicon sensors with internal gain

5.1 Centroid time resolution for silicon sensors with internal gain

In the Low Gain Avalanche Diode (LGAD), a high field region is implemented in the sensor in
order to multiply electrons at some moderate gain and as a result improve the signal to noise ratio.
We assume the geometry from figure 21 with the amplification structure located at z = 0. The
electrons will therefore move from their point of creation to this structure, get multiplied and the
holes created in the multiplication process are moving back from z = 0 to z = d through the entire
sensor thickness d. If we assume 1) the gain G to be sufficiently large such that the signal from the
primary electron and hole movement is negligible, 2) the amplification structure to be infinitely thin,
3) a sensor with negligible depletion voltage, the signal from a single e-h pair created at position z
is of rectangular shape with duration 7' = d /v, shifted by the time t = z/v;

i(t) = -G % [0 — 2/v1) = Ot — 2/vi — d/vy)] (5.1)

The centroid time of this signal is
d 2

+ — (5.2)

T=—
2vo vy

The centroid time for the case of ny, ny, . .., ny clusters at positions zi, 2o, . . ., Zn iS
N N

1 d z d 1 z
T(nl,nz,--.,nzv)——an(—+—k)— +—an—k (5.3)

- N - N
Zp=1 "% 1o vooovi) 2m Bl mo oW
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Figure 22. Time resolution for the centroid time from eq. (5.4) for 50, 100, 200, 300um silicon sensors with
internal gain of electrons, assuming a signal only from gain holes. The three curves for each sensor thickness
correspond to the Landau theory, the PAI model and a Gaussian fit to the PAI model.

The average and standard deviation of the centroid time are then

1 T
Vi2vi  a+blnd/A+c(Ind/2)? V12

5.4

with T = d/v; being the total electron drift time. This expression is the same as the one from
eq. (4.57) and eq. (4.58), so this sensor is simply measuring the arrival time distribution of the
electrons at z = 0. The resulting time resolution for 50, 100, 200, 300 um sensors is shown in
figure 22. Although the time resolution for the sensors with gain is worse than the one for silicon
sensors without gain as shown in figure 6, the big advantage of the sensors with gain is the improved
signal to noise ratio that can ‘eliminate’ the effect from the noise. For a 50 um sensor at 220 V one
can achieve a time resolution of 30 ps in accordance with measurements on the LGAD sensors.

The effects defining the time resolution for a sensor with gain therefore differ significantly from
one without gain. The electrons first have to arrive at z = 0 before being amplified and producing
the gain signal, so the signal timing is defined by the arrival time distribution of the electron clusters
at z = 0. This is also illustrated by the fact that the second factor in eq. (5.4) is simply the total
transit time 7, = d/v; of the electrons through the full silicon thickness divided by V12.
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Table 3. Coefficients s, from eq. (5.8) for different vales of w/d, where w is the size of the square pixel and
d is the thickness of the sensor.

wi/d 0/01]02]03|04|05| 1 |15]225/3|4]|5/|10[20]30|40]|50|c
103 x 52 [ 0/0.03{0.120.27 | 0.54{0.76 [ 2.6 | 4.0 | 4.8 52|52 /49|42 (27|1.6[13|1.1|1.0| 0

5.2 Weighting field effect on the centroid time for silicon sensors with gain

In this section we discuss the effect of the finite pixel size on the centroid time resolution for sensors
with gain. Assuming the readout electrode at z = 0 to be segmented into pixels with an associated
weighting potential ¢,,(x, y, z), the induced signal due to a single charge pair created at position
X, ¥,z att = 0 becomes

i(t) = =G qva Ey[x, y,va(t = 2/v)] O — z/v1) = O — z/vi — d/v2)] (5.5)

and the centroid time for this signal is given by

d 1
T(x,y,2) = VZ—I + E ‘/0 dw(x, v, sd)ds (5.6)

Assuming a uniform charge deposit along the track, the centroid time becomes

d

1 14 d !
T(x,y) = 7 /0 T(x, y,2)dz = 7 + > /0 dw(x,y, sd)ds (5.7

The variance for uniform irradiation of the pad is then

A2 =127
d2 1 1 2 1 1 2
== [/ (/ P (x, y,sd)ds) dxdy — ( // (/ by (x, y,sd)ds) dxdy)
vy | WaWy 0 Wy o
2
=—sm=Tsn (5.8)
Vs

which is the pendant to eq. (4.43) for sensors without gain. The coefficient sy, for different pixel
sizes is are listed in table 3 and shown in figure 23a. The effect on the time resolution for a 50 um
sensor is shown in figure 23b. The effect is again largest for pixel sizes of w/d =~ 3. In case we also
take into account the Landau fluctuations we have to use eq. (5.6) in eq. (4.51) and find

25 = , d* &P N
A =12-T"=w(d + — =w(d) —+T. 5.9
;=17 -7" =w(d) 12,2 vgszz w(d) 5 thsn (5.9)

which is the pendant to eq. (4.52) for sensors without gain. So we find the interesting result that for
this case there is no correlation between the Landau fluctuations and the weighting field fluctuations,
and the two components just add in squares. We also note that the result will be the same whether
we segment the electrode at z = 0 where the multiplication takes place or whether we segment the
electrode at z = d.
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Figure 23. a) Coeflicient sy, defining the impact of the weighting field on the time resolution. b) Centroid
time resolution for a gain sensor of 50 yum thickness at 200 V. The horizontal line shows the contribution
from Landau fluctuations only, while the other lines show the contribution from weighting field fluctuations
as well as the combined effect.

5.3 Impact of gain fluctuations

The electron amplification in the gain layer of the LGAD will have statistical fluctuations and in the
following we want to quantify the impact of these fluctuations. In case the amplification process is
such that the ionizing collisions are independent and do not have a history to the previous collision,
the fluctuations of the gain for a single electron are governed by the Yule-Furry law according to
1 ( 1 )G-l - 2
pG)==|1-= AG=GG-1)=G (5.10)
G G
where G is the average gain. This assumption is correct as long as the fields are sufficiently low such
that there is only electron multiplication and the multiplication of holes is negligible. In case there
are n > 1 primary electrons, the distribution of the number of electrons after multiplication will
assume a Gaussian shape with u = nG and o2 = nAZG = n@z due to the central limit theorem. The
resulting charge spectrum is therefore a convolution of this Gaussian with the Landau distribution
p(n,d). To estimate the effect of the gain fluctuations on the Landau distribution we approximate
the Landau distribution with a Gaussian of mean and standard deviation according to
Anpwam
U = nMp o oy (5.11)
The convolution of this Gaussian with the Gaussian from the gain fluctuations will then again result
in a Gaussian where the variances are added in squares and we have

AnS A 8n2 A 4In2\ A
FWHM — NFWHM 1+ an; n ~ NEFWHM 1+ an; n — NEFWHM (1 " 8) (5‘12)
nMp nMmp AnFWHM nMmp AnFWHM nMmp

The value of & ranges from 1.9 x 107 for d = 50 um to 4.1 x 107 for d = 300 um. The gain
fluctuations will therefore increase the relative fluctuations of the charge deposit by less than 0.2%

for a 50 um sensor and even less for the 300 um sensor.
The correct resulting charge distribution pg(n, d) when assuming the Landau distribution
p(n, d) for the primary charge deposit is given by

N2
L exp (—M) dm (5.13)

1 (o)
(nd) = ~ / (m, d)
be G Jo P V2mrm 2m
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and the evaluation is shown in D. The correct values of € for the increase of the FWHM with respect
to the original distribution are 2.8/1.6/0.86/0.61 x 1073 for the 50/100/200/300 um sensor.

In order to evaluate the impact on the time resolution we have to find the effective cluster size
distribution pgu(n). For large numbers of G, the Furry law turns into the exponential distribution

p(G) = % e GG (5.14)

Even for the typically low LGAD gains of about 20 this is a good approximation. The probability
to find n electrons for m primary electrons is then given by the n-times self convolution of this
expression and we have

(m) = 2 e/G (” )m_l (5.15)
pn)=—=e == .
G (m-D'\G
The effective cluster size distribution for peu(n) = no/n> O(n — ng) is then
PG (n) = 1 e /G /00 o ﬁ " dm (5.16)
el G ny mT(m) \G '

Using this effective cluster size distribution together with the distribution pg(n, d) in eq. (B.20) we
can evaluate the impact on the time resolution and have

Ag /Wc(d) B
2\ v - l+e (5.17)

where £ = 9/4.6/2.2/1.5 x 107*. The effect of gain fluctuations on the time resolution is less than

0.1 % for sensors of more than 50 um thickness and is therefore completely negligible.

5.4 Leading edge discrimination for silicon sensors with gain

In this section we discuss the time resolution when considering leading edge discrimination of
sensors with gain. We proceed as in section 4.6 and convolute the signal from a single e-h pair at
position z

io(x, y,2,t) = =Gqv2Ey(x, y, va(t — 2/v1)) [O(t — z/v1) = O(t — z/v1 — d/v2)] (5.18)

with the electronics delta response and find

(-2
d v t— —ud w
g =00-2/mezn-n [ f M)E(f,X, 221 d
0 tp dd d d
1
t—z/vi—ud/v, Xy wy Wy
+O(t—d/vy— S B (e 2 21 d 5.19
(t=d/v Z/Vl)/of( . ) LR u (5.19)
which for an infinitely extended electrode with E,, = 1/d evaluates to
n+l d (—
n —8(x,y,2,t) =va®(t—2z/v1)O(d [va+z/vi—1) [n!—F (n+l,w)] (5.20)
el Ip Ipvi
- t—d/vy—
—vO(t—d/vr—z/v1) F(n+l,M)—l"(n+1,n( [v2 Z/vl))}
Ipv1 tp
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Figure 24. a) Time resolution for a gain sensor of 50um thickness at 200 V bias voltage when applying
a threshold to the signal normalized by the total charge, assuming the Landau theory. The values do not
improve beyond the centroid time resolution which is indicated by the dashed horizontal line. b) ENC needed
to match the noise effect of the time resolution to the effect from the Landau fluctuations.

Evaluating eq. (4.66), eq. (4.67) and eq. (4.68) we then find the results shown in figure 24a. We
find that even for leading edge discrimination of the normalized signal the time resolution for a
sensor with gain does not improve beyond the centroid time resolution value. The reason is that
in the outlined formulas the signal is normalized by the total charge deposited in the sensor. The
signal that makes up the leading edge has however no correlation with the total deposited charge
but is only related to the number of electrons that have already arrived at the gain layer. This is
very different from the standard silicon sensor without gain, where the movement of all deposited
charges makes up the leading edge signal.

If one want wants to improve the time resolution of silicon sensors with gain beyond the centroid
time resolution, one therefore needs ultra fast front-end electronics with slewing corrections related
to the leading edge of the signal and not to the total charge of the signal. This goes beyond the
mathematical formalisms developed in this report and Monte Carlo simulations have to be used to
study this scenario.

6 Comparison with measurements

In [12] the time resolution of an LGAD sensor with 50 um thickness is quoted as o = 34 ps at
200V and o = 27 ps at 230 V. Eq. (5.4) predicts a centroid time resolution of o = 32 ps for 200 V
and o = 31 ps for 230V for the PAI model. The measured and calculated numbers are therefore
in the same range, which seems to confirm the effect shown in figure 24, namely that even when
using leading edge discrimination with electronics of = 0.5 ns peaking time for this sensor one is
effectively measuring the centroid time.

In [6] the time resolution for multiple particles passing a 133, 211, 285 um sensor is given. All
sensors were biased at 600 V. An amplifier delta response of 1 ns peaking time is used, resulting in
a peaking time for the average signal of the 211 um sensor of ~ 2 ns. Leading edge discrimination
at 50% of the signal peak is used. Eq. (4.5) predicts centroid time resolutions of o = 24,41, 60 ps
for the three sensors when using the PAI model. With a peaking time of 1 ns and the threshold set
at 50 % of the signal eq. (4.68) predicts a resolution of o = 14 ps, for all three values of sensor
thickness. From eq. (4.12) we see that the scaling factor when having 100 MIPs instead of one MIP
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amounts to =~ 0.77, so we expect a time resolution of 11 ps for all these cases, which actually does
approximately match the quoted number where the resolution saturates.

The NA62 Gigatracker uses a 200 um sensor with 300 x 300 um pixels. The signals are read by
a frontend with 5 ns peaking time and the threshold is set to around 30% of the signal. A measured
time resolution of 190 ps for 200 V is quoted [1]. The effect of noise on these numbers is quoted to be
negligible. To compare to calculations, we would in principle have to evaluate eq. (4.67) for leading
edge discrimination of a sensor with finite pixel size, which turns out to be unfeasible, so we compare
to some limiting cases. The PAI model and leading edge discrimination at about 35 % of the signal
for 200 V predicts a time resolution of 64 psr.m.s. (42 ps o) for an infinitely large pad. The observed
time resolution is therefore dominated by the weighting field effect. The impact of the centroid time
for the weighting field (correlated with the Landau fluctuations) effect is 272 ps r.m.s. (224 ps o).
The effect of leading edge discrimination on the weighting field effect, which is not discussed in
this report, will reduce this number to some extent, so the measured 190 ps are in the right ballpark.
For a more accurate quantitative evaluation, a Monte Calo simulation must be performed.

In [5] a time resolution of 100 ps is reported for a sensor of 100 um thickness and 800 x 800 um
pixels, biased at 230 V. An amplifier of 200—400 ps rise-time is used and a time resolution of 100 ps
is reported. The PAI model predicts a centroid time resolution of o = 26 ps for this sensor, and the
leading edge discrimination will still result in some improvement on top of this number. As shown
in the paper, the time resolution is fully dominated by the noise contribution, so we cannot extract
the time resolution component due to Landau fluctuations from this measurement.

7 Conclusions

* The probability for a relativistic particle to deposit n e-h pairs in a silicon sensor of thickness
d is given by
p(n, d) = _£_1 [ed/l(Pclu(S)_l)] (71)

where P.py(s) is the Laplace transform of the cluster size distribution and A is the average
distance between primary collisions, which evaluates to 4 ~(0.212 um for relativistic particles
insilicon. Fora 1/n? cluster size distribution this expression becomes the Landau distribution,
while for a more realistic cluster size distribution from the PAI model we get a distribution
with a relative width that is 25-35% smaller than the one from the Landau distribution.

* The standard deviation of the centroid time of a silicon detector signal is given by

4
— w(d A —=T? = 72 ¢ 2 g2 7.2

=wid/ )\/180 180 12 g2 (7.2)
assuming a large readout electrode and negligible depletion voltage. T} = d/vy, T>» = d/va,
Ti» = d/+/viv; are the drift times of the electrons and holes. Using the Landau theory for
charge deposit, the expression w(d/A) approaches 1/+/Ind/A for large values of d. In the
interval of 25 < d < 500 um, w(d/A) can be approximated by

1

w(d/A) = (7.3)
Va+bInd/Ad+c(Ind/2)?
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with a = 1,b = 1.155, ¢ = 0 for the Landau theory, a = 13.7,b = —4.9, ¢ = 0.85 for a PAI
charge deposit model and a = 47.7, b = —22.8, ¢ = 3.37 when performing a Gaussian fit to
the measured time distribution for the PAI model.

For a silicon sensor of 300 um thickness and 600 V this evaluates to a resolution of 161, 103,
64 ps, indicating that the Landau theory overestimates the fluctuations and that we have to
clearly distinguish the r.m.s. and the Gaussian fit due to significant tails in the distribution.
For a 200 um sensor at 300 V the resolution evaluates to 132, 88, 56 ps. For a 50 um sensor
at 200 V the values are 22, 17, 12 ps.

For multiple particles passing the silicon sensor the time resolution scales from the single
particle time resolution A;(1 particle) as

A (nparticles) 1

(7.4)

A.(1 particle) | 4 Jnn
nd/2
which amounts to an improvement of only 26, 24, 23, 22% for a 50, 100, 200, 300 um sensor
when going from 1 to 100 particles.

Measuring the sensor signal with an amplifier of peaking time #,, larger than the drift time
of electrons and holes, the amplifier output is equal to the delta response, scaled by the
total signal charge and shifted by the centroid time. To determine the time of this pulse of
known shape one can then use standard techniques of constant fraction discrimination and
optimum filtering to extract the time information. Assuming the Landau theory, the average
contribution of the noise to the time resolution is then

1
dng 1+ 1.1551Ind/A

O = Onoiselelectrons] tp c(ng) (7.5)
where 1, is the peaking time of the amplifier and c(ny) is a constant depending on the
measurement technique. Using constant fraction discrimination at the maximum slope of the
signal we have c(ny) = 0.55-0.6. Using continuous signal sampling and optimum filtering
one arrives at similar numbers when sampling at an interval of #,/2 and one can achieve
c(ng) = 0.2-0.3 for very high frequency sampling. For f, = 2ns, d = 50 um and an
Equivalent Noise Charge (ENC) of 50 electrons we have a contribution from the noise of
oy ~ 17 ps, that has to be added in square with the numbers from Landau fluctuations. In order
to exploit the intrinsic time resolution of thin silicon sensors one therefore needs ultra low noise
performance of the frontend electronics. For a given series noise voltage e, of an amplifier,
the equivalent noise charge decreases with 1/4/7,, the effect of the noise on time resolution
does however increase linearly with 7,,. It is therefore advantageous to use faster electronics
if power consumption allows and other noise sources do not start to become dominant.

Assuming a square readout pixel of dimension w, the variation of the track position and
therefore the variation of the weighting field and related signal shape will have an impact on
the time resolution and the standard deviation of the centroid time becomes

AT = \/W(d//l)z(knle + k12T122 + k22T22) + (C]]Tl2 + C]2T122 + szTzz) (76)
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Neglecting charge fluctuations and assuming a uniform charge deposit, the coefficients
k11, k12, koo vanish. Assuming very large readout pixels, the coefficients c;y, 12, 22 van-
ish and ki1, k12, ko become 4/180,—7/180,4/180 in accordance with the above. For very
small pixels, we have k;; = 1/12 and all other coefficients vanish, which is in accordance
with an arrival time distribution of charges at the pad. Landau fluctuations and weighting
field fluctuations are strongly correlated, so they cannot be decoupled or ‘added in squares’.
Since k11 > koo, the effect of weighting field fluctuations is smallest if 77 is small i.e. if the
electrons move towards the readout pixel. In this case it seems possible that for values of
w/d 2 1 the weighting field effect does not add significantly to the centroid time resolution.
We note that this calculation assumes perpendicular tracks and neglects diffusion.

The expressions for leading edge discrimination of the normalized silicon sensor signal (i.e.
the signal divided by the total charge) show that the centroid time resolution is indeed recov-
ered for large peaking times, and that for faster electronics the time resolution is significantly
improved when placing the threshold at < 40% of the total signal charge. As an example,
for a 50 um sensor at 200 V, a peaking time of 1 ns and a threshold at 30 % of the normalized
signal, the time resolution improves by a factor 2 with respect to the centroid time and the
noise must be less than 70 electrons in order to not significantly add to this value.

For silicon sensors with internal gain (LGAD), the standard deviation of the centroid time

becomes
T

Vi2

This formula assumes that only the gain holes contribute to the signal. This expression is the

Ar = w(d/) (7.7)

same as the one for the very small pixels without gain and represents in essence an arrival
time distribution. For a 200um sensor at 300 V the time resolution is 255, 170, 108 ps for
the Landau, PAI and Gaussfit PAI model. These numbers are a factor 2 larger compared to
the sensor without gain. For a 50 um sensor at 200 V the numbers are 57, 44, 32 ps, about a
factor 2.5 larger than for the sensor without gain. The very big advantage of sensors with gain
is the large signal to noise ratio that can make the noise contribution to the time resolution
negligible and therefore allows large pixels, electronics with modest noise performance and
modest bandwidth.

The impact of gain fluctuations on the time resolution for sensors with internal gain (LGAD)
of 50-300 um thickness is on the 0.1 % level and therefore negligible.

Including the effect of the finite pixel size on the centroid time resolution of a silicon sensor
with gain we find

Ty
Ar =\|w(d/A)? ot 22T (7.8)

In contrast to sensors without gain there is no correlation between the Landau fluctuations
and the weighting field fluctuations. For uniform charge deposit, only the second term of the
expression remains. For very large and very small pads the coefficient s, vanishes and the
effect is largest for w/d =~ 3. In addition the expression is the same, whether the electrode at
the side of the gain layer z = O or the electrode on the opposite side is segmented into pixels.
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The calculations presented in this report provide insight into some principle dependencies for the
time resolution of silicon sensors on charge fluctuations, noise and weighting field fluctuations.
The inclusion of more detailed models including the effect of diffusion, track angle, finite depletion
voltage and pixelization are best accomplished through Monte Carlo simulations and the formulas
of this report can be used as benchmarks for such studies.
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A Landau distribution

Evaluating eq. (2.3) with the specific model of the 1/n? distribution from eq. (2.6) we find the
Landau distribution L(x) according to

1 o+i100
L(x)=— / exp [sx + sIns]ds (A.1)

2ri o —ico
1 (o)

=— / exp(—m/2t)cos(tx + tInt)dt (A2)
T Jo
1 (o)

=— / exp [—tx — tIn¢] sin(nt)dt (A3)
T Jo

Expression (A.2) is well suited for evaluation for x < 0, while eq. (A.3) is well suited for evaluation
for x > 0. For large values of x the Landau distribution approximates to

1
L)~ — (A4)

B Variance of the centroid time

The centroid time of the silicon detector signal assuming ny, e-h pairs in slice k is

N
an[ —(d_z")zl (B.1)
V2

(Zk 1nk) k=1

T(m,nz,...,nN)—

The average cetroid time T is then given by

?:/ / / T(ny, ny, . ..,nN)p(ny, A)p(na, Az) ... p(ny,Az)dni dny . ..dny  (B.2)
o Jo 0

Since

Y “ni+np+...+n
/ / / 17 Np(nl,Az)p(ng,Az)...p(nN,Az)dm dny...dny =1 (B.3)
0 n+n+...+nN
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we have

0 1

A AzZ). .. JAZD)dnydny .. .dny = —

/0 /0 /0 PR p(n1, Az)p(na, Az) . .. p(nn, Az) dny dny =
k=12....N (B.4)

and therefore
_ L - )’ 1 /d 2 (d-z2)? d{1 1

= _— — 4 —|dz==|—+— B.5
T 2 1% 2d2 Vi %) ¢ 6\vi ®-3)

which is the expected centroid time of the two triangular signals form the electrons and the holes.
The second moment of the centroid time 72 is given by

72 = / / .. / 2(n1, no, . . ., nn)p(ni, AD)p(na, AZ) . .. p(nn, Az)dnidns . . .dny  (B.6)

d- 2 (d-z)?
TZ(I’ll,l’lz,...,I’lN) Zannr — ﬂ [Z—r+@} (B.7)
4d2(z n) =1 EE LA
k=1"k
‘We define
/m/w /m M Tty (1, A2)p(na, Az). .. pinn, A2 dny dna .. dny - k #
an = ni, ny, ...p(ny, nidny...dn r
N o Jo (n1+n2+...+nN)2p 1L,AZ)p\ng, AZ)...p\nN,Az)dny any N
00 poo o 2
n
by = ... k LA AZ)...p(nn,AZ)dnydny .. .d B.8
= [ e 0. 0P 82) ...l A2) iy (BS)
and since we have
/“/‘X’ °°(n1+n2+...+nN)2( ADp(1a, A7) . . plnn, AZ) dny d J |
ni, n, ...p(ny, nidny...dny =
o (n1+n2+m+nN)2P1 2)p\n, Az p\nn, Az)any any N
(B.9)
it holds that
1-Nb 1 b
Nby+NN-Day=1 — ay-= N~ N (B.10)

NN-1) N2 N
The second moment of 7 therefore becomes

- _ by < (d—Zk)2 L an SIS _1% (d - z)? [ (d - zr)z}
T = Vi + 4d2 Z Z Vi Vo Vi V2_ (Bll)
2

_ z Ry N N |2 Y] 2 N2
_bn-ay G, -z | a_NZZ G @d-a) |z (d-z) (B.12)
4d? — " Vo 4d el RY Vo Vi Vo
2
by 1 412 (d-=z)? 2 ay 1 /d 22 (d-2)?

x —+ dz + — — + d B.13
4d? Az Vi v T4 Az \Jo | V) ¢ (B.13)
bn d3(3V1 +Vvivy + V%) an d4(V1 + Vz)z

=N + (B.14)
Az 60v12v§ (Az)? 36v12v§
by @I =Tviva +4v3)  d2(v) + v,)?

= — + (B.15)
Az 180v12v§ 36va§
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and we have for the variance

2 2 2
N byd d=(4vi —Tviva +4v3)
’ Az 180viv3

(B.16)

The expression for A, is symmetric with respect to v; and v,, which reflects the fact that the induced
signal on the electrode at z = 0 is always equal (and opposite in sign) to the signal at the electrode
at z = d. To evaluate by

(o) 0 (%) I’l2 n ,AZ
bN :/ / / lp( : ) zdm
0 0 0 (n1+n2+...+nN)

we change variables according ton = ny + n3 + ... + ny,i.e.np =n—n3 —ng — ... — ny and

p(no, Az)...p(an,AzZ)dny . ..dny  (B.17)

dny = dn and see that the expression outside the brackets becomes equal to the N — 1 times self
convoluted probability p(n, Az) which is simply p(n, d — Az) = p(n,d). Using eq. (2.1) for small
values of Az the expression therefore becomes

o0 oon2p(n17AZ) o0
by = 4 .d)d =/
[ | -

so for the variance we finally have

A oon2 clul?
] / mpeu(m) pind)dn  (B.18)
0

A (n + n)?

— 4d? 7 d? 4d?
A2 =72 -7 = w(d)? - + B.19
i () 180v§ 180v; vy 180vf ( )
g [°n?peu(n)
d2=/ —/ L d . d)d B.20
w(d) TS, e p(n,d)dn (B.20)

This expression for w(d) is completely general for any kind of cluster size distributions pj,(n) and
resulting p(n, d).

C Evaluation of w(d)

Using the Landau theory we have p.,(n) from eq. (2.6) and therefore

© 12 pera(ny) )
1 Pclu 0 no
— “dn; = dni = C.1
./0 (M / 2™ g (D
and with eq. (2.7) we get
d [~ p(nd) /°° Liz+y—-1-1Ind/a)
d)? = ny— = dn = d Cc.2
wid) noxl,/o n+ ng " 0 z+ A/d ¢ €2)

Using eq. (A.2) for L(x) we have

w(d)? = /-00 e 1m/? % sin( ft) — % sin( ft)SinIntegral(r 1/d) — 7lr cos(ft)CosIntegral(t/l/d)} dt
0
(C.3)
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with
f=1-vy+a/d-1Int+Ind/A (C4)

The integrand is ‘damped’ by the exponential decay where beyond ¢ = 10 the integrand will be
negligible. For small values of 1/d we can use SinIntegral(x) ~ x and Coslntegral(x) ~ v + Inx

and we get
w(d)? =~ /00 e 172 lsin(ft) - l(1 — f)cos(f1)| dt (C.5)
0 2 T

fr1l-—y—-Int+Ind/A (C.6)

For d/A > 40 the approximation is accurate to better than 1% and the dependence on by for
different sensor values of the sensor thickness is only though In d/A. For very large numbers of d/A
the expression approaches

1
2 = — &0
w(d)” = (/) d/a (C.7

For d/A > 40 this expression for w(d) is within 15% of the exact expression (C.3).

D Convolution of the Landau distribution with a Gaussian

For the convolution of the Landau distribution with a Gaussian we use eq. (A.3) and find

1 [ 1 G—-m)?
pG(n’d):E/O p(m,d)mexp(—(n/ me) )dm

(n/G-m)*
] /m[ A l/mex (—t( A m+ —l—lnd//l)—tlnt)dt sin(ﬂt)exp(_ o )dm
GJo |nodn )y P nod 4 V2mm
1 A « 22t
== / exp |—t(y—1-Ind/A)—tInt+n/G|1—4[1+— sin(rt)dt (D.1)
G nodrm Jy nod 14240
nod

E Weighting potential and weighting field of a pixel

The expression for the weighting potential of a rectangular pad of dimension wy, wy centred at
x =y = 0 with a parallel plate separation of d is given in [25] as

1
Pw (X, ¥, 2, Wi, Wy, d) = ﬂf(x’ Vs 2 Wi, Wy)

1 [ee)
~ 3. Z[f(x, y,2nd =z, wx, wy) = f(x, y,2nd + z, wx, wy)] (E.1)
n=1

X X
f(X, Y, U, Wy, Wy) = arctan % + arctan %
2 2
UJXT+y7+u UAJX5 + Y5 + U
X X
_arctan| ——22 | _aretan| —2201 (E.2)
2 2 2 2 2 2
u\/xl +y,tu u,/x2+yl+u
Wx Wx Wy Wy
Xl =X— X2 =X+ — | =y— —= =y + — E3
2 2 =y- ya=y+ (E.3)
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We note that
X Z Wy W
¢W(X,y,Z,Wx,Wy, d) = ¢W (3, 2, E, dxa dy, 1)

The weighting field is given by

1
E%(x,y,2, Wy, Wy, d) = ﬂg(x, Vs T Wx, Wy)

+ o [g(x, y,2nd + z,wx, wy) + g(x, ¥, 2nd — z, Wy, wy)]
n=1
with
xlyl(xlz+y12+2u2) xzyz(x§+y§+2u2)

(X, y, u, Wy, wy) =
(x12+u2)(y%+u2) x12+y%+u2 (x§+u2)(y§+u2) x§+y§+u2

xlyz(xf+y§+2u2) xzyl(x§+yf+2u2)

(x12+u2)(y§+u2) x12+y§+u2 (x§+u2)(y12+u2) x%+y12+u2
and it holds that

EX(x,y,2,Wx, Wy, d) = =E
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