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1 Introduction

Silicon pixel sensors providing precise timing are currently being developed in view of fu-
ture “4D” tracking applications. The NA62 Gigatracker, using sensors of 200 µm thickness
and 300 µm×300 µm pixel size has achieved time resolutions of ≤ 150 ps at rates of up to
1.5MHz/cm2 [1–4]. A time resolution of 100 ps has been reported with a sensor of 100 µm
thickness and 800 µm×800 µm pixel size [5]. For multiple particles passing silicon sensors of
thickeness between 133 and 285 µm, a time resolution of better than 20 ps has been reported [6].
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With the introduction of internal amplification inside silicon detectors of 50 µm thickness, the so
called Low Gain Avalanche Diode (LGAD) [7–11], time resolutions of 25 ps have been achieved
for single MIPs [12].

The Weightfield2 program [13] allows the detailed simulation of the induced signals in silicon
sensors with strip geometry. A long term goal of these developments are pixel sensors of 10 µm
position resolution and 10 ps time resolution [14, 15]. Developments of silicon sensors for increased
timing performance based on 3D sensors are also described in literature [16]. Studies of front-end
electronics for silicon detectors with emphasis on timing aspects can be found in [17] and [18].
Charged particle imaging is widely employed in many areas of science beyond high energy physics,
for example as part of material analysis techniques. Therefore there is a broad interest in the
developments of spatially resolved and time accurate particle detectors [19, 20].

In this report we derive analytic expressions for the time resolution of silicon sensors using the
Landau theory and a version of the PAI model to describe the charge deposit of high energy particles
in the sensor. We first investigate the time resolution for the case where we take the ‘centroid time’
of the signal as a measure of time. It refers to the case where the amplifier peaking time is larger than
the drift time of the electrons and holes in the silicon sensor and allows us to discuss the achievable
time resolution using moderate electronics bandwidth together with optimum filter methods to
extract the time information from the known signal shape. We then derive formulas quantifying
the effect of signal fluctuations due to the finite pixel size and related variations of the weighting
field. We also derive expressions for the time resolution using leading edge discrimination of the
signals with different electronics shaping times. In the last part of the report we discuss the time
resolution of silicon sensors with internal amplification which will be applied in the ATLAS and
CMS experiment upgrades for pileup rejection [8].

2 Energy deposit

A high energy particle passing a silicon sensor will experience a number of primary interactions
with the material, with λ being the average distance between these primary interactions. For
relativistic particles we have λ ≈ 0.212 µm in silicon [21]. The electrons created in these primary
interactions will typically lose their energy over very small distances and create a localised cluster of
electron-hole pairs. We call the probability pclu(n) for creating n e-h pairs in a primary interaction
the ‘cluster-size distribution’. Throughout this report we treat n as a continuous variable. We now
divide the silicon sensor of thickness d into N slices of thickness ∆z = d/N as shown in figure 1a.
In case∆z � λ, the probability for having zero interactions in∆z is 1−∆z/λ, the probability to have
one interaction in ∆z is ∆z/λ and the probability to have more than one interaction is negligible, so
the probability density for finding n electrons in ∆z is

p(n,∆z)dn =
(
1 −
∆z
λ

)
δ(n)dn +

∆z
λ

pclu(n)dn (2.1)

The probability p(n, d) to have n electrons in the entire sensor of thickness d is then given by the N
times self convolution of this expression. Since convolution becomes multiplication if we perform
the Laplace transform, N times self convoluting the above expression results in raising it’s Laplace

– 2 –
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Figure 1. a) The silicon sensor is divided into slices of thickness ∆z. The electrons and holes produced in
one slice are assumed to move to the boundary of the sensor at constant velocity, which is correct in the limit
of negligible depletion voltage. b) Probability to find n electrons per primary interaction. The straight line
refers to the 1/n2 distribution that is the basis for the Landau distribution, the points corresponds to a PAI
model [21, 22].

transform to the power N . So using the Laplace transform Pclu(s) = L[pclu(n)] we have

P(s, d) = L[p(n, d)] = L[p(n,∆z)]N =
(
1 +

d
λN
(Pclu(s) − 1)

)N
(2.2)

By taking the limit of N →∞ we have

p(n, d) = L−1
[
ed/λ(Pclu(s)−1)

]
(2.3)

This expression is completely general and correct for any cluster size distribution. Assuming as an
(unphysical) example that each cluster contains exactly n0 electrons we have

pclu(n) = δ(n − n0) Pclu(s) = e−sn0 P(s, d) = ed/λ(e
−n0s−1) (2.4)

The inverse Laplace transform of the last expression is

p(n, d) =
∞∑
k=0

(
d
λ

)k
k!

e−
d
λ δ(n − k n0) µ = n0d/λ

∆

µ
=

1√
d/λ

(2.5)

where µ is the average number of e-h pairs and ∆ is the standard deviation. This is the expected
Poisson distribution showing the 1/

√
N dependence for the relative fluctuations with N = d/λ being

the average number of clusters.
The correct cluster size distribution pclu(n) is typically calculated using some form of the PAI

model [22] and an example is shown in figure 1b [21]. For this report we also use the Landau theory
as a minimal model that respects basic physics and that allows approximate analytic expressions.
Landau’s approach assumes a 1/E2 distribution of the energy transfer for a collision in accordance
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Figure 2. a) Distribution of the number of e-h pairs in 50 µm (blue) and 200 µm (orange) of silicon. The
histograms show the PAI model, the solid lines show the Landau theory. b) Ratio of full width half maximum
and most probable values for the Landau and PAI model for different values of silicon thickness. The Landau
theory overestimates the fluctuations by 25–35%.

with Rutherford scattering on free electrons and a lower cutoff energy ε chosen such that the average
energy loss reproduces the Bethe-Bloch theory. The resulting cluster size distribution for a MIP in
silicon therefore becomes a 1/n2 distribution with a cutoff at n = n0 ≈ 2.2 electrons, which can be
written as

pclu(n) ≈
n0

n2 Θ(n − n0) Pclu(s) ≈ 1 + n0s(Cγ − 1 + ln n0 + ln s) (2.6)

with Θ(x) being the Heaviside step function. Evaluating eq. (2.3) results in

p(n, d)dn =
λ

n0 d
L

(
λ

n0 d
n + Cγ − 1 − ln

d
λ

)
dn (2.7)

where Cγ = 0.5772 . . . is the Euler-Mascheroni constant and L(x) is the Landau distribution
discussed in A. The most probable number of e-h pairs nMP and the full width of half maximum
nFWHM of p(n, d) are

nMP ≈
n0 d
λ

(
0.2 + ln

d
λ

)
∆nFWHM

nMP
≈

4.02
0.2 + ln d/λ

(2.8)

It should be noted that the most probable number of electrons nMP is proportional to the cutoff n0
while the ratio of nFWHM and nMP is independent of n0 and depends only on d/λ.

For a value of λ = 0.212 µm we find an average of N = d/λ = 236, 472, 943, 1415 primary in-
teractions (clusters) for a 50, 100, 200, 300 µmsilicon sensor. Using the cluster size distribution from
eq. (2.6), the probability that at least one of the N clusters contains more than n1 electrons is given by

p>n1 = 1 −
(
1 −

n0
n1

)N
(2.9)

so there is still a 1% chance to have a cluster with more than n1 = 73500, 103000, 206000, 309000
electrons for a single MIP passing a 50, 100, 200, 300 µm silicon sensor! When performing Monte
Carlo simulations, the cut-off of the cluster size distribution has therefore to be placed beyond these
numbers. The primary electrons producing these large clusters are called delta-electrons and do
not deposit their charge at point-like clusters but short tracks, which has to be considered when
discussing pixels of small size.

Figure 2a shows the distribution of e-h pairs in a 50 µm and a 200 µm sensor for the PAI
model together with the curves from the Landau theory. As seen in figure 2b the Landau theory

– 4 –
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overestimates the fluctuations by 25–35%. The PAI model predicts a most probable number of
3160, 6710, 14200, 21900 e-h pairs in 50, 100, 200, 300 µm of silicon, which is within 10% of the
values from the Landau theory when assuming a cutoff of n0 = 2.2. We will use both models for
evaluation of the time resolution in the following.

3 Centroid time of a signal

First we assume the measured time to be defined by the centroid time of the induced detector current
signal i(t) (figure 3a). Assuming the Laplace Transform of the signal I(s) = L[i(t)], the centroid
time τcur of the signal is defined by

τcur =

∫ ∞
0 t i(t)dt∫ ∞
0 i(t)dt

=

∫ ∞
0 t i(t)dt

q
= −

I ′(0)
I(0)

(3.1)

where q =
∫ ∞
0 i(t)dt is the total signal charge. If we consider the signal i(t) to be processed by an

amplifier having a delta response f (t) with Laplace Transform F(s), the amplifier output signal v(t)
is given by

v(t) =
∫ t

0
f (t − t ′)i(t ′)dt ′ V(s) = F(s)I(s) (3.2)

The centroid time of the output signal is then

τv = − lim
s→0

V ′(s)
V(s)

= −
F ′(0)I(0) + F(0)I ′(0)

F(0)I(0)
= −

F ′(0)
F(0)

−
I ′(0)
I(0)

= τamp + τcur (3.3)

This represents the sum of the centroid time of the delta response and the one from the current
signal, and since the shape of the delta response does not vary in time, the centroid time variation
of the amplifier output signal is equal to the centroid time variation of the original input signal and
has no dependence on the amplifier characteristics.

To determine τ by recording the signal shape and performing the integral of eq. (3.1) is not
very practical, it is easier to simply process the signal with an amplifier that is ‘slow’ compared
to the signal duration, as shown in the following. In case the duration T of the signal i(t) is short
compared to the ‘peaking time’ tp of the amplifier (i(t) = 0 for t > T � tp) we can approximate
eq. (3.2) for t > T according to

v(t) =
∫ T

0
f (t − t ′)i(t ′)dt ′ ≈

∫ T

0
[ f (t) − f ′(t)t ′] i(t ′)dt ′

= q
 f (t) − f ′(t)

∫ T

0 t ′i(t ′)dt ′

q

 = q [ f (t) − f ′(t)τcur]

≈ q f (t − τcur) (3.4)

The amplifier output is simply equal to the amplifier delta response shifted by the centroid time
of the current signal and scaled by the total charge of the signal. Since the shape of the amplifier
output signal is always equal to the amplifier delta response, we can determine the signal centroid
time either by the threshold crossing time at a given fraction of the signal or by sampling the signal

– 5 –
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Figure 3. a) The centroid time τ of the signal is defined as the average time when interpreting the signal as
a probability distribution. b) Example of the signal from a single e-h pair in a silicon sensor with negligible
depletion voltage.

and fitting the known signal shape to the samples. For later use we remark that for the sum of two
current signals i(t) = i1(t) + i2(t) with centroid times τ1 and τ2 we have

τ =

∫
ti(t)dt∫
i(t)dt

=
τ1

∫
i1(t)dt + τ2

∫
i2(t)dt∫

i1(t)dt +
∫

i2(t)dt
=
τ1q1 + τ2q2

q1 + q2
(3.5)

The centroid time for the sum of N signals i(t) =
∑N

k=1 ik(t) is therefore given by

τ =
1∑N

k=1 qk

N∑
k=1

qk τk (3.6)

where qk and τk are the charges and centroid times of the individual signals ik(t).

4 Silicon sensors without internal gain

4.1 Centroid time resolution of a silicon detector signal

We assume a silicon sensor operated at large over-depletion i.e. at a voltage that is large compared
to the depletion voltage and the electric field can therefore be assumed to be constant throughout the
sensor. Consequently the velocities of electrons and holes are constant and the signal from a single
electron or single hole has a rectangular shape. We assume a parallel plate geometry with one plate
a z = 0 and one at z = d, where a pair of charges +q,−q is produced at position z and −q moves
with velocity v1 to the electrode at z = 0 while q moves with velocity v2 to the electrode at z = d.
The weighting field of the electrode at z = 0 is Ew = 1/d and the induced current is therefore

i(t) = −
qv1
d
Θ(z/v1 − t) −

qv2
d
Θ((d − z)/v2 − t) (4.1)

with Θ(t) being the Heaviside step function. An example is shown in figure 3b. We have
∫

i(t)dt =
−q and according to eq. (3.1) the centroid time of this signal is then

τ =
1

2d

[
z2

v1
+
(d − z)2

v2

]
(4.2)

– 6 –
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If n1, n2, . . . , nN charges are produced at positions z1, z2, . . . , zN and are moving to the electrodes
with v1 and v2, the resulting centroid time of the signal is

τ(n1, n2, . . . , nN ) =
1

2d
(∑N

k=1 nk
) N∑

k=1
nk

[
z2
k

v1
+
(d − zk)2

v2

]
(4.3)

We now divide the sensor of thickness d into N slices of ∆z = d/N as shown in figure 1. The
probability to have nk e/h pairs in slice k is given by the Landau distribution p(nk,∆z) and if we
assume that all these charges are moving from position zk to the electrodes, we have zk = k ∆z
and we can proceed to calculate the variance ∆2

τ of the centroid time of the signal, i.e. the time
resolution, according to

∆
2
τ = τ

2 − τ2 (4.4)

with τ and τ2 being the average and the secondmoment of τ. The evaluation is given in B andwe find

∆τ = w(d)

√
4

180
d2

v2
1
−

7
180

d2

v1v2
+

4
180

d2

v2
2

(4.5)

with

w(d)2 =
d
λ

∫ ∞

0

[∫ ∞

0

n2
1 pclu(n1)

(n1 + n)2
dn1

]
p(n, d)dn (4.6)

We first evaluate the expression for the (unphysical) case where we assume each cluster to have
exactly ne electrons i.e. pclu(n) = δ(n−ne). The expression inside the square brackets then evaluates
to n2

e/(ne + n)2. The probability p(n, d) to find n electrons in d is the Poisson distribution from
eq. (2.5) with it’s peak at n = Nne. Since the above expression does not vary significantly within
the width of the Poisson distribution, the integral can be approximated by evaluating the expression
at n = N ne, and we have

w(d) ≈

√
N

n2
e

(ne + Nne)2
≈

1
√

N
=

1√
d/λ

(4.7)

This is a very intuitive result related to the typical behaviour of the relative fluctuation of the Poisson
distribution. The evaluation of w(d) for the Landau theory is given in C with the result that for
large values of d/λ we have

w(d) ≈
1√

ln d/λ
(4.8)

The value of w(d) is given in figure 4a for the Poisson case (w0), the Landau theory (w1), the PAI
model (w2) and for the case where we do not use the r.m.s. value but a Gaussian fit to the measured
times as a measure of the time resolution (w3). As shown in figure 4b the time distribution has
very large tails, so the r.m.s. and a Gaussian fit differ significantly. The three curves w1,w2,w3 are
parametrized in the range of 15 µm< d < 300 µm as

w(d) ≈
1√

a + b ln d/λ + c (ln d/λ)2
(4.9)

with a1 = 1, b1 = 1.155, c1 = 0, a2 = 13.7, b2 = −4.9, c2 = 0.85, a3 = 47.7, b3 = −22.8, c3 = 3.37.
The function w(d) shows only a weak dependence on d, like the relative width nFWHM/nMP from
eq. (2.8). When going from a 50 µm to a 300 µm sensor this statistical effect improves only
by 20–30%.

– 7 –
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Figure 4. a) The function w(d) for different values of silicon thickness. w1 represents the Landau theory,
w2 represents the PAI model and w3 applies for the PAI model if we use a Gaussian fit instead of the r.m.s.
as a measure of the time resolution. b) Centroid time distribution for d = 50 µm and V = 220V for the PAI
model. The dashed curve represents a Gaussian with a σ = ∆τ (w2) and the dotted curve is a Gaussian fit to
the histogram (w3).

Neglecting this weak dependence on d, the time resolution at constant electric field i.e. at
constant drift velocity v1 and v2 scales with d, which represents the trivial fact that the duration
of the signal and therefore also ∆τ scales with d. For a given voltage V , the electric fields in the
thinner sensors, and therefore the velocities of electrons and holes are of course larger, so the time
resolution improves significantly beyond the 1/d scaling for thin sensors.

If we associate v1 and v2 with the electron and hole velocity, T1 = d/v1 and T2 = d/v2 are
the total drift times of electrons and holes, and T12 = d/

√
v1v2 is the total drift time assuming the

geometric mean of the electron and hole velocity, and the time resolution reads as

∆τ = w(d)
√

4/180
√

T2
1 − 1.75T2

12 + T2
2 (4.10)

To get realistic estimates we use an approximation for the velocity of the electrons and holes
from [26]

ve(E) =
µe E[

1 +
(
µe E
vesat

)βe ]1/βe
vh(E) =

µh E[
1 +

(
µh E

vhsat

)βh ]1/βh
(4.11)

where we chose µe = 1417 cm2/Vs, µh = 471 cm2/Vs, βe = 1.109, βh = 1.213 and
vesat = 1.07 × 107 cm/s and vhsat = 0.837 × 107 cm/s at 300K in accordance with the default models
in Sentaurus Device [23]. The resulting drift velocity together with the time that the electrons and
holes need to traverse the sensor (assuming Vdep = 0) are given in figure 5. For a 50 µm sensor at
200V the electrons take 0.6 ns and the holes take 0.8 ns to traverse the sensor, so the total signal
duration is < 0.8 ns.

– 8 –
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Figure 5. a) Velocity of electrons and holes as a function of electric field. b) Time for electrons an holes to
transit the full thickness of the sensor assuming negligible depletion voltage.
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Figure 6. Time resolution from eq. (4.5) for different values of silicon sensor thickness as a function of
applied voltage V for the Landau model, the PAI model and a Gaussian fit to the PAI model results.

The values for the time resolution according to eq. (4.5) for the Landau theory, the PAI model
and a Gaussian fit to the PAI model are given in figure 6 for 50, 100, 200 and 300 µm sensors. A
200 µm sensor can achieve a time resolution of < 50 ps for V > 350V and a 50 µm sensor can
achieve < 15 ps for V > 200V.

4.2 Multiple particles passing a silicon sensor

In [6] the time resolution for multiple particles crossing a sensor is discussed. The case of n particles
passing the silicon sensor is equivalent to the situation of one particle passing the sensor with a
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mean free path between collisions reduced to λn = λ/n. According to the Landau theory we have
w(d) ≈ 1/

√
ln d/λ for a single particle, so for n particles the fluctuations reduce according to

∆τ(n particles)
∆τ(1 particle)

=
1√

1 + ln n
ln d/λ

(4.12)

This function has an extremely weak dependence on n so the improvement of the centroid time
resolutionwhen going from 1 to 100 particles for a 50/100/200/300 µmsensor is only 26/24/23/22%.
The centroid time resolution does therefore not significantly change formultiple particles. The signal
to noise ratio does however improve almost linearly with the number of particles passing the sensor,
so when using leading edge discrimination with a threshold set close to the noise level as discussed
in section 4.6, there is in principle no lower bound on the time resolution.

4.3 Noise contribution to the centroid time resolution

As shown in eq. (3.4) the centroid time of a signal can be measured by using an amplifier with a
peaking time tp that is larger than the total signal time T . For a 50 µm sensor at 250V this signal
time is T ≈ 0.8 ns, so an amplifier with peaking time tp > 1.5 ns can realise such a measurement.
The problem to solve is therefore to measure the time of a pulse of known shape (the delta
response) that has noise of a known frequency spectrum superimposed. This can be accomplished
by various techniques of constant fraction discrimination or continuous sampling with optimum
filtering methods, both of which will be discussed in this section. For the remainder of the report
we assume an unipolar amplifier with a delta response of

f (t) =
(

t
tp

)n
en(1−t/tp )Θ(t) (4.13)

where tp is the peaking time and Θ(t) is the Heaviside step function. The delta response for
n = 2, 3, 4 is shown in figure 7a. Such an amplifier can be realized by n integration stages with
τ = RC = tp/n and for large values of n it approaches Gaussian shape (semi-gaussian shaping). In
general we can use it to parametrize a measured delta response shape by adjusting n and tp to fit
a specific amplifier delta response. The normalized transfer function and related 3 dB bandwidth
frequency fbw of the above delta response are given by

|W(i2π f )| =
1√

[1 + (2π f )2t2
p/n2]n+1

fbw =
1

2π tp
n
√

21/(n+1) − 1 (4.14)

For constant fraction discrimination we set the threshold to a value where f (t) has the maximum
slope of f ′(ts) at time ts which evaluates to

ts = tp (1 − 1/
√

n) f ′(ts) =
1
tp

e
√
nn(3/2−n)(n −

√
n)n−1 (4.15)

Assuming a pulse-height A and a noise of σnoise, the timing error when applying the threshold at
the maximum slope is then

σt =
σnoise

A
1

f ′(ts)
=
σnoise

A
tp

e
√
nn(3/2−n)(n −

√
n)n−1

=
σnoise

A
1

2π fbw

√
21/(n+1) − 1

e
√
nn(1/2−n)(n −

√
n)n−1

(4.16)
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Figure 7. a) Amplifer response for n = 2, 3, 4 from eq. (4.13). b) Contribution to the time resolution from
the noise.

as illustrated in figure 7b. This evaluates to

=
σnoise

A
tp × (0.59, 0.57, 0.54, 0.51) for n = 2, 3, 4, 5 (4.17)

=
σnoise

A
1

fbw
× (0.10, 0.12, 0.13, 0.14) for n = 2, 3, 4, 5

So for an amplifier with a peaking time of tp=1 ns and n = 2, the time resolution is 60 ps for a signal
to noise ratio of 10 and 20 ps for a signal to noise ratio of 30.

The pulse-height of the silicon sensor signal is given by the total number n of deposited e-h
pairs, so if we write the noise σnoise in units of electrons, the average expression for σnoise/A
becomes

σnoise
A
=

∫ ∞

0

σnoise
n

p(n, d) dn (4.18)

where p(n, d) is from eq. (2.3). For the Landau theory we use eq. (C.2) to evaluate this expression to∫ ∞

0

σnoise
n

p(n, d) dn =
σnoise λ

n0 d
w1(d)2 ≈

σnoise λ

n0 d
1

a1 + b1 ln d/λ
(4.19)

For the average time resolution we therefore find

σt ≈ σnoise
λ

n0 d
1

1 + 1.155 ln d/λ
tp × (0.59, 0.57, 0.54, 0.51) for n = 2, 3, 4, 5 (4.20)

≈ σnoise
λ

n0 d
1

1 + 1.155 ln d/λ
1

fbw
× (0.10, 0.12, 0.13, 0.14) for n = 2, 3, 4, 5 (4.21)

For an average cluster distance of λ = 0.212 µm, n0 = 2.2 and an amplifier with n = 2, this
expression becomes

σt ≈ σnoise[electrons] × 1.6 × 10−4 tp d = 50 µm (4.22)
≈ σnoise[electrons] × 3.3 × 10−5 tp d = 200 µm (4.23)

Assuming a 50 µm sensor and a peaking time of 2 ns and an Equivalent Noise Charge (ENC) of 50
electrons, the noise contribution to the time resolution is 16.6 ps. Assuming a 200 µm sensor and
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Figure 8. a) Sampling the signal at constant frequency. b) Autocorrelation function of f ′(t) for n = 2, 3, 4.
For times smaller than 0.5 tp the samples become highly correlated.

tp = 10 ns andENCof 200 electrons, the contribution to the time resolution is 66 ps. The series noise
of an amplifier for a givenwhite series noise spectral density e2

n and detector capacitanceC is given by

σ2
noise =

1
2

e2
nC2

∫ ∞

−∞

f ′(t)2dt =
1
2

e2
n C2 n2 (2n − 2)!

tp

( e
2n

)2n
(4.24)

For constant e2
n the noise decreases with 1/√tp while the time resolution is proportional to tp, so

one favours short peaking times for minimizing the impact of noise, as long as other noise sources
do not become dominant.

Since we know the shape of the delta response, continuous sampling of the signal and fitting
of the known shape to the sample points provides an effective way to determine the time as shown
in figure 8a and investigated in the following. We have to fit the function A f (t − τ) to the measured
signal with the amplitude A and time τ as free parameters. Linearizing this expression for small
values of τ we have

A f (t − τ) ≈ A f (t) − A f ′(t)τ = α1 f (t) − α2 f ′(t) α1 = A α2 = Aτ (4.25)

Finding the best estimate of α1, α2 for a signal S1, S2, . . . , SN sampled at times t1, t2, . . . , tN leads
to the familiar problem of linear regression. We proceed as outlined in [24] where the problem is
stated as a χ2 minimization according to

χ2 =

N∑
i=1

N∑
j=1
[Si − α1 f (ti) + α2 f ′(ti)]Vi j[Sj − α1 f (tj) + α2 f ′(tj)] (4.26)

The matrix Vi j is the inverse of the autocorrelation matrix Ri j = R(ti − tj) with R(t) being the
autocorrelation function of the noise. The autocorrelation function of this series noise is

R(t) = σ2
noise

∫ ∞

−∞

f ′(t + u) f ′(u)du = σ2
noise n!

(
2n|t |

tp

)n 2tpKn−1/2(n|t |/tp) − tKn+1/2(n|t |/tp)

(2n − 2)!
√

2n|t | tpπ
(4.27)
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with Kν(x) being the modified Bessel function of the second kind. For n = 2, 3 evaluates to

R(t) = σ2
noiseU(t) = σ

2
noise e−2 |t |/tp

[
1 + 2

|t |
tp
− 4

(
|t |
tp

)2
]

n = 2 (4.28)

= σ2
noise e−3 |t |/tp

[
1 + 3

|t |
tp
− 9

(
|t |
tp

)3
]

n = 3 (4.29)

The autocorrelation function is shown in figure 8b, and we see that for time intervals smaller than
tp/2 the samples become highly correlated. In the following we us ns samples within the peaking
time tp, so we have sampling time bins of ∆t = tp/ns. We sample the signal in the range of
0 < t < 5 tp, giving ti = i ∆t with 0 < i < 5 ns. Defining

Q1(ns) =
∑
i j

f (ti)U−1
i j f (tj) Q2(ns) =

∑
i j

f ′(ti)U−1
i j f ′(tj) Q3(ns) =

∑
i j

f ′(ti)U−1
i j f (tj) (4.30)

whereU−1
i j is the inverse of the matrixUi j = U(ti − tj), the covariance matrix elements εi j for α1, α2

are then

ε11 = σ
2
A =

σ2
noise Q2

Q1Q2 −Q2
3

ε22 = A2 σ
2
τ

t2
p

=
σ2

noise Q1

Q1Q2 −Q2
3

ε12 =
σ2

noise Q3

Q1Q2 −Q2
3

(4.31)

So for the time resolution we finally have

στ
tp
=
σnoise

A

√
Q1(ns)

Q1(ns)Q2(ns) −Q3(ns)2
=
σnoise

A
c(ns) (4.32)

Using as before the average signal to noise ratio for a sensor of thickness d we find

σt = σnoise[electrons]
λ

n0 d
1

1 + 1.155 ln d/λ
tp c(ns) (4.33)

This expression represents the optimum time resolution that can be achieved for a given sampling
frequency. Figure 9 shows the function c(ns) assuming an amplifier with n = 2, 3. The horizontal
lines correspond to the numbers of 0.59 and 0.57 from eq. (4.20) when using constant fraction
discrimination at the maximum slope. The families of curves represent a scan of the sampling
phase with respect to the peak of the signal and the solid curve represents the average. The samples
on the largest slope carry the highest weight on time information, while samples around the signal
peak carry very little time information.

We see that sampling at an interval corresponding to half the peaking time (ns = 2) gives
approximately the same result as the constant fraction discrimination at maximum slope. By
increasing the sampling rate by a factor 10 the time resolution improves approximately by a factor 2.
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Figure 9. The function c(ns) for an amplifier with n = 2 (top) and n = 3 (bottom). The horizontal line is the
result for constant fraction discrimination at the maximum slope from eq. (4.20).

4.4 Weighting field effect on the centroid time for uniform charge deposit

Up to now we have assumed the sensor readout electrode to be represented by an infinite parallel
plate capacitor, which in practice corresponds to readout pads or pixels that are much larger than the
sensor thickness d. In many practical applications, the granularity is however similar to the sensor
thickness. The shape of the induced signal therefore becomes dependent on the x, y position of the
track and the centroid time will be affected. In this section we investigate this effect by using the
weighting field of a rectangular pixel as presented in [25], shown in figure 10a and detailed in E.

We assume again the sensor to be represented by a parallel plate geometry between z = 0
and z = d and assume charges to move along the z-axis. We also assume normal incidence of the
particle and negligible diffusion. The plate at z = 0 is segmented into pixels such that we find a
weighting field of Ew(x, y, z) = −dφw(x, y, z)/dz along the z-axis. We first assume a single charge
pair to be produced at position x, y, z with −q moving towards the pixel at z = 0 according to
z1(t) = z − v1t and +q moving towards the plate at z = d according z2(t) = z + v2t, so the induced

– 14 –



2
0
1
7
 
J
I
N
S
T
 
1
2
 
P
1
1
0
1
7

a)

x 

y 

z=0         z=d 

wx 

wy 

v1 

v2 

b) z=0                                                          z=d 

v1 

v2 

z 

y 

wy 

Figure 10. a) A pixel of dimension wx,wy centred at x = y = z = 0 in a parallel plate geometry of plate
distance d. b) Uniform charge deposit of a particle passing the silicon sensor. v1 is the velocity of charges
moving towards the pixel and v2 is the velocity of charges moving away from the pixel.

current becomes
i(t)
q
= Ew[x, y, z1(t)] Ûz1(t)Θ(z/v1 − t) + Ew[x, y, z2(t)] Ûz2(t)Θ((d − z)/v2 − t) (4.34)

= −v1Ew[x, y, z − v1t]Θ(z/v1 − t) − v2Ew[x, y, z + v2t]Θ((d − z)/v2 − t) (4.35)

The centroid time of this signal is

τ(x, y, z) =

∫
t i(t)dt∫
i(t)dt

=
d
v1
Ψ1(x, y, z) +

d
v2
Ψ2(x, y, z) (4.36)

Ψ1(x, y, z) =
z
d
−

1
d

∫ z

0
φw(x, y, z′)dz′ Ψ2(x, y, z) =

1
d

∫ d

z

φw(x, y, z′)dz′ (4.37)

In case there is not a single pair of charges q,−q but a pair of uniform line charges between z = 0
and z = d, as shown in figure 10b, we have

I(x, y, t)
qline

= −v1

∫ d

0
Ew[x, y, z − v1t]Θ(z/v1 − t)dz − v2

∫ d

0
Ew[x, y, z + v2t]Θ((d − z)/v2 − t)dz

= −v1 [1 − φw(x, y, d − v1t)]Θ(d/v1 − t) − v2 φw(x, y, v2t)Θ(d/v2 − t) (4.38)

where qline is the charge per unit of length. The centroid time of this signal then reads as

τ(x, y) =
d
v1

a1(x, y) +
d
v2

a2(x, y) = T1 a1(x, y) + T2 a2(x, y) (4.39)

a1(x, y) =
1
d

∫ d

0
Ψ1(x, y, z)dz =

1
2
−

1
d2

∫ d

0
(d − z)φw(x, y, z)dz (4.40)

a2(x, y) =
1
d

∫ d

0
Ψ2(x, y, z)dz =

1
d2

∫ d

0
zφw(x, y, z)dz (4.41)
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a) b) c)

Figure 11. The functions a1(x, y) and a2(x, y) from eq. (4.39) that determine the centroid time for a signal
from two line charges −qline, qline at position x, y,. The top graph corresponds to a1 and the bottom one to
a2. The three plots correspond to pads of size a) w/d = 0.1, b) w/d = 1, c) w/d = 10.

The two functions a1(x, y) and a2(x, y) are shown in figure 11. We can see that for large pads the
values for both functions approach the constant value of 1/6 in accordance with eq. (B.5) with some
deviations at the border. For small pads the average of a1 and a2 is quite different, but the functions
are also quite uniform. For the pad size of w/d ≈ 1 the two functions vary significantly across the
pad, which we will quantify next. In case the pixel is uniformly irradiated, the probability to hit
an area dx dy is given by dx dy/(wxwy) and the average centroid time, the second moment and the
standard deviation ∆τ are given by

τ =
1

wx wy

∫ wx/2

−wx/2

∫ wy/2

−wy/2
τ(x, y)dxdy τ2 =

1
wx wy

∫ wx/2

−wx/2

∫ wy/2

−wy/2
τ2(x, y)dxdy (4.42)

∆
2
τ = τ

2 − τ2 = d2

(
c11

v2
1
+

c12
v1v2

+
c22

v2
2

)
= c11T2

1 + c12T12 + c22T2
2 (4.43)

where we have defined

c11 =
1

wx wy

∬
a2

1dxdy −
(

1
wx wy

∬
a1dxdy

)2
(4.44)

c12 =
2

wx wy

∬
a1a2dxdy −

2
(wx wy)

2

∬
a1dxdy

∬
a2dxdy (4.45)

c22 =
1

wx wy

∬
a2

2dxdy −
(

1
wx wy

∬
a2dxdy

)2
(4.46)

and
T1 = d/v1 T2 = d/v2 T12 = d/

√
v1v2 (4.47)

Before moving to the numerical evaluation we investigate the limiting cases for very large and very
small pads. For large pixels we have φw = 1 − z/d and the expressions become

a1(x, y) =
1
6

a2(x, y) =
1
6

for w/d � 1 (4.48)

which results in τ = d/6(1/v1 + 1/v2) in accordance with eq. (B.5) for an infinitely extended
electrode. Since there is no dependence on x and y, the coefficients c11, c12, c22 vanish, which is the
expected result for an infinitely electrode.
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Table 1. Coefficients c11, c12, c22 from eq. (4.43) for different vales of w/d, where w is the size of the square
pixel and d is the thickness of the sensor.

w/d c22 c12 c11 c11 + c12 + c22

0 0 0 0 0

0.01 6.13 × 10−12 −2.88 × 10−9 3.44 × 10−7 3.41 × 10−7

0.1 6.05 × 10−8 −2.75 × 10−6 3.18 × 10−5 2.91 × 10−5

0.2 9.28 × 10−7 −2.06 × 10−5 1.17 × 10−4 9.68 × 10−5

0.25 2.2 × 10−6 −3.88 × 10−5 1.74 × 10−4 1.37 × 10−4

0.5 2.77 × 10−5 −2.44 × 10−4 5.5 × 10−4 3.33 × 10−4

1. 2.1 × 10−4 −1.04 × 10−3 1.33 × 10−3 4.99 × 10−4

1.5 4.5 × 10−4 −1.78 × 10−3 1.81 × 10−3 4.86 × 10−4

2. 6.13 × 10−4 −2.18 × 10−3 2. × 10−3 4.34 × 10−4

3. 7.13 × 10−4 −2.31 × 10−3 1.94 × 10−3 3.41 × 10−4

4. 6.83 × 10−4 −2.14 × 10−3 1.74 × 10−3 2.77 × 10−4

5. 6.26 × 10−4 −1.93 × 10−3 1.54 × 10−3 2.32 × 10−4

10 4. × 10−4 −1.2 × 10−3 9.27 × 10−4 1.27 × 10−4

20 2.24 × 10−4 −6.64 × 10−4 5.06 × 10−4 6.61 × 10−5

50 9.56 × 10−5 −2.82 × 10−4 2.13 × 10−4 2.71 × 10−5

∞ 0 0 0 0

For very small pads the weighting potential falls to zero very quickly as a function of z, from
it’s value of unity on the pad surface at z = 0. The integrals of the weighting potential over z will
therefore vanish and we have

a1(x, y) =
1
2

a2(x, y) = 0 for w/d � 1 (4.49)

For this case only the charges moving towards the pad with v1 contribute to the centroid time and
the average centroid time becomes τ = d/2v1. Since the weighting potential and weighting field are
concentrated around the pixel surface the charges that never enter this area, i.e. the charges moving
with v2 towards z = d will not contribute to the signal. The coefficients c11, c12, c22 will again
vanish because a1 and a2 have no dependence on x, y. Because the two limiting cases are zero, this
means that there will be a pad size where the effect of the weighting field fluctuation is maximal, as
discussed in the following.

The numerical evaluation of eqs. (4.44), (4.45), (4.46) for square pixels of width w for different
ratios of w/d are given in table 1 and the graphical representation of the coefficients is shown in
figure 12. The weighting potential of a pixel as given in eq. (E.1) of the appendix is used. The
weighting field effect on the time resolution is worst for pad sizes corresponding to about 2–3 times
the sensor thickness d, where the c11 and c12 coefficients assume a value around 2 × 10−3. The
coefficient c11 is related to v1 i.e. to the charges moving to the readout pad, c22 is related to the
charges moving in opposite direction. Since c11 > c22 by a significant factor, the time resolution
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Figure 12. The coefficients c11, c12, c22 for different values of w/d, where w is the width of the square pad
and d is the silicon sensor thickness.
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Figure 13. Standard deviation for the centroid time for sensor thickness of a) d = 200 µm and b) d = 50 µm
and V = 200V, assuming uniform charge deposit and a square readout pad. The horizontal line represents
centroid time resolution from eq. (4.5) due to Landau fluctuations only. The two curves in the plots represent
the effect of weighting field fluctuations where either the electrons or the holes move towards the readout pad.

will be better if v1 > v2 i.e. if the electrons are moving towards the pixels. The contribution to the
time resolution from eq. (4.43) is shown in figure 13. In case the holes move towards the pixel we
find a maximum for values of w/d ≈ 2, where the contribution becomes similar to the value from
Landau fluctuations. In case the electrons move towards the pixel, the contribution is significantly
smaller with maxima around w/d ≈ 1.

The somewhat slow decrease of the effect for pad sizes of w/d > 3 is due to the fact that we
are calculating the standard deviation of the centroid time. As shown in figure 11c) for w/d = 10
there is no variation of the centroid time in the central 70% of the pixel area and the variations take
place only at the edges. The resulting time distribution for uniform illumination is significantly
non-Gaussian with long tails. The true impact on the time resolution therefore depends also on the
method of using the measured time and the algorithm for defining the time resolution.

The final resolution is not given by the square sum of the Landau fluctuations from eq. (4.5)
and the weighting field fluctuations from eq. (4.43), since there is a very strong correlation between
the two. This will be discussed in the next section.
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Figure 14. Silicon sensor with a readout pad centered at x = y = z = 0. v1 is the velocity of charges moving
towards the pixel and v2 is the velocity of charges moving away from the pixel.

4.5 Centroid time resolution for combined charge fluctuations and weighting field
fluctuations

In this section we consider the Landau fluctuations together with the variation of the x, y position
of the particle trajectory and the related fluctuation of the weighting field, as indicated in figure 14.
The centroid time for a particle that passes the sensor at position x, y and deposits nk charges in the
N detector slices is given by

τ(n1, n2, . . . , nN, x, y) =
1∑N

k=1 nk

N∑
k=1

nkτ(x, y, k∆z) (4.50)

where τ(x, y, z) is from eq. (4.36). Proceeding as detailed in B we calculate τ and τ2, where in
addition to the integrals over dn1, dn2, . . . , dnN we have to perform the integral 1/(wxwy)

∫ ∫
τdxdy

for uniform illumination of a pad, and the final result for the variance is

τ2 − τ2 = w(d)2
1

wxwy

∬ [
1
d

∫ d

0
τ(x, y, z)2dz −

(
1
d

∫ d

0
τ(x, y, z)dz

)2]
dxdy (4.51)

+
1

wxwy

∬ (
1
d

∫ d

0
τ(x, y, z)dz

)2

dxdy −
[

1
wxwy

∬ (
1
d

∫ d

0
τ(x, y, z)dz

)
dxdy

]2

The second line of the expression is equivalent to the one considering the weighting field effect with-
out charge fluctuations from the previous section, so the result can be expressed in the following terms

∆
2
τ = w(d)2

(
k11d2

v2
1
+

k12d2

v1v2
+

k22d2

v2
2

)
+

(
c11d2

v2
1
+

c12d2

v1v2
+

c22d2

v2
2

)
(4.52)
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The coefficients c11, c12, c22 are the ones from the previous section and the coefficients k11, k12, k22
are given by

k11 =
1

wxwy

∬
(b11 − a2

1)dxdy k12 =
2

wxwy

∬
(b12 − a1a2)dxdy

k22 =
1

wxwy

∬
(b22 − a2

2)dxdy (4.53)

with

b11(x, y) =
1
d

∫ d

0
Ψ1(x, y, z)2dz =

1
d

∫ d

0

[
z
d
−

1
d

∫ z

0
φw(x, y, z′)dz′

]2
dz (4.54)

b12(x, y) =
1
d

∫ d

0
Ψ1(x, y, z)Ψ2(x, y, z)dz

=
1
d

∫ d

0

[
z
d
−

1
d

∫ z

0
φw(x, y, z′)dz′

] [
1
d

∫ d

z

φw(x, y, z′)dz′
]

dz

b22(x, y) =
1
d

∫ d

0
Ψ2(x, y, z)2dz =

1
d

∫ d

0

[
1
d

∫ d

z

φw(x, y, z′)dz′
]2

dz

First we verify the limiting cases for very large pads and very small pads. For large pads we
substitute for the weighting potential the expression φw(x, y, z) = 1 − z/d and find

b11(x, y) =
1
20

b12(x, y) =
1

120
b22(x, y) =

1
20

w/d � 1 (4.55)

which gives k11 = k22 = 4/180, k12 = −7/180 and c11 = c12 = c22 = 0, so we recuperate eq. (B.19).
For very small pads the integrals of the weighting potential over z will again vanish as discussed
before, and we have

b11(x, y) =
1
3

b12(x, y) = 0 b22(x, y) = 0 w/d � 1 (4.56)

which gives k11 = 1/12, k12 = k22 = 0 and c11 = c12 = c22 = 0 and therefore have

∆τ = w(d)
T1
√

12
(4.57)

For small pads the weighting potential decays very quickly as a function of z, from its value of 1 on
the pad surface to zero. The weighting field, which defines the induced current, is therefore very
large close to the pad and zero for larger values of z. Only when the charges arrive at this position
they will induce a signal. In the limiting case this is equivalent to a delta current signal for each
charge that arrives at z = 0, and we have

i(t) = q
N∑
k=1

nk δ(t − k∆z/v1) τ =
1∑N

k=1 nk

N∑
k=1

nk k∆z/v1 ∆τ = w(d)
T1
√

12
(4.58)

so we indeed recuperate the above expression for ∆τ! We’ll see the same formula later in eq. (5.4)
for silicon sensors with gain.
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Table 2. Coefficients k11, k12, k22 from eq. (4.52) for different vales of w/d, where w is the size of the square
pixel and d is the thickness of the sensor.

w/d k22 k12 k11 k11 + k12 + k22

0 0 0 1
12 = 8.33 × 10−2 1

12 = 8.33 × 10−2

0.01 8.43 × 10−8 −6.43 × 10−5 8.33 × 10−2 8.32 × 10−2

0.1 5.37 × 10−5 −2.82 × 10−3 8.05 × 10−2 7.77 × 10−2

0.2 3.05 × 10−4 −7.32 × 10−3 7.57 × 10−2 6.87 × 10−2

0.25 5.13 × 10−4 −9.62 × 10−3 7.32 × 10−2 6.41 × 10−2

0.5 2.17 × 10−3 −1.94 × 10−2 6.18 × 10−2 4.46 × 10−2

1. 6.39 × 10−3 −2.96 × 10−2 4.73 × 10−2 2.41 × 10−2

1.5 9.82 × 10−3 −3.36 × 10−2 3.99 × 10−2 1.62 × 10−2

2. 1.22 × 10−2 −3.53 × 10−2 3.58 × 10−2 1.28 × 10−2

3. 1.51 × 10−2 −3.67 × 10−2 3.15 × 10−2 9.86 × 10−3

4. 1.68 × 10−2 −3.74 × 10−2 2.92 × 10−2 8.61 × 10−3

5. 1.78 × 10−2 −3.77 × 10−2 2.78 × 10−2 7.92 × 10−3

10 2. × 10−2 −3.83 × 10−2 2.5 × 10−2 6.68 × 10−3

20 2.12 × 10−2 −3.86 × 10−2 2.35 × 10−2 6.19 × 10−3

50 2.29 × 10−2 −3.84 × 10−2 2.2 × 10−2 6.44 × 10−3

∞ 4
180 = 2.2 × 10−2 − 7

180 = −3.89 × 10−2 4
180 = 2.2 × 10−2 1

180 = 5.56 × 10−3

0.1 0.5 1.0 5.0 10.0 50.0
w�d

-0.05

0.00

0.05

0.10

k

k11

4�180

1�12

k12

-7�180

k22

k11+k12+k22

1�180

Figure 15. The coefficients k11, k12, k22 for different values of w/d, where w is the width of the square pad
and d is the silicon thickness. The dotted lines represent the limit for very small pads and very large pads as
discussed in the text.

The coefficients k11, k12, k22 for square pads are listed in table 2 and are shown in figure 15.
The factor k11, related to the charges moving with v1 towards the pixel, is again larger than k22, so as
stated before the resolution is better if the electrons move towards the pixel. This fact is illustrated
in figure 16 and figure 17 for a 200 µm and 50 µm sensor. It shows a significant difference for these
two scenarios. In case the electrons move to the pixel the weighting field effect seems not to add
significantly to the time resolution for values of w/d & 1.
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Figure 16. Centroid time resolution for values of d = 200 µm and V = 200V as a function of the pixel size
w assuming the Landau theory for the charge deposit. The ‘c only’ curve refers to the effect from a uniform
line charge. In a) the electrons move towards the pixel while in b) the holes move towards the pixel.
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Figure 17. Time resolution for values of d = 50 µm andV = 200V as a function of the pixel size w assuming
the Landau theory for the charge deposit. The ‘c only’ curve refers to the effect from a uniform line charge.
In a) the electrons move towards the pixel while in b) the holes move towards the pixel.

For pads with w/d > 20 one approaches the scenario of an infinitely extended electrode,
as expected. For smaller pixels the Landau fluctuations and weighting field effect are strongly
correlated and the resolution is significantly worse than expected from the quadratic sum of the
weighting field effect for uniform charge deposit and the Landau fluctuation effects assuming an
infinitely large electrode.

4.6 Leading edge discrimination

Up to this point we have just discussed the centroid time of the detector signals. In this section
we consider the measured time to be determined by leading edge discrimination of the normalized
detector signal. We process the detector signal by an amplifier of a given peaking time, and perform
the so called ‘slewing correction’ for eliminating the timewalk effect from pulseheight fluctuations
by dividing the amplifier output signal by the total signal charge and set the threshold to a given
fraction of this signal. The current signal due to a single charge pair −q, q at position x, y, z is

i0(x, y, z, t) = −q [v1 Ew(x, y, z − v1t)Θ(z/v1 − t) + v2 Ew(x, y, z + v2t)Θ((d − z)/v2 − t)] (4.59)

– 22 –



2
0
1
7
 
J
I
N
S
T
 
1
2
 
P
1
1
0
1
7

The current signal for having n1 e/h pairs at z = ∆z, n2 e/h pairs at z = 2∆z etc. is given by

i(n1, n2, . . . , nN, x, y, t) =
N∑
k=1

nki0(x, y, k∆z, t) (4.60)

We now process this signal by an amplifier with delta response c f (t/tp) where tp is the peaking
time, f (1) = 1, c is the amplifier sensitivity in units of [V/C] and f (x) is defined by

f (x) = xn en(1−x) (4.61)

The amplifier output signal is then given by the convolution of the induced signal and the amplifier
delta response

s(n1, n2, . . . , nN, x, y, t) = c
∫ t

0
f
(
t − t ′

tp

)
i(n1, n2, . . . , nN, x, y, t ′)dt ′ (4.62)

= c q
N∑
k=1

nk g(x, y, k∆z, t) (4.63)

where g(x, y, z, t) is

g(x, y, z, t) = Θ(z − v1t)
∫ z

d

z−v1 t
d

f
(
v1t − z + ud

v1tp

)
Ez
w(x/d, y/d, u,wx/d,wy/d, 1)du (4.64)

+ Θ(v1t − z)
∫ z

d

0
f
(
v1t − z + ud

v1tp

)
Ez
w(x/d, y/d, u,wx/d,wy/d, 1)du

+ Θ[(d − z) − v2t]
∫ z+v2 t

d

z
d

f
(
v2t + z − ud

v2tp

)
Ez
w(x/d, y/d, u,wx/d,wy/d, 1)du

+ Θ[v2t − (d − z)]
∫ 1

z
d

f
(
v2t + z − ud

v2tp

)
Ez
w(x/d, y/d, u,wx/d,wy/d, 1)du

The weighting field Ez
w(x, y, z,wx,wy, d) for a pixel is given in eq. (E.5) of E. To perform slewing

corrections we divide the signal by the total charge q
∑

nk and we get the normalized amplifier
output signal

h(n1, n2, . . . , nN, x, y, t) =
c∑N

k=1 nk

N∑
k=1

nk g(x, y, k∆z, t) (4.65)

The average normalized signal and the variance of the signal evaluate to

h(t) =
c

wx wy

∬ [∫ 1

0
g(x, y, sd, t)ds

]
dxdy (4.66)

and

∆
2
h(t) = w(d)2

c2

wxwy

∬ [∫ 1

0
g(x, y, sd, t)2ds −

(∫ 1

0
g(x, y, sd, t)ds

)2]
dxdy (4.67)

+
c2

wxwy

∬ (∫ 1

0
g(x, y, sd, t)ds

)2

dxdy −
[

c
wxwy

∬ (∫ 1

0
g(x, y, sd, t)ds

)
dxdy

]2
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The time resolution is then defined by (figure 18b)

σt =
∆h(t)

h
′
(t)

(4.68)

Here we just discuss the example of an infinitely extended pixel i.e. we use Ez
w(x, y, z,wx,wy, d) =

1/d, which evaluates g(x, y, z, t) to

nn+1

en
d
tp

g(x, y, z, t) = v1Θ(z − v1t) [n! − Γ(n + 1, t/tp)]

− v1Θ(v1t − z) [Γ(n + 1, t/tp) − Γ(n + 1,−(z − v1t)/(tpv1)]

+ v2Θ((d − z) − v2t) [n! − Γ(n + 1, t/tp]
− v2Θ(v2t − (d − z)) [Γ(n + 1, t/tp) − Γ(n + 1,−(d − z − v2t)/(tpv2)]

where n and tp are the parameters defining the amplifier. As an example the average signal h(t)
for a 50 µm sensor at 200V for different peaking times is shown in figure 18a. The signal duration
is around 0.8 ns, so for small peaking times of 0.25 and 0.5 ns there is significant ‘ballistic deficit’
while for peaking times > 1 ns the amplifier ‘integrates’ the full signal and the normalized amplitude
becomes unity. In figure 18b the average normalized signal for a peaking time of 0.25 ns is shown,
together with ±1 standard deviations.

The resulting time resolution is shown in figure 19a and figure 20a for a 50 µm and a 200 µm
sensor. We find that for large peaking times, the time resolution indeed approaches the centroid
time value, while for smaller peaking times the time resolution can be significantly better when
setting the threshold at less than 30–40% of the normalized signal. E.g. for the 50 µm sensor at
200V, a peaking time of 0.25 ns and a threshold set to 40% of the total signal charge one should
arrive at a resolution that is two times better than the resolution achieved with the centroid time.
For a 200 µm sensor, tp = 5 ns and a threshold at 30% of the signal one also expects a twice better
resolution as compared to the centroid time.

To study the impact of the noise we assume σnoise to be given in units of electrons. This noise
is superimposed to the signal s(t) from eq. (4.62), so when normalizing the signal to arrive at h(t)
we also have to normalize the noise by the total amount of charge deposited in the sensor. The
average normalized noise the becomes

σnorm =

∫ ∞

0

σnoise
n

p(n, d) dn = σnoise
λ

n0 d
1

1 + 1.155 ln d/λ
(4.69)

The contribution of the noise to the time resolution is then

σt =
σnorm

h
′
(t)

(4.70)

We can therefore express the required noise level when using a threshold of h(t), that matches the
resolution from Landau fluctuations from eq. (4.68), as

σnoise[electrons] = ∆h(t)
n0 d
λ
(1 + 1.155 ln d/λ) (4.71)

The numbers are shown in figure 19b and figure 20b. For the 50 µm sensor and tp = 0.25 ns the
required noise level is 100 electrons and for the 200 µm sensor at tp = 5 ns the required noise is 400
electrons.
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Figure 18. a) Average normalized signal h(t) for amplifier peaking times tp = 0.25, 0.5, 1, 2, 6 ns for a 50µm
sensor and V=200V. b) Average normalized signal h(t) for tp = 0.25 ns together with the curves h(t)+∆h(t)
and h(t) − ∆h(t).
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Figure 19. a) Time resolution for a sensor of 50µm thickness at 200V bias voltage. The slewing correction
is performed by dividing the signal by the total charge and applying the threshold as a fraction of this charge.
b) ENC needed to match the noise contribution to the effect from the Landau fluctuations.
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Figure 20. a) Time resolution for a sensor of 200µm thickness at 200V bias voltage. The slewing correction
is performed by dividing the signal by the total charge and applying a threshold at a fraction of this charge.
b) ENC needed to match the noise contribution to the effect from the Landau fluctuations.
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z 

Figure 21. Silicon sensor with internal gain. An e-h par is produced at position z, the electron arrives at
z = 0 at time T = z/v1, the electron multiplies in a high field layer at z = 0 and the holes move back to z = d,
inducing the dominant part of the current signal.

5 Silicon sensors with internal gain

5.1 Centroid time resolution for silicon sensors with internal gain

In the Low Gain Avalanche Diode (LGAD), a high field region is implemented in the sensor in
order to multiply electrons at some moderate gain and as a result improve the signal to noise ratio.
We assume the geometry from figure 21 with the amplification structure located at z = 0. The
electrons will therefore move from their point of creation to this structure, get multiplied and the
holes created in the multiplication process are moving back from z = 0 to z = d through the entire
sensor thickness d. If we assume 1) the gain G to be sufficiently large such that the signal from the
primary electron and hole movement is negligible, 2) the amplification structure to be infinitely thin,
3) a sensor with negligible depletion voltage, the signal from a single e-h pair created at position z
is of rectangular shape with duration T = d/v2, shifted by the time t = z/v1

i(t) = −G
q v2

d
[Θ(t − z/v1) − Θ(t − z/v1 − d/v2)] (5.1)

The centroid time of this signal is

τ =
d

2v2
+

z
v1

(5.2)

The centroid time for the case of n1, n2, . . . , nN clusters at positions z1, z2, . . . , zN is

τ(n1, n2, . . . , nN ) =
1∑N

k=1 nk

N∑
k=1

nk

(
d

2v2
+

zk
v1

)
=

d
2v2
+

1∑N
k=1 nk

N∑
k=1

nk
zk
v1

(5.3)
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Figure 22. Time resolution for the centroid time from eq. (5.4) for 50, 100, 200, 300µm silicon sensors with
internal gain of electrons, assuming a signal only from gain holes. The three curves for each sensor thickness
correspond to the Landau theory, the PAI model and a Gaussian fit to the PAI model.

The average and standard deviation of the centroid time are then

τ =
d
2

(
1
v1
+

1
v2

)
∆τ = w(d)

d
√

12v1
≈

1√
a + b ln d/λ + c(ln d/λ)2

T1
√

12
(5.4)

with T1 = d/v1 being the total electron drift time. This expression is the same as the one from
eq. (4.57) and eq. (4.58), so this sensor is simply measuring the arrival time distribution of the
electrons at z = 0. The resulting time resolution for 50, 100, 200, 300 µm sensors is shown in
figure 22. Although the time resolution for the sensors with gain is worse than the one for silicon
sensors without gain as shown in figure 6, the big advantage of the sensors with gain is the improved
signal to noise ratio that can ‘eliminate’ the effect from the noise. For a 50 µm sensor at 220V one
can achieve a time resolution of 30 ps in accordance with measurements on the LGAD sensors.

The effects defining the time resolution for a sensor with gain therefore differ significantly from
one without gain. The electrons first have to arrive at z = 0 before being amplified and producing
the gain signal, so the signal timing is defined by the arrival time distribution of the electron clusters
at z = 0. This is also illustrated by the fact that the second factor in eq. (5.4) is simply the total
transit time Te = d/v1 of the electrons through the full silicon thickness divided by

√
12.
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Table 3. Coefficients s22 from eq. (5.8) for different vales of w/d, where w is the size of the square pixel and
d is the thickness of the sensor.

w/d 0 0.1 0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 4 5 10 20 30 40 50 ∞

103 × s22 0 0.03 0.12 0.27 0.54 0.76 2.6 4.0 4.8 5.2 5.2 4.9 4.2 2.7 1.6 1.3 1.1 1.0 0

5.2 Weighting field effect on the centroid time for silicon sensors with gain

In this section we discuss the effect of the finite pixel size on the centroid time resolution for sensors
with gain. Assuming the readout electrode at z = 0 to be segmented into pixels with an associated
weighting potential φw(x, y, z), the induced signal due to a single charge pair created at position
x, y, z at t = 0 becomes

i(t) = −G q v2 Ew[x, y, v2(t − z/v1)] [Θ(t − z/v1) − Θ(t − z/v1 − d/v2)] (5.5)

and the centroid time for this signal is given by

τ(x, y, z) =
z
v1
+

d
v2

∫ 1

0
φw(x, y, s d)ds (5.6)

Assuming a uniform charge deposit along the track, the centroid time becomes

τ(x, y) =
1
d

∫ d

0
τ(x, y, z)dz =

d
2v1
+

d
v2

∫ 1

0
φw(x, y, s d)ds (5.7)

The variance for uniform irradiation of the pad is then

∆
2
τ = τ

2 − τ2

=
d2

v2
2

[
1

wxwy

∬ (∫ 1

0
φw(x, y, s d)ds

)2

dxdy −
(

1
wxwy

∬ (∫ 1

0
φw(x, y, s d)ds

)
dxdy

)2]
=

d2

v2
2

s22 = T2
2 s22 (5.8)

which is the pendant to eq. (4.43) for sensors without gain. The coefficient s22 for different pixel
sizes is are listed in table 3 and shown in figure 23a. The effect on the time resolution for a 50 µm
sensor is shown in figure 23b. The effect is again largest for pixel sizes of w/d ≈ 3. In case we also
take into account the Landau fluctuations we have to use eq. (5.6) in eq. (4.51) and find

∆
2
τ = τ

2 − τ2 = w(d)2
d2

12 v2
1
+

d2

v2
2

s22 = w(d)2
T2

1
12
+ T2

2 s22 (5.9)

which is the pendant to eq. (4.52) for sensors without gain. So we find the interesting result that for
this case there is no correlation between the Landau fluctuations and the weighting field fluctuations,
and the two components just add in squares. We also note that the result will be the same whether
we segment the electrode at z = 0 where the multiplication takes place or whether we segment the
electrode at z = d.
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w�d
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s22

b) 0.1 0.5 1.0 5.0 10.0 50.0
w�d
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Time Resolution HpsL

d=50um gain, Landau Fluctuations

d=50um gain, weighting field fluctuations

combined

Figure 23. a) Coefficient s22 defining the impact of the weighting field on the time resolution. b) Centroid
time resolution for a gain sensor of 50 µm thickness at 200V. The horizontal line shows the contribution
from Landau fluctuations only, while the other lines show the contribution from weighting field fluctuations
as well as the combined effect.

5.3 Impact of gain fluctuations

The electron amplification in the gain layer of the LGAD will have statistical fluctuations and in the
following we want to quantify the impact of these fluctuations. In case the amplification process is
such that the ionizing collisions are independent and do not have a history to the previous collision,
the fluctuations of the gain for a single electron are governed by the Yule-Furry law according to

p(G) =
1
G

(
1 −

1
G

)G−1
∆

2
G = G(G − 1) ≈ G

2 (5.10)

where G is the average gain. This assumption is correct as long as the fields are sufficiently low such
that there is only electron multiplication and the multiplication of holes is negligible. In case there
are n � 1 primary electrons, the distribution of the number of electrons after multiplication will
assume a Gaussian shape with µ = nG and σ2 = n∆2

G = nG
2 due to the central limit theorem. The

resulting charge spectrum is therefore a convolution of this Gaussian with the Landau distribution
p(n, d). To estimate the effect of the gain fluctuations on the Landau distribution we approximate
the Landau distribution with a Gaussian of mean and standard deviation according to

µ = nMP σ =
∆nFWHM

2
√

2 ln 2
(5.11)

The convolution of this Gaussian with the Gaussian from the gain fluctuations will then again result
in a Gaussian where the variances are added in squares and we have

∆nGFWHM
nMP

=
∆nFWHM

nMP

√
1 +

nMP8 ln 2
∆n2

FWHM
≈
∆nFWHM

nMP

(
1 +

nMP4 ln 2
∆n2

FWHM

)
=
∆nFWHM

nMP
(1 + ε) (5.12)

The value of ε ranges from 1.9 × 10−3 for d = 50 µm to 4.1 × 10−4 for d = 300 µm. The gain
fluctuations will therefore increase the relative fluctuations of the charge deposit by less than 0.2%
for a 50 µm sensor and even less for the 300 µm sensor.

The correct resulting charge distribution pG(n, d) when assuming the Landau distribution
p(n, d) for the primary charge deposit is given by

pG(n, d) =
1
G

∫ ∞

0
p(m, d)

1
√

2πm
exp

(
−
(n/G − m)2

2m

)
dm (5.13)
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and the evaluation is shown in D. The correct values of ε for the increase of the FWHMwith respect
to the original distribution are 2.8/1.6/0.86/0.61 × 10−3 for the 50/100/200/300 µm sensor.

In order to evaluate the impact on the time resolution we have to find the effective cluster size
distribution pGclu(n). For large numbers of G, the Furry law turns into the exponential distribution

p(G) =
1
G

e−G/G (5.14)

Even for the typically low LGAD gains of about 20 this is a good approximation. The probability
to find n electrons for m primary electrons is then given by the n-times self convolution of this
expression and we have

p(n) =
1
G

e−n/G
1

(m − 1)!

(
n

G

)m−1
(5.15)

The effective cluster size distribution for pclu(n) = n0/n2Θ(n − n0) is then

pGclu(n) =
1
G

e−n/G
∫ ∞

n0

n0

m2Γ(m)

(
n

G

)m−1
dm (5.16)

Using this effective cluster size distribution together with the distribution pG(n, d) in eq. (B.20) we
can evaluate the impact on the time resolution and have

∆Gτ

∆τ
=

√
wG(d)
w(d)

= 1 + ε (5.17)

where ε = 9/4.6/2.2/1.5 × 10−4. The effect of gain fluctuations on the time resolution is less than
0.1% for sensors of more than 50 µm thickness and is therefore completely negligible.

5.4 Leading edge discrimination for silicon sensors with gain

In this section we discuss the time resolution when considering leading edge discrimination of
sensors with gain. We proceed as in section 4.6 and convolute the signal from a single e-h pair at
position z

i0(x, y, z, t) = −Gqv2Ew(x, y, v2(t − z/v1)) [Θ(t − z/v1) − Θ(t − z/v1 − d/v2)] (5.18)

with the electronics delta response and find

g(x, y, z, t)=Θ(t−z/v1)Θ(d/v2+z/v1−t)
∫ v2

d (1−
z
v1
)

0
f
(
t−z/v1−ud/v2

tp

)
E

( x
d
,
y

d
,u,

wx

d
,
wy

d
,1

)
du

+Θ(t−d/v2−z/v1)

∫ 1

0
f
(
t−z/v1−ud/v2

tp

)
E

( x
d
,
y

d
,u,

wx

d
,
wy

d
,1

)
du (5.19)

which for an infinitely extended electrode with Ew = 1/d evaluates to

nn+1

en
d
tp

g(x, y, z, t)= v2Θ(t−z/v1)Θ(d/v2+z/v1−t)
[
n!−Γ

(
n+1,

n(v1t−z)
tpv1

)]
(5.20)

−v2Θ(t−d/v2−z/v1)

[
Γ

(
n+1,

n(v1t−z)
tpv1

)
−Γ

(
n+1,

n(t−d/v2−z/v1)

tp

)]
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Figure 24. a) Time resolution for a gain sensor of 50µm thickness at 200V bias voltage when applying
a threshold to the signal normalized by the total charge, assuming the Landau theory. The values do not
improve beyond the centroid time resolution which is indicated by the dashed horizontal line. b) ENC needed
to match the noise effect of the time resolution to the effect from the Landau fluctuations.

Evaluating eq. (4.66), eq. (4.67) and eq. (4.68) we then find the results shown in figure 24a. We
find that even for leading edge discrimination of the normalized signal the time resolution for a
sensor with gain does not improve beyond the centroid time resolution value. The reason is that
in the outlined formulas the signal is normalized by the total charge deposited in the sensor. The
signal that makes up the leading edge has however no correlation with the total deposited charge
but is only related to the number of electrons that have already arrived at the gain layer. This is
very different from the standard silicon sensor without gain, where the movement of all deposited
charges makes up the leading edge signal.

If onewant wants to improve the time resolution of silicon sensors with gain beyond the centroid
time resolution, one therefore needs ultra fast front-end electronics with slewing corrections related
to the leading edge of the signal and not to the total charge of the signal. This goes beyond the
mathematical formalisms developed in this report and Monte Carlo simulations have to be used to
study this scenario.

6 Comparison with measurements

In [12] the time resolution of an LGAD sensor with 50 µm thickness is quoted as σ = 34 ps at
200V and σ = 27 ps at 230V. Eq. (5.4) predicts a centroid time resolution of σ = 32 ps for 200V
and σ = 31 ps for 230V for the PAI model. The measured and calculated numbers are therefore
in the same range, which seems to confirm the effect shown in figure 24, namely that even when
using leading edge discrimination with electronics of ≈ 0.5 ns peaking time for this sensor one is
effectively measuring the centroid time.

In [6] the time resolution for multiple particles passing a 133, 211, 285 µm sensor is given. All
sensors were biased at 600V. An amplifier delta response of 1 ns peaking time is used, resulting in
a peaking time for the average signal of the 211 µm sensor of ≈ 2 ns. Leading edge discrimination
at 50% of the signal peak is used. Eq. (4.5) predicts centroid time resolutions of σ = 24, 41, 60 ps
for the three sensors when using the PAI model. With a peaking time of 1 ns and the threshold set
at 50% of the signal eq. (4.68) predicts a resolution of σ ≈ 14 ps, for all three values of sensor
thickness. From eq. (4.12) we see that the scaling factor when having 100 MIPs instead of one MIP
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amounts to ≈ 0.77, so we expect a time resolution of 11 ps for all these cases, which actually does
approximately match the quoted number where the resolution saturates.

The NA62 Gigatracker uses a 200 µm sensor with 300×300 µm pixels. The signals are read by
a frontend with 5 ns peaking time and the threshold is set to around 30% of the signal. A measured
time resolution of 190 ps for 200V is quoted [1]. The effect of noise on these numbers is quoted to be
negligible. To compare to calculations, we would in principle have to evaluate eq. (4.67) for leading
edge discrimination of a sensor with finite pixel size, which turns out to be unfeasible, sowe compare
to some limiting cases. The PAI model and leading edge discrimination at about 35% of the signal
for 200V predicts a time resolution of 64 ps r.m.s. (42 psσ) for an infinitely large pad. The observed
time resolution is therefore dominated by the weighting field effect. The impact of the centroid time
for the weighting field (correlated with the Landau fluctuations) effect is 272 ps r.m.s. (224 ps σ).
The effect of leading edge discrimination on the weighting field effect, which is not discussed in
this report, will reduce this number to some extent, so the measured 190 ps are in the right ballpark.
For a more accurate quantitative evaluation, a Monte Calo simulation must be performed.

In [5] a time resolution of 100 ps is reported for a sensor of 100 µm thickness and 800×800 µm
pixels, biased at 230V. An amplifier of 200–400 ps rise-time is used and a time resolution of 100 ps
is reported. The PAI model predicts a centroid time resolution of σ = 26 ps for this sensor, and the
leading edge discrimination will still result in some improvement on top of this number. As shown
in the paper, the time resolution is fully dominated by the noise contribution, so we cannot extract
the time resolution component due to Landau fluctuations from this measurement.

7 Conclusions

• The probability for a relativistic particle to deposit n e-h pairs in a silicon sensor of thickness
d is given by

p(n, d) = L−1
[
ed/λ(Pclu(s)−1)

]
(7.1)

where Pclu(s) is the Laplace transform of the cluster size distribution and λ is the average
distance between primary collisions, which evaluates to λ ≈ 0.212 µm for relativistic particles
in silicon. For a 1/n2 cluster size distribution this expression becomes the Landau distribution,
while for a more realistic cluster size distribution from the PAI model we get a distribution
with a relative width that is 25–35% smaller than the one from the Landau distribution.

• The standard deviation of the centroid time of a silicon detector signal is given by

∆τ = w(d/λ)

√
4

180
T2

1 −
7

180
T2

12 +
4

180
T2

2 (7.2)

assuming a large readout electrode and negligible depletion voltage. T1 = d/v1, T2 = d/v2,
T12 = d/

√
v1v2 are the drift times of the electrons and holes. Using the Landau theory for

charge deposit, the expression w(d/λ) approaches 1/
√

ln d/λ for large values of d. In the
interval of 25 < d < 500 µm, w(d/λ) can be approximated by

w(d/λ) ≈
1√

a + b ln d/λ + c (ln d/λ)2
(7.3)
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with a = 1, b = 1.155, c = 0 for the Landau theory, a = 13.7, b = −4.9, c = 0.85 for a PAI
charge deposit model and a = 47.7, b = −22.8, c = 3.37 when performing a Gaussian fit to
the measured time distribution for the PAI model.

For a silicon sensor of 300 µm thickness and 600V this evaluates to a resolution of 161, 103,
64 ps, indicating that the Landau theory overestimates the fluctuations and that we have to
clearly distinguish the r.m.s. and the Gaussian fit due to significant tails in the distribution.
For a 200 µm sensor at 300V the resolution evaluates to 132, 88, 56 ps. For a 50 µm sensor
at 200V the values are 22, 17, 12 ps.

• For multiple particles passing the silicon sensor the time resolution scales from the single
particle time resolution ∆τ(1 particle) as

∆τ(n particles)
∆τ(1 particle)

=
1√

1 + ln n
ln d/λ

(7.4)

which amounts to an improvement of only 26, 24, 23, 22% for a 50, 100, 200, 300 µm sensor
when going from 1 to 100 particles.

• Measuring the sensor signal with an amplifier of peaking time tp larger than the drift time
of electrons and holes, the amplifier output is equal to the delta response, scaled by the
total signal charge and shifted by the centroid time. To determine the time of this pulse of
known shape one can then use standard techniques of constant fraction discrimination and
optimum filtering to extract the time information. Assuming the Landau theory, the average
contribution of the noise to the time resolution is then

σt = σnoise[electrons]
λ

d n0

1
1 + 1.155 ln d/λ

tp c(ns) (7.5)

where tp is the peaking time of the amplifier and c(ns) is a constant depending on the
measurement technique. Using constant fraction discrimination at the maximum slope of the
signal we have c(ns) ≈ 0.55–0.6. Using continuous signal sampling and optimum filtering
one arrives at similar numbers when sampling at an interval of tp/2 and one can achieve
c(ns) ≈ 0.2–0.3 for very high frequency sampling. For tp = 2 ns, d = 50 µm and an
Equivalent Noise Charge (ENC) of 50 electrons we have a contribution from the noise of
σt ≈ 17 ps, that has to be added in square with the numbers fromLandau fluctuations. In order
to exploit the intrinsic time resolution of thin silicon sensors one therefore needs ultra lownoise
performance of the frontend electronics. For a given series noise voltage en of an amplifier,
the equivalent noise charge decreases with 1/√tp, the effect of the noise on time resolution
does however increase linearly with tp. It is therefore advantageous to use faster electronics
if power consumption allows and other noise sources do not start to become dominant.

• Assuming a square readout pixel of dimension w, the variation of the track position and
therefore the variation of the weighting field and related signal shape will have an impact on
the time resolution and the standard deviation of the centroid time becomes

∆τ =

√
w(d/λ)2(k11T2

1 + k12T2
12 + k22T2

2 ) +
(
c11T2

1 + c12T2
12 + c22T2

2
)

(7.6)
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Neglecting charge fluctuations and assuming a uniform charge deposit, the coefficients
k11, k12, k22 vanish. Assuming very large readout pixels, the coefficients c11, c12, c22 van-
ish and k11, k12, k22 become 4/180,−7/180, 4/180 in accordance with the above. For very
small pixels, we have k11 = 1/12 and all other coefficients vanish, which is in accordance
with an arrival time distribution of charges at the pad. Landau fluctuations and weighting
field fluctuations are strongly correlated, so they cannot be decoupled or ‘added in squares’.
Since k11 > k22, the effect of weighting field fluctuations is smallest if T1 is small i.e. if the
electrons move towards the readout pixel. In this case it seems possible that for values of
w/d & 1 the weighting field effect does not add significantly to the centroid time resolution.
We note that this calculation assumes perpendicular tracks and neglects diffusion.

• The expressions for leading edge discrimination of the normalized silicon sensor signal (i.e.
the signal divided by the total charge) show that the centroid time resolution is indeed recov-
ered for large peaking times, and that for faster electronics the time resolution is significantly
improved when placing the threshold at < 40% of the total signal charge. As an example,
for a 50 µm sensor at 200V, a peaking time of 1 ns and a threshold at 30% of the normalized
signal, the time resolution improves by a factor 2 with respect to the centroid time and the
noise must be less than 70 electrons in order to not significantly add to this value.

• For silicon sensors with internal gain (LGAD), the standard deviation of the centroid time
becomes

∆τ = w(d/λ)
T1
√

12
(7.7)

This formula assumes that only the gain holes contribute to the signal. This expression is the
same as the one for the very small pixels without gain and represents in essence an arrival
time distribution. For a 200µm sensor at 300V the time resolution is 255, 170, 108 ps for
the Landau, PAI and Gaussfit PAI model. These numbers are a factor 2 larger compared to
the sensor without gain. For a 50 µm sensor at 200V the numbers are 57, 44, 32 ps, about a
factor 2.5 larger than for the sensor without gain. The very big advantage of sensors with gain
is the large signal to noise ratio that can make the noise contribution to the time resolution
negligible and therefore allows large pixels, electronics with modest noise performance and
modest bandwidth.

• The impact of gain fluctuations on the time resolution for sensors with internal gain (LGAD)
of 50–300 µm thickness is on the 0.1% level and therefore negligible.

• Including the effect of the finite pixel size on the centroid time resolution of a silicon sensor
with gain we find

∆τ =

√
w(d/λ)2

T2
1

12
+ s22T2

2 (7.8)

In contrast to sensors without gain there is no correlation between the Landau fluctuations
and the weighting field fluctuations. For uniform charge deposit, only the second term of the
expression remains. For very large and very small pads the coefficient s22 vanishes and the
effect is largest for w/d ≈ 3. In addition the expression is the same, whether the electrode at
the side of the gain layer z = 0 or the electrode on the opposite side is segmented into pixels.
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The calculations presented in this report provide insight into some principle dependencies for the
time resolution of silicon sensors on charge fluctuations, noise and weighting field fluctuations.
The inclusion of more detailed models including the effect of diffusion, track angle, finite depletion
voltage and pixelization are best accomplished through Monte Carlo simulations and the formulas
of this report can be used as benchmarks for such studies.
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A Landau distribution

Evaluating eq. (2.3) with the specific model of the 1/n2 distribution from eq. (2.6) we find the
Landau distribution L(x) according to

L(x) =
1

2πi

∫ σ+i∞

σ−i∞
exp [sx + s ln s] ds (A.1)

=
1
π

∫ ∞

0
exp(−π/2 t) cos(t x + t ln t)dt (A.2)

=
1
π

∫ ∞

0
exp [−t x − t ln t] sin(πt)dt (A.3)

Expression (A.2) is well suited for evaluation for x < 0, while eq. (A.3) is well suited for evaluation
for x > 0. For large values of x the Landau distribution approximates to

L(x) ≈
1
x2 (A.4)

B Variance of the centroid time

The centroid time of the silicon detector signal assuming nk e-h pairs in slice k is

τ(n1, n2, . . . , nN ) =
1

2d
(∑N

k=1 nk
) N∑

k=1
nk

[
z2
k

v1
+
(d − zk)2

v2

]
(B.1)

The average cetroid time τ is then given by

τ =

∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0
τ(n1, n2, . . . , nN )p(n1,∆z)p(n2,∆z) . . . p(nN,∆z) dn1 dn2 . . . dnN (B.2)

Since∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

n1 + n2 + . . . + nN

n1 + n2 + . . . + nN
p(n1,∆z)p(n2,∆z) . . . p(nN,∆z) dn1 dn2 . . . dnN = 1 (B.3)
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we have∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

nk
n1 + n2 + . . . + nN

p(n1,∆z)p(n2,∆z) . . . p(nN,∆z) dn1 dn2 . . . dnN =
1
N

k = 1, 2, . . . , N (B.4)

and therefore

τ =
1

2d

N∑
k=1

1
N

[
z2
k

v1
+
(d − zk)2

v2

]
≈

1
2d2

∫ d

0

[
z2

v1
+
(d − z)2

v2

]
dz =

d
6

(
1
v1
+

1
v2

)
(B.5)

which is the expected centroid time of the two triangular signals form the electrons and the holes.
The second moment of the centroid time τ2 is given by

τ2 =

∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0
τ2(n1, n2, . . . , nN )p(n1,∆z)p(n2,∆z) . . . p(nN,∆z) dn1 dn2 . . . dnN (B.6)

τ2(n1, n2, . . . , nN ) =
1

4d2
(∑N

k=1 nk
)2

N∑
k=1

N∑
r=1

nknr

[
z2
k

v1
+
(d − zk)2

v2

] [
z2
r

v1
+
(d − zr )2

v2

]
(B.7)

We define

aN =

∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

nk nr
(n1+n2+. . .+nN )

2 p(n1,∆z)p(n2,∆z) . . . p(nN,∆z)dn1 dn2 . . . dnN k , r

bN =

∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

n2
k

(n1+n2+. . .+nN )
2 p(n1,∆z)p(n2,∆z) . . . p(nN,∆z)dn1 dn2 . . . dnN (B.8)

and since we have∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

(n1 + n2 + . . . + nN )
2

(n1 + n2 + . . . + nN )
2 p(n1,∆z)p(n2,∆z) . . . p(nN,∆z) dn1 dn2 . . . dnN = 1

(B.9)
it holds that

N bN + N(N − 1)aN = 1 → aN =
1 − N bN

N(N − 1)
≈

1
N2 −

bN

N
(B.10)

The second moment of τ therefore becomes

τ2 =
bN

4d2

N∑
k=1

[
z2
k

v1
+
(d − zk)2

v2

]2

+
aN

4d2

N∑
k=1

N∑
r,k=1

[
z2
k

v1
+
(d − zk)2

v2

] [
z2
r

v1
+
(d − zr )2

v2

]
(B.11)

=
bN−aN

4d2

N∑
k=1

[
z2
k

v1
+
(d−zk)2

v2

]2

+
aN

4d2

N∑
k=1

N∑
r=1

[
z2
k

v1
+
(d−zk)2

v2

] [
z2
r

v1
+
(d−zr )2

v2

]
(B.12)

≈
bN

4d2
1
∆z

∫ d

0

[
z2

v1
+
(d − z)2

v2

]2

dz +
aN

4d2
1
(∆z)2

(∫ d

0

[
z2

v1
+
(d − z)2

v2

]
dz

)2

(B.13)

=
bN

∆z

d3(3v2
1 + v1v2 + v

2
2)

60v2
1v

2
2

+
aN

(∆z)2
d4(v1 + v2)

2

36v2
1v

2
2

(B.14)

=
bN

∆z

d3(4v2
1 − 7v1v2 + 4v2

2)

180v2
1v

2
2

+
d2(v1 + v2)

2

36v2
1v

2
2

(B.15)
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and we have for the variance

∆
2
τ = τ

2 − τ2 =
bNd
∆z

d2(4v2
1 − 7v1v2 + 4v2

2)

180v2
1v

2
2

(B.16)

The expression for ∆τ is symmetric with respect to v1 and v2, which reflects the fact that the induced
signal on the electrode at z = 0 is always equal (and opposite in sign) to the signal at the electrode
at z = d. To evaluate bN

bN =

∫ ∞

0

∫ ∞

0
. . .

[∫ ∞

0

n2
1 p(n1,∆z)

(n1+n2+. . .+nN )
2 dn1

]
p(n2,∆z) . . . p(nN,∆z) dn2 . . . dnN (B.17)

we change variables according to n = n2 + n3 + . . . + nN , i.e. n2 = n − n3 − n4 − . . . − nN and
dn2 = dn and see that the expression outside the brackets becomes equal to the N − 1 times self
convoluted probability p(n,∆z) which is simply p(n, d − ∆z) ≈ p(n, d). Using eq. (2.1) for small
values of ∆z the expression therefore becomes

bN =

∫ ∞

0

[∫ ∞

0

n2
1 p(n1,∆z)

(n1 + n)2
dn1

]
p(n, d)dn =

∫ ∞

0

[
∆z
λ

∫ ∞

0

n2
1 pclu(n1)

(n1 + n)2
dn1

]
p(n, d)dn (B.18)

so for the variance we finally have

∆
2
τ = τ

2 − τ2 = w(d)2
(

4 d2

180v2
2
−

7 d2

180v1v2
+

4 d2

180v2
1

)
(B.19)

w(d)2 =
∫ ∞

0

[
d
λ

∫ ∞

0

n2
1 pclu(n1)

(n1 + n)2
dn1

]
p(n, d)dn (B.20)

This expression for w(d) is completely general for any kind of cluster size distributions pclu(n) and
resulting p(n, d).

C Evaluation of w(d)

Using the Landau theory we have pclu(n) from eq. (2.6) and therefore∫ ∞

0

n2
1 pclu(n1)

(n1 + n)2
dn1 =

∫ ∞

n0

n0

(n1 + n)2
dn1 =

n0
n + n0

(C.1)

and with eq. (2.7) we get

w(d)2 = n0
d
λ

∫ ∞

0

p(n, d)
n + n0

dn =
∫ ∞

0

L(z + γ − 1 − ln d/λ)
z + λ/d

dz (C.2)

Using eq. (A.2) for L(x) we have

w(d)2 =
∫ ∞

0
e−tπ/2

[
1
2

sin( f t) −
1
π

sin( f t)SinIntegral(t λ/d) −
1
π

cos( f t)CosIntegral(tλ/d)
]

dt

(C.3)
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with
f = 1 − γ + λ/d − ln t + ln d/λ (C.4)

The integrand is ‘damped’ by the exponential decay where beyond t = 10 the integrand will be
negligible. For small values of λ/d we can use SinIntegral(x) ≈ x and CosIntegral(x) ≈ γ + ln x
and we get

w(d)2 ≈
∫ ∞

0
e−tπ/2

[
1
2

sin( f t) −
1
π
(1 − f ) cos( f t)

]
dt (C.5)

f ≈ 1 − γ − ln t + ln d/λ (C.6)

For d/λ > 40 the approximation is accurate to better than 1% and the dependence on bN for
different sensor values of the sensor thickness is only though ln d/λ. For very large numbers of d/λ
the expression approaches

w(d)2 =
1

ln(d/λ)
d/λ→∞ (C.7)

For d/λ > 40 this expression for w(d) is within 15% of the exact expression (C.3).

D Convolution of the Landau distribution with a Gaussian

For the convolution of the Landau distribution with a Gaussian we use eq. (A.3) and find

pG(n,d)=
1
G

∫ ∞

0
p(m,d)

1
√

2πm
exp

(
−
(n/G−m)2

2m

)
dm

=
1
G

∫ ∞

0

[
λ

n0d
1
π

∫ ∞

0
exp

(
−t

(
λ

n0d
m+γ−1−ln d/λ

)
−t ln t

)
dt

]
sin(πt)

exp
(
−
(n/G−m)2

2m

)
√

2πm
dm

=
1
G

λ

n0dπ

∫ ∞

0
exp

[
−t(γ−1−ln d/λ)−t ln t+n/G

(
1−

√
1+

2λt
n0d

)]
1√

1+ 2λt
n0d

sin(πt)dt (D.1)

E Weighting potential and weighting field of a pixel

The expression for the weighting potential of a rectangular pad of dimension wx,wy centred at
x = y = 0 with a parallel plate separation of d is given in [25] as

φw(x, y, z,wx,wy, d) =
1

2π
f (x, y, z,wx,wy)

−
1

2π

∞∑
n=1
[ f (x, y, 2nd − z,wx,wy) − f (x, y, 2nd + z,wx,wy)] (E.1)

f (x, y, u,wx,wy) = arctan
©«

x1y1

u
√

x2
1 + y2

1 + u2

ª®®¬ + arctan
©«

x2y2

u
√

x2
2 + y2

2 + u2

ª®®¬
− arctan

©«
x1y2

u
√

x2
1 + y2

2 + u2

ª®®¬ − arctan
©«

x2y1

u
√

x2
2 + y2

1 + u2

ª®®¬ (E.2)

x1 = x −
wx

2
x2 = x +

wx

2
y1 = y −

wy

2
y2 = y +

wy

2
(E.3)
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We note that
φw(x, y, z,wx,wy, d) = φw

( x
d
,
y

d
,

z
d
,
wx

d
,
wy

d
, 1

)
(E.4)

The weighting field is given by

Ez
w(x, y, z,wx,wy, d) =

1
2π

g(x, y, z,wx,wy)

+
1

2π

∞∑
n=1
[g(x, y, 2nd + z,wx,wy) + g(x, y, 2nd − z,wx,wy)] (E.5)

with

g(x, y,u,wx,wy)=
x1y1(x2

1+y
2
1+2u2)

(x2
1+u2)(y2

1+u2)
√

x2
1+y

2
1+u2

+
x2y2(x2

2+y
2
2+2u2)

(x2
2+u2)(y2

2+u2)
√

x2
2+y

2
2+u2

−
x1y2(x2

1+y
2
2+2u2)

(x2
1+u2)(y2

2+u2)
√

x2
1+y

2
2+u2

−
x2y1(x2

2+y
2
1+2u2)

(x2
2+u2)(y2

1+u2)
√

x2
2+y

2
1+u2

(E.6)

and it holds that
Ez
w(x, y, z,wx,wy, d) =

1
d

Ez
w

( x
d
,
y

d
,

z
d
,
wx

d
,
wy

d
, 1

)
(E.7)

References

[1] G. Aglieri Rinella et al., The NA62 GigaTracker, Nucl. Instrum. Meth. A 845 (2017) 147.

[2] G. Aglieri Rinella et al., The TDCpix Readout ASIC: A 75 ps Resolution Timing Front-End for the
Gigatracker of the NA62 Experiment, Phys. Procedia 37 (2012) 1608.

[3] A. Kluge et al., The TDCpix readout ASIC: A 75ps resolution timing front-end for the NA62
Gigatracker hybrid pixel detector, Nucl. Instrum. Meth. A 732 (2013) 511.

[4] M. Fiorini et al., High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel
detector, Nucl. Instrum. Meth. A 718 (2013) 270.

[5] M. Benoit et al., 100ps time resolution with thin silicon pixel detectors and a SiGe HBT amplifier,
2016 JINST 11 P03011 [arXiv:1511.04231].

[6] N. Akchurin et al., On the timing performance of thin planar silicon sensors, Nucl. Instrum. Meth. A
859 (2017) 31.

[7] G. Pellegrini et al., Technology developments and first measurements of Low Gain Avalanche
Detectors (LGAD) for high energy physics applications, Nucl. Instrum. Meth. A 765 (2014) 12.

[8] N. Cartiglia et al., Performance of Ultra-Fast Silicon Detectors, 2014 JINST 9 C02001
[arXiv:1312.1080].

[9] H.F.-W. Sadrozinski et al., Ultra-fast silicon detectors, Nucl. Instrum. Meth. A 730 (2013) 226.

[10] H.F.-W. Sadrozinski et al., Sensors for ultra-fast silicon detectors, Nucl. Instrum. Meth. A 765
(2014) 7.

[11] N. Cartiglia et al., Design optimization of ultra-fast silicon detectors, Nucl. Instrum. Meth. A 796
(2015) 141.

– 39 –

https://doi.org/10.1016/j.nima.2016.06.045
https://doi.org/10.1016/j.phpro.2012.04.106
https://doi.org/10.1016/j.nima.2013.06.089
https://doi.org/10.1016/j.nima.2012.10.108
https://doi.org/10.1088/1748-0221/11/03/P03011
https://arxiv.org/abs/1511.04231
https://doi.org/10.1016/j.nima.2017.03.065
https://doi.org/10.1016/j.nima.2017.03.065
https://doi.org/10.1016/j.nima.2014.06.008
https://doi.org/10.1088/1748-0221/9/02/C02001
https://arxiv.org/abs/1312.1080
https://doi.org/10.1016/j.nima.2013.06.033
http://dx.doi.org/10.1016/j.nima.2014.05.006
http://dx.doi.org/10.1016/j.nima.2014.05.006
https://doi.org/10.1016/j.nima.2015.04.025
https://doi.org/10.1016/j.nima.2015.04.025


2
0
1
7
 
J
I
N
S
T
 
1
2
 
P
1
1
0
1
7

[12] N. Cartiglia et al., Beam test results of a 16 ps timing system based on ultra-fast silicon detectors,
Nucl. Instrum. Meth. A 850 (2017) 83 [arXiv:1608.08681].

[13] F. Cenna et al.,Weightfield2: A fast simulator for silicon and diamond solid state detector, Nucl.
Instrum. Meth. A 796 (2015) 149.

[14] N. Cartiglia et al., Tracking in 4 dimensions, Nucl. Instrum. Meth. A 845 (2017) 47.

[15] V. Sola et al., Ultra-Fast Silicon Detectors for 4D tracking, 2017 JINST 12 C02072.

[16] S. Parker, A. Kok, C. Kenney, P. Jarron, J. Hasi, M. Despeisse et al., Increased speed: 3D silicon
sensors. Fast current amplifiers, IEEE Trans. Nucl. Sci. 58 (2011) 404.

[17] H. Spieler, Fast timing methods for semiconductor detectors, IEEE Trans. Nucl. Sci. 29 (1982) 1142.

[18] A. Rivetti, Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives,
Nucl. Instrum. Meth. A 765 (2014) 202.

[19] J.H. Jungmann and R.M.A. Heeren, Emerging technologies in mass spectrometry imaging,
J. Proteomics 75 (2012) 5077.

[20] C. Vallance et al., Fast sensors for time-of-flight imaging applications, Phys. Chem. Chem. Phys. 16
(2014) 383.

[21] H. Schindler,Microscopic simulation of particle detectors, CERN-THESIS-2012-208.

[22] W.W.M. Allison and J.H. Cobb, Relativistic Charged Particle Identification by Energy Loss, Ann. Rev.
Nucl. Part. Sci. 30 (1980) 253.

[23] Synopsis Inc., Sentaurus Device User Guide Version D-2010.03.

[24] W.E. Cleland and E.G. Stern, Signal processing considerations for liquid ionization calorimeters in a
high rate environment, Nucl. Instrum. Meth. A 338 (1994) 467.

[25] W. Riegler and G. Aglieri Rinella, Point charge potential and weighting field of a pixel or pad in a
plane condenser, Nucl. Instrum. Meth. A 767 (2014) 267.

[26] C. Canali et al., Electron and hole drift velocity measurements in silicon and their empirical relation
to electric field and temperature, IEEE Trans. Electron Dev. 22 (1975) 1045.

– 40 –

https://doi.org/10.1016/j.nima.2017.01.021
https://arxiv.org/abs/1608.08681
http://dx.doi.org/10.1016/j.nima.2015.04.015
http://dx.doi.org/10.1016/j.nima.2015.04.015
https://doi.org/10.1016/j.nima.2016.05.078
https://doi.org/10.1088/1748-0221/12/02/C02072
https://doi.org/10.1109/TNS.2011.2105889
http://dx.doi.org/10.1109/tns.1982.4336333
http://dx.doi.org/10.1016/j.nima.2014.03.064
http://dx.doi.org/10.1016/j.jprot.2012.03.022
http://dx.doi.org/10.1039/c3cp53183j
http://dx.doi.org/10.1039/c3cp53183j
https://cds.cern.ch/record/1500583/
https://doi.org/10.1146/annurev.ns.30.120180.001345
https://doi.org/10.1146/annurev.ns.30.120180.001345
https://doi.org/10.1016/0168-9002(94)91332-3
https://doi.org/10.1016/j.nima.2014.08.044
http://dx.doi.org/10.1109/T-ED.1975.18267

	Introduction
	Energy deposit
	Centroid time of a signal
	Silicon sensors without internal gain
	Centroid time resolution of a silicon detector signal
	Multiple particles passing a silicon sensor
	Noise contribution to the centroid time resolution
	Weighting field effect on the centroid time for uniform charge deposit
	Centroid time resolution for combined charge fluctuations and weighting field  fluctuations
	Leading edge discrimination 

	Silicon sensors with internal gain
	Centroid time resolution for silicon sensors with internal gain
	Weighting field effect on the centroid time for silicon sensors with gain
	Impact of gain fluctuations
	Leading edge discrimination for silicon sensors with gain

	Comparison with measurements
	Conclusions
	Landau distribution
	Variance of the centroid time
	Evaluation of w(d)
	Convolution of the Landau distribution with a Gaussian
	Weighting potential and weighting field of a pixel

