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Maŕıa Cortés Becerra find it satisfactory and recommend that it be accepted.

Dr. Philip L. Cole,
Major Advisor

Dr. Daniel S. Dale,
Committee Member

Dr. David Delehanty,
Graduate Faculty Representative

Dr. Tony Forest,
Committee Member

Dr. Dustin McNulty,
Committee Member



Acknowledgments

I would like to acknowledge the contributions of the people and institutions

that helped me not only in the completion of this work, but also guided me

through the entire life experience that was this doctorate. First, I would like to

thank the members of my committee for their support and advice at various stages

of this research work. I am particularly grateful to my adviser, Professor Philip

Cole, for his guidance and for the independence that he gave me throughout the

course of my graduate program. Even with his very busy schedule, Dr. Cole had

always his door open for me and my physics questions. I would like to thank him

also for giving me the opportunity to move to Newport News to have a first hand

experience at JLab. Also I will be always indebted to him for his total support

during my maternity leaves.

I would like to thank my colleagues of the g13 group, in particular Pawel

Nadel-Turonski and Yordanka Ilieva, for all the discussions and suggestions. To

Paul Mattione, my dear friend, for giving me all the possible advice with the g13

software, but also for the walks, the ping pong games and the great talks. I would

like to thank Nicholas Zachariou and Daria Sokhan for their advice, physics and

nonphysics related. To Chuck Taylor that gave me a hand at the beginning of

my thesis; with his selfless help I was able to start analyzing data right away.

Thanks also to Colin, Tongtong and Nick C.

During my first years in the PhD program, the discussions and company of my

two friends, Danny Martinez and Carlos “el corsario” Bula, helped me adapting

to the graduate school. I am very thankful with them. I would like to thank my

dear friend Oleksiy Kosinov, for all the time that we shared walking, swimming

and running in Idaho. Also for the days trying to figure out Geant4 and Root, and



the discussions about physics. I am greatful to Bindu, Bibek, Shraddha, George

K, Maya, George T, Kevin, Valeriia, and Misha for making Idaho a warmer place.

During my stay at JLab I had the great opportunity to collaborate with

Mac Mestayer. I loved working with Mac, and I am thankful for the good time

and hard work that we did together. I am also thankful to Veronique Ziegler

and Gagik Gavalian for all the patience that they had when I had thousands of

questions about JAVA. I appreciate the great advice I got from Latifa Elouadrhiri

and Patrizia Rossi about my work and my carreer. To my friends Carlitos, Juan,

Liliana, Cesar, Nobuo, David, Raul, Dave, Christian, Melissa, Mark, Will and

the soccer people for making my life in Virginia very enjoyable.

Lastly, I thank my family. Mamma, muchas gracias por todo el apoyo in-

condicional que siempre me has dado. Gracias por darme tu mano y guiarme

incluso en los momentos de mayor oscuridad. Gracias totales a mi padre que no

vivio tan largo para ver esto, pero que este trabajo es tambien fruto de todo lo

que sembro. Gracias a mis queridas hermanas Elizabeth, Beatriz y Diana por

ser un trio de mujeres a quienes admiro profundamente y quienes me mueven a

querer mejorar. I am thankful to my husband, my daughter Leila and my son

Ibai, for the patience for all the nights of absence trying to write this thesis, and

for the days that I was not myself. Carlos, thank you for believing in me and for

being my rock during all this time.

v



Contents

List of Figures x

List of Tables xviii

Abstract xix

Chapter 1: Hadron Spectrum 1

1.1 Baryon Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Photoproduction of Vector Mesons . . . . . . . . . . . . . 6

Chapter 2: Photoproduction of ω Mesons 8

2.1 Vector Meson Photoproduction . . . . . . . . . . . . . . . . . . . 9

2.2 Previous Measurements for ω Photoproduction . . . . . . . . . . . 10

Chapter 3: Experimental Layout 14

3.1 Electron Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Coherent Bremsstrahlung Facility . . . . . . . . . . . . . . . . . . 18

3.2.1 Coherent Bremsstrahlung . . . . . . . . . . . . . . . . . . 18

3.2.2 Diamond Radiator and Goniometer . . . . . . . . . . . . . 21

3.2.3 Active Collimator . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Photon Tagger . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 CLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Torus Magnet . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Start Counter . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



3.3.3 Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Time of Flight . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.5 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . 32

3.4 The g13b Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Target Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Trigger Conditions . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 DAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4: Data Analysis: Event Reconstruction 37

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 “Cooking” and Detector Calibration . . . . . . . . . . . . . . . . 38

4.3 Data Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Skimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 First SKIM . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Second SKIM . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 Charged Particles . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.2 Neutral Particle Identification . . . . . . . . . . . . . . . . 46

4.6 Incoming Photon Identification . . . . . . . . . . . . . . . . . . . 50

4.7 Hadron Time Coincidence . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Vertex Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 π0 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Fiducial Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.11 Energy and Momentum Corrections . . . . . . . . . . . . . . . . . 57

4.11.1 Energy Loss Corrections . . . . . . . . . . . . . . . . . . . 57

4.11.2 Momentum Corrections . . . . . . . . . . . . . . . . . . . . 58

vii



4.11.3 Incoming Photon Energy Corrections . . . . . . . . . . . . 59

4.12 Missing Momentum Cut . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 ω Meson Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5: Data Analysis: Beam Asymmetry 66

5.1 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Beam Asymmetry: the φ Binned Method . . . . . . . . . . . . . . 69

5.2.1 Parameter Optimization . . . . . . . . . . . . . . . . . . . 71

5.2.2 Dilution Factor. . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Statistical Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 6: Systematic Studies 82

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Goodness of the Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Systematics of the Parameters . . . . . . . . . . . . . . . . . . . . 84

6.3.1 φ0 Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Photon Flux . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.3 Photon Polarization Ratio . . . . . . . . . . . . . . . . . . 85

6.4 Event Selection Systematic Uncertainty . . . . . . . . . . . . . . . 86

6.4.1 Neutral Particle Identification Systematics . . . . . . . . . 87

6.4.2 Incident Photon Identification . . . . . . . . . . . . . . . . 87

6.4.3 Out-of-Time Cut . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.4 z-Vertex Cut . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.5 Missing Momentum . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Systematic due to Dilution Factor and Invariant Mass Cut . . . . 90

6.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . 91

viii



6.6.1 Systematic Error Budget . . . . . . . . . . . . . . . . . . . 91

Chapter 7: Summary and Conclusions 93

Bibliography 95

ix



List of Figures

1.1 Total photo-absorption cross section and exclusive cross sections

for different channels as a function of the photon energy. . . . . . 4

1.2 Breit-Wigner masses and widths of N∗ resonances. Table taken

from [4] with permission. . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Main mechanisms in the ω photoproduction using real photons.

From left to right: t-channel pomeron exchange, t-channel pion

exchange, s-channel N∗ resonance. . . . . . . . . . . . . . . . . . 6

2.1 Photon beam asymmetry Σ as a function of cos θCM for the reaction

~γp → ωp for photon energy Eγ ∈ [1.152, 1.876] GeV as reported

in [14]. The black squares are the result of CLAS 2017 study, it

shows only statistical error and not a 6% systematic uncertainty

for each energy bin. The open red squares are the results from

the CBELSA/TAPS [15], the blue open open circles and the red

solid circles from the GRAAL 2006 [16] and GRAAL 2015 [17]

respectively. Figure taken from [14]. . . . . . . . . . . . . . . . 11

x



2.2 Beam asymmetry Σ as a function of θCM . The full circles repre-

sent the free proton channel, the full triangles the quasifree proton

in a deuteron target for Eγ ∈ [1.18, 1.48] GeV. Only statistical

uncertainties are shown in the figure and reported in the paper.

The lines represent the Zhao model described in [18–20]. Figure

taken from [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Aerial view of the CEBAF at the Thomas Jefferson National Ac-

celerator Facility (JLab). Picture taken from [21]. . . . . . . . . . 15

3.2 Experimental Layout of the CEBAF accelerator before the 12GeV

upgrade. Picture taken from [22]. . . . . . . . . . . . . . . . . . . 16

3.3 Photo of a Niobium Cavity. . . . . . . . . . . . . . . . . . . . . . 17

3.4 Charge distribution in the cavity. . . . . . . . . . . . . . . . . . . 17

3.5 Picture of the magnets in the arcs at Jefferson Lab. . . . . . . . 18

3.6 Energy spectrum of linearly polarized photons, showing the co-

herent enhancement over the incoherent background. Data were

taken during the g13b experiment, for a coherent edge of 2.1 GeV. 20

3.7 Typical enhancement plot. Taken from [25]. Copyright 2018, with

permission from Elsevier. . . . . . . . . . . . . . . . . . . . . . . . 21

3.8 Goniometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.9 Photon tagger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.10 Experimental Layout of the CLAS detector before the 12GeV

upgrade. Picture taken from [22]. . . . . . . . . . . . . . . . . . . 26

xi



3.11 a. Magnetic Field contour plot in the middle plane between coils.

b. Magnetic field perpendicular to the beamline and centered in

the target. The six coils can be seen in the intersection with the

plane. Image taken from [22] with permission. . . . . . . . . . . 27

3.12 Schematic view of the torus cryostat. Image taken from [22] with

permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.13 Schematic 3D view of the start counter. The purple volume repre-

sents the target cell. Image taken from [29] with Elsevier permission. 29

3.14 Schematic cross section of the start counter subsystem. Image

taken from [29] with Elsevier permission. . . . . . . . . . . . . . 29

3.15 Schematic 2D view of the CLAS detector cut at the beamline high.

It shows a representation of two charged particles being detected.

The dotted lines represent the projection on this plane of the torus

coils position. Enlargement in the box exemplifies the hit pattern

in the two superlayers of the region 3 of the drift chambers. The

hexagonal cells are discussed in more detail in the text. Image

taken from [30] with Elsevier permission. . . . . . . . . . . . . . 31

3.16 TOF scintillator shell from one sector. Picture taken from [31]

with Elsevier permission. . . . . . . . . . . . . . . . . . . . . . . . 31

3.17 Deconstructed view of one of the electromagnetic modules. Image

taken from [32] with Elsevier permission. . . . . . . . . . . . . . 33

3.18 Liquid-deuterium target cell. Picture taken from [34]. . . . . . . 35

4.1 Start Counter offset for π− particles for an intermediate stage of

the Start Counter calibration. The figure shows the subperiod

division, and the runs that were chosen to be golden runs. . . . . 40

xii



4.2 Proton identification. Top left figure is the ∆β vs p plot. The

events between the red curves, are considered π+. The two right

plots show the fit for the central region for µ + 3σ (top) and µ −

3σ (bottom), where µ and σ are respectively the mean and the

standard deviation of a Gaussian fit over each momentum bin.

The left bottom represents µ for each momentum bin. . . . . . . . 45

4.3 π− identification. Top left figure is the ∆β vs p plot. The events

between the red curves, are considered π−. The two right plots

show the fit for the central region for µ + 3σ (top) and µ − 3σ

(bottom), where µ and σ are respectively the mean and the stan-

dard deviation of a Gaussian fit over each momentum bin. The

left bottom is the mean value for each momentum bin. . . . . . . 46

4.4 π+ identification. Top left figure is the ∆β vs p plot. The events

between the red curves, are considered π+. The two right plots

show the fit for the central region for µ + 3σ (top) and µ − 3σ

(bottom), where µ and σ are respectively the mean and the stan-

dard deviation of a Gaussian fit over each momentum bin. The

left bottom represents µ for each momentum bin. . . . . . . . . . 47

4.5 Rest mass squared distribution for positive particles. In red the

distribution before ∆β cut and in blue after the ∆β cut. For

further explanation refer to the text. . . . . . . . . . . . . . . . . 48

4.6 Rest mass squared distribution for negative particles. In red the

distribution before ∆β cut and in blue after the ∆β cut. For

further explanation refer to the text. . . . . . . . . . . . . . . . . 48

xiii



4.7 βγ1 . The events in blue are those that are considered photons,

while the distribution in red is cut out. . . . . . . . . . . . . . . . 49

4.8 βγ2 . The events in blue are those that are considered photons,

while the distribution in red is cut out. . . . . . . . . . . . . . . . 49

4.9 Number of good photons per event. . . . . . . . . . . . . . . . . . 50

4.10 ∆tγπ− as a function of the π− momentum. The RF structure every

2 ns is clear in the figure. . . . . . . . . . . . . . . . . . . . . . . . 52

4.11 ∆tγπ− as a function of the π− momentum after cuts. . . . . . . . 52

4.12 Number of good photons per event that are in the same RF bucket,

that is, |∆t| < 1 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 2-D plot of ∆tpπ− vs ∆tπ+π− . The red lines represent the cut

performed |∆thπ−| < 1.2 ns. . . . . . . . . . . . . . . . . . . . . . 53

4.14 z coordinate, with respect to the center of CLAS, of the event

vertex as found in the MVRT bank. The vast majority of the

events are produced within the nominal values of the target. The

events in red are those that are cut out of the data sample. . . . 55

4.15 y vs. x coordinate for the primary vertex from MVRT bank. No

cut was performed for these quantities. . . . . . . . . . . . . . . . 55

4.16 Invariant mass squared of the two photons. The red lines mark

the cut. The green line indicates the position of the nominal value

of the m2
π0 = 0.01822 GeV2/c4 . . . . . . . . . . . . . . . . . . . . 56

4.17 Relative momentum difference after energy loss ∆p/pmeas for the

proton after particle identification cuts. . . . . . . . . . . . . . . 58

4.18 Relative momentum difference after energy loss ∆p/pmeas for the

tracks identified as π+ after particle identification cuts. . . . . . . 58

xiv



4.19 Relative momentum difference after energy loss ∆p/pmeas for the

tracks identified as π− after particle identification cuts. . . . . . . 59

4.20 Relative momentum difference after momentum correction ∆p/pmeas

for the tracks identified as protons. . . . . . . . . . . . . . . . . . 60

4.21 Relative momentum difference after momentum correction ∆p/pmeas

for the tracks identified as π+. . . . . . . . . . . . . . . . . . . . . 60

4.22 Relative momentum difference after momentum correction ∆p/pmeas

for the tracks identified as π−. . . . . . . . . . . . . . . . . . . . . 61

4.23 Tagger correction accounting for the gravitational sag. . . . . . . 61

4.24 Two-Gaussian fit to the projection of the invariant mass squared

of the three pions for different missing mass squared bins. The red

lines show the 3σ cut. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.25 3σ cut around the centroid. In the two bottom plots, it is possible

to see the 2nd degree polynomial fit to the µ± 3σ. . . . . . . . . 65

4.26 Invariant mass squared of the three pions m2(π+π−π0) vs. the

missing mass squaredm2
X(γd→ pπ+π−π0X) before (left) and after

the cut (right). This is an example for the energy set with coherent

peak at 2.3 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xv



5.1 Schematic representation of the reaction γp → pω in the center-

of-mass frame. The blue rectangle represents the decay plane,

and its normal unitary vector is defined by n̂ =
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|ẑ×pωCM |

. The

orange rectangle represents the polarization plane for the incoming

photon. The angle between the two planes is denoted as β. Finaly,

the θCM is the angle between the proton and the ω meson in the

center-of-mass frame. The z-axis is the direction of the incoming

photon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Difference between the cos θ generated with the Monte Carlo, and

the cos θ “detected” as a function of cos θCM. The top plot takes

the information of the incoming particles assuming the proton at

rest. The bottom plot takes the information from the final-state

particles without any assumption. . . . . . . . . . . . . . . . . . . 68

5.3 Typical photon polarization (top) and corresponding enhancement

distribution (bottom). . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Example of fit for 1.7 < Eγ < 1.8 GeV. . . . . . . . . . . . . . . 75

5.5 Fit for the asymmetry extraction. The red dots and fit are taken

before the dilution factor correction is applied. The blue dots and

fit are calculated after the dilution factor is estimated by integrat-

ing the histogram. The green dots and fit are calculated after the

dilution factor is estimated by integrating a double-Gaussian-fit

model to the background. . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Fitting the modulation of the ratio Y ∗ for different kinematic bins

in cos θCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xvi



5.7 Result for Beam Spin Asymmetry for 1.1 < Eγ < 2.3 GeV in

energy bins of ∆Eγ = 200 MeV. The blue triangles represent this

work (quasi-free proton), the red circles represent the GRAAL

2015 [17] results for the quasi-free reaction. The green squares

are the results from [14] for the free-proton channel. The blue

line represents the Bonn-Gatchina prediction after including the ω

photoproduction data from CLAS 2017 [14] in their fit. . . . . . . 81

6.1 Normalized residuals distribution for each energy bin. . . . . . . 83

6.2 ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut

on the neutral particle identification (βn < 0.9). . . . . . . . . . . 87

6.3 ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader

cut on the incoming photon coincidence time with π− (∆tγπ− ≤

1.2 ns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter cut

on the proton and π+ coincidence time with π− (∆thπ− ≤ 1.0 ns). 88

6.5 ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut

on the z coordinate of the primary vertex(−40 ≤ z ≤ 0 cm). . . . 89

6.6 ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter cut

on the missing momentum (PX < 0.15 GeV/c). . . . . . . . . . . 90

6.7 ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter 2−σ

cut on the calculation of the dilution factor. . . . . . . . . . . . . 90

xvii



List of Tables

5.1 Polarization ratio and polarization average for all energy subsets

with different coherent peak. . . . . . . . . . . . . . . . . . . . . . 74

5.2 Calculated values for the flux ratio FR. . . . . . . . . . . . . . . . 76

5.3 Dilution factor for each energy subset for PARA and PERP polar-

ization. HISTO and FIT stand for integration over the histogram,

and integration over the double-Gaussian model. . . . . . . . . . . 77

6.1 Calculated values for the systematic uncertainty related to the flux

ratio FR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Summary of the estimated values for the systematic uncertain-

ties related to different sources. As extensively explained in this

chapter, the estimated systematic uncertainties related with the

kinematical cuts are averages of the absolute difference of the pa-

rameter Σ and its variation. . . . . . . . . . . . . . . . . . . . . . 92

xviii



Abstract

Quantum chromodynamics (QCD) is the fundamental theory underlying the

strong interaction. Great effort has been dedicated to explain hadron interactions

and the hadron composition in terms of the QCD degrees of freedom (quarks and

gluons). However, this task has been largely complicated by confinement, an in-

trinsic feature of QCD itself, which prevents us from a direct experimental study

of the dynamics of quarks and gluons. Instead, QCD-inspired models have been

developed to explain the hadron spectrum, and while there has been success in

explaining important features of it, many of the states that have been predicted

by these models have not been found experimentally.

Furthermore, the hadronic spectrum is much more complicated to analyze

than the atomic one because of a high number of excited states of the nucleon

which have large widths that cause resonances to overlap. Also, these resonances

may decay into a multitude of decay channels involving either mesons or baryons.

Additionally, we will need measurements of observables, coming from polarized

beam and polarized target experiments, to obtain a complete measurement of all

the helicity amplitudes.

My current research aims at contributing to a larger experimental program

that seeks to shed light on the evolving status of the proton spectrum. I focus on

the photoproduction of ω mesons off the bound proton, which is of great interest

xix



in providing information about N∗ resonances as ω is an isospin filter. I have

extracted a preliminary quasi-free ~γd→ ωp(n) photon beam asymmetry polariza-

tion observable from CLAS data. The ω meson was identified through its charged

decay ω → π+π−π0 where the π0 subsequently decays in two photons. The data

were taken during the E06-103 experiment with the CLAS detector in Hall B at

the Thomas Jefferson National Accelerator Laboratory (JLab). The experiment

used the Hall-B Coherent Bremsstrahlung Facility to provide a high quality beam

of linearly-polarized photons in the energy range from 1.1 to 2.3 GeV.
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Chapter 1

Hadron Spectrum

1.1 Baryon Spectroscopy

Baryons are strongly interacting fermions that have a baryon number B = 1,

consistent with a qqq configuration. Light baryons that consist only of u and d

quarks, with isospin I = 1
2
, are called nucleons, and those with isospin I = 3

2
are

called ∆ resonances. The study of the nucleon spectrum is key for understanding

the internal dynamics of the nucleon as a whole. It further provides a means to

test the predictions of any number of theoretical approaches used in modeling

quantum chromodynamics (QCD).

Our understanding of the nucleon as a bound state of quarks and gluons (QCD

degrees of freedom) is still a great challenge for the hadron physics community.

It is of fundamental importance to study simultaneously the structure and the

properties of the nucleon in the ground state, along with studying the excited

states of baryons, which are also known as baryon resonances. On one hand, deep

inelastic scattering experiments are used to study the properties of the baryon’s

constituent’s ground states, and on the other hand, we have the spectroscopy
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experiments, which can shed light on the collective degrees of freedom by probing

the nucleon as a whole.

The paradigm of what can be learned by hadron spectroscopy studies was

taught to us by atomic spectroscopy. In the latter case, we study an electrically-

neutral object (the atom) composed of electrically-charged components that in-

teract via the electromagnetic force that is governed by quantum electrodynamics

(QED). Similarly, for hadron spectroscopy, we study a color-singlet object built

by color charged components that follow QCD rules.

In this energy regime (the confinement region), the hadron spectrum cannot

be calculated using standard perturbation theory. Instead, different approaches

have been developed to predict the hadron spectrum. The phenomenological as

well as QCD-inspired models [1] have given us most of the theoretical insight.

Within these models, the constituent quark models take the QCD Lagrangian

and replace the valence quark1 with an effective quark or constituent quark.

The interaction of these constituent quarks is mediated through potentials that

force the correct behavior at large and small distances, i.e., asymptotic freedom

at large energies and quark confinement at low energies. Lattice QCD (see for

instance [2]) has started to complement this information with numerical solutions

of QCD. Lattice QCD aims to solve the exact QCD Lagrangian by assuming a

discrete space-time.

While there has been success in explaining important features of the hadron

spectrum, many of the excited states that have been predicted have not been

found experimentally. The main issue behind the problem of the “missing baryon

resonances” is that we do not have a clear understanding of the number of the

effective degrees of freedom.

1The quarks found in the standard model.
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Instead of considering three constituent quarks, the degrees of freedom are

reduced by assuming the baryons to be a quark-diquark bound system [1]. This

assumption dramatically reduces the number of excited states in the baryon spec-

trum [3]. However, the diquark model still predicts a richer spectrum than that of

the one observed experimentally. One other possibility in explaining the missing

baryon resonances issue may well be experimental. The data obtained in the early

developments of nucleon spectroscopy came from π−N elastic scattering. Some

of the missing resonances might couple weakly to this channel, therefore escaping

identification. The extraction of the resonant information has both experimental

and theoretical challenges.

From the experimental point of view, we come into several challenges. The

hadronic spectrum is much more complicated to analyze than the atomic one be-

cause of a high number of excited states of the nucleon which have large widths

that cause resonances to overlap. Also, these resonances may decay into a mul-

titude of decay channels involving either mesons or baryons; an example of this

can be seen in the table shown in figure 1.1. It is important to note the large

cross section that ω has for Eγ > 1.7 GeV, which corresponds to the part of the

hadron spectrum that is least understood.

In order to identify a state in the hadron spectrum (tagged by spin, parity, and

isospin)2, the observables obtained for different channels have to be decomposed

into partial waves to allow for extracting these quantum numbers. However,

the extraction of these quantum numbers is not unambiguous: to isolate res-

onant states from the nonresonant background states, we need to use reaction

2The notation used in the past, when most of the information came from elastic πN scat-
tering, was to label the resonances with L2I,2J (For example N(1680)F15). Now that the infor-
mation also comes from γN experiments, this notation has been replaced with the spin-parity
JP of the state (For example N(1680 5/2+).
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Fig. 1.1. Total photo-absorption cross section and exclusive cross sections for
different channels as a function of the photon energy.

models. This model dependency, which can vary among different collaborations

performing the partial wave analysis, results in several calculated nucleon res-

onance spectra. That is to say, some excited baryons are included and other

baryon resonances are not.

The information from different groups is collected in the particle data group
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report and each possible resonant state is assigned with a number of stars ranging

from 4 (****) to 1 (*). An overall status of **** or *** is considered to be

established resonances; these come from data sets that include both differential

cross sections and polarization observables and are confirmed by an independent

analysis. A status of * and ** is given to all other signals. The table shown

in figure 1.2 presents the Breit-Wigner masses and widths of N resonances [4]

calculated from different partial wave analysis groups. Note that the region from

1.8− 2.2 GeV is poorly understood and needs to be studied in more detail.

Fig. 1.2. Breit-Wigner masses and widths of N∗ resonances. Table taken from
[4] with permission.

Furthermore, for processes with spin, we will need measurement of observ-

ables coming from a polarized beam and a polarized target towards obtaining a

complete measurement of all the helicity amplitudes.
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1.1.1 Photoproduction of Vector Mesons

The quantum numbers associated with the photon are the same as the unflavored

vector meson. For energies close to the threshold, which is the energy range

studied in this thesis, three major mechanisms contribute to the cross section:

• Natural parity t-channel exchange or pomeron exchange,

• t-channel pion exchange,

• s-channel resonance excitation.

Fig. 1.3. Main mechanisms in the ω photoproduction using real photons. From
left to right: t-channel pomeron exchange, t-channel pion exchange, s-channel
N∗ resonance.

For energies near threshold, the leading term in the cross section for the photo-

production of vector mesons using real photon probes is natural parity exchange.

This is evidenced by the typical diffractive behavior through exponential fall-off

of the cross section. The t-channel pion exchange is expected to be large because

of a large ω → π0γ coupling. Finally, the most relevant in the context of baryon

spectroscopy, which is the main focus of this thesis, is the s-channel contribu-

tion. In the next chapter, we will discuss not only the previous experimental
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data, but also their interpretation and the N∗ contributions that these data have

suggested.
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Chapter 2

Photoproduction of ω Mesons

The ω meson is the channel that we take under consideration for this work. It is

a vector meson with quantum numbers IG(JPC) = 0−(1−−). As reported in [5],

the weighted average of the mass is 782.65±0.12 MeV/c2, with an average width

of 8.49± 0.08 MeV/c2. The three main decay modes for this meson are:

• ω → π+π−π0 with a branching ratio of 89.2± 0.7%,

• ω → γπ0 with a branching ratio of 8.40± 0.22% and

• ω → π+π− with a branching ratio of 1.53±0.11
0.13 %.

I shall focus on the calculation of the beam asymmetry for the photoproduc-

tion of ω mesons off the bound proton inside deuterium using a linearly polarized

photon beam. This decay channel is of great interest in providing information

about N∗ resonances as ω is an isospin filter because ωN states can only be

produced by N∗ states with isospin I = 1/2 and not by ∆∗ states with isospin

I = 3/2. Furthermore, since its threshold is above the π and η photoproduction

thresholds, the information obtained from the ω meson channel can give infor-
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mation of higher mass resonances (i.e., the region where the proton spectrum is

less understood).

2.1 Vector Meson Photoproduction

In the reaction γp → pω we can have a total of 24 helicity amplitudes since we

can have three helicities for the vector meson and two helicities for the beam,

the target, and the recoil proton (3 × 2 × 2 × 2 = 24). There are 12 relations

between these amplitudes and one can reduce the number of independent complex

helicity amplitudes to 12 [6]. It is important to notice, as discussed in the previous

section, that the scattering amplitudes of different processes are very entangled,

thereby forcing us to require not only the amplitude but also the phase of the

scattering amplitudes. As a result, a total of 23 independent measurements have

to be measured to have a “complete” description of the vector meson. Although

such a complete experiment is not currently possible, polarization observables

will constrain the bilinear combinations of the helicity amplitudes and thereby

provide far more information that just from unpolarized cross sections. There

is another set of observables defined in the 1970s by Schilling [7] termed the

Spin Density Matrix Elements (SDMEs), which can be written in terms of a

bilinear combination of the helicity amplitudes. These observables are tied to the

polarization of the vector meson by understanding the decay distribution of the

ω meson.
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2.2 Previous Measurements for ω Photoproduction

The study of ω meson photoproduction has been a subject of study for around

50 years. It is important to note that 20 years ago this topic regained relevance,

given the great amount of data collected by modern experimental facilities around

the world. For a free proton target, experiments from SLAC and Daresbury in the

1970s [8] and from CLAS in 2003 [9] extracted the unpolarized differential cross

section for a kinematic region of ECM ∈∼ [2.5− 2.9 GeV]. The SLAC data were

produced using monochromatic photons from a backscattered laser beam, going

into a hydrogen bubble chamber. These two studies show a predominance of a

t-channel production mechanism for this energy region. For a larger kinematic

region including near-threshold energies, the unpolarized differential cross section

and the unpolarized SDMEs were extracted by the SAPHIR collaboration in 2003

[10], the CLAS collaboration in 2009 [11, 12], and CBELSA/TAPS in 2015 [13].

Each collaboration agreed on the importance of s-channel processes to describe

their data. The CLAS collaboration went a step further and performed an in-

dependent Partial Wave Analysis (PWA), where several additional resonances

were found to contribute to the process. There was good agreement between the

SDMEs from the two collaborations, but there is an energy-dependent disagree-

ment in the normalization for the differential cross section; this discrepancy has

not been resolved yet.

For polarized observables, the beam asymmetry Σ has also been extracted

from different experiments. The current published data from CBELSA/TAPS

collaboration in 2008 [15], the GRAAL collaboration in 2006 and 2015 [16, 17],

and the most recent and more precise data from CLAS in 2017 [14], all show the

same general angular dependence (see figure 2.1). This similarity means that the
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Fig. 2.1. Photon beam asymmetry Σ as a function of cos θCM for the reaction
~γp → ωp for photon energy Eγ ∈ [1.152, 1.876] GeV as reported in [14]. The
black squares are the result of CLAS 2017 study, it shows only statistical error
and not a 6% systematic uncertainty for each energy bin. The open red squares
are the results from the CBELSA/TAPS [15], the blue open open circles and the
red solid circles from the GRAAL 2006 [16] and GRAAL 2015 [17] respectively.
Figure taken from [14].

shape of the function describing the Σ(cos θCM) for a fixed energy bin is the same.

While the data from CBELSA/TAPS and CLAS are in agreement for most of the
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kinematic region, the two GRAAL results do not agree with each other or with

the CLAS data. The biggest discrepancy is given for intermediate angles, while

for the most forward and backward angles all of the measurements coincide with

a value close to zero.

Fig. 2.2. Beam asymmetry Σ as a function of θCM . The full circles represent the
free proton channel, the full triangles the quasifree proton in a deuteron target for
Eγ ∈ [1.18, 1.48] GeV. Only statistical uncertainties are shown in the figure and
reported in the paper. The lines represent the Zhao model described in [18–20].
Figure taken from [17].

All the measurements described above refer to ω photo-production off the

free proton. Finally, we compare our data with GRAAL [17], as GRAAL is the

experiment that has published data from photoproduced omegas from bound
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protons in deuterium. The GRAAL 2013 paper finds that the photon asymmetry

observable Σ to be the same for both the case of the free proton in hydrogen and

the quasi-free bound proton in deuterium (see Figure 2.2). We will note later that

the results of this analysis find that Σfree reported from the CLAS collaboration

2017 differs from Σbound presented in this work.
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Chapter 3

Experimental Layout

The Superconducting Radio Frequency (srf) Continuous Electron Beam Accel-

erator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility

(JLab) is a high-duty factor electron accelerator providing a multi-GeV electron

beam (see figure 3.1). The high-current, high-duty-cycle accelerator (section 3.1)

allows us to use electromagnetic probes to investigate the internal structure of

hadrons and nuclei. To determine an excited hadron reaction exclusively, we need

to efficiently detect the multi-particle final state over a large kinematic region.

The CEBAF Large Acceptance Spectrometer (CLAS), located in Hall B, is a large

acceptance detector capable of precisely detecting charged and neutral particles

(see section 3.3). The CLAS detector was designed to be able to operate with

both electron and photon beams. In this document, we describe data produced

using a linear polarized photon beam obtained via the coherent bremsstrahlung

radiation technique explained in the section 3.2.
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Fig. 3.1. Aerial view of the CEBAF at the Thomas Jefferson National Accelerator
Facility (JLab). Picture taken from [21].

3.1 Electron Beam

CEBAF can deliver a continuous wave electron beams to three different exper-

imental areas, Halls A, B and C, simultaneously. After the 12 GeV upgrade, a

fourth experimental area was added, Hall D. Since the data used in this work

were taken before the upgrade, we will only discuss the accelerator composition

for energies up to 6 GeV. CEBAF racetrack configuration (see figure 3.2) con-

sists of two antiparallel LINear ACcelerator (LINAC) segments (north and south)

connected by 9 recirculation beamlines allowing up to 5 passes. The beam cur-

rents supplied to Halls A and C range between 1− 200 µA , while for Hall B the

currents range between 1− 100 nA [21].
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Fig. 3.2. Experimental Layout of the CEBAF accelerator before the 12GeV
upgrade. Picture taken from [22].

Electrons are produced via photoemission using three independent radio-

frequency-gain switched lasers directed at a GaAs photocathode. Each electron

beam, one for each experimental hall, is generated at a 499 MHz frequency with

120◦ phase separation. The three beams are then combined in a 1497 MHz elec-

tron bunch train, and the bunch train is accelerated to 67 MeV. The combined

electron beam is then injected into one of the LINACs. Each LINAC contains

20 cryomodules, each one consisting of 8 superconducting niobium cavities. The

cavities inside the cryomodules were immersed in liquid helium at temperatures

of 2 K to ensure superconducting conditions. Microwaves are directed into these

cavities causing a charge gradient along the beamline (see figure 3.3). The mi-

crowaves must cycle the position of the charged regions 1.5 billion times per

second to ensure that the high-speed electrons from the beam have a positively

charged area ahead of them and a negatively charged area behind them (see figure

3.4).

Every time the beam passes through one of the LINACs, its energy will be
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Fig. 3.3. Photo of a Niobium Cavity.

Fig. 3.4. Charge distribution in the cavity.
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increased by 0.6 GeV. LINACS are joined by nine recirculation arcs. Depending

on the energy of the beam, 16 or 32 magnetic dipoles are used to bend the

electrons 180◦ (see a picture of the arcs in figure 3.5) around the racetrack. When

the electron beam has reached the desired energy, it is finally extracted for each

of the experimental halls, individually, using a system of five warm sub-harmonic

RF separator cavities operating at 499 MHz. For this thesis, we will focus on

experimental setup in Hall B. In particular, we will describe the subsystem within

the CLAS detector (see section 3.3 below) used for the g13b run period specified

in section 3.4.

Fig. 3.5. Picture of the magnets in the arcs at Jefferson Lab.

3.2 Coherent Bremsstrahlung Facility

3.2.1 Coherent Bremsstrahlung

The bremsstrahlung technique is used for photon-induced experiments at Hall

B in JLab. It consists of the high energy electron beam interacting with the
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magnetic field of a radiator’s nuclei. This interaction causes a deceleration of the

electron, leading to the emission of a photon. A small amount of the momentum

(called recoil momentum) will be transferred to the nucleus to ensure conservation

of energy and momentum of the total system. The spectrum of the emerging

electrons is not monoenergetic, but it is proportional to 1/Eγ, where Eγ is the

energy of the photon. Three main possibilities are currently used for photon beam

experiments: unpolarized, circularly polarized, and linearly polarized. Each one

of these possibilities allows us to extract different physics observables. Depending

on the type of radiator and whether or not the electron beam is polarized, we can

obtain one of these possibilities. In particular, the g13b experiment uses what is

called Coherent Bremsstrahlung (CB) to produce linearly polarized photons.

When the direction of incidence of an unpolarized electron traveling through a

crystal is close to a direction of major crystal symmetry, the transition amplitudes

from the bremsstrahlung may interfere constructively (the amplitudes add up

with definite phases) [23, 24]. More specifically, two conditions imposed in the

recoiled momentum have to be satisfied to obtain CB:

1. “pancake condition”: which imposes the longitudinal (ql) and transverse

(qt) components of the recoil momentum to be in a pancake-shaped region.

These limits come from both kinematic restrictions and the fact that the

bremsstrahlung cross section decreases rapidly with increasing recoil mo-

mentum. A good approximation of the pancake restrictions is presented in

the following relations,
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δ ≤ ql ≤ 2δ, (3.1)

0 ≤ qt ≤ 2x, (3.2)

with δ(x) ≡ qmin
l =

1

2E0

x

1− x
, (3.3)

where x = Eγ
E0

is the fractional energy of the photon, E0 is the energy of the

electron beam.

2. The Laue condition, where the recoil momentum direction has to coincide

with the direction of a reciprocal lattice vector.

Fig. 3.6. Energy spectrum of linearly polarized photons, showing the coherent
enhancement over the incoherent background. Data were taken during the g13b
experiment, for a coherent edge of 2.1 GeV.

As a result, the total spectrum consists of a coherent enhancement on top

of the incoherent, 1/Eγ spectrum (figure 3.6). The relative intensity plot (or

enhancement) shows the ratio of the total coherent spectrum produced using the

diamond radiator, and the incoherent energy spectrum from the carbon radiator

(see figure 3.7). The most prominent peak corresponds to photons with highest

linear polarization and is referred to as the primary “coherent peak”. The lead-
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ing edge of the coherent peak is called the “coherent edge”. For fixed electron

energy, the position of the coherent peak is precisely adjusted by aligning the di-

amond radiator axis to the electron beam. In the next section, the high-precision

goniometer used for this alignment is described.

Fig. 3.7. Typical enhancement plot. Taken from [25]. Copyright 2018, with
permission from Elsevier.

3.2.2 Diamond Radiator and Goniometer

In the g13b experimental period, the radiator was a 50-µm diamond positioned

22 m upstream of the tagger. The experiment also collected a few unpolarized

photons using an amorphous radiator. All these radiators were mounted in a

target ladder located in the center of a high-precision goniometer (see appendix

A from [26]). This apparatus was designed to accurately align the diamond, al-

lowing control over five independent degrees of freedom: three rotational and two

translational (See figure 3.8). The goniometer had an angular accuracy between

0.7 − 1.3 µrad and a translational accuracy between 25 − 180 µm. In the g13b

experiment, the electron beams were varied between 3.3− 5.5 GeV producing six
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coherent peak positions ranging from 1.1 to 2.3 GeV. The width of the coher-

ent peak was typically 200 MeV with a maximum polarization in the primary

coherent peak of ∼ 90%. For each subset of data with a different coherent peak

position, the direction of the electric field of the photon was set to two orthogonal

orientations: parallel (PARA) and perpendicular (PERP) relative to the floor of

Hall B.

Fig. 3.8. Goniometer
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3.2.3 Active Collimator

While the angular distribution of incoherent bremsstrahlung photons is indepen-

dent of the photon energy, the angle of the polarized photons is directly correlated

to the relative photon energy, x, and decreases with increasing photon energy. The

expression for the reduced angle, θ̄, in units of characterization angle is

θ̄ =
1− x
x

xd
1− xd

− 1, (3.4)

where xd =
2Einql

m2
e c3+2Einql

is the fractional energy. The characteristic angle θ∗ is

given by

θ∗ =
mec

2

Ein

, (3.5)

where Ein is the initial energy of the electron. An active collimator placed down-

stream of the photon tagger was used to reduce the incoherent radiation, enhanc-

ing the coherent part of the distribution. The photon beam must be collimated

with a 2 mm aperture, for a collimation of half the characteristic angle [27], in

order to achieve a beam polarization with an average of 70%. Finally, it is im-

portant to note that the degree of linear polarization, which is fundamental to

extract certain polarization observables, cannot be directly measured. This value

was obtained by using an analytic expression, using the parameters extracted by

fitting the enhancement with a model that takes into account all the relevant

parameters.

3.2.4 Photon Tagger

The photon tagger [28] aims to tag the energy and time of the bremsstrahlung

photons while deviating the electrons away from the beamline. The energy of
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the photon Eγ can be determined from Eγ = Ein − Eout − Erec, where the Ein is

the energy of the incident electron, Eout is the energy of the outgoing electron,

and Erec is the recoil energy 1. Since Ein is a known quantity determined by the

accelerator and Erec is negligible, the only unknown energy to calculate Eγ is the

scattered electron energy. By tagging the time and energy of the outgoing electron

using momentum analyzing dipole magnet and hodoscope, we can identify the

energy of the photon on an event-by-event basis .

For the energies used in the g13b experiment, the characteristic angles of both

electrons and photons are smaller than 0.15 mrad, which means that both the

electron and photon are approximately still moving along the beamline. The

beam at this point is composed of scattered and unscattered electrons, and the

bremsstrahlung photons. The electrons are deflected by a magnetic field that is

tuned to deflect the unscattered electrons into a shielded beam dump located in

the floor of the hall. On the other hand, the scattered electrons deviate to a

hodoscope with the first plane of E-counters and the second plane of T-counters

as shown in figure 3.9. Knowing the magnetic field and the radius of curvature

of the electron allows us to calculate its momentum and energy.

A precise and accurate determination of the position of the intersection of

the electron trajectory and a plane (E-counter plane) is fundamental in order to

extract the radius curvature. The hit position in the hodoscope is determined by

384 scintillator paddles, each 20 cm long, 4 mm thick and 6− 14 mm wide. The

variation in the width takes into account the variation of the momentum of the

electrons, providing a broad tagging range between 0.20−0.95 Ein . The paddles

overlap by one third of their widths on each side, creating 767 channels with a

final resolution of ∼ 10−3Ein.

1The recoil energy is the energy transferred to the crystal radiator.
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Fig. 3.9. Photon tagger.

Similarly, the T-counter plane contains 61 scintillator paddles, each 2 cm

thick. The T-counter plane is positioned parallel to the E-counter plane, and the

former sits 20 cm behind the latter. To maintain a uniform counting rate, the

widths of the scintillators vary to compensate for the 1/Eγ distribution of the

incoherent bremsstrahlung. The T-counters slightly overlap, creating a total of

121 channels with a time resolution of 110 ps [28]. Furthermore, the T-counters

use two PMTs at either end for better timing resolution.

3.3 CLAS Detector

The CEBAF Large Acceptance Spectrometer (CLAS) is devoted to studying nu-

clear and hadronic reactions produced from both electrons and photons by detect-

ing the final-state particles. For charged particle detection, it provides coverage

of almost the full 4π solid angle. CLAS is located in Hall B at Jefferson Lab, and

it is composed of several detector subsystems within a toroidal geometry. The

torus consisted of six superconducting coils that produced a nonhomogeneous

magnetic field that allowed it to bend charged particles. Each one of the super-
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Fig. 3.10. Experimental Layout of the CLAS detector before the 12GeV upgrade.
Picture taken from [22].

conducting coils divided CLAS in six independent sectors [22]. The real photon

experiments used four major subsystems: STart counter (ST), Drift Chambers

(DC), Time of Flight (TOF) scintillators and Electromagnetic Calorimeter (EC).

The Cherenkov counters (CC) are not used for photon-induced experiments since

CC’s primary goal is to differentiate between electrons and pions. The sections

below present a description of the torus magnet and the detectors used in this

thesis.

3.3.1 Torus Magnet

The torus magnet is composed of six superconducting coils located around the

beamline and shaped in a toroidal geometry (figure 3.12). Each coil separates

the detector naturally into six independent spectrometers referred to as sectors.

The symmetry of the magnet provides large coverage while preserving a central
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field free region [22]. As a result, the largest component of the magnetic field

lies in the φ direction except for small deviations at the regions close to the coils

(figure 3.11).

The magnet’s dimensions are 5 m in diameter and 5 m in length. Each coil

consists of four layers of 54 turns of aluminum-stabilized NbTi/Cu conductor.

The coils are cooled to 4.5 K by a tubing system running super-critical helium

and are highly isolated to ensure and maintain superconducting conditions.

As described in the section 3.4, the magnetic field had a negative polarity at

a torus current of -1500 A. This is referred to as out-bending data meaning that

the magnetic field bent the negatively-charged particles away from the beamline

(and thus positive ones toward the beamline).

Fig. 3.11. a. Magnetic Field contour plot in the middle plane between coils. b.
Magnetic field perpendicular to the beamline and centered in the target. The six
coils can be seen in the intersection with the plane. Image taken from [22] with
permission.
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Fig. 3.12. Schematic view of the torus cryostat. Image taken from [22] with
permission.

3.3.2 Start Counter

The start counter is used only in real photon beam experiments. It is placed

around the target cell; therefore, it provides a fast input for the trigger. It also

records the initial time of every event generated in the target that set a trigger.

The determination of the start time, together with the time from the Time Of

Flight (TOF) subsystem, is used to calculate the time of flight of the outgoing

particles. The start counter is composed of 24 scintillator paddles, 4 for each

sector, arranged in a hexagonal configuration around the target cell. Each paddle

is a single continuous piece of EJ-200 scintillator, with a 502-mm straight section

referred to as the “leg” and a tapered end called the “nose” [29]. When a charged

particle passes through a scintillator paddle, radiated photons are induced from

ionization, and they are collected by photomultiplier tubes attached at the end

of each paddle.

The time resolution for the “leg” section is 292 ± 1 ps while it is 324 ± 2 ps

for the “nose” [29]. This resolution is sufficient to be able to identify the photon
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Fig. 3.13. Schematic 3D view of the start counter. The purple volume represents
the target cell. Image taken from [29] with Elsevier permission.

Fig. 3.14. Schematic cross section of the start counter subsystem. Image taken
from [29] with Elsevier permission.
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bunch that initiated a reaction.

3.3.3 Drift Chambers

The Drift Chambers (DC) form the charged particle tracking system [30]. This

subsystem is composed of 18 chambers, partitioned into three regions (R1, R2,

R3). R1 is located before the magnetic field, R2 in the magnetic field, and

R3 after the magnetic field in each sector (see figure 3.15). Each chamber is

composed of two superlayers of 6 wire-layers each and is filled with a mixture of

90% Argon and 10% CO2 gas. Six field wires surround a sense wire creating a

hexagonal cell. The field wires are set to a positive high voltage, while the sense

wire is maintained at a negative high voltage, producing an electric field. In each

region, the wires of one of the two superlayers are oriented axially relative to the

magnetic field direction, while the wires from the other superlayer are oriented

at a 6◦ stereo angle. Charged particles crossing the chambers ionize the gas (in

this case Argon). The electrons then drift, due to the electric field, toward the

anode, while positive ions will drift to the cathode. Near the anode, the electric

field is big enough for the electron to knock an electron from the molecules of the

gas. This secondary electron can also ionize molecules in its way to the anode,

and the repeated process forms an avalanche. CO2 serves as a quencher. When

the electrons reach the sense wire, the drift time can be measured, and hence the

distance of closest approach. This information together with the magnetic field

information is used to reconstruct the trajectory of the particles inside the drift

chambers. A resolution of δp
p
≤ 0.5% was obtained for a nominal value of electron

momentum of 1 GeV/c.
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Fig. 3.15. Schematic 2D view of the CLAS detector cut at the beamline high. It
shows a representation of two charged particles being detected. The dotted lines
represent the projection on this plane of the torus coils position. Enlargement
in the box exemplifies the hit pattern in the two superlayers of the region 3 of
the drift chambers. The hexagonal cells are discussed in more detail in the text.
Image taken from [30] with Elsevier permission.

3.3.4 Time of Flight

Fig. 3.16. TOF scintillator shell from one sector. Picture taken from [31] with
Elsevier permission.

The Time of Flight (TOF) [31] is an arrangement of 336 plastic scintillator

counters located 3.5 to 5 meters from the center of CLAS. The TOF subsystem

31



covers a polar angle of 8◦ ≤ θ ≤ 142◦. In each sector, the scintillator wall

consisted of four panels of 57 bars of different lengths and widths (see figure

3.16). The TOF provides information of the time it takes a particle to travel

from the reaction vertex in the target, through the DC, and then hit the TOF

scintillator paddles. Thus, the time of flight is calculated as the difference between

the time measured in the TOF and the time in the vertex. This information,

in combination with the path length provided by the DC, is used to calculate

the relative velocity of the particle which, in turn, is used for charged particle

identification. The scintillator fluoresces as it is excited by ionizing radiation

coming from a charged particle passing through the material. A good portion

of these photons are reflected through the light guides into the photomultiplier

tubes (PMTs) at each end. The overall time resolution is 150 ps.

3.3.5 Electromagnetic Calorimeter

The Electromagnetic sampling Calorimeter (EC) [32] was designed to accomplish

three main functions: to improve the efficiency of differentiation between electrons

and pions for energies above 0.5 GeV, to allow studies in the mass reconstruction

of neutral particles that decay in two or three photons, and to detect neutrons.

This subsystem was particularly relevant in this work because, to reconstruct the

π0 meson, coming from the ω meson decay (ω → π+π−π0), we have to detect the

two photons obtained in the decay π0 → γγ.

The EC is composed of alternating layers of the bc412 scintillator and lead

(Z=82) sheets; each sector has 39 layers with equilateral triangle shape (see figure

3.17). Each scintillator layer has 36 strips aligned with one of the sides, and each

consecutive layer is rotated 120◦. Three consecutive layers form a group of U,
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V, and W views, each containing 13 layers, providing information of the energy

deposited and the position. Each view is further subdivided into two regions:

inner (5 layers) and outer (8 layers).

Fig. 3.17. Deconstructed view of one of the electromagnetic modules. Image
taken from [32] with Elsevier permission.

When a particle hits a lead layer, it creates a shower which produces photons

in the scintillators. The light is collected by the PMT and sent to the ADC

(analog to digital converter) and to the TDC (time to digital converter) boards.

The sampling fraction, which is the fraction of energy deposited in the active

part of the calorimeter, is estimated to be 0.273. The energy resolution is ∆E
E

=

0.003 + 0.093√
E(GeV)

and the time resolution is about 600 ps for neutral particles,

which is ∼ 10% for 1 GeV.

33



3.4 The g13b Experiment

The CLAS g13 experiment was performed between October 2006 and June 2007.

The g13 running period had both linear (g13b) and circular (g13a) polarized

photon beams incident on a 40 cm liquid deuterium target [33]. The target is

described in the section 3.4.1. In this analysis, we will study the g13b experiment.

The linearly polarized photons were obtained via the bremsstrahlung process

with an unpolarized electron beam incident on a 50-µm diamond radiator. The

orientation of the diamond radiator (located in a goniometer) made it possible to

define the photon polarization plane and the energy of the coherent peak. The

range of energies of the incoming photons ranged from 1.1 to 2.3 GeV with the

coherent peak set every 200 MeV, for a total of 6 different settings. This was

obtained by changing the diamond orientation, and the relative energy of the

energy of the photon.

The collimation enhanced the polarization because the angle of emission of the

coherent bremsstrahlung is smaller than the one for the unpolarized background.

The polarization of the radiated photons in the coherent peak was estimated to

be between 70% and 90%. The electron bremsstrahlung technique is described in

detail in section 3.2. The beam current was 10 nA. The torus magnet was set to

bend negatively charged particles outward from the beamline, with a current of

−1500 A. A single sector trigger was used producing approximately ∼30 billion

events recorded on tape during the whole running period.

3.4.1 Target Cell

The Kapton target cell had a slightly conical shape (see figure 3.18) with a thin

aluminum window at the front. The target cell was designed to hold either liquid
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hydrogen or liquid deuterium using a cryogenic system.

The target was 40-cm long and had a maximum diameter of 4 cm. It was

located 20 cm upstream from the center of CLAS to maximize acceptance. The

length of the target ensured high statistics while maintaining a good rate of

photons in the tagger. The width of the cell provided coverage for the ∼ 1 cm

spread of the photon beam and minimal beam misalignment. Most of the runs

for the g13 run period used a liquid-deuterium target which has a density of

0.1625 g/cm2.

Fig. 3.18. Liquid-deuterium target cell. Picture taken from [34].

3.4.2 Trigger Conditions

Not all the information registered by each subsystem corresponds to an event

of interest. It is fundamental to establish an optimal trigger system to select

events of interest while minimizing the dead time. In general, CLAS has a two-

level hierarchical system [22]. The level 1 trigger allows the use of all available

prompt information coming from the PMT channels, while the level 2 trigger
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uses the slower track information from the drift chambers to determine whether

to write an event to the disk. The g13 experiment only used a level 1 trigger. In

particular, for the g13a run period, a two-sector coincidence between the ST and

the TOF was used. On the other hand, the g13b experimental period required

only one sector coincidence between the ST and the TOF.

3.4.3 DAQ

After the trigger conditions are satisfied, the data acquisition (DAQ) system

records the information onto magnetic tape. For the g13 period, the physics

events were recorded at a rate of around 10 kHz with a dead time of approximately

15%. In total, the number of events recorded for the g13a run period was ∼ 20

billion, while for g13b the number was ∼ 30 billion. The average size for each

event is around 2.5 kB, making a total of ∼ 130 TB dataset. These raw data

were recorded in Bank Object System (BOS) format, and each bank contains the

information of the particular subsystem position and electric signals ready for

off-line analysis. To extract physical quantities from these data, a complex and

multi-step process has to be performed. In the next chapter, we will discuss the

process of reconstructing a physical event.

36



Chapter 4

Data Analysis: Event

Reconstruction

4.1 Overview

The data coming from CLAS undergo a multistep process before being used in a

physics analysis. The “raw” data coming from the different subsystems first have

to be “cooked”; this means we have to calibrate each one of the subsystems. The

calibration is applied only for a selected number of runs and by iteration until the

data reach a stable value after which the calibration constants are frozen. After

this, data are available for reconstruction of physical quantities that will be used

to identify different channels. For this particular analysis, we have ~γd→ pω(n),

where the particle in the parenthesis denotes the “spectator”. In the spectator

model, it is assumed that the photon interacts only with one of the nucleons, in

this case the proton, while the neutron acts only as a spectator. It is in general

assumed the impulse approximation, implying that during the collision there is no

three-momentum transferred to the spectator. As a consequence, the momentum
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of the neutron in the final state corresponds to the Fermi momentum it had inside

the deuteron at the time of the interaction. Therefore, the neutron spectator will

have a momentum lower than ∼ 200 MeV, and it will not be possible to detect

it with the EC subsystem. Because of this, we have to identify all final state

particles from the decay.

This chapter explains in detail the method that we used to exclusively identify

γd→ ω p(n),

ω → π+π− π0,

and π0 → γγ

(4.1)

The branching ratio for the charged decay channel of the ω → π+π−π0 is 89.2%

and for the π0 → γγ decay is 98.8%.

This chapter explains in detail the method that we used to identify the final-

state particles of the decay described in equation (4.1) and the reconstruction of

the ω meson. The particles to be detected are five: the recoil proton, π+, π− and

two photons from the π0 decay.

4.2 “Cooking” and Detector Calibration

The information collected by the CLAS detector subsystems is transferred on an

event-by-event basis to a dynamic memory structure called BOS (Bank Oper-

ating System) ([35]). The BOS format consists of several banks1, at least one

per subsystem at this stage. The information included in the so-called “raw”

BOS files consisted of channel ID and values coming from the Charge to Digital

1In dynamic memory management field, the term banks refers to structures of similar data.
The banks that are the building blocks of the BOS [36].
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Converters (QDC) and Time to Digital Converters (TDC).

The “raw” data are then “cooked”, which is the process of data reconstruc-

tion using the software RECSIS (REConstruction and analySIS package [37]).

What this means is that the banks from the original BOS files are now translated

into physical quantities like momentum, position, energy, etc., and are stored

in new banks in the “cooked” BOS file. It is important to account for differ-

ences in the conditions during the whole experimental period by calibrating each

CLAS subsystem and the tagger. The complete data range was then divided into

subperiods where the experimental conditions were stable. For each subperiod,

a “golden” run was chosen for calibration in all the subsystems. For example,

figure 4.1 shows the start-counter-offset mean value and the standard deviation

σ for π− for an intermediate stage of calibration. The different color lines show

the subperiods for g13 and in the bottom the golden runs. The calibration from

the start counter will ensure that the mean value < 100 ps for all the runs while

maintaining the standard deviation of ∼ 400 ps.

The calibration of all the subsystems is done in a particular order, given that

some of the values from individual detectors are used in other calibrations. A

group of collaborators performed the calibration for each subsystem: Charles

Taylor and Danny Martinez from Idaho State University for the ST and TOF

calibration, Edwin Munevar and Nicholas Zachariou for the DC and tagger cal-

ibration and Paul Mattione for the EC. Their dedication to this work ensured

high-quality data for this analysis. After calibration, the set of “calibration con-

stants” is stored in a centralized MySql database and linked to RECSIS. Data

are then cooked and monitored again until the data reach a stable and acceptable

condition for physics analysis2.

2The “acceptable conditions” for data vary for each detector. For example, for the start
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Fig. 4.1. Start Counter offset for π− particles for an intermediate stage of the
Start Counter calibration. The figure shows the subperiod division, and the runs
that were chosen to be golden runs.
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The following is a list of banks that were used in the analysis and will be

referenced later in this thesis:

• EVNT: this bank has general information about the event after reconstruc-

tion.

• MVRT: primary vertex reconstruction calculation by assuming all the final

state particles coming from the target.

• EPICS: information about the coherent edge, the radiator, coherent plane.

• TAGR: information from all the incident photons as well as the electron

associated with each photon.

• ECPB: Electromagnetic Calorimeter information. This bank was particu-

larly used for the π0 reconstruction.

For more information on the bank structure of the BOS files, refer to reference

[35]. The “cooked” files are now analyzed with ROOT [39], a scientific software

framework developed at CERN. ROOT provides big data handling, powerful

mathematical and statistical tools, and data visualization.

4.3 Data Exclusion

The appropriate selection of good-quality data will translate into a reduction of

the systematic uncertainty. During the experimental period, some of the runs

were tagged as “junk” from the shift takers, or were taken from different studies

counter the mean value of the offset for protons, π+ and π− were asked to be less than 0.2 ns
while the sigma should be σ < 0.5ns. Monitoring plots were generated to check if these
parameters fulfilled these conditions for almost all the runs. These plots can be seen in reference
[38].
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and not for production. A list of “good runs” can be found in the g13 wiki

page. This list combines information from the logbook, the g13 wiki, the status

obtained from the database, and studies on the EPICs bank.

4.4 Skimming

4.4.1 First SKIM

Data at the cooking stage were filtered according to the minimum number of

tracks. This process is known as “skimming” and allows a faster data analysis

as it reduces the file size, by cutting out events that do not correspond to the

minimum track requirement. Three topologies were created and the one that was

used for this analysis required at least three tracks: one positive, one negative,

and one neutral (1pos1neg1neu).

4.4.2 Second SKIM

The second skim is a filter that was applied to the skimmed BOS files. This

time, the criteria for reducing the data are decay specific, and the skim process

retrieves only information that will be later used in this analysis. The resulting

root files have only events with the following requirements:

• Two tracks associated with positively charged particles, one track associ-

ated with one negatively charged particle and two tracks associated with

neutral particles. For all the tracks, a positive status on the EVNT bank

was required3.

3According to the dictionary for the BOS banks [35], an out of time particle will be given a
0 status on the EVNT bank.
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• The positive track with higher calculated mass is assumed to be a proton.

Therefore, the other track is assumed to be π+. All negative particles are

assumed to be π−, and all neutral particles are assumed to be photons.

• We perform a loose cut on the ∆β < 0.6 for the positively charged tracks.

∆β will be discussed below.

4.5 Particle Identification

After the initial cuts, the good tracks have to be identified as the particles in

the final state. In this section, the process to identify a proton, π+, π− and two

photons is described.

4.5.1 Charged Particles

The relative velocity β ≡ v
c

in the EVNT bank was calculated with the help of

the track length l and the time t values obtained from the TOF subsystem, and

the time, tev, of the event vertex; βmeas = l
c(t−tev)

. The difference between the

βmeas in the bank and the βcalc was calculated for the different tracks,

∆β = βmeas − βcalc, (4.2)

βcalc =
p√

p2 +m2
PDG

, (4.3)

where mPDG is the mass of the particle reported by the particle data group [5]

and p the momentum of the particle. A 3σ momentum dependent cut in the

∆β was performed to identify charged particles. The projections of the 2-D plot

∆β vs. momentum along the momentum axis were fit with a Gaussian. The
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µ± 3σ profiles were then fit with a polynomial function as described below. The

parameters extracted from these fits are then used to define the upper (µ + 3σ)

and lower limit (µ − 3σ) for the charged particle identification cuts. For large-

momentum and low-momentum bins with poor statistics, an extrapolation of a

0th-order polynomial was performed, taking the value of the closest momentum

bin that had good statistics. In figure 4.2, we can see the 2-D ∆β vs p plot. The

red lines represent the final cut to select the proton. Three regions were defined

based in the momentum of the track: for p < 0.26 GeV/c and p > 1.6 GeV/c

were defined with 0th order polynomial, while the central region was fitted with a

6th order polynomial. In the two plots on the right in figure 4.2, we can see more

clearly the fit for the middle region. The bands contaminating the sample can

come from different sources: out-of-time particles that correspond to a different

electron bunch, misidentified particles, and accidentals. As can be seen in figure

4.2, most of the background is cut out of the signal, although an additional cut

for out of time particles will be performed later in this analysis.

A similar analysis was performed for the identification of pions. The central

region p ∈ [0.2, 1.2] GeV/c was fit with a 8th order polynomial. The constants

are slightly different for π+ and π−, but the regions on momentum are the same.

The results for π− can be seen in figure 4.3 and for the π+ in figure 4.4.

The rest mass m0 of the particles can be determined as a function of the two

independent measurements, p and βmeas, as follows:

m2
0 =

(
p2

β2
meas

)
(1− β2

meas). (4.4)

The effect of the ∆β cuts on the mass-squared distribution can be seen in figure

4.5 for tracks with positive charge and figure 4.6 for negatively charged particles.
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Fig. 4.2. Proton identification. Top left figure is the ∆β vs p plot. The events
between the red curves, are considered π+. The two right plots show the fit for
the central region for µ + 3σ (top) and µ − 3σ (bottom), where µ and σ are
respectively the mean and the standard deviation of a Gaussian fit over each
momentum bin. The left bottom represents µ for each momentum bin.

The large peak at ∼ 0.02 GeV2/c4 corresponds to the pion, the peak around

∼ 0.9 GeV2/c4 in the positive corresponds to the protons. The red distribution

corresponds to the mass-squared distribution before the ∆β cut. A small peak

around ∼ 0.27 GeV2/c4 can be identified as K+ background 4.

4This peak can also be seen in the negative particles distribution, but it was largely atten-
uated after the second skim filter was applied.
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Fig. 4.3. π− identification. Top left figure is the ∆β vs p plot. The events between
the red curves, are considered π−. The two right plots show the fit for the central
region for µ + 3σ (top) and µ − 3σ (bottom), where µ and σ are respectively
the mean and the standard deviation of a Gaussian fit over each momentum bin.
The left bottom is the mean value for each momentum bin.

4.5.2 Neutral Particle Identification

Tracks with positive EC status and DC status = 0 were considered neutral parti-

cles. The separation of photons and neutrons is based on their relative velocities,

β
(n)
EVNT =

lEC

tEC − tγ
, (4.5)

where lEC and tEC are the path length and the time information from the EC,

and tγ, defined in equation (4.7), is the vertex time of the incoming photon.

The built-in particle identification from CLAS assumes neutral particles to be

photons if β
(n)
EV NT > 0.95 and its energy was considered to be pEV NT = EEC/c

with EEC = Etot/0.273. Etot is the total energy deposited in the calorimeter, and
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Fig. 4.4. π+ identification. Top left figure is the ∆β vs p plot. The events between
the red curves, are considered π+. The two right plots show the fit for the central
region for µ + 3σ (top) and µ − 3σ (bottom), where µ and σ are respectively
the mean and the standard deviation of a Gaussian fit over each momentum bin.
The left bottom represents µ for each momentum bin.

the constant is the sampling fraction explained in section 3.3.5. Figures 4.7 and

4.8 show the β(n) distribution for the two neutral tracks. In the left plot, the

broad distribution of the sharp peak around β ∼ 0.9 corresponds to the photons,

while the broad distribution peaking at 0.8 to the left is associated with neutrons.

The second plot to the right has a lower contamination from neutrons. This may

be due to the order in which the particles are written in the bank. For this work,

all the good neutral tracks with βEVNT > 0.95 were assumed to be photons. A

couple of corrections to the information of the neutral tracks were applied:

• Energy Correction. The momentum calculation is sensitive to the deter-

mination of the energy. For this analysis, we chose in the ECPB bank the

maximum value between ETOT and EIN + EOUT
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Fig. 4.5. Rest mass squared distribution for positive particles. In red the distri-
bution before ∆β cut and in blue after the ∆β cut. For further explanation refer
to the text.

Fig. 4.6. Rest mass squared distribution for negative particles. In red the distri-
bution before ∆β cut and in blue after the ∆β cut. For further explanation refer
to the text.
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Fig. 4.7. βγ1 . The events in blue are those that are considered photons, while the
distribution in red is cut out.

Fig. 4.8. βγ2 . The events in blue are those that are considered photons, while the
distribution in red is cut out.
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• Path Length Correction. The β as well as θ and φ are sensitive to the de-

termination of the path length. This information was directly recalculated

using the MVRT bank for the interaction vertex and the information of the

hit position from the ECPB bank.

4.6 Incoming Photon Identification

After obtaining the information on the properties of the particles in the final state,

it is necessary to select the correct incoming photon that started the reaction.

The photon beam produced via bremsstrahlung (as explained in 3.2) has the

same 2.004 ns structure as has the electron beam. In particular, for the g13b

experiment, an average of 14 electrons were detected in the tagger per trigger.

These in-time electrons produce an average of 14 candidate photons as can be

seen in figure 4.9. Other possible sources of electron hits in the tagger can come

from random background accidentals.

Fig. 4.9. Number of good photons per event.

The incident photon was identified by matching its time vertex, tγ, with the

time vertex of the particles, th. The calculation of the time of the hadron and
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the photon is as follows,

tγ = ttag +
z + zoff

c
, (4.6)

th = tsub −
lsub

cβcalc

, (4.7)

where tsub and lsub are respectively the time stamp and length from either the

start counter (SC) or the time of flight (TOF) subsystem. The zoff = 20 cm is

the offset between the center point of the CLAS detector and the center of the

target. The distribution of ∆tγh ≡ tγ − th shows a big peak centered around

zero and several small peaks every 2 ns corresponding mainly to events coming

from different RF bunches. To select the incoming photon candidates, a cut of

|∆tγh|< 1 ns was applied to the data in figure 4.10.

Additionally, some events had more than one photon in the same RF bunch

as shown in figure 4.12. Only events with one photon in the same RF bunch were

selected to avoid ambiguity. Before any cut, the estimate of the number of events

with just one photon is ∼ 68%.

4.7 Hadron Time Coincidence

The majority of the background from out-of-time particles was removed with the

∆β momentum-dependent cut. However, some of these particles lay underneath

the big peak around ∆β = 0. This can be seen in the ∆β vs momentum plot

as bands that cross the distribution centered at zero. In order to ensure that all

the charged hadrons were coming from the same event, we did a cut for the time
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Fig. 4.10. ∆tγπ− as a function of the π− momentum. The RF structure every 2
ns is clear in the figure.

Fig. 4.11. ∆tγπ− as a function of the π− momentum after cuts.

differences of the charged tracks with respect to the π−,

∆thπ− ≡ th − tπ− , (4.8)
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Fig. 4.12. Number of good photons per event that are in the same RF bucket,
that is, |∆t| < 1 ns.

with th the time of the hadron defined in equation (4.7). The cut was |∆tπ−p| <

1.2 ns and |∆tπ−π+| < 1.2 ns. In figure 4.13, we can see the two cuts performed

simultaneously marked by the red lines. The time of the π− hit was taken as a

reference time5, because having a negative polarity on the torus optimized π−

identification at low momentum.

Fig. 4.13. 2-D plot of ∆tpπ− vs ∆tπ+π− . The red lines represent the cut performed
|∆thπ−| < 1.2 ns.

5All the ∆t were calculated with respect to tπ− .
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4.8 Vertex Cut

The vertex information was taken from the MVRT bank, which calculates the

averaged reaction vertex using the information of all charged particles present

in the event. This bank is very accurate when two or more tracks come from

the primary vertex. The higher the number of tracks, the more accurate the

calculation of the event vertex. The lifetime of the ω meson as reported by the

particle data group [5] is 7.75 ± 0.07 × 10−23 s; this means that the assumption

of the two charged pions coming from the primary vertex is good. In the figure

4.14 is shown the z coordinate from the MVRT bank. The events in red are the

events excluded after this cut. No other cut was done in the x or y coordinate as

seen in figure 4.15.

4.9 π0 Reconstruction

The reconstruction of π0 was done by calculating the invariant mass squared of

the two photons, given by the expression,

m2 =
2Eγ1Eγ2

c4
(1− cosα), (4.9)

Where α is the angle between the two photons, and Eγ1(2) the energy in the

lab frame of the photon 1(2). The invariant mass squared distribution can be

seen in figure 4.16. In this plot, a clear peak can be seen around the nominal

value of the π0 mass squared over a smooth background. There is also a peak at

zero, which represents a nonresonant background, that is, two photons that are

produced in the decay, but do not come from a π0. The π0 events are selected by

fitting a Gaussian distribution to the m2(γγ) and applying a 3σ cut around the
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Fig. 4.14. z coordinate, with respect to the center of CLAS, of the event vertex as
found in the MVRT bank. The vast majority of the events are produced within
the nominal values of the target. The events in red are those that are cut out of
the data sample.

Fig. 4.15. y vs. x coordinate for the primary vertex from MVRT bank. No cut
was performed for these quantities.
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distribution centroid. The centroid is shifted ∼ 0.0007 GeV 2/c4 with respect to

the nominal value.

Fig. 4.16. Invariant mass squared of the two photons. The red lines mark the
cut. The green line indicates the position of the nominal value of the m2

π0 =
0.01822 GeV2/c4

4.10 Fiducial Cuts

The efficiency and reliability of the track reconstruction are reduced at the edges

of the drift chambers. It is also possible that the charged particles that hit the

support frames or the cryostats of the torus escaped detection completely. On

the other hand, the magnetic field close to the cryostats’ surfaces is not uniform,

making the task of mapping and modeling very difficult. Tracks coming from

those regions are associated with more significant systematic uncertainties in the

measured momentum. This uncertainty will propagate in the calculation of the

physical observables, increasing also their uncertainty. For these reasons, fiducial

cuts are applied to ensure the tracks are more reliable. The code used to perform

these cuts was developed by a collaborator, Paul Mattione, for the g13 group.
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4.11 Energy and Momentum Corrections

4.11.1 Energy Loss Corrections

Charged particles passing through a material, other than electrons and positrons,

lose energy primarily by ionization. The atomic electron collisions are in nature

a statistical phenomenon, but given that the number of collisions per path length

is large, the fluctuations in the total energy loss are small. This means that it

is possible to describe the macroscopic behavior by defining the average energy

loss per unity length, called stopping power dE
dx

[40]. The stopping power is

described by the Bethe-Bloch formula. In particular, the charged particles in

CLAS lose energy in their path from the primary vertex, passing through the

target material and target cell structure, the beam pipe, supporting structures,

the start counter, and the air gap between the start counter, and region one of

the drift chambers. From region one to region three, the reconstruction software

calculates the momentum pmeas without taking into account the previous energy

loss. The four-momentum is found by multiplying the measured momentum and

a factor which is different for each particle6:

PEloss
p = ζpP

EVNT
p ,

PEloss
π+ = ζπ+PEVNT

π+ , (4.10)

PEloss
π− = ζπ−P

EVNT
π− . (4.11)

PEVNT
i is the momentum of the i particle as found in the EVNT bank, PEloss

i is

the momentum after energy loss correction, ζi is the correction factor and i is the

6The Bethe-Bloch formula does not depend on the mass of the particles, but it does depend
on the momentum of the particle
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type of particle (π+, π−, proton). A collaborator, Eugene Pasyuk, developed a

program to account for this energy loss. The correction is on the order of a few

MeV. Figures 4.17, 4.18 and 4.19 give the relative correction, ∆p/p, for protons,

π+, and π− respectively.

Fig. 4.17. Relative momentum difference after energy loss ∆p/pmeas for the proton
after particle identification cuts.

Fig. 4.18. Relative momentum difference after energy loss ∆p/pmeas for the tracks
identified as π+ after particle identification cuts.

4.11.2 Momentum Corrections

After applying the energy loss corrections, momentum corrections for the charged

particles were applied. These corrections account for geometrical drift chambers

misalignments and inaccuracies for the toroidal magnetic field map. The correc-
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Fig. 4.19. Relative momentum difference after energy loss ∆p/pmeas for the tracks
identified as π− after particle identification cuts.

tions were calculated by applying kinematic fitting (see reference [41] ) of the

reaction γd→ ppπ− using data from g13a. The case in which all the tracks were

detected was compared with two topologies: γd→ pp(π−) and γd→ pπ−(p). The

information from the missing particle (denoted as (X )) was obtained via energy

and momentum balance. The corrections were then determined by calculating

the mean energy loss corrected tracks and the momentum of the missing parti-

cle. The error in the measurement of the track was largest for low-momentum

protons. The corrections applied to the subset of events with coherent peak of

2.3 GeV is shown in the figures 4.20, 4.21, and 4.22, for the proton, π+, and π−

respectively. For more details, see reference [42].

4.11.3 Incoming Photon Energy Corrections

As previously discussed in section 3.2.4, the energy of the incoming photon is

determined by knowing the energy of the electron beam and the energy of the

scattered electron. The latter is determined by knowing the magnitude of the

magnetic field and the hit into the physical paddle in the tagger hodoscope. A

study made by one collaborator, Mike Williams (see reference [43]), noticed a
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Fig. 4.20. Relative momentum difference after momentum correction ∆p/pmeas

for the tracks identified as protons.

Fig. 4.21. Relative momentum difference after momentum correction ∆p/pmeas

for the tracks identified as π+.

systematic shift in the photon energy value that is compatible with a gravita-

tional sag of some of the tagger components. The overestimate on the energy of

the electron produces an underestimate of the photon energy. A multiplicative

constant was calculated to correct this error and can be seen in figure 4.23.

60



Fig. 4.22. Relative momentum difference after momentum correction ∆p/pmeas

for the tracks identified as π−.

Fig. 4.23. Tagger correction accounting for the gravitational sag.

4.12 Missing Momentum Cut

The reaction ~γd → pω(n) is identified by using the kinematic information of all

the final-state particles. The only particle that is not detected, hence the particle

that is “missing”, is the spectator neutron, and its kinematics can be found by

conservation of four momentum. The missing momentum pX is calculated as
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follows,

pX = |~pγ − (~pp + ~pπ+ + ~pπ− + ~pγ1 + ~pγ2)| , (4.12)

where ~pi is the momentum of the detected particles after momentum and Eloss

corrections.

The signal events 7 that are considered so far can come from different sources;

one is the quasi-free (QF) ω photoproduction, and, on the other hand, processes

dominated by final-state interactions. The QF channel, which is the one that

is considered in this work, assumes that the spectator neutron does not interact

with any of the final state particles. What this means is that the momentum

of the spectator will be the Fermi momentum that it had inside the deuteron

at the moment of the interaction. By applying a missing-momentum cut for

PX(γd→ pπ+π−γγX) ≤ 0.2 GeV/c, the final state interaction contributions are

reduced.

4.13 ω Meson Reconstruction

After all the cuts described in this chapter, it is important to separate the back-

ground events from the signal events. This separation was achieved by analyzing

the invariant mass squared of the three pions m2(π+π−π0) and the missing mass

squared m2
X simultaneously. As it is possible to see in the figure 4.26 (left), it is

possible to distinguish three main regions: the signal region (the big peak), the

nonresonant background, and a small peak that is η background. It is important

to notice that the nonresonant background intersects with the signal region. For

each one of the photon energy subsets in g13b, we applied a missing-mass-squared

7These are events that do not come from background sources.
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dependent cut. The projection on missing mass squared bins was fitted with a

double Gaussian as seen in figure 4.24.

Finally, the µi±3σi for the ith bin were then plotted and fitted with a second-

degree polynomial as seen in figure 4.25. This cut, as can be seen in figure

4.26, removes the η background and the majority of the nonresonant background.

However, there are still some events under the ω peak. This issue will be addressed

in the next chapter.
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Fig. 4.24. Two-Gaussian fit to the projection of the invariant mass squared of
the three pions for different missing mass squared bins. The red lines show the
3σ cut.
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Fig. 4.25. 3σ cut around the centroid. In the two bottom plots, it is possible to
see the 2nd degree polynomial fit to the µ± 3σ.

Fig. 4.26. Invariant mass squared of the three pions m2(π+π−π0) vs. the missing
mass squared m2

X(γd→ pπ+π−π0X) before (left) and after the cut (right). This
is an example for the energy set with coherent peak at 2.3 GeV.
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Chapter 5

Data Analysis: Beam Asymmetry

After selecting the candidate ω photoproduction events, we then calculated the

polarization observable Σ that parametrizes the beam spin asymmetry. For this

work, we are using linearly polarized photons incident on an unpolarized target.

In this chapter, the methodology for the calculation of the observable is explained

in detail.

5.1 Binning

The kinematics of a two-body final state reaction can be completely described

by two parameters. In this work, the energy of the incoming photon Eγ was

chosen to be in the lab frame and the cosine of the polar angle of the ω meson in

the center of momentum frame (cos θωCM). The z-axis is defined by the incoming

photon direction (see figure 5.1).

Two energy bins were extracted for each coherent peak subset, with a width of

100 MeV, covering a total range from 1.1 GeV to 2.3 GeV. Although the energy

bins could overlap between subsets, this option was discarded because the degree
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Fig. 5.1. Schematic representation of the reaction γp→ pω in the center-of-mass
frame. The blue rectangle represents the decay plane, and its normal unitary
vector is defined by n̂ =

ẑ×pωCM
|ẑ×pωCM |

. The orange rectangle represents the polarization

plane for the incoming photon. The angle between the two planes is denoted as
β. Finaly, the θCM is the angle between the proton and the ω meson in the
center-of-mass frame. The z-axis is the direction of the incoming photon.

.

of linear polarization decreases as the photon energy gets farther from the energy

of the coherent edge (Ecoh). In particular, the degree of photon polarization

increases with the fractional photon energy x ≡ Eγ/E0, where Eγ denotes the

photon energy and E0 the electron beam energy. The figure of merit (FOM) is

defined as

FOM = LP 2, (5.1)

where L is the luminosity1, and P is the degree of polarization of that photon.

An event with lower polarization will not have as significant an impact on the

1The luminosity does not depend on the energy of the incoming photon, but on the beam
energy.
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Fig. 5.2. Difference between the cos θ generated with the Monte Carlo, and the
cos θ “detected” as a function of cos θCM. The top plot takes the information of
the incoming particles assuming the proton at rest. The bottom plot takes the
information from the final-state particles without any assumption.

FOM.

To accurately calculate the polar and azimuthal angle in the center-of-momentum

frame, the boost transformation was calculated with the final-state particles in-

stead of the initial particles. A Monte Carlo study of the uncertainty in the

kinematic variables coming from the resolution of the detectors was performed.

The conclusion of this study was that the uncertainty of the kinematic variables

due to the resolution of CLAS and the Fermi momentum was smaller than as-

suming the proton target was at rest, as can be seen in figure 5.2.

The cos θCM variable was divided in 6 bins as well. A total of 72 kinematic

68



bins were calculated and are reported later in this document.

5.2 Beam Asymmetry: the φ Binned Method

The polarized cross section for vector mesons can be written as,

(
dσ

dΩ
(Eγ, θ

ω
CM, β)

)
pol

=

(
dσ

dΩ
(Eγ, θ

ω
CM)

)
unpol

(1− PΣ cos(2β)), (5.2)

where
(
dσ
dΩ

)
unpol

is the unpolarized differential cross section, Eγ is the energy of

the incoming photon, θωCM is the polar angle of the ω in the center-of-mass frame

(see figure (5.1)), P is the degree of polarization of the photon, β = φ− ϕ is the

azimuthal angle between the polarization plane and the production plane, and Σ

is the beam asymmetry observable to be extracted; Σ is a dimensionless quantity.

The observable Σ can be determined in different ways: one can, for example,

perform a fit to the polarized cross section with a function similar to equation

(5.2). The problem with this method is that the unpolarized differential cross

section would have to be known precisely. Also, a very accurate study of the

acceptance would have to be done, since the φ distribution is very dependent

on the CLAS acceptance. A more standard way to calculate these kinds of

asymmetries is to calculate a ratio of linear combinations of the φ distribution for

two orthogonal data sets (for example, PARA and PERP).2 Taking the ratio of

the parallel and perpendicular distributions will serve to reduce systematic errors

as it will cancel out the acceptance dependence of the detector which is not a

function of the polarization.

2PARA (PERP) is short for parallel (perpendicular), which denotes the orientation of the
photon electric field with respect to the floor of the hall.
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For this analysis, we have used the calculation of the distribution Y,

Y ≡
(dN
dβ

)⊥ − (dN
dβ

)‖

(dN
dβ

)⊥ + (dN
dβ

)‖
. (5.3)

The azimuthal distribution of the events produced with linearly polarized

photons on an unpolarized target is

(
dN

dβ

)‖,⊥
∼ A(φ)F ‖,⊥

(
1− P ‖,⊥Σ cos(2β‖,⊥)

)
, (5.4)

where A(φ) is the acceptance of the detector, F ‖,⊥ is the flux of the incoming

photons, and P ‖,⊥ is the degree of polarization. For the PARA data set, we have

ϕ = 0, and for the PERP data set, we have ϕ = π/2, therefore, the yield in

equation (5.4) can be rewritten as a function of φ as

(
dN

dφ

)‖,⊥
∼ A(φ)F ‖,⊥

(
1∓ P ‖,⊥Σ cos(2φ)

)
. (5.5)

Using equation (5.5), the distribution Y described in equation (5.3) can be

rewritten as

Y =
1− FR +

FRPR+1

PR+1
2P̄Σ sin ∆φ

∆φ
cos (2(φ− φ0))

1 + FR +
1−FRPR
PR+1

2P̄Σ sin ∆φ
∆φ

cos (2(φ− φ0))
, (5.6)

with the flux ratio FR = F ‖

F⊥
, polarization ratio PR = P ‖

P⊥
, and average of the

polarization P̄ = P ‖+P⊥

2
. The φ0 parameter is introduced to account for the

offset of the photon polarization vector. sin ∆φ
∆φ

is a correction for the bin of width

∆φ.
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5.2.1 Parameter Optimization

Several studies have been carried out testing the φ-bin method ([44] [45]). Given

the statistical restrictions, it is necessary to fix the values of the most of the pa-

rameters to have a more accurate estimate of the observable Σ. These parameters

are:

• the offset of the photon polarization vector φ0,

• the flux ratio FR,

• the level of polarization ratio PR and the average polarization P̄ .

φ0 Offset

This parameter gives information about the offset in the alignment of the diamond

radiator in the goniometer. Since φ0 is a mechanical parameter, we do not expect

it to change during the experiment except for diamond realignments. Also, φ0

does not depend on the channel and can be extracted accurately from a high-

statistics channel from a fit on the asymmetry integrated over a large kinematic

region. The channel with very high statistics was the single-pion channel (γn→

pπ−) worked by collaborator Daria Sokhan. The value reported is a weighted

mean 0.03◦ ± 0.071◦ ranging from maximum values of ±2◦.

Photon Polarization

The degree of photon polarization has to be determined to fix the two parameters

PR and P̄ . The photon polarization was obtained by fitting the enhancement dis-

tributions with a realistic theoretical model of the coherent spectrum [46]. The
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enhancement distribution is a common quantity used in these types of exper-

iments, and it is calculated by dividing the coherent photon spectrum by the

incoherent spectrum obtained with an amorphous radiator (in this case, the car-

bon radiator). This quantity, since it is a ratio, removes systematic effects and

makes the determination of the photon polarization more reliable. The method

used for this calculation takes into account the electron beam energy, the smear

from beam collimation, beam size, fluctuations of the beam position and angle,

and multiple scattering [27]. In figure 5.3, it is possible to see a typical enhance-

ment distribution and a calculated degree of photon polarization. A program

calculating the degree of polarization of the photon, on an event-by-event basis,

was developed by the g13 collaborator Nicholas Zachariou. An overview of the

steps for the method used to calculate the level of polarization is given below:

• The enhancement is calculated by dividing the coherent-photon-energy spec-

trum by the incoherent spectrum. Event-by-event data were used to account

for the effect of collimation.

• The exact position of the coherent edge was calculated by fitting the en-

hancement in the region of the edge with a 3rd-order polynomial. The

energy equivalent to the biggest slope in the enhancement was chosen as

the energy of the coherent edge.

• Drift in the coherent peak position forced to bin the data as a function of

the beam position. The bin width was 2 MeV and the photon polarization

was determined for each bin.

• The function used to fit the enhancement distribution is characterized by

5 parameters. These parameters account for the angle between the beam
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and the crystal plane defined by the [022] direction, the beam divergence,

relative angle of collimation (in characteristic angle units), the smearing

factor for collimation, and the amplitudes of the discrete peaks. An initial

fitting for the coherent-edge-position bin with higher statistics was done to

fix two of the five parameters in the fit.

• The three floating parameters are calculated for the other coherent-edge-

position bins.

• The level of photon polarization is calculated by an analytic function using

the parameters extracted in the fitting routine.

• The level of polarization is then plotted as a function of the coherent edge

position for each E-counter. In order to remove statistical fluctuations, the

polarization is fitted with a 3rd-degree polynomial.

This method of determining the polarization is more accurate for E-counters

located close to the nominal coherent edge.

This information was then stored in tables that give the average degree of

linear polarization per run per E-counter. After the analysis cuts and event

selection, the polarization average was calculated for each energy bin (a bin width

of 200 MeV under the coherent peak) and for each set: PARA for those with the

electric field parallel to the lab floor, and PERP for those perpendicular to the

floor. The values calculated are shown in table 5.1. The errors associated with

the parameters reported in this section will be discussed in the next chapter.
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Fig. 5.3. Typical photon polarization (top) and corresponding enhancement dis-
tribution (bottom).

Eγ(GeV ) PR P̄

1.1-1.3 0.88 0.754
1.3-1.5 1.01 0.782
1.5-1.7 0.96 0.750
1.7-1.9 0.94 0.676
1.9-2.1 0.99 0.730
2.1-2.3 1.02 0.695

Table 5.1. Polarization ratio and polarization average for all energy subsets with
different coherent peak.
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Flux Ratio

The flux ratio determination is based on a fit of the Y distribution, equation (5.3),

with the function described in equation (5.6). Since the incident photon flux is

constant within each energy subset, the integration over the entire polar-angle

range and two bins in energy (200 MeV from the coherent edge nominal value)

will provide good statistics for extraction of the parameter and for reducing any

statistical fluctuations. An example of the fit performed is shown in figure 5.4

and the results are summarized in table 5.2. The statistics for this fit are larger

than those that were used to calculate the beam asymmetry; the reduced χ2 was

used to estimate the goodness of the fit. As can be seen in table 5.2, in general

the values for the reduced χ2 are around 1.

Fig. 5.4. Example of fit for 1.7 < Eγ < 1.8 GeV.

5.2.2 Dilution Factor.

The sample of the events, after all the cuts described in the previous chapter,

still contains some background. Two possible kinds of background could be under

the peak: polarized and unpolarized events. If the background is unpolarized,
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Eγ(GeV) FR χ2/NDF

1.1-1.3 0.485± 0.015 1.098
1.3-1.5 1.024± 0.015 1.325
1.5-1.7 1.198± 0.014 1.358
1.7-1.9 0.914± 0.009 0.875
1.9-2.1 1.056± 0.011 0.677
2.1-2.3 1.058± 0.012 0.727

Table 5.2. Calculated values for the flux ratio FR.

a dilution factor can be defined to understand how much the background will

“dilute” the results of extracting Σ. A background region was considered for

values of invariant mass squared larger than an upper cut. This cut was defined

before by the second-degree polynomial fitted over µi + 3σi, where µi and σi are

the mean and the standard deviation of the Gaussian distribution describing the

peak in the ith bin of missing mass squared, respectively . After calculating Σ

in the background region, we found it to be 0 within the uncertainty. This is to

say, the background is not polarized. To account for the remaining background

under the peak after the cuts described above, a dilution factor D was defined

for each energy subset,

D ≡
∑

i(Atot − Abkg)i∑
i(Abkg)i

,

(
dN

dφ

)‖(⊥)

signal

= D‖(⊥)

(
dN

dφ

)‖(⊥)

peak

,

where the sum
∑

i runs over all the missing mass squared bins, the region of the

signal defined as M2(π+π−π0) ∈ [µi − 3σi, µi + 3σi] and the background region

defined as outside of the signal region. Apeak can be calculated through integrating

the model or by integrating the histogram. The difference of the two methods

is shown in figure 5.5. It is important to note that although the difference in
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value of the dilution factor between the two methods is larger for the energy bins

corresponding to lower energies, it has minimal impact on the calculation of the

beam asymmetry as shown in figure 5.5. This is to say that the fits all agree

with each other. For this work, we chose to use the dilution factor calculated by

integrating over the histogram. The estimated values of the dilution factor are

summarized in table 5.3.

Taking into account the dilution factor, it is possible to rewrite the ratio Y

described in equation (5.3) as the ratio of the corrected distribution

Y ∗ ≡
D⊥(dN

dφ
)⊥ −D‖(dN

dφ
)‖

D⊥(dN
dφ

)⊥ +D‖(dN
dφ

)‖
. (5.7)

The error associated with the dilution factor parameter is discussed in the

next chapter (refer to section 6.5). Specifically in the regions of 1.1 to 1.7 GeV,

the dilution factor is small, meaning that there is a large number of background

events diluting the signal peak.

Eγ(GeV) D
‖
HISTO D

‖
FIT D⊥HISTO D⊥FIT

1.1-1.3 0.571 0.679 0.603 0.657
1.3-1.5 0.606 0.619 0.611 0.621
1.5-1.7 0.601 0.606 0.605 0.607
1.7-1.9 0.661 0.661 0.661 0.660
1.9-2.1 0.730 0.736 0.736 0.738
2.1-2.3 0.779 0.776 0.769 0.773

Table 5.3. Dilution factor for each energy subset for PARA and PERP polariza-
tion. HISTO and FIT stand for integration over the histogram, and integration
over the double-Gaussian model.
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Fig. 5.5. Fit for the asymmetry extraction. The red dots and fit are taken before
the dilution factor correction is applied. The blue dots and fit are calculated
after the dilution factor is estimated by integrating the histogram. The green
dots and fit are calculated after the dilution factor is estimated by integrating a
double-Gaussian-fit model to the background.

5.3 Statistical Uncertainty

The extraction of the beam asymmetry Σ uses a fit to the azimuthal yield ratios

(refer to equation 5.3) as explained in section 5.2. This type of experiment

has an intrinsic uncertainty because of the kinematical random nature of the

nuclear processes3, which implies that the number of counts in each kinematic

bin is a random variable. The Poisson distribution is typically associated with

counting experiments; this means that the uncertainty associated with a specific

ith kinematic bin is
√
Ni. The statistical uncertainty of the ratio, modified by

the dilution factor (refer to equation (5.2.2)), is calculated by propagating the

error of each bin, given by the expression,

σY ∗ =

2D‖D⊥
√

(dN
dφ

)⊥(dN
dφ

)‖
(
dN
dφ

)⊥ + (dN
dφ

)‖
)

D⊥(dN
dφ

)⊥ +D‖(dN
dφ

)‖
. (5.8)

3It is not possible to predict the kinematics value of the final-state particles.
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In equation (5.8), it is assumed that σ
‖,⊥
D = 0. The uncertainty coming from the

dilution factor calculation is included in the systematic uncertainties and will be

discussed in the next chapter. Furthemore, we shall assume that F ‖ = F⊥ and

P ‖ = P⊥ = P̄ . Again, the uncertainties from the photon flux ratio σFR and

the degree of polarization P̄ are ignored and will be folded into the systematic

uncertainties. Therefore, the statistical uncertainty in the asymmetry parameter

is,

σΣ =
σY ∗

P̄
. (5.9)

5.4 Results

After the optimization was performed for all the parameters, the Y ∗ distribution

defined in equation (5.2.2) was fit with the function described by equation (5.6).

The product of the average polarization and the beam asymmetry parameter,

P̄Σ, is the only parameter that is left to float. The φ binning for the azimuthal

distributions is a trade-off between describing the modulation correctly while

having decent statistics. The regions where the coils are located have very low

statistics and therefore have been excluded from the distribution. The bin width

∆φ was studied for three different scenarios: two, three, and four bins per sector.

The final binning choice was three φ bins per sector. In figure 5.6 it is possible

to see the fit applied to Y ∗ for the kinematic bin Eγ ∈ [2.1, 2.2] GeV.

Result4 for Beam Spin Asymmetry for 1.1 < Eγ < 2.3 GeV in energy

bins of ∆Eγ = 100 MeV was calculated. The results are shown in figure 5.7. The

blue triangles are the results of this work, and the red circles are those reported by

GRAAL 2015 [17] also on the quasi-free photoproduction. The green squares are

4CLAS preliminary result.
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Fig. 5.6. Fitting the modulation of the ratio Y ∗ for different kinematic bins in
cos θCM.
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the results of CLAS 2017 [14] reported for the photoproduction of the ω meson

off the free proton. The error bars reflect only the statistical uncertainty and are

calculated as indicated in equation (5.9).

Fig. 5.7. Result for Beam Spin Asymmetry for 1.1 < Eγ < 2.3 GeV in energy
bins of ∆Eγ = 200 MeV. The blue triangles represent this work (quasi-free
proton), the red circles represent the GRAAL 2015 [17] results for the quasi-
free reaction. The green squares are the results from [14] for the free-proton
channel. The blue line represents the Bonn-Gatchina prediction after including
the ω photoproduction data from CLAS 2017 [14] in their fit.

.
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Chapter 6

Systematic Studies

6.1 Overview

After the best estimate of the observable Σ, it is of fundamental importance

to quantify how good the estimate actually is. In general, there are two main

types of uncertainties associated with the experimental estimation of a value:

statistical and systematic. The statistical uncertainty has already been discussed

in the previous chapter, where it took into account the random nature of the

nuclear processes and the amount of events analyzed.

Systematic uncertainty, on the other hand, does not depend on the number

of events, and it accounts for biases from nonstatistical sources. This chapter

focuses on the quantification of the systematic uncertainties. We report each

source of systematic uncertainty separately.
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6.2 Goodness of the Fit

In order to account for the goodness of the fit, we calculated the normalized resid-

uals as seen in figure 6.1. The mean value for the distribution of the normalized

residual is expected to be around zero, which can be seen in the plots. We added

all the residuals for the six fits for each energy bin. In order to find the σ2, we

should fit a Gaussian to the normalized residual distribution for each energy and

cosine bin. The limitation with this calculation is that we have only 12 points

per distribution. The values for the σ2 are estimated to be, in general, smaller

than 1. This is attributed to the fact that we have limited statistics.

For the two lowest values for energy bin and the backward angles, we found

a bias. These two bins are the ones with the least statistics in all the data sets.

This matter must be studied before publication of the results found in this thesis.

Fig. 6.1. Normalized residuals distribution for each energy bin.
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6.3 Systematics of the Parameters

To understand the robustness and to identify possible biases of the estimate of

Σ, a detailed study of the sensitivity of the observable to the fit parameters

was reported in the CLAS note [45]. In general, ideal probability distribution

functions (pdfs) for PERP and PARA events were generated by sampling the

azimuthal pdf. In other words, events outside the azimuthal pdf were discarded.

These studies depend on the method and are not specific to a determined channel.

In this section, this work is summarized.

6.3.1 φ0 Offset

The systematic uncertainty in the φ-bin method1 associated with the goniometer

has been previously investigated for the φ-bin method. As described in reference

[45], studies using Monte Carlo-generated events with PARA and PERP polar-

ization were used to calculate the uncertainty in the method. By varying several

parameters such as Σ, φ0, and the number of events, the estimator of the total

systematic uncertainty was chosen to be the standard deviation of the observable

σTOT. The “experiment” was repeated for a constant value of φ0 to account for

statistical fluctuations, and the mean value was chosen to be the best estimate

of statistical fluctuation σSTAT. The σsys =
√
σ2

TOT − σ2
STAT was reported to be

of the order of 10−6. In this work, we shall use this value as our estimate. More

studies on the Σ dependency from the φ0 also carried out by our collaborator

Nicholas Zachariou (see reference [45]); all coincide with this general estimate.

1The name of the method comes from reference [45]
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6.3.2 Photon Flux

A study, similar to the one described for φ0, was used to determined FR. The

systematic uncertainty reported in reference [47] is

σsys
FR

= 0.073σfit
FR
. (6.1)

For this work, we report the systematic uncertainty for each data subset in table

6.1, with values of the order of σsys
FR
∼ 10−3. σfit

FR
used for this calculation are

shown in table 5.2.

Eγ(GeV) σFR
1.1-1.3 0.0011
1.3-1.5 0.0011
1.5-1.7 0.0010
1.7-1.9 0.0007
1.9-2.1 0.0008
2.1-2.3 0.009

Table 6.1. Calculated values for the systematic uncertainty related to the flux
ratio FR

6.3.3 Photon Polarization Ratio

The degree of photon polarization uncertainty affects two parameters, PR and P̄ .

The former is one of the parameters that is fixed in the fit, while the latter is a

multiplicative parameter that affects directly the value of Σ. Since the extraction

of both quantities comes from the same polarization tables, the calculation of the

two parameters is correlated. In an independent study [44], the estimate of the

uncertainty for the level of polarization is σP ∼ 7%. Since P is not the parameter

that is used directly in the fit, we have to propagate this error to calculate the
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uncertainty of the polarization ratio σPR and the polarization average σP̄
2. The

propagation of error of this value provides an expression for σPR ,

σPR = PR

√
(
∆P ‖

P ‖
)2 + (

∆P⊥

P⊥
)2 (6.2)

= 0.1PR. (6.3)

A similar study [47] as the previous two found that the uncertainty of the beam

asymmetry due to PR, σsys
PR

< 1%. On the other hand, the uncertainty of the

average degree of polarization is given by

σP̄ =
1

2

√
(∆P ‖)2 + (∆P⊥)2, (6.4)

∼ 0.05P̄ . (6.5)

The uncertainty reported in that work is σsys

P̄
= 5%, and we shall use this value

as our estimate.

6.4 Event Selection Systematic Uncertainty

Unlike the previous uncertainties reported above, the ones that are directly re-

lated to the event selection cuts are channel dependent. For the estimate of these

values, we did not make use of an event generator. Instead, the cuts were varied

from their nominal value to broader or tighter cuts. The beam asymmetry was

then calculated again leaving all the other parameters fixed. The total difference

∆Σ ≡ Σ∗−Σ between the value of the beam asymmetry calculated with different

cuts (Σ∗) and the beam asymmetry calculated with the nominal cuts Σ, was then

2It is important to note that σPR
, and σP̄ are the uncertainties that will be reported in this

work. The uncertainty of the level of polarization σP is an intermediate step
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fitted with a 0-degree polynomial. The value reported by the difference was then

selected as the maximum systematic uncertainty for that cut.

6.4.1 Neutral Particle Identification Systematics

The cut for neutral particle identification as a photon was done by asking the

relative velocity of both neutral tracks to be β > 0.95. For this study, we per-

formed a looser cut asking β > 0.9. The systematic uncertainty related to this

cut is reported as 0.017 , as can be seen in figure 6.2.

Fig. 6.2. ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut on
the neutral particle identification (βn < 0.9).

6.4.2 Incident Photon Identification

For this study, the cut variation was set to be ∆t < 1.2 ns as opposed to the

1 ns nominal cut. The difference is shown in figure 6.3 and the value reported is

∼ 0.001.
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Fig. 6.3. ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut on
the incoming photon coincidence time with π− (∆tγπ− ≤ 1.2 ns).

6.4.3 Out-of-Time Cut

Fig. 6.4. ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter cut on the
proton and π+ coincidence time with π− (∆thπ− ≤ 1.0 ns).

To estimate the systematic uncertainty associated with the out-of-time hadrons

cut, a variation was set to be ∆t < 1.0 ns as opposed to the 1.2-ns nominal cut.
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The change of the cut was applied simultaneously to ∆t(π−p) and ∆t(π−π+).

The difference is shown in figure 6.4 and the value reported is σ∆thh = 0.009.

6.4.4 z-Vertex Cut

Fig. 6.5. ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut on
the z coordinate of the primary vertex(−40 ≤ z ≤ 0 cm).

A broader cut for the coordinate z of the primary vertex was done. The

nominal values were instead taken into account, −40 ≤ z ≤ 0 cm. The ∆Σ

is shown in figure 6.5, and the absolute difference associated with this cut is

σz = 0.005.

6.4.5 Missing Momentum

The missing momentum cut is fundamental for identifying quasi-free events from

FSI dominated events. For this, a tighter cut in missing momentum PX <

0.15 GeV/c was chosen. The systematic reported here is 0.021 as seen in fig-

ure 6.6.
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Fig. 6.6. ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter cut on the
missing momentum (PX < 0.15 GeV/c).

6.5 Systematic due to Dilution Factor and In-

variant Mass Cut

Fig. 6.7. ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter 2− σ cut
on the calculation of the dilution factor.

The study of the systematic uncertainty related to the calculation of the dilu-
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tion factor is twofold; on the one hand, we have to estimate the error associated

with the way we calculated the parameter, and on the other hand, we have to

propagate this uncertainty into the σΣ. We performed a separation from the

background with a 2σ cut instead of the 3σ cut to separate the systematic uncer-

tainty from the statistical. This value accounts for the cut and the dilution factor

calculation. For example, for the energy bin corresponding to 2.15 ± 0.05 GeV

, the dilution factors for PARA and PERP with the 2σ cut are D‖ = 0.832 and

D⊥ = 0.825. These numbers are larger than the nominal values reported before

as expected3. The final systematic estimate is 0.010 as shown in figure 6.7.

6.6 Summary and Conclusion

The systematic uncertainty was calculated for different parameters, selection cuts,

and background subtraction. The parameter that most influences the uncertainty

is the determination of the degree of polarization with a value of 5% as explained

in section 6.3.3 . The uncertainties for each cut are minimal and are assumed to

be independent. However, this assumption is not correct for the calculation of

the dilution factor and the invariant-mass-squared cut. The uncertainty of these

two aspects is highly correlated and is calculated as one unique source of error.

6.6.1 Systematic Error Budget

Table 6.2 is a summary of our estimate for the systematic uncertainty found in

this work.

3As we us a tighter cut, the amount of events diluting the signal region should be smaller,
increasing the value of the dilution factor.
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Source of uncertainty |µ∆Σ|
φ0 offset 10−6

Photon flux ratio ∼ 0.001
Polarization ratio < 1%
Mean polarization 5%

Neutral particle cut 0.017
Incident photon identification 0.001

Out of time cut 0.009
z-vertex cut 0.005

Missing momentum cut 0.021
Dilution factor and 3− σ cut 0.010

Table 6.2. Summary of the estimated values for the systematic uncertainties re-
lated to different sources. As extensively explained in this chapter, the estimated
systematic uncertainties related with the kinematical cuts are averages of the
absolute difference of the parameter Σ and its variation.
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Chapter 7

Summary and Conclusions

In this work, we extracted the polarization observable Σ for the exclusive quasi-

free photoproduction of the ω meson off the bounded proton in deuterium. The

photon energy range spans from 1.1 to 2.3 GeV, for energy bins of 100 MeV.

Systematic studies to estimate the uncertainty are also included in Chapter 6.

The first visible remark is that the beam asymmetry is not 0 and it is negative

for most of the kinematic bins, which was expected, as was explained in Chapter

2. This fact is in agreement with s-channel contributions. The comparison of

my results with GRAAL (2015) [17] is shown in figure 5.7. Previous data from

GRAAL also for the quasi-free photoproduction are also plotted in figure 5.7,

represented as red circles. The blue triangles are the results of this thesis. There

is, in general, good agreement for the two first energy bins. However, for Eγ =

1.35 GeV and Eγ = 1.45 GeV, the GRAAL results are systematically smaller

than those presented here. On the other hand, our data are compared with the

photoproduction of the ω meson off the free proton1 reported by CLAS [14].

The values for this unbound channel are systematically larger in amplitude than

1The hydrogen target, where the proton is not bound to any other nucleons in the nucleus.
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the ones presented in this work. This suggests that nuclear effects like the off-

shellness of the proton, Fermi motion, or the nucleon binding could possibly

affect the polarization observable Σ. On the other hand, this could possibly

come from final-state-interaction corrections that have to be taken into account

even after the missing mass cut. CLAS 2017 [14] and GRAAL 2015 [17] are

also in disagreement with respect to the free proton (the free proton target from

CLAS is not shown here). There are no published data so far for the energy bins

from 1.95 GeV to 2.25 GeV for any experiment.

The blue line in figure 5.7 is the multi-channel coupled fit from the Bonn-

Gatchina collaboration. The results include many channels and observables. In

particular, the Bonn-Gatchina fit includes the free proton data from CLAS 2017

and predicts the values for the last three bins. The data for large energies will

be fitted to theoretical calculation and will offer a constraint on the Partial Wave

Analysis performed by various groups. This information, in time, will be a valu-

able input for the search of higher mass missing resonances.

This study will also help with a greater understanding of the quasi-free events,

which is of vital importance for the study of reactions with a bound neutron

target. In this case, it is not possible to compare with the free neutron, and

although in general we do not expect the quasi-free neutron to have exactly the

same effect in the Σ, the methodology will be similar.
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