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In paper /l/ the noncovariant classical nnd quantum 

theories of the relativistic string in a const~nt homogeneous 

electromagnetic field were constructed. The main difficulty 

encountered there was the proof of the relativistic 

invariance of obtained solutions in the quantum case. 

The usual method used in noncovariant quantization of 

the free string and based on the check of the Poincare 

algebra is inapplicable to electromagnetic field because it is 

unable to construct the conserved operators of the Lorent~ 

rotations. Therefore an attempt to consider this problem 

in the covariant formalism is natural. 

The action of the strine in the electromaenetic field 

FrvQC) has the form 

~f l/L,, 1 
.$= Jfitjd6 f-r[ (x;)J.- x~xL] -~xrx,Frv<x> j • 

t', 0 (I) 

where is the absolute value of charges at the ends of the 

string and r is a constant with dimension (., -2 • 

The variation of action (1) results in the equations of 

motion 

(2) 

and in the boundary conditions 

(J) 
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In addition the functions XrU~) as in the free 

str:l.n~:; case must obey the subsidiary conditions 

• I :/. 

(x:x),.O. (4) 

'i'he solution to Eqs, (2) and (J) can be eocpressed in 

terms of Fourier series 

. n.tr,,~, ) .. nr(6 
i, ·- ~ _, ~\.P·r -1 u~.T -t') 

x,c6;-c)=1,.r,f.:11.[cL,f'B ... Ct-DnCt+J>1p<Lnpe Jt (5) 

/1,#0 

. i -( 0 f i) f .B t +-Ci-f'Jnxf ... tr.rr-r-Jrrtrc6-r)) 

where 
f' _J:F. It 
.IfAV- r rv) ~-n,.. =~n,.,, f= O,i,1,3 J c/J,II = '-dvfiD. 

This solution describes the motion of the relativ:ll:stic 

string in such fields that 
i. w t 

detiiO-J)rll =dtill(i+f)rll== 1 ... ~)(H1-Et>-(j}(EHJ"0. 
suitable wben (+{E1 

... J. Specifically, the expansion (5) is not 

and H=O (see paper /l/ ), 
-1 

The expressions of the inverse matrices ( 1.- f ) and 
~ -J. 

( i - f ) in :3q. (5) are not re1quired 

belo\'1, nevertheless, we note that these matrices Welre 

obtained in paper 121 , 

'l'he substitution of the expansion (5) into ( 4) gives .... 
Ln.=fZcLn-mcJvm=O, n,sO,:!v.t, ... J (6) 

lrt=--
where 
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'c 

)·:" 

JvOJ=rJret-J}JFf} L.~~, .. L: 
Thus the subsidiary cond:llions (4) in terms of norm2l modes 

dv"' have the same form as in the free strinG casa /J/ , 

The canonical momentum of the string Jff = Ot/oxf 
according to Eq, (4) is 

j!f = f(~ + f_rvxv). 
Inserting (5) into (7) we get 

. ,.,. 
·- -~ -,;r 

Jfc6_r)= iif,f_CL +f}! dvnf e cos( f6). 

The canonical momentmn of the strine as a whole is 
t 

ny = ~cL6~C6_t)= "{.iifU+.f}rrL".f=O-/}Jf}. 
It was shown. in paper /l/ , that il.f is conserved if 

~v= const, Therefore defining the rest mass of the strinG 

with n, we obtain 

M 1=-ll~- ?et-Jtt~~R. 

The matrix polynomial [Ci-S.tfJ,v=C1-~f 1..-f 14J_fv 

(7) 

(8) 

(9) 

can be reduced to the squared polynomial with respect to the 

tensor of the electromagnetic field {fv , For this purpose 

we have to take into account that Jjv obeys its 

characteristic equation ( the Hamilton-Cayley theorem / 4/ ), 

This equation has the form 1'1 
" I ,_ A+ ,A -IL=O 

) 

where 
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.t 1 

IL =if~«fi.r.=i:(f) F.:ICFLK:: ~)(H.t_Et)' 

Consequently, 

and 3q. (9) reads 
~ 

I.a.)" -. .... ~.. 
r.~. = rt c E H ) • 

f-. Irf'- J.a. = 0 

1 
1 P. .t D M =-Pu .. I.r.)+(1+It) :fG}vlv. 

!low we use the subsidiary condition (6) for n. =0 

,_ .. -
~(J1!fvPv = P + f$' 1:.~-mdvm 

1?1#0 

Finally the squared mass of the string is 

1.. '"" ... 
M1~(i .. I1- I.r.)P + prU.-- I.)lct-mdvm. 

ln=-­
hl1'0 

(10) 

(11) 

It is interesting to observe in this equation the transition 

to the rree string case. After that the invariants It 
and It in Eq. (11) are equated to zero it is necessary 

to use again the condition (lo) which for -ftv =0 has the form 

1 .. -

p =-r¥ f.:f-md.-m . 
tn'#O 

Only now Eq. (11) reduces to the usual expression for the 

squared mass of the free string 

f.~ 6 

.,, 
•' ~\ ' 

1~ ( ·,.:,~ ',, 

~~·a I 
I 
) 

., 
,., ,, ,, 

·,1 

,:·II, ,: .. 

~~I .,~·:; 

? II 
.j 
I} 

.. -
M1= f$ Zdv-mtLm. 

m•-~ 
mto 

I 
(11) 

Let us go to the construction of the Hamiltonian 

formalism. The Lagrangian of the string in electrorna[',netic 

field (1) is singular. So there are constraints between 

canonical variables ><_tC6,l) and Jf!C6,t) 

.L_ I i. I .t 
~t"'Cf Jj-f_pvXv)+Xj=O) 

\1) -i J I I 0 
J,t"(f .J}-JjvXv)J= · 

The Hamiltonian constructed in accordance with the 

usual rules vanishes identically 

J{=Jix-£,s0. 
For the constrained systems the Hamiltonian formaljsm 

and the transition to the quantum theory were developed by 

Dirac 161 • The constraints (12) are primary constraints 

accordine to Dirac. Their Poisson bracket vanishes vreakly 

so these are first class constraints. There are nodher 

constraints following from the Lagrangian (1). As the 

Hamiltonian we have to take the linear combination of 

constraints (12) 
t 

H = f Sd6[ ltc6,r)'frc6}:) + l~.c&,t)~(&})] 
0 ) 

(12) 

where ~( and ~1 are arbitrary functions. This freedom 

can be used so that the equations of motion would be the most 

simple. As in the free string case we put lt=f, /1.=0 
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? [ -L I 1. 1.(] H=fSJ6 cr ~-J_pvxv)+Xy . 
0 

'i'he Ha.mil ton vari~tional principle 
't't ss .. s5Jr d6(Jix-'Jl)=o 
'tt 0 

results in-ihe equations of motion 

><1 == -a'1lra!t , 
- a(J"-) J!f=a6 g~ 

and in the boundary cond 1 tions 

~=0 
a~ ) 6=0 t ) . 

Equation (14) establishes the connection between 

canonical momenta .Jff and co-ordinates 7 

xJ = ()j -:frv~v . 
Inserting C1J) into (15) we get 

t =rf:,- (56- r f6vxv)J6JA. 

From Eqs. (17), (18) it follows that . .. 
><.! -x1 =D. 

The boundary conditions (16) with (17) take the farm 

XJ +ij6X~ =0 I 6= O.~ t. 
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(lJ) 

(14) 

(15) 

(16) 

(17) 

(18) 

So the equations of motion and the boundary conditions in the 

Haniltonian formalism are the same as those in the Lacranglan 

method. _:onsequently, we can use as the solutions for >:JCI>,L) 
and J!f<i>,t) the expansions (5) and (B), respecUvely. 

Substitution of Eqs. ( 5) and ( 8) :tnto (lJ) r;i ve s 

¥ $'I.·-
f-1 = z-Lo = t T Z dv-mrkm (19) 

m•-.,... 

Using the expanslons (5), (B) we sec that constra:Lnt s 

(12) reduce to Eq. (6) for the normal modes J...,fl., 

In quantum theory we postulate the followine commutation 

relations 

[o£. 171 ,J-,J:m am•ii,O J m+01 ·n,¢01 [ ~J p., ]" i. t.tv. (20) 

The commutators between ~J Pv an1l d-j are supposed 

to equal zero. These requirements are equivalent to the 

following commutators 

[ .Xy(6}))fvU;t)]= i. 6,rv ~(6-1> ') > 

[ ~C&,t)>Xvct;-r)J~ [ ~CP;r)J.Jivc&)·J]=O. 

As in the free strine case the quantum expressions for 

ln have to be taken in the normal product form 

i ·-Ln =I l :dvn-mcLm:- bn.,orU0) J 

IIJ:--
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where ci;(O) is the conGtant which appears via transition to the 

nonnal product in Lo • This constant must be introduced 

obviously into EqG. (11) and (19) for ML and H also. 

'i'hc Heisenberg equations for operators dv,., have 

the forlii 

J . [ H } nT d'l:dvn('L)= L- ,dvn(t) = -i ?;dvn('t). 

'Chercl'ore 
~ _, (, 1: 

d.n(r)=d...n(o)e • 
~ 

~~hu:~, the expansions (5) and (8) are valid also in the 

quantwn case. 

In quantum theory the subsidiary conditions (12) or (6) 

have to be imposed onto the state vectors 

[ Ln- bno~(o)1l"V) =O n ~o. 
' J 

(21) 

'fhese conditions have the same fonn as in the free string 

case !J! 

Now the problem is reduced to the proof of the 

absence of the negative norm states if ~q. (21) is satisfied, 

that is,the "no-ghost" theorem must be proved. 

/2/ The proof of this theorem for the free string cannot be 

applied in the case under co~~ideration, as the 

formula (11) for the squared mass of the string in electro­

' magnetic field and that for the free string (11 ) are essen-

tially different; also tlte expansions (5), (8) of .the 

canonical variables and J{f (6;!) J<yC6;r) differ in 

these cases. It may be supposed that for the "no-ghost• 
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theorem proof the OJ:lCrators analogous to the D:::;l."-oncr.:l.tO:"':; 

for t'tc free st:cin[; /J,7/ will be useful. 

The authors have a "[lleasure to thank :J.I.Blokhintsev 

and :r,J,.Chernikov for interest in the war!~; and stir.lUlat:tnc 

discussions. 
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