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In paper /1

the noncovariant classical and quantum
theories of the relat_ivistic sfring in a constant homogeneous
electromagnetic field were constructed. The main difficulty
encountered there was the proof of the relativistic
invariance of obtained solutions in the quantum case.
The usual method used in noncovariant quantization of
the free string and based on the check of the Poincare
algebra is inapplicable to electromagnetic field because it is
unable to construct the conserved operators of the Lorentz
rotations., Therefore an attempt to consider this problem
in the covariant formalism is natural. v

The action of the string in the electromagnetic field
Frv(") has the form
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where 7 is the absoclute value of charges at the ends of the

string and T 18 a constant with dimension ¢ .
The variation of action (1) results in the equations of

motion
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and in the boupdary conditions
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In addition the functlons Xr(41) as in the free

string case must obey the subsidiary conditilons

(x=X)=0. O
‘the solution to Bqs. (2) and (3) can be expressed in
terms of Fourier series
) 7?25 +T) uL-~é$49
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where
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PoT rV,O('-nF‘-‘d/n,‘,IU-"O,i,i,.’) , donu = vdono .
This solution describes the motion of the relativiistic
string in such fields that

det HCt-5pull =det It pul= (1)<H E)- (fjwcewo

Specifically, the expansion (5) is not sultable when Gt) =f
and H 0 ( see paper 2% ).

The expressions of the inverse matrices ( {~§ Sland
( {-fi f‘ in Bq. (5) are not regquired
below. Hevertheless,we note that these matrices were
obtained in paper 72/ .

The substitution of the expansion (5) into (4) gives

O
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where
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Thus the subsidilary cond#ions (4) 1in terms of normal modes
obn have the same form as in the frec string casc 73/ .

The canonical momentum of the string JI/4= 31/3:(/4
according to BEa. (4) is

=T Ol o X)), Q)
Inserting (5) into (7) we get
nF
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The canonical momentum of the string as a whole is

= i = + =(41- i
My §d5J/J,(6,z) VET U Ygrbep=t-§ ), B

It was shown 1n paper /Y , that nf 1s conserved 17T
E}v= const. Therefore defining the rest mass of the string
with nr we obtain

M=M= B - P ©

The matrix polynomial [({- fz) 1rv'({ if +f gﬂv
can be reduced to the sguared polynomial with respect to the
tensor of the electromagnetic field !}v . For thls purpose
we have to take into account that f}v obeys its
characteristic equation ( the Hamilton-Cayley theorem 4/ ).
This equation has the form /531
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where
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Consequently, j“+11f{ L,=0
and 2q. (9) recads
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Now we use the subsidiary condition (6) for M
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Finally the squared mass of the string is

1 m=e0e
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It is interesting to observe in this equation the transition
to the free string case. After that the invarlants L_
and I’_ in Eq. (11) are equated to zero 1t 1s necessary

to use again the condition (1lo) which for _f/“, =0 has the fomm
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Only now Eq. (11) reduces to the usual expression for the

squared mass of the free string
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Let us go to the construction of the Hamiltonian
formalism, The Lagrangian of the string in
field (1) is singular. So there are constraints between
canonical variables )3.(6,‘[) and J}(Q’L)

yi‘(T-@ ’,f}tv);v)l"' Xi}i =0 )
ff;‘ (T-L\qu '_frv)‘(v))flf =0.

The lamiltonian constructed in accordance with the

usual rules vanishes identically
H=Jix-&L =0,

For the constrained systems the Hamiltonlan formalism
and the transition to the quantum theory were developed by
Dirac /6/ o The constraints (12) are primary constraints
according to Dirac. Their Polsson bracket vanlshes weakly
so these are first class constraints. There are no cther
constraints following from the Lagrangian (1). As the
Hamiltonian we have to take the linear combination of

constraints (12)

L
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where 44 and (g_
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are arbltrary functions. This freedom

can be used so that the equations of motion would be the most

simple. As in the free string case we put 41-‘-1, l;’O
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‘the Hamilton varigtional principle

35=3§(h dé (Jx-H)=0
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results 1M the equations of motion
Xu=0%/3T

_ o/
Jp=56 ‘97;)

and in the boundary conditions

§3Z= 6=0 5.
Bxp 7 /

Equation (14) establishes the connection between

canonical momenta qu and co-ordinates {f
. -4_ /
T g
Inserting (13) into (15) we get
- ¢ "
Ty U= [ k).
From Eqs. (17), (18) it follows that
{r'-)3p==0.
The boundary conditioms  (16) with (17) take the form

X:F *_fjua)ZFOI =0, l.
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So the cquatlons of motion and the boundary conditions 1n the
Hamiltonian formalism are the same as those in the Lagrangian
method. Consequently, we can use as the solutions for fﬂogﬂ
and -ﬁ%(éf) the expansions (5) and (8), respectively.

Substitution of Bqs. (5) and (8) into (13) gives
gy, _ 1S
H-= ILO’TIZd-dem . (19
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Using the expansions (5), (8) we seec that constraluts
(12) reduce to Eq. (6) for the normal modes dn .
In quantum theory we postulate the following commutation

relations

[, ]z gm"'ﬂ, me0,n#0,[ Xy P,J=i Spw. (20)

)
The commutators between {P,I%/ and on' are supposed
to equal zero. These requlrements are equlvalent to the

followlng commutators
[xp6n),Iv8;0)]-18pv 866-¢7
[ Xu 40, % 62) [Jp0), 6] =0.

As 1n the free string case the quantum expressions for

Ln have to be takeh 1n the normal product form

1S .
La=% 2 idnmobm: = Snod@)
Mz-0o



where ob(0) is the constant which appears via transition to the
normal product in Lo « This constant must be introduced
obviously into Zgs. (11) and (19) for M* ana H  aiso.

The ileisenberg equations for operators obn have

the foru

d .
dt @)= L[ Hldm(i‘)l= -i l'fo(,,,(r)_

-ny
r1] -~ -L%r
Therefore , d‘n(f)zd’"(a)e
Thus, the expansions (5) and (8) are valid also in the
quantwa case,

In quantum theory the subsidiary conditions (12) or (6)

have to be imposed onto the state vectors

[La=Snod@l¥y=0, n20. )

These conditions have the same fom as in the free string
case /3/

How the problem is reduced to the proof of the
absence of the negative norm states 1f Bq. (21) 1is satisfied,
that 1s’the Mo-ghost" theorem must be proved,
The proof of this theorem for the free string /z/cannot be
applied in the case under consideration, as the
formula (11) for the squared mass of the string in electro-
magnetic field and that for the free string (11') are essen—
tially different; also the expansions (5), (8) of the
canonical variables {F(Qt) and WE}OQT) differ in
these cases. It may be supposed that for the "no-ghost®
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theorem prool the operators analogous to the DLTf—oncrators
/3577

for the free string will be useful.
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