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The beam c r i t e r i a  f o r  the SLAC beam switch- 
yard and the e f f e c t  of these  c r i t e r i a  upon a l ign-  
ment tolerances and placement of components i n  
the  switchyard a r e  discussed. The methods de- 
veloped i n  t h e  shop and i n  t h e  f i e l d  f o r  meeting 
the  s t r ingent  alignment tolerances are a l s o  
covered. 
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Introduct ion 

The a b i l i t y  of a beam t r a n s p o r t  system t o  
perform according t o  the  designer 's  spec i f ica t ions  
depends on how w e l l  the  i n s t a l l a t i o n  meets t h e  
alignment tolerances.  The alignment of a large 
beam t ranspor t  system is described i n  t h i s  paper 
with p a r t i c u l a r  reference t o  t h e  SLAC beam switch- 
yard. 1) 

The purpose of the  beam switchyard is  t o  de- 
l i v e r  t h e  e l e c t r o n  beam from t h e  Stanford two-mile 
l i n e a r  acce lera tor  t o  t h e  experimental areas. The 
switchyard cons is t s  of a n  e labora te  system of 
bending magnets, magnetic quadrupole lenses ,  pro- 
t e c t i o n  devices and diagnost ic  instruments.  These 
elements are pr imsr i ly  divided i n t o  two t ranspor t  
systems leading t o  the  two experimental areas .  
The two systems, labe l led  A and B f o r  t h e i r  r e -  
spect ive experimental a reas ,  have a common o r i g i n  
i n  t h e  beam l i n e  from the  acce lera tor .  A l i s t  of 
t h e  most per t inent  design parameters i s  contained 
i n  Table I. The problems of alignment are p r i -  
mari ly  those of meeting t h e  requirements s e t  
f o r t h  i n  Table I. 

The switchyard layout i s  s h a m  i n  Figure 1. 
The beam s i z e  and pos i t ion  i s  defined by c o l l i -  
rnators C-0 and C-1. A pulse  magnet bends the  
beam by 0 . 5 O  toward e i t h e r  t h e  A or the  B system. 
The b a s i c  opt ics  of both systems i s  shown i n  Fig-  
ure 2. 
image of the beam on the  plane of symmetry where 
t h e  s l i t  def ines  the  reso lu t ion  of t h e  beam. The 
bending magnetM-1 disperses  the  beam f o r  energy 
reso lu t ion  a t  the s l i t .  The symmetry quadrupole 
9-3 recombines t h e  d i f f e r e n t  momenta s o  t h a t  a f t e r  
passing through t h e  seconc? s e t  of bending magnets 
M-2, t h e  beam w i l l  be achromatic. The symmetry 
quadrupole Q-3 has l i t t l e  e f f e c t  on t h e  v e r t i c a l  
divergence of the  beam because t h e  v e r t i c a l  s i z e  
of the  beam i s  qu i te  sma1.l there .  The quadrupole 
doublet (Q-4 Q - 5 )  can be used t o  produce a near ly  
parallel beam or t o  g e t  a small spot  on some 
t a r g e t .  

The doublet (Q-1 Q-2)  forms a double 

Alignment Requirements 

Each b a s i c  t ranspor t  configurat ion i n  the  
switchyard l i e s  on a d i f f e r e n t  plane.  The e x i t  
beam l i n e s  are required t o  be horizontal ,  r e f e r -  
enced t o  l o c a l  gravi ty ,  i n  the  experimental a reas .  
The acce lera tor  a x i s  points  downward b y  4.74 
mi l l i rad ians  t o  the l o c a l  g r a v i t y  vec tor  a t  t h e  
beginning of t h e  switchyard. Exi t  beam l i n e s  f o r  
the  A and B systems and t h e  comon a c c e l e r a t o r  
l i n e  define t h e  two planes i n  which t h e  A and B 
system beams l i e .  These t i l t e d  beam planes a r e  
shown i n  Figure 3. A major p a r t  of t h e  alignment 

TABIB I 
Parameters for t h e  Transport System 

of t h e  SLAC Switchyard 

I e a s i l y  t o  40 GeV)  
Input  conditions: I 
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e f f o r t  i s  t a rge t ing  each component s o  t h a t  it can 
be aligned i n  i t s  respective t i l t e d  plane. 

The to le rances  reported i n  Reference 1 were 
ca lcu la ted  using the  e r r o r  ana lys i s  f ea tu re s  of 
TRANSPORT3, a computer program wr i t t en  e spec ia l ly  
with t h i s  problem i n  mind. 
most l i m i t  placement to le rances  a re  energy reso- 
l u t ion  ( see  Table I) and the  aper tures  of switch- 
yard elements dmbeam from the  element being 
aligned. 

Two c r i t e r i a  which 

The most r e s t r i c t i v e  t r a n s l a t i o n a l  alignment 
tolerance i s  +_ 0.025 c m  for t he  ho r i zon ta l  pos i -  
t i o n  of e i t h e r  element of quadrupole doublet 
( Q - 1  Q-2). 
quirement t h a t  the  beam must be centered a t  ( Q - 1  
9-2) or e l s e  the  doublet w i l l  bend the  beam and 
a f f e c t  the  accuracy of the  energy measurement. 

The most r e s t r i c t i v e  r o t a t i o n a l  alignment 

, 
This tolerance i s  based on the  r e -  

to le rance  i s  +_ 0.1 mi l l i rad ians  f o r  r o t a t i o n  
about t he  beam l i n e  a x i s  for magnets i n  the f i r s t  
bending group, M - 1 .  This r o t a t i o n a l  to le rance  i s  
necessary, because the v e r t i c a l  component of the  
bend must be small enough t o  allow the  beam pas- 
sage through the  magnet aper ture  of the  second 
bending group, M-2 and necessar i ly ,  t he  beam must 
pass wi th in  ? 0.06 cm of the  v e r t i c a l  cen ter  of 
t he  symmetry quadrupole, 61-3. 

Although most of the  o ther  to le rances  a r e  
numerically l a rge r ,  some of these a r e  j u s t  a s  
d i f f i c u l t  t o  achieve. For example, t he  switch- 
yard i s  about 300 meters long and some longi -  
t ud ina l  to le rances  a re  0.4 cm, or about 1 par t  i n  
105. 

Laser Reference Line 

An extension of t he  acce lera tor  l a s e r  a l ign -  
ment system4j5 provides a reference l i n e  through- 
out the  f i r s t  ha l f  of the switchyard. The func- 
t i o n  of t h i s  extension i s  t o  e s t ab l i sh  alignment 
t a r g e t s  whose pos i t ion  i s  considered known t o  
within ? 0.05 cm f o r  a l l  the t ransverse  pos i t ions .  
These wel l  loca ted  t a r g e t  pos i t ions  a re  then used 
t o  pos i t ion  the  components i n  the  beam l ines .  
Figure 4 shows a l a s e r  alignment t a r g e t  stand and 
a por t ion  of the  vacuum pipe through which the 
l a s e r  beam t r ave l s .  

The extension has a separate l a s e r  loca ted  
a t  the  end of a 25 cm diameter vacuum pipe which 
extends 250 meters from the  end of the  acce ler -  
a t o r .  Twenty alignment pos i t ions  a r e  along t h i s  
extension, each of which has a r e t r ac t ab le  l a s e r  
t a r g e t  whose pos i t i on  can be determined by an  
operator a t  the  beam in j ec t ion  end of the acce l -  
e r a to r .  The t a r g e t s  a r e  s imi l a r  t o  the t a r g e t s  
i n  the  60 cm diameter p i p  which i s  used f o r  the  
acce le ra to r  system. The 25 cm switchyard pipe i s  
t angen t i a l  t o  the  bottom of the acce lera tor  pipe 
at the  coupling between pipes. The o f f s e t  i s  re- 
quired because of the size of the  coll imators 
( see  Reference 6) which prevent use of a 60 cm 
l i g h t  pipe throughout -the switchyard. However, 
t he  reference l i n e  is  centered i n  the  pipe a t  the  

beam in j ec t ion  end, 3000 meters upstream, $0 there  
e x i s t s  a s l i g h t  slope t o  be compensated for i n  
measurements. 

Earth Curvature Effec ts  

The e a r t h  curvature a t  SLAC, 1.511 x 
radianslmeter,  w a s  determined through the  use of 
as t rogeodet ic  methods by the  U. S. Coast and Geo- 
d e t i c  Survey. Curvature, i f  disregarded i n  sur -  
veys over la rge  d is tances ,  can r e s u l t  i n  s i g n i f i -  
cant e r r o r s  i n  the  placement of components having 
small  alignment to le rances .  The possible e r r o r  
i n  e leva t ion  from t h e  beginning of the  switchyard 
t o  the  end s t a t i o n s  i s  5 mn, due t o  a change i n  
l o c a l  g rav i ty  reference.  

Two machine programs6 were wr i t t en  which com- 
pute the  p i t ch  and roll angles made by any com- 
ponent with the  l o c a l  g rav i ty  vec tor  a t  t h a t  com- 
ponent 's  p a r t i c u l a r  loca t ion .  I n  addi t ion ,  t he  
programs cmpute  the necessary tape  d is tances  r e -  
quired by alignment crews t o  pos i t i on  switchyard 
elements. 'The f i e l a  crews a r e  supplied with 
alignment values which cor rec t  f o r  t h e i r  using 
l o c a l  g rav i ty  a s  reference and f o r  s igh t ing  from a 
plane above the  beam component planes. 

Targeting 

A l l  instruments and magnets i n  the  beam 
switchyard a r e  processed through a spec ia l  op t i -  
c a l  too l ing  shop before i n s t a l l a t i o n .  The shop 
technicians mount too l ing  b a l l s  and t a r g e t s  on the  
e x t e r i o r  of t he  component t o  a l lm accurate place- 
ment of t h a t  component during i n s t a l l a t i o n .  Fig- 
ure 5 shows the  loca t ion  of the  d i f f e r e n t  t a r g e t s ,  
t oo l ing  b a l l s  and mirror stage assembly placed on 
a quadrupole magnet. The center  of the  mir ror  i n  
the mirror stage is  scr ibed  with a t a r g e t .  The 
f i e l d  bullseye t a r g e t  and the  center  of t he  mirror 
a r e  used by the  f i e l d  alignment crew t o  poin t  the  
Component i n  the cor rec t  d i r ec t ion .  The proper 
a t t i t u d e  i s  obtained by u t i l i z i n g  the  mirror stage. 
Elevation of the  component is  f ixed  with the  too l -  
ing  b a l l  mounted on the  mirror stage assembly. 

I n  the shop, t he  f i r s t  s t e p  i s  t o  loca t e  the  

The too l ing  
mechanical cen ter  of the  component by using spe- 
c i a l  j i g s  designed f o r  t h i s  purpose. 
b a l l s  and t a r g e t s  for use i n  the  f i e l d  a r e  then 
placed a t  spec i f ied  pos i t ions  r e l a t i v e  t o  t h i s  
mechanical center.  

Next, alignment angles are turned i n t o  the  
components by use of a clinometer having an accu- 
racy of two seconds. These a r e  the  angles by 
which a component must be ro t a t ed  about i t s  X and 
Z axes from a l e v e l  pos i t ion  t o  be properly t i l t e d  
f o r  i n s t a l l a t i o n  i n  the  switchyard. The computer 
programs mentioned above were used t o  compute the  
values of the alignment angles for the  beam switch 
yard components. The angles turned a r e  checked by 
measuring the  before and af ter  t i l t e d  pos i t ions  of 
four  too l ing  b a l l s  placed upon each corner of t he  
components which allows computation of the  turned 
angles . 
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Once t h e  angles a r e  turned,  a mirror  s tage 
assembly i s  secured t o  the  component a t  5 speci-  
f i e d  loca t ion  from the  mechanical cen ter .  A 
mirror  s tage assembly i s  shown i n  Figure 5 .  It 
i s  placed by use of an  overhead j i g  t r a n s i t  
posi t ioned from tool ing  bars  i n  t h e  laboratory.  
Af te r  t h e  mirror  s tage assembly i s  bol ted  i n t o  
place,  t h e  mirror  i n  the  assembly i s  s e t  l e v e l  by 
auto-col l imat ion from t h e  overhead t r a n s i t  and 
locked i n  place.  The c o r r e c t  tilt of t h e  com- 
ponent i s  guaranteed i n  t h e  f i e l d  by au to-col l i -  
mating on t h e  mirror wi th  a t r a n s i t  through holes  
i n  the  shielding blocks on the  second leve l .  The 
ti.lt i s  independent of curvature  e f f e c t s  as l o c a l  
g r a v i t y  reference i s  used i n  the  shop and i n  t h e  
f i e l d  t o  l e v e l  the  mirrors.  

Placement of Components 

The elements were posi t ioned in the  f i e l d  by 
placing then i n  the  proper pos i t ion  r e l a t i v e  t o  
w i r e s  s t re tched  between bending mgriet group 
v e r t i c e s .  These v e r t i c e s  were es tab l i shed  using 
t h e  laser l i n e  as t h e  b a s i c  reference l i n e .  Fig- 
ure 6 shows a plan view of the s t re tched  wires  i n  
the  beam switchyard area. 

These wires a r e  s t re tched  between s tands 
placed on t h e  shielding blocks, which are about 
t h r e e  meters above the  beam pipes.  Figure 7 
shows t h e  r e l a t i v e  pos i t ions  of t h e  f i e l d  a l i g n -  
ment crews and %he beam switchyard elements. 
Optical  instruments, J i g  t r a n s i t s ,  and s i g h t  
l e v e l s  are used t o  place the  components properly 
r e l a t i v e  t o  t h e  s t re tched  wires .  

The too l ing  b a l l s  placed on t h e  components 
in t h e  o p t i c a l  too l ing  shop were e i t h e r  placed on 
t h e  component i n  such a manner t h a t  they  would be 
under t h e  s t re tched  w i r e  o r  o f f s e t  a known d i s -  
tance from t h e  s t re tched  wire.  This i s  i l l u s -  
t r a t e d  i n  Figure 8. Invar  tapes  were then used 
t o  pos i t ion  components r e l a t i v e  t o  magnetic ver-  
t e x  points  by measuring t o  t h e  mirror  center  on 
t h e  components. 

Tape Bench F a c i l i t y  

The dis tances  along t h e  s t re tched  wires r e -  
quired for the  placement of components were 
measured using tapes  scr ibed a t  t h e  tape bench 
f a c i l i t y  which i s  located i n  one of t h e  acce lera-  
t o r  tunnel  accessways. The f a c i l i t y  i s  shown i n  
Figure 9. The tapes  a r e  scr ibed i n  the i r  f i e l d  
pos i t ions ,  i . e . ,  t h e  hor izonta l  cor rec t ion  f o r  
catenary sag i s  compensated f o r  b y  scr ib ing  t h e  
tape i n  thesaggedcondi t ion.  The f a c i l i t y  uses a 
master tape,  which i s  a s t e e l  t ape  ca l ibra ted  and 
c e r t i f i e d  by the National Bureau of Standards. 

The beam swiwhyard f i e l d  tapes  are invar.  
Invar  was chosen pr imari ly  because of i t s  low 

t h s m a l  expansion c h a r a c t e r i s t i c s .  The s t a b i l i t y  
of icvar under load, i . e . ,  tendency t u  creep, w a s  
invest igated and w a s  found t h a t  under l i g h t  t e n -  
s i l e  loads (10 pounds) the  average s t r e s s  l e v e l  
was 2000 l b f / i n 2  
a b l e  creep even when the  tape was under load 
continuously f o r  10 days with a n  average ambient 
temperature of 21.1' C .  In t h e  f i e l d ,  t h e  invar  
tape i s  supported i n  the same manner as on t h e  
tape bench. 

which did not  cause any measur- 

The techniques used allow scr ib ing  accuracy 
t o  within .076 mm and t h e  s t a b i l i t y  of t h e  tapes  
a f t e r  f i e l d  use has been excelLLent. Af te r  use 
t h e  tapes  show deviat ions of' less than  .076 mm 
froin t h e  original1.y scribed length.  
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Fig. 1. Component layout of the beam switchyard for the two-mile linear accelerator. 

Fig. 2. Schematic diagram of a typical achromatic 
bending system. 
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Fig. 3. Tilted planes of A and B Beams in the beam 
switchyard. 

Fig. 4. Alignment equipment on laser target stand. 



HERRMANNSFELDT E T  AL: PRECISION ALIGNMENT OF BEAM TRANSPORT SYSTEM 

FIELD MIRROR STAGE 
FIELD TOOLING BALL 
(ELEVATION PLACEMENT) \ (ATTITUDE PLACEMENT) 

,- 

FIELD BULLSEYE 
TOOLINQ BALL, 

MONUMENT 

LASER LINE 

.,' 
SHOP TOOLING B A L L  

END 
STATION 
MONUMENT 

Fig. 5. Alignment equipment on a quadrupole magnet. Fig. 6. Stretched wire layout for alignment of beam 
switchyard area.  
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Fig. 7. Alignment of beam switchyard components 
from second level shielding blocks. 
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Fig. 8. Targeting on beam switchyard components. 

INV3R TAPE SCRl6ER 

Fig. 9. Tape Bench Facility. 


