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Abstract

Higher-curvature theories of gravity are extensions of General Relativity (GR) that arise
in effective descriptions of quantum gravity theories, such as String Theory. While at
low energies the behaviour of the gravitational field in higher-curvature gravities is al-
most indistinguishable from the one predicted by GR, the differences can be dramatic in
extreme gravity scenarios, such as in the case of black holes (BHs). It is therefore an
exciting task to study how black hole geometries are modified by higher-curvature correc-
tions, with the hope that some problematic characteristics of BHs observed in GR could
be improved, providing hints on the effects of an underlying UV-complete theory of grav-
ity. However, there are some difficulties associated with higher-derivative theories, such
as the existence of instabilities, propagation of ghost modes, or simply the extreme com-
plexity of the differential equations governing the dynamics of the gravitational field. In
this thesis we identify a new family of higher-curvature gravities that avoid some of these
problems. Known as Generalized quasi-topological gravities (GQGs), such theories repre-
sent extensions of GR that are free of instabilities and ghosts at the linear level, and whose
equations of motion for static, spherically symmetric spaces acquire a sufficiently simple
form so as to allow for the non-perturbative study of black hole solutions. The simplest
non-trivial member of this family in four dimensions — and also the first one to be dis-
covered — is known as Einsteinian cubic gravity, and it will have a starring role in this
thesis. Besides the intrinsic interesting properties of GQGs, we argue that they capture
the most general higher-derivative correction to GR when field redefinitions are included
into the game. Then, we use these theories to study the non-perturbative corrections to
the Schwarzschild black hole in four dimensions and we focus our attention on the modi-
fied thermodynamic relations. The most impressive prediction of these theories is that the
Hawking temperature of static, neutral black holes vanishes in the zero-mass limit instead
of diverging — which is the answer predicted by GR. As a consequence, small black holes
become thermodynamically stable and their evaporation process takes an infinite time. In
addition, higher-curvature gravities find very rewarding applications in the Anti-de Sit-
ter/Conformal Field Theory (AdS/CFT) correspondence, a duality that relates a classical
theory of gravity in AdS space to a quantum field theory that lives in the boundary of
AdS. In this context, holographic higher-curvature gravities are useful toy models that we
can use, for instance, to extract general lessons about the dynamics of CFTs or to question
the generality of the predictions of holographic Einstein gravity. In this thesis we explore
the holographic applications of four-dimensional Einsteinian cubic gravity, which provides
a toy model for a non-supersymmetric holographic CFT in three dimensions. In addition,
we construct new Euclidean-AdS-Taub-NUT solutions, which are dual to conformal field
theories placed on squashed spheres. Using these results, we derive a universal expression
for the expansion of the free energy of three-dimensional CFTs on squashed spheres up to
cubic order in the deformation parameter.



Resumen

Las teorías de gravedad de orden superior en curvatura son extensiones de la relativi-
dad general que aparecen como descripciones efectivas de teorías de gravedad cuántica,
tales como la teoría de cuerdas. Mientras que a bajas energías el comportamiento del
campo gravitacional en las teorías de curvatura superior es prácticamente indistinguible
del predicho por relatividad general, las diferencias pueden ser dramáticas en situaciones
de gravedad extrema, como en el caso de los agujeros negros. Por lo tanto, es una tarea
apasionante el estudiar cómo las geometrías de agujero negro son modificadas por las cor-
recciones de curvatura, con la esperanza de que algunas características problemáticas de los
agujeros negros observadas en relatividad general sean mejoradas, indicando así los efectos
de una teoría de gravedad cuántica subyacente. Sin embargo, hay algunas dificultades aso-
ciadas a las teorías de orden superior en derivadas, como la existencia de inestabilidades,
la propagación de “fantasmas”, o simplemente la extremada complejidad de las ecuaciones
diferenciales que rigen la dinámica del campo gravitacional. En esta tesis, identificamos
una nueva familia de gravedades de orden superior en curvatura que son capaces de evitar
algunos de estos problemas. Conocidas como gravedades cuasi-topológicas generalizadas
(Generalized quasi-topological gravity, GQG), tales teorías representan extensiones de rel-
atividad general que están ausentes de inestabilidades y “fantasmas” a nivel lineal, y cuyas
ecuaciones para métricas estáticas y esféricamente simétricas adquieren una forma sufi-
cientemente sencilla que permite el estudio no perturbativo de soluciones de agujero negro.
El miembro no trivial más sencillo de esta clase de teorías (que fue el primero en ser
descubierto), es conocido como Einsteinian cubic gravity (ECG), y jugará un papel pro-
tagonista en esta tesis. Además de sus interesantes propiedades, argumentaremos que las
teorías del tipo GQG capturan la corrección de curvatura superior más general cuando se
tiene en cuenta la posibilidad de realizar redefiniciones de la métrica. Entonces usaremos
estas teorías para estudiar de un modo no perturbativo las correcciones al agujero negro
de Schwarzschild en cuatro dimensiones, prestando especial atención a la modificación de
las relaciones termodinámicas. La predicción más notable de estas teorías es que la tem-
peratura de Hawking de los agujeros negros neutros y estáticos tiende a cero en el límite
de masa pequeña, en lugar de divergir como predice la relatividad general. Como conse-
cuencia, los agujeros negros pequeños son termodinámicamente estables y su proceso de
evaporación conlleva un tiempo infinito. Además, las gravedades de orden superior en cur-
vatura encuentran aplicaciones muy interesantes en la correspondencia anti-de Sitter/teoría
de campos conforme (AdS/CFT en inglés), una dualidad que relaciona una teoría clásica de
gravedad en un espacio AdS con una teoría cuántica de campos que vive en la frontera de
este espacio. En este contexto, las gravedades de curvatura superior se pueden considerar
“modelos de juguete” holográficos que permiten, por ejemplo, obtener lecciones universales
acerca de la dinámica de las teorías conformes de campos, o poner a prueba la generalidad
de los resultados predichos por las aplicaciones holográficas de relatividad general. En esta
tesis, exploramos varios aspectos holográficos de Einsteinian cubic gravity, la cual propor-
ciona un modelo de juguete para una teoría conforme de campos no supersimétrica en tres
dimensiones. Además, construimos nuevas soluciones euclídeas tipo AdS-Taub-NUT, que
permiten estudiar teorías conformes de campos definidas sobre esferas aplastadas. Usando
estos resultados, deducimos una expresión universal para la expansión de la energía libre
de estas teorías en tres dimensiones hasta orden cúbico en el parámetro de deformación.
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1
Introduction

1.1 Higher-curvature gravity

General Relativity (GR) describes gravity as spacetime curvature. Einstein’s field equa-
tions, that rule the dynamics of the gravitational field, can be derived from the Einstein-
Hilbert (EH) action

S =
1

16πG

∫
d4x
√
|g|R , (1.1)

which is essentially the simplest non-trivial covariant action one can write for the metric
tensor. This beautiful theory has passed a large number of experimental tests and it is
broadly accepted as the correct description of the gravitational interaction. Amongst the
most impressive confirmations of GR predictions we must mention the recent detection of
gravitational waves coming from black hole and neutron star binaries [1–6] and the first
image of a black hole captured by the Event Horizon Telescope [7].

However, these experiments are only able to probe gravity in situations of relatively
small curvature, and there are good reasons to think that GR will be modified when the
curvature of the spacetime exceeds a certain value. One of these reasons is that GR seems to
be incompatible with quantum mechanics. In fact, the problem of reconciling the principles
of quantum mechanics with gravitation is a long standing one. The first attempts to apply
the standard quantization procedures to the Einstein-Hilbert action determined that this
theory is non-renormalizable [8–10]. As a consequence of this result, it is usually accepted
that GR should be regarded as an effective theory, since in that case renormalizability is
not necessary.1 An astounding example of this is provided by Fermi’s theory of beta decay,
which successfully describes the observed phenomena despite being non-renormalizable. It
was later understood that Fermi’s interaction arises from electroweak interactions mediated
by the W± bosons in the Standard Model. In the regime where energies are much smaller
than the mass of the gauge bosons, Fermi’s theory describes the phenomena of beta decay
with great accuracy, but deviations are found when the electroweak scale is reached. In a
similar way, General Relativity is expected to be an effective description of an underlying
UV-complete theory of gravity, and, consequently, it will be modified at some energy scale,
such as, for instance (but not necessarily), the Planck scale.

From this point of view, the Einstein-Hilbert action (1.1) would just be the lead-
ing term in an effective theory which is expected to contain additional subleading terms.

1However, GR could be non-perturbatively renormalizable, and this is the perspective behind the asymp-
totic safety proposal — see [11] and references therein.
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According to the prescriptions of Effective Field Theory, one should add to the action
all the terms that are consistent with the symmetries of the theory [12]. In the case of
gravity, we take the metric tensor gµν as the fundamental field, and our guiding principle
is diffeomorphism invariance.2 This means that the Lagrangian must be a scalar quantity
formed from the Riemann tensor and its covariant derivatives — which are the only tensors
one can construct out of the metric. In this sense, the Einstein-Hilbert Lagrangian is the
simplest possible choice — besides the addition of a cosmological constant — and the only
one that contains two derivatives of the metric. The additional terms we can include take
the form of higher-derivative operators, which provide a modification of GR in the UV.
The lowest-order terms of that type we can add are quadratic in the curvature, so that the
leading-order corrections to GR take the form

S =
1

16πG

∫
d4x
√
|g|
[
R+

1

M2
new

(
α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ
)

+ . . .

]
, (1.2)

Here we are assuming that the expansion parameter is some mass scale Mnew — the scale
of new physics — which should not necessarily coincide with Planck’s mass. Terms of
higher order in the derivative expansion are suppressed with higher powers of Mnew and
their effect is increasingly irrelevant in the IR. Therefore, higher-derivative gravities3 arise
naturally in the framework of Effective Field Theory, but we expect that a UV-complete
theory of gravity predicts which precise terms appear in this expansion. Nowadays, there
are several frameworks that attempt to unify gravity and quantum mechanics, but perhaps
the most prominent one is String Theory (ST) [17–21]. Although the underlying principles
of ST depart largely from a field theory formulation of gravity, it is a definite prediction of
this theory that, at low enough energies, gravity is described by the Einstein-Hilbert action
improved with higher-derivative terms [22–28]. Therefore, higher-derivative gravities stand
as valuable effective field theories that we can use to learn about quantum gravity effects.

From a different perspective, it is possible to consider higher-curvature gravities as
classical alternatives to GR [29]. As a matter of fact, the gravitational action becomes
renormalizable when it is supplemented with quadratic curvature terms [30], and higher-
order terms are even super-renormalizable. Thus, if our starting classical theory is a
higher-derivative gravity rather than General Relativity, we get a renormalizable theory,
and in this sense higher-derivative gravities could be considered as quantum gravity candi-
dates. However, renormalizability comes at a price. Indeed, one peculiarity of gravitational
theories is that higher-derivative operators, almost inevitably,4 yield equations of motion
of higher-order in derivatives of the metric. In fact, the Riemann tensor contains sec-
ond derivatives of the metric and it is a well-known fact that non-degenerate Lagrangians
constructed with second (or higher) derivatives of a field give rise to instabilities. Ostro-
gradsky’s theorem [31,32] shows that for this type of theories the Hamiltonian is unbounded
from below, with the corresponding appearance of instabilities and negative energy modes.
This is precisely what happens in the gravitational action (1.2). When the propagator of
this theory is analyzed, one finds that additional degrees of freedom that are not present in
GR appear. Along with a massless spin-2 graviton, the spectrum of (1.2) contains a scalar
mode and a massive graviton of mass m2

g = −M2
new/(α2 + 4α3) [29]. Independently of

2See e.g. [13–16] for other possible extensions of GR.
3Throughout the text we use equivalently the denominations “higher-derivative gravity”, “higher-

curvature gravity” and “higher-order gravity”.
4The only exception to this is provided by Lovelock-Lanczos theories, that we review in Section 1.1.3.
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the sign of the higher-derivative couplings, the propagator of the massive graviton always
comes with the “wrong” sign, so that it carries negative energy. When one tries to quan-
tize the theory, this mode produces non-normalizable states and therefore it becomes a
ghost [33]. This inconsistency implies that higher-derivative gravities cannot be considered
complete theories so easily. However, it should be noted that not all the higher-derivative
gravities contain ghost modes in their spectrum — see e.g., [34–38]. Thus, at least some
of these theories can be considered as self-consistent classical alternatives to GR.

Independently of the origin of the higher-derivative corrections, it is interesting to
look at the effects of these terms on gravity, which sometimes lead to very intriguing
conclusions. Higher-curvature corrections modify the dynamics of the gravitational field
in extreme situations, and one of the greatest hopes is that they will be able to improve
the behaviour of gravity precisely where GR fails, providing signs of an underlying UV-
complete theory. In this respect, there are two instances where gravity is especially violent.
One of them is the Big-Bang singularity, which a quantum theory of gravity should be able
to resolve. There is evidence that higher-curvature corrections are indeed able to improve
the Big-Bang singularity on their own, replacing it by an infinite period of cosmic inflation.
This is accomplished e.g., by Starobinsky’s model of inflation [39], which introduces an R2

term in the gravitational action. Furthermore, we have recently learned that inflation can
be realized by a different mechanism known as Geometric inflation, which seems to be a
general phenomenon of higher-derivative gravity [40–42] — see also [43]. The other instance
that comes to mind when one thinks of extreme gravity is a black hole. Here, one hopes
that a UV-complete theory of gravity should be able to resolve the singularity in the black
hole interior. Higher-derivative corrections are able to improve the divergence [44,45], and
in some exceptional cases — that usually involve the introduction of specific matter fields
— can resolve the singularity [38,46–49], producing a regular black hole [50–52]. However,
the corrections can also significantly modify the properties of a black hole at the level of
the horizon if its mass is small enough. Assuming that the higher-derivative operators are
weighted by an energy scale Mnew, the deviations from GR will become important when
M ∼M2

P/Mnew.5 The behaviour of black holes of smaller masses generically departs greatly
from the GR prediction. For example, it is known that the divergence of the Hawking
temperature in the limit M → 0 of higher-dimensional (D ≥ 5) black holes can be cured
by higher-derivative interactions [53,54] — we review these results in Sec. 1.2. One of the
main results of this thesis is the proof that a similar conclusion holds for four-dimensional
black holes.

Finally, due to their relation with String Theory, higher-derivative gravities play a
prominent role in the context of the AdS/CFT correspondence [55–57]. We will review this
correspondence in Section 1.3, but in short, it states that there is an equivalence between
a classical theory of gravity in anti-de Sitter (AdS) space and a strongly coupled, large
N Conformal Field Theory (CFT) which lives on the boundary of AdS. According to the
original form of the duality derived from String Theory, higher-curvature corrections in the
bulk geometry are dual to finite N and finite coupling corrections in the CFT, so that these
terms allow us to probe CFTs in more realistic regimes. However, the AdS/CFT duality
is nowadays understood as a general principle, and in this context, higher-curvature terms
have proven to be valuable tools that can be used, for instance, to establish statements
about general CFTs, whose validity is usually difficult to determine from field theory
considerations — see e.g., [58–62]. In this thesis we will provide a new example of this

5This is the scale at which the horizon radius becomes of the size of 1/Mnew

3



Chapter 1. Introduction

type of application of higher-derivative gravity — see Chapter 9.

1.1.1 Higher-curvature corrections from String Theory

In order to further motivate the study of higher-curvature gravities, it is interesting to
understand how gravity emerges in String Theory.6 According to superstring theories,
the basic constituents of matter are fundamental strings that live in some target space
which is in principle undetermined. The dynamics of these strings is ruled by a non-
linear sigma model defined on the worldsheet swept out by the string, where the variables
are the embedding functions of the string on the spacetime Xµ [64]. The worldsheet
action contains couplings between these variables and background fields defined in the
embedding spacetime: these include the metric ĝµν , the Kalb-Ramond 2-form B̂µν and the
dilaton φ̂. Consistency of the worldsheet theory at the quantum level imposes important
restrictions on these background fields and on the embedding spacetime itself. When the
theory is quantized, negative norm states appear, but this can be avoided if the target
space has D = 10 dimensions — in that case many of the negative norm states become
spurious (they acquire vanishing norm) and the theory is critical. On the other hand, in
order to preserve conformal invariance — which is present at the classical level — one
must impose the vanishing of the beta functions, which leads to several constraints on
the spacetime geometry as well as on the rest of background fields [65–67]. At leading
order in the worldsheet loop expansion, these constraints coincide with the equations of
motion of ten-dimensional supergravity theories, whose action always contains the common
Neveu-Schwarz sector [68]

Ssugra =
g2
s

16πG(10)

∫
d10x

√
|ĝ|e−2φ̂

[
R̂+ 4

(
∂φ̂
)2
− 1

2 · 3!
Ĥ2 + . . .

]
. (1.3)

Here, Ĥ = dB̂ is the field strength of the Kalb-Ramond 2-form and R̂ is the Ricci scalar
of the ten-dimensional metric ĝµν . In addition, gs is the string coupling constant, related
to the asymptotic value of the dilaton according to gs = 〈eφ〉 in solutions that asymptote
a vacuum, while the ten-dimensional Newton’s constant reads

G(10) = 8π6g2
s`

8
s , (1.4)

where `s is the string length. Therefore, String Theory is telling us that Einstein’s field
equations (with specific matter couplings) arise as a consistency condition in order for
the fundamental strings to behave correctly. An equivalent way to derive the action (1.3)
entails the computation of scattering amplitudes in string theory for massless modes, such
as gravitons. Then, the effective action is constructed in a way that it reproduces the
S-matrix in the α′ → 0 limit (where α′ = `2s) [22, 69–71].

Now, in order to produce four-dimensional (or other lower-dimensional) theories,
one has to compactify the action (1.3) assuming a decomposition of the spacetime of the
form M10 = M4 × Y6, where Y6 is a compact six-dimensional space.7 In this way, one
obtains four-dimensional Einstein gravity coupled to different types of matter fields — the
possibilities for the matter sector are almost endless due to the freedom in choosing Y6,

6See e.g. [17–21,63] for an introduction to String Theory.
7An alternative to compactification is provided by Randall-Sundrum braneworld scenarios [72,73].
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but the gravitational sector is always ruled by Einstein’s field equations Gµν = 8πG(4)Tµν .
Let us also note that the four-dimensional Newton’s constant reads

G(4) =
8π6g2

s`
8
s

V (Y6)
, (1.5)

where V (Y6) is the volume of the compact dimensions. Thus, if the typical length scale
of Y6 is of order, say `c, then the four-dimensional Planck’s length is of the order of
`P ∼ gs`4s/`3c .

Higher loop contributions to the beta functions provide corrections to the constraints
on the background fields, and as a result, the effective action (1.3) receives additional
contributions in the form of higher-derivative terms [24, 25] — alternatively, those terms
can be computed by studying higher-point scattering amplitudes [22, 23]. In general, the
low-energy effective actions predicted by string theory are a double series in the string
coupling constant gs and in the parameter α′ = `2s,

Seff =

∞∑
n=0

∞∑
k=0

(α′)ng2k
s Sn,k (1.6)

The leading term in this expansion is the two-derivative supergravity action (1.3), while
the rest of the terms contain higher-derivative interactions for the metric and for the rest
of the fields. Thus, when the action is compactified and truncated down to D = 4 (or to
other lower dimension) one finds that the dynamics of gravity is not given by the Einstein-
Hilbert action anymore, but by a higher-derivative gravity. In particular, α′ corrections
modify the gravitational interaction at a distance `s, so that gravity behaves differently
when the size of the strings becomes relevant. It is important to note that this scale is not
necessarily the same as Planck’s one; in fact, according to our previous estimation we have
`s/`P = g−1

s `3c/`
3
s, so that the possibility of corrections below Planck’s scale should not be

discarded.
The computation of the higher-derivative terms in the expansion (1.6) is extremely

involved and only the few first ones have been computed for the different superstring
theories. We show here a couple of examples.

Quadratic terms in Heterotic String Theory

The effective action of the Heterotic Superstring receives higher-curvature corrections at
first and higher orders in the α′ expansion. At first order, the ten-dimensional action is
given by8 [26]

SHet =
g2
s

16πG(10)

∫
d10x

√
|ĝ| e−2φ̂

[
R̂+ 4

(
∂φ̂
)2
− 1

2 · 3!
Ĥ2 − α′

8
R̂ a

(−)µν bR̂
µνb

(−) a

]
+ . . . ,

(1.7)
where R̂(−)

a
b is the curvature of the torsionful spin-connection Ω̂(−)

a
b = ω̂ab − 1

2Ĥµ
a
bdx

µ.
In addition, the Kalb-Ramond 3-form H receives corrections due to the modified Bianchi

8Here we are truncating the Yang-Mills fields for simplicity.
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identity

dĤ =
α′

4
R̂(−)

a
b ∧ R̂(−)

b
a + . . . , (1.8)

This theory can be compactified and truncated in several ways in order to produce lower-
dimensional dynamics. For instance, if we compactify (1.7) on a six torus and truncate all
the Kaluza-Klein degrees of freedom we get the following action [74]

S =
1

16πG(4)

∫
d4x
√
|g|
[
R− 1

2

(
∂φ1

)2 − 1

2

(
∂φ2

)2 − α′

8
φ1X4 +

α′

8
φ2RµνρσR̃

µνρσ

]
,

(1.9)
where we also used field redefinitions in order to upgrade the Riemann squared term to the
Gauss-Bonnet (GB) density X4 = RµνρσRµνρσ − 4RµνR

µν +R2 [75]. The other quadratic
term is the Pontryagin density, where R̃µνρσ = 1

2εµναβR
µν
ρσ is the dual Riemann tensor.

We note that the two scalars — the axion and the dilaton — cannot be truncated, since
the equations imply that they have a non-trivial profile whenever the curvature is non-
vanishing. Since the GB and Pontryagin densities are topological in four dimensions, they
only modify Einstein’s field equations thanks to the scalar couplings. However, in higher
dimensions the GB term is not topological and it alone gives the leading α′ correction to
Einstein gravity [44].

Quartic terms in Type IIB String Theory

In the case of type IIB superstring theory, the leading α′ corrections to the usual supergrav-
ity action appear at order (α′)3 and they are quartic in the curvature [23,25]. Schematically
we have

SIIB = S
(0)
IIB + α′

3
S

(1)
IIB + . . . , (1.10)

where S(0)
IIB is the two-derivative supergravity action [76], and the dots stand for subleading

corrections in α′. When the theory is considered in A5 × S5 where A5 is a negatively
curved Einstein manifold, it is consistent to truncate all fields except for the metric and
it is possible to write an effective action for the five-dimensional metric [77–79]. This is
given by [80,81]

SIIBA5×S5
[gµν ] =

1

16πG

∫
d5x
√
|g|
[
R+

12

`2
+
ζ(3)

8
α′

3
W 4

]
, (1.11)

where W 4 is a particular combination of contractions of four Weyl tensors given by

W 4 =

(
WµνρσW

λνργ +
1

2
WµσµρW

λγνρ

)
Wµτ

ηλW
ησ

γτ . (1.12)

In different compactification schemes, such asM10 =M4×Y6, where Y6 is a non-compact
Calabi-Yau manifold, type IIB theories can also produce quadratic curvature terms [33].
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1.1.2 Equations of motion, boundary terms and conserved charges

We have just seen that, even within String Theory, the higher-derivative terms that one
obtains depend on the type of strings (Heterotic, IIB, etc.) as well as on the compactifica-
tion chosen. In addition, the scale at which these corrections appear does not necessarily
coincide with the Planck scale. Thus, we will remain agnostic about the kind of terms we
include in our gravitational action and about the energy scale of new physics. We take
higher-derivative gravity as our starting point and our goal will be to determine some of
the most relevant consequences of these theories. Hopefully, some of them will ultimately
capture the UV effects in gravity predicted by String Theory, or by any other putative
quantum theory of gravity.

Our guiding principle for the construction of a metric gravitational theory is dif-
feomorphism invariance. The most general diffeomorphism-invariant action that one can
consider takes the form

S =

∫
dDx

√
|g|L

(
gαβ, Rµνρσ,∇αRµνρσ,∇β∇αRµνρσ, . . .

)
, (1.13)

where the Lagrangian must be a scalar function formed from correct contractions of indices
of the curvature tensor and its derivatives.9 In addition, we will usually assume that the
Lagrangian can be expanded as a polynomial in terms containing an increasing number
of derivatives. These terms are weighted by inverse powers of an energy scale Mnew, or
equivalently by the powers of the associated length scale L = 1/Mnew. Thus, schematically
we expand the Lagrangian as

L =
1

16πG

[
−2Λ +R+

∑
n,p

λn,p,iL
2n+p−2(∇pRn)i

]
, (1.14)

where λn,p,i are dimensionless constants and (∇pRn)i is a monomial formed out of p co-
variant derivative operators and n curvatures, while the subscript i denotes a specific way
of contracting the indices. One of these terms contains in total 2n+p derivatives and gives
rise, generically, to equations of motion of order 2p+ 4. For this reason, we will mainly fo-
cus on the terms with p = 0, which in general produce fourth-order equations of motion.10

We will refer to these theories as L(Riemann) or L
(
gαβ, Rµνρσ

)
gravities. However, some

of these theories produce second-order equations of motion: this is obviously the case of
the Einstein-Hilbert Lagrangian, and more generally of the family of Lovelock gravities,
that we will review in the next section.

Variational problem

Let us now study the variational problem defined by the action (1.13), which we assume
to be defined in a region M with boundary ∂M. For simplicity, we restrict ourselves to
Lagrangians of the form L

(
gαβ, Rµνρσ

)
, i.e., without covariant derivatives of the Riemann

9Additionally, one could include terms containing the Levi-Civita symbol εµ1...µD , which generically
break parity invariance. We will discard those terms under the assumption that gravity is parity invariant.
In case they are kept, they are irrelevant for spherically symmetric solutions, but in turn they have
interesting consequences for rotating black holes [74,82].

10However, there are Lagrangians that contain an infinite number of derivatives and that are well-
behaved [38,83].

7



Chapter 1. Introduction

tensor. Before imposing any boundary conditions, the variation of the action with respect
to the metric yields

δS =

∫
M
dDx

√
|g|Eµνδgµν + ε

∫
∂M

dD−1x
√
|h|nµδvµ , (1.15)

where

Eµν ≡ Pµ αβσRναβσ −
1

2
gµνL+ 2∇α∇βPµανβ , (1.16)

and

δvµ =2P βµσ
α ∇αδgβσ , (1.17)

Pµνρσ ≡
[

∂L
∂Rµνρσ

]
gαβ

. (1.18)

In addition, nµ is the unit normal11 to ∂M, normalized as nµnµ ≡ ε = ±1, and hµν =
gµν − εnµnν is the induced metric on the boundary. Ignoring momentarily the surface
term in (1.15), we see that the equations of motion read Eµν = 0 — or more generally
Eµν = 1

2Tµν if we couple the theory to a matter Lagrangian with energy-momentum tensor
Tµν . Using the fact that the tensor Pµνρσ inherits all the symmetries of Riemann tensor,
one can check that the equations of motion are identically divergence-free (off-shell),

∇µEµν ≡ 0 , (1.19)

as required for any diffeomorphism-invariant theory. Let us now focus our attention on
the surface term in (1.15). In order to specify a solution of the equations of motion we
need to impose some boundary conditions, and these must be taken into account when
computing the variation of the action. Then, one hopes that when these conditions are
imposed on (1.15), the surface term vanishes, so that the action is stationary for solutions
of the equations of motion. If this happens we say that the variational problem is well
posed. We can also say that an action is well posed if it is “differentiable”, in the sense
that δS ∝ δgµν for variations that satisfy the boundary conditions. Let us note that a
well-posed action is essential in order to define a semiclassical partition function for gravity
— see Section 1.2.1.

However, it is a well-known fact that the gravitational actions, defined as in (1.13),
are not well posed. In order to see why, it is convenient to review the situation in GR. In
that case, the equations of motion are of second order, and in a problem with Dirichlet
boundary conditions, we only need to specify the value of the induced metric on the
boundary, hab.12 However, when the condition δhab = 0 is imposed in (1.13) (specified
for the GR case), one finds that the surface contribution does not vanish. Hence, the
Einstein-Hilbert action is not well posed. This problem can be solved by introducing
appropriate surface terms to the action, and in the case of the Einstein-Hilbert Lagrangian
LEH = [R− 2Λ] /(16πG), this issue is solved by the addition of the Gibbons-Hawking-York

11It is future-directed if it is timelike, or outward if it is spacelike.
12The letters a, b = 0, 1, . . . D − 2 denote intrinsic boundary indices.
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term [84,85],

SGHY =
ε

8πG

∫
∂M

dD−1x
√
|h|K , (1.20)

where K = Kµνg
µν is the trace of the second fundamental form of the boundary, Kµν =

h α
µ ∇αnν . When this term is included, the Dirichlet variation of the action reads

δ(SEH + SGHY)
∣∣∣
δhab=0

=
1

16πG

∫
M
dD−1x

√
|g|
[
Rµν −

1

2
gµνLEH

]
δgµν , (1.21)

and now the action is stationary whenever the metric satisfies Einstein’s field equations.
For higher-order gravities one finds again that the bulk action (1.13) is not well

posed, but solving this issue is considerably more involved than in GR. One of the main
difficulties arises from the fact that these theories generally possess fourth-order equations
of motion. This implies that the boundary-value problem is not fully determined by the
induced metric on ∂M, and one needs to specify additional data in the boundary, such as
the value of some derivatives of the metric. Furthermore, even if we know the variables we
have to fix on the boundary, determining what surface term needs to be added to yield a
differentiable action for such variations is a far from trivial task. With the goal of provid-
ing a canonical formulation for arbitrary L(Riemann) gravities, an interesting proposal for
constructing satisfactory boundary terms for such class of theories was presented in [86] —
see also [87]. The procedure used in that work involves the introduction of auxiliary fields
which account for the variables that one needs to fix on the boundary. However, explicit
surface terms in a purely metric formulation have been constructed for some particular
theories. In this respect, we must mention the case of Lovelock gravities [34,35], which are
the only higher-curvature theories with second-order equations of motion. The Dirichlet
problem here is similar to the one in Einstein gravity as it only requires fixing the induced
metric on the boundary, and it is possible to construct an appropriate surface term anal-
ogous to the Gibbons-Hawking-York one [88, 89]. We show this term in Eq. (1.34). Some
other examples for which differentiable actions have been constructed are: quadratic grav-
ities (perturbatively in the couplings) [90], f(R) [91–93] and, more generally, f(Lovelock)
gravities [94]. In these cases, it is also necessary to fix the value of some of the densities
on the boundary — e.g., δR

∣∣
∂M = 0 for f(R) — which is related to the fact that these

theories propagate additional scalar modes.

Gravitational energy

Another aspect of gravitational theories that will be relevant for us is the issue of conserved
charges, and, in particular, the definition of energy. Due to the Equivalence Principle, it
is not possible to define a local notion of gravitational energy, because the gravitational
field can always be removed locally — although non-covariant or quasi-local definitions
of energy are possible [95, 96]. However, it is possible to provide a satisfactory definition
of total energy if the spacetime is asymptotically maximally symmetric — in particular,
asymptotically flat or asymptotically anti-de Sitter.13

In the case of Einstein gravity, the total energy can be computed using the Hamil-
13For asymptotically de Sitter spaces the definition of energy presents ambiguities due to the presence

of a horizon [97].
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tonian formalism developed by Arnowitt, Deser and Misner (ADM) [98–101]. A careful
evaluation of the gravitational Hamiltonian for asymptotically flat spaces yields the cele-
brated ADM mass formula,

MADM =
1

16πG

∫
SD−2
∞

dΣj
(
∂ihij − ∂jhii

)
, (1.22)

where the integral is taken over a sphere at infinity, and where hµν = gµν − ηµν is the
metric perturbation expressed in asymptotically Cartesian coordinates (i, j denote the
spatial indices). A different approach that leads to global conservation laws of energy
and momentum was proposed by Abbott and Deser (AD) [97]. The main idea behind the
Abbott-Deser approach is to use the asymptotic symmetries of the spacetime to derive an
asymptotic law of conservation of energy-momentum. When the spacetime is asymptoti-
cally maximally symmetric one has the maximal number of asymptotic Killing vectors and
for each one of them there is a conserved charge. However, we only require the existence of
one timelike asymptotic Killing vector in order to define the global energy. When applied
to the asymptotically flat case, the AD result coincides with the ADM formula (1.22).
An important advantage of the Abbott-Deser method is that it is easily generalizable to
higher-derivative gravities. In particular, Refs. [102,103] constructed the appropriate gen-
eralization for the case of L(Riemann) gravities — see also the recent review [104]. It turns
out that, with few modifications, the AD result applies as well in the case of higher-order
gravities, providing that the gravitational Lagrangian has a well-defined Einstein gravity
limit L = [R− 2Λ + . . .] /(16πG). In fact, in the asymptotically flat case the energy is
identified exactly in the same way as in GR, and one can apply the formula (1.22) without
any modification to higher-derivative gravities. In the asymptotically anti-de Sitter (or de
Sitter) case, the only difference is that we must replace Newton’s constant G — which is
the one that appears in the Lagrangian — by the effective Newton’s constant Geff in the
corresponding mass formula. The effective Newton’s constant is the one that determines
the coupling between matter and gravity, and in general will be different from G — see
Chapter 2 and e.g., Refs. [105,106] for a precise definition.

Since in this thesis we will mostly deal with static and spherically symmetric spaces,
let us conclude this section by identifying the total energy for a general D-dimensional
metric of that type, which can be written as

ds2 = gttdt
2 + grrdr

2 + r2dΩ2
(D−2) . (1.23)

According to the generalized Abbott-Deser prescription [102,103], the total energy or mass
of this spacetime can be obtained by looking at the coefficient of the term 1/rD−3 in the
asymptotic expansion of 1/grr. The precise identification reads

1

grr
= −Kr2 + 1− 16πGeffM

(D − 2)Ω(D−2)

1

rD−3
+ . . . , (1.24)

where K is the curvature of the asymptotic solution — Minkowski (K = 0), anti-de Sitter
(K < 0), or de Sitter (K > 0) space — and Ω(D−2) is the area of the D − 2 sphere,

Ω(D−2) =
2π

D−1
2

Γ
(
D−1

2

) . (1.25)
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1.1.3 Some examples of higher-order gravities

In general, even within the family of L(Riemann) theories, the number of independent
higher-derivative operators in the action (1.14) grows very fast with the order in curva-
ture, making a general analysis of these terms inaccessible. In fact, the problem of finding
all the basic invariants at a given order in the derivative expansion is a far from trivial
one [107,108]. In addition, studying the properties of any of these theories is usually a very
hard task. Even the problem of finding static, spherically symmetric solutions becomes so
challenging that only a few solutions of that kind are known for some particular theories
— we review some of them in Section 1.2.3. Furthermore, as we mentioned earlier, higher-
order gravities usually propagate ghost-like modes along with the Einstein graviton, which
are a source of potential instabilities. These reasons motivate the search for particular
higher-derivative gravities that circumvent some of these problems. The idea is that these
theories serve as useful models that can be used to explore possible general features of
higher-derivative gravities. Some of them overcome the problem of Ostrogradski’s insta-
bility and are, therefore, viable models for alternative classical theories of gravity. Other
theories have simple enough field equations so as to allow us to study black hole solutions
and analyze the differences with respect to those of Einstein gravity. Let us comment here
three well-known examples of interesting higher-order gravities.

f(R) theories

One of the most popular modified gravity models is f(R) gravity [37], whose Lagrangian
is a certain function of the Ricci scalar R,

Sf =
1

16πG

∫
M
dDx

√
|g|f(R) . (1.26)

The main feature of these theories is that they introduce a scalar degree of freedom not
present in GR. Assuming that f is a convex function, it is possible to define its Legendre
transform V , and in that case one can check that the following action

Sϕ =
1

16πG

∫
dDx

√
|g|
{
ϕR− V (ϕ)

}
, (1.27)

is indeed equivalent to (1.26). Thus, f(R) gravities are equivalent to Brans-Dicke theories
with a scalar potential, in which a scalar field is non-minimally coupled to gravity. For-
mulated in this way, it is straightforward to derive a generalized Gibbons-Hawking-York
boundary term that makes the action (1.27) well posed [91–93]

Sϕ,bdry =
ε

8πG

∫
∂M

dD−1x
√
|h|ϕK . (1.28)

In this case, the scalar must be fixed on the boundary: δϕ
∣∣
∂M = 0. When expressed in

terms of the metric, this is equivalent to demanding that the value of Ricci scalar R must
be fixed by boundary conditions, since ϕ = f ′(R).

An interesting property of f(R) gravities is that they can avoid the issue of Os-
trogradsky instability [36], since all the higher-derivative terms can be absorbed in the
definition of ϕ. This makes f(R) models very useful for cosmology, where they can be
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used to explain inflation in the early universe [39] as well as late time cosmic acceleration,
see e.g., [36,109,110]. However, since these models are equivalent to a scalar-tensor theory,
they do not really provide a modification of the dynamics of gravity, understood as a spin-2
field. The vacuum equations of motion of f(R) gravity can always be solved by Einstein
metrics, i.e., those with Rµν ∝ gµν . Hence, all vacuum solutions of Einstein gravity are
also solutions of f(R) gravity. In particular, black holes do not receive any correction and
are still given by the Schwarzschild [111] and Kerr [112] metrics. Although this might be
in part an advantage, these theories do not tell us anything about how black holes are
modified by higher-curvature corrections.

Lovelock gravity

Another generalization of Einstein gravity is the Lanczos-Lovelock theory (or Lovelock
gravity in short) [34, 35, 113], which is the most general higher-derivative gravity that
possesses second-order equations of motion. The Lagrangian of Lovelock gravity is a sum
of dimensionally continued Euler densities (ED) X2n, which are given by14

X2n =
1

2n
δ
µ1...µ2p
ν1...ν2n R

ν1ν2
µ1µ2

...Rν2n−1ν2n
µ2n−1µ2n

. (1.29)

These densities have a different behaviour depending on the dimension. When D < 2n, the
Euler density X2n vanishes identically, as follows from the antisymmetrization in (1.29). In
the critical dimension D = 2n, the corresponding density becomes topological, which is the
origin of its name. In particular, if M is a compact 2n-dimensional Euclidean manifold,
the Chern-Gauss-Bonnet theorem states that

χ(M) =
1

n!(4π)n

∫
M
d2nx
√
gX2n (1.30)

is the Euler characteristic of M. From the point of view of the gravitational action, this
means that X2n does not contribute to the equations of motion. Finally, when D > 2n, the
density X2n becomes dynamical. Thus, the most general D-dimensional Lovelock action
reads15

SLL =
1

16πG

∫
dDx
√
−g
bD/2c∑
n=0

λnL
2n−2X2n , (1.31)

where L is a length scale, λn are dimensionless constants, and by convention, X0 = 1.
Hence, in D = 4 the most general Lovelock theory is Einstein gravity (X2 = R) plus a
cosmological constant; in D = 5, 6 the Gauss-Bonnet term becomes non-trivial

X4 = R2 − 4RµνR
µν +RµναβR

µναβ . (1.32)

14The alternate Kronecker symbol is defined by δµ1µ2...µr
ν1ν2...νr = r!δ

[µ1
ν1 δ

µ2
ν2 ...δ

µr ]
νr .

15bD/2c is the floor function of D/2, so it is D/2 for even D and (D − 1)/2 for odd D.
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In D = 7, 8 we can also add the following Euler density X6 and so on. Taking the variation
with respect to the metric in (1.31) we obtain the equations of motion

bD/2c∑
n=0

λnL
2n−2E(n)

µν = 0 , where E(n)
µν = − 1

2n+1
gαµδ

αµ1...µ2n
νν1...ν2n

Rν1ν2
µ1µ2

...Rν2n−1ν2n
µ2n−1µ2n

, (1.33)

which are algebraic in the curvature, hence of second order in derivatives of the metric.
For this reason, Lovelock gravity propagates the same degrees of freedom as GR and it
provides a natural generalization of Einstein gravity in higher dimensions. In addition, it
is possible to add a generalized Gibbons-Hawking-York term that makes the action (1.31)
well posed. This term was found by Myers [89] and Teitelboim and Zanelli [88], and for
the n-th order Lovelock action it reads

S
(n)
bdry =

∫
∂M

dΣQn , (1.34)

where Qn is given by

Qn = 2n

∫ 1

0
dt δ

a1...a2n−1

b1...b2n−1
Kb1
a1

[
1

2
Rb2b3a2a3

− εt2Kb2
a2
Kb3
a3

]
· · ·
[

1

2
Rb2n−2b2n−1
a2n−2a2n−1

− εt2Kb2n−2
a2n−2

Kb2n−1
a2n−1

]
,

(1.35)
where Rb2b3a2a3

is the intrinsic curvature of the corresponding boundary segment, Ka
b is the

extrinsic curvature and ε = n2 = ±1 is the sign of the normal to the boundary. Also,
dΣ = dD−1x

√
|h| is the volume element on ∂M and the orientation is such that, as a

1-form, n = nµdx
µ points outside ofM

Unlike those of f(R) gravities, Lovelock’s equations of motion are not solved by Ein-
stein metrics (except in D ≤ 4), and the higher-order Euler densities introduce corrections
to GR black hole solutions. In particular, it is possible to solve the equations of motion to
find explicit spherically symmetric black hole solutions [44, 54, 114–118] — we will review
these solutions in Section 1.2.3. Besides, some of the Lovelock’s invariants appear explic-
itly in String Theory when considering effective actions — we saw before that this is the
case for the Gauss-Bonnet density [44,75]. This makes the study of Lovelock gravities very
interesting from the point of view of the AdS/CFT correspondence [117,119–128], that we
will review in Section 1.3.

Quasi-topological gravity

One of the disadvantages of Lovelock theories is that the number of densities one can
include in the action is highly restricted by the spacetime dimension. Thus, in D = 4
Lovelock gravity reduces to GR, while in D = 5 it only allows for the introduction of the
quadratic Gauss-Bonnet term. In order to explore the effect of higher-order terms it is
necessary to consider more general theories. Since Lovelock gravities are the most general
theories with second order equations of motion [34, 35], any other model will lose this
characteristic. However, the idea is to find some theories that at least are able to mimic
some of the nice properties of Lovelock theories, such as absence of additional degrees of
freedom propagated in the vacuum, or the existence of “simple”16 black hole solutions. This
is the philosophy behind the construction of Quasi-topological gravity [129,130]. This is a

16We will be more explicit in Section 1.2.3 about what we mean by simple.
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cubic curvature interaction that in general dimensions D ≥ 5 is given by

ZD =R ρ σ
µ ν R α β

ρ σ R µ ν
α β +

1

(2D − 3)(D − 4)

(
− 3(D − 2)RµνρσR

µνρ
αR

σα

+
3(3D − 8)

8
RµνρσR

µνρσR+ 3DRµνρσR
µρRνσ

+ 6(D − 2)R ν
µ R ρ

ν R
µ
ρ −

3(3D − 4)

2
RµνR

µνR+
3D

8
R3
)
.

(1.36)

This density was originally identified in its five-dimensional version in [129], by the con-
dition that the trace of the field equations is of second order. As a consequence, it was
found that the field equations in the presence of spherical symmetry are of second order,
facilitating the obtention of explicit black hole solutions and giving rise to a Birkhoff the-
orem. Independently, the quasi-topological interaction was derived in [130], where black
hole solutions where further analyzed. In addition, it was noted that the linearized equa-
tions of motion of this theory around maximally symmetric vacua become of second order,
and identical to Einstein’s gravity ones. Hence, Quasi-topological gravity only propagates
a massless spin-2 graviton, just as GR. These properties make this theory a very use-
ful toy model for holographic applications [131]. It is possible to construct higher-order
generalizations of Quasi-topological gravity possessing similar properties, and, so far, the
quartic [132] and quintic [133] versions have been identified. Thus, these theories provide
a way to probe higher-curvature effects — specially, on black holes — beyond Lovelock
gravity. However, they still have an important drawback: Quasi-topological gravities only
exist in D ≥ 5 and they cannot be used to learn anything about higher-curvature correc-
tions in our own universe. One of the goals of this thesis is to present a new family of
theories that generalizes the quasi-topological family and that is non-trivial in D = 4.

1.2 Black holes

One of the most remarkable predictions of GR is that of the existence of black holes:
regions of spacetime where gravity is so strong that nothing, not even light, can escape
from there. Nowadays we have astonishing experimental evidence of the existence of these
objects thanks to the gravitational wave detectors LIGO/Virgo [1–6] and the Event Horizon
Telescope [7], and in the next years the experimental data will be accurate enough to allow
for precision tests on black holes [134–140]. Yet, from the theoretical point of view, black
holes remain one of the most exciting and active areas of study, since they pose intriguing
questions about the interaction between gravity and quantum mechanics. But, before going
into details, it will be useful to remind very briefly some basic concepts about black holes.

Basic definitions

A black hole in an asymptotically flat spacetime (M, gµν) is defined as a region

B =M− I−(I+) , (1.37)

where I+ is the future null infinity and I− the chronological past. In words, this expresses
that the future of B is not contained in the asymptotic region. The event horizon of the
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black hole is a null hypersurface corresponding to the common boundary between B and the
past of I+. It is important to remark that the event horizon is a global characteristic of the
spacetime which requires knowing all its future history, hence it lacks a local significance.
We will be interested in stationary black holes: a spacetime containing a black hole is said
to be stationary if it possesses a Killing vector field ξµ that is asymptotically timelike.
Furthermore, the spacetime is static if this vector is hypersurface orthogonal, i.e., if the
associated one-form satisfies ξ ∧ dξ = 0. One important class of stationary black holes
corresponds to axisymmetric spacetimes, which additionally to ξµ contain another Killing
vector φµ that generates rotations at infinity.

Under very general circumstances, the “rigidity theorems” [141–144] state that the
event horizon of a stationary black hole is always a Killing horizon, meaning that there is
a Killing vector kµ that becomes null on the horizon.17 Hawking [142] showed that this
is the case for any stationary black hole in GR, while Carter [141] provided a geometrical
proof for axisymmetric black holes that does not rely on equations of motion. If kµ is the
Killing vector that generates the horizon, then it is easy to see that there must exist a
quantity κ such that

kα∇αkµ = κkµ , (1.38)

when evaluated at the horizon. The proportionality factor κ is known as surface gravity
and it possible to show that it takes a constant value on the horizon [141,145–147]. Again,
this can proven directly for black holes in GR [145], or for axisymmetric black holes [141].

We can see that the value of κ depends on the normalization of kµ, so in order to give
it a physical interpretation we must choose the Killing vector appropriately. In the case of
static black holes, the horizon is generated by the asymptotically timelike Killing vector,
and we should normalize it so that kµkµ = −1 at infinity. We distinguish two different
situations depending on the value of the surface gravity. When κ 6= 0, it is possible to
show that kµ generates a bifurcate Killing horizon in the maximally extended spacetime,
of which the event horizon of the black hole is a branch [146]. The two null hypersurfaces
that compose the bifurcate Killing horizon intersect at a codimension two spacelike surface
— the bifurcation surface — which is placed at the points where kµ vanishes. On the other
hand, when κ = 0 the Killing horizon is degenerate, and the corresponding black hole is
said to be extremal.

The Schwarzschild black hole

The best way to illustrate the concept of a black hole is to study one particular example,
and perhaps the most relevant one is given by Schwarzschild’s black hole. Schwarzschild’s
metric [111] was the first exact solution of vacuum Einstein field equations to be discovered,
and it still stands as one of the most studied ones. It describes a static and spherically
symmetric gravitational field, and in standard “Schwarzschild coordinates”, it is given by

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2(
1− 2GM

r

) + r2
(
dθ2 + dφ2 sin2 θ

)
, (1.39)

17This vector is normal to the horizon and in this sense we say that it generates the horizon.
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where M is the total mass (or energy) of the spacetime, as can be computed from the
ADM [98–100] or Abbott-Deser [97] prescriptions. In addition, Schwarzschild’s metric
is the unique spherically symmetric solution of vacuum Einstein equations, by virtue of
Birkhoff’s theorem. The spacetime described by the metric (1.39) is asymptotically flat
(for r →∞) and it contains a black hole whose event horizon is placed at the Schwarzschild
radius rs = 2GM . However, this is not evident in the present form of the solution, since
the metric (1.39) seems to be singular at r = rs. In order to unveil the global structure
of the spacetime, an analytic continuation of the solution beyond rs is required. The
usual approach consists in introducing the advanced and retarded Eddington-Finkelstein
coordinates [148]

u = t− r∗ , v = t+ r∗ , (1.40)

which are constant on outgoing and ingoing null radial geodesics, respectively, and where
r∗ is the tortoise coordinate, defined as

r∗ =

∫
drgrr = r + 2GM log

∣∣∣ r

2GM
− 1
∣∣∣ . (1.41)

Replacing the coordinate t in terms of one of the variables v or u already allows one
to extend the metric to the black hole interior. For instance, written in terms of v,
Schwarzschild’s solution reads

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2

(
dθ2 + dφ2 sin2 θ

)
, (1.42)

and now it is clear that r = 2GM is a null hypersurface. Besides, it is a Killing horizon
for the vector k = ∂v, and it is a straightforward computation to show that the surface
gravity reads

κ =
1

4GM
. (1.43)

However, the metric (1.42) is still not the maximally extended spacetime. This is revealed
by introducing the Kruskal-Szekeres coordinates [149,150]

U = e−
u

4GM , V = e
v

4GM , (1.44)

in terms of which the metric takes the form

ds2 = −32
(GM)3

r
e−

r
2GM dUdV + r2

(
dθ2 + dφ2 sin2 θ

)
, (1.45)

where now the radius depends on the coordinates U and V according to the relation

UV = e
r

2GM

( r

2GM
− 1
)
. (1.46)

The analytic extension comes from the fact that now we allow the coordinates U , V to take
values in all the real line, and not only positive values as the relations (1.44) would imply.
When the metric is expressed in this form, we see that it is regular everywhere except at
r = 0, which is a real singularity. Furthermore, in terms of the coordinates U , V , the
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horizon is placed at UV = 0, and we see that it is bifurcate since it contains the branches
V = 0 and U = 0, with the bifurcation surface placed at U = V = 0. We can also check
that this is a bifurcate Killing horizon for the Killing vector k = (V ∂V − U∂U )/(4GM).
Therefore, we distinguish four regions: U > 0, V > 0 is the exterior region originally
covered by the Schwarzschild coordinates; U < 0, V > 0 corresponds to the black hole
interior, that contains a future singularity when UV = −1; U < 0, V > 0 is the interior
of a “white hole”, which contains a past singularity; and U < 0, V < 0 is another exterior
region.

Besides serving as a simple example of a black hole solution, Schwarzschild’s met-
ric will be very relevant for the purposes of this thesis, since one of our goals will be to
find generalizations of this solution in higher-order gravity. Generically, the introduction
of higher-derivative interactions implies that Einstein metrics no longer solve the gravita-
tional field equations. As a consequence, the Schwarzschild and Kerr [112] metrics, that
describe static and rotating black holes in four-dimensional GR (or Tangherlini [151] and
Myers-Perry [152] metrics in the higher-dimensional case), are not solutions of the modified
theories. Therefore, it is interesting to solve the equations of motion of higher-derivative
gravity in order to search for corrected black hole geometries and to study the deviations
with respect to the GR predictions. We are particularly interested in the thermodynamic
properties of black holes, that we review now.

1.2.1 Black hole thermodynamics

One of the most important breakthroughs of the last fifty years was the realization that
black holes can be identified with a thermodynamic system. By studying the behaviour of
quantum fields placed in the background of a black hole, Hawking [153] showed that any
black hole emits thermal radiation at a temperature

T =
κ

2π
, (1.47)

where κ is the surface gravity of the event horizon. Correspondingly, black holes must have
an entropy, which in the case of GR is given by Bekenstein-Hawking formula,

SBH =
A

4G
. (1.48)

which states that the entropy of a black hole is proportional to the area of its horizon
[154, 155]. Due to these intriguing properties, which have a quantum-mechanical origin,
black holes are an excellent laboratory to test the interaction between quantum mechanics
and gravity. For instance, any prospective quantum theory of gravity should provide an
explanation for the black hole entropy from a counting of microscopic states. In this respect,
it is worth emphasizing that String Theory is able to recover Bekenstein-Hawking result,
at least in some special situations [156–158]. However, we would like to remark that the
formulas (1.47) and (1.48) have a different status. The identification of the temperature
with the surface gravity is a completely general result because it only depends on the
very concept of event horizon, but the entropy formula is theory-dependent and has a
different form if we consider theories other than Einstein gravity, as we will see later on.
This discrepancy has to be taken into account in order to perform a precise matching of
microscopic and macroscopic black hole entropies in String Theory [159–163].
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Black hole solutions are characterized by different conserved charges, such as the
mass M , the angular momentum J or the electric charge Q,18 and these play a role as
thermodynamic variables. It turns out that these quantities satisfy the four laws of black
hole mechanics [145], in analogy to the laws of thermodynamics. At the classical level,
these laws involve several relations that hold for black hole solutions of the gravitational
theory. But the fact that Hawking’s temperature represents a real phenomena implies that
black holes are, indeed, thermodynamic systems on their own. Let us briefly review these
laws.

The zeroth law establishes that the surface gravity is constant on the horizon of a
stationary black hole. This result can be derived in several ways [141, 145–147] and it
implies that a stationary black hole is in thermal equilibrium — there are no gradients
of temperature. On the other hand, the first law of black hole mechanics states that the
following equality holds for perturbations of a black hole solution,

δM =
κ

8π
δA+ ΩδJ + . . . , (1.49)

where M is the total spacetime’s energy as computed from the Hamiltonian, Ω is the
angular velocity of the horizon, J is the total angular momentum, and the ellipsis denote
additional variables on which the black hole solution may depend. This result, together
with Hawking’s formula (1.47) and the standard thermodynamic relation T−1 = ∂S

∂M can
be used to derive Bakenstein-Hawking formula (1.48). In a way, the first law is equivalent
to Einstein’s field equations [167], a fact that has been sometimes interpreted as a sign of
gravity being an emerging phenomena.

The second law of thermodynamics is replaced, at the classical level, by the area
increase theorem [168], that establishes that the area of the event horizon never decreases,
hence implying ∆SBH ≥ 0 as time evolves. However, this law is violated by an isolated
black hole due to Hawking radiation (which is a quantum effect): the conservation of energy
implies that the black hole loses mass as it radiates, hence decreasing its area. In order to
obtain a consistent second law one needs to take into account the entropy of the surrounding
matter as well, and one has to define the generalized entropy [155] Sgen = SBH +Sout. Then,
the entropy of the Hawking quanta emitted by the black hole compensates the entropy loss
due to the decrease of the area, and the total entropy increases ∆Sgen ≥ 0. The generalized
second law of black hole mechanics states that this happens for all physical processes.

Finally, there is a third law of black hole mechanics that asserts that, starting from a
black hole with a non-degenerate horizon, it is not possible to form an extremal black hole
— one with vanishing surface gravity — by performing a finite number of operations [169].
This is equivalent to the third law of thermodynamics in the sense that it states that it is
not possible to reach the absolute zero of temperature

Black hole thermodynamics in higher-derivative gravity

Let us now explore how the previous discussion extends to black holes in higher-derivative
gravity. We already mentioned that Hawking’s result for the temperature of black holes
(1.47) is universal, in the sense that it relies on the spacetime geometry but not on the
underlying dynamics of the gravitational field. Thus, a stationary black hole in a higher-

18In GR, these black holes are given by Kerr [112], Reissner-Nordstrom [164, 165] and Kerr-Newmann
[166] solutions.
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derivative gravity also possesses a temperature proportional to its surface gravity, T =
κ/(2π). In addition, it is possible to prove that the surface gravity is constant on the
horizon without making use of the equations of motion [141,146,147], so the zeroth-law of
black hole mechanics is automatically satisfied. However, the relationship between different
quantities such as temperature, mass and area will be generically modified by higher-
curvature corrections. As a consequence, it will no longer be true that δM = κ

2π
δA
4G + . . .,

so if we want to preserve the first law of black hole mechanics we must conclude that
the entropy is not given by the area law anymore SBH 6= A/(4G). In fact, it is not
evident that a first law should exist with the entropy being a universally defined quantity.
It is an extraordinary fact of higher-derivative gravities that the first law of black hole
mechanics does extend naturally. As shown by Wald [170], the first law is a consequence
of diff. invariance, hence it is not a characteristic feature of GR, but of any covariant
theory of gravity. According to Wald’s result, the area law in the Bekenstein-Hawking
entropy formula (1.48) should be replaced by the integral, on the horizon, of the Noether
current associated with diffeomorphism invariance. More precisely, Wald’s entropy formula
reads [170–172]

SW = −2π

∫
H
dD−2x

√
h

δL
δRµνρσ

εµνερσ , (1.50)

where the integral is taken over the bifurcation surface of the horizon and δL
δRµνρσ

is the
Euler-Lagrange derivative of the gravitational Lagrangian as if the Riemann tensor were
an independent variable, this is,

δL
δRµνρσ

=
∂L

∂Rµνρσ
−∇α

(
∂L

∂∇αRµνρσ

)
+ . . . (1.51)

In addition, h is the determinant of the induced metric on the horizon and εµν is the
binormal of the horizon, normalized as εµνεµν = −2. Wald showed that the entropy
defined in this way satisfies the first law,

δM =
κ

2π
δSW + ΩδJ + . . . . (1.52)

On the other hand, the (ordinary) second law is not guaranteed to hold even classi-
cally, because for isolated black holes it might happen SW(M1, J1, . . .) +SW(M2, J2, . . .) >
SW(M1 +M2, J1 + J2, . . .) — see e.g., [173] for an example of this — which implies that if
the two initial black holes merge, the total black hole entropy decreases. However, it has
been proposed that the generalized second law still holds if one replaces Wald’s entropy by
a related quantity, which coincides with Dong’s formula for holographic entanglement en-
tropy [174]. According to the results in [175–177], the quantity defined as Sgen = SDong+Sout

is monotonically increasing, ∆Sgen > 0, at least for linear perturbations of the metric. Since
Dong’s formula is equivalent to Wald’s one for stationary black holes, this result tells us
that the total entropy does increase, and a version of the generalized second law of black
hole mechanics holds.
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Euclidean path integrals and partition functions

A useful approach in order to formalize the study of black hole thermodynamics consists
in considering the Euclidean version of black hole solutions. In order to illustrate how this
works, let us perform a Wick rotation in Schwarzschild’s metric (1.39) by introducing the
Euclidean time as τ = it, so that we get a solution of Euclidean GR,

ds2
E =

(
1− 2GM

r

)
dτ2 +

dr2(
1− 2GM

r

) + r2
(
dθ2 + dφ2 sin2 θ

)
. (1.53)

The properties of the Euclidean solution are drastically different from those of the Lorentzian
one. In particular, the solution cannot be extended beyond r = 2GM , which instead of
a horizon is an ending point for the coordinate r. Near that point, the Euclidean metric
takes the form

ds2
E ≈

ρ2dτ2

(4GM)2
+ dρ2 + (2GM)2

(
dθ2 + dφ2 sin2 θ

)
when ρ→ 0 , (1.54)

where we have introduced the coordinate ρ =
√

8GM(r − 2GM). Now, we see that the
line element ρ2dτ2

(4GM)2 + dρ2 will have a conical singularity at ρ = 0 unless the coordinate
τ/(4GM) has period 2π, in whose case that line element simply represents a plane in polar
coordinates. Thus, the absence of a conical singularity imposes that the Euclidean time
must have a periodicity

β = 8πGM . (1.55)

It is a well-known fact that the periodicity of the Euclidean time represents the inverse
of the temperature, β = 1/T , for QFTs in a thermal state, so this is telling us that
Schwarzschild’s black hole has a temperature T = 1/(8πGM). The identification of the
temperature by demanding regularity of the Euclidean metric works for any other black
hole solution and is equivalent to Hawking’s result (1.47).

Now, once the black hole temperature has been identified, the rest of thermodynam-
ical quantities can be obtained by computing the Euclidean path integral for gravity [85],
which we can write formally as

Z =

∫
D[gµν ]e−SE , (1.56)

where SE is the Euclidean action for gravity. The Euclidean version of a black hole solution
yields a solitonic contribution to the Euclidean path integral, and in the semiclassical
approximation it can be estimated by

Z ∼ e−SE

∣∣
on−shell . (1.57)

However, in order for the saddle-point approximation that is implied in the derivation of
this formula to make sense, one must make sure that the action is extremized by solutions
of the equations of motion. In other words, the action must be well posed, and as we
saw in Section 1.1.2 this means that one has to add appropriate surface terms to the bulk
action. Even if this is accomplished, the resulting action usually produces divergences
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when evaluated on-shell and one needs to regularize it. In that case one has to introduce
counterterms, which contribute to the action but have no effect on the variational problem.
For instance, in the case of Einstein gravity with asymptotically flat solutions, a well-posed
and regularized Euclidean action reads

SE = − 1

16πG

∫
M
d4x
√
gR− 1

8πG

∫
∂M

d3x
√
h (K −K0) , (1.58)

where K0 is the extrinsic curvature of the same boundary ∂M when embedded in flat
space. Other regularization schemes are possible in the asymptotically AdS case [178].

From (1.57) we can see that the free energy of the system is simply F = TSE

∣∣
on−shell

,
and we can compute the entropy and the mass by using the relations

S = −
(
∂F

∂T

)
M

, M = F + TS . (1.59)

If there are additional thermodynamical variables we can obtain their respective potentials
by taking the corresponding derivatives of the free energy. This method has the advan-
tage that it can be applied without any formal modification to any other gravity theory
besides Einstein gravity. However, it requires knowing an appropriate boundary term and
counterterms for the corresponding action, something that is not always available.

In passing, let us also mention that there is an extended thermodynamic approach
known as black hole chemistry, in which the cosmological constant is treated as a pressure
and whose conjugate thermodynamic variable is a volume [179, 180]. In that case, the
Euclidean action computes the Gibbs free energy G = TSE

∣∣
on−shell

, so that M is identified
with an enthalpy, M = G+ TS.

1.2.2 Evaporation of black holes and the information paradox

As we have just seen, black holes can be described as thermodynamic systems, but let
us stop here a moment to take a closer look at the thermodynamic properties of the
prototypical case of a Schwarzschild’s black hole. Its temperature and entropy read

T =
1

8πGM
, SBH = 4πGM2 , (1.60)

while, in turn, M represents the energy. There is something really unusual about these
relations because they imply that, as the black hole loses mass in the form of thermal
radiation, its temperature rises. This implies that the heat capacity of the black hole
is negative, which characterizes the black hole as an unstable thermodynamic system.
The instability is revealed if we consider the time evolution of a black hole placed in a
thermal bath at some temperature T0. If the initial temperature of the black hole is below
the temperature of the environment, T < T0, then it will absorb more radiation than it
emits and as a result it will gain mass, hence decreasing its temperature even more. On
the contrary, when T > T0 the full balance for the black hole is to emit radiation, and
as the mass decreases the temperature raises. Eventually, the temperature diverges and
the evaporation process ends with a catastrophic explosion, after which the black hole
has disappeared [181]. This could be, in particular, the fate of black holes in our own
universe [182].
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The evaporation of black holes due to Hawking radiation gives rise to the famous
information paradox, which poses a serious conflict between gravity and quantum mechan-
ics — see the reviews [183–185] and references therein. Imagine a spacetime that contains
a black hole, and that the full system is initially described by a pure state. It is natural
to split the system as the black hole interior region plus the exterior region, which is the
only part of the wavefunction that an external observer can measure. Now, during the
Hawking process a Schwinger pair is created in the surroundings of the black hole horizon.
One of these quanta falls into the black hole and the other one escapes to infinity, and
since the pair is entangled, this process creates entanglement between the exterior and
interior regions. In addition, the quanta emitted at some latter stage cannot be entangled
with those emitted at early times — a process that would reduce the amount of entan-
glement — because those are necessarily entangled to their partner in the interior of the
black hole, and a tripartite entangled state is not allowed by the “monogamy theorem”. As
a consequence, the entanglement between the interior of the black hole and the exterior
region grows as the black hole evaporates. If, eventually, the black hole disappears after
the evaporation process, the Hawking quanta are in an entangled state, but since there is
nothing to which they are entangled with, they must be described by a density matrix.
Hence, our pure state has evolved into a mixed state, and we conclude that unitarity has
been violated.

Other alternatives are possible, but an inconsistency seems to be unavoidable. For
instance, one can assume that Hawking evaporation stops when the black hole reaches some
minimum mass, in whose case it becomes a remnant. Such object would be entangled with
all the Hawking quanta emitted previously, and since the original black hole can have an
arbitrarily large entropy, the remnant would need to have an infinite number of internal
states to get entangled with an arbitrarily large number of quanta. The problem lies in
remnants having a finite mass and volume, in which case they will produce divergences in
the partition function yielding a spontaneous production of these objects at an alarming
rate [186–189].

Some proposed solutions to the information problem involve the invocation of fire-
walls [190,191], black hole complementarity [192], or the fuzzball proposal [193,194], but it
is not our intention to discuss these possibilities here. Instead, one of the goals of this thesis
is to show that part of the conclusions above rely on the particular properties of black holes
within General Relativity. We will see that the thermodynamic properties and evaporation
process of black holes can be dramatically affected if one considers modifications of gravity
in the UV.

1.2.3 Spherically symmetric black hole solutions

Although we have described a general framework to study black hole thermodynamics,
the construction of explicit black hole solutions in higher-order gravity is a very different
(and complicated) issue. For simplicity, we focus our attention on static and spherically
symmetric (SSS) black holes, which is the first case one would attempt to solve. The most
general ansatz for a SSS metric can be written as follows

ds2
N,f = −N(r)2f(r)dt2 +

dr2

f(r)
+ r2dΩ2

(D−2) , (1.61)
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where N(r) and f(r) are two independent functions and where dΩ2
(D−2) is the metric of

the (D − 2)-sphere. In general, the functions N(r) and f(r) are determined by a system
of differential equations that can be chosen as the components Ett = 0 and Err = 0 of
the equations of motion.19 In the case of GR with a cosmological constant, L = (R −
2Λ)/(16πG), these equations turn out to be of first order and their only solution is given
by N(r) = N0 (customarily taken to N0 = 1) and

f(r) = 1− 16πGM

(D − 2)Ω(D−2)rD−3
− 2Λr2

(D − 1)(D − 2)
, (1.62)

which corresponds to the Schwarzschild-Tangherlini black hole. Here M is an integration
constant which represents the ADM mass [98–100] of the black hole. On the contrary for a
general L(Riemann) gravity the equations Ett = 0 and Err = 0 form a system of non-linear,
coupled differential equations of fourth- and third-order, respectively, for the functions
N(r) and f(r). The resolution of these equations, even numerically, poses a challenging
problem, and even the existence and unicity of solutions is not guaranteed. Consequently,
there are only few instances of higher-order gravities in which one can solve the equations
of motion for the metric (1.61) in a more or less explicit way and study black hole solutions.
We must warn at this point that the literature on black hole solutions in modified gravity
theories is extensive, but we are especially interested in theories and solutions that satisfy
a number of conditions that we consider to correspond to natural situations.

1. We wish to study black hole solutions of higher-order gravity in the vacuum, i.e.,
without introducing additional fields.

2. We would like to consider higher-order gravities that are smooth deformations of GR,
in the sense that they are of the form (1.14), with the higher-derivative terms being
controlled by free parameters that we can set to zero independently.

3. The corresponding black hole solutions should be smooth non-trivial deformations of
GR solutions as well, so that when the higher-order couplings are taken to zero one
recovers (1.62).

The first condition discards, for instance, scalar-tensor theories with non-minimal couplings
of the scalars to higher-curvature terms, such as Einstein-dilaton-Gauss-Bonnet gravity
[195–198] and other related models [199–202]. While we consider these theories interesting,
we shall not study those cases for the sake of concreteness — we focus exclusively on metric
theories. The second item removes theories that are pure higher-derivative gravities and
lack an Einstein-gravity limit, such as conformal gravity L = αCµνρσC

µνρσ [203, 204] —
see e.g., [205–208] for similar examples. Additional theories that do not satisfy the second
item are those that involve fine-tuned terms across different orders in curvature, as the
case of perfect-square Lagrangians such as L = −(R − 4Λ)2/(8Λ) [94, 209]. The third
condition discards solutions that do not exist in the Einstein gravity limit. As an example
of this, the works [210, 211] showed that quadratic gravity in four-dimensions allows for
“non-Schwarzschild” black holes besides the Schwarzschild one. These non-Schwarzschild
solutions have exotic properties and they do not survive in the limit in which the higher-
derivative couplings are set to zero. On the other hand, there are theories whose equations

19Using the Bianchi identities of the equations of motion ∇µEµν = 0, that any diff. invariant theory
satisfies, it is easy to prove that the rest of components are proportional to Ett, Err and their derivatives.
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are solved by Einstein metrics, such as the aforementioned quadratic gravity in D = 4,
f(R) gravity [212], or more generally, any theory whose Lagrangian only depends on Ricci
curvature [213]. These theories do not modify GR vacuum black hole solutions and the
third item states that we must also discard them because we are interested in investigating
the effects of non-trivial corrections. Additionally, we would like to obtain exact black hole
solutions of a given theory. Obtaining perturbative solutions is an accessible problem —
especially in the spherically symmetric case — but the non-perturbative effects provided
by exact solutions are far most interesting, as we will see.

When these criteria are taken into account, few examples of black hole solutions
are left, and all of them in D ≥ 5. Before the results of this thesis were presented, the
only theories for which exact black hole solutions deforming the Schwarzschild geometry
had been constructed were Lovelock gravities [44, 54, 114–117], Quasi-topological gravity
[129,130] and its quartic [132] and quintic [133] generalizations. Let us review these cases
now.

Black holes in Lovelock gravity

Previously, we introduced Lovelock gravity as the most general higher-curvature gravity
that possesses second order equations of motion. Its action, given by (1.31), is composed as
a linear combination of dimensionally extended Euler densities, and we saw that in D = 4
the only non-trivial terms are the Einstein-Hilbert one plus a cosmological constant. Thus,
Lovelock theory only introduces corrections to GR in higher dimensions. As a first example,
let us study the black hole solutions in five-dimensional Lovelock gravity, in which case the
Gauss-Bonnet density X4 — given by (1.32)— becomes non-trivial. For simplicity, let us
also momentarily set to zero the cosmological constant, so that we consider the action

SGB =
1

16πG

∫
d5x
√
|g|
[
R+

λ

2
L2X4

]
, (1.63)

where λ is a dimensionless parameter and L a length scale. The black hole solutions of
this theory were first analyzed in the works [44, 114, 115]. A certain combination of the
equations of motion evaluated on (1.61) implies that N ′(r) = 0, so that this function is a
constant. In order to ensure that the solution is asymptotically flat, where the coordinate
t is identified with the time of an asymptotic observer, we set N(r) = 1. On the other
hand, it is found that the differential equation satisfied by the remaining variable f(r) can
be integrated, yielding an algebraic equation

− r2(f(r)− 1) + λL2 (f(r)− 1)2 = ω2 , (1.64)

where ω is an integration constant with units of length. The two roots of this equation
provide two different solutions

f(r) = 1 +
r2

2λL2

[
1±

√
1 +

4λL2ω2

r4

]
, (1.65)

but only one of these solutions — the one with the “−” sign — is asymptotically flat
and has a well-defined Einstein gravity limit λ → 0. The other solution, corresponding
to the “+” sign, is asymptotically de Sitter (λ < 0) or anti-de Sitter (λ > 0) and it is
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singular in the limit λ → 0. Let us therefore consider the former case. First of all, by
expanding the solution for large r, and using the usual ADM prescription for the mass of
a spacetime [98–100] — which extends to the case of higher-order gravity as well [102,103]
— we can see that ω2 is related to the mass according to

ω2 =
8GM

3π
. (1.66)

In addition, one can easily check that in the limit λ→ 0 one recovers the five-dimensional
Schwarzschild-Tangherlini solution (1.62), so (1.65) is a smooth deformation of an Ein-
stein gravity solution. However, the properties of the Gauss-Bonnet black hole are quite
different from those of Einstein gravity black holes. First we must determine the radius
of the horizon, which is fixed by the condition f(rh) = 0. By looking at (1.64) we derive
immediately the following relation between rh and the parameter ω:

r2
h = ω2 − λL2 . (1.67)

We see that something very unusual happens for λ > 0: the black hole becomes of zero
size for a finite value of the mass, namely Mmin = 2πλL2/(8G). For smaller masses, the
solution does not represent a black hole anymore, but a naked singularity. In the case of
negative λ, the solution becomes singular for M = 2π|λ|L2/(8G), but now this happens at
a finite radius. Then, we can analyze the black hole’s temperature, which can be computed
according to the simple relation T = f ′(rh)/(4π), and as a function of ω it reads

T =

√
ω2 − λL2

2π (λL2 + ω2)
, (1.68)

For large masses, ω2 →∞, we observe that the temperature reduces to the Einstein gravity
value, T ∝M−1/2. However, the behaviour for small masses is completely different, and it
is especially interesting for λ > 0. In that case we get that the temperature vanishes when
ω2 = λL2, i.e., when the minimum mass M = Mmin is reached, so the black holes of the
minimal mass are extremal. This also implies that there exists a maximum temperature
and that black holes of small masses have positive specific heat. This behaviour differs
dramatically from the GR prediction, where one finds that the temperature of small black
holes diverges, and it has intriguing consequences for the evaporation process of black
holes [53]. In fact, the final stage of an evaporating Gauss-Bonnet black hole is one of
these extremal black holes of mass Mmin. In addition, since the temperature vanishes as
the mass approaches the minimum value, the extremal limit is never reached in a finite
time. This is an excellent example of how the introduction of higher-derivative terms can
cure some of the divergences present in GR.

Let us now study in a less detailed way the black hole solutions of general D-
dimensional Lovelock gravity, as introduced in (1.31). For convenience, let us we rewrite
that action as follows

SLL =
1

16πG

∫
dDx

√
|g|

−2Λ +R+

b (D−1)
2
c∑

n=2

λn
(D − 1− 2n)!

(D − 3)!
(−1)nL2n−2X2n

 ,

(1.69)
where λn are dimensionless coupling constants and we have included an arbitrary cos-
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mological constant term. For completeness, we will not restrict ourselves to spherically
symmetric solutions only, and we will study as well black holes with planar and hyperbolic
horizons — these appear naturally when considering asymptotically AdS solutions. Thus,
we assume a metric ansatz of the form

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΣ2

k,(D−2) , (1.70)

where dΣ2
k,(D−2) is the metric of a maximally symmetric space of curvature k = −1, 0, 1,

corresponding, respectively, to spherical, planar and hyperbolic geometries.
As in the case of Gauss-Bonnet gravity, the equations of motion imply thatN ′(r) = 0,

so that this function is a constant N(r) = Nk — for k = 1 we set Nk = 1 but other choices
are more natural for k 6= 1. On the other hand, the differential equation for f(r) can
be integrated yielding an algebraic equation. It is convenient to introduce the function
g(r) = L2(f(r)− k)/r2, in terms of which the equation reads

h (g) =
ωD−3L2

rD−1
, (1.71)

where ω is an integration constant and h(x) is the polynomial function

h(x) = − 2ΛL2

(D − 1)(D − 2)
− x+

bD−1
2
c∑

n=2

λnx
n . (1.72)

In this way, the black hole solutions of Lovelock gravity are obtained by solving the roots of
(1.71) — see Ref. [118] for a detailed discussion. The integration constant ω can be related
to the massM of the black hole according to ωD−3 = 16πGM

(D−2)Vk
where Vk is the volume of the

transverse space. Nevertheless, M only represents the mass in the spherically symmetric
case, k = 1. In the non-compact cases k = 0,−1 we should interpret M/Vk as a mass
density — this makes special sense in the holographic context, as we will see. Finally, it is
possible to study the thermodynamic properties of Lovelock black holes as we just did in
the Gauss-Bonnet case. In particular, the temperature and entropy — the latter computed
from Wald’s formula (1.50), or equivalently from the Jacobson-Myers’ one [214] — of these
black holes read

T = − Nk

4πL

[
rh(D − 1)h

(
−kL2/r2

h

)
Lh′

(
−kL2/r2

h

) +
2kL

rh

]
, (1.73)

S =
rD−2
h Vk
4G

1−
bD−1

2
c∑

n=2

λn

(
−kL

2

r2
h

)n−1
n(D − 2)

(D − 2n)

 . (1.74)

Analyzing these formulas, one finds that the existence of stable black holes or black holes
with degenerate horizons are quite common features of Lovelock gravities [53].
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Black holes in Quasi-topological gravity

As we have seen, the equations of motion of Lovelock gravity for SSS metrics take a
relatively simple form and it is possible to solve them explicitly. In general, for other
higher-order gravities the equations of motion are much more involved and a similar res-
olution is not possible. In addition, we have found that the corresponding black hole
solutions of Lovelock gravity have very interesting properties that depart greatly from the
GR case. However, Lovelock theories have the disadvantage of being highly constrained
by the spacetime dimension. Thus, in D = 4 they introduce no corrections, and in D = 5
the only non-trivial term beyond GR is given by the Gauss-Bonnet density. In order to
overcome this restriction, a new theory known as Quasi-topological gravity was introduced,
independently, in Refs. [129, 130]. Although this theory does not share the unique prop-
erty of Lovelock gravity of possessing second-order equations of motion, it does mimic
some aspects of these theories. We already mentioned that Quasi-topological gravity has
the nice property of satisfying second-order linearized equations on constant-curvature
backgrounds, which guarantees that it propagates the same degrees of freedom as GR. In
addition, the spherically symmetric black hole solutions of Quasi-topological gravity can
be constructed explicitly, in a very similar fashion as in Lovelock gravity. Let us review
here the construction of five-dimensional black holes in this theory as presented in [130].
We consider the action

S =
1

16πG

∫
d5x
√
|g|
[

12

L2
+R+

λL2

2
X4 +

7µL4

4
Z5

]
, (1.75)

where we chose the cosmological constant to be negative and given by Λ = −6/L2, where
the scale L coincides with the AdS5 radius when µ = λ = 0. On the other hand, we include
the Gauss-Bonnet term X4 as well as the five-dimensional Quasi-topological gravity term,
Z5, as given by (1.36). We consider a metric ansatz with different possible choices of
horizon topologies, as before

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΣ2

k,(3) , (1.76)

where N(r) and f(r) are unknown functions. As in the case of Lovelock gravity, one finds
that the equations of motion set N(r) to a constant Nk, while the equation for f(r) can
be reduced to an algebraic one. Introducing f(r) = k + r2g(r)/L2 the equation satisfied
by g(r) reads

1− g + λg2 + µg3 =
ω4

r4
, (1.77)

where ω is an integration constant. Thus, the situation is very similar to the Lovelock
case, but now we have a cubic term in the left-hand-side of this equation — a term that
would not be allowed in five-dimensional Lovelock gravity. Equation (1.77) can have several
solutions and a different character depending on the values of the couplings λ and µ, and
we refer to the original work [130] for a detailed analysis. In any case, let us emphasize
that asymptotically, this equation becomes

1− g∞ + λg2
∞ + µg3

∞ = 0 , (1.78)
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The roots of this polynomial determine the possible AdS vacua of the theory (1.75), which
have a radius L̃2 = L2/g∞. Only one of the possible vacua is smoothly connected to the
Einstein gravity one when λ, µ→ 0, and this is the one that is taken as physical.

It is possible to repeat the construction of black holes with the quasi-topological
interaction (1.36) in higher dimensions D ≥ 6. However, in those cases the contribution
of this term to the equations of motion for metrics of the form (1.70) is the same as the
one from the cubic Lovelock density X6, so that it does not provide new modifications.20

On the other hand, it is possible to obtain higher-order generalizations of the cubic den-
sity ZD. In particular, Refs. [132, 133] constructed, respectively, the quartic and quintic
versions of Quasi-topological gravity. These terms share the same properties of the cu-
bic interaction that we mentioned here: they possess second-order linearized equations
on constant-curvature backgrounds,21 and they allow for black hole solutions of the form
(1.76) with N(r) = constant and g(r) satisfying an equation similar to (1.77) (with the
polynomial in the left-hand-side containing higher powers of g). Most likely, it will be
possible to extend the construction of this type of theories to arbitrary orders in curvature.

However, there is an important drawback: none of these quasi-topological theories
exist in four dimensions. At the same time, this means that the study of non-trivial
modifications of the Schwarzschild solution in D = 4 still remains as an open subject. Let
us note here that all the black hole solutions that we have reviewed satisfy the property
of having N(r) =constant, or in other words, they have gttgrr = const. when expressed in
Schwarzschild-like coordinates. In addition, all the theories in which these types of solutions
have been constructed possess second-order linearized equations, and this suggests that
there might be a relation between both properties. We will show in Chapter 3 that there
is indeed a connection between these properties, and furthermore, we will see that the
theories that satisfy the condition gttgrr = const. are very appealing to study SSS black
hole solutions. This will lead us to the construction of a generalization of Quasi-topological
gravity that is non-trivial in D = 4. The new theories will allow us to provide the first
examples of exact, non-trivial modifications of the four-dimensional Schwarzschild solution
in higher-order gravity.

1.3 Holography

Earlier in this introduction, we already met String Theory as a promising candidate for
a quantum theory of gravity. One of the most important characteristics of ST is the
existence of an extensive net of dualities that relate the different types of string theories,
or different ways of realizing them. When two theories are dual they are equivalent in a
mathematical sense, but physically they may describe dramatically different systems. The
dualities discovered in ST have had a profound impact in other areas of physics — and
even in mathematics [215, 216] — and they have led to connections that no one would
have expected. In this respect, one of the most impressive dualities predicted by ST is
known as the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [55–57].
On general grounds, this correspondence relates String Theory placed on a D-dimensional
negatively curved space — Anti-de Sitter space — to a conformal field theory on (D− 1)-

20In particular, for D = 6 the term Z6 does not contribute to the equations of motion for SSS metrics,
and this is the origin of the name “Quasi-topological”.

21Actually, this has only been explicitly proven for the quintic theory [133] thanks to the efficient lin-
earization method presented in [106], that we review in Chapter 2.
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dimensional flat space. There are two striking facts about this duality. First, it relates
theories of two different dimensionalities, and in this sense the AdS/CFT correspondence
is a particular case of the holographic principle [217–219]. From this point of view, it
is usually interpreted that the CFT lives on the boundary of the AdS space, and that
the physics in the bulk are a hologram of the physics in the boundary. Second, it maps
a theory of quantum gravity such as String Theory, to a quantum field theory without
gravity. Since quantum field theories are much better understood than string theory, it
has been claimed that the AdS/CFT correspondence can be used to define ST. In addition,
it is also believed that this duality solves the problem of information loss in black holes:
since the process of Hawking evaporation will be described by unitary evolution in the
CFT side, by construction no unitarity loss is possible — see [183] for a criticism though.

However, the AdS/CFT duality can also be applied in the opposite direction: we can
use a theory of gravity in order to learn about conformal field theories. The success of this
approach relies on the fact that, in an appropriate limit, the gravitational theory becomes
classical, and the calculations in the bulk are often simpler than in the CFT side. In order
to illustrate this, let us review the original form of the conjecture.

Type IIB String Theory/Super-Yang-Mills correspondence

There are many explicit forms of the AdS/CFT correspondence that arise from string
theory, but the most well-known is the one due to Maldacena [55]. Explicitly, it states
the equivalence between d = 4, N = 4 Super-Yang-Mills (SYM) theory with gauge group
SU(N) and coupling constant gYM, and type IIB superstring theory on AdS5 × S5, with
radius of curvature L and N units of F(5) flux on S5. Both theories contain two parameters:
the SYM theory depends on N and on gYM, while string theory depends on α′ =

√
`s and

the string coupling gs. According to the AdS/CFT duality, these parameters are related
in the following way

g2
YM = 2πgs , 2g2

YMN =
L4

α′2
. (1.79)

Then, the fundamental identity of the duality relates the partition functions of both theories

ZCFT = ZST . (1.80)

We emphasize that the correspondence is conjectured to hold for any value of the param-
eters and that in general it relates two seemingly different quantum theories. However,
there is an interesting limit which is usually expressed in terms of the ’t Hooft coupling
λ = g2

YMN . First, when we fix λ to a constant value and we take N → ∞, the string
coupling constant goes to zero gs → 0, and in this case string theory becomes classical. If
in addition we take λ to be very large, we get

√
α′/L → 0, and in this situation, string

theory is accurately described by a classical supergravity theory. The fact that the large
N and large ’t Hooft coupling limit of a CFT is described by a classical gravity theory in
the bulk is a generic result that extends for other forms of AdS/CFT. The main advantage
is that now the partition function of the bulk theory can be computed at tree level using

29



Chapter 1. Introduction

the corresponding classical action,22

ZST ∼ e−Sgrav . (1.81)

Thus, identifying the fields in both sides one can compute correlation functions of the
CFT by taking the appropriate functional derivatives in the bulk action. More generally,
the relation between quantities in both sides of the duality is known as the holographic
dictionary.

Finite N and λ corrections

As we saw in Section 1.1.1, the stringy effective actions are a double series in the parameters
gs and α′, and if these are very small the full action can be approximated by the leading
term, which corresponds to a supergravity theory. This is the reason why the strongly
coupled and large N regime of a CFT corresponds to a classical (super)gravity theory in
the bulk. However, strictly speaking that approximation only captures the behavior in the
limit N,λ → ∞. If one wishes to study a CFT with large but finite values of N and λ,
the dual bulk theory must have small, but non-zero values of gs and

√
α′/L. This means

that one should consider the subleading terms in the stringy effective actions (1.6), which
in general contain higher-derivative operators. As an example, let us consider the quartic
action (1.11) which arises in type IIB superstring theory on AdS5×S5. When the origin of
the quartic terms is analyzed one finds that the pre-factor is related in the following way
with the SYM theory parameters [77]

ζ(3)
α′3

L6
=
ζ(3)

λ3/2
+

λ1/2

48N2
. (1.82)

Thus, when we apply the AdS/CFT correspondence to a classical gravity theory supple-
mented with higher-derivative corrections we are capturing finite N and λ effects in the
dual CFT. However, the precise terms that have to be included as well as the relation with
N and λ are dictated by string theory in every particular case.

1.3.1 Higher-curvature gravities as holographic toy models

Even though the AdS/CFT correspondence has its origin in String Theory, the holographic
relationship between classical gravity and conformal field theories is nowadays understood
as a general principle, sometimes called gauge/gravity duality. In this sense, ST establishes
what theories are related and provides a precise dictionary between the parameters and
fields in one and the other side of the correspondence. However, it is also a valid strategy
to consider a given classical theory of gravity with a negative cosmological constant as a
holographic toy model. In support of this statement, imagine that we are only interested
in the gravitational sector and we take a bulk theory whose only field is the metric. Such
theory might probably appear as the truncation of many other theories that contain ad-
ditional fields and for which an explicit holographic correspondence with a CFT exists.
Thus, when we study the holographic dictionary of this gravitational theory we are not
exploring a unique CFT, but a whole family of CFTs that belong to the same universality
class.

22We show the identification in Euclidean signature.
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In this respect, when one studies the holographic dual of Einstein gravity, only a re-
stricted set of CFTs is explored. A very successful approach that has usually been applied
in order to broaden the spectrum of CFTs that one can analyze consists in considering
higher-derivative gravities as bulk theories. This allows to explore CFTs that belong to
different universality classes from the one defined by GR [220–222]. For instance, these
theories can have a 6= c in d = 4 [223,224] or a more general 3-point function of the stress-
energy tensor from the one predicted by holographic Einstein gravity [119,121–124,131] —
we review these cases below. In relation to this, higher-order gravities can be used in order
to obtain relationships between quantities of CFTs valid for general theories. The idea is
that, if a certain property holds for all holographic CFTs dual to higher-order gravities,
then it might actually hold for arbitrary CFTs — see [58–62] for successful examples of
this type of applications. In other cases, higher-order gravities have served just the op-
posite purpose, namely providing counterexamples of previously conjectured relationships.
One interesting example is given by the Kovtun-Son-Starinets (KSS) bound for the shear
viscosity over entropy density ratio [225]. The KSS conjecture states that, for any fluid or
plasma in nature, the ratio between these quantities is not smaller than 1/(4π) (in natural
units), which is the value predicted by Einstein gravity holography. However, holographic
hydrodynamics computations with higher-curvature gravities provide evidence that this
bound might be violated in some cases [77, 81, 226–229]. Thus, holographic higher-order
gravities should be regarded as useful toy models that allow us learn about new phenomena
in CFTs, and to perform many computations of physical quantities otherwise practically
inaccessible in a field theory approach— see e.g., [230–233] for additional examples.

There are many aspects of a CFT that can be studied looking only at the gravitational
sector of the bulk theory. In what follows we review in more detail some entries of the
holographic dictionary and discuss the relevance of higher-curvature corrections in each
case.

Correlators of the stress-energy tensor

According to the holographic dictionary, the metric perturbation on the boundary of AdS,
hab, couples to the stress-energy tensor of the CFT, T ab. Thus, the gravitational sector
of a bulk theory determines the different correlators of the dual CFT stress-energy tensor.
These can be computed by studying perturbations on a pure AdS geometry and evaluating
the corresponding gravitational action. For instance, if we study a perturbation of AdS
space in the Poincaré patch of the form

ds2 =
L2dr2

r2
+
r2

L2
dxadxb (ηab + hab(x)) . (1.83)

we can compute the 2-point function as

〈Tab(x)Tcd(x
′)〉CFT = − δSgrav

δhab(x)δhcd(x′)

∣∣∣∣
hab=0

. (1.84)

A very interesting property of conformal invariance is that the form of these correlators
is enormously constrained. Thus, in the case of the 2-point function above, it takes the
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following form for any CFT

〈Tab(x)Tcd(x
′)〉 =

CT
|x− x′|2d

Iab,cd(x− x′) , (1.85)

where

Iab,cd(x) ≡ 1

2
(Iac(x)Ibd(x) + Iad(x)Ibc(x))− 1

d
ηabηcd , and Iab(x) ≡ ηab − 2

xaxb
x2

,

(1.86)
is a fixed tensorial structure and the only theory-dependent quantity in each case is the
central charge CT . Likewise, in dimension d ≥ 4 the 3-point function of Tab only depends
on three constants [234,235], and one combination of them is related to CT , hence implying
that only two additional parameters are needed in order to fix the 3-point function of the
CFT. In d = 3 only one additional constant besides CT is required, while in d = 2 the
3-point function is completely determined by the central charge CT . A direct holographic
computation of the 3-point function using an expression analogous to (1.84) is possible
[236], but in many cases it involves an extremely lengthy computation. An alternative
way of obtaining the parameters of the 3-point function entails examining energy fluxes in
the boundary of AdS after a local perturbation was created by the insertion of the stress-
energy tensor of the form εabT

ab [221]. The energy flux that escapes at null infinity in the
direction of the unit vector ~n is then given by

〈E(~n)〉 =
E

Ω(d−2)

[
1 + t2

(
ε∗abεacn

bnc

ε∗abε
∗
ab

− 1

d− 1

)
+ t4

(∣∣ε∗abnanb∣∣2
ε∗abε

∗
ab

− 2

d2 − 1

)]
. (1.87)

and the two coefficients t2 and t4, together with the central charge CT , can be used to
determine the full 3-point function —see the appendix of [121]. Note that the structure
multiplied by t2 vanishes in d = 3, and in that case only the coefficient t4 is relevant, in
agreement with the number of independent terms in the 3-point function in that dimension.
Now, the holographic computation of energy fluxes is a much more amenable task than
the direct computation of 3-point correlators [119,121].

Let us then consider Einstein gravity as a holographic toy model,

S =
1

16πG

∫
dd+1x

√
|g|
[
d(d− 1)

L2
+R

]
, (1.88)

where the negative cosmological constant Λ = −d(d−1)
2L2 is defined in a way that L represents

the “radius” of AdS. When the holographic dictionary of this theory is studied, one finds
that the central charge of the stress tensor 2-point function reads

CE
T =

Γ[d+ 2]Ld−1

8π
d+2

2 (d− 1)Γ
[
d
2

]
G
, (1.89)

while the coefficients t2 and t4 vanish. Thus, as a holographic toy model, Einstein gravity
only explores CFTs with a particular form of the stress-energy tensor 3-point function.
If one wants to study holographic CFTs with a more general 3-point function, then one
must consider adding higher-curvature terms in the bulk action. The simplest non-trivial
extension of GR that serves to this purpose is Gauss-Bonnet gravity [119, 121], or more
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generally, Lovelock gravities [122–124]. We already found these theories in Section 1.1.3,
where we saw that they are the most general higher-derivative gravities possessing second-
order equations of motion. In addition, we also saw that some of them appear naturally
in string effective actions [44,75]. For these reasons, Lovelock gravities provide interesting
holographic toy models. In the previous references [119, 121–124], it was determined that
Lovelock gravities in general give rise to a non-vanishing t2 in the energy flux (1.87), so
that they explore CFTs inequivalent to those captured by EG holography. However, all
CFTs dual to Lovelock gravities have t4 = 0, so they still do not capture CFTs with a
general stress tensor 3-point function — in particular, t4 = 0 is a property that holds for
any supersymmetric CFT. This was one of reasons to introduce Quasi-topological gravity
in Ref. [130], a theory that we reviewed in Section 1.1.3. Several holographic aspects of
Quasi-topological gravity were studied in [131], and we reproduce here the results found for
the flux parameters. We consider the five-dimensional version of Quasi-topological gravity
together with a Gauss-Bonnet term,

SQT =
1

16πG

∫
d5x
√
|g|
[

12

L2
+R+

λL2

2
X4 +

7µL4

4
Z5

]
. (1.90)

First one must determine the AdS solutions of this theory. Unlike the case of EG in
(1.88), the length scale L does not coincide with the radius of AdS anymore. Instead, it is
customary to denote the radius of AdS as L̃ = L/

√
f∞, where f∞ is a constant. Then, the

equations of motion imply that f∞ must be a root of the following polynomial

1− f∞ + λf2
∞ + µf3

∞ = 0 , (1.91)

This equation may have several solutions with f∞ > 0, but we must choose the one that
is connected to the EG vacuum, i.e., the one that satisfies limµ,λ→0 f∞ = 1. Once the
AdS radius is determined, one can proceed to compute the 2-point function and the energy
fluxes — see the details in [131] — and the result reads

CT =
5L̃3

π3G

(
1− 2λf∞ − 3µf2

∞
)
, (1.92)

t2 =
24f∞ (λ− 87µf∞)

1− 2λf∞ − 3µf2
∞
, t4 =

3780f2
∞µ

1− 2λf∞ − 3µf2
∞
. (1.93)

Thus, the QT interaction yields a non-zero value of t4, and hence provides a holographic toy
model of a non-supersymmetric CFT4. In addition, the three parameters CT , t2, t4 are now
independent and therefore the theory (1.91) can be used to explore CFTs with arbitrary 2-
and 3-point functions. However, there are causality and unitarity constraints that t2 and
t4 must satisfy in order for the dual theory to be well-behaved. These constraints restrict
the range of values that the couplings λ and µ can take.

A similar analysis can probably be performed for higher-dimensional QT gravity (or
for its higher-curvature generalizations [132, 133]). However, since Quasi-topological and
Lovelock gravities are trivial in D = 4, they cannot be used to study three-dimensional
CFTs with a general stress tensor 3-point function — which requires a non-vanishing t4.
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Trace anomaly

Conformal symmetry at the classical level implies that the stress-energy tensor of a CFT is
traceless T aa = 0. At the quantum level, this identity should transform into 〈T aa 〉 = 0 but
this not always satisfied due to the presence of anomalies. In the case of even-dimensional
CFTs a trace anomaly appears when we place the theory in a curved background. In d = 4
the anomaly is controlled by the two central charges a and c and it takes the form

〈T aa 〉 =
c

16π2
I4 −

a

16π2
X4 , (1.94)

where I4 = WabcdW
abcd is the Weyl squared invariant and X4 is the Gauss-Bonnet density,

both of them evaluated on the background geometry. These charges satisfy the relationship
(for d = 4) [121,131,221]

c− a
c

=
1

6
t2 +

4

45
t4 , (1.95)

so that for holographic CFTs with an Einstein gravity dual we will have a = c — the
precise result of a holographic computation yields [237–239] a = c = πL3/(8G). However,
as happened for the three-point function charges, the degeneracy between a and c is broken
when we consider higher-derivative gravities in the bulk — and this is specially evident
looking at (1.95). Following with the example of Quasi-topological gravity in (1.90), the
charges a and c read [131]

a =
πL̃3

8G

(
1− 6λf∞ + 9µf2

∞
)
, c =

πL̃3

8G

(
1− 2λf∞ − 3µf2

∞
)
, (1.96)

which now are different. Higher-order gravities have played a central role in establishing
the monotonicity theorems of Refs. [58,59] precisely because they allow distinction between
a and c charges.

Thermodynamic phase space

According to the AdS/CFT correspondence, the dual description of a black hole bulk
geometry is a CFT in a thermal state. This is directly related to the fact that black
holes are thermodynamical systems, and indeed, the thermal partition function of the
CFT is computed by evaluating the Euclidean gravitational action on black hole solutions,
according to − logZCFT = SE . As we discussed at the end of Section 1.2.1, the gravitational
bulk action needs to be supplemented with appropriate boundary terms and counterterms
that make it well-posed and that regularize it. We reviewed boundary terms for some
theories in Section 1.1.3, and as for counterterms, there is a natural way to construct them
for asymptotically AdS spaces [178]. The method involves the introduction of intrinsic
curvatures in the boundary term, and for instance, for Einstein gravity we get

SE
E = − 1

16πG

∫
M
dd+1x

√
g

[
d(d− 1)

L2
+R

]
− 1

8πG

∫
∂M

ddx
√
h

[
K − d− 1

L
− L

2(d− 2)
R+ . . .

]
,

(1.97)
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where R is the Ricci scalar of the induced metric on ∂M and we have added the countert-
erms needed for d ≤ 4.

An interesting property of AdS space is that it can be foliated in different ways, and
this gives rise to CFTs placed in various geometries, each one corresponding to black holes
with a different horizon topology. For instance, if we wish to study CFTs in flat spacetime
we must search for static black hole solutions of the form

ds2 =
r2

L2

(
−N(r)2f(r)dt2 + dxidxi

)
+
L2dr2

r2f(r)
, (1.98)

which have planar horizons — they are known as black branes. The integration con-
stants must be fixed appropriately so that asymptotically the solution behaves as f(r)→
r2f∞/L

2, N(r)2 → 1/f∞, and in that case the boundary of AdS is d-dimensional Minkowski
space. The CFT dual to one of these black branes is in a thermal state analogous to the
quark-gluon plasma and it always satisfies a relation of the form

s = cST
d−1 , (1.99)

where s is the entropy density, T is the temperature and cS is a constant known as the
thermal entropy charge. For instance, in the case of Einstein gravity the black brane
solutions above are given by N(r) = 1, f(r) = 1 − ωd/rd, where ω is an integration
constant. The thermal entropy charge for CFTs dual to EG reads

cE
S =

4d−2πd−1Ld−1

dd−1G
. (1.100)

As we can see, this constant is essentially indistinguishable from CE
T in (1.89), because

it is proportional again to Ld−1/G. In fact, all central charges in holographic EG are
proportional to this ratio, which is the only dimensionless quantity that can be formed
out of L and G. However, the addition of higher-curvature terms breaks the degeneracy
of charges and allows to distinguish between CT and cS — see e.g., [129].

On the other hand, the usual spherically symmetric black hole solutions are dual to
a thermal state of a CFT placed on R × Sd−1. In this case, the Euclidean version of the
CFT has two scales: the period of the Euclidean time β and the size of the sphere, and for
this reason the thermodynamic quantities do not satisfy a power-law relation as in (1.99).
An interesting phenomena is that a phase transition takes place for certain value of the
temperature T = 1/β; this the CFT equivalent of the Hawking-Page phase transition in the
bulk [240, 241]. Let us review this phenomena in the case of five-dimensional holographic
Einstein gravity. There are two Euclidean bulk geometries whose boundary is a CFT on
Sβ × S3; one of them is a black hole solution of the form

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2dΩ(3) , where f(r) = 1 +

r2

L2

(
1− ω4

r4

)
(1.101)

and the other one is pure (thermal) AdS given by the metric above with ω = 0. In both
cases the coordinate τ has period β = 1/T and the boundary r →∞ is Sβ ×S3, but in the
case of the black hole we must impose regularity of the Euclidean geometry at the point rh
where f(rh) = 0. The absence of a conical singularity imposes the condition f ′(rh) = 4πT ,
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which in turn provides the following relations between T , ω and rh:

T =
1

2π

[
2rh
L2

+
1

rh

]
, ω4 = r4

h + L2r2
h . (1.102)

Finally, for both solutions one may compute the Euclidean action (1.97), which yields

SE, Radiation
E =

3πβL2

32G
, (1.103)

SE, BH
E =

πβ

8GL2

[
3L4

4
+ L2r2

h − r4
h

]
. (1.104)

Then, the one with smallest value dominates the partition function. We see that for large
rh, the action for black holes becomes negative and is the one that dominates. However,
when rh = L, which corresponds to a temperature THP = 3

2πL , both phases contribute
equally to the partition function, and a phase transition from black holes to radiation takes
place. This indicates as well the existence of a phase transition in the CFT: for T > THP

its thermal state is dual to a large black hole, while for T < THP it must be described by
pure (thermal) AdS. The introduction of higher-derivative bulk corrections in this context
generically imply that the temperature of the phase transition as well as the latent heat
will change. However, they can also introduce other phenomena such as the appearance
of additional phases [54, 242]. In some cases the new phases can dominate the partition
function and produce a large/small BH transition instead of a large BH/radiation one
[243,244]. Furthermore, some higher-order gravities allow to construct more sophisticated
phase transitions that generalize the Hawking-Page one [245].

Finally, it is possible to construct black holes with hyperbolic horizons, whose asymp-
totic boundary is the hyperbolic cylinder R×Hd−1. According to the Casini-Huerta-Myers
map [246], the thermal entropy of a CFT placed in this geometry is equal to the entan-
glement entropy across a spherical region Sd−2. Thus, this map allows to compute the
entanglement entropy of a holographic CFT as the entropy of a certain hyperbolic black
hole. More generally, it is possible to compute holographic Rényi entropies [247,248] from
the thermodynamic entropy of hyperbolic black holes [230]. Rényi entropies provide a
measure of the entanglement of a quantum system [249,250] and they represent a general-
ization of the usual entanglement entropy. Imagine that we take a constant time slice and
we split it as the sum of a subregion V and its complement V̄ . Then we assume that this
also produces a bi-partition of the Hilbert space as the sum of the degrees of freedom that
live in V plus the ones that live in its complement. We define the reduced density matrix
of the subsystem V as the partial trace ρV = TrV̄ ρ and then Rényi entropies are defined
as

Sq(V ) =
1

1− q
log TrρqV , q ≥ 0 . (1.105)

The limit q → 0 corresponds to the entanglement entropy, defined as the von Neumann
entropy of ρV . In the holographic context, these entropies are computed according to [230]

Sq =
q

(1− q)T0

∫ T0

T0/q
Sthermal(T )dT , (1.106)
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where Sthermal(T ) is the corresponding thermal entropy on R×Hd−1 at temperature T , and
T0 = 1/(2πR), where R is the radius of curvature of Hd−1. The thermal entropy in the case
of Einstein gravity is simply given by Bekenstein-Hawking formula (1.48), but this result
is generalized to higher-order gravities by using Wald’s formula (1.50). An interesting
application in the latter case is that, since the degeneracy of central charges if broken, it
is possible to study the dependence of Rényi entropies on some of these charges [230] —
see [79,251–253] for additional examples.

As a general remark, let us note that if we want to generalize the results from holo-
graphic Einstein gravity to higher-order gravities, these must possess accessible black hole
solutions. Of particular interest is the case in which the computations can be performed
non-perturbatively in the higher-order couplings, and for this reason Lovelock and Quasi-
topological theories are specially appealing in this context for d ≥ 4. However, the situation
in d = 3 is more precarious because these theories become trivial in D = 4.

Hydrodynamics and KSS bound

When considering perturbations around thermal equilibrium, a CFT behaves as a plasma
that can be described under the hydrodynamic approximation. We have just seen that the
bulk geometry dual to a CFT in a thermal state corresponds, generically, to a black hole
— in particular to a black brane if the CFT is defined on flat space — and therefore, holo-
graphic plasmas can be studied by analyzing perturbations over black hole solutions. One
quantity that has attracted much attention in the context of holographic hydrodynamics
is the shear viscosity, η, which measures the velocity gradient between layers of fluid that
move between two plates. This quantity scales with temperature according to η ∝ T d−1,
and for this reason it is interesting to look at the ratio between the shear viscosity and the
entropy density, η/s, which is independent of T . At weak coupling, this ratio is expected
to be large since it must diverge in the limit of free fields. Thus, η/s gets smaller at
strong coupling and in this regime it can be studied using the AdS/CFT correspondence
— see [254–258] for different holographic methods of computing η.

When the ratio η/s is computed for holographic Einstein gravity in any number of
dimensions, the following answer is obtained [254,255]

η

s

∣∣∣
E

=
1

4π
. (1.107)

This result is universal in the sense that it holds for all CFTs whose dual bulk gravity sector
is GR, and the fact it corresponds to the the strong coupling limit of these CFTs suggests
that this might be the minimal universal value for η/s. Indeed, the Kovtun-Son-Starinets
(KSS) bound [225] claims that any fluid or plasma in nature satisfies

η

s
≥ 1

4π
, (1.108)

a bound which is saturated for Einstein gravity holography. However, when higher-
curvature terms are included in the gravitational action, the relation (1.107) receives cor-
rections [77, 81, 226–229]. For instance, in the context of N = 4 SYM theory, whose
dual gravity theory contains the quartic terms in (1.11), it was found that the leading
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perturbative corrections to (1.107) are given by [77]

η

s

∣∣∣
SYM

=
1

4π

(
1 +

15ζ(3)

λ3/2
+

5

16

λ1/2

N2
+ . . .

)
. (1.109)

In this instance the corrections respect the KSS bound, but there has been an intensive
search for toy models of holographic higher-order gravities that can violate the bound —
see [259] for a review. For example, in the case of Quasi-topological gravity, given by
(1.90), the following value of the shear viscosity to entropy density ratio was found [131]

η

s

∣∣∣
QT

=
1

4π

[
1− 4λ− 36µ(9− 64λ+ 128λ2 + 48µ)

]
, (1.110)

and it is obvious that for some values of the parameters the KSS bound is violated. How-
ever, in order for this result to be meaningful it is necessary to make sure that the dual
CFT is not pathological: it must respect unitarity, causality and positivity of energy. A
thorough study of these constraints in Quasi-topological gravity [131] led to the conclusion
that the KSS bound can be lowered to η/s ∼ 0.4/(4π). A similar analysis in [123] for the
case of general Lovelock gravity determined that η/s can be made arbitrarily close to zero
if we take d → ∞. However, it was later realized that higher-derivative terms generically
lead to causality violations when three-point graviton scattering is involved [260]. This
can only be fixed by introducing an infinite tower of higher-spin fields which appear at the
same energy scale as the higher-derivative terms. Although the effect of such additional
degrees of freedom on the holographic setup is unclear, this result seems to compromise
the validity of the previous estimations. On the bright side, it should be noted that holo-
graphic higher-curvature models have been successful in other applications where they have
provided correct intuitions about CFTs [58–62], where no inconsistencies were found. In
addition, there are theories whose three-point function structure agrees with the one of
Einstein gravity, and therefore are not directly affected by the results in [260]. An example
of this is precisely provided by the quartic terms that appear in the effective action of type
IIB ST (1.11). Even if the validity of previous estimations of η/s is not clear, holographic
higher-order gravities at least suggest that some non-trivial bound, lower than the KSS
one, does exist for general d — see e.g., [261].

Squashed holography

Placing a conformal field theory on a curved background is a fruitful strategy to obtain
relevant information about the dynamics of the theory, e.g., we have already seen the
case of the trace anomaly. We are interested now in studying the change in the partition
function of the CFT when we perturb or deform the background metric. One class of
manifolds that has attracted some attention in this context is deformed spheres [262–265],
and we will consider in particular a class of odd-dimensional squashed spheres given by
the metric

ds2
Sdε

=
ds2

CPk

(d+ 1)
+ (1 + ε)

(
dψ +

ACPk

(d+ 1)

)2

, (1.111)
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where ds2
CPk is the Einstein metric on the projective space CPk and J = dACPk is the

Kähler form on CPk (where k ≡ (d−1)/2). The deformation is controlled by the squashing
parameter ε: for ε = 0 we recover the round sphere Sd, while a non-zero ε yields a squashed
sphere with isometry group SU(d+1

2 )×U(1). Ref. [263] studied several aspects of the free
energy of the CFTs, defined as F = − log |Z|, when they are placed on one of these
squashed spheres. Among other results, it was found that ε = 0 is a local maximum of F ,
while the second derivative is universally controlled by CT — the explicit coefficient was
computed in d = 3, 5. However, the subleading terms O(ε3) in the expansion of the free
energy did not appear to have a simple expression in terms of other charges.

On the other hand, this type of squashed spheres can also be studied holographically:
the dual bulk geometries are given by Taub-NUT metrics [178,262,266–269]. Let us review
here the d = 3 case for holographic Einstein gravity. A solution of the equations of motion
of (1.88) is given by a metric of the form

ds2 = V (r)(dτ + 2n cos θdφ)2 +
dr2

V (r)
+ (r2 − n2)

(
dθ2 + sin2 θdφ2

)
, (1.112)

where n is an arbitrary constant and V (r) reads

V (r) =
(r − rh)

[
(6n2rrh − 3n4 + L2(n2 − rrh)− rrh(r2 + rrh + r2

h))
]

L2(n2 − r2)rh
. (1.113)

Here rh is an integration constant that we choose so that V (rh) = 0, but we still need
to impose several regularity conditions. First, absence of Misner strings [270] fixes the
periodicity of the Euclidean time τ to βτ = 8πn. On the other hand, in order to avoid a
conical singularity at r = rh, we must demand V ′(rh) = 1/(2n). This is an equation for
rh that has two types of solutions: one possible choice is rh = n, and the other one is

rh =
L2

12n

[
1±

√
1− 48n2

L2
+

144n4

L4

]
. (1.114)

In the former case, the solution is called a NUT, while in the second one we have a Bolt.
For both types of solutions, the asymptotic boundary of AdS for r →∞ is given by

(3)ds2

r2
=

4n2

L2
(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2 +O(r−2) , (1.115)

where ψ = τ/(2n) has period 4π. This metric coincides with the squashed sphere one
(1.111) if we take into account that CP1 ≡ S2 and if we identify

n2

L2
=

(1 + ε)

4
. (1.116)

Thus, both Taub-NUT and Bolt solutions are bulk duals of a CFT on a squashed sphere.
For each type of solution, the on-shell Euclidean action computes the corresponding con-
tribution to the holographic free energy, and the dominating phase is the one with a lower
value. For small values of ε it is found that the NUT solution dominates, and it yields the
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following value for the holographic free energy

FE
S3
ε

=
πL2

2G
(1− ε2) . (1.117)

We check that ε = 0 is indeed a maximum of the free energy, and furthermore, we have
F ′′S3

ε
(0) = −π4

3 C
E
T , where CE

T is the central charge for Einstein gravity in (1.89). Thus,
the holographic result agrees with the field-theory expectations [263], but it gives us no
additional information. In particular, one expects that the free energy contains subleading
terms in the ε expansion, but this cannot be explored with holographic Einstein gravity
because the expansion stops at quadratic order. A possible way to go beyond this result
is to consider higher-curvature corrections in the bulk. We will follow this approach in
Chapter 9.

1.4 Summary

This thesis is based on the results found in references [45, 106, 271–277]. Some parts of
the text have been directly extracted from these papers, others have been adapted with
minor modifications, and some parts have been written from scratch — especially chapters
5 and 6. In any case, the conventions have been adapted in order to provide a (more or
less) uniform notation in all the chapters. In addition, there are some new results and
discussions with respect to those references.

The thesis is structured in three parts that deal with different topics but which are
interrelated among them. In the first part, which consists of chapters 2, 3 and 4, we study
some general aspects of higher-derivative gravities and the purpose is mainly to identify
and classify certain theories that have interesting properties. The second part contains
chapters 5 and 6 and is devoted to the study of asymptotically flat black holes in a family
of four-dimensional higher-order gravities that were previously identified in the first part.
Finally, the third part is composed of chapters 7, 8 and 9, and it studies asymptotically
AdS solutions of this type of theories, as well as a number of applications in the context
of the AdS/CFT correspondence. We provide here a more detailed summary of the main
achievements in every chapter.

Chapter 2 (based on [106,271])

We study the linearized equations of general L(Riemann) theories on maximally symmetric
backgrounds and we provide an efficient algorithm to compute them for particular theories.
This algorithm has been afterwards used by other authors, e.g., [133,278]. We demonstrate
that the theories of the form L(Riemann) in general propagate a massive, ghost graviton
and a scalar mode along with the massless graviton, but we show that the additional
modes can be absent in some special cases and we provide a classification of theories
according to their spectrum. Among them, there are non-trivial theories whose linearized
equations coincide with those of Einstein gravity and we call them Einstein-like. The most
interesting achievement of the chapter is the identification of an even more special theory,
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named Einsteinian cubic gravity, which is given by the following cubic interaction

P = 12R ρ σ
µ ν R α β

ρ σ R µ ν
α β +R ρσ

µν R αβ
ρσ R µν

αβ − 12RµνρσR
µρRνσ + 8R ν

µ R ρ
ν R

µ
ρ .

(1.118)

This density satisfies the following properties

1. In any number of dimensionsD, the linearized equations of P around maximally sym-
metric backgrounds are of second order and proportional to the linearized Einstein
tensor. Therefore, only a massless graviton is propagated on those backgrounds.

2. Up to cubic order in curvature, P is the only higher-order term with this property
besides the lovelock densities X4 and X6.

3. However, unlike the Lovelock densities, P is not trivial nor topological in D = 4.

Furthermore, the ECG density satisfies additional properties that are described in the
next chapter. Due to these interesting features, ECG has triggered numerous follow up
research by other groups worldwide and has inspired the construction of similar theories,
see e.g., [40, 41,213,243,244,252,278–287]

Chapter 3 (based on [272])

In this chapter we study the equations of motion of higher-order gravity for static, spheri-
cally symmetric (SSS) spaces, and we establish several results for theories that satisfy the
seemingly anecdotic condition of possessing solutions of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , (1.119)

i.e., with gttgrr = −1. The main result is the systematic characterization of a new family of
theories known asGeneralized quasi-topological gravities (GQGs), which were first proposed
at cubic order in the curvature in [278]. These theories are particularly interesting in
order to study spherically symmetric black hole solutions because they share the following
properties.

1. Their linearized equations are of the Einstein-like type and they only propagate a
traceless and massless graviton on maximally symmetric vacua.

2. They allow for vacuum solutions of the form (1.119), where f(r) satisfies a differential
equation of order ≤ 2.

3. For a fixed mass M , there is at most a discrete number of black hole solutions of the
form (1.119). If there are several black holes, there is one (and only one) of them
which is a smooth deformation of the Schwarzschild solution when M →∞.

4. The thermodynamic properties of these black holes can be determined analytically
by solving a system of algebraic equations without free parameters.

5. The exterior gravitational field of a spherically symmetric matter distribution is again
given by a metric of the form (1.119).
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We then show that the ECG term (1.118) is the simplest member of the GQG class in
D = 4 and we construct additional theories of this family.

Chapter 4 (based on [277])

Here we examine the effect of field redefinitions on the gravitational action, with the
ambitious goal of demonstrating that GQG theories provide a basis to construct the most
general effective higher-derivative Lagrangian for gravity. We show that all terms of the
form L(gµν , Rµνρσ) (without covariant derivatives of the Riemann tensor) of a given order
can be mapped to a GQG using metric redefinitions, provided that there exists one non-
trivial GQG at that order. There is conclusive evidence that non-trivial GQGs exists at
any order and in any dimension, so this result virtually proves that all the densities of
the form L(gµν , Rµνρσ) can be mapped to a GQG. Furthermore, we show that densities
with two covariant derivatives of the Riemann tensor can also be mapped to GQGs and
that they are irrelevant for the purposes of studying spherically symmetric solutions. As
a conclusion, we propose the following conjectures

1. Any higher-order Lagrangian can be mapped, order by order in the derivative ex-
pansion, to a sum of Generalized quasi-topological gravity densities by performing
redefinitions of the metric.

2. The Generalized quasi-topological gravities of the form L(gµν , Rµνρσ) capture the
physics of spherically symmetric black holes — in particular, their thermodynamic
properties — in the most general higher-derivative effective theory for gravity.

Chapter 5 (based on [45])

We study the spherically symmetric, asymptotically flat black hole solutions of Einsteinian
cubic gravity in D = 4, with Lagrangian L = R − µL4

8 P. These are the first examples
of non-perturbative black hole solutions deforming the Schwarzschild geometry in a four-
dimensional higher-order gravity, and they are given by a metric of the form (1.119). The
equations of motion that we have to solve are reduced to a single second-order differential
equation for the function f(r) and we show that it admits a unique black hole solution
whose profile can be found numerically. However, the most impressive characteristic of
ECG is that the thermodynamic properties of this black hole can be obtained analytically
and non-perturbatively. A particularly interesting relation is the one between temperature
and radius, which reads

TECG =
rh

2π
(
r2
h +

√
r4
h + 3µL4

) . (1.120)

In the limit of large rh this relation reduces to the one in Einstein gravity, TE = 1/(2πrh),
but for rh → 0 the temperature vanishes instead of diverging. As a consequence, we
show that there exists a maximum temperature which separates two types of black holes.
Large black holes have negative specific heat and are thermodynamically unstable, just
as Schwarzschild’s black hole. On the other hand, below certain mass the specific heat
becomes positive and small black holes are stable.
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Chapter 6 (based on [273])

We extend the results of previous chapter for the family of all the Generalized quasi-
topological gravities of the form L(gµν , Rµνρσ) in D = 4. We show that at a given order
in curvature all the different GQG densities contribute equally to the equations of motion
for the metric (1.119), and this implies that we only need to include one “representative”
GQG at every order in curvature. Thus, we consider an action of the form

S =
1

16πG

∫
d4x
√
|g|

[
R+

∞∑
n=2

L2n−2λnR(n)

]
, (1.121)

where R(n) are particular non-trivial GQG densities. A explicit computation of the equa-
tions of motion for these densities up to order ten allows us to derive the general form of
the equation satisfied by the metric function f(r) in (1.119) for arbitrary n. In this way, we
can study black hole solutions with corrections at all orders in curvature. We observe that
there is at most a discrete number of black hole solutions of this equation, but only one of
them represents a smooth deformation of Schwarzschild’s geometry. Again the profile of
the solutions can be found numerically, but the thermodynamic properties of these black
holes can be studied analytically. We will show that the relations between the massM , the
temperature T and the entropy S are exactly given by the following parametric equations
in terms of a variable x

M =
Lh(x)

G

[
h′(x)

3h(x)− xh′(x)

]3/2

,

T =
x

2πL

[
h′(x)

3h(x)− xh′(x)

]1/2

,

S =
πL2

G

[
h′2(x)

3h(x)− xh′(x)
+

∫
dx
h′′(x)

x

]
,

(1.122)

where h(x) is the function

h(x) := x−
∞∑
n=3

λnx
n . (1.123)

A simple computation shows that these relations satisfy the first law of thermodynamics
dM = TdS and that the usual formulas for Einstein gravity TE = 1/(8πGM), SE =
4πGM2 are recovered when λn = 0 ∀n.23 Studying the thermodynamic relations above,
we determine that the existence of small, stable black holes is a common phenomena to
all the theories in (1.121). In addition, we observe that limit of zero mass is approached
universally: regardless of the maximum order of corrections involved, small black holes
always satisfy T ∝ M1/3, S ∝ M2/3. Finally, we study the evaporation process of these
black holes and we conclude that they have infinite lifetimes, with a last stage corresponding
to a sort of cold remnant. This is just opposite to the case of Schwarzschild black holes,
which evaporate completely after a finite time and whose temperature diverges in the last

23In the case of asymptotically AdS or dS black holes the same relations apply, but now h(x) := λ0 +
x−

∑∞
n=3 λnx

n, where the constant term is related to the cosmological constant according to λ0 = ΛL2/3.
For λn≥3 = 0 we recover the thermodynamic relations for Schwarzschild-A(dS) black holes.
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stages.
Using the results of Chapter 4 we will argue that these intriguing results might

apply not only to Generalized quasi-topological gravities, but probably to any higher-
curvature gravity that corrects GR. In particular, this would imply that for any higher-
order Lagrangian there are some coefficients λn for which the relations (1.122) describe
exactly the thermodynamic of spherically symmetric black holes.

Chapter 7 (based on [274])

In this chapter we study several holographic applications of Einsteinian cubic gravity in
D = 4. We determine various entries of the holographic dictionary non-perturbatively in
the ECG coupling; these include the central charge of the stress-tensor 2-point function
CT , the thermal entropy charge cS, the charge a∗ controlling the universal contribution
to the entanglement entropy in a circle region S1 and the coefficient of the stress-tensor
3-point function t4 — they are listed in Table 1.1. Since t4 is non-vanishing, ECG provides
a holographic toy model of a non-supersymmetric CFT3 analogous to the one defined by
Quasi-topological gravity [131] in d = 4. Then, we describe asymptotically AdS black
holes in ECG with spherical, planar and hyperbolic horizon geometries which allow us to
explore the thermodynamic phase space of the dual CFT — again, we are able to obtain
non-perturbative expressions in the ECG coupling. In order to compute gravitational on-
shell actions, we propose a generalized Gibbons-Hawking-York boundary term that, we
argue, is valid for theories with Einstein-like linearized equations as long as we consider
asymptotically AdS solutions. This boundary term is simply proportional to the GHY term
and counterterms of GR, and the proportionality constant has a very nice interpretation
in the context of holography: it is the aforementioned entanglement entropy charge a∗.
More precisely, according to our proposal, a well-posed and regularized Euclidean action
for higher-order gravities with Einstein-like equations would read

SE =−
∫
M
dDx
√
gL(gαβ, Rµνρσ)

− 2a∗

Ω(d−1)L̃d−1

∫
∂M

dD−1x
√
|h|

[
K − d− 1

L̃
− L̃

2(d− 2)
R· · ·

]
,

(1.124)

where L̃ is the length scale of the asymptotic AdS vacuum, and a∗ is related to the gravi-
tational Lagrangian evaluated on AdS according to [58,59,239,288]

a∗ = −π
d/2L̃d+1

dΓ(d/2)
L|AdS . (1.125)

We show that this boundary term passes numerous tests and provides correct answers
for ECG as well as for other theories in which other prescriptions exist. Finally, we also
examine the shear viscosity to entropy density ratio in ECG and we observe that it does not
violate the KSS bound, which is only saturated in the Einstein gravity limit. However, we
obtain new phenomena: the dependence of η/s on the ECG coupling is non-perturbative
(in the sense that it does not allow for a perturbative Taylor expansion) and the ratio
diverges to +∞ for a finite value of the coupling.
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CT CT · t4 cS a∗

Einstein
3L̃2

π3G
0

4π2L̃2

9G

L̃2

4G

ECG (1− 3µf2
∞)CE

T −1260µf2
∞C

E
T

(
1− 27

4
µ

)
f2
∞cS,E

(
1 + 3µf2

∞
)
a∗E

Table 1.1: CFT charges for holographic Einstein gravity and Einsteinian cubic gravity in
d = 3.

Chapter 8 (based on [275])

In this chapter we show that some Generalized quasi-topological gravities allow for Taub-
NUT solutions of the form

ds2 = VB(r)(dτ + nAB)2 +
dr2

VB(r)
+ (r2 − n2)dσ2

B , (1.126)

for various (D− 2)-dimensional Kähler-Einstein base spaces B with metric gB and Kähler
form J = dAB. We use these theories to construct Euclidean-AdS-Taub-NUT solutions,
which in the holographic context can be used to probe CFTs on squashed spheres when the
base space is B = CP(D−2)/2. In D = 4, we find that ECG allows for this type of solutions
and we construct Taub-NUT and Bolt geometries both with spherical and toroidal base
spaces. Similarly to the case of black hole solutions, the equations of motion of ECG are
reduced to a second order equation for VB which can be solved numerically. This analysis
is extended to a quartic GQG in D = 4 and to quartic Quasi-topological and Generalized
quasi-topological gravities in D = 6, where we focus on the base space CP2. In all cases,
the thermodynamic properties of the solutions can be determined analytically, and in
particular we compute the Euclidean on-shell action using the boundary term introduced
in the preceding chapter. Then, we provide a thorough analysis of the phase space of these
solutions, determining the existence of new types of phase transitions with respect to the
Einstein gravity case. In addition, we find that the equations can be solved analytically
in the critical limit of ECG and we obtain special NUT-charged solutions that represent
different types of AdS wormholes and non-isotropic bouncing cosmologies.

Chapter 9 (based on [277])

In the final chapter of this thesis we apply the knowledge we have gathered to derive new
results about the free energy of CFTs on squashed spheres. We first propose a direct
formula that computes the holographic free energy of CFTs on squashed spheres in terms
of the gravitational Lagrangian. This formula reads

FSdε = (−1)
(d−1)

2
π

(d+2)
2

Γ
[
d+2

2

] L [f∞/(1 + ε)]Ld+1

[f∞/(1 + ε)]
(d+1)

2

, (1.127)

where L(x) is the Lagrangian evaluated on an auxiliary AdS(d+1) space with radius L/
√
x.

Our formula reproduces the result obtained from evaluation of the Euclidean action on
Taub-NUT geometries for all the cases that has been studied in the literature — including
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Einstein and Lovelock gravities in arbitrary dimension — and we argue that it applies at
least to all the GQGs of the form identified in Chapter 8, which presumably constitute
an infinite set. Besides, we show that the expansion of (1.127) near ε = 0 has a universal
character that must hold for all Einstein-like theories. Given that the formula covers an
infinite number of holographic toy models, it can be used to derive general characteristics
valid for any CFT (holographic or not). First, we show that our formula yields the following
relation between the second derivative of the free energy and the central charge CT :

F ′′Sdε (0) =
(−1)

(d−1)
2 πd+1(d− 1)2

2 d!
CT . (1.128)

This value generalizes the results found in [263] for d = 3, 5 for arbitrary d, and it must
hold for arbitrary CFTs. Second, focusing in the d = 3 case and using the holographic
dictionary derived for ECG, we observe that our formula (1.127) predicts the following
subleading contribution to the free energy

FS3
ε

= FS3 −
π4CT

6
ε2

[
1− t4

630
ε+O(ε2)

]
, (1.129)

which implies that the O(ε3) term is controlled by CT t4. Furthermore, we prove that the
same result holds for infinitely many holographic higher-order gravities besides ECG, and
we crosscheck this prediction with numeric computations for free fields finding excellent
agreement. Based on these evidences, we conjecture that the small-squashing expansion of
the free energy up to order ε3 is universally given by (1.129) for arbitrary three-dimensional
CFTs.

Note on conventions

We use natural units c = ~ = 1 throughout the thesis, but we will leave G explicit. We
define Planck’s length as G = `D−2

P , while MP = 1/`P. D stands for the number of
spacetime dimensions, while in the context of holography d ≡ D − 1 is the dimension
of the boundary theory. We use signature (−,+,+, . . . ), greek indices for bulk tensors,
µ, ν, · · · = 0, 1, . . . , D, Latin indices from the beginning of the alphabet for boundary
tensors, a, b, · · · = 0, 1, . . . , d and i, j, · · · = 1, . . . , d for spatial indices on the boundary.
Riemann’s tensor is defined by the relation

uµR
µ
νρσ = − [∇ρ,∇σ]uν . (1.130)
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General aspects of higher-derivative
gravities
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2
The weak-field limit of L(Riemann) theories

One of the first aspects one can study about higher-curvature gravity theories is their
constant curvature (or maximally symmetric) solutions. We will refer to one of these
solutions as the vacuum of theory. In Einstein gravity, there is a unique vacuum that
is fully determined by the cosmological constant Λ, and it is either de Sitter (dS), anti-
de Sitter (AdS) or Minkowski spacetime depending on the value of Λ. The situation is
different in the presence of higher-derivative terms since there might be several vacua and
their curvature is not proportional to the cosmological constant anymore. As we show
in this chapter, the problem of finding these solutions in higher-order gravity is always
reduced to solving an algebraic equation for the background curvature.

Next, one can perform linear perturbation theory over the previous backgrounds.
This analysis, that can be carried out in full generality, will reveal the degrees of freedom
that these theories propagate on the vacuum. One of the main goals of the present chapter
is to present a systematic method that allows computation of the linearized equations of
any higher-curvature theory in a much simpler and faster way than previous methods.
For simplicity, we perform the analysis for L(Riemann) theories, whose Lagrangian is
constructed out of Riemann invariants without introducing covariant derivatives of the
curvature. This is a very general type of theory to which most of this thesis is devoted.
Using the proposed method, we will linearize explicitly all the L(Riemann) theories up
to quartic order in curvature. However, the linearized equations of these theories are so
constrained that we will be able to study their properties without making reference to
specific Lagrangians.

In any higher-derivative theory, the existence of new degrees of freedom, including
negative energy modes, is expected. We show in this chapter that, for L(Riemann) gravi-
ties, the linearized spectrum contains, along with the massless spin-2 graviton, a massive,
ghost-like spin-2 mode (that we will call a massive graviton) and a scalar mode. We find,
however, that there are some special cases in which these modes do not propagate in the
vacuum, and we will provide a classification of theories according to their spectrum. There
are, in particular, non-trivial theories whose linearized equations of motion are of second
order, and whose only degree of freedom on the vacuum is the massless graviton. These
theories are called Einstein-like and they will play a central role in this work — espe-
cially when we come to holography III. As a refinement of the formers, we shall describe
Einsteinian theories as those possessing Einstein-like spectrum in any dimension, and this
will lead us to the discovery of Einsteinian cubic gravity, a theory with even more special
properties that we will find in the forthcoming chapters.

As an application of the results of this chapter, we will compute the polarization
modes of gravitational waves in L(Riemann) theories, as well as the Newtonian limit of
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these theories, obtaining the metric produced by a point-like mass in any dimension.

2.1 Linearized equations of L(Riemann) theories

L(Riemann) theories of gravity are a very general class of higher-curvature theories, which
are given by an action of the form

S =

∫
M
dDx

√
|g|L(gµν , Rµνρσ) , (2.1)

where the Lagrangian is some invariant formed from products and contractions of the
Riemann tensor and the metric.1 The field equations computed from the action (2.1) are
of fourth-order in derivatives of the metric and they read [292]

Eµν ≡ Pµ σρλRνσρλ −
1

2
gµνL+ 2∇α∇βPµανβ =

1

2
Tµν , (2.2)

where we defined the object

Pµνρσ ≡ ∂L
∂Rµνρσ

. (2.3)

We also included an energy-momentum in the right-hand-side of the equation,

Tµν ≡ −
2√
|g|
δSmatter

δgµν
, (2.4)

in case we couple our theory to some matter with action Smatter.
The aim of this section is to study the linearized equations of general L(Riemann)

theories on maximally symmetric backgrounds (msb) in arbitrary dimensions. In order
to do that, we use a new method to obtain the linearized equations that was originally
introduced in [106, 271], which is more efficient and simpler than previous linearization
methods. The new method allows us to obtain the linearized equations of any L(Riemann)
theory without the need of knowing the explicit form of the Lagrangian. In fact, as we show
in the next subsection, it is possible to linearize the equations (2.2) up to the identification
of four constants a, b, c and e that are the only theory-dependent parameters. We propose
a recipe that can be used to obtain those constants from the corresponding Lagrangian
following some simple steps that we detail. Then, we rewrite the linearized equations in
terms of three physical parameters which can be easily obtained from a, b, c and e. These
are the effective gravitational constant Geff , and the masses of the two extra modes that
appear in the linearized spectrum of generic L(Riemann) theories, m2

g and m2
s. As we

show, both in (anti-)de Sitter and Minkowski backgrounds, the usual massless graviton is
generically accompanied by a massive ghost-like graviton of mass mg and a scalar mode
of mass ms. In subsection 2.1.2 we obtain the matter-coupled wave equations satisfied by

1In some dimensions it also possible to construct parity-violating Lagrangians by allowing contractions
between the Riemann tensor and the Levi-Civita tensor εµ1...µD , but we will not consider this case here.
See e.g., [289–291].
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these modes. We close the section by constructing a quadratic effective action from which
the linearized equations can be obtained from the variation of the metric perturbation.

2.1.1 Linearization procedure

Let ḡµν be a solution of the full non-linear equations (2.2) and let us consider a perturbed
metric of the form

gµν = ḡµν + hµν , (2.5)

where hµν is the perturbation. Our goal is to expand the field equations (2.2) to linear
order in hµν . We will soon assume that ḡµν is maximally symmetric, but let us for the
moment assume it is any solution of (2.2). In order to linearize the equations, it is useful
to define the tensor

Cµγσνσρλη ≡ gσαgρβgλχgηξ
∂Pµγσν

∂Rαβχξ
, (2.6)

where Pµνρσ was defined in (2.3). Now, using the identity [292]

[
∂L
∂gµν

]
Rρσγδ

= 2P ρσγ
µ Rνρσγ , (2.7)

it is possible to prove that the variations of L and Pµαβν read respectively2

δL = 2δgµνP̄ σρλ
µ R̄νσρλ + P̄µσρλδRµσρλ , (2.9)

δPµαβν = 2δgλ[µP̄
α]βν
λ + 2δgρηC̄µαβνληστ R̄

λ στ
ρ + C̄µαβνλρστ ḡ

λη ḡργ ḡσκḡτυδRηγστ , (2.10)

where the bars mean evaluation on the background metric ḡµν . Now, if we plug these
expressions in (2.2) and we take into account the expressions for δgµν and δRµσρλ as
functions of the metric perturbation,

δgµν = −hµν = −ḡµαḡνβhαβ , δRµσρλ = hα[µR̄
α
σ]ρλ + ∇̄[ρ|∇̄σh|λ]µ − ∇̄[ρ|∇̄µh|λ]σ (2.11)

we obtain the linearized equations. However, on an arbitrary background, the tensors C̄, P̄ ,
and also the curvature, can take any form. Thus, we cannot obtain any useful information
unless we specify a particular background.

2Observe that we choose {Rµνρσ, gγδ} to be the fundamental variables in L. As explained in [113,292],
all expressions obtained using these variables are consistent with alternative elections such as {Rµνρσ, gαβ}
or {Rρσµν}. In particular, using the identities analogous to (2.7) obtained in [292] for the different elections
of variables it is possible to show that (2.9) and (2.10) are correct independently of such election. For
example, if we choose {Rρσµν}, (2.9) and (2.10) can be written as

δL = P̄ ρλµν δR
µν
ρλ , δPµαβν = 2δgλ[µP̄

α]βν
λ + C̄µαβνλρστ ḡ

λη ḡργδRκυηγ . (2.8)
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Maximally symmetric background

In order to make progress, from now on we will assume that the unperturbed spacetime
(M̄, ḡµν) is a maximally symmetric background (msb), or equivalently, a constant curvature
space. This implies that ḡµν satisfies

R̄µναβ = 2Kḡµ[αḡβ]ν , (2.12)

for some constant K that characterizes the solution. This constant is not arbitrary, but
is determined from the field equations as we show below. But before that, let us note
that, on a maximally symmetric space, the form of the tensors P̄µαβν and C̄µαβνσρλη is highly
constrained. Obviously, their explicit expressions still depend on the particular Lagrangian
L considered, but when these objects are evaluated on a msb, the resulting expressions
can only contain terms involving combinations of ḡµν , ḡµν and δνµ, because these objets
are formed only from the metric and the Riemann tensor, and the latter is again given in
terms of the metric for these backgrounds (2.12). In addition, it is clear from (2.3) and
(2.6), that Pµνρσ and Cαβγδµνρσ inherit the symmetries of the Riemann tensors appearing in
their definitions. These conditions force P̄µαβν to be given by

P̄µαβν = 2eḡµ[β ḡν]α , (2.13)

where the value of the constant e depends on the theory. Similarly, C̄µαβνσρλη is fully deter-
mined by three tensorial structures, namely

C̄σρληµαβν = a
[
δ[σ
µ δ

ρ]
α δ

[λ
β δ

η]
ν + δ[λ

µ δ
η]
α δ

[σ
β δ

ρ]
ν

]
+ b [ḡµβ ḡαν − ḡµν ḡαβ]

[
ḡσλḡρη − ḡση ḡρλ

]
+ 4c δ

[σ
(τ ḡ

ρ][λδ
η]
ε)δ

τ
[µḡα][βδ

ε
ν] ,

(2.14)

where the only theory-dependent quantities are in turn the constants a, b and c.

Background embedding equation

Let us now determine the equation for the curvature scale K. Imposing the constant
curvature metric ḡµν to solve the field equations (2.2) with Tµν = 0, one finds

L̄(K) = 4e(D − 1)K , (2.15)

where we used (2.13). This is a relation between the background scale K defined in (2.12)
and all the possible couplings appearing in the higher-order Lagrangian L(Riemann). An-
other equation relating e and K can be obtained using (2.12) and (2.13). This reads in
turn

dL̄(K)

dK
= P̄µνρσ2ḡµ[ρḡσ]ν = 2eD(D − 1) , (2.16)

which, along with (2.15) produces the nice expression

L̄(K)− 2K
D

dL̄(K)

dK
= 0 . (2.17)
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This is the algebraic equation that needs to be solved in order to determine the possible
vacua of the theory, i.e., the allowed values of K as functions of the scales and couplings
appearing in L(Riemann). For instance, in the case of Einstein gravity with a cosmological
constant, L = R−2Λ, one finds K = 2Λ

(D−1)(D−2) .
3 For this reason, we will in general define

the “effective” cosmological constant Λeff according to

K =
2Λeff

(D − 1)(D − 2)
. (2.18)

Equation (2.17) can also be derived directly from the reduced gravitational action,
which is obtained by evaluating the full action on an arbitrary constant curvature metric.
The reduced action reads

S(K) = V0|K|−D/2L̄(K) , (2.19)

where V0 is the regularized “spacetime volume” for some reference value of K. Extremizing
this expression with respect to K yields

δS(K)

δK
= V0|K|−D/2

(
dL̄(K)

dK
− D

2K
L̄(K)

)
= 0 , (2.20)

where we recognize again Eq. (2.17). This way of deriving the equation is completely
general and it allows us to see that Eq. (2.17) is actually valid for any higher-derivative
gravity at all, and not only for L(Riemann) theories.

Linearization procedure

With the information from the previous items, we are ready to linearize (2.2). The result
of a long computation in which we make use of (2.3)-(2.14) reads

1

2
ELµν = + [e− 2K(a(D − 1) + c) + (2a+ c)2̄]GLµν + [a+ 2b+ c]

[
ḡµν2̄− ∇̄µ∇̄ν

]
RL

−K [a(D − 3)− 2b(D − 1)− c] ḡµνRL , (2.21)

3Another example: for Gauss-Bonnet with a negative cosmological constant L = R + (D − 1)(D −
2)/L2 +L2λGB/((D− 3)(D− 4))X4, one finds the well-known relation −L2K = (1±

√
1− 4λGB)/(2λGB),

see e.g., [121].
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where the linearized Einstein tensor and the linearized Ricci scalar read, respectively4

GLµν = −1

2
2̄hµν + ∇̄(µ|∇̄σhσ|ν) −

1

2
∇̄µ∇̄νh+

1

2
ḡµν

(
2̄h− ∇̄α∇̄βhαβ

)
(2.24)

+Khµν +
D − 3

2
Khḡµν ,

RL = ∇̄µ∇̄νhµν − 2̄h− (D − 1)Kh . (2.25)

Also, we have introduced 2̄ = ḡµν∇̄µ∇̄ν . The above equations are quartic in derivatives of
the perturbation for generic higher-derivative theories, as expected. The problem is hence
reduced to the evaluation of a, b, c and e for a given theory, something that can be done
using (2.3), (2.6), (2.13) and (2.14). However, this is a very tedious procedure in general,
which involves the computation of first and second derivatives of L(Riemann) with respect
to the Riemann tensor.

We present here a method (originally reported in [106, 271]) that allows for an im-
portant simplification of this problem. The procedure has several steps which we explain
now.

1. Consider an auxiliary symmetric tensor kµν satisfying the following properties.

kµµ = χ , kµαk
α
ν = kµν . (2.26)

Note that both imply that χ is an integer constant corresponding to the rank of
k ν
µ . However, it does not really matter what is χ and what is k; we only need the

properties above in order to make the computations that we specify below.

2. Define the following “Riemann tensor”5

R̃µνσρ(K, α) ≡ 2Kgµ[σgρ]ν + 2αkµ[σkρ]ν , (2.27)

where α and K are two parameters. Observe that R̃µνσρ(K, α) does not correspond
— or more precisely, it does not need to correspond — to the Riemann tensor of any
actual metric in general, even though it respects the symmetries of a true Riemann
tensor. An exception occurs when α = 0, as R̃µνσρ(K, 0) becomes the Riemann tensor
of a msb of curvature K associated to a metric gµν = ḡµν as defined in (2.12).

3. Evaluate the higher-derivative Lagrangian on R̃µνσρ(K, α), i.e., replace all Riemann
tensors appearing in L(gαβ, Rµνρσ) by the object defined in (2.27). This gives rise to

4More precisely, GLµν is the linearized cosmological Einstein tensor, that can be written as

GLµν = RLµν −
1

2
ḡµνR

L − (D − 1)Khµν , (2.22)

where the linearized Ricci tensor reads

RLµν = ∇̄(µ|∇̄σhσ|ν) −
1

2
2̄hµν −

1

2
∇̄µ∇̄νh+DKhµν −Khḡµν . (2.23)

In these expressions we use the standard notation h ≡ ḡµνhµν and indices are raised and lowered with ḡµν

and ḡµν respectively.
5The associated “Ricci tensor” and “Ricci scalar” are: R̃µν = K(D − 1)gµν + α(χ − 1)kµν and R̃ =

KD(D − 1) + αχ(χ− 1) respectively.
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a function of K and α6,

L(K, α) ≡ L
(
gαβ, Rµνρσ = R̃µνρσ(K, α)

)
. (2.28)

4. The values of a, b, c and e can be obtained from the expressions

∂L
∂α

∣∣∣
α=0

= 2e χ(χ− 1) , (2.29)

∂2L
∂α2

∣∣∣
α=0

= 4χ(χ− 1) (a+ b χ(χ− 1) + c(χ− 1)) , (2.30)

as can be proven using the chain rule along with equations (2.3), (2.6), (2.13) and
(2.14). Interestingly, since a, b, c and e do not depend on χ and they appear multi-
plied by factors involving different combinations of this parameter, we can identify
them unambiguously for any theory by simple inspection. Once L(K, α) and its
derivatives are computed, we just need to compare the resulting expressions with the
RHS of (2.29) and (2.30) to obtain a, b, c and e7.

5. Replace the values of a, b, c and e in the general expression (2.21).

This procedure is obviously simpler than computing P̄µνρσ and C̄µναβληστ explicitly using
their definitions (2.3) and (2.6). Indeed, the most difficult step is the evaluation of L(K, α),
which simply involves contractions of gµν and kµν for any theory. The function L(K, α)
is a sort of “prepotential” containing all the information needed for the linearization of a
given higher-derivative theory of the form (2.1) on a msb.

We will apply this method in various sections of the chapter — e.g., see section 2.3
for the linearization of general quartic theories and section 2.3.2 for theories constructed
as functions of curvature invariants. Appendix A.1 contains a detailed application of our
linearization procedure to quadratic theories and to a particular Born-Infeld-like theory.

Let us mention that in [103,105,293] a more refined method than the naive brute-force
linearization of the full non-linear equations was also introduced for general L(Riemann)
theories. This incorporates decompositions similar to the ones in (2.13) and (2.14), but
still requires the somewhat tedious explicit evaluation of P̄µνρσ and C̄αβγδµνρσ for each theory
considered.

We close this subsection by mentioning that our linearization method reproduces all
the particular cases previously studied in the literature. These include: quadratic gravities
[90, 105, 293–295], Quasi-topological gravity [129, 130], f(R) [62] and general f(Lovelock)
theories [94].

Equivalent quadratic theory

The linearized equations (2.21) of any higher-order gravity of the form (2.1) characterized
by some parameters a, b, c and e, can always be mapped to those of a quadratic theory of

6Note that in this evaluation, indices are still lowered with gµν , and not with some combination of gµν
and kµν .

7Observe that we only need L(K, α) up to α2 order, i.e., from L(K, α) = L(K) + [2χ(χ− 1)e] α +
[2χ(χ− 1)(a+ b χ(χ− 1) + c(χ− 1))] α2 +O(α3) we can read off the values of all the relevant constants.
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the form

Lquadratic = λ(R− 2Λ) + αR2 + βRµνR
µν + γX4 , (2.31)

where X4 = RµνρσR
µνρσ − 4RµνR

µν + R2 is the dimensionally-extended four-dimensional
Euler density, also known as Gauss-Bonnet term. Indeed, the parameters λ, α, β and γ of
the equivalent quadratic theory can be obtained in terms of a, b, c and e through

λ = 2e− 4K [a+ bD(D − 1) + c(D − 1)] , α = 2b− a , β = 4a+ 2c , γ = a . (2.32)

Similarly, the cosmological constant Λ can be trivially related to the parameters appearing
in (2.1) through Λ = −L(Rµνρσ = 0)/(2λ).

Notice that the mapping from (2.1) to (2.31) is surjective but not injective, i.e.,
all L(Riemann) theories are mapped to some quadratic theory, but (infinitely) many of
them are mapped to the same one. Observe also that the existence of this mapping is a
consequence of the fact that the linearized equations of any theory come from its action
expanded at quadratic order in hµν — see subsection 2.1.3. This means that the most
general quadratic theory, namely (2.31) already contains all the possible kinds of terms
produced in the action at order O(h2) of any L(Riemann) theory. Observe however that
the fact that the parameters a, b, c and e for a given theory can be related to those appearing
in (2.31) does not immediately help in identifying the values of those parameters for a given
theory. The mapping was explicitly performed for general cubic theories in [293].

2.1.2 Physical modes

As we just reviewed, ELµν depends on four constants a, b, c and e as well as on the back-
ground curvature K. For a given theory, the four constants can be computed using the
procedure explained in subsection 2.1.1, from which one can obtain the full linearized equa-
tions through (2.21). In this subsection we will explore how (2.21) can be further simplified
using the gauge freedom of the metric perturbation and used to characterize the additional
physical modes propagated by the metric in a general theory of the form (2.1).

Let us start with the following observation. If we parametrize a, b and c in terms of
three new constants m2

g, m2
s and κeff as

a = [4eκeff − 1] / [8K(D − 3)κeff ] ,

b =
[
(4eκeff − 1)(D − 1)m2

sm
2
g + 2(3− 2D + 2(D − 1)Deκeff)m2

gK

+(D − 3)K(Dm2
s + 4(D − 1)K)

]
/
[
16K(D − 3)κeffm

2
g(D − 1)(m2

s +DK)
]
,

c = −
[
(4eκeff − 1)m2

g + (D − 3)K
]
/
[
4K(D − 3)κeffm

2
g

]
,

(2.33)

it is possible to rewrite (2.21) in terms of four different parameters, namely, κeff, m2
s, m2

g
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and K. Indeed, one finds

ELµν =
1

2κeffm2
g

{[
m2
g + 2K − 2̄

]
GLµν +

[
(D − 2)(m2

g +m2
s + 2K)

2(m2
s +DK)

]
KḡµνRL (2.34)

+

[
(D − 2)(m2

g −m2
s − 2(D − 1)K)

2(D − 1)(m2
s +DK)

] [
ḡµν2̄− ∇̄µ∇̄ν

]
RL

}
,

so the dependence on e disappears, while that on κeff gets factorized out from all terms.
While (2.21) is more useful when computing the linearized equations of a particular theory
— because we know a simple procedure to obtain a, b, c and e— (2.34) is more illuminating
from a physical point of view. Indeed, as we will see in a moment, κeff will be the effective
gravitational constant, related to the effective Newton’s constant according to8

κeff ≡ 8πGeff (2.35)

while m2
g and m2

s will correspond, respectively, to the squared-masses of additional spin-2
and scalar modes.

It is straightforward to invert the relations (2.33) to obtain the values of such physical
quantities in terms of a, b, c and e. One finds

κeff =
1

4e− 8K(D − 3)a
, (2.36)

m2
s =

e(D − 2)− 4K(a+ bD(D − 1) + c(D − 1))

2a+Dc+ 4b(D − 1)
, (2.37)

m2
g =

−e+ 2K(D − 3)a

2a+ c
. (2.38)

Let us stress that if we consider a theory consisting of a linear combination of invariants
— like the one in (2.90) below — the values of a, b, c and e of that theory can be simply
computed as the analogous linear combination of the parameters for each of those terms.
However, that is not the case for κeff , m2

s and m2
g, since they are not linear combinations of

a, b, c and e. Hence, in order to determine these quantities for a given linear combination
of invariants, the natural procedure should be obtaining the total values of a, b, c and e
first, and then using (2.36)-(2.38) to compute the corresponding values of κeff , m2

s and m2
g.

For example, for a general quadratic theory of the form

S =

∫
M
dDx

√
|g|

[
1

2κ
(−2Λ +R) + κ

(4−D)
D−2 (α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ)

]
,

(2.39)

8During this chapter we will use κeff rather than Geff for the sake of conciseness.
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the values of κeff , mg and ms read, respectively

κeff =
κ

1 + 4Kκ
2

D−2 (α1D(D − 1) + α2(D − 1)− 2α3(D − 4))
, (2.40)

m2
s =

(D − 2) + 4(D − 4)Kκ
2

D−2 (α1D(D − 1) + α2(D − 1) + 2α3)

2κ
2

D−2 (4α1(D − 1) + α2D + 4α3)
, (2.41)

m2
g =
−1− 4Kκ

2
D−2 (α1D(D − 1) + α2(D − 1)− 2α3(D − 4))

2κ
2

D−2 (α2 + 4α3)
, (2.42)

which we obtained using (2.36)-(2.38) and the values of a, b, c and e which appear in table
2.2. During the remainder of this section, we will write all expressions in terms of κeff ,
m2
s and m2

g, which will make the presentation clearer. Nonetheless, all equations can be
converted back to the language of a, b, c and e using the above relations.

The discussion proceeds slightly differently depending on whether we consider AdS/dS
or Minkowski as the background spacetime, so we will consider the two cases separately.
Let us start with the first.

(Anti-)de Sitter background

When studying the physical modes propagated by the metric perturbation on an AdS/dS
background, it is customary and very convenient to work in the transverse gauge, in which9

∇̄µhµν = ∇̄νh . (2.43)

Imposing this condition, many terms in (2.34) cancel out. Let us now expand the metric
perturbation into its trace and traceless parts, which we denote by h and h〈µν〉 respec-
tively10,

hµν = h〈µν〉 +
1

D
ḡµνh . (2.44)

Doing the same with the field equations (2.34), we find

EL〈µν〉 = +
1

2
TL〈µν〉 =

1

4m2
gκeff

{
[2̄− 2K]

[
2̄− 2K −m2

g

]
h〈µν〉 − ∇̄〈ν∇̄µ〉2̄h (2.45)

+

[
m2
g(m

2
s + 2(D − 1)K) +K((4− 3D)m2

s − 4(D − 1)2K)

(m2
s +DK)

]
∇̄〈ν∇̄µ〉h

}
,

EL = +
1

2
TL = −

[
(D − 1)(D − 2)K(m2

g − (D − 2)K)

4κeffm2
g(m

2
s +DK)

] [
2̄−m2

s

]
h , (2.46)

9The metric decomposition performed in this section is similar to the one considered in [90].
10In this section, we denote the trace and traceless parts of rank-2 tensors Pµν linear in hµν as P ≡ ḡµνPµν

and P〈µν〉 ≡ Pµν − 1
D
ḡµνP respectively. In the case of the equations of motion, one can use the same

notation, i.e., EL ≡ ḡµνELµν , TL ≡ ḡµνTLµν — and similarly for the traceless part — because Ēµν = T̄µν = 0.
Observe however that RL = (gµνRµν)L is not the trace of RLµν , but rather RL = ḡµνRLµν − hµνR̄µν =
ḡµνRLµν − (D − 1)hK.

58



Chapter 2. The weak-field limit of L(Riemann) theories

where, for the sake of generality, we are including an energy-momentum tensor TLµν as a
matter source. The second is the equation of motion of a free scalar field of mass ms, while
the first is an inhomogeneous equation for h〈µν〉 as it involves also h. In order to obtain
an independent equation for the traceless part, we define another traceless tensor:

tµν ≡ h〈µν〉 −
∇̄〈µ∇̄ν〉h

(m2
s +DK)

, (2.47)

where we have implicitly assumed that m2
s 6= −DK. After some manipulations, it can be

seen that tµν satisfies the equation

1

2κeffm2
g

(2̄− 2K)(2̄− 2K −m2
g)tµν = TL,eff〈µν〉 , (2.48)

where we have defined the effective energy-momentum tensor

TL,eff〈µν〉 ≡ T
L
〈µν〉 +

[
2̄ + (D − 4)K −m2

g

]
∇̄〈µ∇̄ν〉TL

K(D − 1)(D − 2)(m2
g − (D − 2)K)

. (2.49)

Now, observe that the object

t(m)
µν ≡ −

1

m2
g

(2̄− 2K −m2
g)tµν , (2.50)

satisfies the equation of the usual massless graviton, namely

− (2̄− 2K)t(m)
µν = 2κeffT

L,eff
〈µν〉 , (2.51)

but with a non-standard coupling to matter. On the other hand, using (2.50) and (2.51),
it is easy to see that the tensor

t(M)
µν ≡ tµν − t(m)

µν =
1

m2
g

(2̄− 2K)tµν , (2.52)

satisfies instead

(2̄− 2K −m2
g)t

(M)
µν = 2κeffT

L,eff
〈µν〉 . (2.53)

Hence, we identify t(M)
µν with a massive traceless spin-2 field with massmg. Observe that the

coupling to matter of this mode has the wrong sign, which reflects its ghost-like behavior.
Note that, apart from being a ghost, this mode is also tachyonic whenever m2

g < 0. The
same occurs for the scalar when m2

s < 0.
In sum, using definitions (2.47), (2.50) and (2.52), we can decompose the metric

perturbation hµν as

hµν = t(m)
µν + t(M)

µν +
∇̄〈µ∇̄ν〉h

(m2
s +DK)

+
1

D
ḡµνh , (2.54)

where h, t(M)
µν and t(m)

µν satisfy (2.46), (2.53) and (2.51), and represent respectively: a scalar
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mode of mass ms, a ghost-like spin-2 mode of mass mg — which we will often refer to as
“massive graviton” throughout the text — and a massless graviton.

Minkowski background

If we set K = 0 in (2.46), this equation would lead us to conclude that T = 0. This
inconsistency is a reflection of the fact that the transverse gauge can not be used in flat
spacetime. The usual choice is in this case the so-called de Donder gauge, given by

∂µh
µν =

1

2
∂νh . (2.55)

In this gauge, the linearized field equations (2.34) in a Minkowski background can be
written as

ELµν = − 1

4κeff
2̄ĥµν =

1

2
TLµν , (2.56)

where we have defined

ĥµν ≡ hµν −
1

2
ηµνh−

1

m2
g

[
2̄hµν −

1

2
∂µ∂νh

]
+

[
m2
g(D − 2) +m2

s

2(D − 1)m2
gm

2
s

]
[ηµν2̄− ∂µ∂ν ]h .

(2.57)
Using the gauge condition (2.55) it is easy to see that ĥµν is transverse, i.e.,

∂µĥ
µν = 0 . (2.58)

Naturally, ĥµν is the usual spin-2 massless graviton, as it satisfies the linearized Einstein
equation (2.56). However, there are more degrees of freedom (dof). In particular, we find
that the metric can be decomposed as

hµν = ĥµν −
1

D − 2
ηµν ĥ+

1

D − 1
(m−2

g −m−2
s )∂〈µ∂ν〉ĥ

+ tµν +
2

D(D − 2)
ηµνφ+

1

(D − 1)m2
s

∂〈µ∂ν〉φ ,

(2.59)

where tµν is traceless and φ is a scalar field. These objects satisfy the equations

−(2̄−m2
s)φ = 2κeffT

L , (2.60)

(2̄−m2
g)tµν = 2κeff

[
TL〈µν〉 +

1

(D − 1)m2
g

∂〈µ∂ν〉T
L

]
. (2.61)

Hence, even though we have proceeded in a different way as compared to the K 6= 0 case,
we have found the same physical modes: we have a massless spin-2 graviton ĥµν , a massive
one tµν and a scalar φ, the masses of the last two being the same as the ones we found
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for t(M)
µν and h in the (A)dS case. Note however that even though the degrees of freedom

and the masses are the same, the metric decomposition as well as the coupling of the fields
to matter are different — compare (2.46) and (2.53) with (2.60) and (2.61), and (2.54)
with (2.59). This can be understood as a consequence of the fact that the gauge which is
convenient for (A)dS (2.43) differs from the de Donder one (2.55) utilized for Minkowski.

2.1.3 Quadratic action

As pointed out in section 2.1.1, the linearized equations (2.34) come from terms of order
O(h2) in the action, which means that the structure of the linearized equations for the most
general L(Riemann) is already captured by the most general quadratic theory. Expanding
the action of a higher-order gravity to O(h2) is not trivial in general. However, we can
use the expression for the linearized equations (2.34) to find an action that yields these
equations when varied with respect to hµν . The easiest possibility is

S2 = −1

2

∫
M
dDxhµνELµν . (2.62)

Using (2.34) and integrating by parts several times we find the effective action

S2 =

∫
M

dDx

4κeff

[
(D − 2)

[
m2
g + (D − 2)(m2

s + (D − 1)K)
]

2(D − 1)m2
g(m

2
s +DK)

(RL)2 −
[
hµν +

2GL
µν

m2
g

]
GLµν

]
.

(2.63)
As pointed out in [105], where an analogous action was found, (2.63) is manifestly invariant
under “gauge” transformations hµν → hµν + ∇̄µξν + ∇̄νξµ as follows from the invariance of
the linearized Einstein tensor and Ricci scalar under such transformations.

2.2 Classification of theories

In this section we will classify all gravity theories of the form (2.1) according to the prop-
erties of their physical modes. Depending on the values of the parameters a, b, c and e, we
will distinguish six different situations. One of them corresponds to the general case we
already studied, 0 < |mg|2 < +∞, 0 ≤ |ms|2 < +∞, and then there are five special cases:
1) theories without massive gravitons, i.e., those for which the additional spin-2 mode is
absent but the spin-0 one is dynamical; 2) theories without dynamical scalar, i.e., those
for which the additional graviton is dynamical but the spin-0 mode is absent; 3) theories
with two massless gravitons and a massive scalar, i.e., those for which the extra graviton is
massless — a property which to some extent cures its problematic behavior; 4) generalized
critical gravities i.e., those which belong to the previous category and, in addition, have
no additional spin-0 mode; 5) and finally, Einstein-like theories, i.e., theories for which the
only mode is the usual massless graviton11. A summary of the different cases can be found
in table 2.1 and various examples of particular theories belonging to each class are provided
in appendix A.2. Let us note in passing that boundary conditions can be sometimes used
to remove spurious modes from the spectrum of certain higher-order gravities — see [297].

11In principle, one could also impose more exotic conditions like κeff = 0, which would remove all
propagating modes, see e.g., [296].
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We shall not discuss this issue here. Finally, let us also mention that related analyses were
previously performed in the absence of matter in [105,271,293].

m2
g = 0 0 < m2

g < +∞ m2
g = +∞

0 ≤ m2
s < +∞ Massless gravitons + scalar General case No massive graviton

m2
s = +∞ Critical No dynamical scalar Einstein-like

Table 2.1: Classification of theories according to their spectrum on a msb.

2.2.1 Theories without massive graviton

The ghost-like massive spin-2 mode t(M)
µν found in the previous section can be removed from

the linearized spectrum of the theory by imposing m2
g = +∞. In terms of the parameters

characterizing a given higher-derivative theory as described in section 2.1, such condition
will be satisfied whenever

2a+ c = 0 . (2.64)

When this condition holds, the linearized equations (2.34) become

ELµν =
1

2κeff

{
GLµν +

[
(D − 2)

2(D − 1)(m2
s +DK)

] [
(D − 1)Kḡµν + ḡµν2̄− ∇̄µ∇̄ν

]
RL
}
.

(2.65)
Observe that (2.64) has the effect of making the 2̄GLµν term — responsible for the appear-
ance of the extra spin-2 graviton — disappear. As a consequence, even though (2.65) still
contains quartic derivatives of hµν , the equations do become second-order when we choose
the transverse gauge ∇̄µhµν = ∇̄νh, as it can be immediately checked from (2.65) using
(2.25) — or alternatively from (2.45) taking the limit m2

g → +∞ there.
On AdS/dS backgrounds — the extension to Minkowski is straightforward — (2.64)

imposes t(M)
µν = 0, so the metric decomposition becomes now

hµν = t(m)
µν +

∇̄〈µ∇̄ν〉h
(m2

s +DK)
+

1

D
ḡµνh , (2.66)

where h and t(m)
µν still satisfy (2.46) and (2.51) respectively. Observe that using (2.46) and

(2.66) along with the transverse gauge condition (2.43), it is possible to show that t(m)
µν is

transverse in the vacuum,

∇̄µt(m)
µν = 0 . (2.67)

Notice also that after imposing (2.43) we still have some gauge freedom, because a gauge
transformation hµν → hµν + 2∇̄(µξν) for any vector ξµ satisfying ∇̄µ∇̄(µξν) = ∇̄ν∇̄µξµ
preserves (2.43). This allows us to impose additional conditions on hµν . In particular, we
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can choose

t
(m)
0µ = t

(m)
µ0 = 0 , (2.68)

so that only the spatial components t(m)
ij , i, j = 1, ..., D− 1 are non-zero. Then this tensor

has D(D − 1)/2 components, but we have also

∇̄it(m)
ij = 0, ḡijt

(m)
ij = 0 , (2.69)

which follow from (2.67) and the tracelessness of t(m)
µν respectively. These are (D−1)+1 = D

constraints, so the number of polarizations of t(m)
µν is D(D − 3)/2, just like for the usual

Einstein graviton. Of course, the trace h provides an additional degree of freedom, so these
theories propagate (D − 1)(D − 2)/2 physical degrees of freedom in the vacuum.

2.2.2 Theories without dynamical scalar

The condition for the absence of the scalar mode is naturally given by m2
s = +∞. In terms

of the parameters a, b, c and e, this reads

2a+Dc+ 4b(D − 1) = 0 . (2.70)

The linearized equations of motion (2.34) become in that case

ELµν =
1

2κeffm2
g

{[
m2
g + 2K − 2̄

]
GLµν +

(D − 2)

2(D − 1)

[
(D − 1)Kḡµν − ḡµν2̄ + ∇̄µ∇̄ν

]
RL
}
.

(2.71)
The metric decomposition simplifies to

hµν = t(m)
µν + t(M)

µν +
1

D
ḡµνh , (2.72)

where the trace of the metric perturbation is simply determined by the matter stress-tensor
through the expression

h =
2κeffm

2
g

(D − 1)(D − 2)K(m2
g − (D − 2)K)

TL . (2.73)

The massless and massive gravitons satisfy the same equations as in the general case, i.e.,
(2.51) and (2.53) respectively.

2.2.3 Theories with two massless gravitons

As we saw, t(M)
µν is a ghost. In order to remove this instability, the simplest solution is

to consider theories in which it is absent. Another possibility is to set mg = 0, namely,
impose its mass to be zero like for the usual graviton. The condition to be satisfied is in
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this case

− e+ 2K(D − 3)a = 0 . (2.74)

From (2.36) we learn that (2.74) also imposes the effective Einstein constant to diverge,
κeff = +∞. This inconsistency is artificial and comes from a wrong identification of κeff in
this case. In fact, the effective gravitational constant must be defined now as

κ̂eff ≡ m2
gκeff = − 1

4(2a+ c)
, (2.75)

which remains finite when we impose (2.74). Then, the equation for the trace reads[
(D − 1)(D − 2)2K2

2κ̂eff(m2
s +DK)

] [
2̄−m2

s

]
h = TL . (2.76)

On the other hand, we cannot decompose the traceless perturbation tµν into two indepen-
dent fields. Instead, it fulfills the equation

1

2κ̂eff
(2̄− 2K)2tµν = TL,eff

〈µν〉 , (2.77)

with a metric decomposition given now by

hµν = tµν +
∇̄〈µ∇̄ν〉h

(m2
s +DK)

+
1

D
ḡµνh . (2.78)

2.2.4 Critical gravities

Critical gravities [294] are theories in which the extra graviton is massless and, in addition,
the scalar mode is absent, i.e., it satisfies m2

s = +∞. As shown in [294] for the quadratic
case in D = 4, the energies of both t

(m)
µν and t

(M)
µν become zero for this class of theories.

We can easily check this statement from the quadratic action (2.63). Specifying for the
critical gravity case, it reads

S2 =

∫
M

dDx

4κ̂eff

[
(D − 2)2

2(D − 1)
(RL)2 − 2GL

µν
GLµν

]
. (2.79)

Now, in the vacuum the field equations imply that h = 0, so that RL = 0, and (2 −
2K)2h〈µν〉 = 0. There are solutions, corresponding to the usual massless graviton, which
are annihilated by (2−2K), and they have GLµν = 0. Therefore, for these solutions the La-
grangian as well as its derivatives vanish on-shell. In particular, the Hamiltonian vanishes,
since it is constructed from the Lagrangian and its first derivatives, so the gravitons have
zero energy. However, there are additional logarithmic modes which are not annihilated
by (2−2K), but by the full operator (2−2K)2 instead, and these modes do carry positive
energy [294].

The conditions to be imposed for this class of theories are (2.74) and (2.70) as well
as the redefinition of the Einstein constant in (2.75). Then, the traceless part of the metric
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satisfies

1

2κ̂eff

[
(2̄− 2K)2h〈µν〉 − ∇̄〈ν∇̄µ〉�̄h

]
= TL〈µν〉 , (2.80)

while the trace is determined by matter,

h = − 2κ̂eff
(D − 1)(D − 2)2K2

TL . (2.81)

2.2.5 Einstein-like theories

When both the massive graviton and the scalar mode are absent, we are left with a theory
whose only propagating degree of freedom is a massless graviton. The conditions m2

g =
m2
s = +∞ can be expressed as

2a+ c = 4b+ c = 0 . (2.82)

The linearized equations of motion drastically simplify and become identical to those of
Einstein gravity with an effective Einstein constant,

ELµν =
1

2κeff
GLµν =

1

2
TLµν . (2.83)

The metric decomposition is very simple now,

hµν = t(m)
µν +

1

D
ḡµνh , (2.84)

with t(m)
µν satisfying (2.51), and h being again completely determined by matter,

h =
2κeff

K(D − 1)(D − 2)
TL . (2.85)

Hence, according to the discussion in 2.2.1, the only propagating mode is the transverse
and traceless part of the metric perturbation, which carries D(D−3)/2 dof, like in Einstein
gravity. The only theory-dependent parameter in the linearized equations of Einstein-like
theories is the effective Einstein constant κeff . Once we know that our theory is Einstein-
like, we can derive a direct relation that allows us to obtain this constant directly from the
on-shell Lagrangian L(K). In order to see this, let us note the following relations,

dL(K)

dK
= 2eD(D − 1) , (2.86)

d2L(K)

dK2
= 4D(D − 1) (a+ bD(D − 1) + c(D − 1)) , (2.87)
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analogous to (2.30). Using these equations together with the Einstein-like conditions (2.82),
we determine the four parameters a, b, c, e in terms of these derivatives of the Lagrangian.
Then, we only need to insert the values of these constants in (2.37), and we obtain

1

κeff
=

2

D(D − 1)

(
dL(K)

dK
− 2K

(D − 2)

d2L(K)

dK2

)
(2.88)

=
2

(D − 1)(D − 2)

d

dK

(
L(K)− 2K

D

dL(K)

dK

)
. (2.89)

We get that the inverse of κeff appears to be proportional to the slope of the function
that determines the vacuum equation (2.17). This result will be very useful to us in other
chapters.

Let us stress at this point that throughout the text we use the labels Einstein-like
and Einsteinian with different meanings. By Einstein-like theories we mean theories for
which the extra modes are absent and the only dynamical field at the linearized level is the
usual massless graviton of general relativity. By Einsteinian we refer to those Einstein-like
theories which are defined in a dimension-independent way — see section 2.4.

2.3 Explicit linearization of some theories

So far, our analysis was completely general and systematic, without making reference to
any concrete theory. In this section we apply the linearization method explained in Sec. 2.1
to some relevant cases that will be useful to us.

2.3.1 Linearization of all theories up to quartic order

Up to quartic order in curvature, the most general D-dimensional theory of the form (2.1)
can be written as

S =
1

2κ

∫
M
dDx

√
|g|
{
− 2Λ +R+

3∑
i=1

αiL(2)
i +

8∑
i=1

βiL(3)
i +

26∑
i=1

γiL(4)
i

}
. (2.90)

Here, L(2)
i , L(3)

i and L(4)
i represent, respectively, the quadratic, cubic and quartic curvature

invariants enumerated in table 2.2, αi, βi and γi are dimensionful constants and κ = 8πG
is again Einstein’s constant. Also, Λ is the cosmological constant. In general dimensions,
there are three independent quadratic invariants, eight cubic and twenty-six quartic [107].
However, not all of these invariants are linearly independent as we consider small enough
D. For example, in D = 4 there are only two quadratic, six cubic and thirteen quartic
invariants.

Using the procedure explained in section 2.1 we have linearized the quartic action
(2.90), i.e., we have computed the quantity L(K, α) defined in (2.28) at order O(α2) for
every term in the action and obtained the values of a, b, c and e from there.The results are
shown in table 2.2. Finally, the parameters a, b, c and e of the full theory (2.90) can be
found by adding linearly the contribution of each term, with the corresponding coefficients
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in front in each case, namely

e =
1

2κ

(
e[R] +

3∑
i=1

αi e
[
L(2)
i

]
+

8∑
i=1

βi e
[
L(3)
i

]
+

26∑
i=1

γi e
[
L(4)
i

])
, (2.91)

where e.g., e[R] = 1/2 is the value of e corresponding to the Einstein-Hilbert term R, and
so on. Completely analogous expressions hold for a, b and c.

Table 2.2 along with the results in section 2.2 can be easily used to classify the
different theories in (2.90) according to their spectrum.

2.3.2 f(scalars) theories

As we can see from table 2.2, the number of Riemann invariants grows very rapidly with the
order in curvature, so working out the most general case becomes unpractical. However,
we can construct at least a subset of higher-order curvature terms by considering densities
formed from products of lower-order invariants. Therefore, it would be useful to have a
way of determining the contribution to the linearized equations of these “product densities”
by knowing the contribution of their factors. More generally, one could consider theories
whose Lagrangian is an arbitrary function — not necessarily a polynomial — of Riemann
invariants, such as f(R) gravity. Thus, in this subsection we will linearize the equations
of motion of a theory of the form

L = f(R1, . . . ,Rm) , (2.92)

where the Ri are arbitrary curvature scalars. For a theory of this form, using the objects

Pµαβνi ≡ ∂Ri
∂Rµαβν

, Cµγσνi σρλη ≡ gσαgρβgλχgηξ
∂Pµγσνi

∂Rαβχξ
, (2.93)

we get the following result for the tensors defined in (2.3) and (2.6) evaluated on the
background,

P̄µαβν = ∂if(R̄)P̄µαβνi , C̄µαβνσρλη = ∂if(R̄)C̄µαβνi σρλη + ∂i∂jf(R̄)P̄µαβνi P̄j σρλη , (2.94)

where ∂i denotes derivative with respect to Ri, and R̄ means that we evaluate all the
scalars on the background. Using these expressions it is possible to obtain the values of
the parameters a, b, c and e defined in (2.14) and (2.13) for the theory (2.92). The result is

a = ∂if(R̄)ai , b = ∂if(R̄)bi + ∂i∂jf(R̄)eiej , c = ∂if(R̄)ci e = ∂if(R̄)ei . (2.95)

Hence, once we have computed the parameters ai, bi, ci, ei for the set of scalars Ri, we can
easily find the corresponding parameters for any other Lagrangian L = f(R1, . . . ,Rm).
Plugging the values (2.95) in (2.21), we obtain the linearized equations.
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Label Term e a b c

L(1)
1 R 1

2
0 0 0

L(2)
1 R2 D(D − 1)K 0 1

2
0

L(2)
2 RµνR

µν (D − 1)K 0 0 1
2

L(2)
3 RµνρσR

µνρσ 2K 1 0 0

L(3)
1 R ρ σ

µ ν R
δ γ
ρ σ R

µ ν
δ γ

3
2
(D − 2)K2 − 3

2
K 0 3

2
K

L(3)
2 R ρσ

µν R δγ
ρσ R µν

δγ 6K2 6K 0 0

L(3)
3 RµνρσR

µνρ
δR

σδ 3(D − 1)K2 (D − 1)K 0 2K
L(3)

4 RµνρσR
µνρσR 3D(D − 1)K2 D(D − 1)K 2K 0

L(3)
5 RµνρσR

µρRνσ 3
2
(D − 1)2K2 0 1

2
K 1

2
(2D − 3)K

L(3)
6 R ν

µ R
ρ
ν R

µ
ρ

3
2
(D − 1)2K2 0 0 3

2
(D − 1)K

L(3)
7 RµνR

µνR 3
2
D(D − 1)2K2 0 (D − 1)K 1

2
D(D − 1)K

L(3)
8 R3 3

2
D2(D − 1)2K2 0 3

2
D(D − 1)K 0

L(4)
1 RµνρσR δ γ

µ ρ R
χ ξ
δ ν Rγχσξ 2(3D − 5)K3 2(D − 4)K2 0 7K2

L(4)
2 RµνρσR δ γ

µ ρ R
χ ξ
δ γ Rνχσξ 2(D2 − 3D + 4)K3 6K2 K2 2(D − 3)K2

L(4)
3 RµνρσR δγ

µν R χ ξ
ρ δ Rσχγξ 4(D − 2)K3 (D − 7)K2 0 5K2

L(4)
4 RµνρσR δγ

µν R χξ
ρδ Rσγχξ 8K3 12K2 0 0

L(4)
5 RµνρσR δγ

µν R χξ
δγ Rρσχξ 16K3 24K2 0 0

L(4)
6 RµνρσR δ

µνρ RγξχσR
γξχ

δ 8(D − 1)K3 4(D − 1)K2 0 8K2

L(4)
7 (RµνρσR

µνρσ)2 8D(D − 1)K3 4D(D − 1)K2 8K2 0

L(4)
8 RµνRρσδγR ξ

ρ δµRσξγν 2(D − 1)(D − 2)K3 − 3
2
(D − 1)K2 1

2
K2 1

2
(5D − 9)K2

L(4)
9 RµνRρσδγR ξ

ρσ µRδγξν 8(D − 1)K3 6(D − 1)K2 0 6K2

L(4)
10 RµνR ρ σ

µ ν RδγξρR
δγξ
σ 4(D − 1)2K3 (D − 1)2K2 2K2 (3D − 5)K2

L(4)
11 RR ρ σ

µ ν R
δ γ
ρ σ R

µ ν
δ γ 2D(D − 1)(D − 2)K3 − 3

2
D(D − 1)K2 3

2
(D − 2)K2 3

2
D(D − 1)K2

L(4)
12 RR ρσ

µν R δγ
ρσ R µν

δγ 8D(D − 1)K3 6D(D − 1)K2 6K2 0

L(4)
13 RµνRρσRδ γµ ρRδνγσ 4(D − 1)2K3 (D − 1)2K2 1

2
K2 1

2
(9D − 10)K2

L(4)
14 RµνRρσRδ γµ νRδργσ 2(D − 1)3K3 0 1

2
(3D − 4)K2 1

2
(3D2 − 8D + 6)K2

L(4)
15 RµνRρσRδγµρRδγνσ 4(D − 1)2K3 (D − 1)2K2 K2 (4D − 5)K2

L(4)
16 RµνR ρ

ν R
σδγ
µRσδγρ 4(D − 1)2K3 (D − 1)2K2 0 5(D − 1)K2

L(4)
17 RδγR

δγRµνρσR
µνρσ 4D(D − 1)2K3 D(D − 1)2K2 4(D − 1)K2 D(D − 1)K2

L(4)
18 RRµνρσR

µνρ
δR

σδ 4D(D − 1)2K3 D(D − 1)2K2 3(D − 1)K2 2D(D − 1)K2

L(4)
19 R2RµνρσR

µνρσ 4D2(D − 1)2K3 D2(D − 1)2K2 5D(D − 1)K2 0

L(4)
20 RµνRµρνσR

δρR σ
δ 2(D − 1)3K3 0 (D − 1)K2 (D − 1)(2D − 3)K2

L(4)
21 RRµνρσR

µρRνσ 2D(D − 1)3K3 0 1
2
(D − 1)(4D − 3)K2 1

2
D(D − 1)(2D − 3)K2

L(4)
22 R ν

µ R
ρ
ν R

σ
ρ R

µ
σ 2(D − 1)3K3 0 0 3(D − 1)2K2

L(4)
23 (RµνR

µν)2 2D(D − 1)3K3 0 2(D − 1)2K2 D(D − 1)2K2

L(4)
24 RR ν

µ R
ρ
ν R

µ
ρ 2D(D − 1)3K3 0 3

2
(D − 1)2K2 3

2
D(D − 1)2K2

L(4)
25 R2RµνR

µν 2D2(D − 1)3K3 0 5
2
D(D − 1)2K2 1

2
D2(D − 1)2K2

L(4)
26 R4 2D3(D − 1)3K3 0 3D2(D − 1)2K2 0

Table 2.2: Parameters e, a, b, c of the linearized equations for all Riemann curvature
invariants up to fourth order. We have cross-checked all the terms independently for
D = 3, 4, 5 using Mathematica.
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Theories without massive graviton

In section 2.2 we classified general L(Riemann) theories according to their spectrum on a
msb. One of the cases under consideration was that corresponding to theories for which
m2
g = +∞, i.e., those containing a single massless graviton plus an additional spin-0 mode.

In terms of the parameters defined in the first section, this condition is 2a+c = 0. Assume
now that for certain scalarsRi the condition 2ai+ci = 0 is satisfied for all i, so that a theory
consisting of a linear combination of Ri would be free of massive gravitons. From (2.95)
we learn that in fact, this property is shared by any theory of the form L = f(R1, . . . ,Rm)
since in that case we find

2a+ c = ∂if(R̄)(2ai + ci) = 0 . (2.96)

Therefore, theories constructed as general functions of scalars whose linear combinations
do not produce massive gravitons are also free of those modes. This is a straightforward
way of understanding why f(R), or more generally f(Lovelock) theories — see appendix
A.2 — inherit the property of Lovelock gravities [34, 35] of not propagating the massive
graviton [62,94].
Furthermore, note that the condition for the absence of scalar mode reads in turn

2a+Dc+4b(D−1) = ∂if(R̄)(2ai+Dci+4bi(D−1))+4(D−1)∂i∂jf(R̄)eiej = 0 . (2.97)

This expression is more complicated than (2.96) since the expression for b in (2.95) contains
a term involving the ei. This is not surprising: f(R) does propagate the additional scalar
mode even though Einstein gravity does not.

2.4 Einsteinian cubic gravity

We have seen in Sec. 2.2.5 that there is a special class of theories — that we named
Einstein-like theories — whose linearized equations on constant curvature backgrounds
coincide with the linearized Einstein’s equations, up to the identification of the effective
Newton’s constant. Thus, at linear level these theories behave as Einstein gravity and
their only degree of freedom is a massless graviton. Since Einstein-like theories will play a
prominent role in this thesis, in this section we take a close look at them. We will introduce
a refined set of Einstein-like theories that we will call Einsteinian theories, whose main
property is that they are defined in a dimension-independent way.

We recall that the theories that only propagate a massless graviton on the vacuum are
those for which the additional modes are infinitely heavy, i.e., those for which m2

g = m2
s =

+∞. In terms of the parameters of the linearized equations, these conditions translate into
2a+ c = 4b+ c = 0. Let us then explicitly construct these theories at leading order in the
curvature expansion. Obviously, Einstein-gravity belongs to this class, and the following
terms that we can add to the gravitational action are quadratic in the curvature:

L(2) = α1R
2 + α2RµνR

µν + α3RµνρσR
µνρσ . (2.98)

Now, from table 2.2 we can read the value of the constants a, b, c associated to this La-
grangian: a = α3, b = α1/2, c = α2/2. Then the conditions 2a + c = 4b + c = 0
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impose α1 = α3 = −α2/4, and the only quadratic theory whose spectrum coincides with
that of Einstein gravity is L(2) = α3X4, where X4 = R2 − 4RµνR

µν + RµνρσR
µνρσ is the

Gauss-Bonnet density. This term belongs to the class of Lovelock theories, which are the
most general higher-curvature theories whose fully non-linear equations of motion are of
second-order. However, X4 is topological in four dimensions, hence there are no dynamical
Einstein-like theories at quadratic order in D = 4.

Let us then work out the cubic case. The most general cubic Lagrangian can be
written as

L(3) = β1R
ρ σ
µ ν R α β

ρ σ R µ ν
α β + β2R

ρσ
µν R αβ

ρσ R µν
αβ + β3RµνρσR

µνρ
αR

σα (2.99)

+ β4RµνρσR
µνρσR+ β5RµνρσR

µρRνσ + β6R
ν
µ R ρ

ν R
µ
ρ + β7RµνR

µνR+ β8R
3 .

From table 2.2 we read the parameters of the linearized equations and we can write the
two Einstein-like constraints:

K−1(2a+ c) =− 3

2
β1 + 12β2 + 2Dβ3 + 2D(D − 1)β4 +

1

2
(2D − 3)β5 (2.100)

+
3

2
(D − 1)β6 +

1

2
D(D − 1)β7 = 0 ,

K−1(4b+ c) =
3

2
β1 + 2β3 + 8β4 +

1

2
(2D + 1)β5 (2.101)

+
3

2
(D − 1)β6 +

1

2

(
D2 + 7D − 8

)
β7 + 6D(D − 1)β8 = 0 .

These constraints would leave us with a six-parameter family of cubic theories whose
spectrum is identical to that of Einstein gravity. However, not all of them are dynamical
depending on the dimension. InD = 4 there are two cubic combinations that are identically
zero, and they belong trivially to the Einstein-like class. Thus, in four dimensions there
are only four non-trivial, linearly independent Einstein-like cubic Lagrangians. In D = 5
we find five non-trivial theories of this kind, and in D > 6 there are six of them. The case
D = 6 is special because all the six independent Einstein-like terms are non-vanishing, but
there is a topological combination that corresponds to the six-dimensional Euler density
X6 — see Eq. (2.104) below.

Observe however that in most cases, these theories have dimension-dependent cou-
plings βi, i.e., the relative coefficients of the different curvature invariants change with
the spacetime dimension. In other words, they are actually different theories in differ-
ent dimensions. This is the case, for example, of Quasi-topological gravity [129, 130] and
of certain f(Lovelock) theories [94, 298]. On the other hand, there are certain theories
that satisfy the Einstein-like condition in all dimensions, while keeping the form of the
Lagrangian independent from D. The most prominent example of this type of theories is
Lovelock gravity [34,35], that is actually the most general higher-curvature theory possess-
ing second-order field equations — not only at linear level. The Lovelock Lagrangian is
constructed as a linear combination of dimensionally extended Euler densities, given by

X2k ≡
1

2k
δµ1ν1...µkνk
α1β1...αkβk

Rµ1ν1
α1β1 · · ·Rµkνk

αkβk , (2.102)
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where the generalized Kronecker symbol is defined as δµ1ν1...µkνk
α1β1...αkβk

≡ (2k)!δ
[µ1
α1 δ

ν1
β1
· · · δµkαkδ

νk]
βk

.
As we can see, the form of these densities does not have an explicit dependence on the
spacetime dimension D. Thus, these are examples of any-dimensional Einstein-like the-
ories. Our aim here is to search for more of these theories, that we will call Einsteinian
theories, on account of their similarities to Einstein gravity.

As we have seen, the number of Einstein-like theories is still quite large — we have up
to six of them at cubic order — so imposing the additional Einsteinian condition seems to
be a nice way to reduce the number of theories, providing us with a subset of theories with
possibly more interesting properties. One advantage of these theories is that their spectrum
is Einstein-like not only on constant curvature backgrounds, but also on other vacua that
are product of constant curvature spaces. These are the type of vacua that appear in String
Theory, where one usually hasMD =MD−n

nc ×Mn
c , whereMn

c is some compact manifold
of dimension n. For instance, let us consider a D-dimensional theory and let us assume
that it possesses vacua of the form AdSD−n × Sn, possibly for several values of n. If the
gravitational sector of the D-dimensional theory is of the Einsteinian type, then we can be
sure that the spectrum of the gravitational sector in the lower-dimensional AdSD−n factor
will only contain a massless graviton, for any value of n. The reason is that when one
compactifies the theory, the resulting effective action on the non-compact dimensions will
involve the same gravitational term. Thus, this term must belong to the Einsteinian class if
we want the lower-dimensional theory to have also Einstein-like spectrum. This is exactly
what happens with the Einstein-Hilbert term in general String Theory compactifications.12

Let us find the Einsteinian theories at cubic order in the curvature. When we demand
the parameters βi to solve (2.100) and (2.101) simultaneously for any D, the number of
constraints is six instead of two. This is so because both 2a+ c and 4b+ c are polynomials
of order D2, so we need to impose that the coefficients of the terms proportional to D0, D
and D2 in (2.100) and (2.101) vanish independently. This leaves us with a two-parameter
family of theories. In particular, we find

β1 = 12λ− 8β, β2 = λ+ 4β, β3 = −24β, β4 = 3β, (2.103)

β5 = −12λ+ 24β, β6 = 8λ+ 16β, β7 = −12β , β8 = β ,

where λ and β are the free parameters. Now we have the freedom to choose a basis of two
cubic invariants satisfying the above constraints. The first element is somewhat canonical,
and corresponds to the dimensionally-extended Euler density X6, which one finds for λ = 0,
β = 1:

X6 =− 8R ρ σ
µ ν R α β

ρ σ R µ ν
α β + 4R ρσ

µν R αβ
ρσ R µν

αβ − 24RµνρσR
µνρ

αR
σα + 3RµνρσR

µνρσR

+ 24RµνρσR
µρRνσ + 16R ν

µ R ρ
ν R

µ
ρ − 12RµνR

µνR+R3,
(2.104)

Any other choice produces another invariant. A particularly simple one corresponds to

12For example, the 10-dimensional type-IIA String Theory effective action reduces to a class of D = 4,
N = 2 Supergravity theories when 6 of the dimensions are compact on a Calabi-Yau threefold — see
e.g., [299]. In the type-IIA action, the leading contribution from the metric is the 10-dimensional Einstein-
Hilbert term R(10). Under compactification, this produces R(4) — plus additional terms involving other
fields.
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setting λ = 1, ζ = 0, for which we get the following cubic term:

P = 12R ρ σ
µ ν R α β

ρ σ R µ ν
α β +R ρσ

µν R αβ
ρσ R µν

αβ − 12RµνρσR
µρRνσ + 8R ν

µ R ρ
ν R

µ
ρ .

(2.105)

From now, we will refer to the term P as the Einsteinian cubic gravity (ECG) density.
Hence, we find that, up to cubic order in the curvature, the most general theory that
possesses Einstein-like spectrum in any dimension is

S =
1

16πG

∫
M
dDx

√
|g| {−2Λ +R+ αX4 + βX6 + λP} . (2.106)

It is quite remarkable that, besides the Einstein-Hilbert and Lovelock terms, there is only
one additional contribution P. Let us stop here a moment to write down some properties of
this theory. First, from (2.17) we can write the equation for the curvature of the vacuum,
K:

K+ 2(D−3)(D−4)αK2 + 2(D−3)(D−6) [(D − 4)(D − 5)β − 4λ]K3 =
2Λ

(D − 1)(D − 2)
.

(2.107)
Depending on the values of the parameters this cubic equation for K has one or three
real solutions,13 but it is customary to choose the one that is smoothly connected to the
Einstein gravity vacuum when the couplings vanish. The linearized equations of (2.106)
around any of the vacua are almost identical to those of Einstein gravity,

ELµν =
1

16πGeff
GLµν , (2.108)

the only signature of the higher-derivative theories being an effective Newton’s constant
given by

G

Geff
= 1 + 4(D − 3)(D − 4)αK + 6(D − 3)(D − 6) [(D − 4)(D − 5)β − 4λ]K2 . (2.109)

We observe that, while the quadratic and cubic Lovelock densities are non-dynamical
in D = 4 (the former is topological and the latter is trivial), the new density P is non-
trivial, since it contributes to the vacuum equation and to the effective Newton’s constant.
In this sense, up to cubic order in curvature P is the only Einsteinian density that is
non-trivial in four dimensions besides the Einstein-Hilbert term itself.

Einsteinian quartic gravities

We can go on and try to find all Einsteinian theories at higher orders in curvature. With
the results from Sec. 2.3 we can perform the analysis up to quartic order in the curvature.
Imposing the absence of massive graviton and scalar for the quartic terms in the theory
(2.90), one is left with two constraints for the coupling values, F (4)

g (γi, D) = F
(4)
s (γi, D) = 0

— see appendix A.4 for the explicit expressions. Imposing each constraint to be satisfied
independently of the dimension multiplies the number of constraints and gives rise to the

13Or two or none if the cubic couplings vanish.
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Einsteinian theories. As we have seen, this is because e.g., in the cubic case F (3)
g,s (βi, D)

is a polynomial of degree 2 in D, so we need to impose the coefficients of the D0, D1

and D2 terms to vanish independently. More generally, at n-th order in curvature, the
corresponding constraints are polynomials of degree 2n − 4 in D, and hence we will find
2n− 3 constraints coming from the absence of the massive graviton, and the same number
from imposing the absence of scalar, which makes 2(2n− 3) in total. At the quartic level
this means 10 constraints. Since in general dimensions there are up to 26 independent
invariants at this order in curvature [107] — see Table 2.2, this means that there exists a 16-
parameter family of Einsteinian quartic gravities (EQGs). If we choose the 16 parameters
to be {γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ12, γ13, γ14, γ18, γ20, γ26}, the rest of couplings are
given in terms of these as

γ11 = +
1

3
(12γ12 − 4γ1 + 12γ2 − 8γ3 + 36γ4 + 72γ5 + 16γ6 + 16γ7 − 3γ8 + 12γ9) ,

(2.110)

γ15 = +
1

2
(−10γ1 − 4γ10 − γ13 + γ14 + 16γ2 − 14γ3 + 48γ4 + 96γ5 + 16γ6 − 4γ8 + 12γ9) ,

γ16 = +
1

10
(36γ1 + 10γ10 − 24γ12 − 5γ13 − 5γ14 − 74γ2 − 2γ20 + 1140γ26 + 57γ3 − 210γ4

− 420γ5 − 84γ6 − 20γ7 + 17γ8 − 72γ9) ,

γ17 =− γ18 − 120γ26 ,

γ19 = + 6γ26 ,

γ21 = + 8γ1 − 12γ12 − 3γ14 + 2γ18 − 18γ2 − 2γ20 + 900γ26 + 13γ3 − 54γ4 − 108γ5 − 20γ6

− 20γ7 + 3γ8 − 12γ9 ,

γ22 = +
1

10
(16γ1 − 24γ12 − 10γ14 − 14γ2 − 2γ20 + 1140γ26 + 17γ3 − 50γ4 − 100γ5 − 4γ6

− 20γ7 + 2γ8 + 8γ9) ,

γ23 = +
1

20
(−154γ1 + 216γ12 + 60γ14 − 40γ18 + 306γ2 + 38γ20 − 22260γ26 − 233γ3

+ 930γ4 + 1860γ5 + 316γ6 + 340γ7 − 48γ8 + 168γ9) ,

γ24 = +
1

30
(−6γ1 + 24γ12 + 54γ2 + 2γ20 + 9060γ26 − 27γ3 + 150γ4 + 300γ5 + 84γ6

+ 60γ7 − 12γ8 + 72γ9) ,

γ25 =− 24γ26 . (2.111)

Plugging these back in the original quartic action, we obtain the family of 16 Einsteinian
quartic gravities. All of these theories will be linearly independent for large enough D,
but in lower dimensions many of them will be trivial. In four dimensions, it can be seen
that only 13 of the 26 invariants in Table 2.2 are linearly independent [107]. We can use
this fact to easily construct three Einsteinian quartic gravities that are non-trivial in four
dimensions. In particular, we can set γ1 = γ2 = γ3 = γ4 = γ6 = γ8 = γ9 = γ10 = γ12 =
γ13 = γ14 = γ18 = γ20 = 0 — the choice being non-unique — that guarantees that the rest
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of the densities are independent. Then, (2.111) becomes now

γ11 = + 8/3(9γ5 + 2γ7) , γ15 = + 48γ5 ,

γ16 = + 114γ26 − 42γ5 − 2γ7 , γ17 =− 120γ26 ,

γ19 = + 6γ26 , γ21 = + 4(225γ26 − 27γ5 − 5γ7) ,

γ22 = + 2(57γ26 − 5γ5 − γ7) , γ23 =− 1113γ26 + 93γ5 + 17γ7 ,

γ24 = + 2(151γ26 + 5γ5 + γ7) , γ25 =− 24γ26 .

(2.112)

where we only have three free parameters {γ5, γ7, γ26}. Using these relations we have
constructed the following invariants

Q1 ≡+ 3RµνρσRγδµνR
αβ
γδ Rρσαβ − 15(RµνρσR

µνρσ)2 − 8RR ρ σ
µ ν R γ δ

ρ σ R µ ν
γ δ

+ 144RµνRρσRγδµρRγδνσ − 96RµνRρνR
αβγ

µRαβγρ − 24RRµνρσR
µρRνσ

+ 24(RµνR
µν)2 ,

Q2 ≡+ 3(RµνρσR
µνρσ)2 + 16RR ρ σ

µ ν R γ δ
ρ σ R µ ν

γ δ − 6RµνRρνR
αβγ

µRαβγρ

− 60RRµνρσR
µρRνσ − 6RνµR

ρ
νR

σ
ρR

µ
σ + 51(RµνR

µν)2 + 6RRνµR
ρ
νR

µ
ρ ,

Q3 ≡+R4 + 57(RµνρσR
µνρσ)2 − 120RγδR

γδRµνρσR
µνρσ + 6R2RµνρσR

µνρσ

− 240RRµνρσR
µρRνσ − 144(RµνR

µν)2 + 416RRνµR
ρ
νR

µ
ρ − 24R2RµνR

µν

+ 304RR ρ σ
µ ν R

δ γ
ρ σ R

µ ν
δ γ .

(2.113)

Just like its cubic cousin P defined in (7.2), Q1, Q2 and Q3 — or any linear combination
of them — only propagate the usual massless graviton when linearized on a msb, not only
in D = 4, but in any number of dimensions14.

It is important to note that these three are not necessarily the only EQG theories
in D = 4. As we explained, there are 13 independent cubic invariants in that case, which
means that there are 11 independent four-dimensional quartic Einstein-like invariants —
because we have to impose two conditions on the couplings in that case, namely m2

g =
m2
s = +∞. In order to determine all the possible theories, one should construct the 16

independent D-dimensional EQGs using (2.111) and then analyze how many of them are
independent when D = 4. Given that EQGs are particular cases of Einstein-like theories,
we conclude that there could actually be up to 8 additional EQG invariants that are non-
trivial in D = 4.

2.5 Solutions to the linearized equations

After having determined the general form of the linearized equations of any L(Riemann)
theory, in this section we solve them in few interesting situations. We first investigate the
Newtonian limit of these theories by computing the metric of a gravitating point particle
in arbitrary dimensions, finding in all cases that the divergence of the Newtonian potential
at r = 0 is smoothened with respect to the EG case. We also study the polarization modes

14We have cross-checked the linearized equations of P and Qi, i = 1, 2, 3 for D = 4, 5, 6 using the
Mathematica package xAct [300].
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of gravitational waves in these theories as well as the gravitational radiation from sources.
For simplicity, we will focus in the case of Minkowski vacuum, which was analyzed

in 2.1.2. It is easy to see that, in flat backgrounds, only terms up to quadratic order in the
curvature contribute to the linearized equations. Thus, we are essentially considering the
theory

S2 =
1

16πG

∫
M
dDx

√
|g|

[
R+ α1R

2 + α2RµνR
µν + α3X4

]
, (2.114)

where X4 = R2−4RµνR
µν +RµνρσR

µνρσ is the Gauss-Bonnet density. For this theory, m2
g

and m2
s read, respectively

m2
g = − 1

2α2
, m2

s =
(D − 2)

2 (4α1(D − 1) + α2D)
. (2.115)

while Geff = G. The same study that we perform in this section for flat space can be
naturally carried out for an (A)dS background using the expressions in section 2.1.2. Our
results are also applicable in that case provided we consider distances shorter than the
(A)dS scale r << |K|−1/2 and that m2

g >> |K|.15 The main difference in the (A)dS case is
that terms of all orders contribute to m2

g and m2
s, so they are not simply given by (2.115),

and we also have Geff 6= G. Thus, we will let these parameters to be arbitrary, with the
only assumption that m2

s ≥ 0 and m2
g > 0 so that we avoid the presence of tachyons.

2.5.1 Generalized Newton potential

In this section we use the results of section 2.1 to compute the Newton potential UD(r)
and the Parametrized Post-Newtonian (PPN) parameter γ for a general theory of the form
(2.1) in general dimensions. We start reviewing the four-dimensional case and then we
extend our results to arbitrary D, pointing out interesting differences with respect to the
D = 4 case.

Four dimensions

The analysis performed in section 2.1.2 tells us that in order to obtain a solution of the
linearized equations in a flat background we must solve equations (2.56), (2.60) and (2.61),
and then reconstruct the metric perturbation (2.59). If we denote by Hµν(m) a field that
satisfies the Klein-Gordon equation with source

(
2̄−m2

)
Hµν(m) = −4πTµν(x) , (2.116)

and by H(m) its trace, the solutions to (2.56), (2.60) and (2.61) can be written as

15We must also assume because limit m2
g → 0 produces a qualitatively different theory, as we explained

in Sec. 2.2.3, and the effects become relevant when m2
g < |K|
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ĥµν = 4GeffHµν(0) , φ = 4GeffH(ms) , (2.117)

tµν = −4Geff

[
H〈µν〉(mg) +

1

3m2
g

∂〈µ∂ν〉H(mg)

]
. (2.118)

where we introduced the effective Newton’s constant κeff = 8πGeff . Inserting this into the
metric perturbation (2.59) we get

hµν = 4Geff

[
Hµν(0)−Hµν(mg) + ηµν

(
−1

2
H(0) +

1

4
H(mg) +

1

4
H(ms)

)

+
1

3
∂〈µ∂ν〉

(
(m−2

g −m−2
s )H(0) +m−2

s H(ms)−m−2
g H(mg)

)]
.

(2.119)

This is the metric perturbation in the de Donder gauge, but we can make an infinitesi-
mal gauge transformation in order to simplify the expression above. In particular, let us
introduce the “Newtonian gauge”, by performing the following transformation

hNµν ≡ hµν − ∂(µξν) , (2.120)

where

ξν ≡
1

3
∂ν
(
(m−2

g −m−2
s )H(0) +m−2

s H(ms)−m−2
g H(mg)

)
. (2.121)

After some simplifications we obtain

hNµν = Geff

[
4Hµν(0)− 4Hµν(mg) + ηµν

(
−2H(0) +

4

3
H(mg) +

2

3
H(ms)

)]
. (2.122)

Now if we restrict ourselves to static configurations, (2.116) reduces to the so-called
screened Poisson equation,

(
4−m2

)
Hµν(~x;m) = −4πTµν(~x), whose general solution

reads

Hµν(~x;m) =

∫
d3~x′

Tµν(~x′)

|~x− ~x′|
e−m|~x−~x

′| . (2.123)

This can be seen as a superposition of functions 1/|~x− ~x′| weighted by the source Tµν(~x′)
and with an exponential screening controlled by the mass m. Using this we can rewrite
(2.122) as

hNµν(x) = Geff

∫
d3~x′Tαβ(~x′)Παβ

µν(~x− ~x′) , (2.124)
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where the static propagator reads

Παβ
µν(~x− ~x′) =

1

|x− x′|

[
4δα(µδ

β
ν)

(
1− e−mg |~x−~x′|

)
(2.125)

−2ηαβηµν

(
1− 2

3
e−mg |~x−~x

′| − 1

3
e−ms|~x−~x

′|
)]

.

Now, let us apply the previous expressions to the case of a solid and static sphere of radius
R and massM on a flat background. For this distribution of matter, the only non-vanishing
component of the stress-tensor reads

T00(r) = ρ(r) = ρ0 θ(R− r) , with ρ0 ≡
M

4πR3/3
, (2.126)

where θ(x) is the Heaviside step function. For this configuration the result for H00(r;m) =
−H(r;m) in the outer region r > R obtained from (2.123) reads

H(r;m) = −f(mR)
M

r
e−mr , (2.127)

where f(mR) is a form factor given by

f(mR) =
3

(mR)3

[
mR cosh(mR)− sinh(mR)

]
, (2.128)

which behaves as f(mR) ≈ 3
2

1
(mR)2 e

mR if mR >> 1 and as f(mR) ≈ 1 in the point-like
limit, i.e., when mR << 1. Finally, inserting these results into the metric hNµν in (2.122)
and this in gNµν = ηµν + hNµν we obtain

ds2
N = −(1 + 2U(r))dt2 + (1− 2γ(r)U(r))δijdx

idxj , (2.129)

where U(r) and γ(r) are given by

U(r) = −GeffM

r

[
1− 4

3
f(mgR)e−mgr +

1

3
f(msR)e−msr

]
, (2.130)

γ(r) =
3− 2f(mgR)e−mgr − f(msR)e−msr

3− 4f(mgR)e−mgr + f(msR)e−msr
. (2.131)

Evaluating these expressions in the point-like limit of the sphere f(mR) = 1 we finally
obtain the generalized Newtonian potential and the PPN parameter γ

U(r) = −GeffM

r

[
1− 4

3
e−mgr +

1

3
e−msr

]
, γ(r) =

3− 2e−mgr − e−msr

3− 4e−mgr + e−msr
. (2.132)

Let us make some comments about these results. First, observe that the usual Newton
potential gets corrected by two Yukawa-like terms controlled by the masses of the two
extra modes which can be computed for a given theory through (2.37) and (2.38). The
above expression for U(r) has been obtained before using different methods — see e.g.,
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[29, 30, 301]16. Note that while the contribution from the scalar has the usual sign for a
Yukawa potential, the massive graviton one comes with the opposite sign, which is another
manifestation of its ghost nature. Observe also that the whole contribution from the
higher-derivative terms appears through mg and ms, the coefficients −4/3 and 1/3 in front
of the exponentials being common to all theories. In table 2.3 we present the values of

U(r)/Geff γ

ms = mg = +∞ −M/r 1

ms = +∞, |mgr| � 1 +M/(3r) −1

ms = 0, mg = +∞ −4M/(3r) 1/2

m ≡ mg = ms −M(1− e−mr)/r 1

Table 2.3: Newton’s potential and γ(r) for various values of the masses of the extra modes.

U(r) and γ for different limiting values of ms and mg. Naturally, when mg,ms � 1 one
is left with the Einsteinian values of the Newton potential and γ, and the same happens if
we go sufficiently far away fromM for arbitrary values of the extra mode masses. It is also
interesting that the only cases for which the potential is divergent as r → 0 are those for
which at least one of the extra modes is absent, i.e., when either ms = +∞, or mg = +∞
or both mg = ms = +∞.

Indeed, U(r) does not diverge as r → 0 in the general case. In fact, one finds

U(r) = −GeffM

[
(4mg −ms)

3
−

(4m2
g −m2

s)r

6
+O(r2)

]
, (2.133)

which is a negative constant at r = 0 when mg > ms/4 (and viceversa). The potential
grows linearly with r at first order for mg > ms/2 and in that case it is monotonous in the
whole range of r. When mg < ms/2 instead, U(r) decreases linearly near r = 0 and it has
a minimum at some intermediate value of r. Plots of U(r)/Geff for various values of the
masses satisfying the different situations can be found in Fig. 5.1.

Higher dimensions

The analysis of the previous section can be extended to general dimensions D ≥ 4. The
metric perturbation in the Newtonian gauge can be seen to be given by

hNµν = 4Geff

[
Hµν(0)−Hµν(mg)

+
ηµν

(D − 1)(D − 2)
(−(D − 1)H(0) + (D − 2)H(mg) +H(ms))

]
, (2.134)

where again Hµν(m) is a solution of (2.116). In the static case, we can write the solution
explicitly as

Hµν(~x;m) = 2
(m

2π

)D−3
2

∫
dD−1~x′

Tµν(~x′)

|~x− ~x′|
D−3

2

KD−3
2

(m|~x− ~x′|) , (2.135)

16See e.g., [302,303] for results corresponding to higher-order gravities involving covariant derivatives of
the Riemann tensor.
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Figure 2.1: U(r)/(GeffM) for mg = 2 and ms = 16, 8, 2, 1 (purple curves), and ms = 4 (red) and
the usual Newton potential (dashed gray).

where K`(x) is the modified Bessel function of the second kind. Now, specializing to a
static point-like particle of mass M , we can obtain the D-dimensional version of (2.129).
The Newtonian potential and the gamma parameter read, respectively,

UD(r) = −µ(D)
GeffM

rD−3

1 + ν(D)r
D−3

2

−mD−3
2

g KD−3
2

(mgr) +
m

D−3
2

s

(D − 2)2
KD−3

2
(msr)

 ,
γD(r) =

1− 2
(D−1)Γ(D−3

2
)

[
(D − 2)

(mgr
2

)D−3
2 KD−3

2
(mgr) +

(
msr

2

)D−3
2 KD−3

2
(msr)

]
D − 3− 2

(D−1)Γ(D−3
2

)

[
(D − 2)2

(mgr
2

)D−3
2 KD−3

2
(mgr)−

(
msr

2

)D−3
2 KD−3

2
(msr)

] ,
(2.136)

with

µ(D) ≡ 8π

(D − 2)ΩD−2
, and ν(D) ≡ (D − 2)2

Γ
[
D+1

2

]
2
D−1

2

, (2.137)

and where ΩD−2 ≡ 2π
D−1

2 /Γ[D−1
2 ] is the volume of the (D − 2)-dimensional unit sphere.

When 2` is odd, i.e., for even D, the Bessel functions K`(x) can be written explicitly in
terms of elementary functions as

KD−3
2

(x) = e−x
√

π

2x

D−2
2∑
j=1

(D − 3− j)!
(j − 1)!(D−2

2 − j)!(2x)
D−2

2
−j
, (even D) (2.138)

which allows for a simplification of (2.136) in those cases, and from which it is easy to
reproduce the D = 4 results (2.132) presented in the previous section. From (2.136) we
infer that the usual four-dimensional Yukawa potential for a force-mediating particle of
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mass m generalizes to higher dimensions as

UD,Yukawa(r) ∼
(m
r

)D−3
2
KD−3

2
(mr) . (2.139)

Going back to higher-order gravities, observe that close to the origin, the generalized
Newton potential UD(r) behaves for D > 5 as

UD(r → 0) ∼ −
GeffM

[
(D − 2)2m2

g −m2
s

]
rD−5

+ . . . , (2.140)

up to a positive dimension-dependent constant for generic values of mg and ms. For D = 4
we find a constant term (2.133), while for D = 5 one finds a logarithmic divergence instead

U5(r → 0) =
GeffM

12π
(9m2

g −m2
s) log r +O(r0) . (2.141)

This means that for generic values of the extra mode masses, UD(r) is divergent at r = 0 in
all dimensions higher than four. In Fig. 5.2 we plot U5(r), which can be explicitly written
as

U5(r) = −GeffM

6πr2
[8− 9mgrK1(mgr) +msrK1(msr)] . (2.142)

As expected, most curves in Fig. 5.2 diverge at the origin. There is an exception (and
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Figure 2.2: U(r)/(GeffM) in D = 5 for mg = 2 and ms = 1, 3, 5, 7, 9 (purple curves), and ms = 6
(red) and the usual Newton potential in five dimensions (dashed gray).

only one) though, which corresponds to the case mg = ms/3, for which the potential is
finite everywhere. The value mg = ms

(D−2) is special in general dimensions, as it determines
the transition between two kinds of potentials. In particular, when mg >

ms
(D−2) , UD(r) is

monotonous in the whole range of r and diverges to −∞ at the origin, while formg <
ms

(D−2)

it has a minimum at some finite value of r and UD(r → 0)→ +∞ instead — see Fig. 5.2
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for an illustration of these features in the five-dimensional case. For the particular value
mg = ms

(D−2) , the potential is also finite at the origin for D = 6, but not for D ≥ 7.

In table 2.4 we present some particular cases for UD(r) and γD17 corresponding to
different limiting values of mg and ms. Once again, when mg,ms � 1, one is left with the

UD(r)/(µ(D)GeffM) γD
mg = ms = +∞ −1/rD−3 1/(D − 3)

ms = +∞, |mgr| � 1 +1/
[
(D − 3)(D − 1)rD−3

]
−1

ms = 0, mg = +∞ −(D − 2)2/
[
(D − 3)(D − 1)rD−3

]
1/(D − 2)

m ≡ mg = ms −
[
1− (D−3)ΩD−2

(2π)(D−1)/2 (mr)
D−3

2 KD−3
2

(mr)
]
/rD−3 1/(D − 3)

Table 2.4: Newton’s potential and γ(r) in higher dimensions D ≥ 4 for various values of
the masses of the extra modes.

Einsteinian values of the corresponding Newton potentials and γD, and the same happens
at sufficiently large distances fromM for general values of the extra mode masses. Just like
in four dimensions, when the masses of the extra modes are equal, ms = mg, the gamma
parameter coincides with that of Einstein gravity, γD = 1/(D − 3). Note also that when
one of the modes is absent, the divergence of UD(r) at r = 0 becomes stronger than in the
generic case (2.140) — namely, of order 1/rD−3 instead of 1/rD−5.

2.5.2 Gravitational waves

In this section we study some aspects of gravitational waves in L(Riemann) theories in
flat space. We first obtain plane-wave solutions of the linearized equations in arbitrary
dimensions and we determine the number of polarizations of each mode. Then, focusing
on four dimensions, we compute the gravitational wave radiation from sources in the far-
field and non-relativistic approximations.

Polarization of gravitational waves

In the de Donder gauge (2.55), the relevant components of the metric perturbation decom-
posed as in (2.59) satisfy equations (2.56), (2.60) and (2.61). In the vacuum, these reduce
to

2̄ĥµν = 0 , (2̄−m2
g)tµν = 0 , (2̄−m2

s)φ = 0 . (2.144)

Using the tracelessness of tµν , the gauge condition (2.55) and equations (2.144) along with
(2.59), one can show that ∂µtµν = 0. The gauge redundancy has not been completely
exploited, as we still have the freedom to make gauge transformations hµν → hµν +2∂(µξν)

where ξµ satisfies 2̄ξµ = 0. Let us first note that the transformation rule for the “massless

17We use the following two limits of the modified Bessel functions:

lim
x→∞

x`K`(x) = 0 , and lim
x→0

x`K`(x) = 2`−1Γ(`) . (2.143)
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graviton” ĥµν can be derived from (2.57), and it reads

ĥµν → ĥµν + 2∂(µξν) − ηµν∂αξα +
D − 2

2(D − 1)

(
m−2
g −m−2

s

)
∂µ∂ν∂αξ

α (2.145)

Then, since both ĥµν and the vector ξµ are harmonic, we can use the latter to impose
D additional conditions on the former. In particular, we can set ĥ = 0 and ĥti = 0, 18

which is called the traceless-transverse gauge (TT ). Observe that we cannot impose similar
conditions on tµν because, being massive, it is not harmonic. Hence, no degrees of freedom
in tµν can be removed with such a gauge transformation and, as a consequence, the massive
particles conserve all their polarizations.

Let us now look for plane-wave solutions of frequency ω,

ĥTTµν = Aµνe
−ikµxµ , tµν = Bµνe

−ipµxµ , φ = Ce−iqµx
µ
, (2.146)

where kµ = (ω, ki), pµ = (ω, pi), qµ = (ω, qi), and Aµµ, Bµν and C are constant. Equations
(2.144) produce the following dispersion relations

k2 = ω2 , p2 = ω2 −m2
g , q2 = ω2 −m2

s , (2.147)

where k2 = kik
i, etc. Note that, in order for the massive modes to propagate, the frequency

must be greater than the corresponding mass, i.e., ω2 > m2
g and ω2 > m2

s respectively.
Otherwise, the wave will be damped. Now, since we are working in the TT gauge, the
polarization tensor Aµν satisfies the following constraints

Atµ = 0 , kiAij = 0 , Aii = 0 . (2.148)

These conditions leave us only with components transverse to the time direction and trans-
verse to k, with the additional requirement of tracelessness. Hence, the number of polar-
izations corresponds to the number of linearly independent (D − 2)× (D − 2) symmetric,
traceless matrices; this is, (D − 2)(D − 1)/2 − 1 = D(D − 3)/2 polarization modes. In
D = 4 these are the two “+” and “×” polarizations. On the other hand, the polarization
tensor Bµν of the massive graviton only satisfies the constraints

pµBµν = 0 , ηµνBµν = 0 . (2.149)

These imply that the time components are then given by

Btt = Bi
i , Bti =

pj
ω
Bij . (2.150)

and the spatial part of the polarization tensor, Bij , only has to satisfy one constraint,

pipjBij = ω2Bi
i . (2.151)

Thus, there are (D − 2)(D + 1)/2 polarization modes, which include the D(D − 3)/2
transverse polarizations of the massless graviton plus D − 1 non-transverse ones. In four
dimensions, this reduces to 5 polarizations, which is the correct number for a massive spin-2

18Here i = 1, 2, . . . D − 1 are the spatial indices and the Minkowski metric is (ηµν) = diag(−1, 1, . . . , 1).
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particle.
Finally, we can see in (2.59) that we can remove the term ∂µ∂νφ by means of another

gauge transformation, so that we can write the full metric perturbation for plane waves as

hTTµν = Aµνe
−ikµxµ +Bµνe

−ipµxµ +
C

D(D − 1)
ηµνe

−iqµxµ . (2.152)

Since the polarization tensor associated to the scalar mode is pure trace, it is linearly
independent from Aµν and Bµν .

In sum, gravitational waves in higher-order gravity can propagate up to six different
polarizations in four dimensions — one for the scalar and five for the massive and massless
gravitons — and up to D(D − 1)/2 polarizations in arbitrary dimension D. However, it
is important to note that the massive modes do not propagate at lower frequencies, so the
accesible polarizations depend on the frequency.

Gravitational radiation from sources

Let us now consider a source Tµν(t, ~x) concentrated in a region whose diameter is much
smaller than the distance r to the observer and which moves at a non-relativistic charac-
teristic speed. Under such approximations

|~x− ~x′| ≈ r ,
∣∣∣∣d~xdt

∣∣∣∣� 1 , (2.153)

where ~x′ represents the observer’s position, the solutions in (2.117) can be further simpli-
fied. In particular, for the massless graviton ĥµν one finds

ĥµν =
4Geff

r

∫
d3~x′Tµν(t− r, ~x′) . (2.154)

Our interest here is in the radiative contributions of the solutions, i.e., the ones that change
with time. For gravitational waves, the time components ĥµ0 are determined by the purely
space-like ones, so we only need to compute those. The spatial components are radiative
in general, and the leading contribution is given by the well-known quadrupole formula∫

d3~x′Tij(t− r, ~x′) =
1

2
q̈ij(t− r) , (2.155)

where qij is the quadrupole moment of the source

qij(t− r) =

∫
d3~xxixjρ(t− r, ~x) , (2.156)

ρ is the energy density and each dot denotes a time derivative. Therefore, the radiative
part of ĥµν is given by

ĥij =
2Geff

r
q̈ij(t− r) . (2.157)
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Obviously, in the case of Einstein gravity — or for Einstein-like theories — this is the end
of the story. However, in general L(Riemann) theories, we also have to take into account
the additional modes. For the scalar φ one finds

φ =
4Geff

r

∫
d3~x′T (t−r, ~x′)−4Geffms

∫ ∞
r

dt′
J1(ms

√
t′2 − r2)√

t′2 − r2

∫
d3~x′T (t−t′, ~x′) , (2.158)

where J1(x) is a Bessel function of the first kind. The integration of the trace yields∫
d3~x′T (t−r, ~x′) =

∫
d3~x′

(
−T00(t− r, ~x′) + Tii(t− r, ~x′)

)
= −M0−E(t−r)+

1

2
q̈ii(t−r) ,
(2.159)

where M0 is the rest mass and E is the kinetic energy of the source. Since the rest mass
is constant, it does not source any radiation, and the radiative part of the field is

φ =
4Geff

r

(
1

2
q̈ii(t− r)− E(t− r)

)
− 4Geffms

∫ ∞
r

dt′
J1(ms

√
t′2 − r2)√

t′2 − r2

(
1

2
q̈ii(t− r)− E(t− r)

)
.

(2.160)

However, it is important to note that this field does not always radiate. Indeed, if one
considers the source to be a set of non-relativistic gravitationally interacting bodies or a
pressure-less perfect fluid (dust) then one gets 1

2 q̈ii−E = constant.19 Thus, in situations of
interest for gravitational wave emission, such as binary systems, there is no scalar radiation
— at least when the system can be described in the Newtonian approximation.

Finally, we have to determine the radiative part of tµν . From (2.117) we can express
this field as

tµν = −H〈µν〉 −
1

3m2
g

∂〈µ∂ν〉H , (2.161)

where Hµν satisfies

(2̄−m2
g)Hµν = −4πTµν . (2.162)

Thus, the purely spacelike components of Hµν for far sources are given by

Hij = −2Geff

r
q̈ij(t− r) + 2Geffmg

∫ ∞
r

dt′
J1(mg

√
t′2 − r2)√

t′2 − r2
q̈ij(t− t′) . (2.163)

Moreover, in the vacuum we get 0 = ∂µt
µν = ∂µH

µν , so this allows us to characterize all
the components of Hµν and tµν20.

19The energy-momentum tensor of a pressure-less fluid has the form Tµν = ρuµuν , where ρ is the energy
density and uµ is the 4-velocity field, satisfying uµuµ = −1. Therefore T = −ρ and its integral yields
the rest mass of the system. The same argument works for a set of point-like particles. Also, an explicit
computation in that case shows that, in the Newtonian approximation, 1

2
q̈ii −E = E + V , where V is the

gravitational potential energy of the system, and the previous quantity is a constant of motion.
20For example, for a plane wave solution we have pµHµν = 0, so we obtain the time-like components in

terms of the purely space-like ones: H0i = pjHij/ω, H00 = pipjHij/ω
2. In the general case, the relations

that we obtain are not algebraic but differential.
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Note that the perturbation at a distance r depends on the radiation emitted at all
times previous to t − r and not only on the radiation emitted at the time t − r. This is
related to the fact that the massive graviton and the scalar do not propagate at the speed
of light. Indeed, according to the dispersion relation ω =

√
m2
g,s + k2, a wave packet with

a central frequency ω will travel at a velocity

vg,s =

√
1−

m2
g,s

ω2
. (2.164)

By using (2.59), (2.161) and the solutions for ĥij , φ and Hij that we have just found,
the full metric perturbation can be computed. Assuming that there is no scalar radiation
— as we argued, this is the natural case — the metric perturbation can be written as21

hij = 2Geff

∫ ∞
0

dτ
J1(τ)√

r2 + τ2/m2
g

q̈ij

(
t−

√
r2 + τ2/m2

g

)
, (2.165)

where we performed a change of variables in the integration in (2.5.2). Using this expres-
sion, it is easy to see that when mg → ∞ we recover the prediction of Einstein gravity
hij = 2Geff

r q̈ij(t− r). However, the behaviour is quite different depending on the frequency
of the source. In order to see this, let us consider a harmonic source, whose quadrupole
moment takes the form qij(t) = aije

−iωt + cij , where aij is the polarization tensor and cij
is some possible constant term. For this kind of time-dependence, the integral above can
be computed and the metric perturbation takes the following form

hij = −2Geffω
2

r
aije

−iω(t−r)
(

1− ei(
√
ω2−m2

g−ω)r
)
. (2.166)

Thus, there are two regimes. When ω2 < m2
g the contribution of the massive graviton is

exponentially damped and only the massless graviton propagates at long distances. When
ω2 ≥ m2

g, the massive graviton starts propagating and its contribution has the same weight
as the massless graviton but with a difference phase, due to the different dispersion relation.
As a consequence, the wave is modulated by a factor of modulus |A(r)|2 = 4 sin2(πr/λ),
where the wavelength of the modulation λ is

λ =
2π

m2
g

(
ω +

√
ω2 −m2

g

)
. (2.167)

Thus, when the massive graviton radiates, the profile of the wave is significantly different
from the GR prediction.

2.6 Discussion

In this chapter we have studied the linearized equations of general L(Riemann) theories on
constant curvature backgrounds. We found that these theories contain additional degrees of
freedom — including a massive ghost graviton — but one of the most important results was

21We are taking into account in Eq. (2.59) that the traces H and ĥ are not radiative.
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the characterization of a special set of theories whose linearized equations are of second
order and that only propagate a massless graviton. These were named “Einstein-like”
theories, while Lagrangians satisfying this condition on arbitrary dimensions were called
“Einsteinian”. The full non-linear equations of some of these theories are actually of second-
order — this is the case for Lovelock gravity. However, most of them have fourth-order
equations that somehow reduce to second order at linear level, and we should investigate if
possible pathologies appear at non-linear level. We argue here that Einstein-like theories
could actually evade some of these problems.

It is well-known that non-degenerate higher-derivative Lagrangians (containing two
or more derivatives of the fields) give rise to the Ostrogradsky instability [31, 32]. The
result proven by Ostrogradsky states that for this type of Lagrangians the Hamiltonian
is unbounded from below, which is the origin of a potentially disastrous instability. At
the linear level in higher-order gravity, this instability is manifest in the presence of the
ghost-like massive graviton, which propagates negative energy. In Einstein-like theories
this mode is not present at the linear level, and consequently the linear theory is free from
the Ostrogradsky instability; but if the fully-non linear equations are of higher-order in
derivatives, then this instability must appear at a certain point. However, we may argue
that the possible instability will not be dangerous for Einstein-like theories providing that
we consider spacetimes that tend asymptotically to the maximally symmetric vacuum.
For instance, let us consider some Einstein-like theory whose vacuum is AdS. The linear
perturbations on AdS are of second order and there is no instability. But now we could
consider any other solution of the equations that is not pure AdS, but asymptotically AdS,
e.g., a spacetime containing a black hole. Then we could study the linear perturbations
on that solution and, since the full equations of motion are of fourth-order, we expect
that there are additional degrees of freedom besides the massless graviton. Some of these
modes would carry negative energy in agreement with Ostrogradsky’s theorem. However, in
Einstein-like theories these modes cannot escape to infinity because they become infinitely
heavy as they approach the asymptotically AdS region. Thus, the negative energy modes
are confined in a finite region inside the bulk. The fact that there cannot be negative
energy fluxes to infinity prevents possible instabilities, or at least some of them. Thus,
as long as we consider configurations with the appropriate boundary conditions, part of
the possible instabilities are avoided. Of course, this is just a qualitative argument and in
order to understand possible dynamical pathologies of these theories it would be necessary
to study perturbation theory in backgrounds other than constant curvature solutions, or
even to perform a Hamiltonian analysis of these theories.

There is another issue related to the previous discussion. Intuitively, the Einstein-
like condition is imposed by demanding that the additional modes are infinitely heavy on
the vacuum, so that they are infinitely suppressed. In practice, this means that we tune
the parameters of the theory so that the coefficients of the higher-derivative kinetic terms
vanish at leading order in the perturbative expansion. It is a common lore that this type
of situations appears when the vacuum has too many symmetries and gives rise to a strong
coupling problem — see e.g. [304]. However, we do not observe this type of behaviour.
Indeed, let us assume that we take the masses of the additional modes m2

g, m2
s to be

arbitrarily large (and positive) but not infinite. Then, we can already see these modes
at the linear level and the higher-derivative kinetic terms are in fact multiplied by a very
small coefficient. However, the modes are not strongly coupled as we can see for example in
(2.53). Indeed, the coupling constant between these modes and matter is always κeff , which
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is independent from m2
g and m2

s. Even so, a more careful analysis would be convenient in
order to determine whether these theories suffer from some strong coupling problem.

Let us finish by mentioning that higher-derivative gravities of the Einstein-like type
find many interesting applications in the AdS/CFT correspondence [119,121–124,131]. In
the cases studied so far, these theories provide finite and consistent answers, even when
the computations are beyond the linear regime — see e.g. [131]. This indicates that these
theories could be well-behaved after all.
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3
Single-function spherically symmetric solutions

In the previous chapter we studied the weak-field limit of a broad class of higher-order
gravities, and we even obtained some solutions of the linearized equations. However, we
have not studied anything yet about exact solutions of these theories, besides constant cur-
vature spaces. In this chapter we analyze the field equations of general higher-derivative
gravity theories for spherically symmetric and static (SSS) spacetimes. We will focus on a
seemingly anecdotic property of Einstein gravity SSS solutions: in Schwarzschild coordi-
nates the metric satisfies gttgrr = −1 (see (3.3) below). We will usually say that the metrics
satisfying this property are characterized by a “single function”. This property is satisfied
in any dimension and also holds, for instance, for charged black holes in Einstein-Maxwell
theory. In the case of higher-derivative gravity, this property does not hold in general, i.e.,
typically the solutions have gttgrr 6= const. However, almost all exact black hole solutions
in higher-derivative gravity that are known so far satisfy this property. This is for instance
the case of black holes in Lovelock gravity [44,54,114–117] and in Quasi-topological grav-
ity [129,130,132,133]. Remarkably, all of these theories also happen to belong to the class
of Einstein-like theories defined in the previous chapter, i.e., their linearized equations on
maximally symmetric vacua are of second order. This makes us think that there could be
something special about the condition gttgrr = −1 and, consequently, in this chapter we
study in full generality the properties of the theories that satisfy it.

We first show that there is indeed a connection between possessing single-function
solutions and having second-order linearized equations, but the key point consists in assum-
ing that those solutions represent the exterior gravitational field of a spherically symmetric
body.1 Then, we provide a sufficient and necessary condition for characterizing all theories
of this type and we show that their field equations are dramatically simplified with respect
to the general case, as they allow for a partial integration. We will see in the next chapters
that this partial integrability is enough to determine the black hole thermodynamics in an
exact way, which is one of the most appealing properties of these theories. We will check
that the aforementioned Lovelock and Quasi-topological theories belong to this class and
we will find more examples. In particular, we will show that Einsteinian cubic gravity,
introduced in the previous chapter (see Sec. 2.4), is a new member of this class of theories
in D = 4 — the first theory of this type identified in four dimensions. We will also review
the results of [278] where all the cubic theories of this type were constructed in any dimen-
sion. The whole family of theories has been given the name of Generalized quasi-topological
gravity (GQG) and now we know that they exist in any dimension [278, 280] and at any

1For instance, the Schwarzschild solution is a vacuum solution of Einstein’s equations, but it is also the
exterior solution of any spherically symmetric gravitating body. However, an analogous situation is not
true for all theories.
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order in curvature [273]. Due to their appealing properties, they will provide us with a
rich playground to probe higher-curvature effects on black holes and in holography in the
next chapters.

3.1 Generalizations of Schwarzschild’s solution

Unless otherwise stated, in this chapter we will consider general higher-derivative theories
of the form

S =

∫
dDx

√
|g| L(gµν , Rµνρσ,∇αRµνρσ, . . .) . (3.1)

Throughout the chapter we will be mostly interested in extensions of Einstein gravity,
i.e., we will assume that the above action reduces to the Einstein-Hilbert one when the
curvature is small. In that case, the above Lagrangian can be written in the form

L(gµν , Rµνρσ,∇αRµνρσ, . . .) =
1

16πG
[−2Λ +R+ higher-derivative terms] , (3.2)

where the higher-derivative terms are assumed to be arbitrary linear combinations of mono-
mials of the Riemann tensor and its covariant derivatives. In particular, our interest will be
on static and spherically symmetric solutions of the previous theories. In the case of Ein-
stein gravity, those solutions are given by the well-known Schwarzschild-Tangherlini-(A)dS
metric, that has the form2

ds2
f = −f(r)dt2 +

dr2

f(r)
+ r2dΩ2

(D−2) . (3.3)

with

f(r) = 1− 16πGM

(D − 2)Ω(D−2)rD−3
− 2Λr2

(D − 1)(D − 2)
, where Ω(D−2) =

2π
D−1

2

Γ[D−1
2 ]

(3.4)

is the area of the (D − 2)-dimensional unit sphere and M is the ADM mass [98–100].
Usually, the introduction of higher-derivative interactions in the action will modify

this solution, but we are interested in modifications that preserve the form of the metric
(3.3). This is, the corrections will appear through the function f(r) — that will not be
given by (3.4) anymore — but the metric will still satisfy gttgrr = −1.3 In this sense, this
type of solutions can be called Schwarzschild-like, because they conserve this property of
Schwarzschild solution. Our discussion will be focused on the spherically symmetric case,
but our results are equally applicable when we replace the metric of the sphere dΩ2

(D−2) in
(3.3) by any other constant curvature metric, as in the case of planar or hyperbolic black
holes.

On general grounds, finding static and spherically symmetric black hole solutions
for D-dimensional theories of the form (3.2) is a challenging task. In particular, if the

2We will sometimes refer to (3.3) with (3.4) as ‘Schwarzschild-(A)dS’ solution, by which we will be
referring to the three possible asymptotic behaviors: Anti-de Sitter (Λ < 0), de Sitter (Λ > 0) or flat
(Λ = 0).

3Metrics of this form have Ricci tensors with vanishing radial null-null components, see e.g., [305,306].
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Lagrangian contains up to n derivatives of the Riemann tensor, the equations of motion
generally involve 2n+ 4 derivatives of the metric which, in the case of a general static and
spherically symmetric ansatz — see (3.5) below— usually translate into a system of coupled
differential equations of such order — see e.g., [210,211]. As a matter of fact, some simple
analytic solutions of the form (3.3), i.e., characterized by the condition gttgrr = −1, have
been in fact constructed for certain higher-derivative theories. However, these solutions
fall, very often, within one of the following three categories:

i) They are the “same” solution as in Einstein gravity, i.e., they correspond to embed-
dings of Einstein gravity solutions in some higher-derivative theory. This is what
happens, for instance, in f(R) gravity [212]. More generally, the Lagrangians that
only contain Ricci curvature always allows for Einstein metrics as solutions, and they
do not introduce corrections to vacuum Einstein gravity solutions — see e.g., [213].

ii) They are solutions to pure higher-derivative gravities, so that the action does not
include the Einstein-Hilbert term — and hence they lack an Einstein gravity limit.
For instance, pure Weyl-squared gravity, L = αCµνρσC

µνρσ, in D = 4 allows for
solutions of the form (3.3) that are different from Schwarzschild-(A)dS [203, 204],
while L = −2Λ +R+ αCµνρσC

µνρσ does not [307]. Examples of this kind involving
Weyl-cubed terms in D = 6 can be found e.g., in [207,208]. Similar comments apply
to pure Lovelock gravity solutions, like those constructed e.g., in [205,206].

iii) They involve the fine-tuning of some of the higher-derivative couplings — and hence,
again, they lack an Einstein gravity limit. A simple example corresponds to perfect-
square (or other powers greater than 2) actions, such as L = −(R−4Λ)2/(8Λ), which
of course admits as solution any metric satisfying R = 4Λ. Examples belonging to
this class have been constructed, e.g., in [94, 209].

We will not consider cases ii) and iii) because of their lack of Einstein gravity limit. With
regards to case i), while perfectly valid, it is not interesting to us, because our aim is
precisely to study non-trivial modifications of black hole solutions. In addition, we will
show that the solutions in the case i) are in some sense “unnatural”, since, although they
are vacuum solutions they cannot correspond to the exterior gravitational field of generic
spherically symmetric distributions of mass — see next subsection and section 3.2.1 for
details.

On the bright side, genuine (analytic or semianalytic) single-function extensions
of (3.4) have been constructed in D ≥ 5 for Lovelock gravities [44, 54, 114–117], Quasi-
topological gravity [129, 130] and its quartic [132] and quintic [133] generalizations. The
D = 4 case turns out to be a considerably harder nut to crack, given that all the Lovelock
and Quasi-topological densities (except for the Einstein-Hilbert term) are either topological
or trivial in that case. The main goal of this chapter is to identify and characterize some of
the properties which make all these theories special as well as to provide explanations for
some previously conjectured relations. As a result, we will be able to identify new theories
of this kind, that will include Einsteinian cubic gravity in four dimensions — a theory that
we presented in chapter 2 — as well as the recently proposed Generalized quasi-topological
gravity [278,280].4 Let us now state the main results of this chapter.

4Chronologically, the discovery of black hole solutions in Einsteinian cubic gravity [45, 271,279] and in
Generalized quasi-topological gravity [278] happened before we learned about the general results presented
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3.1.1 Main results

Most of the material presented in sections 3.2 and 3.3 can be encapsulated in two main
“theorems” and a corollary (which we prove) and two conjectures (in favor of which we
provide strong evidence). In order to formulate them, let us start with some definitions.
First, let us note that the most general static and spherically symmetric ansatz can be
written as

ds2
N,f = −N2(r)f(r)dt2 +

dr2

f(r)
+ r2dΩ2

(D−2) , (3.5)

where we need two independent functions N(r) and f(r). Then, let LN,f be the effective
Lagrangian resulting from the evaluation of

√
|g|L in (3.5), this is

LN,f (r, f(r), N(r), f ′(r), N ′(r), . . .) ≡ N(r)rD−2L
∣∣
gµν=gN,fµν

. (3.6)

Analogously, we will denote by Lf the expression resulting from setting N = 1 in LN,f ,
which of course corresponds to the effective Lagrangian for f(r) resulting from the evalu-
ation of

√
|g|L in the single-function ansatz (3.3). With these definitions at hand, we are

ready to enumerate our results:

Theorem 1 Let us consider a higher-derivative gravity of the form L(gµν , Rµνρσ). If the
exterior gravitational field of a spherically symmetric mass distribution is given by a metric
of the form (3.3), i.e., characterized by a single function, then the theory only propagates
a traceless and massless graviton on the vacuum.5

Theorem 2 Let us consider a higher-derivative gravity Lagrangian L(gµν , Rµνρσ,∇αRµνρσ, . . .)
of the form (3.2) involving terms with up to n covariant derivatives of the Riemann tensor.
If the Euler-Lagrange equation of Lf vanishes identically, i.e., if

δLf
δf
≡
∂Lf
∂f
− d

dr

∂Lf
∂f ′

+
d2

dr2

∂Lf
∂f ′′

− . . . = 0 ∀ f(r) , (3.7)

then:

1. The theory allows for vacuum solutions of the form (3.3), where the equation of f(r)
can be integrated once, yielding a differential equation of order ≤ 2n + 2 and where
the integration constant is the ADM mass.

2. At least in the L(gµν , Rµνρσ) case, the theory only propagates a traceless and massless
graviton on the vacuum.

Corollary 1 For all theories fulfilling the hypothesis of Theorem 2, the exterior gravita-
tional field of a spherically symmetric matter distribution is again given by a metric of the
form (3.3), where f(r) satisfies the same differential equation as in the vacuum.

in this chapter [272]. The presentation in this thesis follows instead the “logical” order: we first obtain the
general result and we use it afterwards to construct the new theories.

5Following the conventions of chapter 2, here the vacuum is a maximally symmetric solution of the
equations of motion. If the theory possesses several vacua, this result holds for all of them.
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Conjecture 1 For all theories fulfilling the hypothesis of Theorem 2:

1. For a fixed mass M , there is at most a discrete number of black hole solutions of
the form (3.3), each one characterized by different thermodynamic relations T (M),
S(M). If there are several black holes, only one of them is a smooth deformation of
the Schwarzschild solution.

2. The thermodynamic properties of these black holes can be determined analytically by
solving a system of algebraic equations without free parameters.

Conjecture 2 Given a L(gµν , Rµνρσ) theory fulfilling the hypothesis of Theorem 2, if LN,f
can be written as

LN,f = NLf +N ′F1 +N ′′F2 , (3.8)

where F1,2 are functions of f(r) and its derivatives, then the equation determining f(r) is
algebraic.

Some comments are in order.

• Theorem 1, which we prove in section 3.2, explains the previously noticed [45, 106,
129,133,271,278,279] (but so far unexplained) fact that certain higher-order gravities
admitting simple black hole solutions of the form (3.3) have the interesting property
of sharing the linearized spectrum of Einstein gravity. Strictly speaking, the hypoth-
esis of this result is that the theory has solutions of the form (3.3) describing the
exterior field of spherically symmetric mass distributions, so it does not say anything
about black holes yet. However, if the theory has solutions of the form (3.3) outside
a spherically symmetric mass distribution, it is clear that there are also vacuum solu-
tions of that form. The converse is not true. The apparent contradiction of Theorem
1 with the fact that certain theories which propagate extra modes at the linearized
level do admit vacuum solutions of the form (3.3) is not such. The reason is that,
in those cases, the vacuum solutions cannot correspond to the exterior gravitational
field of generic spherical distributions, which makes them somewhat “unnatural”. We
illustrate this very explicitly for the well-known Schwarzschild-(A)dS solution in f(R)
gravity in section 3.2.1.

• The main result of this chapter is Theorem 2, which we prove in Section 3.3. It
yields a sufficient condition for a theory to possess solutions of the form (3.3) and
shows additionally that such theories have an Einstein-like spectrum. The hypothesis
of Theorem 2 defines a broad family of theories, and, following the nomenclature
of [278], we will say that they belong to the Generalized quasi-topological gravity
(GQG) class. Interestingly, the proof of the first item of Theorem 2, provides a very
efficient method for identifying these theories as well as for obtaining the differential
equation determining the metric function f(r) in each case. We present this method
in the form of a simple recipe in Section 3.4.1, and afterwards we construct several
examples of theories of this class.

• Note that, strictly speaking, there is no connection between the theories of Theorems
1 and 2, since they satisfy slightly different properties. Intuitively, however, one
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would expect that the theories of both theorems are the same. In Corollary 1, we
establish the equivalence in one direction by showing that the theories that satisfy
the hypothesis of Theorem 2 allow for exterior solutions of the form (3.3), hence they
correspond to theories of Theorem 1.

• Note that the reason for considering the subclass of theories L(gµν , Rµνρσ) (which do
not include terms involving covariant derivatives of the Riemann tensor), in Theorem
1 and in item 2 of Theorem 2 is that the spectrum and Newtonian limit of these
theories has been exhaustively classified (see Chapter 2), which we use to prove our
results. We are not aware of an analogous general classification in the general higher-
derivative case. However, in light of some related recent works [302,303], we strongly
believe those results apply in the general case as well.

• Observe that Theorem 2 does not really make reference to whether the solutions
described by (3.3) in each case correspond, in particular, to black holes. However,
the great amount of evidence accumulated so far [44, 45, 54, 114–117, 129, 130, 132,
133, 271, 278, 279], along with the results that we will expose in the next chapters,
provide strong support for the validity of Conjecture 1.

• For a L(gµν , Rµνρσ) theory satisfying the hypothesis of Theorem 1, the order of the
differential equation determining f(r) is usually 2 — see e.g., [45,278,279]. However,
in some well-known cases [44, 54, 114–117, 129, 130, 132, 133], the equation is alge-
braic instead, which represents a considerable simplification. Conjecture 2, which we
motivate in sections 3.4.2 and 3.4.3, provides a straightforward guiding principle for
identifying such class of theories from a given larger set.

• Finally, note that, even though we focus on the spherically symmetric case, the solu-
tions which can be constructed using our method can be straightforwardly generalized
to the hyperbolic and flat transverse geometry cases.

3.2 gttgrr = −1 and absence of massive modes

It has been previously observed that certain higher-order gravities admitting simple black
hole solutions possess particularly simple linearized spectra. This was emphasized by
Myers and Robinson in [129], where they observed that Quasi-topological gravity [129,130]
satisfies the following two unusual properties: first, it admits black holes characterized by
a single function f(r), i.e., solutions of the form (3.3); and second, its linearized spectrum
coincides with the Einstein gravity one, namely, the only dynamical mode propagated by
the metric perturbation in a maximally symmetric spacetime is a transverse and traceless
graviton. These two, apparently unrelated, properties are also known to hold for general
Lovelock theories [34,35,44,54,94,114–117], for quartic [132] and quintic Quasi-topological
gravity [133]. Hence, it is natural to wonder how generally this connection between the
linearized regime and the genuinely non-linear one holds for general higher-order gravities.
As we will see, this relation also holds for Einsteinian cubic gravity in four dimensions [45,
271,279] and for the recently constructed Generalized quasi-topological gravity [278,280].

It is important to note that not all higher-order theories that share the linearized
spectrum of Einstein gravity admit single-function black hole solutions. Examples of such
theories include for instance certain f(Lovelock) theories [94,106,298]. Furthermore, there
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are theories which propagate extra modes at the linearized level and yet they posses (vac-
uum) solutions of the form (3.3). This is the case, e.g., of f(R) gravity [212]. Naturally,
these observations clearly show that the connection between both properties cannot be a
double implication.

In this section we will prove that, in fact, given a general L(gµν , Rµνρσ) theory,
if the exterior gravitational field of a spherically symmetric body is given by a metric
of the form (3.3), then the theory only propagates a massless graviton at the linearized
level. In other words, only theories sharing the linearized spectrum of Einstein gravity are
susceptible of admitting single-function solutions corresponding to the exterior field of a
spherically symmetric body. Note in addition that if a theory has solutions of that kind
in the presence of a spherically symmetric body, it will also have single-function vacuum
solutions. However, the converse is not true, as we illustrate in Sec. 3.2.1.

The idea behind the proof is that, if the exterior gravitational field of a spherically
symmetric body is given by a metric of the form (3.3), this must be true, in particular, in
the weak-field limit. Now, in the previous chapter we studied in full generality the linear
approximation of arbitrary L(gµν , Rµνρσ) theories. In particular, in Sec. 2.5.1 we showed
that the Newtonian metric of a spherically symmetric body in D dimensions is given by

ds2
N = −(1 + 2U(ρ))dt2 + (1− 2V (ρ))(dρ2 + ρ2dΩ2

(D−2)) , (3.9)

where U(ρ) is the generalized Newton potential and V (ρ) = γ(ρ)U(ρ) where γ(ρ) is one
of the so-called parametrized Post-Newtonian parameters. In four dimensions, and in the
point-like limit of the mass distribution, these functions are explicitly given by

U(ρ) = −GeffM

ρ

[
1− 4

3
e−mgρ +

1

3
e−msρ

]
, V (ρ) = −GeffM

ρ

[
1− 2

3
e−mgρ − 1

3
e−msρ

]
,

(3.10)
while the higher-dimensional generalizations of these expressions are written in (2.136).
For a general matter distribution, the difference would be the appearance of form factors
in front of the exponential terms, as in (2.130), but this detail is not important for our
discussion. In the previous expressions, mg and ms are, respectively, the masses of the
additional spin-2 and spin-0 modes propagated by the metric perturbation for a generic
L(gµν , Rµνρσ) theory. These can be easily computed for a given theory using the method
developed in chapter 2.

The Newtonian metric (3.9) is written in isotropic coordinates. In order to express
it in Schwarzschild coordinates, we perform the change of variable r2 = ρ2(1 − 2V (ρ)).
Keeping only terms linear in U and V , we obtain6

ds2
N = −(1 + 2U(r))dt2 + (1 + 2rV ′(r))dr2 + r2dΩ2

(D−2) . (3.11)

Now we make use of our hypothesis and assume that this is indeed the linearized limit of
a full non-linear solution of the form (3.3). This means that gttgrr = −1, which, when
applied to (3.11), imposes the following condition on U and V ,

U(r) + rV ′(r) = 0 . (3.12)

6Note that V (ρ) = V (r) +O(V 2) and the same is true for U .
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From the expressions in (3.10), it follows that this condition holds only when the expo-
nential terms are removed, and this is equivalent to m2

g = m2
s = +∞. In other words,

the single-function condition on the non-linear solution implies the absence of the massive
graviton and the scalar field at the linear level, so that the only mode that is propagated on
the vacuum is the massless graviton. The argument extends straightforwardly to general
dimensions using (2.136). Note also that the argument is independent of the presence of
form factors when the mass distribution is not point-like. Essentially, the condition (3.12)
is only satisfied by the term ∼ 1/r (in general dimension ∼ 1/rD−3) in the potentials U
and V . The exponential terms, associated to the presence of massive modes, never fulfill
(3.12), hence the massive modes must be absent.

This simple argument shows that if a higher-order gravity allows for a solution of the
form (3.3) representing the exterior field of a spherical body, the theory only propagates a
massless graviton on the vacuum. Thus, the theory would belong to the Einstein-like class
that we introduced in 2.2.

There is a last subtlety that we must overcome. Note that, strictly speaking, the
Newtonian metric (3.9) only applies in the asymptotically flat case. In that situation, only
terms up to quadratic order in curvature contribute to the masses mg and ms, so our
argument does not immediately go through beyond the quadratic level. In order to extend
it to terms of arbitrary order in curvature, we must generalize this argument to include
asymptotically (A)dS solutions, since in that case all terms do contribute to the masses
of the modes. For a background of curvature Λ, the Newtonian solution (3.9) with the
potentials (3.10) is also a good approximation as long as ρ << |Λ|−1/2. Then, we may
consider a matter distribution whose size is much smaller than |Λ|−1/2 and we might zoom
in the region near the distribution in which the expressions (3.10) apply. Hence, the same
analysis as in the flat case can be applied and the same conclusions are reached, namely,
m2
g = m2

s = +∞, where now the masses contain information about terms at every order in
curvature. Alternatively, one can compute explicitly the Newtonian potential in the (A)dS
case and repeat the analysis, but the conclusions remain unchanged.

As we have seen, the results in this section rely on the analysis performed in Chapter 2
for the Newtonian metric of a general L(gµν , Rµνρσ) theory. Hence, these do not include
the more general higher-derivative case L(gµν , Rµνρσ,∇αRµνρσ, . . .). However, in view
of some results available in the literature for the Newtonian potential in some of these
theories [302, 303], we are confident that Theorem 1 extends as well to that case. The
Newtonian metric in the general case seems to have the same structure as in (3.9), with
exponential terms including the masses of all the additional modes. Then, we would expect
that the condition gttgrr = −1 would only hold if all the masses are infinite, similarly to
what we found in our analysis. This suggests that the Theorem 1 would also hold in the
general higher-derivative case. A rigorous analysis would require a systematic classification
of the spectrum of these theories.

3.2.1 Counterexample: spherically symmetric solutions in f(R) gravity

Naively, the result found in the previous subsection seems to be incompatible with the fact
that certain theories which propagate extra modes at the linearized level do also admit
single-function black hole solutions of the form (3.3). This apparent contradiction is not
such. The reason is that, as we have stressed, our result holds only whenever (3.3) describes
the gravitational field of a spherical mass distribution.
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In order to illustrate this point, let us consider the case of f(R) gravity. It is well-
known that this theory allows for the Schwarzschild-(A)dS solution in the absence of matter
— e.g., [212]. Hence, it possesses black hole solutions characterized by a single function.
However, we also know that this theory propagates a scalar mode along with the massless
graviton on the vacuum. Hence, our result implies that, even though the Schwarzschild-
(A)dS metric is a vacuum solution of f(R) gravity, it does not describe the external field
of a generic spherically symmetric mass distribution for this theory. Let us verify this
statement explicitly. The f(R) field equations coupled to matter read

f ′(R)Rµν −
1

2
f(R)gµν + (gµν2−∇µ∇ν) f ′(R) = κTµν , (3.13)

where κ is proportional to Newton’s constant. Now, let us consider a static and spherically
symmetric configuration with an energy-momentum tensor Tµν such that Tµν(r) = 0 if
r > r0, for certain r0. Further, let us assume this situation to be compatible with an
exterior metric of constant scalar curvature, i.e., satisfying R = R̄, where the constant R̄
would be obtained from the algebraic equation 2R̄f ′(R̄)−Df(R̄) = 0. If that was the case,
(3.13) would imply Rµν ∝ gµν , and we would obtain Schwarzschild-(A)dS in the exterior
region.

However, we will show that no constant-R solution compatible with the above as-
sumptions can exist in the outside region. The trace of the field equations reads

(D − 1)2f ′(R) +Rf ′(R)− D

2
f(R) = κT . (3.14)

This can be thought of as an equation for R (or f ′(R)). Since we are considering a
spherically symmetric situation, we can assume R = R(r), which reduces (3.14) to an
ordinary second-order differential equation for R(r). A solution to this equation is then
determined by specifying the values of R and dR/dr at some r. Now, in the transition point
r0 we must demand continuity and differentiability (otherwise there is no solution). Taking
into account our assumptions for the exterior solution, this fixes the following boundary
conditions for the internal one:

R(r0) = R̄ ,
dR

dr
(r0) = 0 . (3.15)

The solution R(r) for r < r0 is then completely specified. However, let us now consider a
(D − 2)-sphere of radius rs > r0 and unit normal nµ at some time slice. Then, using the
spherical symmetry of the problem and Stokes’ theorem, it is straightforward to prove the
following equalities

Ω(D−2)r
D−2
s

df ′(R)

dr
(rs) =

∮
Srs

dD−2S nµ∇µf ′(R) =

∫
r<rs

dD−1x
√
|g|2f ′(R) . (3.16)

Finally, taking into account that f ′(R) is constant for r > r0 and using equation (3.14),
which holds in the r < r0 region, we get

Ω(D−2)r
D−2
s

df ′(R)

dr
(rs) =

1

D − 1

∫
r<r0

dD−1x
√
|g|
(
κT −Rf ′(R) +

D

2
f(R)

)
. (3.17)
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Now it is immediate to see that there is a problem here. Indeed, while the left-hand side
(lhs) is zero, the right-hand side (rhs) is non-vanishing in general. The reason is that
the interior solution is already completely specified by the boundary conditions (3.15) but
those conditions do not depend on the particular form of the matter distribution, while the
integral in the rhs does. Hence, that integral will be in general non-vanishing, which leads
to a contradiction when compared to the lhs. This implies that no constant-R solutions
can describe the gravitational field in the outer region of a spherically symmetric matter
distribution for general f(R) theories.7

Observe that in the Einstein gravity case, i.e., when f(R) = R−2Λ, the contradiction
in (3.17) disappears, as the rhs vanishes in that case by virtue of Einstein’s equation. This
is naturally related to the absence of terms involving covariant derivatives of f ′(R) — such
as 2f ′(R) — in the equations of motion, which are in fact ultimately responsible for the
appearance of the extra spin-0 mode in the linearized spectrum in the general f(R) case.

The reason why black hole metrics in f(R) do not coincide with the exterior field of
a spherically symmetric body is due to the existence of a scalar degree of freedom in these
theories, besides the massless graviton. In vacuum black hole solutions this mode is not
active and consequently the solution is given by the Schwarzschild metric. However, in the
moment we introduce some matter the scalar is excited, yielding a different solution. In
this way, the gravitational field of a black hole is qualitatively different from the one of a
mass distribution. One would need to explain in this theory how the scalar field associated
to a matter distribution disappears during the gravitational colapse.

3.3 Sufficient condition for single-function solutions

In the previous section we showed that only theories sharing the linearized spectrum of
Einstein gravity are susceptible of admitting single-function solutions of the form (3.3) —
providing that those solutions describe the exterior gravitational field of spherical distri-
butions of matter. In this section we prove Theorem 2, which provides in turn a sufficient
condition for identifying such theories. The proof of this result gives rise to a simple
method for constructing higher-derivative gravities satisfying the hypothesis of Theorem
2, as well as for obtaining the equation that determines f(r) in each case. Here we will
consider the general action (3.2), i.e., with respect to the previous section we also allow for
an arbitrary dependence on terms involving covariant derivatives of the Riemann tensor.
Then, as explained before, if the Lagrangian contains up to n derivatives of the Riemann
tensor, the field equations generally involve 2n+ 4 derivatives of the metric.

Proof of part 1

Let us first convince ourselves that the equations of motion for a static and spherically sym-
metric metric of the form (3.5) can be studied by considering the reduced action functional
S[N, f ], obtained by evaluating the action on that ansatz, i.e.,

S[N, f ] = Ω(D−2)

∫
dt

∫
drLN,f , (3.18)

7The fact that f(R) theories do not allow for constant-R solutions outside a source has been in fact
known since long ago, see e.g. [308,309].
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where LN,f was defined in (3.6). Using the chain rule, we see that the variations of S[N, f ]
with respect to N and f are related to the tt and rr components of the corresponding field
equations Eµν ≡ 1√

|g|
δS
δgµν according to

1

Ω(D−2)rD−2

δS[N, f ]

δN
=

2Ett
fN2

,
1

Ω(D−2)rD−2

δS[N, f ]

δf
=
Ett
Nf2

+NErr . (3.19)

Hence, imposing the Euler-Lagrange equations of N and f to hold is equivalent to imposing
Ett = Err = 0. Finally, the Bianchi identity ∇µEµν = 0 automatically makes the angular
components vanish whenever Ett = Err = 0.

Observe now that the constant rescaling N → Nα, for an arbitrary α, is equivalent
to the time rescaling t→ t α in (3.5), which leads to the following identities

S[αN, f ] = Ω(D−2)

∫
dt

∫
drLαN,f = Ω(D−2)

∫
d(αt)

∫
drLN,f = αS[N, f ] . (3.20)

This implies that both S[N, f ] and LN,f are homogeneous of degree 1 in N . Moreover,
we are assuming that the theory is of the form (3.2), so that the higher-derivative terms
appear as polynomials of the Riemann tensor and its derivatives. Thus, the Lagrangian is
formed from products, quotients and derivatives of the metric components, and the only
homogeneous monomials of degree 1 which can be formed in this way with N and its
derivatives are of the form N i1N ′i2N ′′i3 · · · (N (n+2))in+3 , where ik are integers such that
i1 + . . . + in+3 = 1. Also, we must have ik ≥ 0 for k > 1 because the derivatives cannot
appear in the denominator. Taking this into account, we observe that the Lagrangian can
always be expanded in the following way,8

LN,f = NLf +

n+2∑
i=1

N (i)Fi +O(N ′2/N) , (3.21)

where Lf (r, f, f ′, f ′′, . . .) ≡ LN=1,f is the effective Lagrangian resulting from the eval-
uation of the gravitational Lagrangian in the single-function ansatz (3.3), and the Fi =
Fi(r, f, f

′, f ′′, . . . , f (n+2)) are functions of f and its derivatives. Finally, O(N ′2/N) denotes
all the terms which are at least quadratic in derivatives of N ,

O(N ′2/N) ≡
n+2∑
i,j=1

N (i)N (j)

N
Fij +

n+2∑
i,j,k=1

N (i)N (j)N (k)

N2
Fijk + . . . , (3.22)

where, again, Fij , Fijk, etc., only depend on f and its derivatives.
The analysis so far is completely general. Let us now make use of the hypothesis

of Theorem 2: we assume that (3.7) holds, i.e., that the Euler-Lagrange equation of f(r)
for the Lagrangian Lf vanishes identically. Of course, this is equivalent to the assumption
that Lf is a total derivative, this is, that there exists a function F0(r, f, f ′, . . . , f (n+1)) such
that

Lf = F ′0 , (3.23)

8N (i) stands for the i-th derivative of N with respect to r, and so on.
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where again the prime denotes a total derivative with respect to r. Using this result and
the expansion (3.21), we can express the reduced action functional as

S[N, f ] = Ω(D−2)

∫
dt

∫
dr

N (F0 +
n+1∑
i=1

(−1)iF
(i−1)
i

)′
+O(N ′2/N)

 , (3.24)

where we have integrated by parts several times. Now we are ready to compute the Euler-
Lagrange equations for N and f . First, it is immediate to see that the equation δfS = 0
is trivially satisfied whenever N ′ = 0. Hence, we can just set N to a constant value, which
we choose to be one. On the other hand, variation with respect to N and evaluation at
N = 1 yields

δNS = Ω(D−2)

∫
dt

∫
drδN

(
F0 +

n+1∑
i=1

(−1)iF
(i−1)
i

)′
= 0 . (3.25)

Thus, f(r) satisfied the differential equation

(
F0 +

n+1∑
i=1

(−1)iF
(i−1)
i

)′
= 0 , (3.26)

that can be integrated once, yielding

F0 +
n+1∑
i=1

(−1)iF
(i−1)
i = C , (3.27)

for some integration constant C. This is the differential equation which determines f(r) in
each case. In order to determine its order, let us consider the Bianchi identity, ∇µEµν = 0.
The ν = r component reads

dErr

dr
+

(
2

r
− 1

2
f−1f ′

)
Err +

1

2
ff ′E tt − f

r
gijE ij , (3.28)

where i, j are the angular components. Since all the components of Eµν contain derivatives
up to order 2n+ 4 and this identity relates the derivative of Err to the rest of components
(without derivatives), we must conclude that in fact Err contains derivatives up to order
2n+3. Now, in (3.27) we have integrated the equation once, so the order of the equation is
reduced yet another order. Therefore, (3.27) is in general of order 2n+2, which means two
orders less than the equations determining N(r) and f(r) in the general case. Naturally,
in L(gµν , Rµνρσ) theories, for which n = 0, (3.27) becomes a differential equation of order
2 or less — see (3.53) below.

Finally, in order to complete the proof of the first part of Theorem 2,We are going
to see that the integration constant C in (3.27) is proportional to the ADM mass. Let us
first review how this mass is computed in higher-derivative gravity. In the asymptotically
flat case, it turns out that the ADM mass is given by the same prescription as in Einstein

100



Chapter 3. Single-function spherically symmetric solutions

gravity [98–100,102], and for the metric (3.3) it reduces to the well-known expression

M =
(D − 2)Ω(D−2)

16πG
lim
r→∞

rD−3

(
1

f(r)
− 1

)
. (3.29)

Hence, M is identified, up to a constant, with the coefficient of the term 1/rD−3 in f(r)
when r →∞. Now, the same relation holds in the asymptotically AdS (or dS) case, with
the difference that we must trade G by the effective Newton’s constant Geff [102, 103],
that was introduced in the previous chapter. Thus, the ADM mass is always identified by
looking at the asymptotic expansion of f(r), that must take the form

f(r) = 1− 2Λeff

(D − 1)(D − 2)
r2 − 16πGeffM

(D − 2)Ω(D−2)rD−3
+O(r2−D) , (3.30)

where Λeff (that we defined in (2.18)) is the effective cosmological constant. Then, we aim
to solve Eq. (3.27) asymptotically in order to identify C. We will make use of the second
statement of this theorem, but note that this is not tautological because the identification
of C is irrelevant to prove the second part. According to this statement, the linearized
equations of the theory are Einstein-like and therefore they are given by

ELµν =
1

16πGeff
GLµν , (3.31)

where the linearized Einstein tensor is given in (2.24). Then, assuming that the solution
tends asymptotically to the maximally symmetric vacuum,9 we will have Eµν → ELµν when
r →∞. Using then (3.19) we get

δNS
∣∣∣
N=1

=
Ω(D−2)

8πGeff

∫
dt

∫
drδN

rD−2

f(r)
GLtt = 0 . (3.32)

Now we can evaluate the linearized Einstein tensor asymptotically, which yields

rD−2

f(r)
GLtt =

d

dr

[
− 1

(D − 1)
Λeffr

D−1 − (D − 2)

2
(f − 1)rD−3

]
, (3.33)

and comparing with (3.25), we identify the left-hand side of Eq. (3.27). Thus, the asymp-
totic form of that equation is

1

16πGeff

[
− 2

(D − 1)
Λeffr

D−1 − (D − 2)(f − 1)rD−3 + . . .

]
= C , (3.34)

and we see that f(r) is given by (3.30), where we identify

C =
M

Ω(D−2)
. (3.35)

Hence, C is universally identified with the ADM mass of the spacetime in all cases. Strictly

9This is, f(r) behaves as f(r) = 1− 2Λeff
(D−1)(D−2)

r2 + h(r) where h(r)→ 0 when r →∞
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speaking, we derived this relation only for the theories of the form L(gµν , Rµνρσ), because,
among other issues, the definition of energy has been carried out in full generality only for
those theories [102,103]. However, there is no reason to expect that the formula (3.35) will
not extend to the general case L(gµν , Rµνρσ,∇αRµνρσ, . . .).

In sum, f(r) satisfies a differential equation of order ≤ 2n + 2 that can always be
written as

F0 − F1 + F ′2 − . . . =
M

Ω(D−2)
. (3.36)

Proof of part 2

We provide here a direct proof of part 2. The idea is simply to impose the hypothesis
δLf/δf = 0 at the level of the linearized equations. Observe first that this condition is
equivalent to

Ett + f2Err = 0 , (3.37)

i.e., we demand that this combination of equations vanishes identically for any metric of
the form (3.3). It is more convenient to perform a change of variable so that we rewrite
metric (3.3) as

ds2 = −f(r)du2 − 2dudr + r2dΩ2
(D−2) . (3.38)

where we introduced the coordinate u = t + r∗, where dr∗ = dr/f(r). In this coordinate
system, the condition (3.37) is simply

E ′rr = 0, (3.39)

where the prime is used to distinguish the two different coordinate systems. We will apply
this condition at the linear level on the maximally symmetric vacuum. Thus, we assume
that

f(r) = 1− 2Λeff

(D − 1)(D − 2)
r2 + h(r) , (3.40)

where h(r) is treated as a perturbation, and we use it to compute the component EL′rr of
the linearized equations using (2.21). The result is

EL′rr =(4b+ c)

[
(D − 2)

(
3(D − 3)h

r4
− 2(D − 4)h′

r3
+

(D − 7)h′′

2r2
+
h(3)

r

)
+
h(4)

2

]
(3.41)

+ (2a+ c)

[
(D − 2)

(
(D − 3)h

r4
− (D − 4)h′

r3
+

(D − 5)h′′

2r2
+
h(3)

r

)
+
h(4)

2

]
.

Now, since this must vanish identically for any function h(r) we conclude that the param-
eters of the linearized equations must satisfy 2a + c = 4b + c = 0, but these are precisely
the conditions for Einstein-like theories that we determined in Sec. 2.2. QED.
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3.3.1 Single-function solutions with a matter source

Here we provide a sketch of the proof of Corollary 1 by trying to construct the solution
explicitly. The idea is that, unlike the case of f(R), that we encounter in section 3.2.1,
there is no obstruction in constructing single-function solutions when there is a spherically
symmetric matter distribution, and we describe how one could in principle construct these
solutions for general theories. A more solid analysis should be performed on a case-by-case
basis, but that would be far beyond the aim of the present work.

Let us start by adding some minimally coupled matter to the gravity action (3.2),
S → S + Smatter, where Smatter =

∫
dDx

√
|g|Lmatter. The field equations would read now

Eµν = 1
2Tµν , where the matter stress-energy tensor is defined as usual, Tµν = − 2√

|g|
δSmatter
δgµν .

Using the reduced gravitational action as we did in the proof of Theorem 2, the equations
for the metric functions f and N can be written as(

F0 +

n+1∑
i=1

(−1)iF
(i−1)
i

)′
+O(N ′2/N) = rD−2fN2T tt , (3.42)

δS[N, f ]

δf
= Ω(D−2)

rD−2

2

(
N3T tt +

N

f2
T rr
)
. (3.43)

In addition to these equations, one would need to specify the equation of state of matter.
We are interested in a compact, spherically symmetric and static source of radius r0, so
that Tµν(r) = 0 if r > r0. Let us first consider the exterior region r > r0. In that case,
as we have just seen, N(r) = 1 solves Eq. (3.43) and we only need to solve the other one.
Integrating Eq. (3.42) from some radius r > r0 up to r = 0, we get

F0(r) +
n+1∑
i=1

(−1)iF
(i−1)
i (r) =

1

Ω(D−2)

∫
r<r0

dD−1x
√
|g|
[
fNT tt − O(N ′/N2)

NrD−2

]
, (3.44)

where the rhs is an integral over the matter distribution, and thus, it is independent of
r. Therefore, (3.27) holds outside the source but now the constant C is not arbitrary, but
determined by the mass distribution. Interestingly, since C is related to the ADM mass
according to (3.35), this result provides us with a formula for the ADM mass expressed as
an integral over the matter distribution. Observe that (3.44) is analogous to the expression
(3.17) that we found in the case of f(R) gravity. The crucial difference is that the existence
of single-function solutions in the case of f(R) required the right-hand side of (3.17) to
be zero, which was an inconsistent condition. Here, however, we can find single-function
exterior solutions for arbitrary values of the right-hand-side of (3.44). Thus, we find no
obstruction for the construction of exterior solutions of the form (3.3) for the theories that
satisfy the hypothesis of Theorem 2.

In order to complete the demonstration one would need to prove that these single-
function solutions can be smoothly glued to an interior solution. This is the part that
is highly theory-dependent and we cannot provide a rigorous proof without further as-
sumptions on the form of the field equations. However, we can provide evidence that this
construction is possible by counting the number of integration constants that are required
in the problem. Let us for simplicity focus on the case L(gµν , Rµνρσ), so that the field
equations are generically of fourth order. We first consider the exterior solution. The
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equation (3.44) for f(r) is of second order, so that for every value of the rhs there is a
two-parameter family of solutions. Typically, imposing the solution to have the correct
asymptotic behaviour fixes one integration constant, leaving one free parameter.10 Now
we turn our attention to the interior solution. First, note that the component tt of the
equations is of fourth-order, but as we saw, the rr component is of third order. Deriving
the last one and extracting f (4) it is possible to rewrite the tt component using at most
third-order derivatives of f . Thus, at the end we have a third-order equation for f and a
fourth-order equation for N , and in order to fix a solution we need to set seven conditions.
Now, at r = r0 the interior solution must be smoothly glued with the exterior one. This
means, in particular, that we must demand continuity and differentiability of the func-
tion N(r). Since it satisfies a fourth-order equation and in the exterior region we have
N(r) = 1, we must impose N(r0) = 1, N ′(r0) = N ′′(r0) = N (3)(r0) = 0, so that we fix
four conditions. On the other hand, we demand regularity of the solution at the core, and
this implies that f(0) = 1, f ′(0) = 0. Since we already have six conditions, the solution
contains at this stage only one free parameter. Finally, we also demand continuity and
differentiability of f(r) at r = r0, so this fixes the boundary conditions for the exterior
solution. Then, the free parameter is chosen so that the exterior solution has the correct
asymptotic behaviour. In sum, we see that it would be in principle possible to construct
solutions with a spherically symmetric matter source with exterior metric given by (3.3).
In the case of L(Riemann) gravity, we need to impose seven conditions, and this coincides
with the number of integration constants of the system of differential equations, so there
might be unicity of solutions. However, unicity is not expected on general grounds if we
increase the order of the equations.

3.4 Construction of theories

The central result of this chapter is Theorem 2, which characterizes a very interesting class
of theories for which the problem of finding spherically symmetric solutions is drastically
simplified and whose linearized equations are of second order. The proof of Theorem
2 provides us a with a useful procedure to characterize these theories and to find their
spherically symmetric solutions. We detail this procedure next, and afterwards we apply
it to find the D-dimensional quadratic and cubic gravities of this type. Finally, focusing
on the four-dimensional case, we will see that it is possible to find these theories at any
order in curvature.

3.4.1 A recipe

The results obtained in the previous section provide a very simple and efficient method for
identifying higher-derivative gravities with simple black hole solutions of the form (3.3),
and for characterizing those solutions. Our method is a refinement of an often utilized
procedure, e.g., in [45, 129, 132, 133, 278, 310, 311], consisting in evaluating LN,f and per-
forming a repeated integration by parts in the aim of bringing it to the form (3.24) for a
particular combination of couplings.

Let us now present our method in the form of a recipe ready to be applied to any
higher-derivative gravity. From a computational perspective, our procedure is considerably

10We will see this explicitly in chapters 5 and 6. See also Refs. [45,278,280].
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faster than the one just described. It involves a on-shell evaluation of the higher-derivative
action, computing the Euler-Lagrange equation of a one-dimensional Lagrangian, writing
an expression as a total derivative of another function (which is guaranteed to be possible),
and computing some derivatives. Here is the recipe:

1. Evaluate the gravity Lagrangian on the single-function ansatz (3.3), namely, Lf (r, f ′, f ′′, . . .) ≡
rD−2L|gµν=gµνf

.

2. Compute the Euler-Lagrange equation of f(r) for the effective Lagrangian Lf (r, f ′, f ′′, . . .).

3. Fix the higher-derivative couplings in a way such that this equation is identically
satisfied, i.e., impose δLf/δf = 0 for all f(r).

4. Find F0, namely, the function of f(r) satisfying Lf = F ′0.

5. Substitute the general ansatz (3.5) in the corresponding gravity Lagrangian: LN,f (r, f,N, f ′, N ′, . . .)
≡ N(r)rD−2L

∣∣
gµν=gµνN,f

. The result should take the form (3.21), where now Lf = F ′0.

6. Identify the functions Fi by inspection.

7. Plug F0 and the corresponding derivatives of the Fi in (3.27). This is the equation
that determines f(r).

The first three steps select, from all the possible theories considered originally, the ones
which allow for single-function solutions of the form (3.3). The last four allow one to
determine the differential (or algebraic) equation which needs to be solved in order to
determine f(r) for the corresponding theory. Alternatively, once the theory is identified,
the equation for f(r) can be explicitly written as

Ω(D−2)

∫
dr
δLN,f
δN

∣∣∣∣
N=1

= M , (3.45)

where it should be possible to perform the integration formally, since δLN,f
δN

∣∣
N=1

must be
a total derivative, and M is the mass of the solution.

3.4.2 Quadratic gravities

In order to illustrate this method, let us apply it to the D-dimensional quadratic theory

Lquadratic =
1

16πG

[
−2Λ +R+ α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ
]
. (3.46)
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Evaluating the Lagrangian on the single-function metric ansatz, we obtain the effective
Lagrangian

Lf =
1

16πG

[
− 2ΛrD−2 + (D − 2)(D − 3)rD−4(f − 1) + 2(D − 2)rD−3f ′ + rD−2f ′′

+ α1r
D−6

(
(D − 2)(D − 3)(f − 1) + 2(D − 2)rf ′ + r2f ′′

)2
+ α2r

D−6
(
(D − 2)((D − 3)(f − 1) + rf ′) + ((D − 2)rf ′ + r2f ′′)2/2

)
+ α3r

D−6
(
2(D − 2)(D − 3)(f − 1)2 + 2(D − 2)r2f ′2 + r4f ′′4

) ]
.

(3.47)
From this, it is straightforward to compute the Euler-Lagrange derivative, which yields

δLf
δf

=
(D − 2)

16πG

[
(3α1 + α2 + α3)

(
4(D − 3)(f − 1)− 2r2f ′′

)
+(2α1 + α2 + 2α3)

(
(D − 4)r2f ′′ + 2r2f (3) + r4f (4)

)]
.

(3.48)

Then, applying the third step of the recipe, we find that imposing δLf/δf = 0 ∀f(r)
fixes α1 = α3 = −α2/4 = α, which, unsurprisingly, leads to the usual Gauss-Bonnet
combination X4 = R2 − 4RµνR

µν + RµνρσR
µνρσ. Thus, the only quadratic Lagrangian

satisfying the hypothesis of Theorem 2 is

Lquadratic =
1

16πG
[−2Λ +R+ αX4] . (3.49)

Having fixed these couplings, we can compute F0 for this theory, which turns out to read

16πGF0 = (D − 2)rD−3(1− 2r2Λ/((D − 2)(D − 1))− f)

+ f ′(2(D − 3)(D − 2)rD−4(f − 1)α− rD−2) + (D − 4)(D − 3)(D − 2)rD−5(f − 1)2α .
(3.50)

The next step is to evaluate the Lagrangian in the general metric ansatz with two functions.
Amusingly, the effective Lagrangian LN,f , which in general takes the form (3.21), does not
contain any O(N ′2/N) term in this case, and is simply given by (3.8), where

16πGF1 = rD−5(−3f ′r3 + 2(D − 3)(D − 2)(5f − 3)f ′rα

− 2(D − 2)f(r2 − 2(D − 4)(D − 3)(f − 1)α)) , (3.51)

16πGF2 = −2rD−4f(r2 + 2(D − 3)(D − 2)α(1− f)) . (3.52)

This is all we need to determine the equation of f(r), (3.3), which in this case (and for any
L(Riemann) theory satisfying the hypothesis of Theorem 2) reads:

F0 − F1 + F ′2 =
M

Ω(D−2)
, (3.53)
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where we have taken into account (3.35). Explicitly, one finds

rD−3

(
(D − 2)(1− f)− 2r2Λ

(D − 1)

)
+ α(D − 4)(D − 3)(D − 2)rD−5(f − 1)2 =

16πGM

Ω(D−2)
,

(3.54)
This equation can be solved for f(r) to yield

f(r) = 1+
r2

2(D − 3)(D − 4)α

[
1∓

√
1 +

8αΛ(D − 3)(D − 4)

(D − 2)(D − 1)
+

64απGM(D − 3)(D − 4)

(D − 2)Ω(D−2)rD−1

]
.

(3.55)
There are two different solutions, but note that only the one with the − sign reduces to the
Schwarzschild solution when α→ 0, so we should choose that one. This is the well-known
D-dimensional static and spherically-symmetric Gauss-Bonnet black hole.11

It is easy to check explicitly that M is in fact the total mass in any dimension and
for any asymptotic behavior. Indeed, we can see that, when r → ∞, the function f(r)
takes the form (3.30), provided that we identify

Λeff =
(D − 1)(D − 2)

4(D − 3)(D − 4)α

[
−1 +

√
1 +

8αΛ(D − 3)(D − 4)

(D − 2)(D − 1)

]
, (3.56)

Geff =
G√

1 + 8αΛ(D−3)(D−4)
(D−2)(D−1)

. (3.57)

Using (2.107) and (2.109) one can check that these are, in fact, the effective cosmological
constant and effective Newton’s constant of the theory, so that M is truly the ADM mass
according to the prescription of [102,103].

In addition, we note that the equation (3.54) is algebraic, instead of a second-order
differential equation. This is expected in the present case, because the proof of Theorem
2 tells us that this equation is reduced at least in two orders with respect to the general
order of equations of motion. Of course, Gauss-Bonnet gravity possesses second-order
equations, so the equation for f must be algebraic. The same occurs for general Lovelock
theories [44, 54, 114–117]. Remarkably, there are also theories with general fourth-order
equations of motion for which the equation (3.27) becomes algebraic too. This is the case
of Quasi-topological theories [129, 130, 132, 133]. Interestingly, the algebraicity of (3.53)
(which is a result of the non-trivial cancellation of the different terms in F0, F1 and F ′2
involving derivatives of f(r)) appears to be related to the absence of O(N ′2/N) terms in
LN,f . This is, very likely, a general feature which we encapsule in Conjecture 2.

However, as we are going to see, in most cases the equation for f is indeed differential
[45, 278]. As for Conjecture 1, this is trivial when the equation is algebraic, because we
know the exact form of the solution and we can determine the thermodynamics of black
holes straight away. It is far from trivial in the differential case, but we will see that it
works by examining many examples in the next chapters.

11Observe that for D = 4 and D = 3, it reduces to the usual Schwarzschild-(A)dS solution.
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3.4.3 Six-derivative gravities

As happened when we studied the linear spectrum of higher-curvature theories in Sec. 2.4,
the behaviour of quadratic theories is independent of the dimension. In particular, the
Gauss-Bonnet invariant X4 was the only quadratic term having Einstein-like linearized
equations, and it is also the only term satisfying the hypothesis of Theorem 2. However,
as we move to higher-orders in the curvature, the analysis is different depending on the
dimension. Thus, we consider here the case of six-derivative terms focusing first on the
case D = 4, and commenting later the situation for arbitrary D.

At the level of six derivatives, there are two non-trivial terms containing derivatives
of the Riemann tensor, besides eight cubic curvature invariants. Thus, the most general
six-derivative Lagrangian reads

L(3) = β1R
ρ σ
µ ν R α β

ρ σ R µ ν
α β + β2R

ρσ
µν R αβ

ρσ R µν
αβ + β3RµνρσR

µνρ
αR

σα (3.58)

+ β4RµνρσR
µνρσR+ β5RµνρσR

µρRνσ + β6R
ν
µ R ρ

ν R
µ
ρ + β7RµνR

µνR

+ β8R
3 + β9∇σRµν∇σRµν + β10∇µR∇µR .

Apparently, one could add other terms such as ∇αRµνρσ∇αRµνρσ, but they can be reduced
to a combination of the terms that already appear in (3.58).

Next we apply the recipe 3.4.1 to this Lagrangian in order to identify the theories
satisfying Theorem 2. The analysis of the resulting field equations and their solutions will
be the object of other chapters.

Four dimensions

Let us first consider the case D = 4, which will be specially important for us. When
we evaluate Lf = r2L(3)

∣∣
gµνf

and we demand δLf/δf ≡ 0, we find that the terms with
covariant derivatives of the curvature must vanish, β9 = β10 = 0, and four constraints on
the cubic couplings, that can be expressed as

β4 =
3β1

56
− 9β2

14
− β3

4
, (3.59)

β5 = −3β1

7
− 48β2

7
− 2β3 , (3.60)

β7 =
3β1

14
+

24β2

7
+
β3

2
− 3β6

4
, (3.61)

β8 = −3β1

56
− 5β2

14
+
β6

8
. (3.62)

The solution of this system of equations leaves us, in principle, with four independent cubic
densities. However, we must take into account that not all of the cubic terms in (3.58)
are independent in D = 4. Indeed, there are two combinations that vanish identically, and
these can be chosen as the cubic Euler density

X6 =− 8R ρ σ
µ ν R α β

ρ σ R µ ν
α β + 4R ρσ

µν R αβ
ρσ R µν

αβ − 24RµνρσR
µνρ

αR
σα + 3RµνρσR

µνρσR

+ 24RµνρσR
µρRνσ + 16R ν

µ R ρ
ν R

µ
ρ − 12RµνR

µνR+R3,
(3.63)
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and

R µν
[µν R ρσ

ρσ R α
α] =− 2

15
RµνρσR

µνρ
αR

σα +
1

30
RµνρσR

µνρσR+
4

15
RµνρσR

µρRνσ

+
4

15
R ν
µ R ρ

ν R
µ
ρ −

4

15
RµνR

µνR+
1

30
R3 ,

(3.64)

which is obviously zero due to the antisymmetrization. Since these terms vanish identically,
they satisfy trivially the hypothesis of Theorem 2, and one can check that they in fact solve
the equations (3.59). Thus, there are only two independent and non-trivial solutions of
these equations. The two independent terms can be chosen as

P = 12R ρ σ
µ ν R α β

ρ σ R µ ν
α β +R ρσ

µν R αβ
ρσ R µν

αβ − 12RµνρσR
µρRνσ + 8R ν

µ R ρ
ν R

µ
ρ , (3.65)

C = RµνρσR
µνρ

αR
σα − 1

4
RµνρσR

µνρσR− 2RµνρσR
µρRνσ +

1

2
RµνR

µνR . (3.66)

Quite surprisingly, we find again the Einsteinian cubic gravity term P that we described in
the previous chapter (Sec. 2.4). Let us recall that this term was identified by the condition
of possessing Einstein-like linearized equations in arbitrary dimensions. What we see is
that, in addition, in D = 4 it also possesses solutions of the form (3.3), since it satisfies the
hypothesis of Theorem 2. On the other hand, C is a new density that was firstly identified
in [278]. Thus, the most general theory up to six-derivative terms possessing the interesting
properties of Theorem 2 in four dimensions reads

S =
1

16πG

∫
d4x
√
|g| [−2Λ +R+ µP + λC] (3.67)

We will see that, although C is non-trivial, it makes no contribution to the equations
of motion for spherically symmetric and static spacetimes. Thus, the only term that
modifies the function f(r) in the metric (3.3) is the Einsteinian cubic gravity density P.

Higher dimensions

Repeating the previous analysis for D > 4 one finds again that β9 = β10 = 0, but now there
are five constraints on the cubic couplings. Thus, in general there are three independent
theories of this type. On of them is always the cubic Euler density X6 that we wrote in
(3.63). However, this term is vanishing for D < 6 and it is topological in D = 6, so it only
makes a non-trivial contribution to the equations of motion for D ≥ 7. The second density
of this type is the cubic Quasi-topological gravity term ZD [129,130], that is given by

ZD =R ρ σ
µ ν R α β

ρ σ R µ ν
α β +

1

(2D − 3)(D − 4)

(
− 3(D − 2)RµνρσR

µνρ
αR

σα

+
3(3D − 8)

8
RµνρσR

µνρσR+ 3DRµνρσR
µρRνσ

+ 6(D − 2)R ν
µ R ρ

ν R
µ
ρ −

3(3D − 4)

2
RµνR

µνR+
3D

8
R3
)
.

(3.68)
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Although this term gives rise to fourth-order equations of motion, they reduce to second-
order for spherically symmetric and static metrics. In particular, this theory has solutions
of the form (3.3), where the equation for f(r) (3.27) is algebraic. Indeed, for D ≥ 6 this
term contributes to the equation of f(r) in the same way as the Lovelock term X6.12. Thus,
the primary interest of Quasi-topological gravity is in D = 5, where X6 is trivial, but Z5 is
not. Note also that the case D = 4 of (3.68) does not exist. In fact, there are no theories
with analogous properties in four dimensions.

Finally, there is a third independent density satisfying the hypothesis of Theorem 2,
and it can be expressed explicitly as

SD =14R ρ σ
µ ν R α β

ρ σ R µ ν
α β + 2RµνρσR

µνρ
αR

σα − (38− 29D + 4D2)

4(D − 2)(2D − 1)
RµνρσR

µνρσR

− 2(−30 + 9D + 4D2)

(D − 2)(2D − 1)
RµνρσR

µρRνσ − 4(66− 35D + 2D2))

3(D − 2)(2D − 1)
R ν
µ R ρ

ν R
µ
ρ

+
(34− 21D + 4D2)

(D − 2)(2D − 1)
RµνR

µνR− (30− 13D + 4D2)

12(D − 2)(2D − 1)
R3 .

(3.69)

The term SD is known as the Generalized quasi-topological gravity density and it was
introduced in [278]. It has some important differences with respect to X6 and ZD. To
begin with, in this case the equation (3.27) that satisfies the metric function f(r) is of
second order instead of algebraic — see [278] for details. In addition, it is non-trivial in
all dimensions and its contribution to the equation of f(r) is (obviously) different from
the contribution of X6 and ZD. Finally, when restricted to four dimensions, one finds
that [278]

S4 = P − 1

4
X6 + 4C , (3.70)

where P and C are the terms that we found in the four-dimensional case, Eq. (3.65). Since
C makes no contribution to the equations of the metric (3.3), SD provides a D-dimensional
generalization of four-dimensional Einsteinian cubic gravity, in the sense of possessing
solutions of the form (3.3).

Thus, we have found the most general D-dimensional six-derivative theory that sat-
isfies the hypothesis of Theorem 2:

SGQG =
1

16πG

∫
dDx

√
|g| [−2Λ +R+ αX4 + γX6 + ξZD + µSD] . (3.71)

We also recall that in the absence of SD (or, equivalently, P in D = 4) the equation
that determines f(r) is algebraic, and no O(N ′2/N) terms of the form (3.22) appear in
LN,f . This is no longer the case when SD is included. These observations strongly support
Conjecture 2. Finally, let us also mention that for all the different theories contained in
(3.71), Conjecture 1 holds.

12In particular, in D = 6 it makes no contribution to the equations of motion in the presence of spherical
symmetry, and this was the origin of the name “quasi” topological [129]
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3.4.4 D = 4 case at all orders in curvature

It is possible to keep searching for this type of theories at higher orders in curvature and
in arbitrary dimensions. But performing the analysis in full generality becomes more and
more challenging as we increase the curvature order. In the case of quartic terms we can
still perform a complete analysis thanks to the full list of quartic invariants provided in
Table 2.2. In order to simplify matters, let us comment the result in D = 4 (the case of
arbitrary D was studied in [280]). One finds several quartic Generalized quasi-topological
terms, but remarkably enough, it turns out that all of them contribute in the same way
to the equation of f(r) (3.27). More precisely, if Q and Q̃ are two of these terms and
E(r, f, f ′, f ′′), Ẽ(r, f, f ′, f ′′) are their respective contributions to (3.27), one finds that they
are proportional E ∝ Ẽ . Thus, it is always possible to choose a basis for these terms such
that there is only one of them that contributes non-trivially to the equation (3.27).13 This
is analogous to the cubic case, where the term P contributes to (3.27) but C does not. For
instance, the following quartic term is an appropriate choice

Q =44RµνρσR αβ
µν R γ δ

ρ α Rσγβδ − 5RµνρσR αβ
µν R γδ

ρα Rσβγδ + 5RµνρσR α
µνρ RβγδσR

βγδ
α

+ 24RµνRρσαβR γ
ρ αµRσγβν ,

(3.72)
Repeating the analysis at higher orders (in a non-exhaustive way, because we lack a

complete set of invariants at arbitrary order), one concludes that this situation seems to
be general: at every order in curvature, there is a unique way of modifying the equation
of f(r) (3.27). Thus, for the purpose of studying the solutions of these theories, it suffices
for us to find one non-trivial term at every order in curvature satisfying δLf/δf = 0.

A practical approach consists in constructing higher-order Lagrangians as polynomi-
als of a reduced set of curvature invariants. Let us consider, in particular, the following
set of invariants {R,Q1, Q2, C1, C2}, where

Q1 ≡ RµνRµν , Q2 ≡ RµνρσRµνρσ , C1 ≡ R ρ σ
µ ν R α β

ρ σ R µ ν
α β , C2 ≡ R ρσ

µν R αβ
ρσ R µν

αβ .

(3.73)

Using the Ricci scalar, the two quadratic invariants, Q1,2, and the two cubic ones, C1,2, we
can construct 3 independent invariants at quadratic order: {R2, Q1, Q2}; 5 at cubic order
{R3, RQ1, RQ2, C1, C2}; 8 at quartic order: {R4, R2Q1, R

2Q2, RC1, RC2, Q
2
1, Q

2
2, Q1Q2};

12 at quintic order, {R5, R3Q1, R
3Q2, R

2C1, R
2C2, RQ

2
1, RQ

2
2, RQ1Q2, Q1C1, Q1C2, Q2C1,

Q2C2}; 19 at sextic order; 25 at septic order; 36 at octic order, 45 at nonic order, and so on.
Observe that this number grows considerably slower than the total number of independent
invariants at each order in curvature [107]. As it turns out, these terms suffice to construct
theories of the Generalized quasi-topological type at arbitrary orders in the curvature.
Here we have the following explicit set of invariants up to n = 10:

13Note that this does not imply that the rest of terms are trivial; their equations of motion are only
trivial for spherically symmetric and static metrics.
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R(3) = +
1

16

(
R3 − 32C1 + 2C2 − 3RQ2

)
, (3.74)

R(4) =− 1

384

(
4R4 + 108Q2

1 + 15Q2
2 − 128RC1 + 8RC2 − 24R2Q1 − 84Q1Q2

)
, (3.75)

R(5) = +
1

3456

(
5R5 + 132RQ2

1 + 18RQ2
2 − 272R2C1 + 10R2C2 − 30R3Q1 (3.76)

− 102RQ1Q2 + 552Q1C1 − 156Q2C1

)
,

R(6) =− 1

24576

(
4R6 + 180R2Q2

1 + 33R2Q2
2 − 384R3C1 + 8R3C2 − 24R4Q1 (3.77)

− 156R2Q1Q2 + 768RC1Q1 − 192Q3
1 − 12Q3

2 + 1728C2
1 + 64C1C2 + 144Q2

1Q2

)
,

R(7) = +
1

2949120

(
84R7 − 504R5Q1 + 168R4C2 − 5760R4C1 + 293R3Q2

2 (3.78)

− 1676R3Q1Q2 + 2180R3Q2
1 + 11776R2C1Q1 − 4800RC1C2 + 51904RC2

1

+ 208Q2
2C2 − 4064Q2

2C1 − 832Q1Q2C2 + 16640Q1Q2C1 + 832Q2
1C2 − 17024Q2

1C1

)
,

R(8) =− 1

2793996288

(
18130R8 − 108780R6Q1 + 36260R5C2 − 1023592R5C1 (3.79)

− 19437R4Q2
2 − 31032R4Q1Q2 + 139812R4Q2

1 + 6515280R3Q1C1

− 1881680R2C1C2 + 12416172RQ2
2C1 − 21222000RQ1Q2C1 − 7220688RQ2

1C1

− 1073478Q4
2 + 6549648Q1Q

3
2 − 13534416Q2

1Q
2
2 + 9893184Q3

1Q2 − 642448Q2C1C2

+ 56702496Q2C
2
1 − 870240Q4

1 + 1284896Q1C1C2 − 5812928Q1C
2
1

)
,

R(9) = +
1

99090432

(
1820R9 − 29400Q1R

7 + 6300Q2R
7 − 64896C1R

6 (3.80)

+ 4760C2R
6 + 187596Q12R5 − 90156Q1Q2R

5 + 6999Q2
2R

5 + 1285632C1Q1R
4

− 43680C2Q1R
4 − 640128C1Q2R

4 + 12600C2Q2R
4 − 1208768C2

1R
3

− 55872C1C2R
3 + 2240C2

2R
3 − 767856Q3

1R
3 + 855996Q2

1Q2R
3 − 338064Q1Q

2
2R

3

+ 51015Q3
2R

3 − 5208960C1Q
2
1R

2 + 100512C2Q
2
1R

2 + 3737856C1Q1Q2R
2

− 66912C2Q1Q2R
2 − 332448C1Q

2
2R

2 + 8328C2Q
2
2R

2 − 705792C2
1Q1R

+ 137472C1C2Q1R+ 1596672Q4
1R+ 5192256C2

1Q2R− 131136C1C2Q2R

− 2717568Q3
1Q2R+ 1580544Q2

1Q
2
2R− 340704Q1Q

3
2R+ 15120Q4

2R

+ 23224320C3
1 − 591360C2

1C2 − 53760C1C
2
2 + 5117952C1Q

3
1 + 111360C2Q

3
1

− 6398592C1Q
2
1Q2 − 58560C2Q

2
1Q2 + 2888448C1Q1Q

2
2 − 24960C2Q1Q

2
2

− 484320C1Q
3
2 + 13200C2Q

3
2

)
,
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R(10) =− 1

452984832

(
2100R10 − 6300R8Q2 − 12600R8Q1 + 8400R7C2 (3.81)

+ 3840R7C1 − 46435R6Q2
2 + 210940R6Q1Q2 − 160540R6Q2

1 − 12600R5Q2C2

− 266880R5C1Q2 − 25200R5Q1C2 − 270080R5Q1C1 + 11625R4Q3
2

+ 448260R4Q1Q
2
2 − 1856940R4Q2

1Q2 + 1827840R4Q3
1 + 8400R4C2

2

− 291520R4C1C2 − 194368R4C2
1 − 87670R3C2Q

2
2 + 2265984R3Q2

2C1

+ 325480R3Q1Q2C2 − 6631296R3Q1Q2C1 − 300280R3Q2
1C2 + 8883456R3Q2

1C1

− 201348R2Q4
2 + 1731744R2Q1Q

3
2 − 6767712R2Q2

2Q
2
1 + 12733056R2Q3

1Q2

− 1037760R2Q2C1C2 + 34126272R2Q2C
2
1 − 9027648R2Q4

1 + 2309120R2Q1C1C2

− 46106624R2Q1C
2
1 + 51600RQ3

2C2 − 3286368RQ3
2C1 + 62400RQ1Q

2
2C2

+ 13847808RQ1Q
2
2C1 − 868800RQ2

1Q2C2 − 9561216RQ2
1Q2C1 + 1075200RQ3

1C2

− 9977856RQ3
1C1 − 598400RC1C

2
2 + 2492800RC2

1C2 + 113305600RC3
1

+ 126000Q5
2 − 705600Q1Q

4
2 − 604800Q2

1Q
3
2 + 10483200Q3

1Q
2
2 + 10400Q2

2C
2
2

− 1041600Q2
2C1C2 − 3990272Q2

2C
2
1 − 22176000Q4

1Q2 − 41600Q2Q1C
2
2

+ 5260800Q1Q2C1C2 + 11138048Q1Q2C
2
1 + 14515200Q5

1 + 41600Q2
1C

2
2

− 6355200Q2
1C1C2 + 19489792Q2

1C
2
1

)
.

We have checked that all of these terms contribute in a non-trivial way to the equation
(3.27), hence they capture the most general correction to that equation at every order —
we will study the black hole solutions of these theories in chapter 6. Using the linearization
method introduced in the previous chapter and the results in Sec. 2.3, one can also check
explicitly that all of these terms give rise to Einstein-like linearized equations.
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4
Effective Field Theory and Field redefinitions

In chapters 2 and 3 we found some special classes of higher-curvature theories with very
appealing properties. In particular, in the previous chapter we described the general prop-
erties of a broad family of theories now known as Generalized quasi-topological gravity
(GQG). In these theories, the problem of finding static, spherically symmetric solutions
is drastically simplified, and they have the additional property of possessing second-order
linearized equations on maximally symmetric backgrounds. These theories will play a cen-
tral role in the rest of this thesis and they will prove to be useful models that will allow
us to test non-perturbative effects of higher-curvature gravity.

From a more profound perspective, one would like to consider higher-derivative grav-
ity as an effective description of an underlying UV-complete theory of gravity. The Effective
Field Theory (EFT) approach requires the introduction of all possible terms that are com-
patible with the symmetries of the theory, and in the case of gravity this means that one
should include all diff. invariant higher-derivative operators at every order. Since the the-
ories described in Chapter 3 involve very precise combinations of curvature invariants, one
could say that they are fine-tuned models, hence not valid for EFT.

However, another ingredient of EFT is the possibility to perform field redefinitions.
Classically, the transformed field will, in general, have different properties from the original
one. But from a more fundamental perspective, both fields provide equivalent effective
descriptions of the same underlying theory. This is manifest, for instance, in the path
integral formalism of Quantum Field Theory, where the fields are just integration variables.
Performing a field redefinition is equivalent to a change of variables, and this should leave
scattering amplitudes and other observables unaffected. Thus, even though the classical
fields will be different, there are certain properties that are expected to be invariant under
the redefinition of fields. In the case of gravity, the thermodynamic properties of black
holes — such as temperature and entropy — are invariant under such transformations [172].
Thus, if our aim is to study black hole thermodynamics, we may work equivalently in the
original or in the transformed frame.

One may wonder whether the theories defined in Chapter 3 are still fine-tuned when
one takes into account the freedom to perform field redefinitions. In fact, in this chapter
we will try to answer the following question: can we map any higher-derivative gravity
to one of these theories by using field redefinitions? In that case, these theories would
actually capture the most general Effective Field Theory of gravity, and they could be
used, for instance, in order to learn about black hole thermodynamics in arbitrary higher-
derivative theories. As we are going to see, the answer to the previous question is, most
likely, positive.
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4.1 Field redefinitions in higher-derivative gravity

Let us consider the most general metric-covariant theory of gravity1

S =

∫
dDx

√
|g|L (gµν , Rµνρσ,∇αRµνρσ,∇β∇αRµνρσ, . . .) . (4.1)

We will soon assume that the Lagrangian can be expanded as a series in higher-derivative
terms, but before that, let us study the effects of field redefinitions on the previous theory.
In particular, we want to determine how the action (4.1) transforms when we redefine the
metric gµν in terms of other metric g̃µν according to,

gµν = g̃µν + Q̃µν , (4.2)

where Q̃µν is a symmetric tensor constructed from g̃µν . Ideally, we would like the field
redefinition to be algebraic, so that the relation between gµν and g̃µν is functional. However,
the only tensor that we can construct out of the metric without introducing derivatives
is (proportional to) the metric itself. Hence, Q̃µν can be generically formed from the
curvature and the redefinition (4.2) is differential. The action S̃ for the new metric g̃µν is
simply obtained by substituting the redefinition in the original action

S̃[g̃µν ] = S[g̃µν + Q̃µν ] (4.3)

However, there are some subtleties related to the fact that the field redefinition (4.2)
involves derivatives of the metric, because it is not equivalent to extremize the action with
respect to gµν or with respect to g̃µν . Essentially, one finds that, if gsol

µν is a solution of the
original theory, then the relation (4.2) always produces a solution g̃sol

µν of the transformed
theory when we invert it. However, the converse is not true: there are some solutions of the
equations of motion of g̃µν that do not produce a solution of the original theory when we
apply the map (4.2). The reason is that the presence of derivatives in the field redefinition
increases the number of derivatives in the equations of motion derived from S̃ and this
introduces some spurious solutions that we must discard. This issue is further discussed in
Appendix B. Once this point is taken into account, both theories S and S̃ are equivalent.

Note that when we keep only the meaningful solutions — those that are related by
(4.2) — the on-shell action is the same,

S̃
[
g̃sol
µν

]
= S

[
gsol
µν

]
. (4.4)

Since black hole thermodynamics can be determined, in the Euclidean path integral ap-
proach, by evaluating the on-shell action [85], this simple observation proves that black
hole thermodynamics is the same in both frames. Alternatively, using directly Wald’s
entropy formula [170], it can be proven that the black hole entropy is the same in both
frames [172].2

1We also assume that parity is preserved so that we do not have to include terms containing the
Levi-Civita symbol. Nevertheless, all the results of this chapter also apply if we include those terms.

2In order to prove rigorously this statement, it is necessary to assume some mild conditions on Q̃µν ,
namely, it should fall off at infinity fast enough. All the redefinitions that we will consider are well-behaved
in this sense.
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Let us now determine how the redefinition of the metric (4.2) changes the action. For
that, we assume that the redefinition is perturbative, i.e., we treat Q̃µν as a perturbation
and we work at linear order. This is enough for our purposes, since, following the EFT
approach, we will also expand the action in a perturbative series of higher-derivative terms.
Observe that in this case the relation (4.2) can be inverted as

g̃µν = gµν −Qµν +O(Q2) . (4.5)

where Qµν has the same expression as Q̃µν but replacing g̃µν → gµν . Let us introduce the
equations of motion of the original theory as

Eµν =
1√
|g|

δS

δgµν
. (4.6)

Then, at linear order in Q̃µν , the transformed action S̃ reads

S̃ =

∫
dDx

√
|g̃|
[
L̃ − ẼµνQ̃µν +O(Q2)

]
. (4.7)

where the tildes denote evaluation on g̃µν . Thus, the redefinition introduces a term in
the action proportional to the equations of motion of the original theory [312]. Let us be
more explicit about the form of the Lagrangian by expanding it as a sum over all possible
higher-derivative terms

S =
1

16πG

∫
dDx

√
|g|
{
R+

∞∑
n=2

L2(n−1)L(n)
}
, (4.8)

where L is a length scale and L(n) represents the most general Lagrangian containing 2n
derivatives. For instance, we already saw in Sec. 3.4 that the four- and six-derivative
Lagrangians are given by

L(2) = α1R
2 + α2RµνR

µν + α3RµνρσR
µνρσ , (4.9)

L(3) = β1R
ρ σ
µ ν R α β

ρ σ R µ ν
α β + β2R

ρσ
µν R αβ

ρσ R µν
αβ + β3RµνρσR

µνρ
αR

σα (4.10)

+ β4RµνρσR
µνρσR+ β5RµνρσR

µρRνσ + β6R
ν
µ R ρ

ν R
µ
ρ + β7RµνR

µνR

+ β8R
3 + β9∇σRµν∇σRµν + β10∇µR∇µR .

The number of terms grows very rapidly, and the eight derivative Lagrangian already
contains 92 terms [107].3 Let us further choose Q̃(k)

µν to be a symmetric tensor containing
2k derivatives of the metric and let us perform the following field redefinition

gµν = g̃µν + L2kQ̃(k)
µν . (4.11)

3Ref. [107] provides the number of linearly independent invariants, but presumably many of them will
differ by total derivative terms, which are irrelevant for the action. So the number of relevant terms is
presumably much smaller — yet quite large.
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Then, the transformed action (4.7) reads

S̃ =
1

16πG

∫
dDx

√
|g̃|

{
R̃+

k∑
n=1

L2(n−1)L̃(n) + L2k
(
L̃(k+1) − R̃µνQ̂(k)

µν

)
+

∞∑
n=k+2

L2(n−1)L̃′(n)

}
,

(4.12)
where all quantities are evaluated on g̃µν , and4

Q̂(k)
µν = Q̃(k)

µν −
1

2
g̃µνQ̃

(k) , Q̃(k) = g̃αβQ̃
(k)
αβ . (4.13)

Hence, all the terms containing up to 2k derivatives are unaffected, while the terms with
2(k + 1) derivatives get the correction −R̃µνQ̂(k)

µν . The higher-order terms will also get
corrections that depend in a more complicated way on Q̃

(k)
µν , but if the starting action

already contained all possible terms, the whole effect will be to change the couplings in
the Lagrangian, and we denote this with the prime L̃′(n). From this, it is clear that if
we perform this type of field redefinition order by order, starting at k = 1, we are able
to remove all terms in the action that contain Ricci curvature — except, of course, the
Einstein-Hilbert term. In other words, any term containing Ricci curvature is meaningless
from the point of view of EFT and we are free to add or remove all terms of that type.
Let us mention that this result is in agreement with the construction performed in [291].

Notice that in (4.8) we intentionally did not include a cosmological constant. When
we add it, the effect of the redefinition (4.11) is

S̃ =
1

16πG

∫
dDx

√
|g̃|

{
−2Λ + R̃+

k−1∑
n=1

L2(n−1)L̃(n) + L2(k−1)

(
L̃(k) +

2(ΛL2)

D − 2
Q̂(k)

)

+L2k
(
L̃(k+1) − R̃µνQ̂(k)

µν

)
+

∞∑
n=k+2

L2nL̃′(n)

}
,

(4.14)
and now it changes the terms at order 2(k + 1) and at order 2k. This is a complication
with respect to the case without cosmological constant because now we cannot remove the
terms with Ricci curvature order by order. If we remove them at a given order, the field
redefinition of the next order introduces the corrections 2(ΛL2)

D−2 Q̂(k), that will generically
include again terms with Ricci curvature. Hence, the process cannot be carried out order
by order because all steps are coupled. If one wants to remove all the terms with Ricci
curvature up to order 2k, it is necessary to consider the most general field redefinition up to
that order, i.e., including all the terms Q̃(m)

µν of orderm ≤ k at the same time. Nevertheless,
note that this is just a technical complication: finding the precise field redefinition that
removes the terms with Ricci curvature is more involved, but it can certainly be done.
Thus, the conclusions are the same as in the case without cosmological constant.

4We have EµνQ̃(k)
µν = GµνQ̃

(k)
µν = RµνQ̂

(k)
µν .
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4.2 Mapping any theory to Generalized quasi-topological grav-
ity

After having reviewed the effect of field redefinitions on the gravitational action, we turn to
the main question of this chapter: can we map the most general effective theory of the form
(4.8) to a Generalized quasi-topological gravity (GQG)? We recall these are the theories
that satisfy the hypothesis of Theorem 2 in the previous chapter, and that have several
remarkable properties. In particular, they allow for black hole solutions characterized
by a single function (of the form (3.3)) and they only propagate a massless graviton on
maximally symmetric backgrounds. Furthermore, we will see in the next chapters that for
these theories we can obtain closed, exact expressions for the thermodynamic properties
of black holes — a fact that was collected in Conjecture 1.

4.2.1 Explicit map up to sixth order

The lowest-order densities of this type (with four and six derivatives) were constructed in
Sec. 3.4. Let us then see if we can re-express the general action (4.8) using only those
terms. For simplicity, we set the cosmological constant to 0. First, it is useful to write
the Lagrangians L(2) and L(3) in (4.9) using a different basis of invariants. In the case of
the four-derivative action, the Riemann squared term can be traded by the Gauss-Bonnet
density,

X4 = R2 − 4RµνR
µν +RµνρσR

µνρσ , (4.15)

that, as we know, is the only component of the GQG family at quadratic order. Thus, the
most general four-derivative Lagrangian can be alternatively written as5

L(2) = α1R
2 + α2RµνR

µν + α3X4 . (4.16)

On the other hand, we may rewrite the six-derivative action introducing the cubic Lovelock
density X6 and the term SD , both of them belonging to the GQG class. From their
respective expressions, Eqs. (3.63) and (3.69), we see clearly that they depend differently
on the two pure-Riemann cubic combinations, hence we can trade those terms by X6 and
SD. Then, we can rewrite L(3) as

L(3) =β1X6 + β2SD + β3RµνρσR
µνρ

αR
σα + β4RµνρσR

µνρσR+ β5RµνρσR
µρRνσ

+ β6R
ν
µ R

ρ
ν R

µ
ρ + β7RµνR

µνR+ β8R
3 + β9∇σRµν∇σRµν + β10∇µR∇µR .

(4.17)

Another possibility in D ≥ 5 is to exchange SD or X6 by the cubic Quasi-topological
combination ZD. On the whole, we say that all these three densities belong to the family
of generalized quasi-topological gravities, and the important observation is that we are
able to trade the terms that only contain Riemann tensors by densities of this family. The
rest of terms contain Ricci curvature, and therefore they can be removed by using field
redefinitions. Let us construct this redefinition explicitly for the four- and six-derivative

5The coefficients αi are not the same as in (4.9), but for clarity we do not introduce additional unnec-
essary notation.

119



Chapter 4. Effective Field Theory and Field redefinitions

terms. First, in order to remove the R2 and RµνRµν terms, we perform

gµν = g̃µν + α2`
2R̃µν −

`2R̃

D − 2
g̃µν(2α1 + α2) (4.18)

The effect of this transformation on the four-derivative terms is

L(2) → L̃(2) = α3X̃4 . (4.19)

Now, this redefinition also affects the higher-order terms, but since we are starting from
the most general theory, the only effect is to change the coefficients of these terms. In
particular, for the six-derivative ones: βi → β′i. Then, we may perform another redefinition
of the metric,

g̃µν = ˜̃gµν + `4
[
β′3

˜̃Rµαρσ
˜̃R αρσ
ν + β′5

˜̃Rαβ ˜̃Rµανβ + β′6
˜̃R α
µ

˜̃Rνα + β′7
˜̃R ˜̃Rµν − β′9

˜̃∇2 ˜̃Rµν

− 1

D − 2
˜̃gµν

(
˜̃Rαβσ

˜̃Rαβρσ(β̃3 + 2β̃4) + ˜̃Rαβ
˜̃Rαβ(β′5 + β′6) + ˜̃R2(β′7 + 2β′8)− ˜̃∇2 ˜̃R(β′9 − 2β′10)

)]
(4.20)

which leaves unaffected the four-derivative terms, while it cancels all the six-derivative
terms that contain Ricci curvature:

L̃(3) → ˜̃L(3) = β′1
˜̃X6 + β′2

˜̃SD . (4.21)

Hence, the most general action can be written, after all, as

˜̃S =
1

16πG

∫
dDx

√
|˜̃g|
{

˜̃R+ α3L
2 ˜̃X4 + β′1L

4 ˜̃X6 + β′2L
4 ˜̃SD +O(L6)

}
. (4.22)

We can see that the reason why we can write the general theory (4.8) as a combination
generalized quasi-topological terms is that there are more of these than pure Riemann
invariants.

4.2.2 All L(Riemann) gravities as GQGs

Let us introduce some notation to formulate the problem in a clearer way. We will say that
a given curvature invariant is reducible if it contains at least one factor of Ricci curvature or
if it is equivalent, up to a total derivative, to another density that contains Ricci curvature.
We can actually rephrase this in a better way.

Definition 1: a curvature invariant is reducible if it is a total derivative when evaluated
on any Ricci-flat metric. The rest of them are called irreducible.

Observe this definition contains trivially the case in which the invariant vanishes
on Ricci-flat metrics. Intuitively, the irreducible terms correspond to those formed purely
from the Riemann tensor, without explicit factors of Ricci curvature. The point is that
all reducible terms can be removed or introduced by using field redefinitions, but the
irreducible ones cannot. Therefore, we may imagine that the most general higher-derivative
gravity is obtained by including all the possible irreducible terms in the action and then
we are free to add all the reducible terms we want, since this is just equivalent to choosing

120



Chapter 4. Effective Field Theory and Field redefinitions

a frame. It is convenient to introduce here another concept.

Definition 2: We say that a curvature invariant L is completable to a generalized quasi-
topological gravity if there exist a generalized quasi-topological density Q such that L−Q
is reducible.

In other words, by adding reducible terms to L we are able to obtain a GQG term.
Note that reducible terms are trivially completable to 0. Then, the question whether
any higher-derivative gravity can be expressed as a sum of generalized quasi-topological
terms is equivalent to the following question: are all irreducible densities completable to a
GQG? We have just found that the answer is positive at least up to six-derivative terms.
The reason is that there are more GQG terms than irreducible terms and we were able
to “complete” all of them. In the case of the four derivative terms, the only irreducible
density is the Riemann squared term, and this can be completed to the Gauss-Bonnet
density. For the six-derivative terms, it turns out that all the terms containing derivatives
of the Riemann are reducible, and the only irreducible terms are the two cubic Riemann
terms. In general dimensions D there are 3 GQGs that involve different combinations of
these cubic terms, so they can always be completed.

The problem of completing all irreducible invariants is of course different depending
on the dimension, since in lower dimensions many of the densities we can construct are
not linearly independent. Due to this, in lower dimensions the number of irreducible
densities is significantly smaller, and therefore the problem of completing all the irreducible
densities is simpler. Going back to the example of six-derivative terms, we find that the
two cubic densities are independent when D ≥ 6. In D = 4, 5 only one of them is linearly
independent, and in D < 4 there is only Ricci curvature so all theories are reducible to
Einstein gravity. On the other hand, in D = 4 there are four GQGs, and in D > 4 there
are three of them. So, there are less irreducible terms in lower dimensions and there are
more ways to complete them to a GQG theory.

It is clear that we cannot make much progress by studying all the possible invariants
order by order. The following result will be very useful in order to derive some general
statements.

Theorem 3 (Deser, Ryzhov, 2005 [313]) When evaluated on a general static and spher-
ically symmetric ansatz,

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , (4.23)

all possible contractions of n Weyl tensors6 are proportional to each other. More precisely,
let (Wn)i be one of the possible independent ways of contracting n Weyl tensors, then for
all i

(Wn)i|SSS = F (r)nci , (4.25)

6Recall that the Weyl tensor is defined as

Wµνρσ = Rµνρσ −
2

(D − 2)

(
gµ[cρRσ]ν − gν[ρRσ]µ

)
+

2

(D − 2)(D − 1)
Rgµ[ρgσ]ν . (4.24)

.
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where ci is some constant which depends on the particular contraction, and F (r) is an
i-independent function of r given in terms of the functions appearing in the SSS ansatz
(4.23). In other words, the ratio [(Wn)1/(W

n)2]|SSS for any pair of contractions of n Weyl
tensors is a constant which does not depend on the radial coordinate r.

Proof. When evaluated on (4.23) the Weyl tensor takes the form

Wµν
αβ

∣∣∣
SSS

= −2χ(r)
(D − 3)

(D − 1)
wµναβ , (4.26)

where

χ(r) =
(−2 + 2f − 2rf ′ + r2f ′′)

2r2
+

N ′

2rN
(−2f + 3rf ′) +

fN ′′

N
(4.27)

is a function which contains the full dependence on the radial coordinate. On the other
hand, wµναβ is a r-independent tensorial structure which can be written as [313]

wµναβ = 2τ
[µ
[αρ

ν]
β] −

2

(D − 2)

(
τ

[µ
[ασ

ν]
β] + ρ

[µ
[ασ

ν]
β]

)
+

2

(D − 2)(D − 3)
σ

[µ
[ασ

ν]
β] , (4.28)

where τ , ρ and σ are orthogonal projectors defined as7

τνµ = δ0
µδ
ν
0 , ρνµ = δ1

µδ
ν
1 , σνµ =

D−1∑
m=2

δmµ δ
ν
m . (4.29)

The precise form of the projectors is not particularly relevant for our purposes. The
important point is that any possible invariant (Wn)i constructed from the contraction of
n Weyl tensors will be given by

(Wn)i|SSS =

(
−2χ(r)

(D − 3)

(D − 1)

)n
(wn)i , (4.30)

where (wn)i stands for the constant resulting from the contraction induced on the w tensors
defined in (4.28) which we can identify with ci in (4.25). Therefore, (Wn)i|SSS takes the
form (4.25) with F (r) given by the function between brackets. QED.

So far we have not found examples of irreducible densities constructed from deriva-
tives of the Riemann tensor. Somehow, the densities of fourth-order (that do not contain
derivatives of the curvature) seem to be the most relevant ones. The following result will
help us to argue that all theories of that family can be recasted in the form of a GQG.

Theorem 4 Let us consider the set of irreducible curvature invariants of a given order
that are of the of the form L(gµν , Rµνρσ). If one of these invariants is completable to a
GQG and is non-vanishing when evaluated on a static, spherically symmetric ansatz, then
all of them are completable.

Proof : Let the order of these invariants be 2n. Since they are irreducible and they do
not contain derivatives of the curvature, they are formed from contractions of a product

7Namely, they satisfy ττ = τ , ρρ = ρ, σσ = σ, τρ = τσ = ρσ = 0. Also, their traces read Trτ = Trρ = 1,
Trσ = D − 2.
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of n Riemann tensors. We can write schematically Li = (Riemn)i, where the subscript
i denotes a specific way of contracting the indices. We can consider an alternative basis
by replacing the Riemann tensor by the Weyl tensor in the expressions of these densities.
Both ways of expressing these invariants are obviously equivalent since they differ in terms
containing Ricci curvature. Thus, let us consider L̃i = (Wn)i and let us assume that
some L̃i0 is completable to a GQG. Now, the condition that determines if a given density
belongs to the generalized quasi-topological class only depends on the evaluation of the
density on a static and spherically symmetric (SSS) metric ansatz — see Theorem 2. As we
have just seen, for this type of metric, all the invariants formed from the Weyl tensor are
proportional to the same quantity: they are given by (4.25). Then, since by assumption
L̃i0
∣∣
SSS
6= 0, all the invariants L̃i are proportional to L̃i0 when evaluated on SSS metrics.

Thus, if L̃i0 can be completed to a GQG by adding a reducible piece Ri0 , it is clear that
any other term is completed to a GQG when we add the reducible piece ci

ci0
Ri0 . QED.

This result can be rephrased in a more useful way as follows

Corollary 2 Let us consider the curvature invariants of a given order that are of the form
L(gµν , Rµνρσ), and let us assume that there exists one irreducible and non-trivial GQG
density formed from these invariants. Then all of these invariants are completable to a
GQG.

We recall that irreducible means that the density does not vanish (modulo total
derivatives) on Ricci-flat metrics and non-trivial means that it does not vanish for SSS
metrics. We have compelling evidence that this type of generalized quasi-topological theo-
ries exist at any order and in any dimension. In particular, we provided explicit examples
of these terms up to n = 10 for the four-dimensional case in Sec. 3.4.4. Thus, Corollary
2 virtually proves that all the terms of the form L(gµν , Rµνρσ) can be rewritten as a sum
of GQG densities by using field redefinitions. In order to get a formal proof we should
simply provide a closed expression for one of these densities at every order in curvature,
or at least a systematic way to construct them. While this would be a tedious exercise, we
are fully confident that such construction is possible.

4.2.3 Terms with covariant derivatives

On the other hand, the role of terms containing derivatives of the Riemann tensor is less
clear. Let us note that, even if we start with some effective theory that does not include
this type of term, they will appear when we perform field redefinitions. So we need to
make sure as well that they can always be completed to a GQG. Now, the fact is that
such terms have not been yet used to construct GQGs — for what we know, these types of
theories should exist as well. One of the reasons is that, up to sixth-order in derivatives,
all the invariants with derivatives of the curvature are actually reducible. Thus, in order
to gain some insight about the behaviour of these terms let us consider in detail the case
of the eight-derivative densities.

The general eight-derivative Lagrangian can be constructed from the 92 terms that
appear in the appendix of [107] — many of them will differ in total derivatives though.
Let us first consider the densities that do not contain derivatives of the curvature. Looking
at [107], we see that there is a basis of 26 of these invariants — these are listed also in
Table 2.2 — but, depending on the dimension, there are at most 7 independent, irreducible
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terms (this happens forD > 7). Now, in [280] several non-trivial and irreducible generalized
quasi-topological theories were constructed using those invariants — and we provided a
couple of examples in Sec. 3.4.4 for the case D = 4. Since, according to Corollary 2, we
only need one, this already proves that these 26 invariants can be rewritten as a sum of
GQGs by means of field redefinitions.

Now we consider the terms with derivatives of the curvature. Looking again at [107],
we see, apparently, five irreducible terms

L1 = Rµνρσ∇νRαβλµ∇σRαβλρ , (4.31)

L2 = Rµνρσ∇ρRαβλµ∇σRαβλν , (4.32)

L3 = Rµνρσ∇λRα β
µ ρ∇λRανβσ , (4.33)

L4 = RµνρσR αβλ
µ ∇σ∇λRναρβ , (4.34)

L5 = ∇α∇βRµνρσ∇α∇βRµνρσ . (4.35)

However, a careful analysis — using commutation of covariant derivatives, the sym-
metries of the Riemann tensor and the Bianchi identity — reveals that all of them can
be decomposed as the sum of total derivative terms plus quartic curvature terms (without
covariant derivatives) plus terms with Ricci curvature (hence reducible). This is, they can
be expressed as

Li = ∇µJµ +Q+RµνF
µν , (4.36)

for some tensors Jµ and Fµν and some quartic density Q. In order to illustrate this, let
us show how L1 is reduced to an expression of the form (4.36). First, we have

L1 = Rµνρσ∇νRαβλµ∇σRαβλρ =
1

4
Rµνρσ∇λRαβµν∇λRαβρσ (4.37)

=
1

4
∇λ
(
Rµνρσ∇λRαβµνRαβρσ

)
− 1

4
Rµνρσ∇2RαβµνRαβρσ −

1

4
∇λRµνρσ∇λRαβµνRαβρσ ,

(4.38)

where in the first equality we applied the differential Bianchi identity twice, and in the
second we “integrated by parts”. Now we note that the last term in the second line is
actually −L1, so we get

L1 =
1

2
∇λ
(
Rµνρσ∇λRαβµνRαβρσ

)
− 1

2
Rµνρσ∇2RαβµνRαβρσ . (4.39)

Then we are done, because the Laplacian of the Riemann tensor decomposes, using a
schematic notation, as8 ∇2Riem = ∇∇Ricci + Riem2, so we can indeed express L1 as in

8Explicitly, one has [314]

∇α∇αRµνρσ = + 2∇[µ|∇ρR|ν]σ + 2∇[ν|∇σR|µ]ρ − 4
[
Rγ λ

µ νRγ[ρ|λ|σ] +Rγ λ
µ [ρ|Rγνλ|σ]

]
(4.40)

+ gγλ [RλνρσRγµ +RµλρσRγν ] .
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(4.36). Proceeding similarly with the other terms we come to the same conclusion.
Since total derivatives are irrelevant for the action, and since we can remove all the

terms containing Ricci curvature by means of field redefinitions, the terms with covariant
derivatives of the Riemann tensor only change the coefficients of the quartic terms, that are
already present in the action. Hence, from the point of view of effective field theory, these
densities are meaningless and can be removed. In addition, we conclude that all the eight-
derivative terms can be recasted as a sum of GQGs by implementing field redefinitions.

However, it is clear that we cannot repeat the analysis above order by order, since
the number of basic invariants grows very quickly, and it is impossible to provide a list
of all the invariants. If we want to prove that all terms with covariant derivatives of the
curvature can be mapped to GQG theories we need a different strategy. We propose here
a possible way to do it, based again on Theorem 3, and we will illustrate it by considering
terms containing two covariant derivatives. These come in two different types: those in
which the two derivatives act on the same Riemann tensor, and those in which they act on
two different Riemanns. We denote these types of invariants as R{2} and R{1,1}. Now, all
of the first kind can be transformed to a sum of terms of the second kind upon integration
by parts, so we only need to consider the invariants of the form R{1,1}. The only densities
of that type that are susceptible of being irreducible are those formed from the Weyl tensor,
and they can be written schematically as

R{1,1} = Wn∇W∇W , (4.41)

for some value of n. We saw in (4.26) that, when evaluated on a SSS metric the Weyl
tensor has a very simple structure, so that any scalar formed from it is proportional to the
same quantity. In the case of the covariant derivative of the Weyl tensor, we have

∇σWµν
αβ

∣∣∣
SSS

= −2
(D − 3)

(D − 1)

[
χ′(r)δ1

σw
µν
αβ + χ(r)∇σwµναβ

]
, (4.42)

which now depends on two different tensorial structures. It is easy to check that, when
those structures are contracted — with each other or with themselves — the only produce
a number times f(r). Thus, when evaluated on a SSS metric, all the invariants of the form
(4.41) are given by

R{1,1}
∣∣∣
SSS

= fχn
(
c1χ
′2 + c2

χχ′

r
+ c3

χ2

r2

)
, (4.43)

where c1,2,3 are constants. Thus, there are at most three linearly independent terms of
the form (4.41) when one considers SSS metrics. Hence, if we are able to find three
independent terms of that kind which are completable to a GQG, this will imply that all
densities containing two covariant derivatives are completable. Three possible terms of
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that type are

W{1,1}1 =∇ν
(
∇νW µ3µ4

µ1µ2
W µ5µ6
µ3µ4

W µ7µ8
µ5µ6

. . .W µ1µ2
µ2n+3µ2n+4

)
(4.44)

−∇2W µ3µ4
µ1µ2

W µ5µ6
µ3µ4

W µ7µ8
µ5µ6

. . .W µ1µ2
µ2n+3µ2n+4

W{1,1}2 =∇νW νρδ
µ1
∇ρW µ3µ4

δµ2
W µ5µ6
µ3µ4

. . .W µ1µ2
µ2n+1µ2n+2

, (4.45)

W{1,1}3 =∇νW νρδγ∇σW σ
ρδγW

µ3µ4
µ1µ2

. . .W µ1µ2
µ2n−1µ2n

. (4.46)

One can check that when evaluated on a general SSS metric they are linearly independent.
For instance, Schwarzschild’s metric is a “double root” of the third term and a simple root
of the second one, while the first one is non-vanishing when evaluated on Schwarzschild’s
metric. This observation guarantees that they are independent, hence any other term
R{1,1} can be expressed as a linear combination of these terms when evaluated on (4.23).
This can be stated alternatively as

R{1,1} = C1W{1,1}1 + C2W{1,1}2 + C3W{1,1}3 + . . . , (4.47)

where the ellipsis denote terms that vanish on SSS metrics — which are trivially com-
pletable to a GQG — and where Ci are constants. Now, it is easy to check that, by
means of field redefinitions, the densitiesW{1,1}1,2,3 can be mapped to a sum of terms without

covariant derivatives. Actually, both W{1,1}2 and W{1,1}3 are reducible because they are
proportional to the divergence of Weyl’s tensor, which depends only on Ricci curvature

∇αWα
µνρ =

2(D − 3)

D − 2

[
∇[νRρ]µ −

1

2(D − 1)
gµ[ρ∇ν]R

]
. (4.48)

On the other hand,W{1,1}1 is the sum of a total derivative plus a term that contains a Lapla-
cian of Weyl’s tensor. Since the Laplacian can be expressed as∇2Weyl = ∇∇Ricci+Riem2,
we conclude that, by means of field redefinitions W{1,1}1 can be reduced to a sum of terms
without covariant derivatives. From the result in the previous section, we know that those
terms are completable to a GQG, hence the density W{1,1}3 is also completable. Therefore,
we have expressed any term with two covariant derivatives as the sum of completable den-
sities (4.47), and we conclude that all those terms are completable of a GQG. The result is
actually stronger than that: since the densitiesW{1,1}1,2,3 can be completed to a GQG without
covariant derivatives of the Riemann tensor, this implies that any other term R{1,1} can
be completed to a GQTG that, when evaluated on a SSS metric, is equivalent to a GQG
without covariant derivatives.

As we see, the main point in the preceding analysis is that, while there are many
possible invariants formed from W and ∇, only few of them — say m of them — are
independent when evaluated on a SSS metric. Thus, we only need to show that there are
m invariants which are independent and completable to a GQG. We have found explicitly
such invariants for the case of two covariant derivatives, where we only needed to find
m = 3 of them, but this analysis can presumably be extended to terms with an arbitrary
number of covariant derivatives. Although finding examples of these completable terms is
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not straightforward, we see no reason to expect that this cannot be done.

4.3 Discussion

Based on the evidences provided in the last section, we are confident to state the following9

Conjecture 3 Any higher-derivative gravity Lagrangian can be mapped, order by order,
to a sum of GQG terms by implementing redefinitions of the metric of the form (4.2).

Basically, there are many theories satisfying the GQG condition — i.e., the condition of
the hypothesis of Theorem 2 in the previous chapter — and the amount of terms we can
modify in the action with field redefinitions is also very large. All in all, there so much
freedom that field redefinitions can always bring the most general action (4.8) into a sum
of GQG terms, order by order in the curvature. We have shown explicitly that this works
at least up to order eight, and there is a priori no reason to expect that an exception will
appear at higher orders.

The main result of the Chapter is Theorem 4, which essentially tells us that if for
a given order in curvature there is one GQG of the form L(gαβ, Rµνρσ), then all densities
of that type and order are completable to a GQG. Since we know by experience that
those terms exists, this result virtually proves that all L(Riemann) terms can be mapped
to a GQG. We would have to provide an explicit construction of these terms in order to
complete a formal proof. As we mentioned before, such systematic construction must be
possible, but has not been carried out yet only because it is a highly laborious task.

On the other hand, we have seen that the densities that contain explicit covariant
derivatives of the Riemann tensor do not seem to play any role. In fact, we have checked
that, up to eighth order, all the terms that contain derivatives of the Riemann tensor are
irrelevant — they can always be mapped to other terms that already appear in the action
upon the application of field redefinitions. More generally, we have been able to prove that
any term with two covariant derivatives can be completed to a GQG which is equivalent
to a GQG of the form L(gαβ, Rµνρσ) when evaluated on a SSS metric. Note that the last
claim is slightly different from stating that the original term can be completed to a GQG of
the form L(gαβ, Rµνρσ). It means that the GQG to which the original density is completed
may, in principle, contain covariant derivatives of the curvature, but it is guaranteed that
those terms vanish for a SSS metric. We argued that the previous conclusion can very
likely be extended to densities with an arbitrary number of covariant derivatives, and it
suggests a stronger conjecture:

Conjecture 4 Any higher-derivative gravity Lagrangian can be mapped, order by order,
to a sum of GQG terms that, when evaluated on a SSS metric, are equivalent to GQGs of
the type L(gαβ, Rµνρσ).

If correct, the second statement of this conjecture implies that we can study the spherically
symmetric black hole solutions of the most general higher-derivative gravity by analyzing

9Our conclusions also hold if one includes parity-breaking terms in the effective action, i.e., those that
involve the Levi-Civita symbol εµ1...µD . Although we did not consider those terms explicitly, all such terms
vanish for spherically symmetric configurations, hence all of them trivially belong to the GQG family.
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only the solutions of the Generalized quasi-topological gravities of the form L(gαβ, Rµνρσ)
— like the ones we found in Section 3.4.

The conclusion of this chapter is that the theories of the Generalized quasi-topological
class, that we defined by the condition in Theorem 2, are not just toy models with very
interesting properties. According to our results, they capture, at the very least, a very
large part of all possible effective theories of gravity, and very likely — if Conjecture 3 is
true — they capture any theory at all. From this point of view, we could think that GQG
theories correspond to the most general EFT expressed in a frame in which the study of
spherically symmetric black holes is particularly simple. While, in general, the profile of
the solutions will be different in every frame, we recall that black hole thermodynamics are
invariant under the change of frame. An intriguing possibility, that we will elaborate in
Chapter 6, is that, by studying the black hole thermodynamics in GQG theories, we could
be able to obtain the thermodynamic quantities of black holes in any higher-derivative
gravity.
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Asymptotically flat black holes
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5
Black holes in Einsteinian cubic gravity

In the first part of this thesis we studied several aspects of general higher-order gravities
that allowed us to classify them according to their properties. As a result, we identified
some particular theories with very interesting features, such as the family of Generalized
quasi-topological gravites introduced in Chapter 3. These theories have second-order lin-
earized equations on constant curvature backgrounds, and their equations of motion in the
presence of spherical symmetry have a very simple form. In addition, we argued in Chapter
4 that, very likely, the theories of this class provide a “basis” to construct the most general
EFT for gravity.

In this chapter and in the next one we study the black hole solutions of these theories.
We focus on the four-dimensional case, which, for obvious reasons, is the most interesting
one. Paradoxically, it is also the less explored. In fact, we are going to present the first
examples of genuine, non-perturbative black hole solutions of higher-derivative gravity in
four dimensions. Let us be more precise about the last statement. As we remarked in
Section 3.1, there are many examples of black hole solutions of higher-order gravity in the
literature, but most of them correspond to somewhat unnatural situations. Indeed, many of
the solutions studied so far either (a) come from a theory that lacks a well-defined Einstein
gravity limit [94,203–209], (b) or are the same solutions of Einstein gravity “embedded” in
some higher-order gravities [212,213], (c) or are solutions that are not a smooth deformation
of Einstein gravity solutions [210, 211]. We consider these situations of reduced interest
for our purposes. Case (a) is quite unrealistic because we are interested in corrections
to Einstein’s theory. Case (b) is in principle acceptable from the previous point of view,
but it does not provide us with any new information about the effects of higher-curvature
terms on black holes, since the theory is chosen in a way such that Einstein metrics are
still solutions. Finally, the solutions of the type (c) are also somewhat unphysical since
they do not exist in the Einstein gravity limit.

Let us, on the contrary specify the case that we consider to be interesting:

1. The theory has a well-defined Einstein-gravity limit, i.e., it contains the Einstein-
Hilbert term plus higher-derivative terms which are controlled by free couplings;
when the couplings are set to zero one recovers Einstein’s theory.

2. The spherically symmetric black holes of the theory are a smooth (and non-trivial)
deformation of Schwarzschild solution, in the sense that they reduce to it when the
higher-order couplings are set to zero.

This is the situation we consider to be most natural: the theory contains corrections
and these corrections modify the Einstein gravity solutions accordingly. Focusing on this
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case, one finds that there are few examples of exact black hole solutions of that type in the
literature, and all of them in higher dimensionsD ≥ 5. Indeed, exact spherically symmetric
black hole solutions have been constructed in Lovelock gravities [44, 54, 114–117], and in
Quasi-topological gravity [129, 130] and its higher-order extensions [132, 133]. The field
equations of those theories in the presence of spherical symmetry are simple enough so
that an analytic and explicit resolution is possible. For any other theory, the problem of
solving the equations of motion for spherically symmetric and static metrics is considerably
more involved. Now, all Lovelock and Quasi-topological theories are either topological or
trivial in D = 4, which is the reason why exact solutions modifying the Schwarzschild
black hole in a continuous way have not been constructed. Fortunately, we described in
Chapter 3 a family of theories that generalize Lovelock and Quasi-topological gravities —
indeed, they are named Generalized quasi-topological gravity — for which the spherically
symmetric equations of motion are still simple enough. Luckily enough, these theories do
exist in four dimensions.

The first non-trivial example of these theories inD = 4 is given by the Einsteinian cu-
bic gravity (ECG) term, P. This cubic density was first identified in Sec. 2.4 by the special
properties of its linearized equations, and then rediscovered in Sec. 3.4.3 for the remark-
ably simple form of its field equations in the presence of spherical symmetry. The aim of
this chapter is to study spherically symmetric black hole solutions in four-dimensional Ein-
steinian cubic gravity.1 We will be able to solve the equations of motion non-perturbatively
in the higher-order coupling and we will find that its black hole solutions have remarkable
differences with respect to their Einstein gravity counterparts.

As guaranteed by Theorem 2, which is satisfied by Einsteinian cubic gravity inD = 4,
the problem of finding black hole solutions in ECG is reduced to solving a second-order
ODE. We will find explicitly that equation and we will show that there is a unique asymp-
totically flat black hole solution for every value of the mass. The profile of these solutions
has to be constructed numerically, but one of the most amazing properties of ECG is that
the thermodynamic properties — entropy and temperature — of these black holes can be
computed exactly, without making use of any numerical methods or approximations. We
will see that for large masses, ECG black holes reduce to the usual Schwarzschild solution
plus a small deviation — interestingly, we will argue that this perturbation captures the
leading-order correction to Schwarzschild’s black hole in any higher-derivative gravity. On
the other hand, we will see that for small masses, ECG black holes have radically different
properties from those in Einstein gravity.

5.1 Review of Einsteinian cubic gravity

We consider the cubic-curvature extension of the Einstein-Hilbert action given by

SECG =
1

16πG

∫
d4x
√
|g|
{
−2Λ +R− µL4

8
P
}
, (5.1)

1When we refer to our theory as “Einsteinian cubic gravity” we imply that the Lagrangian contains the
Einstein-Hilbert term plus the cubic correction P.
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where P is the Einsteinian cubic gravity density,

P = 12R ρ σ
µ ν R α β

ρ σ R µ ν
α β +R ρσ

µν R αβ
ρσ R µν

αβ − 12RµνρσR
µρRνσ + 8R ν

µ R ρ
ν R

µ
ρ (5.2)

Also, µ is a dimensionless coupling,2 while L is a length scale that determines the distance
at which the gravitational interaction is modified. Equivalently, it is related to the energy
scale of new physics by E ∼ 1/L. For arbitrary values of µ, the cubic term corrects the
Einstein field equations, which in this case read

Eµν = Gµν + Λgµν −
µL4

8

(
PµσρλRν

σρλ − P
2
gµν + 2∇α∇βPµανβ

)
(5.3)

where

P αβ
µν = 36R

[α|
[µ|σ ρR

σ|β]ρ
|ν] + 3R σρ

µν R αβ
σρ − 12R

[α
[µ R

β]
ν]

− 24RσρR
[α

σ[µ|ρ δ
β]

|ν] + 24R [α|
σ Rσ[µδ

|β]
ν] .

(5.4)

Notice that these equations are in general of fourth order on account of the doble derivative
of Pµανβ . During the first part of this thesis we learned several interesting properties of
Einsteinian cubic gravity. Let us collect here some of the facts we already know about this
theory.

1. The linearized equations of (5.1) around maximally symmetric backgrounds are of
second order. Namely, they read

ELµν =
1

16πGeff
GLµν , (5.5)

where Geff is the effective Newton’s constant and GLµν is the linearized cosmological
Einstein tensor. Hence, the theory only propagates a massless graviton on the vac-
uum. This property is actually satisfied by the Lagrangian of (5.1) in any spacetime
dimension, not only in D = 4, as we explained in Sec. 2.4. The effective cosmological
constant of the previous theory is obtained by solving the equation

Λeff −
µ

9
L4Λ3

eff = Λ , (5.6)

while the effective Newton’s constant is given by

Geff =
G

1− µ
3L

4Λ2
eff

. (5.7)

2. It satisfies Theorem 2 of Chapter 3, so that we know it possesses static, spherically
symmetric solutions of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(2) , (5.8)

i.e., characterized by a single function. In addition, since the field equations of (5.1)
2The normalization factor of −1/8 is conventional.
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are of fourth order, Theorem 2 tells us that the equation for f(r) can be reduced
to a second-order differential equation. Thus, the problem of finding spherically
symmetric solutions is greatly simplified with respect to other theories.

3. Finally, from the point of view of EFT, the ECG term P represents the leading-order
parity-preserving correction to Einstein gravity. Since parity-breaking terms do not
contribute to the field equations in the presence of spherical symmetry, this means
that the theory above captures, modulo field redefinitions, the most general leading
correction to Schwarzschild black hole in any higher-order gravity.

The third item justifies the search of black hole solutions in ECG, since, at least per-
turbatively in the coupling µ, they represent the most general correction to Schwarzschild
geometry. In this chapter, however, we aim to find fully non-perturbative solutions of the
equations of motion of ECG, and this will be possible thanks to their simple form for SSS
metrics, as remarked in the second item.

5.2 Asymptotically flat black holes

5.2.1 Spherically symmetric solutions of ECG

Let us start by computing the equations of motion of (5.1) for a SSS metric. We already
know that ECG has spherically symmetric solutions of the form (5.8), so that we only need
to obtain the equation that the function f(r). However, it is illustrative to show explicitly
that the solutions have in fact the form (5.8). Thus, we consider a general SSS metric
ansatz of the form

ds2
N,f = −N(r)2f(r)dt2 +

dr2

f(r)
+ r2dΩ2

(2) . (5.9)

As explained in Chapter 3, we can obtain the equations of motion forN and f by evaluating
the action in this metric ansatz and considering the reduced action as a functional of N
and f . Integrating by parts several times, we find that we can write the reduced action
functional S[N, f ] for ECG (5.1) as

S[N, f ] =
1

2G

∫
dr

{
N(r)

dEf
dr

+O
(
N ′2/N

)}
, (5.10)

where O
(
N ′2/N

)
represents terms at least quadratic in derivatives of N , and

Ef ≡ −
1

3
Λr3 − (f − 1)r − µL4

4

[
f ′3 + 3

f ′2

r
− 6f(f − 1)

f ′

r2
− 3ff ′′

(
f ′ − 2(f − 1)

r

)]
.

(5.11)
Thus, when we take the variation with respect to f , we find that the equation δS/δf = 0
is solved by N ′(r) = 0, in agreement with Theorem 2. Thus, we fix N(r) = 1. On the
other hand, the variation with respect to N evaluated on N(r) = 1 yields

δS

δN

∣∣∣∣
N=1

=
1

2G

dEf
dr

= 0 , (5.12)
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and this is the only equation we have to solve. Equivalently, one may evaluate directly the
field equations (5.3) on the single-function ansatz (5.8) and check that

Ett = −f2Err ∝
dEf
dr

. (5.13)

Since both components are identical, it is consistent to set N(r) = 1, and the equation
we obtain for f(r) is the same as the one we get from the reduced action. Then, since
the equation (5.12) has the form of a total derivative, we can integrate it once to get
Ef/(2G) = c, where c is an integration constant. But we already determined in full
generality in Sec. 3.3 that this constant is always the ADM mass, c = M . Hence, we can
finally write the equation for f(r) as

− (f − 1)r − µL4

4

[
f ′3 + 3

f ′2

r
− 6f(f − 1)

f ′

r2
− 3ff ′′

(
f ′ − 2(f − 1)

r

)]
=

1

3
Λr3 + 2GM .

(5.14)
In accordance with Theorem 2, the problem is reduced to solving a second-order differential
equation, where the ADM mass appears as an integration constant (we will check in a
moment that M is in fact the total mass). Note that, when the higher-order terms are set
to zero, µ = 0, we obtain immediately the Schwarzschild-(A)dS solution,

f0(r) = 1− 2GM

r
− Λr2

3
. (5.15)

This is not a solution of (5.14) when µ 6= 0, and in that case the solution will represent a
smooth deformation of the previous function f0(r). The rest of the chapter is devoted to
the study of the black hole solutions of Eq. (5.14) and their properties. Since our interest
in this chapter is to study asymptotically flat solutions, from now on we set Λ = 0. We
will recover the cosmological constant in Chapter 8, where we will study asymptotically
AdS solutions.

5.2.2 Perturbative solution

Given the complicated form of the differential equation (5.14), finding an exact, analytic
solution is a complicated task. A first possibility to simplify the problem is to treat the
parameter µ — or equivalently, the length scale L — as a small parameter, and to find the
solution perturbatively in µ. At leading order in the coupling, the solution of (5.14) reads

f(r) = 1− 2GM

r
− µL4

(GM)4

(
27(GM)6

r6
− 46(GM)7

r7

)
+O(µ2L8) . (5.16)

Actually, this is the approach that makes sense according to Effective Field Theory. In
general, one would expect that, in the most general EFT for gravity — as the one in
Eq. (4.8) — one can expand the metric function f(r) as a series in the length scale L:

f(r) = f0(r) + L4f4(r) + L6f6(r) + L8f8(r) + . . . (5.17)

Note that we are omitting the term L2 because the quadratic curvature densities do not
introduce corrections to the Schwarzschild solution, f0. For this reason, the first correction
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in the most general EFT is related to the cubic terms, that are responsible for the term
L4f4(r) in (5.17). We also saw, in Section 4.2.1, that using field redefinitions all cubic
terms can be mapped to the ECG density. Thus, the perturbative solution (5.16) gives us
the factor f4(r) in (5.17), this is, the most general leading perturbative correction to the
Schwarzschild solution in any higher-derivative gravity.

It would be of course interesting to stop here to analyze the properties of this modified
Schwarzschild solution (5.16). However, we do not do that because we will be able to study
instead the properties of the exact, non-perturbative black hole solutions of ECG. Let us
simple note that, at the level of the horizon rh ∼ 2GM , the corrections in (5.16) are of
the order of L4/(GM)4 ∼ L4/r4

h. Hence, L is indeed related to the length scale at which
the law of gravitation is corrected: black holes whose size is much larger than L are barely
modified, but those with radius of order L or smaller have important corrections. Of
course, when rh ∼ L, the perturbative expansion breaks down.

Now, forgetting about EFT considerations and focusing on the theory (5.1), we may
try to use a series expansion in µL4 in order to solve the equation (5.14). In fact, the
expression (5.16) only represents an accurate solution of Eq. (5.14) when µL4/(GM)4 is
very small, so we might expect that including higher powers of µL4 we could get a solution
valid even when µL4/(GM)4 is large. With this purpose, we expand f(r) as

f(r) =
∞∑
n=0

(
µL4

)n
fn(r) , (5.18)

and plugging this into (5.14) we can solve order by order for the functions fn(r). However,
when one analyzes the behaviour of fn for high-enough values of n, one concludes that
the radius of convergence of the series (5.18) is zero. This implies that, strictly speaking,
the solution of equation (5.14) cannot be expanded as a perturbative series in µ around
µ = 0. The reason must be that the solution is non-perturbative, namely, it must contain

terms such as e−
g2(r)√
µ , which of course are invisible to the perturbative expansion — we will

provide evidence of this in the next subsection. Let us finally note that the fact that the
series (5.18) does not converge does not imply that the leading term (5.16) is inaccurate:
it does capture the leading correction providing that µL4/(GM)4 << 1.

5.2.3 Exact solution

We now address directly the problem of obtaining an exact solution of Eq. (5.14). Since it
is a second-order differential equation, we need to fix two boundary conditions in order to
find a solution. In the case at hand, we are looking for asymptotically flat black holes, and
this naturally implies two conditions: asymptotic flatness and the existence of a regular
horizon. Let us show how these conditions fix the solution by examining the solutions of
the equation in those limits.

Asymptotic region

The condition of asymptotic flatness implies that

lim
r→∞

f(r) = 1 . (5.19)
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In order to determine whether this condition fixes an integration constant of equation
(5.14), let us solve it in the asymptotic region r → ∞. A particular solution, fp, can be
found by assuming a 1/r expansion, and in that case we get

fp(r) = 1− 2GM

r
− 27µL4(GM)2

r6
+O

(
1

r7

)
. (5.20)

Observe that the 1/r coefficient is not modified by the corrections, hence the parameter
M is in fact the ADM mass. Now, there must be additional solutions since Eq. (5.14) is a
second-order differential equation. In order to find them, let us write the general solution
in the asymptotic region as the sum of the particular solution fp plus another piece fh,

f(r) = fp(r) + fh(r) . (5.21)

Since limr→∞ f(r) = 1, fh must vanish asymptotically, and we can assume it is arbitrarily
small. Then, inserting (5.21) in Eq. (5.14) and keeping only linear terms in fh, we get a
homogeneous equation for fh

Af ′′h +Bf ′h + Cfh = 0 . (5.22)

Asymptotically, we find that the coefficients A, B and C behave as

A =
9µL4GM

2r2

(
1− 2GM

r

)
+O

(
1

r4

)
, (5.23)

B = −9µL4GM

r3

(
1− GM

r

)
+O

(
1

r5

)
, (5.24)

C = −r +
9µL4GM

r4
+O

(
1

r5

)
. (5.25)

Keeping only the leading term in each case, the general solution of equation (5.22) reads

fh = c1r
3/2I3/5

(
2
√

2r5/2

15L2
√
µGM

)
+ c2r

3/2K3/5

(
2
√

2r5/2

15L2
√
µGM

)
, (5.26)

where Iα and Kα are modified Bessel functions of the first and second kind, respectively,
and c1,2 are two integration constants. Now let us examine the behaviour of this solution,
for which we have to distinguish two cases: µGM > 0 and µGM < 0. Since we also assume
that GM > 0, these cases simply correspond to µ > 0 and µ < 0. In the former case, the
argument of the modified Bessel functions in (5.26) is real and positive, and in this case
they behave qualitatively as

fh ∼ c1e
2
√

2r5/2

15L2√µGM + c2e
− 2

√
2r5/2

15L2√µGM when r →∞ . (5.27)

Hence, in order to get an asymptotically flat solution we must set c1 = 0. Thus, the
asymptotic flatness condition is fixing one integration constant of Eq. (5.14), leaving a one-
parameter family of solutions. The remaining constant will be then fixed by the regular
horizon condition, as we will see in a moment.
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Let us then consider the other possibility, µ < 0. In this case, the argument of the
Bessel functions is a pure imaginary number, which implies that they acquire an oscillatory
character and we get

fh ∼ c1r
1/4 sin

(
2
√

2r5/2

15L2
√
µGM

)
+ c2r

1/4 cos

(
2
√

2r5/2

15L2
√
µGM

)
when r →∞ . (5.28)

These solutions are sick because they do not decay at infinity, but also because they oscillate
wildly when r →∞. Thus, the only way of getting an asymptotically flat solution in this
case is to set c1 = c2 = 0. This means that there is a unique asymptotically flat solution
to the equation (5.14) and we cannot impose further conditions. In particular, we will
not be able to impose the regular horizon condition, and as a consequence, there are no
asymptotically flat black holes in the case µ < 0. For this reason, we will assume from now
on that µ ≥ 0.

Before passing to the next section, we can extract some interesting conclusions from
the form of the asymptotic solution. As we remarked, the integration constant c2 in (5.26)
will in general be non-vanishing. Note that this term is non-analytic in µ, in the sense
that it cannot be expanded in a Taylor series around µ = 0. This explains why in the
previous section we were unable to obtain a solution by performing a series expansion in
the parameter µ: the solutions of Eq. (5.14) are typically non-perturbative in µ. Keeping
the discussion about the term with c2 in (5.26), we see that it decays at infinity faster
than exponentially, and this has a nice interpretation in terms of the degrees of freedom
that propagate in this theory. Let us recall that a massive mode of mass m generically
produces a contribution that decays as ∼ e−mr — we saw this explicitly in Sec. 2.5. Now,
Einsteinian cubic gravity does not propagate additional modes in maximally symmetric
backgrounds — in the case at hand, Minkowski spacetime — because they are infinitely
massive. However, as we discussed at the end of Chapter 2, there could be additional modes
propagating in less symmetric backgrounds. Here, the fact that we get a contribution of

the form ∼ e
− 2

√
2r5/2

15L2√µGM to the solution suggests that, in the background of a black hole,
we have additional degrees of freedom, whose mass depends on the position and would be
of the order

m ∼ 2
√

2r3/2

15L2
√
µGM

. (5.29)

We observe that he mass of these hypothetical modes diverge for r →∞, so that they could
never escape to infinity and they would be confined to a finite region in the vicinity of the
black hole. This nice intuition could be confirmed by performing perturbation theory in the
background of a black hole, but such analysis is beyond the scope of this thesis. Likewise,
let us note that in the case µ < 0 the mass (5.29) would be imaginary, so that the additional
modes would be tachyons. This is yet another reason to discard a negative coupling.

Near-horizon region

We have just seen that the asymptotic flatness condition fixes one of the integration con-
stants of the equation (5.14), leaving a one-parameter family of solutions. Thus, in order
to determine a solution we still have to impose another condition. Since we intend to ob-

138



Chapter 5. Black holes in Einsteinian cubic gravity

tain black hole solutions, the remaining condition is nothing but the existence of an event
horizon. In the metric (5.8), a horizon is identified simply by the condition f(rh) = 0
for some rh > 0. However, in order for the horizon to be regular, we must also demand
continuity and differentiability of the metric at that point. Thus, we assume the existence
of some rh > 0 such that f(rh) = 0 and we demand that f(r) can be expanded in a power
series around r = rh, as

f(r) =

∞∑
n=1

an(r − rh)n , (5.30)

for some coefficients an. At first sight, it is quite puzzling how such a condition could
impose any constraint in the solution, since we are just demanding analyticity at the point
rh, which, in addition, is undetermined. However, let us insert (5.30) in the equation
(5.14). Expanding also the equation order by order in (r − rh), we find an expression of
the form

∞∑
n=0

Cn(r − rh)n = 0 , (5.31)

which implies that every term must vanish independently, this is, Cn = 0 ∀n ≥ 0. This
provides us with a system of equations for the coefficients an of the near-horizon expansion
(5.30). The first few equations read

C0 =− 2M + rh − µL4a
2
1

4

(
a1 +

3

rh

)
= 0 , (5.32)

C1 = 1− a1rh −
3a2

1µL
4

4r2
h

= 0 ,

C2 = − a1 − a2rh

+ µL4

[
a3

(
9a2

1

4
+

9a1

2rh

)
+ a2

(
−9a1

2r2
h

− 3a2
1

rh
+

3

2
a1a2

)
+

9a2
1

4r3
h

+
3a3

1

2r2
h

]
= 0 .

The equation C1 = 0 gives us a relation between a1 and rh that allows us to obtain a1(rh):

a
(±)
1 =

2rh

(
−r2

h ±
√
r4
h + 3µL4

)
3µL4

=
2rh

r2
h ±

√
r4
h + 3µL4

(5.33)

In order to describe a black hole solution we must have a1 > 0, so out of the two possible
roots a(±)

1 we must choose a(+)
1 (remember that we take µ > 0). Note also that, in the limit

µ → 0, this root reduces to the value of a1 in the Schwarzschild solution: limµ→0 a
(+)
1 =

1/rh. Now, using this relation in the equation C0 = 0 we can get the mass as a function
of rh,

2GM =
4r3
h

27µ2L8

(
2r6
h +

(
−2r4

h + 3µL4
)√

r4
h + 3µL4

)
. (5.34)
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Although it is not apparent written in this way, this expression also reduces to the Schwarzschild
value 2GM = rh when µ→ 0. Let us remark that the expressions (5.34) and (5.33) contain
no approximations and are exact. They appear as consistency conditions for the existence
of a regular horizon, and any black hole solution must satisfy them. The fact that we can
obtain explicit and analytic expressions for M(rh) and a1(rh) is related to the very special
form of the equations of motion of Einsteinian cubic gravity (5.1), and it is not possible to
obtain an analogous result for other higher-order gravities.

Now, one can check that the relation M(rh) is one-to-one for M ≥ 0, rh ≥ 0, and
this allows us to invert (implicitly) the relation (5.34) in order to get rh(M). At the same
time, we obtain the relation a1(M) using (5.33). Thus, the two first equations in (5.32)
fix the radius rh and the coefficient a1 as functions of the mass. Let us new take a look at
the next equations. We see that from C2 = 0 we can get a3 as a function of a2, a1 and rh,

a3 =

(
9a2

1

4
+

9a1

2rh

)−1 [
a1 + a2rh
µL4

− a2

(
−9a1

2r2
h

− 3a2
1

rh
+

3

2
a1a2

)
− 9a2

1

4r3
h

− 3a3
1

2r2
h

]
, (5.35)

but since a1 and rh both are fixed by the mass, this means that we get a relation of the form
a3 = a3(a2;M). Likewise, from the equation C3 = 0 (that we do not show here) we obtain
a4 as a function of a3, a2, a1 and rh, but replacing the results of the previous equations, we
end up with an expression of the form a4(a2;M) Examining the following equations, one
finds that the pattern is general: for a fixed mass, all the coefficients an≥3 are determined
by the value of a2. In other words, the full near-horizon expansion (5.30) is determined
once a2 is specified. Hence, despite Eq. (5.14) being a second-order equation, we find only
a one-parameter family of solutions possessing a regular horizon. This is telling us that
imposing the existence of such horizon is actually fixing one of the integration constants of
(5.14). The reason must be that there are other solutions that possess a “singular horizon”,
e.g., this happens if the function f(r) vanishes at some r = rh > 0, but is not differentiable
there. In fact, the equation (5.14) is singular at the points in which f(r) = 0, because
the coefficient of f ′′ (which is the highest derivative) vanishes. Thus, on general grounds,
the solution will not be differentiable at those points. What we have shown is that the
solutions that are differentiable only contain one free parameter, which can be chosen to
be a2 ≡ f ′′(rh)/2.

Complete solution

In the two previous items we have learned that Eq. (5.14) possesses a one-parameter
family of asymptotically flat solutions, and another one-parameter family of solutions with
a regular horizon. Thus, we expect that there exists at least one solution satisfying both
conditions; such solution would represent a black hole. In order to find it we must solve
Eq. (5.14) numerically. The resolution is a bit tricky because the equation is highly stiff
and also because the boundary conditions at the horizon are non-standard. We comment
here on the basic idea behind the numeric resolution, and keep the details for Appendix (C).

First, we fix a mass M for which we want to compute the solution. Then, we start
the numerical method at the horizon. Using the equations (5.34) and (5.33) we determine
the radius rh and the derivative of f ′(rh) = a1. As we discussed earlier, this must be fixed
if we want to produce a regular solution. Then, the initial condition to start the numerical
method is the value of the second derivative, f ′′(rh) = 2a2. We must choose this parameter
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so that the resulting solution is asymptotically flat. Since the asymptotic flatness condition
imposes one constraint, we expect that there exists (at least) one value of a2 that yields an
asymptotically flat solution. That value can be found by using the “shooting method”: we
search for a value of a2 such that the numerical solution, extended up to sufficiently large r,
overlaps with the asymptotic expansion (5.20) — see Appendix (C). The conclusion, after
gathering large empirical evidence, is that the parameter a2 yielding an asymptotically flat
solution always exists and is unique for all µ ≥ 0, M > 0. Hence, Eq. (5.14) possesses a
unique solution corresponding to an asymptotically flat black hole.

Let us then examine the profile and properties of these solutions. In Fig. 5.1 we show
the profile of f(r) for a fixed mass and several values of the ECG coupling and we compare
these solutions with the Schwarzschild one. We can see several differences. First, we note
that for large enough r the solutions are almost indistinguishable from the Schwarzschild
one, and the differences become more important as we move to lower values of r. Focusing
on the horizon — corresponding to the point where f(r) vanishes — we see that black holes
in ECG are larger than its Einstein gravity counterparts, and the discrepancy grows when
we increase the value of µL4/(GM)4. The exact relation between the mass M and the
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Figure 5.1: Asymptotically flat black holes in Einsteinian cubic gravity: profile of f(r) for a fixed
mass M and several values of the ECG coupling µL4. The red line corresponds to the usual
Schwarzschild blackening factor, µ = 0.

radius rh of these black holes is exactly given by the expression (5.34) that we found before.
Using it, we plot in Fig. 5.2 the horizon radius as a function of the mass for ECG black
holes. For convenience, we show rh and GM in units of the natural length scale µ1/4L,
which allows us to capture all the cases using a single curve. For large masses we recover
the Schwarzschild prediction, but we observe that in the limit M → 0 the behaviour is
drastically different. Solving rh(M) from (5.34) in that limit, we get

rh =

√
3µ1/6L2/3G1/3

21/3
M1/3 when M <<

µ1/4L

G
(5.36)

As an interesting observation, note this relation reminds one of a usual matter distribution,
M ∝ ρ · r3

h, where the “density” in this case would be of the order of ρ ∼ 1/(GL2). But the
most dramatic difference with respect to the Schwarzschild solution occurs in the interior
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Figure 5.2: We plot the horizon radius rh as a function of the mass for ECG black holes (blue
line) and we compare it with the usual relation rh = 2GM for the Schwarzschild black hole (red
line). We have normalized rh and GM by the natural length scale of the system, µ1/4L. For large
masses, we recover the Schwarzschild value rh ≈ 2GM , but for small masses the relation is instead
rh ∝M1/3.

of the black hole, which in practice can be described by the metric (5.8) using the negative
part of f(r), shown in Fig. 5.1 for different cases.3 The main difference is that, while f(r)
diverges at r = 0 in the case of the Schwarzschild solution, the ECG black holes have a
finite and smooth f(r) everywhere. Indeed, looking at the behaviour of f(r) near r = 0
we see that it always takes the form

f(r) = −a+ br2 +O(r3) when r → 0 , (5.37)

for some constants a and b. Despite having an apparent smooth character, the point r = 0
is still a singularity, as can be checked by computing the Kretschmann invariant,

RµνρσR
µνρσ =

4(f(0)− 1)2

r4
+O

(
1

r2

)
when r → 0 . (5.38)

Nevertheless, the singularity problem is improved with respect to the Schwarzschild black
hole, for which the Kretschmann invariant diverges as ∼ 1/r6. Furthermore, the character
of the singularity in ECG black holes is also significantly different with respect to the one
in a Schwarzschild black hole, in the following sense. Physically, the singularity in the
black hole interior is associated with the divergence of the tidal forces at some certain
moment. In a Schwarzschild black hole, the tidal forces “stretch” in the radial direction
and “squash” in the angular directions, and both effects diverge when the singularity is
reached. However, in a ECG black hole, the singularity is entirely caused by the collapse
of the angular directions, and only the tidal forces in the angular directions diverge. In
fact, one can check that, if one removes the angular components of the metric (5.8), the
resulting line element ds2

2 = −f(r)dt2 + dr2/f(r) is completely regular at r = 0. This
3Of course, the coordinates we are using are not valid in order to probe the solution beyond the horizon,

but since f(r) is analytic, an analytic extension can be performed exactly as in the case of Schwarzschild
geometry.
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implies, for instance, that radial geodesics of the metric (5.8) that fall inside the black
hole do not find any singularity at r = 0, and suggests that the metric could actually be
extended beyond r = 0. This is a thrilling possibility that could be explored elsewhere.

Let us conclude this section showing the solutions in Fig. 5.1 from a different per-
spective. In that figure, we plotted the profile of the solutions for a fixed mass and several
values of the coupling, which was useful in order to compare the ECG solutions to the
Schwarzschild one. But from a physical perspective, it is more illuminating to fix a value
of the coupling and plot the solutions for different masses. We show the corresponding plot
in Fig. 5.3. There, we see that, for large enough masses, the exterior solution is similar to
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Figure 5.3: Black holes of different masses for a fixed value of the ECG coupling µL4. Red tones
denote larger masses and blue tones smaller ones. The zero mass limit of these black holes is not
flat space.

the Schwarzschild one, but the interior solution is always drastically different. For smaller
masses, the exterior solution also becomes very different, and we observe a fact that was
unnoticed in Fig. 5.1: the zero mass limit of these black holes is not flat space. In fact, as
we decrease the mass, the horizon radius tends to zero, but we observe quite clearly that
there is a “potential well” of length ∼ µ1/4L that is present for arbitrarily small masses.
Thus, the limit M → 0 of these solutions is quite exotic: it seems to correspond to a black
hole of vanishing mass and area. In addition, the horizon, which is reduced to a point,
is placed at an infinite distance,4 which further characterizes this solution as an extremal
black hole. We will learn more about this limit in the next section.

5.3 Black hole thermodynamics

After constructing the spherically symmetric black hole solutions of Einsteinian cubic grav-
ity, we turn our attention to the thermodynamic properties of these black holes. We already
know that the parameter M entering in the equation (5.14) is the total mass — or energy
— of the system. We wish now to compute the temperature and entropy [145, 153–155]
of these black holes and to determine their dependence on M . As we show below, it is a

4This follows from the fact that the behaviour of f(r) near r = 0 for these solutions is f(r) ∝ r2.
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formidable property of ECG that one can determine these quantities analytically and fully
non-perturbatively in the higher-order coupling.

Temperature

Let us first identify the Hawking temperature [153] of ECG black holes. This can be
done by considering the Euclidean version of the black hole metric (5.8) and finding the
periodicity of the Euclidean time τ = it. Let us then write

ds2
E = f(r)dτ2 +

dr2

f(r)
+ r2dΩ2

(2) , (5.39)

and let us study the behaviour of this metric near r = rh, which in the Lorentzian case
corresponds to the horizon. Using the expansion (5.30) and introducing the new radial
coordinate ρ = 2

√
r−rh
a1

, we get

ds2
E ≈ ρ2

(
a1dτ

2

)2

+ dρ2 + r2
hdΩ2

(2) when ρ→ 0 . (5.40)

Now, observe that the metric of the plane can be written as ρ2dφ2 +dρ2, where the coordi-
nate φ has period 2π; otherwise, that metric would represent a cone, with a corresponding
singularity at ρ = 0. For the same reason, the Euclidean time τ in (5.40) must have a
period β = 4π/a1 in order to avoid a conical singularity. Since β is the inverse of the
Hawking temperature T , we simply get

T =
a1

4π
. (5.41)

The same result can be found by using the identification T = κ
2π , where κ is the surface

gravity of the black hole. This result is general for any spherically symmetric black hole
with metric (5.8), but let us now apply it to ECG black holes. Remarkably enough, in
the previous section we found an analytic expression for the parameter a1 in terms of the
horizon radius — see (5.33). Thus, the Hawking temperature of ECG black holes reads,
exactly

T =
rh

2π
(
r2
h +

√
r4
h + 3µL4

) . (5.42)

This expression, together with the relation M(rh) given in (5.34) allows us to obtain the
thermodynamic relation T (M). Alternatively, one can derive the following “equation of
state” relating T and M by combining the equations in (5.32) and (5.41),

πGMT − µ(2πTL)4 −
(
2πGMT + µ(2πTL)4

)3/2
= 0 . (5.43)

This equation can be solved explicitly for M , yielding a complicated expression. Note that
for µ = 0 we recover the usual expression for the temperature of a Schwarzschild black
hole, TSchw. = (8πGM)−1. The relation T (M) for ECG black holes is plotted in Fig. 5.4
and we observe remarkable differences with respect to the situation in Einstein gravity.
As usual, for large masses we reproduce the EG prediction, but the behaviour for small
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Figure 5.4: Hawking temperature as a function of its mass for Schwarzschild (red) and the ECG
solution (blue). We normalize both quantities using the natural scale in each case. We observe the
existence of a maximum temperature in the case of ECG black holes —see Eq. (5.45). Thus, for
a given temperature T < Tmax there are two different black hole solutions in ECG, one large and
one small. For M → 0 the temperature of black holes in ECG vanishes, just the opposite as for
Einstein gravity.

masses is just the opposite: while the temperature of a Schwarzschild black hole diverges
when M → 0, the one of an ECG black hole vanishes in that limit. In fact, the relation
T (M) near M = 0 reads

T =
1

2π

(
GM

2µL4

)1/3

when M <<
µ1/4L

G
. (5.44)

Note also that in this limit the temperature is proportional to the horizon radius, T ∼
rh

2π
√

3µL4 . For M = 0 we get rh = T = 0, so the corresponding solution in that case is an
extremal black hole of vanishing area, as we advanced previously.

Another interesting observation that we extract from Fig. 5.4 is that the temperature
of black holes in Einsteinian cubic gravity is bounded from above: there is a maximum
temperature Tmax that is reached at a certain mass Mmax. Extremizing T with respect to
M in (5.43), we find

Tmax =
1

6πµ1/4L
, Mmax =

8µ1/4L

27G
. (5.45)

The radius corresponding to these black holes of maximum temperature is simply rh,max =
µ1/4L. Notice that these interesting features are highly non-perturbative in the coupling
and can never be seen in a perturbative approach.

Entropy and first law

Let us now compute the entropy of these black holes. The black hole entropy in higher-
derivative gravity is no longer proportional to the area of the horizon; instead, it is given
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by Wald’s formula [170–172], which reads

S = −2π

∫
H
d2x
√
h

δL
δRµνρσ

εµνερσ , (5.46)

where the integral is taken over the bifurcation surface of the horizon and δL
δRµνρσ

is the
Euler-Lagrange derivative of the gravitational Lagrangian as if the Riemann tensor were
an independent variable, this is,

δL
δRµνρσ

=
∂L

∂Rµνρσ
−∇α

(
∂L

∂∇αRµνρσ

)
+ . . . (5.47)

In addition, h is the determinant of the induced metric on the horizon and εµν is the
binormal of the horizon, normalized as εµνεµν = −2.

Applying Wald’s formula (5.46) to our theory (5.1), we get

S =
1

4G

∫
H
d2x
√
h

[
1− µL4

16
Pµναβε

µνερσ
]
, (5.48)

where Pµναβ is the tensor defined in (5.4). Now we have to apply it to the black hole
metric (5.8), evaluated at the horizon r = rh. In the coordinates r and t we are using, the
only non-vanishing components of the binormal are εtr = −εrt = 1 (note that the sign is
actually irrelevant). Thus, evaluating the expression (5.48) we obtain

S =
πr2

h

G

[
1− µL4

4
Ptrtr

]
, (5.49)

where have already performed the integration on the horizon, which is possible because
Ptrtr must be constant. In fact, evaluated at r = rh this quantity reads

Ptrtr

∣∣∣
r=rh

= −3f ′(rh) (rhf
′(rh) + 4)

r3
h

. (5.50)

Amazingly, this expression does not depend on second derivatives of f , and on the other
hand we have f ′(rh) = 4πT . In addition, we know the explicit relation between T and rh,
which is given by (5.42). Putting everything together and implementing few simplifications,
we obtain the following exact expression for the entropy written in terms of the radius

S =
2π
(
r4
h − 3µL4

) (√
3µL4 + r4

h − r
2
h

)
3GµL4

. (5.51)

Using then the Eqs. (5.34) and (5.42), we can write in a parametric way the thermodynamic
relations S(M) or S(T ). Again, it is a very non-trivial property of Einsteinian cubic gravity
the fact that we can find a closed and exact expression for the entropy of black holes.

Looking at the expression (5.51), we observe that something quite funny happens
with the entropy of these black holes: it vanishes for rh = (3µ)1/4L (which corresponds to
a mass GM = 2

(
2−
√

2
)

(µ/27)1/4L). For even smaller values of the radius (or the mass),
the entropy becomes negative, and for rh → 0 we get S(rh = 0) = −2π

√
3µL2/G. Objects

with negative entropy should be regarded as unphysical, and this is a possibility that we
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might consider; perhaps there is a minimum mass for which a black hole can be described
semiclassically in an effective theory such as (5.1). However, all these black holes possess
finite temperature and mass, and they are perfectly regular, so this conclusion seems to
be unjustified. Let us recall that, unless an explicit definition of the entropy as a count
of microstates is given, the thermodynamic entropy of a system is defined only up to the
addition of a constant, so the negative entropies we are obtaining might not be meaningful.
In the case of gravity, this is manifest in the freedom to add topological terms in the action.
In fact, there is no reason to discard a Gauss-Bonnet term in the action (5.1), since, as we
saw in Section 3.4, it is a member of the family of Generalized quasi-topological gravities,
in which we are interested. Of course, we did not include it in (5.1) because it has no
effect on the equations of motion. However, it has an effect on black hole entropy — see
e.g., [173, 214]. Thus, let us add a Gauss-Bonnet term to the gravitational Lagrangian in
(5.1) i.e., L → L+ αL2

16πGX4, where X4 = R2 − 4RµνR
µν +RµνρσR

µνρσ, and where α is an
arbitrary dimensionless coupling. The effect of that term is to add a universal constant
contribution to the entropy of any horizon with spherical topology. Once this is taken into
account, the entropy of ECG black holes reads

S =
2π
(
r4
h − 3µL4

) (√
3µL4 + r4

h − r
2
h

)
3GµL4

+ 2πα
L2

G
, (5.52)

and now its value in the zero-size limit is S(rh → 0) = 2π(α−
√

3µ)L2/G. Hence, taking
α ≥

√
3µ we avoid negative entropies. We recall at this point that the zero-mass limit

of these solutions is not actually flat space, but rather a massless, extremal black hole.
Essentially, the coupling α of the Gauss-Bonnet term determines the entropy of this exotic
black hole. Such object could have in principle a finite entropy, but since it has vanishing
temperature and mass, it seems reasonable that it has vanishing entropy too. Thus, from
now on we set α =

√
3µ so that S(M = 0) = 0.

After the preceding discussion, let us us further explore the properties of the entropy
(5.52). First, using (5.34) and (5.42) it is possible to show that the First law of black hole
mechanics

dM = TdS , (5.53)

holds exactly. This is an extraordinary check of our calculations, since the three physical
quantities appearing in this expression — namely, the Abbott-Deser (or ADM) mass M ,
the Wald entropy S and the Hawking temperature T — have been computed independently.

In Fig. (5.5) we plot the entropy as a function of the mass and as a function of
the temperature both for Einstein gravity and for ECG. It is interesting to look at the
behaviour of the entropy in the limits of large and small masses. We get in those cases

S =


4πGM2 + 2π

√
3µ
L2

G
−

7
(
πµL4

)
16G3M2

+O
(

1

M4

)
when M >>

µ1/4L

G
,

6

(
µL4M2

4G

)1/3

+O(M4/3) when M <<
µ1/4L

G
.

(5.54)

Even though the scaling with the mass is very different in both limits, we observe that the
entropy is S ∼ A/(2G) for small masses — for large masses we recover S ∼ A/(4G). There-
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Chapter 5. Black holes in Einsteinian cubic gravity

fore, the “area law” is respected in the limit M → 0 although with a different numerical
factor.

On the other hand, when we consider the relation S(T ), we observe that it possesses
two branches: for any value of T < Tmax there are two different black hole solutions with
that temperature, a “large” black hole and a “small” one. Another remarkable difference
with respect the Einstein gravity case is that the limit of vanishing entropy for ECG black
holes corresponds to T → 0, while for EG S = 0 is reached for T →∞.

0.0 0.5 1.0 1.5 2.0
-10

0

10

20

30

40

50

60

0.00 0.02 0.04 0.06 0.08 0.10
-10

0

10

20

30

40

50

60

Figure 5.5: Left: we plot the entropy S as a function of the mass M for ECG black holes (blue)
and for the usual Schwarzschild solution (red). Right: We show the relation S(T ), which in the
case of ECG (blue) possesses two branches corresponding to “large” and “small” black holes. As
usual, all quantities are expressed in appropriate natural units.

Stable black holes

A very characteristic property of Schwarzschild black holes is the fact they are thermo-
dynamically unstable. This means that, if one puts one of these black holes in a thermal
background at some temperature T0, the system always departs from equilibrium. In
fact, if the initial temperature of the black hole is below T0, then it absorbes radiation,
hence gaining mass and decreasing its temperature even more according to the relation
TSchw. = (8πGM)−1. On the other hand, if the temperature of the black hole is above
T0, it will emit radiation, losing mass and getting hotter and hotter until eventually it
“explodes”.

In more precise terms, the thermodynamic stability of a system is determined by the
sign of the specific heat, defined as

C = T

(
∂S

∂T

)
M

. (5.55)

For Schwarzschild black holes, this quantity reads CSchw. = −8πGM2, which is negative
for arbitrary masses, implying that these black holes are unstable. Now, in the case of
ECG black holes, we can compute the specific heat using the relations (5.52) and (5.42).
Parametrized in terms of rh, it reads

C =
4πr2

h

(
r8
h + 3µ2L8 + r2

h

(
3µL4 − r4

h

)√
r4
h + 3µL4

)
3GµL4

(
µL4 − r4

h

) . (5.56)
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Chapter 5. Black holes in Einsteinian cubic gravity

However, it is more meaningful to study the relation C(T ), which we plot in Fig. 5.6.
We observe that it has two branches: a negative one, which corresponds to large black
holes, and a positive one, corresponding to small black holes. The solutions with positive
specific heat are thermodynamically stable, and very different from the usual Schwarzschild
solution, which has C(T ) < 0 for all T , as we also show in Fig. 5.6. Thus, these small black
holes behave as a usual thermodynamic system: they get colder as they emit radiation and
they tend to reach the equilibrium with the environment. The situation is reminiscent to
the one observed in [53], where certain odd-dimensional Lovelock black holes were shown
to become stable for small enough masses.
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Figure 5.6: We plot the specific heat C as a function of the temperature for the ECG black holes
(blue) and for the usual Schwarzschild solution (red).

Both branches of the specific heat diverge at T = Tmax, suggesting the presence of a
phase transition, although the analogy is not completely accurate since there is no black
hole solution for T > Tmax. In any case, at T = Tmax the phases of stable and unstable
black holes coalesce, and it is expected that some critical phenomenon takes place. The
behaviour of the specific heat near T = Tmax is

C ∼ ±4πµ1/2L2

√
3G

(
1− T

Tmax

)−1/2

, (5.57)

so that the critical exponent is −1/2.

5.4 Discussion

In this chapter we have constructed the asymptotically flat black hole solutions of Ein-
steinian cubic gravity (5.1). At the perturbative level, these solutions are relevant be-
cause they capture the leading correction to the Schwarzschild solution in any higher-
derivative gravity. But more importantly, we have been able to compute the exact so-
lution, which turns out to be much more interesting. These are the first examples of
fully non-perturbative black hole solutions correcting the D = 4 Schwarzschild solution in
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higher-order gravity, in the sense we explained in the introduction.
Although the profile of the solutions has to be determined numerically, a very re-

markable property of ECG is that some of the most interesting quantities of these black
holes can be obtained analytically. In this way, we obtained an exact relation between
the mass M and the radius of the horizon rh, which modifies the standard Einstein grav-
ity relation rh = 2GM . Likewise, we managed to obtain closed, analytic expressions for
the thermodynamic quantities of these black holes — this remarkable fact is captured in
Conjecture 1, which we presented in Chapter 3. Thanks to these relations being exact,
we observed new non-perturbative phenomena that cannot be captured by perturbative
methods.

While black holes in ECG have very similar properties to those in Einstein gravity
when their mass is large, they behave in a completely different way when their mass is
below certain value. In particular, black holes in ECG have vanishing temperature in the
zero-mass limit, just the opposite as for Einstein gravity black holes, whose temperature
diverges in that limit. Related to this, we found that there is a maximum temperature a
black hole can have in ECG. This implies that for a given value of the temperature below
the maximum value there are two types of black holes with very different thermodynamic
properties. On the one hand, we have “large” black holes, which have negative specific heat
and are unstable, just like Schwarzschild black holes. On the other hand, “small” black
holes have a positive specific heat and are thermodynamically stable, and they represent a
novelty not present in Einstein gravity. These properties are very appealing and they seem
to draw a theory with an improved UV behaviour with respect to Einstein gravity. The
drastic changes in small black holes could have important consequences for other areas of
physics, but we will postpone this discussion for the next chapter. Of course, one could
argue that, since we are only including a cubic term in the action, these nice properties
could well be modified when one takes into account the effects of terms of higher-order.
We will answer this question in the next chapter.

Finally, let us mention that the analysis performed here can be extended in several
ways. First, one can turn on a cosmological constant and study asymptotically (A)dS
black hole solutions. We will study AdS solutions of ECG in Chapter 8, and in that case
one can also consider horizons with planar and hyperbolic geometries [274]. It is also
possible to add a Maxwell term in the action in order to study charged black holes. In that
case, the solutions are also given by the single-function metric (5.8) and the equations of
motion can be solved similarly as we did here for neutral black holes — in particular, it is
possible to obtain again exact expressions for the thermodynamic quantities [45, 315]. In
addition, Ref. [279] studied the thermodynamic of black holes in ECG with a cosmological
constant from the point of view of “black hole chemistry” [179, 180]. The same reference
also studies black hole solutions in higher-dimensional ECG — we remember that this
theory was defined so that it possesses Einstein-like linearized equations in any dimension.
However, when it comes to spherically symmetric solutions, all the nice properties that
we found here do not extend to higher-dimensions (as we saw in Sec. 3.4.3, the ECG
density P only satisfies Theorem 2 in four dimensions), so the study of black hole solutions
becomes much more involved. In order to study higher-dimensional black holes with cubic
curvature corrections it is more appropriate to consider the Quasi-topological [129, 130]
and Generalized quasi-topological [243,278] terms that we reviewed in Sec. 3.4.3.
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curvature

As proven by Hawking [153], a black hole with surface gravity κ emits thermal radiation
with a temperature T = κ/(2π). In the prototypical case of a Schwarzschild black hole
[111], one gets the well-known relation

T =
1

8πGM
, (6.1)

which implies that the temperature increases as the black hole radiates. As a consequence, a
Schwarzschild black hole will lose mass by means of radiation emission and it will evaporate
in a time of the order of∼M3

0 /M
4
P , whereM0 is the initial black hole mass andMP = G−1/2

is the Planck mass. This suggests a violent ending for the evaporation process [181], and
gives rise to the information paradox (see [184, 185] for recent reviews): a pure state
collapsed to form a black hole would evolve into thermal radiation, in tension with the
unitary evolution expected from quantum mechanics — see [316], though.

These considerations rely on the particular properties of the Schwarzschild black hole,
which is the unique spherically symmetric, neutral black hole solution of Einstein gravity.
However, as we have remarked in repeated occasions during this thesis, the Einstein-Hilbert
action is expected to be the first term of an effective theory containing an infinite series
of higher-derivative corrections [8, 9, 22, 23, 317]. One is then naturally led to wonder how
these terms modify Schwarzschild’s solution and how such modifications might affect its
thermodynamic behavior, as well as the evaporation process — see e.g., [53, 318, 319] for
progress in this direction (mostly in higher-dimensions). The effect of the higher-derivative
corrections becomes very important when the curvature is large enough, which means
that small black holes will be specially affected. If the energy scale of the corrections is
significantly below Planck’s scale, the last stages of black hole evaporation could drastically
depart from the prediction of Einstein gravity.

Despite the interest of this problem, one of the main difficulties so far has been the
lack of non-trivial extensions of Schwarzschild’s solution in four-dimensional higher-order
gravities.1 In fact, as opposed to the D ≥ 5 cases, all the higher-order Lovelock [34, 35]
and Quasi-topological [129,130] invariants — which due to their special properties do allow
for such simple extensions, e.g., [44, 53, 54, 115–117] — are trivial in D = 4. Fortunately,
the situation is about to change thanks to the new class of Generalized quasi-topological
gravities (GQGs) that we described in Chapter 3. The first non-trivial member of this type

1We recall that our interest is on solutions which modify the Einstein gravity ones in a non-trivial way,
and such that they reduce to the latter when the higher-derivative couplings are turned off.
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of theories inD = 4 is provided by Einsteinian cubic gravity, and in the last chapter we were
able to construct the exact black hole solutions of this theory. As we saw, these solutions
represent extensions of the Schwarzschild black hole in the sense that they approach this
solution in the large mass limit. On the other hand, the properties of small black holes
in ECG turned out to be drastically different from those of Schwarzschild’s solution. We
found, in particular, that below certain mass black holes become thermodynamically stable.
This would have a direct effect on the evaporation process, since one would expect in that
case that the final “Hawking explosion” [181] does not occur. However, one could argue —
and with good reason — that this conclusion cannot be trusted since we are only including
a cubic term in an effective action which is supposed to contain an infinite number of terms.
It could well happen that higher-order terms induce new effects with respect to the cubic
correction.

In order to determine whether this is the case, in this chapter we will study black
hole solutions in all four-dimensional Generalized quasi-topological gravities. For all of
these theories, it is possible to construct the exact, non-perturbative black hole solutions,
in the same way as we did for Einsteinian cubic gravity. More importantly, we will be able
to study the thermodynamic properties of these black holes analytically, and we will see
that some qualitative features are shared by all of these theories. In particular, we will
show that the behaviour of small black holes is universal, provided there is at least one
non-trivial correction to the Einstein-Hilbert action. We will then discuss the implications
of the modified thermodynamic behaviour in the evaporation process of black holes, and
will conclude that the new black holes have infinite lifetimes — they never evaporate
completely.

6.1 Einstein-Hilbert action with an infinite number of cor-
rections

Let us start with a brief summary of Generalized quasi-topological gravities. In Chapter 3
we defined this family of theories — whose general cubic version was first proposed in [278]
— as those whose Lagrangians satisfy the hypothesis of Theorem 2. Thus, according to
that theorem all of these theories have Einstein-like linearized equations on maximally sym-
metric backgrounds — see Chapter 2 — and they possess spherically symmetric solutions
of the form

ds2
f = −f(r)dt2 +

dr2

f(r)
+ r2dΩ2

(2) , (6.2)

i.e., characterized by a single function f(r). In addition, f(r) satisfies a differential equa-
tion which is reduced two orders with respect to the general order of the equations of
motion. An even more remarkable property — that we captured in Conjecture 1 — is that
the thermodynamic properties of black holes in these theories can be computed exactly
and analytically. We already observed this in the case of Einsteinian cubic gravity in the
last chapter, and here we will show that it holds for all GQGs. These properties make
these theories ideal candidates to study spherically symmetric black hole solutions with
higher-curvature corrections.

Of course, one might worry that we are still not considering the most general higher-
derivative gravity. However, we recall that according to the results of Chapter 4, it is very
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likely that all higher-derivative Lagrangians — understood as an EFT — can be mapped
to a sum of GQG terms using field redefinitions. Since black hole thermodynamics is
invariant under redefinitions of the metric, we might actually capture the thermodynamic
properties of black holes in any higher-derivative gravity using only GQG Lagrangians. We
will come back to this intriguing point in the discussion section. By now, our problem will
be to determine the black hole solutions only for Generalized quasi-topological gravities —
which on the other hand is already a very large family of theories.

As we saw in Chapter 3, the class of GQG theories contains and generalizes the family
of Lovelock [34,35] and Quasi-topological [129,130,132,133] gravities. For instance, all the
GQG theories at cubic and quartic order in curvature in all dimensions where classified
in [278] and [280], respectively. Since in this chapter we are interested in four-dimensional
black holes, let us recall the discussion in Section 3.4.4 about the structure of the GQG
terms for D = 4. The first member (at the lowest order in the curvature) of the GQG
family is the Gauss-Bonnet density X4, which is topological, so that it has no effect on the
equations of motion.2 At cubic order, we saw in Sec. 3.4.3 that there are two non-trivial
densities of the GQG class: one of them is the Einsteinian cubic gravity density P and the
other one was denoted C — see (3.65). However, when one analyzes the field equations for
static and spherically symmetric metrics, one finds that only the ECG term P contributes
in a non-trivial way — and gives rise to the black solutions that we studied in the previous
chapter. Thus, when it comes to spherically symmetric black hole solutions, the density C
is trivial3 and we only need to include the term P at cubic order. In general, we observe
that at a given curvature order n there are always several GQG densities that we may
denote by Ri(n), where i = 1, . . . , imax(n). Since we intend to study black hole solutions in
all GQG theories, we should add a general linear combination of all of these densities in
the gravitational Lagrangian. However, when we study the field equations of these terms
for an arbitrary SSS metric, we come to the conclusion that, within a given order n, they
all are proportional to each other. In other words, at a given order there is a unique way in
which all GQGs modify the equation for f(r) in (6.2). This further implies that performing
a change of basis of the densities Ri(n) we can always choose one of them (for instance,
R1

(n)) as the one that contributes to the equations of motion for the metric (6.2) while the
rest of them are trivial in that case. Thus, the situation at cubic order with the terms P
and C extends analogously to higher orders.

The conclusion of the previous discussion is that, if we wish to study the spherically
symmetric black hole solutions of the most general GQG, it is sufficient to include one non-
trivial Generalized quasi-topological term at every order in curvature. We shall denote this
“representative” GQG term at order n simply by R(n) (without superscript). Hence, we
consider the action

S =
1

16πG

∫
d4x
√
|g|

[
R+

∞∑
n=2

L2n−2λnR(n)

]
, (6.3)

where L is an overall length scale and λn are arbitrary dimensionless couplings. Of course,
it is equivalent to consider instead of the density R(n) another one proportional to it,
because the whole effect is a rescaling of the coupling λn. Hence, we are free to choose a

2However, it does have an effect in black hole entropy, as we saw in the last chapter. Hence, we will
keep this term in the gravitational action.

3Note that this density does not vanish identically, so it will be non-trivial for other types of metrics.
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normalization for these densities, which can be done e.g., by specifying their value on a
constant-curvature background. We will assume a normalization such that

R̄(n) = − 12

n− 2
Kn when evaluated on R̄µνρσ = 2Kgµ[ρgσ]ν , (6.4)

which is convenient because it simplifies the form of the vacuum embedding equation (2.17)
— see Appendix D. The quadratic term cannot be chosen in this way, so we simply set
R(2) = X4, which is of course the topological Gauss-Bonnet term. The n = 3 term can be
chosen to be the ECG density with an appropriate normalization, namely R(3) = −P/8.
As for the higher-order cases, we provided in Eqs. (3.74)-(3.81) examples of these densities
— already normalized according to (6.4) — up to n = 10. Of course, there is no reason
to stop at that order because these densities must exist at every order, but we still lack
a closed expression to generate these terms at arbitrary order. Despite this drawback, we
are about to see that the structure of the field equations associated with these densities is
much simpler than one could expect.

6.1.1 Equations of motion

We can now proceed to evaluate the field equations of (6.3) on a static, spherically sym-
metric metric ansatz. As we did for the ECG case in Chapter 5, this can be done by
means of the reduced action method or by direct evaluation of the field equations on the
single-function metric (6.2) — since the theory (6.3) satisfies Theorem 2, it is guaranteed
that the equations can be solved with a metric of that form. In addition, the same theorem
tells us that the only independent equation takes the form of a total derivative. Explicitly,
the equations of motion evaluated on (6.2) have the form

Ett ≡ −f2Err =
f(r)

16πGr2

dEf
dr

= 0 , (6.5)

so that the quantity Ef = Ef (r, f, f ′, f ′′) is constant. As we determined in Section 3.3, this
constant is always proportional to the mass, the precise relation being Ef = 2GM — see
(3.35). The left-hand-side of this equation will be a linear combination of the contributions
coming from the different terms in the action (6.3), this is,

r(1− f) +

∞∑
n=3

L2n−2λnE(n)
f

(
r, f, f ′, f ′′

)
= 2GM , (6.6)

where we are already making explicit the contribution from the Einstein-Hilbert term.
Then, we have to determine the contributions E(n)

f order by order in the curvature. The
few first terms, for n = 3, 4, 5, yield
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E(3)
f =− 3

4

[
f ′3

3
+

1

r
f ′2 − 2

r2
f(f − 1)f ′ − 1

r
ff ′′

(
f ′r − 2(f − 1)

)]
, (6.7)

E(4)
f =− 3

2

(
f ′

2r

)[
f ′3

4
+
f + 2

3r
f ′2 − 2

r2
f(f − 1)f ′ − 1

r
ff ′′

(
f ′r − 2(f − 1)

)]
, (6.8)

E(5)
f =− 5

2

(
f ′

2r

)2 [f ′3
5

+
f + 1

2r
f ′2 − 2

r2
f(f − 1)f ′ − 1

r
ff ′′

(
f ′r − 2(f − 1)

)]
. (6.9)

Remarkably, all of them have a very similar structure, and this allows us to guess a general
pattern. In particular, we “induce” the following formula for the n-th case

E(n)
f = −n(n− 1)

8

(
f ′

2r

)n−3 [f ′3
n

+
(n− 3)f + 2

(n− 1)r
f ′2 − 2

r2
f(f − 1)f ′ − 1

r
ff ′′

(
f ′r − 2(f − 1)

)]
,

(6.10)
which fits the cases n = 3, 4, 5 in the equations above. Now, using the densities in
Eqs. (3.74)-(3.81) we have checked that Eq. (6.10) also holds for n = 6, 7, 8, 9, 10, so we are
confident to state that Eq. (6.10) really provides the contribution from the density R(n)

for arbitrary n. Thus, even though we do not have a closed expression for these densities,
we have been able to obtain a general formula for their contributions to the equations of
motion. Equation (6.10) represents the unique way in which one can modify the equation
for the metric function f(r) at every order in curvature within the family of GQG theories.

For n = 3 and n = 4, the above equation agrees with the ones found for Einsteinian
cubic gravity in the previous chapter, Eq. (5.14), and the quartic version [280] of General-
ized quasi-topological gravity [278]. It is possible to generalize Eq. (6.6) for arbitrary values
of the cosmological constant (here we have set Λ = 0) and for general horizon geometries,
i.e., planar or hyperbolic besides spherical. This generalization, together with some other
properties of the theory (6.3), are explored in Appendix D.

6.2 Black hole solutions

We are now ready to search for spherically symmetric black hole solutions of the theory
(6.3). In order to do that, we have to solve Eq. (6.6) with the boundary conditions of
asymptotic flatness and existence of an event horizon. The discussion is analogous to the
one in Section 5.2.3 for the case of ECG, so let us be less detailed here. The idea is again
to check that each condition fixes one integration constant of Eq. (6.6), so that there will
be one solution satisfying both conditions.

In the asymptotic region, we can split the general solution to Eq. (6.6) as the sum
of a particular solution plus another piece which will satisfy a homogeneous equation,

f(r) = fp(r) + fh(r) . (6.11)

The particular solution can be obtained assuming a 1/r expansion, and in that case the
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leading terms read

fp(r) =1− 2GM

r
+

λ3L
4

(GM)4

(
−27(GM)6

r6
+

46(GM)7

r7

)
+

λ4L
6

(GM)6

(
−54(GM)9

r9
+

97(GM)10

r10

)
+O(r−11) .

(6.12)

Then, we plug the decomposition (6.11) into the equation and we expand linearly in fh(r).
Note that we can do it because fh must vanish asymptotically, hence we can assume it is
arbitrarily small. The result is a second-order linear differential equation for fh,

Af ′′h +Bf ′h + Cfh = 0 . (6.13)

for some coefficients A, B and C that depend on r. Then, we have to determine the
behaviour of the solutions of this equation in the limit r →∞. The discussion is different
depending on which is the first non-vanishing coupling λn, so let us first assume that
λ3 6= 0. In that case, the leading contributions to the coefficients A, B, C come from
the cubic term, and the discussion is the same as for Einsteinian cubic gravity in the
previous chapter. In particular, these coefficients take the form in Eq. (5.23) and the
general solution for fh is given by (5.26) (replacing µ → λ3). We recall that this solution
has a very different character depending on the sign of λ3. For positive values of λ3, the
general solution contains an exponentially growing mode and an exponentially decaying
one, so that we have to set the coefficient of the growing mode to zero, hence fixing one
integration constant. On the other hand, for λ3 < 0 all the solutions but the trivial one
are singular, so that there is a unique asymptotically flat solution. Then, one is not able
to impose the additional condition of existence of a regular horizon, and in that case we
will not have asymptotically flat black hole solutions.

Hence, providing that λ3 > 0, the asymptotic flatness condition fixes one of the
integration constants of Eq. (6.6). Now, if λ3 = 0 the leading contribution to the coefficients
A, B, C in Eq. (6.13) will come from a higher-order term and we have to repeat the analysis
in that case. Let us assume that λ4 6= 0 so that this is the leading contribution to these
coefficients. We get

A =
9λ4L

6(GM)2

r5

(
1− 2GM

r

)
+O

(
1

r7

)
, (6.14)

B = −45λ4L
6(GM)2

r6

(
1− 8GM

5r

)
+O

(
1

r8

)
, (6.15)

C = −r +
18λ4L

6(GM)2

r7
+O

(
1

r8

)
, (6.16)

and keeping only the leading term in each case, the general solution to Eq. (6.13) reads

fh(r) = c1r
3I 3

4

(
r4

12GML3
√
λ4

)
+ c2r

3K 3
4

(
r4

12GML3
√
λ4

)
, (6.17)

where Iα and Kα are modified Bessel functions of the first and second kind, respectively.
Now, we can see that the discussion is the same as for the previous case. When λ4 > 0,
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I3/4 behaves as a growing mode so that we have to set c1 = 0, while K3/4 is exponentially
decaying so we can keep it. On the other hand, for λ4 < 0 both solutions oscillate wildly
at infinity, hence both are singular and the only asymptotically flat solution is the one
with c1 = c2 = 0. Thus, there are no additional parameters that allow us to impose the
existence of a regular horizon in that case.

Now, if both λ3 and λ4 are zero, we would need to repeat the analysis for the first
non-vanishing coupling λn0 6= 0. However, it is possible to check that the conclusion
is always the same: the asymptotic flatness condition fixes one integration constant of
Eq. (6.6) providing that the first non-vanishing coupling λn0 is positive. We note this
is a necessary condition for the existence of asymptotically flat black hole solutions — if
λn0 < 0 we are certain they do not exist — but in all the cases in which we have explicitly
constructed solutions this condition seems to be also sufficient — we provide few examples
below.

Imposing the existence of a regular event horizon fixes the remaining integration
constant of Eq. (6.6). In order to see this, it is convenient to perform a Taylor expansion
at the horizon,

f(r) = 4πT (r − rh) +
∞∑
n=2

an(r − rh)n, (6.18)

where an = f (n)(rh)/n! and we have already taken into account that f ′(rh) = 4πT , where
T is the black hole temperature. Solving (6.6) for the first two orders in (r− rh) gives rise
to the following relations:

2GM = rh − rh
∞∑
n=3

λn

(
2πTL2

rh

)n−1

(n+ (n− 1)2πTrh) , (6.19)

1 =4πTrh +
∞∑
n=3

λn

(
2πTL2

rh

)n−1

(n+ (n− 3)2πTrh). (6.20)

These equations fix rh and T in terms of the black hole mass M . Note that these relations
are exact, as they are necessary conditions for having a smooth near-horizon geometry.
Depending on the values of the λn and the mass, these equations can have one, several,
or even no solutions at all. If there are several solutions, it means that various possible
black holes with the same mass can exist. However, only one of the solutions will smoothly
reduce to Schwarzschild in the limit λn → 0 for all n. This is the one which should be
regarded as physical, and we will call it the “Schwarzschild branch”. We will elaborate this
point in the next section.

For simplicity, we consider here the case in which there is a unique solution for
any value of M , in whose case we can write T (M) and rh(M) without ambiguity. This
happens, for example, if λn ≥ 0 for all n, which, at the same time ensures the solution to
be well-behaved asymptotically.

Once T (M) and rh(M) have been determined, the (r − rh)2-order equation fixes a3

as a function of a2 = f ′′(rh)/2, the (r− rh)3 one fixes a4 as a function of a3 and a2, and so
on. In this process the only undetermined parameter is a2, which means that the solution
will be fully determined once we choose a value for it. Therefore, the family of solutions
with a regular horizon is characterized by a single parameter, which must be carefully
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Figure 6.1: Metric function f(r) for Schwarzschild’s solution (red) and for the new higher-order
black holes (blue), with λ3 = λ4 = λ5 = λ6 = 1, λn>6 = 0 and various values of the overall length
scale L.

chosen so that the solution is asymptotically flat. In all cases studied, a numerical analysis
shows that there is a unique value of a2 for which asymptotic flatness is achieved. This
means that there exists a unique asymptotically flat black hole, fully characterized by its
mass M , which reduces to Schwarzschild’s solution when the higher-order couplings are
set to zero.

In appendix C, we provide a detailed discussion of the numerical construction of the
solutions (which, unfortunately, do not seem accesible analytically). The resulting metric
functions, f(r), for a particular set of λn and different values of L are shown in Fig. 6.1.
Changing the λn does not modify these curves qualitatively. In particular, we observe that
the profile of these solutions is remarkably similar to the one of Einsteinian cubic gravity
solutions. This already suggests that including higher-order terms may not change the
interesting properties of black holes in ECG. We are going to see that this intuition is
essentially correct.

6.3 Thermodynamics

We have just shown that Eq. (6.6) allows for black hole solutions and we have illustrated
how to obtain them numerically. However, once we know that these solutions exist, we
can compute many of their properties analytically, without using numerical methods. In
fact, we have seen that the equations (6.19) and (6.20) provide us implicit relations for the
radius rh and the temperature T as functions of the mass M . The aim of this section is to
explore, in particular, the thermodynamic properties of these black holes. Since we have an
infinite number of higher-derivative couplings, one could expect that each of possible choice
yields very different thermodynamic relations. However, we will show that, under some
reasonable assumptions, the behaviour of the thermodynamic quantities is qualitatively
the same for all the theories.
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6.3.1 Thermodynamic relations and first law

As we remarked earlier, the equations (6.19) and (6.20) give us implicit, but otherwise
exact, relations for T (M) and rh(M). These equations are quite complicated, but we can
massage them in order to bring them to a more useful form. Replacing T in terms of the
variable χ = 2πTL2/rh in Eqs. (6.19) and (6.20), one realizes that these equations can be
solved parametrically in terms of χ, i.e., we get explicit expressions for rh(χ), T (χ), M(χ).
In order to express the solution, it is useful to introduce the function h defined by

h(x) := x−
∞∑
n=3

λnx
n . (6.21)

We assume that the coefficients λn are well-behaved so that the series above converges at
least for some finite range of x. Then, the parametric solution of Eqs. (6.19) and (6.20)
reads

rh = L

[
h′(χ)

3h(χ)− χh′(χ)

]1/2

, (6.22)

GM =
r3
h

L2
h(χ) = Lh(χ)

[
h′(χ)

3h(χ)− χh′(χ)

]3/2

, (6.23)

T =
χrh

2πL2
=

χ

2πL

[
h′(χ)

3h(χ)− χh′(χ)

]1/2

. (6.24)

Thus, by taking values of χ ≥ 0 in the expressions above, we generate parametrically the
different curves rh(M) or T (M), which can contain several branches. Before taking a closer
look to these relations, let us first compute the entropy of these black holes using Wald’s
formula, Eq. (5.46). Evaluating this formula on the black hole metric (6.2) for the theory
(6.3), in the same way as we did in Section 5.3, we find

S =
πr2

h

G

[
1− 2

∞∑
n=2

L2n−2λnP
(n)
trtr

]
, (6.25)

where in each case P (n)
trtr is the component µνρσ = trtr of the tensor P (n)

µνρσ =
∂R(n)

∂Rµνρσ

evaluated on the metric (6.2) at the horizon r = rh. Using our “representative densities”
in Eqs. (3.74)-(3.81), we have computed these quantities for n = 2, 3, ..., 10. As happened
in the case of the equations of motion (6.10), we find very simple expressions for P (n)

trtr, so
that we are able to guess its form for arbitrary n. Thus, our final result for the entropy,
including all the corrections, reads

S =
πr2

h

G

[
1−

∞∑
n=3

nλn

(
2πTL2

rh

)n−1(
n− 1

(n− 2)2πTrh
+ 1

)]
+ 2πλ2

L2

G
. (6.26)

We recall that the last, constant term is the contribution from the Gauss-Bonnet density,
which is topological. Now, we have expressed the entropy as a function of T and rh but
these are not independent quantities. We can use the relations (6.22) and (6.24) in order
to express the entropy in terms of χ as well. After some simplifications, it is also possible
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to write the final result in terms of the function h, and it reads

S =
πL2

G

[
h′2(χ)

3h(χ)− χh′(χ)
+

∫ χ

χ2

dx
h′′(x)

x

]
. (6.27)

In this expression we have absorbed the GB contribution in the inferior limit of integration,
χ2, whose effect is to shift the entropy by a constant value.4 Then, using (6.24) or (6.23) we
generate the curves for the different thermodynamic relations S(T ) or S(M), respectively.
Of course, in order for these relations to be consistent, they must satisfy the first law of
black hole mechanics. Indeed, taking differentials in (6.27) and in (6.23), and using (6.24),
one can show that

dM = TdS , (6.28)

i.e., the first law holds. This is a very strong test for our computations, since the three
quantities appearing in this expression have been computed independently, each one ac-
cording to its own definition.

6.3.2 The Schwarzschild branch

Now that we have determined that these black holes satisfy consistent thermodynamic
relations, let us explore in more detail their qualitative and quantitative features. One of
the key aspects of the thermodynamic phase space of the theories in (6.3) is the number
of solutions of the equations (6.19) and (6.20), or equivalently, the branches of the relation
T (M), expressed parametrically by (6.23) and (6.24). For a given value of the mass, the
number of such branches represents the number of different black hole solutions of that
mass — including the possibility that for some regions of the parameter space there are
no solutions. Since we have an infinite number of parameters, the casuistic of black hole
thermodynamics in these theories can be, in principle, very large, making a general analysis
unaccessible. However, we are not interested in all possible black hole solutions, because
some of them will not be physical. Note that for large enough masses, there exists always
a unique solution that approaches the Schwarzschild one when M → ∞. We will denote
the family of solutions that are smoothly connected to this one when we decrease the
mass as the “Schwarzschild branch”. Our focus will be on the study of the thermodynamic
properties of the black holes in this branch. Since we believe that large black holes are
described approximately by the Schwarzschild solution, we expect that the solutions in
the Schwarzschild branch are the physical ones, because they are obtained smoothly by
removing mass from a large black hole.

By definition, the Schwarzschild branch (SB) exists for arbitrarily large masses, but
it may not extend to lower masses. Thus, we will distinguish two situations

1. The Schwarzschild branch extends down to M = 0.

2. The Schwarzschild branch stops at a minimum mass Mmin > 0.

Every theory belongs to one or another category, and this distinction is all we will need in
order to characterize the thermodynamic phase space of the higher-order gravities (6.3).

4The precise relation between the constant χ2 and the GB coupling λ2 is
∫ 0

χ2
dxh′′(x)/x = 2λ2.
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Let us now analyze the thermodynamic relations of the Schwarzschild branch for theories
of each type.

Case 1

Let us first consider the case in which the Schwarzschild branch connects black holes of
arbitrarily large masses with solutions of vanishing mass. Then, we have to find a choice
of couplings λn for which this is the case. We remind that, according to our discussion
in Section 6.2, there is a constraint in the higher-order couplings λn in order for the
corresponding theory to possess black hole solutions. Namely, the first non-vanishing
coupling must be positive λn0 > 0. Note that, for instance, if one considers a theory that
only contains one higher-derivative correction, the coupling of that term must be positive.
Thus, somehow it seems that the most natural choice is to take all the couplings to be
non-negative λn ≥ 0 ∀n ≥ 3. It turns out that with this choice, the relation T (M) defined
by Eqs. (6.23) and (6.24) possesses a unique branch, and this branch extends down to
M = 0.5 Of course, there are more choices of couplings — allowing some of them to be
negative — that still yield a unique branch of solutions, and even more general choices
that produce a Schwarzschild branch connected to M = 0, but we will restrict to positive
couplings for the sake of simplicity.

In Fig 6.2 we plot the relation T (M), obtained from Eqs. (6.23) and (6.24), for several
choices of these couplings. In the different curves, we include all the terms in the action
(6.3) (with some particular weight) up to order nmax. Thus, in the curve for nmax = 3 we
only include the cubic correction (hence it corresponds to ECG), for nmax = 4 we include
the cubic and quartic terms and so on. We observe that the qualitative profile of these
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0.08

Figure 6.2: Black hole temperature as a function of the mass for Schwarzschild’s solution (red) and
for the higher-order black holes with λn = 4n−3, 3 ≤ n ≤ nmax, λn>nmax = 0. The shape of this
curve is qualitatively the same for any other choice of couplings (except λn = 0 for all n), provided
it is smoothly connected to M = 0.

5For instance, it is easy to check that for a fixed rh > 0 there is unique solution T > 0 of Eq. (6.20).
Then, it is possible to show that (6.19) defines a bijective function M(rh) ≥ 0 for rh ≥ 0, so that there is
a unique rh for every value of the mass.
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curves is the same regardless the maximum order of the corrections. In fact, this is true
even if we include an infinite number of corrections, something that can be done explicitly
if we specify a simple value for all the couplings λn, so that the series in Eq. (6.21) can be
summed up. Furthermore, the qualitative features of the curves in Fig 6.2 are universal
for all the theories whose Schwarzschild branch extends down to M = 0. In fact, in the
next subsection we will show that the limitM → 0 is universal in all theories; in particular
the temperature always vanishes in that limit. This implies that the Schwarzschild branch
must always have the profile in Fig 6.2: vanishing temperature in both limits M →∞ and
M → 0, and existence of a maximum temperature.

Case 2

Let us now provide an example of the opposite situation, namely, the Schwarzschild branch
has an endpoint at certain mass Mmin > 0. Since for positive couplings it always extends
to M = 0, we must choose some couplings to be negative. On the other hand, at least
the first non-vanishing coupling must be positive in order for the theory to possess black
hole solutions. Thus, the most simple example we can consider is λ3 > 0, λ4 < 0 while
the rest of couplings vanish. Even in this case, if λ4 is not negative enough, the curve
T (M) has again the form of Fig 6.2. It is possible to show that the behaviour changes for
λ4 < −2(λ3/3)3/2. In that case, one finds a diagram as the one shown in Fig 6.3. There,
we can see that for large enough masses there are two branches of black hole solutions:
one with low temperature and one with high temperature. Only the first one reduces
to the Schwarzschild solution for M → ∞, hence it corresponds to the Schwarzschild
branch. The other branch, which corresponds to a “non-Schwarzschild” solution, has a
very exotic behaviour for large masses: it satisfies rh ∝ T ∝M1/3, S ∝M2/3. We observe
that both branches coalesce at certain minimum mass and there are are no black hole
solutions in this theory for lower masses. Thus, in particular the Schwarzschild branch
does not extend down to M = 0. The structure of the phase space becomes much more
complicated as we turn on more couplings of arbitrary sign: we can have an increasing
number of branches, perhaps some of them only existing for large masses, other only for
small masses, etc. However, the Schwarzschild branch is unique, and in case it cannot be
connected to M = 0, it will always behave as in Fig 6.3.

6.3.3 Small black holes

So far, we have provided examples of two different types of thermodynamic phase space for
black holes: one (in Fig. 6.2) in which we find black hole solutions of arbitrarily small mass,
and another one (in Fig. 6.3) in which there is minimum black hole mass. Focusing on the
first possibility, we observe that the qualitative behaviour of the blue curves in Fig. 6.2 in
the limit M → 0 seems to be very similar for all the higher-order theories. The aim of
this section is to analyze in more detail the thermodynamic properties of these small black
holes. By small black hole we mean a solution whose mass is much smaller than L/G, so
that the effects of the higher-order corrections are extreme. We are going to see that the
properties of small black holes are universal for all the higher-order theories in (6.3) — the
only exception being Einstein gravity.

First, we need to identify the value of χ which corresponds toM → 0 in the expression
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Figure 6.3: Black hole temperature as a function of the mass for Schwarzschild’s solution (red) and
for a higher-order black hole with λ3 = 2, λ4 = −4, λn>4 = 0 (blue). For large enough masses there
are two different black hole solutions, but only one of them tends to the Schwarzschild solution
when M → ∞ (the Schwarzschild branch). For a certain mass both branches coalesce and there
are no black hole solutions below that mass.

(6.23). There, we see that M = 0 is reached for a value χ0 > 0 such that

h′(χ0) = 0 , (6.29)

and after a careful analysis we conclude that this is the only consistent way in which we
can reach the zero mass limit.6 Looking at (6.22) and (6.24), we see that in this limit we
also have rh = T = 0. Let us note that the equation (6.29) may not have solutions, in
which case it tells us that the theory does not possess black hole solutions below certain
mass. Now, expanding the expressions (6.22), (6.23), (6.24) and (6.27) around χ = χ0 we
find the thermodynamic quantities T , S as well as the radius rh for a small, yet finite mass.
The latter is related to the mass according to

rh =

(
L2GM

h0

)1/3

, (6.30)

and we see that in order to avoid pathological situations we must in addition demand that
h0 ≡ h(χ0) > 0. Interestingly enough, the scaling is the same for all the theories, and it
reminds us of the one of a usual matter distribution M ∝ r3

hρ, where the density would be
ρ ∼ 1/(GL2). However, it is not clear how seriously one can take this analogy.

As for the thermodynamic quantities, we observe that the entropy tends to a constant
value in the zero-mass limit, namely S → πL2

G

∫ χ0

χ2
dxh′′(x)/x. This is the same issue that

we found in the case of ECG in the last chapter, and in that case we used the Gauss-
Bonnet coupling λ2 in order to impose the condition of vanishing entropy. We recall that
this coupling is now absorbed in the integration limit χ2, so we are free to choose an
appropriate value for it. In particular, for χ2 = χ0 we get S(M = 0) = 0, and the

6With the only exception of EG, in which case it is reached for χ→∞

163



Chapter 6. Black hole thermodynamics at all orders in curvature

thermodynamic relations for small masses read

S =
3πL2h

1/3
0

Gχ0

(
GM

L

)2/3

, (6.31)

T =
χ0

h
1/3
0 2πL

(
GM

L

)1/3

. (6.32)

Remarkably enough, we find that S and T scale with the mass in the same way for all the
higher-derivative theories of the form (6.3), and the only theory-dependent parameter is
the combination χ0/h

1/3
0 . Furthermore, combining the expressions above we observe that

all these solutions satisfy the following Smarr-like relation

M =
2

3
TS , (6.33)

which contains no free parameters. Thus, this seems to be a universal property of small
black holes in a vast number of higher-derivative gravities — we have just shown it
holds at least for all those belonging to the GQG family. Note that (6.33) differs from
Schwarzschild’s analogous relation, M = 2TS, which is also satisfied for all the theories in
(6.3) in the large mass regime M >> L/G.

The unusual exponents in Eqs. (6.32) and (6.31) indicate that the properties of these
small black holes are very different from those of Schwarzschild’s one. In particular, as
happened in the case of Einsteinian cubic gravity, they are thermodynamically stable, as
can be checked by computing the specific heat,

C(T ) =
24π3h0L

4

Gχ3
0

T 2 > 0 . (6.34)

This will have dramatic consequences for the evaporation process, as we explore in the
next section. Despite the unusual and interesting thermodynamic properties of these small
black holes, the area law for the entropy still works. In fact, Eq. (6.31) can be rewritten as

S =
3h0

χ0
× A

4G
, (6.35)

so there seems to be a “flow” of the proportionality factor as we move from large black
holes to small ones (it goes from 1/(4G) to 3h0/(4χ0G)) but on the whole the area law is
respected.

As a conclusion, we remark that the findings of this section explain why the quali-
tative behaviour of all the curves in Fig. 6.2 was the same: the limit M → 0 is universal
in all the higher-order gravities captured by the action (6.3).

6.4 Black hole evaporation

Let us now explore how the evaporation process of black holes gets affected by the special
thermodynamic behaviour of the new solutions. We can imagine that our initial black
hole is large (with GM >> L), so that it is approximately described by the Schwarzschild
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solution. Then, as the black hole radiates it losses mass, and it moves in the phase diagram
following the Schwarzschild branch, which we recall is the one that is smoothly connected
to the Schwarzschild solution. In the previous section we have learned that there are
essentially two qualitatively different possibilities for this branch. The first possibility is
that it can be extended down to M = 0, in which case it always has the form shown
Fig. 6.2: there is a maximum temperature, reached at a certain mass of the order of L/G,
and for smaller masses the thermodynamic relations are universally given by (6.32) and
(6.31). The other possibility is that there is an endpoint for the Schwarzschild branch at
some finite mass, as illustrated in Fig. 6.3. In this case, an evaporating black hole will lose
mass until it reaches the minimum value available in the phase diagram. However, at that
point it still has a finite temperature, so it would continue radiating, hence losing even
more mass. We can only speculate about what would happen in that case. For instance,
in a situation as the one in Fig. 6.3 there are no other black hole solutions below the
minimum mass, so it seems that the only possibility would be for the black hole to turn
into a singular solution (the phase diagram only shows solutions with a regular horizon).
In other cases, there could be other branches of solutions and a phase transition could
take place after the minimum mass is reached, or it could even happen that the black hole
decays spontaneously into pure radiation. All these possibilities are mere speculations, but
we can already agree that the presence of an endpoint in the Schwarzschild branch gives
rise to unpleasant situations. Therefore, we will assume that the Schwarzschild branch is
connected to M = 0, in whose case the black hole will evaporate normally, although the
time evolution may drastically differ from the standard Einstein gravity prediction.

Computing in a precise way the time evolution of the black hole mass due to Hawking
radiation is a far-from-trivial task, since black holes do not radiate exactly as black bodies,
and one has to take into account all the standard model particles that can be radiated
at a given temperature. A detailed computation in the case of Schwarzschild black holes
was first performed by Page [182]. Performing an analogous computation for our higher-
order black holes would be far beyond the scope of the present thesis. It will suffice for
our purposes to assume that the power emitted by a black hole is given by the Stefan-
Boltzmann law,

P = γ
π2

60
AT 4 , (6.36)

where γ is a numerical factor that takes into account the number of species emitted as
well as the fact that the black hole is not a perfect black body. Such factor would depend
in principle on T , but we will make the approximation that it is a constant. This simple
approximation will be enough in order to capture the correct scaling of the problem as
well as other qualitative features. Then, taking into account that P = −dM/dt and that
A = 4πr2

h, we get the following equation for the mass-loss rate

dM

dt
= −γ

π3r2
h

15
T 4 . (6.37)

Using the existing relations between rh, T and M , one can integrate this equation in order
to determine the time evolution of the mass.

In the case of a Schwarzschild black hole, one gets P ∝ M−2, and the integration
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yields

M(t) =

(
M3

0 −
γ t

5120πG2

)1/3

. (6.38)

Thus, after a time of the order of M3
0G

2 = (M0/MP)3tP, the black hole reaches zero mass,
at which moment the temperature and the power diverge. The thermodynamic description
actually breaks down slightly before that (because S ∼ 1 when the mass of the black hole
is of the order of MP), but everything points toward a violent ending of the evaporation
process.

However, the story is very different when higher-derivative corrections are taken into
account — a graphic comparison is shown in Fig. 6.4. As long as the mass of the black hole
is much larger than L/G, the time evolution is approximately given by (6.38), and during
this period the temperature of the black hole increases. Then, after some finite time the
black hole reaches a mass of the order of L/G, and at this point the corrections become
important. As illustrated in Fig. 6.4, the black hole will reach a maximum temperature
and after that moment the temperature starts decreasing as the black hole radiates. In
the same way, the power reaches a maximum value and then decreases. When the mass
is small enough, M << L/G, the behaviour of these black holes is universally dictated by
the formulas (6.30), (6.31) and (6.32). Using those, we see that the emitted power scales
as P ∝M2, and integrating (6.37) in this regime we get

M(t) = M0

(
1 +

γχ4
0G

2M0t

240πh2
0L

4

)−1

, when M <<
L

G
(6.39)

Thus, we observe that the mass never goes to zero in a finite time, hence these black holes
have infinite lifetimes.7 The mass only tends to zero asymptotically, as t→∞,

M(t→∞) =
240πh2

0L
4

γχ4
0G

2
× 1

t
, (6.40)

and interestingly, its value in that limit is independent of the initial mass. In addition,
we recall that the zero mass limit of these solutions is not flat space: it is a black hole of
vanishing mass, temperature, entropy and area, but which has a non-trivial gravitational
field. Thus, an evaporating higher-order black hole never disappears completely: it leaves a
“remnant” behind. This evaporation process is dramatically different to the one described
before for Einstein gravity, which seemed to end with a violent explosion.

6.4.1 Limit of validity of the semiclassical description

Even though these black holes never reach zero size in a finite time, their description as
solutions of a classical theory stops making sense for small enough masses. The regime of
validity of the semiclassical description is characterized by the fact that the horizon radius
is much greater than the corresponding Compton wavelength, i.e., rh � λCompton ∼ 1/M .
Similarly, the thermodynamic description is valid whenever S � 1, and breaks down as S ∼

7A similar behavior was previously observed, for example in: [53, 318] for certain higher-dimensional
Lovelock black holes; [319] for D(> 4)-dimensional black holes in dilaton gravity modified with a stringy
Riemann-squared term; and in [320] for D = 2 dilaton gravity black holes.
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Figure 6.4: Black hole evaporation process predicted by Einstein gravity (red curves) and for higher-
order gravity (blue curves). We have taken Einsteinian cubic gravity as a working example, but
the qualitative profiles are the same for any other theory whose Schwarzschild branch is connected
to M = 0. From top to bottom we represent the time evolution of the mass, the temperature. and
the power, respectively.

1. A Schwarzschild black hole reaches the Planck mass in a time ∆t ∼M3
0 /M

4
P , after which

both conditions are violated. In contrast, for the new black holes, the condition on the
entropy is never violated as long as we choose L >> `P. The semiclassical approximation
stops making sense for a mass of order

Mmin ∼
√
MPML , (6.41)

where ML = 1/L is the energy scale associated to the length scale L. Interestingly, when
such mass is reached, the entropy is still large, namely Smin ∼ L/`P, so one could argue
that the system still allows for a thermodynamic description according to the equations
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(6.31), (6.32).
Now, we want to remark two points about small black holes, that we recall are those

withM << M2
P/ML ≡Mmax. First, given thatML << MP, there is a huge range of masses

for which these objects can be described semiclassically, namely Mmin � M � Mmax.
Second, for any black hole within this range of masses, the time needed to reach the
semiclassical description breakdown is very large. In fact, the minimum mass is reached in
a time ∆t ∼ L9/2/`

7/2
P which, remarkably, does not depend on the initial mass M0 as long

as M0 �Mmin.
It is illustrative to make a quantitative comparison with the Schwarzschild case. Let

us assume that the higher-derivative corrections enter at a scale, say ML ∼ 1 GeV, which
might seem to be too small, but it is really beyond any possibility of observation with the
current experiments. In this case, the upper mass for small black holes is ∼ 1013 kg, and
the semiclassical approximation breakdown mass would beMmin ∼ 106 TeV. At that point,
the entropy would be of order Smin ∼ 1019. Now, consider one of the new higher-order
black holes with the initial mass M0 ∼ 106 kg (or, in fact, with any mass such that 106

TeV � M0 � 1013 kg): it would need ∆t ∼ 1025 times the age of the universe to reach
Mmin. In contrast, a Schwarzschild black hole of mass M0 ∼ 106 kg, would evaporate down
to the Planck mass in ∆t ∼ 1 minute, with a final entropy S ∼ 1. Hence, in contrast to
the Schwarzschild case, the lifetime of the new small black holes (understood, in this case,
as the period till the semiclassical approximation breakdown) is usually huge or, rather,
infinite for all practical purposes.

6.5 Conclusions

In this chapter we have constructed exact black hole solutions in an extension of Einstein
gravity containing an infinite number of higher-curvature corrections, corresponding to
all of the Generalized quasi-topological gravities in four dimensions. We have seen that
at every order in curvature there is a unique way in which these theories modify the
equations of motion for spherically symmetric black holes, and we were able to find the
general formula for the n-th order correction to this equation — see Eqs. (6.6) and (6.10).
This allowed us to study in full generality the new black hole solutions at all orders in
curvature.

We described how one can solve (numerically) the equations of motion in order to
find the exact solutions, and we provided several examples in Fig. 6.1 — see appendix
C for a detailed discussion of the numerical construction. For a given value of mass, the
modified equations of motion may allow for several black hole solutions (each one with
different temperature, radius and entropy), but there is a unique solution that reduces to
the Schwarzschild one in the limit M → ∞. We focused our discussion on the family of
solutions that is smoothly connected to this one, which we refer to as the Schwarzschild
branch.

Even though the solutions cannot be constructed analytically, the relevant thermody-
namic magnitudes can be accessed exactly and, in particular, the explicit relations between
the horizon radius, the mass, the temperature and the entropy can be written in full gen-
erality for all the theories. These relations are given, parametrically, by Eqs. (6.22), (6.23),
(6.24) and (6.27). The theory-dependent quantity in these expressions is the function h(x),
defined in (6.21). Analyzing those expressions, we have determined that there are essen-
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tially two qualitatively different cases with respect to the behaviour of the Schwarzschild
branch. One possibility is that this branch has an endpoint at some minimum mass, so
that it does not extend down toM = 0 — see Fig. 6.3. However, this case is somewhat odd
because an evaporating black hole of the minimum mass still has a non-vanishing temper-
ature but it cannot decay into other solution, which seems to be a pathological situation.
The other possibility, that we consider most interesting, is that the Schwarzschild branch
is connected to solutions of vanishing mass, as in Fig. 6.2. In this case, the specific heat of
the black holes becomes positive below certain mass Mmax ∼ L/G, and for lower masses,
M � Mmax, the thermodynamic properties of these black holes are universal, and they
are given by Eqs. (6.31) and (6.32). In this regime, the black holes satisfy the Smarr-like
relation M = 2/3 · TS for arbitrary values of the new couplings — the only exception to
this is Einstein gravity, for which one has M = 2TS for every value of the mass. Thus, the
characteristic profile of the relation T (M) shown in Fig. 6.2 is shared by all the higher-
order theories whose Schwarzschild branch is connected to M = 0. In particular, including
only the cubic term in (6.3) we obtain the same qualitative result as if we included an
infinite number of terms. This answers one of the questions which we posed at the be-
ginning of this chapter: the results obtained in Chapter 5 in the case of Einsteinian cubic
gravity are not substantially modified when one includes higher-derivative corrections —
as long as the theory allows for black hole solutions of arbitrarily small masses. Finally,
we studied the evaporation process of black holes and we concluded that, unlike the case
of Schwarzschild’s solution, they new higher-order black holes never evaporate in a finite
time.

All these interesting results apply to the family of Generalized quasi-topological
gravities, but, could they apply as well in more general cases? Indeed, in Chapter 4 we
argued that, using field redefinitions, any higher-derivative gravity can be mapped to a
sum of GQG terms. In particular, it is important to recall Conjecture 4, which essentially
tells us that, in order to capture the physics of static black holes in the most general
higher-derivative gravity, it is enough to study the black hole solutions of the most general
GQG theory of the form L(gαβ, Rµνρσ). This is precisely what we have accomplished in
the present chapter. Since black hole thermodynamics is invariant under a redefinition of
the metric, this result would imply that the thermodynamic properties of black holes in
any higher-derivative gravity would coincide with those of the theories in (6.3) for a certain
choice of the couplings λn. In other words, if Conjecture 4 holds, then the relations (6.23),
(6.24) and (6.27) represent the thermodynamic quantities of black holes in any higher-
derivative gravity in four dimensions. The complicated part would be to determine in each
case the values of the couplings λn corresponding to a certain Lagrangian. But on the other
hand, we have seen that the thermodynamic quantities exhibit a very universal behavior,
independently of the values of the couplings. For instance, the existence of stable black
holes is something that we would expect on general grounds for arbitrary higher-derivative
Lagrangians. Given the interest of this result, it would be of capital importance to explore
the validity of Conjecture 4 or to attempt a proof of it in future works. In any event, it
is already evident that the thermodynamic properties of black holes that we found here
represent, at least, those of a very large portion of all possible higher-derivative gravity
theories.

Given the presumable generality of our results, let us briefly discuss some of their
possible implications before closing this chapter.
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Black hole remnants?

The thermodynamic properties of the small higher-order black holes have dramatic conse-
quences for the evaporation process. In particular, as opposed to the Schwarzschild case,
the new black holes have infinite lifetimes, so one could speculate that they might act as
eternal information reservoirs evading possible unitarity violations. In fact, the zero-mass
limit of these solutions is not empty space, because the gravitational field still has a non-
trivial profile in that limit. This indicates that the final product of black hole evaporation
is some sort of remnant. However, it is difficult to see how such an object could act as an
information reservoir, since, according to Eq. (6.31), its entropy vanishes.

At this point, it is convenient to stress that attempts to resolve the information
paradox involving remnant-like objects [321] have been usually argued to be very difficult
to digest [186–189]. This is, in particular, because one can consider the evaporation process
of arbitrarily large initial black holes, which would imply that an arbitrarily large amount
of information would need to be stored in the remnant, forcing such finite-energy object
to have an infinite number of internal states (or, in other words, infinitely many “species”
of remnants would need to exist, one for each possible initial state collapsing to a black
hole). This raises the question of how an arbitrary amount of information could be carried
within a Planck volume (or, more generally, the volume associated to the semiclassical
breakdown scale) and naturally leads to a problematic infinite production rate of remnant
pairs — see e.g., [188]. While these remain outstanding issues,8 our results illustrate that
the evaporation process can drastically change when higher-order terms are considered in
the gravitational effective action, suggesting new perspectives for the final fate of black
holes.

Microscopic stable black holes as dark matter

Besides theoretical considerations, the existence of small (or microscopic), stable black
holes in four dimensions could actually have consequences for our universe. In fact, it has
been often argued that microscopic black holes could be responsible for dark matter — see
e.g., [320, 325–328]. In the case of Einstein gravity there is a minimum mass such black
holes can have, namely M > Mev ∼ 1014g — otherwise, they would have evaporated by
now if they were formed in the early universe. On the other hand, the new stable black holes
have infinite lifetimes, so there is no minimum value for their masses. In fact, it is possible
to derive a very simple estimation for the current mass of a primordial black hole of initial
mass M0. If M0 > Mev, then there is no difference with respect to Einstein gravity and we
can approximate that the black hole keeps all its mass. On the contrary, if M0 < Mev it
will evaporate until it reaches the regime in which it is stable. In that case, using (6.39) one
can see that its current mass would be, approximately, Mend(M0) = min{(L/`P)4t−1

0 ,M0},
where t0 is the age of the universe. Remarkably, we find that all primordial black holes
with initial masses betweenMev and (L/`P)4t−1

0 would have the same mass by now. This is
a remarkably simple and powerful prediction which holds for an infinite number of higher-
order gravities. In this scheme, the only important quantity is the length scale L, which
determines the final mass of all primordial black holes within a huge range of masses. On
the other hand, the order of magnitude of L is almost unconstrained from known physics.

Thus, these theories open a new window in the search for dark matter sources and

8See [322–324] for some possible ways out.
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it would be worth further exploring if these stable black holes are viable candidates. This
possibility is even more tantalizing if we take into account that this family of higher-order
gravities is also able to describe an inflationary phase in the early universe in a very natural
way [40–42].
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7
Holographic aspects of Einsteinian cubic gravity

According to the AdS/CFT correspondence [55–57], there exists an equivalence between a
classical gravitational theory in aD-dimensional asymptotically AdS space and a conformal
field theory that lives in a (D − 1)-dimensional space, which can be identified with the
boundary of AdS. The foundations of this duality are rooted in String Theory, which
dictates the precise theories involved and the dictionary between them. However, this
correspondence has transcended its original confinements, and it is nowadays understood
as a general principle, that is sometimes called gauge/gravity duality. As we reviewed in
the introduction (Section 1.3.1), the AdS/CFT correspondence allows us to learn about
CFTs by studying gravitational theories with a negative cosmological constant. Some
of the aspects of a CFT that one can study by considering bulk gravity models include
the n-point functions of the stress-energy tensor, trace anomalies, thermal properties, etc.
When the gravitational theory is Einstein gravity, one probes a very restricted set of
CFTs, so it is interesting to consider modifications of EG that allow to explore a larger
set of theories. We are interested in the case in which the modifications are given by
higher-curvature interactions in the Einstein-Hilbert action. However, one must take care
when the gravitational theory is modified, because the holographic dictionary might be
altered as well. In fact, in Chapter 2, we saw that higher-derivative gravities usually
introduce additional degrees of freedom with respect to Einstein gravity. Thus, the metric
perturbation does not only contain the usual massless spin-2 graviton of Einstein gravity,
but additional modes. Then, it is not clear that this perturbation couples only to the
boundary stress-energy tensor and one would probably need to modify the holographic
dictionary in some subtle way. In addition, among the new modes one finds a massive
ghost-like graviton, which can be a cause of pathologies.

Fortunately, these difficulties can be avoided if one chooses the higher-curvature
Lagrangian in a suitable way. In Chapter 2 we presented a type of higher-order gravities
whose linearized equations on maximally symmetric backgrounds coincide with those of
Einstein gravity and, consequently, we named these theories Einstein-like. As we discussed
at the end of Chapter 2, these theories generally possess equations of motion of higher-
order, but the only mode that can escape to infinity — to the boundary of AdS — is
the Einstein graviton, because any other hypothetical mode becomes infinitely heavy as it
tries to reach the boundary. Thus, for Einstein-like theories it is guaranteed that one can
apply the holographic dictionary just like in Einstein gravity. However, the field-theoretic
space of CFTs that one can explore with these theories is much larger than the one dual
to Einstein gravity.

We recall that the set of Einstein-like theories is still very large, so we can choose
an appropriate subset of them. It is particularly interesting to consider the family of
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Generalized quasi-topological gravities, that we reviewed in Chapter 3. These theories
belong to the Einstein-like class, and additionally, possess simple black hole solutions for
which we can determine the thermodynamic properties exactly — this was illustrated in
the previous two chapters for asymptotically flat black holes. Thus, GQGs are excellent
candidates in order to probe the thermodynamic phase space of CFTs beyond Einstein
gravity holography. Additionally, as we argued in Chapter 4, GQGs probably provide a
basis to construct the most general EFT for gravity. In that case, they would also allow
us to explore the AdS/CFT correspondence in the most general scenario. The goal of the
third part of this thesis is to provide a first study on the holographic aspects of these
theories, focusing mainly in the case D = 4, which has been so far the less explored one
due to the lack of appropriate theories.

In the present chapter we consider Einsteinian cubic gravity in D = 4 with a negative
cosmological constant and we identify the main entries in the holographic dictionary. In
addition, by studying the AdS black holes of ECG, we will provide a detailed description of
the thermodynamic phase space of the dual CFT, which possesses some important differ-
ences with respect to the Einstein gravity case. A more detailed summary of our findings
in this chapter is provided in Sec. 7.1.1 below. Then, our aim will be to study the squashed
holography of GQGs. As a first step, in Chapter 8 we will construct asymptotically AdS
Euclidean-Taub-NUT solutions, and we will compute their partition functions analytically.
In the case D = 4, these solutions represent the first examples of modified Taub-NUT so-
lutions in any higher-order gravity. Then, we will see in Chapter 9 that such solutions are
dual to CFTs on squashed spheres, and that their gravitational on-shell Euclidean action
computes the partition function of those CFTs. Combining this with the results of Chap-
ters 7 and 8 we will derive new non-trivial relations for the free energy of general CFTs on
squashed spheres.

7.1 Introduction

Higher-order gravities play an important role in AdS/CFT [55–57]. Perturbative correc-
tions to the large-N and strong-coupling limits of holographic CFTs are encoded, from the
bulk perspective, in higher-curvature interactions which modify the semiclassical Einstein
(super)gravity action — see e.g., [23,25,80,81]. The introduction of such terms, which is in
principle fully controlled by String Theory, gives rise to holographic theories belonging to
universality classes different from the one defined by Einstein gravity [220–222] — e.g., one
can construct CFTs with a 6= c in d = 4 [223,224]. Some care must be taken, however. As
shown in [260], higher-curvature terms making finite contributions to physical quantities
in the dual CFT can become acausal unless new higher-spin (J > 2) modes appear at the
scale controlling the couplings of such terms.

In spite of this, a great deal of non-trivial information can be still obtained by
considering particular higher-curvature interactions at finite coupling — i.e., beyond a
perturbative approach. The idea is to select theories whose special properties make them
amenable to calculations — something highly nontrivial in general. The approach turns
out to be very rewarding and, in some cases, it has led to the discovery of universal
properties valid for completely general CFTs [58–62]. In other cases, higher-order gravities
have served as a proof of concept, e.g., providing counterexamples [77, 81, 226–229] to the
Kovtun-Son-Starinets bound for the shear viscosity over entropy density ratio [225] —
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see discussion below. Just like free-field theories, these holographic higher-order gravities
should be regarded as toy models for which many calculations can be explicitly performed,
hence providing important insights on physical quantities otherwise practically inaccesible
for most CFTs — see e.g., [230–233] for additional examples.

A key property one usually demands from a putative holographic model of this kind is
that it admits explicit AdS black-hole solutions. In d ≥ 4, this canonically selects Gauss-
Bonnet or, more generally, Lovelock gravities [34, 35], for which numerous holographic
studies have been performed in different contexts — see e.g., [117, 119–122, 125–128] and
references therein. The next-to-simplest example in d = 4 is Quasi-topological gravity
(QTG) [129,130], a theory which includes, in addition to the Einstein gravity and Gauss-
Bonnet terms, an extra density, cubic in the Riemann tensor. Besides admitting simple
generalizations of the Einstein gravity AdS black holes, and having second-order linearized
equations of motion on maximally symmetric backgrounds, this theory contains three di-
mensionless parameters: the ratio of the cosmological constant scale over the Newton
constant, L2/G, and the new gravitational couplings, λ and µ. These can be translated
into the three parameters characterizing the three-point function of the boundary stress
tensor. As opposed to Lovelock theories, for which one of such parameters, customarily
denoted t4 [221], is always zero [117, 121, 122, 124], the new QTG coupling gives rise to a
nonvanishing t4 [131]. For supersymmetric theories one also has t4 = 0 [221,329], so QTG
provides a toy model of a non-supersymmetric CFT in four dimensions.

All studies performed so far involving finite higher-curvature couplings have been
restricted to d ≥ 4 — observe that all theories mentioned in the previous paragraph reduce
to Einstein gravity for d = 3. Obviously, from the CFT side, there is no fundamental reason
to exclude holographic three-dimensional theories. In fact, there exist many interesting
CFTs in d = 3 with known holographic duals, e.g., [55, 330–334]. The actual reason for
the absence of holographic studies involving higher-curvature terms in d = 3 has been
the lack of examples admitting generalizations of Einstein gravity black holes in four bulk
dimensions. The situation has recently changed thanks to the discovery of Einsteinian cubic
gravity (ECG) [271], for which such generalizations are possible [45, 279] — see section
7.2 for a detailed review. As we show here, ECG provides a holographic toy model of a
nonsupersymmetric CFT in three dimensions, analogous to the one defined by QTG in four.
The main purpose of this chapter is to study the behavior of several physical quantities
in this new model. Just like it occurs for Lovelock and QTG in d ≥ 4, all results can be
obtained fully nonperturbatively in the new gravitational coupling, which provides a much
better handle on the corresponding quantities than any possible perturbative calculation.

On a more general front, we propose a new method for computing Euclidean on-shell
actions for asymptotically AdS(d+1) solutions of an important class of general higher-order
gravities — those for which the linearized equations become second-order on maximally
symmetric backgrounds. Our generalized action represents a drastic simplification with
respect to standard approaches, as it utilizes the same boundary term and counterterms
as for Einstein gravity, but weighted by a universal quantity related to the entanglement
entropy across a spherical region in the boundary theory.

A more precise summary of our findings can be found next.
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7.1.1 Summary of results

The chapter is somewhat divided into two main parts. In the first, which includes sections
7.2, 7.3 and 7.4, we develop some preliminary results and techniques which are necessary
for the holographic computations which we perform in sections 7.5 to 7.8.

• In section 7.2, we start with a review of ECG and recent developments. Then, we
characterize the AdS4 vacua of the theory, and identify the range of (in principle)
allowed values of the new coupling and its relation to the existence of a critical limit
for which the effective Newton constant blows up.

• In section 7.3, we construct the AdS4 black holes of ECG with general horizon topol-
ogy.

• In section 7.4, we propose a new method for computing on-shell actions of asymptotically-
AdS solutions of general higher-order gravities whose linearized spectrum on AdS(d+1)

matches that of Einstein gravity. We claim that the corresponding boundary term
and counterterms can be chosen to be proportional to the usual Einstein gravity
ones. Amusingly, we find that the proportionality factor is controlled by the charge
a∗ characterizing the entanglement entropy across a spherical region Sd−2 in the dual
CFT. As a first consistency check of our proposal, we use our generalized action to
prove the relation between a∗ and the on-shell gravitational Lagrangian L|AdS for
odd-dimensional holographic CFTs with higher-curvature duals.

• In section 7.5, we compute the charge CT controlling the correlator of the bound-
ary stress-tensor from an explicit holographic computation and show that the result
agrees with the (not so) naive expectation obtained from the effective Newton con-
stant. We argue that the detailed cancellations between bulk and boundary contri-
butions giving rise to the correct answer constitute a strong check of the generalized
action proposed in the previous section.

• In section 7.6, we start with another check of our generalized action, consisting in
an explicit calculation of the free energy of ECG AdS4 black holes, which we show
to agree with the one obtained using Wald’s entropy approach. Then we compute
the thermal entropy charge cS, and we note that it presents notable differences with
respect to previous results for other higher-curvature holographic models in d ≥ 4.
Then, we study the thermal phase space of holographic ECG with toroidal and
spherical boundaries, respectively. In the latter case, we find that the standard
Hawking-Page transition also occurs in ECG. However, the transition temperature
increases with the ECG coupling, and actually diverges in the critical limit (for which
thermal AdS always dominates). The phase diagram presents new phenomena, like
the presence of ‘intermediate-size’ black holes, a new phase of small and stable black
holes, as well as the existence of a new critical point.

• In section 7.7, we compute the Renyi entropy of disk regions in holographic ECG. In
particular, we study the dependence of Sq/S1 on the CFT-charges ratio CT /a∗. Al-
though the functional dependence is very complicated, we observe that the behavior
is approximately linear for most values in the allowed range. We also obtain an exact
result for the scaling dimension of twist operators, from which we are able to extract
the value of the stress-tensor three-point function charge t4, which is non-vanishing
in general.
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• In section 7.8, we compute the shear viscosity to entropy density ratio in ECG. Unlike
all previous exact results (d ≥ 4), the result turns out to be highly nonperturbative
in the ECG coupling, as it involves a non-analytic function. Several approximations
as well as a precise numerical evaluation are accesible. We find that violations of the
KSS bound are strictly forbidden in ECG by the requirement that black holes have
positive energy. On the other hand, we show that energy-flux bounds on t4 impose
a maximum value for the ratio, given by (η/s)|max. ' 1.253/(4π).

• In appendix E.1, we show that the scaling dimension of twist operators can be used
to obtain the exact results for the stress-tensor three-point function parameters t2
and t4 for holographic theories in which explicit calculations of such quantities had
been performed before. Appendix E.2 provides an additional check of our generalized
action, in this case for a theory for which the generalized version of the Gibbons-
Hawking-York term is explicitly known, namely, Gauss-Bonnet. We show that our
method gives rise to exactly the same divergent and finite terms as the standard pre-
scription. Appendix E.3 contains some intermediate calculations omitted in section
7.5. Finally, Appendix E.4 provides the generalization of some results of the chapter
to higher orders in curvature.

Note on conventions

We set c = ~ = 1 throughout the chapter. D stands for the number of spacetime dimensions
of the bulk theory, and d ≡ D − 1 for those of the boundary one. We use signature
(−,+,+, . . . ), greek indices for bulk tensors, µ, ν, · · · = 0, 1, . . . , D, Latin indices from the
beginning of the alphabet for boundary tensors, a, b, · · · = 0, 1, . . . , d and i, j, · · · = 1, . . . , d
for spatial indices on the boundary. Our conventions for CT , t4, cS and a∗ are the same
as in [58,62,121,131]. Superscripts ‘E’ and ‘ECG’ mean that the corresponding quantities
are computed for Einstein and Einsteinian cubic gravities respectively, whereas we use the
subscript ‘E’ for Euclidean actions. L is the cosmological constant length-scale (−2Λ ≡
(D−1)(D−2)/L2) whereas L̃ stands for the AdSD radius. We often use L for intermediate
calculations (including on-shell actions, etc.), but normally present final results in terms
of L̃. It is then important to keep in mind that, when expressing our results in terms of
the ECG coupling µ, there is some additional dependence hidden in L̃ = L/

√
f∞, as f∞

is also a function of µ — see Fig. 7.1 and (7.8).

7.2 Einsteinian cubic gravity

Let us start with a quick review of four-dimensional Einsteinian cubic gravity (ECG) and its
most relevant properties. The D-dimensional version of the theory was presented in [271],
where it was shown to be the most general diffeomorphism-invariant metric theory of grav-
ity which, up to cubic order in curvature, shares the linearized spectrum of Einstein gravity
on general maximally symmetric backgrounds in general dimensions1. This criterion se-
lects the Lovelock densities — cosmological constant, Einstein-Hilbert, Gauss-Bonnet and

1More concretely, the theory is selected by asking it to be the ‘same’ for arbitrary D, in the sense that
the coefficients relating the various cubic invariants entering its definition do not depend on D.
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cubic Lovelock densities — plus a new invariant, which reads

P = 12R ρ σ
µ ν R α β

ρ σ R µ ν
α β +R ρσ

µν R αβ
ρσ R µν

αβ − 12RµνρσR
µρRνσ + 8R ν

µ R ρ
ν R

µ
ρ . (7.1)

This invariant is neither trivial nor topological in D = 4, so the action of the theory
becomes

IECG =
1

16πG

∫
d4x
√
|g|
[

6

L2
+R− µL4

8
P
]
, (7.2)

in such a number of dimensions2. Here, µ is a dimensionless coupling. Note also that,
for later convenience, in (7.2) we have chosen the cosmological constant to be negative,
−2Λ0 ≡ 6/L2, where L is a length scale which will coincide with the corresponding AdS4

radius for µ = 0.
It was subsequently shown [45, 279] that (7.2) admits non-trivial generalizations of

Einstein gravity’s Schwarzschild black hole characterized by a single function f(r) — see
next section. It was also observed [272, 273, 278, 280] that, in fact, ECG belongs to a
broader class of theories — coined Generalized quasi-topological gravities in [278] — which
also includes Lovelock [34, 35] and Quasi-topological [129–133, 335] gravities as particular
examples, and which are characterized by: having a well-defined Einstein gravity limit;
sharing the linearized spectrum of Einstein gravity on general maximally symmetric back-
grounds; admitting non-hairy single-function generalizations of Schwarzschild’s black hole.
If the action does not include derivatives of the Riemann tensor, the full non-linear equa-
tions of a given theory belonging to this class reduce, on a general static and spherically
symmetric ansatz, to a single (at most second-order) differential or algebraic — depending
on the case [45] — equation for f(r), which indeed can be seen to correspond to a unique
non-hairy black hole whose thermodynamic properties can be exactly obtained by solving
a system of algebraic equations without free parameters.

The thermodynamic properties of the asymptotically flat ECG black holes and its
higher-curvature generalizations are very different from their Einstein gravity counterparts,
as they become stable below a certain mass, which results in infinite evaporation times
[45,273]. The asymptotically-AdS black brane solutions of ECG, and generalizations above
mentioned, have also been considered in [272, 273, 280] and, specially, in [315]. There, it
was shown that, as opposed to all previously considered higher-order gravities, the charged
black brane solutions of the Generalized QTG class in D ≥ 4 generically present nontrivial
thermodynamic phase spaces, containing phase transitions and critical points.

Another relevant development entailed the identification of a critical limit of ECG
(for which the effective Newton constant diverges) [281], corresponding to µ = 4/27. In
that particular case, the black holes — as well as other interesting solutions, such as bounce
universes — can be constructed analytically.

More recently, some of the possible observational implications of the theory were
studied in [282]. There, an observational bound on the ECG coupling was found using
Shapiro time delay, and the effects of ECG on black-hole shadows were discussed, including
possible measurable differences with respect to Einstein gravity predictions. Comparisons
between general relativity and other theories of gravity regarding black-hole observables

2From now on, we will always be referring to the four-dimensional version of the theory when referring
to ‘ECG’, unless otherwise stated.

180



Chapter 7. Holographic aspects of Einsteinian cubic gravity

are highly limited by the lack of explicit four-dimensional alternatives, which makes ECG
particularly appealing for this purpose.

Finally, from the holographic front, let us mention that a study of Rényi entropies
for spherical regions, similar to the one we perform in section 7.7, was carried out in [252]
for ECG in D = 5. However, it should be stressed that in dimensions greater than four,
ECG does not belong to the Generalized QTG class, in the sense that — even though it
shares the linearized spectrum of Einstein gravity — simple black hole solutions satisfying
the properties explained above do not exist for the theory and, as opposed to the D = 4
case, one is restricted to perturbative calculations in the gravitational couplings, which
makes them less interesting.

7.2.1 AdS4 vacua and linearized spectrum

The AdS4 vacua of (7.2) have a curvature scale L̃ related to the action length scale L
through

1

L̃2
=
f∞
L2

, (7.3)

where f∞ is a solution to the algebraic equation

1− f∞ + µf3
∞ = 0 . (7.4)

For negative values of µ, two of the roots are imaginary, and one is real and positive. For
0 < µ < 4/27, the three roots are real, one of them being negative and the other two
positive. Finally, for µ > 4/27, two of the roots are imaginary, and the remaining one is
negative. Hence, imposing f∞ > 0, constrains µ as

µ <
4

27
' 0.148 . (7.5)

For larger values of µ, no positive roots exist, which means that no AdS4 vacuum exists in
that case3. However, not all real roots of (7.4) satisfying (7.5) give rise to stable vacua.

In order to see this, we can consider the linearized equations of motion of (7.2) on a
general maximally symmetric background (in particular, one of these AdS4), in the presence
of minimally coupled fields. As already mentioned, these always reduce to the linearized
equations of Einstein gravity, up to a normalization of the Newton constant [106, 271],
namely

GL
ab = 8πGECG

eff Tab , (7.6)

where GL
ab is the linearized Einstein tensor, Tab is the stress tensor of the extra fields, and

GECG
eff is the effective Newton’s constant, which is given by

GECG
eff =

G

1− 3µf2
∞
. (7.7)

3This analysis is analogous to the one corresponding to QTG in D ≥ 5 [129, 131], with the difference
that, in that case, the Gauss-Bonnet term is present, and the identification of the allowed stable vacua
becomes more involved.
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Figure 7.1: Real roots of (7.4) for different values of µ. The lower red dashed line corresponds
to f∞ < 0, whereas the upper one corresponds to unstable vacua; the blue dashed line (µ < 0)
corresponds to stable vacua which do not allow for black hole solutions — see discussion under
(7.16); the purple dot corresponds to the critical case, µ = 4/27; finally, the small green region
corresponds to the set of parameters allowed by the positive-energy constraint |t4| ≤ 4 in (7.130).

The sign of Geff determines the sign of the graviton propagator. Whenever the denominator
in the right-hand side — which is nothing but (minus) the slope of (7.4) — is negative, the
graviton becomes a ghost, and the corresponding vacuum is unstable. This imposes µ < 0
or f2

∞ < 1/(3µ) for positive values of µ. The condition kills one of the two positive roots of
(7.4) available for 0 < µ < 4/27, which would then correspond to unstable vacua. Hence, we
conclude that, whenever (7.5) is satisfied, there exists a single stable vacuum. No additional
vacua exist for µ < 0, whereas an additional unstable vacuum exists for 0 < µ < 4/27.
Special comment deserves the f2

∞ = 1/(3µ) case, corresponding to µ = 4/27, and for which
Geff → +∞. This ‘critical’ limit of the theory was identified in [281], and gives rise to a
considerable simplification of most calculations, as we further illustrate below.

We summarize these observations in Fig. 7.1, where we also include two additional
constraints which we derive in sections 7.3 and 7.7.3, respectively. The first comes from
imposing the existence of black holes solutions, which restricts the allowed values to 0 ≤
µ ≤ 4/27. The second follows from the positivity of energy fluxes at null infinity which, as
we can see from the figure, produces the very stringent constraint, −0.00322 ≤ µ ≤ 0.00312.

Throughout this chapter, we will assume µ to lie in the range 0 ≤ µ ≤ 4/27. From
the two positive roots of (7.4) in that range, we will be implicitly choosing the one cor-
responding to a stable vacuum, which is also the one connecting to the Einstein gravity
one for µ → 0. While the positive-energy condition further limits this range, we find it
convenient to also consider values close to µ = 4/27, for which many exact results can be
obtained. Let us finally point out that the solution of (7.4) corresponding to the relevant
root (blue in Fig. 7.1) can be written explicitly as

f∞ =
2√
3µ

sin

[
1

3
arcsin

(√
27µ

4

)]
. (7.8)

182



Chapter 7. Holographic aspects of Einsteinian cubic gravity

7.3 AdS4 black holes

ECG admits static asymptotically AdS4 black holes of the form

ds2 = −N2Vk(r)dt
2 +

dr2

Vk(r)
+
r2

L2
dΣ2

k , where dΣ2
k =


L2dΩ2

2 , for k = +1 ,

d~x2
2 , for k = 0 ,

L2dΞ2 , for k = −1 ,

(7.9)

corresponding to spherical, planar and hyperbolic horizons, respectively, and where Vk(r)
is determined from the second-order differential equation

1− L2(Vk − k)

r2
− 3L6µ

4r3

[
V ′3k
3

+
kV ′2k
r
−

2Vk(Vk − k)V ′k
r2

−
VkV

′′
k (rV ′k − 2(Vk − k))

r

]
=
ω3

r3
,

(7.10)
where ω3 is an integration constant related to the ADM energy [97,102] of the solution —
see (7.74). Also, N2 is a constant that we fix in different ways depending on the horizon
geometry, e.g., [129, 131,230]. In particular, we will choose N2 = 1 for spherical horizons,
N2 = 1/f∞ for planar horizons, which sets the speed of light in the dual theory to one,
and N2 = L2/(f∞R

2) for hyperbolic horizons, so that the boundary metric is conformally
equivalent to that of R×H2, where R is the curvature scale of the hyperbolic slices.

The fact that ECG admits static solutions of the form (7.9), characterized by a single
function Vk(r), such that the full nonlinear equations4 of the theory reduce to a single
third-order differential equation, which can in turn be integrated once to yield (7.10), is
a highly non-trivial property of ECG [45, 279]. This property is shared by the higher-
dimensional Lovelock [44, 54, 114–116], QTG [129, 130, 132, 133] (for these, the equation
for Vk(r) is algebraic instead) and Generalized quasi-topological [278] gravities, as well as
by other higher-curvature theories of the same class, recently discovered and characterized
[273, 280]. As mentioned before, this property is related to the absence of extra modes in
the linearized spectrum of the theory, and can be shown to lead to non-hairy black holes
whose thermodynamic properties can be computed analytically on general grounds [272].

In (7.9), it is customary to make the redefinition

Vk(r) = k +
r2

L2
f(r) , (7.11)

especially when dealing with the planar and hyperbolic cases. In terms of f(r), (7.10)
reads

1− f + µ

[
f3 +

3

2
r2ff ′2 − r3

4
f ′(f ′2 − 3ff ′′) +

3

4
kL2f ′(rf ′′ + 3f ′)

]
=
ω3

r3
. (7.12)

Observe that this reduces to (7.4) for constant f(r) and ω3 = 0. In particular, asymptot-
ically, we require limr→+∞ f(r) = f∞, which then makes (7.9) become the metric of pure
AdS4 with radius L̃ given by (7.3), and a different boundary geometry for each value of
k [178].

4These can be found explicitly e.g., in [279].
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7.3.1 Asymptotic expansion

For general values of µ, finding analytic black hole solutions of (7.12) looks extremely
challenging (if not impossible). Let us then start by exploring the asymptotic and near
horizon expansions, from which we can gain a lot of relevant information (and, in fact,
argue that non-hairy black hole solutions do really exist for general values of µ).

The first terms in the asymptotic expansion of f(r) read

f1/r(r) = f∞ −
ω3

(1− 3µf2
∞)r3

− 21µf∞ω
6

2(1− 3µf2
∞)3r6

+O(r−8) . (7.13)

Note that (7.12) is a second-order differential equation, which therefore possesses a two-
parameter family of solutions. In order to capture the asymptotic behavior of the most
general one, we write f(r) = f1/r(r) + h(r) and then expand (7.12) linearly in h. Keeping
only leading terms in 1/r, we get the following equation for h5:

h′′(r)− 4(1− 3µf2
∞)2

9f∞µω3
rh(r) = 0 . (7.14)

Leaving aside the limiting cases, corresponding to µ = 0 and µ = 4/27, we see that there
are two possibilities, depending on the sign of µ ·ω3. If µ ·ω3 > 0, (8.16) has the following
approximate solutions as r → +∞6:

h(r) ∼ A exp

[
4|1− 3µf2

∞|
9
√
f∞µ · ω3

r3/2

]
+B exp

[
−4|1− 3µf2

∞|
9
√
f∞µ · ω3

r3/2

]
. (7.15)

In order to obtain an asymptotically AdS4 solution, we need to kill the growing mode, which
forces us to set A = 0. Therefore, this boundary condition fixes one of the integration
constants required by (7.12). Now, even though the remaining exponentially decaying
term is extremely subleading, in general we will have B 6= 0. In fact, this constant ends up
being fixed by the horizon-regularity condition. In particular, this implies that the solutions
show a strongly nonperturbative character, as ∼ e−1/

√
µ terms generically appear. Indeed,

it is possible to show that a series expansion of the full solution in powers of µ is always
divergent.

The second possibility corresponds to µ · ω3 < 0. An approximate solution of (8.16)
for large r is then given by

h(r) ∼ A

r
cos

[
4|1− 3µf2

∞|
9
√
f∞|µ · ω3|

r3/2

]
+
B

r
sin

[
4|1− 3µf2

∞|
9
√
f∞|µ · ω3|

r3/2

]
. (7.16)

This solution is sick. Although h(r)→ 0 as r → +∞, the derivatives of h diverge wildly in
this limit, which would force us to set A = B = 0 in order to get an asymptotically AdS4

5For instance, we assume that the term h′L2r−4 is negligible compared to h′′r−1 when r → +∞.
6The exact solution of (8.16) is given by the Airy functions,

h(r) = AAiryAi

[(
4(1− 3µf2

∞)2

9f∞µω3

)1/3

r

]
+BAiryBi

[(
4(1− 3µf2

∞)2

9f∞µω3

)1/3

r

]
,

but we only need the asymptotic behavior for the discussion.
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solution. However, this leaves us with no additional free parameters, and regularity at the
(would-be) horizon cannot be imposed. Therefore, no regular black hole solution exists for
µ · ω3 < 0: the solution is always sick, either at the horizon or at infinity.

As shown later in (7.74), ω3 is proportional to the total energy E (or mass) of the
black hole, which leads us to impose µ ≥ 0. Hence, interestingly, the range of values of µ
which allows for positive-energy solutions, forbids the negative-energy ones, which simply
do not exist for µ ≥ 0.

7.3.2 Near-horizon expansion

Let us now consider the near-horizon behavior. For that, we assume that there is a value
rh of the radial coordinate for which the function Vk vanishes and is analytic. Analyticity
ensures that the solution can be maximally extended beyond the horizon using Kruskal-
Szekeres-like coordinates.

The derivative of Vk at the horizon is related to the temperature through: V ′k(rh) =
4πT/N so, in terms of f , the near-horizon expansion can be written as

k +
r2

L2
f(r) =

4πT

N
(r − rh) +

∞∑
n=2

an(r − rh)n , (7.17)

where the relation between f ′(r) and the temperature reads in turn

T =
N

4π

[
rh

2

L2
f ′(rh)− 2k

rh

]
. (7.18)

Note also that f(rh) = −kL2/rh
2. Now, if we plug (7.17) into (7.12) and we expand it in

powers of (r − rh), we are led to the equation

0 = 1 +
kL2

rh2
− ω3

rh3
− 4L6π2T 2µ

N2rh3

(
3k

rh
+

4πT

N

)
+ (7.19)[

−2kL2

rh2
+

3ω3

rh3
− 4L2πT

Nrh
+

24L6π2T 2µ

N2rh3

(
k

rh
+

2πT

N

)]
(r − rh) +O

(
(r − rh)2

)
. (7.20)

Since every coefficient must vanish independently, we get an infinite number of equations
relating the parameters in the near-horizon expansion (7.17). From the first two equations,
we can obtain TECG and ωECG as functions of rh, the result being (in order to minimize
the clutter, we often omit the ‘ECG’ superscripts throughout the text)

TECG =
N

2πrh

(
k +

3rh
2

L2

)[
1 +

√
1 +

3kL4µ

rh4

(
k + 3

rh2

L2

)]−1

, (7.21)

(ωECG)
3

= kL2rh + rh
3 − µL6

4

[
3k

rh

(
4πTECG

N

)2

+

(
4πTECG

N

)3
]
. (7.22)
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These reduce to the usual Einstein gravity results for µ = 0, namely

TE =
N

4πrh

(
k +

3rh
2

L2

)
, (ωE)

3
= rh

3 + krhL
2 . (7.23)

The rest of equations, which we do not show here, fix all coefficients an>2 in terms of a2.
Hence, for a fixed rh, the series (7.17) contains a single free parameter, which is nothing
but the value of f ′′ at the horizon. This must be carefully chosen so that the solution has
the appropriate asymptotic behavior, i.e., so that A = 0 in (7.15).

7.3.3 Full solutions

Equation (7.12) can be solved analytically in two cases, namely: for Einstein gravity, µ = 0,
and in the critical limit, µ = 4/27 [281]. For those, one finds7

f(r) =


1− rh

3 + kL2rh
r3

if µ = 0 ,

3

2
− 3rh

2 + 2kL2

2r2
if µ = 4/27 .

(7.26)

For intermediate values of µ, the solutions can be constructed numerically. In order to
do so, we solve (7.12) setting the initial condition at the horizon, and then applying the
shooting method to obtain the value of a2 for which f(r)→ f∞. The differential equation
(7.12) is very stiff when r is large but, by choosing a2 accurately, it is always possible
to extend the numerical solution well into the region in which the asymptotic expression
(7.13) applies. In all cases, there is a unique value of a2 for which this happens. Hence,
for each value of µ and each horizon geometry, there exists a unique regular black fully
characterized by rh (or, more physically, by ωECG).

In Fig. 7.2 we show a couple of these numerical solutions for a fixed value of the radius
rh. As we can see, the corresponding curves lie between the analytic limiting solutions in
(7.26). For clarity reasons, we plot the quantity Vk(r)/(1 + r2/L2) = (k+ r2f(r)/L2)/(1 +
r2/L2) instead of f(r). Far from the horizon, this ratio behaves as f(r) and it tends to the
constant value f∞, which, as explained above, is different for each value of µ — see Fig.
7.1. Besides the exterior solutions, we also show plots of the black hole interior profiles,
which present the curious feature of being regular, in the sense that the metric functions
Vk(r) are smooth. However, as observed in [45] for the asymptotically flat case, curvature

7A curious property of the critical-theory solutions is that they look identical to three-dimensional BTZ
black holes [336], with an additional ‘angular’ direction:

ds2
ECG, crit = −3(r2 − rh2)

2L2
dt2 − 2L2dr2

3(r2 − rh2)
+
r2

L2
dΣ2

(k) , (7.24)

ds2
BTZ = − (r2 − rh2)

L2
dt2 − L2dr2

(r2 − rh2)
+ r2dφ2 . (7.25)

We point out that an analogous behavior has been observed to occur for critical Gauss-Bonnet gravity
(λGB = 1/4), see e.g., [126] as well as for Einstein gravity coupled to an axionic field in a particular
limit [337]. The connection of this phenomenon to other instaces of background-symemtry enhancement
— e.g., [338] — deserves further attention.
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Figure 7.2: Black hole solutions for several values of µ including the Einstein gravity (µ = 0) and
critical (µ = 4/27) cases. From top to bottom k = 1, 0,−1, and we have chosen rh = L for the
spherical and planar cases and rh = 1.1L for the hyperbolic one. For the sake of clarity, we plot
the ratio Vk(r)/(1 + r2/L2), which asymptotically tends to f∞ and at the same time allows to
observe the behavior of Vk(r) near r = 0.

invariants still diverge. For example, in the critical case, one finds

RµνρσR
µνρσ =

4k2L4 + 54r4 − 6rh
2r2 + rh

4 − 4kL2(3r2 − rh2)

L4r4
∼ O

(
r−4
)
, (7.27)

which is two powers of r softer than in the usual Schwarzschild case. Such behavior is
common to all solutions with µ 6= 0. This singularity-softening phenomenon appears to be
generic for higher-curvature generalizations of Einstein gravity black holes. For example,
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for the Gauss-Bonnet black hole [54], one finds [339] RµνρσRµνρσ ∼ O(r−(D−1)), which is
in turn (D − 1) powers of r softer than the Kretschmann invariant of the D-dimensional
Schwarzschild black hole.

7.4 Generalized action for higher-order gravities

When performing holographic calculations with higher-curvature bulk duals, one is faced
with the challenge of identifying appropriate boundary terms which render the action
differentiable, as well as counterterms which, along with those, give rise to finite and well-
defined on-shell actions, when evaluated on stationary points of the functional. In this
section, we propose a novel prescription for computing the on-shell action of arbitrary
asymptotically AdS solutions of any D-dimensional higher-order gravity whose linearized
spectrum on a maximally symmetric background matches that of Einstein gravity8. The
procedure represents an important simplification with respect to previous methods, as it
only makes use of the usual Gibbons-Hawking-York boundary term and the counterterms
of Einstein gravity. As we argue here — and illustrate throughout the rest of this chapter
and the next one, and in appendix E.2 with various non-trivial checks of the proposal —
such contributions can be also used to produce the correct on-shell actions for this class
of higher-order theories. Interestingly, for those, the only modification with respect to the
Einstein gravity case is that such contributions appear weighted by the Lagrangian of the
corresponding theory evaluated on the AdS background, i.e., L|AdS. This quantity has
been argued to be proportional to the charge a∗ appearing in the universal contribution
to the entanglement entropy of the dual theory across a Sd−2, and our prescription can be
used to actually prove such a connection explicitly for this class of theories, as we show
below.

Let us start considering a general higher-curvature theory of the form

I =

∫
M
dDx

√
|g|L(gαβ, Rµνρσ) , (7.28)

where the Lagrangian density L(gαβ, Rµνρσ) is assumed to be constructed from arbitrary
contractions of the Riemann and metric tensors. The variation of the action with respect
to the metric yields

δI =

∫
M
dDx

√
|g|Eµνδgµν + ε

∫
∂M

dD−1x
√
|h|nµδvµ . (7.29)

In this expression we defined

Eµν ≡ Pµ αβσRναβσ −
1

2
gµνL+ 2∇α∇βPµανβ , (7.30)

the equations of motion reading Eµν = 0, and

δvµ = 2P βµσ
α ∇αδgβσ , where Pµνρσ ≡

[
∂L

∂Rµνρσ

]
gαβ

. (7.31)

8This property defines the ‘Einstein-like’ class in the classification of [106], and includes, in particu-
lar: Lovelock, QTG, ECG in general D and, more generally, all theories of the Generalized QTG type.
Additional examples of theories of this type can be found e.g., in [94,213,298,340].
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In addition, nµ is the unit normal to ∂M, normalized as nµnµ ≡ ε = ±1, and hµν =
gµν − εnµnν is the induced metric. In order to have a well-posed variational problem, the
action must be differentiable, in the sense that δI ∝ δgµν , so that δI = 0 whenever the
field equations — and the boundary conditions — are satisfied. This is not the case of
(7.29), due to the presence of the boundary contribution. In the case of Einstein gravity,
LE =

[
R+ (D − 1)(D − 2)/L2

]
/(16πG), this problem is solved by the addition of the

Gibbons-Hawking-York term [84,85],

IGHY =
ε

8πG

∫
∂M

dD−1x
√
|h|K , (7.32)

where K = Kµνg
µν is the trace of the second fundamental form of the boundary, Kµν =

h α
µ ∇αnν . When this term is included, the variation of the action, when we keep gµν fixed

at the boundary, reads

δ(IE + IGHY)
∣∣∣
δgµν |∂M=0

=
1

16πG

∫
M
d4x
√
|g|
[
Rµν −

1

2
gµνLEH

]
δgµν , (7.33)

and so the action is stationary whenever the metric satisfies Einstein’s field equations.
For higher-order gravities, the situation is much more involved in general. One

of the main issues arises from the fact that these theories generally possess fourth-order
equations of motion. This implies that the boundary-value problem is not fully specified
by the induced metric on ∂M, and one needs to impose additional boundary conditions on
derivatives of the metric. Furthermore, even if we know which components of the metric
and its derivatives to fix, determining what boundary term needs to be added to yield a
differentiable action for such variations is a far from trivial task. Some notable examples for
which differentiable actions have been constructed are: quadratic gravities (perturbatively
in the couplings) [90], Lovelock gravities [88,89], which are the most general theories with
second-order covariantly-conserved field equations [34, 35] (and for which one only needs
to fix gµν at the boundary), f(R) [91–93] and, more generally, f(Lovelock) gravities [94].
In these cases, it is also necessary to fix the value of some of the densities on the boundary
— e.g., δR

∣∣
∂M = 0 for f(R) — which is related to the fact that these theories propagate

additional scalar modes. With the goal of providing a canonical formulation for arbitrary
f(Riemann) gravities, an interesting proposal for constructing satisfactory boundary terms
for such general class of theories was presented in [86] — see also [87]. Unfortunately, the
procedure involves the introduction of auxiliary fields and it is quite implicit in general,
which seems to limit its practical applicability in the holographic framework.

The problem can be simplified if we specify the boundary structure in advance, e.g.,
by restricting the analysis to spacetimes which are maximally symmetric asymptotically.
Let us, in particular, assume that the space is asymptotically AdSD, so that the Riemann
tensor behaves as Rµνρσ → −L̃−2(gµρgνσ − gµσgνρ) asymptotically. Then, on general
grounds, the tensor P ρσ

µν appearing in the boundary term in (7.29) takes the simple form

P ρσ
µν → C(L̃2)δ ρ

[µδ
σ
ν] + subleading , (7.34)

where C(L̃2) is a constant which depends on the background curvature, and is in general
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given by9 [106]

C(L̃2) = − L̃2

2(D − 1)
L|AdS , (7.36)

where L|AdS is the Lagrangian of the corresponding theory evaluated on the AdSD back-
ground with curvature scale L̃.

For Einstein gravity, we simply have CE = 1/(16πG) and, in fact, there are no sub-
leading terms in (7.34) for any spacetime — simply because P ρσ

µν only involves products
of deltas in that case. Now, asymptotically AdSD solutions of higher-order gravities will in
general produce subleading contributions in (7.34) as we move away from the asymptotic
region. However, the leading term can still be canceled out by adding a generalized GHY
term of the form

IGGHY = 2C(L̃2)ε

∫
∂M

dD−1x
√
|h|K . (7.37)

The question is, of course, whether or not the subleading terms for a given theory will
give additional non-vanishing contributions asymptotically, forcing us to add extra terms.
We expect this to be the case in general. In addition, one generally needs to specify
extra boundary conditions, which is related to the metric propagating additional degrees
of freedom. However, as we have mentioned, some theories — see footnote 8 — do not
propagate additional modes on general maximally symmetric backgrounds. For those, the
asymptotic dynamics is the same as for Einstein gravity, so it is reasonable to expect the
only data that we need to fix on ∂M to be gµν , and also that (7.37) will be enough to
make the action stationary for solutions of the field equations.

In order to obtain finite on-shell actions, one also needs to include counterterms,
which only depend on the boundary induced metric. For asymptotically AdSD spacetimes,
there is a generic way of finding them [178]. Let us focus on Euclidean signature. In that
case, we always have ε = +1, and an additional global (−) with respect to Lorentzian
signature arises, e.g., [58], so we have

IE = −
∫
M
dDx
√
gL(gαβ, Rµνρσ)− 2C(L̃2)

∫
∂M

dD−1x
√
|h|K + IGCT , (7.38)

where we seek to construct the generalized counterterms, IGCT. In order to identify all
possible divergences, one possibility consists in evaluating the action on pure AdSD spaces
with different boundary geometries [341]. Observe however that, whenever we evaluate the
bulk term on pure AdSD, this will produce an overall constant L|AdS, which is precisely
proportional to C(L̃2). This already appears in front of the boundary term, and the result
is that the combination of the bulk and boundary contributions reduce to those of Einstein
gravity, up to a common overall C(L̃2). Hence, the divergences are exactly the same as
for Einstein gravity, and we can use the same counterterms. For example, up to D = 5 we

9As shown in [106], this quantity can be equivalently written as

C(L̃2) =
L̃4

D(D − 1)

dL|AdS

dL̃2
, (7.35)

the relation between both expressions being nothing but the embedding equation of AdSD in the corre-
sponding theory — e.g., (7.4) for ECG.
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find [178,341]

IGCT = −2C(L̃2)

∫
∂M

dD−1x
√
h

[
− D − 2

L̃
− L̃Θ[D − 4]

2(D − 3)
R+ . . .

]
, (7.39)

where Θ[x] = 1 if x ≥ 0, and zero otherwise, and the dots refer to additional counterterms
arising for D ≥ 6. Combining (7.39) with (7.38), we obtain the final form of the action.

Below, we show that (7.38) successfully yields the right answers for ECG in various
highly non-trivial situations in which the corresponding on-shell actions can be deduced
from alternative considerations — e.g., it correctly computes the free energy of black holes,
in agreement with the result obtained using Wald’s entropy, as well as the holographic
stress tensor two-point charge, CT , which can be alternatively deduced from the effective
Newton constant. Besides, in appendix E.2 we consider arbitrary radial perturbations of
AdS5 in Gauss-Bonnet gravity, and show that (7.38) produces exactly the same finite and
divergent contributions as those obtained using the standard Gauss-Bonnet boundary term
and counterterms, e.g., [88, 89,178,342–345].

7.4.1 a∗ and generalized action

Let us momentarily switch to d ≡ D − 1 notation. As we have seen, both the boundary
term and the counterterms appearing in (7.38) have the property of being identical to
those of Einstein gravity up to an overall constant C(L̃2) proportional to the Lagrangian
of the corresponding theory evaluated on the AdS background (7.36). Now, an interesting
quantity that one would like to compute holographically is the charge a∗ appearing in the
universal contribution to the entanglement entropy (EE) across a radius-R spherical region
Sd−2 which, for a general CFTd, is given by [58,59,246]

SEE univ. =

{
(−)

d−2
2 4a∗ log(R/δ) for even d ,

(−)
d−1

2 2πa∗ for odd d .
(7.40)

a∗ coincides with the a-type trace-anomaly charge in even dimensional theories. In odd
dimensions, a∗ is proportional to the free energy, F = − logZ, of the corresponding theory
evaluated on Sd [246], namely

FSd = (−)
d+1

2 2πa∗ , for odd d . (7.41)

For even-dimensional holographic theories dual to any higher-order gravity of the form
(7.28) in the bulk, a∗ is given by [239,288]

a∗ = −π
d/2L̃d+1

dΓ(d/2)
L|AdS , (7.42)

i.e., it is precisely proportional to the charge C(L̃2) defined in (7.36), namely

C(L̃2) =
a∗

Ω(d−1)L̃d−1
, (7.43)
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where Ω(d−1) ≡ 2πd/2/Γ(d/2) is the area of the unit sphere Sd−1. For odd-dimensional
theories, it was argued in [58, 59] that (7.42) also yields the right a∗ for general cubic
theories. We can readily extend this result to all theories for which (7.38) and (7.39) hold.
From (7.41), it follows that (−)

d+1
2 2πa∗ can be obtained from the on-shell action of pure

Euclidean AdS(d+1) with boundary geometry Sd. Since C(L̃2) appears as an overall factor
in (7.38) when evaluated in pure AdS, it follows that FSd matches the Einstein gravity
result up to an overall factor 16πG · C(L̃2). Then, using the result for the free energy in
Einstein gravity,

FE
Sd = (−)

d+1
2
πd/2L̃d−1

4Γ(d/2)G
, (7.44)

it follows immediately that for any theory of the form (7.28), for which our generalized
on-shell action can be used,

FSd = 16πG · C(L̃2)FE
Sd = (−)

d−1
2

2πd/2+1L̃d+1

dΓ(d/2)
L|AdS , (7.45)

which takes the expected general form (7.41), with a∗ precisely given by (7.42). Hence, we
have obtained the expected form of the charge a∗ from an explicit holographic calculation
of the free energy on Sd using our generalized action. The consistency between (7.38) and
(7.42) provides support for both expressions.

Reversing the logic, we can rewrite our generalized action in terms of a∗, which is
way more charismatic than C(L̃2). The result reads

IE = −
∫
M
dDx
√
gL(gαβ, Rµνρσ)− 2a∗

Ω(d−1)L̃d−1

∫
∂M

dD−1x
√
|h|
[
K − d− 1

L̃
+ · · ·

]
,

(7.46)
where we have omitted most of the counterterms in (7.39). The explicit appearance of a∗

in the boundary terms is rather suggestive, and somewhat striking.

7.4.2 Generalized action for Quasi-topological gravity

The QTG density in five bulk dimensions is given by [129,130]

Z5 =R ρ σ
µ ν R α β

ρ σ R µ ν
α β +

1

56

(
− 72RµνρσR

µνρ
αR

σα + 21RµνρσR
µνρσR+ 120RµνρσR

µρRνσ

+ 144R ν
µ R ρ

ν R
µ
ρ − 132RµνR

µνR+ 15R3
)
.

(7.47)
Just like ECG in D = 4, the linearized equations of this theory on constant-curvature

backgrounds are Einstein-like [129]. Hence, the method developed in the previous subsec-
tion should be valid for computing Euclidean on-shell actions of AdS5 solutions of the
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theory. In this case, the full generalized action (7.46) is given by

IQTG
E = − 1

16πG

∫
M
d5x
√
g

[
12

L2
+R+

L2λ

2
X4 +

7µL4

4
Z5

]
− 1− 6λf∞ + 9µf2

∞
8πG

∫
∂M

d4x
√
h

[
K − 3

√
f∞
L
− L

4
√
f∞
R

]
,

(7.48)

where we also included the Gauss-Bonnet density X4 = R2 − 4RµνR
µν + RµνρσR

µνρσ. In
this case, the charge a∗ reads [131]

a∗QTG =
(
1− 6λf∞ + 9µf2

∞
) πL̃3

8G
, (7.49)

while f∞ is determined by the equation [129]

1− f∞ + λf2
∞ + µf3

∞ = 0 . (7.50)

A generalized boundary term for QTG was proposed in [346]. It would be interesting to
check whether (7.48) provides the same results as those obtained using such term. As we
mentioned above, in appendix E.2 we perform an explicit check of that kind for Gauss-
Bonnet gravity.

7.4.3 Generalized action for Einsteinian cubic gravity

Let us now return to ECG. In that case, the full generalized Euclidean action (7.46)
becomes

IECG
E =− 1

16πG

∫
d4x
√
|g|
[

6

L2
+R− µL4

8
P
]

− 1 + 3µf2
∞

8πG

∫
∂M

d3x
√
h

[
K − 2

√
f∞
L
− L

2
√
f∞
R
]
,

(7.51)

where recall that f∞ can be obtained as a function of µ from (7.4). Observe also that the
charge a∗ reads in this case

a∗ECG = (1 + 3µf2
∞)

L̃2

4G
. (7.52)

We use (7.51) in several occasions in the remainder of the chapter, finding exact agreement
with the expected results in all cases for which alternative methods can be used.

7.5 Stress tensor two-point function charge CT

In order to characterize the holographic dual of ECG, we must translate the two available
dimensionless parameters in (7.2), namely: L2/G and µ, into universal defining quantities
of the boundary theory. Since we are only considering the gravitational sector of the bulk
theory, the most relevant ‘charges’ to be identified in the CFT are those characterizing
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the boundary stress tensor. Conformal symmetry highly constrains the structure of stress-
tensor two- and three-point functions [235]. We will deal with the three-point function
charges in section 7.7.3. Let us start here with the stress-tensor correlator which, for an
arbitrary CFT3, is given by [235]

〈Tab(x)Tcd(x
′)〉 =

CT
|x− x′|6

Iab,cd(x− x′) , (7.53)

where

Iab,cd(x) ≡ 1

2
(Iac(x)Ibd(x) + Iad(x)Ibc(x))−1

4
δabδcd , and Iab(x) ≡ δab−2

xaxb
x2

, (7.54)

are fixed tensorial structures. This correlator is then fully characterized by a single theory-
dependent parameter, customarily denoted CT . This quantity, which in even dimensions is
proportional to the trace anomaly charge c, also plays a relevant role in three-dimensional
CFTs — see e.g., [347–349] for recent studies. As opposed to the d = 2 case [350], CT
is not monotonous under general RG flows in three dimensional CFTs [351]. However, it
universally shows up in various contexts, including relevant quantities in entanglement and
Rényi entropies [60,61,230,231,352]; quantum critical transport — see e.g., [353,354] and
references therein; or partition functions on deformed curved manifolds [263,265,355].

In AdS/CFT, the dual of Tµν(x) is the normalizable mode of the metric [56, 57].
Hence, evaluating (7.53) entails determining the two-point boundary correlator of gravitons
in the corresponding AdS vacuum. For Einstein gravity in d = 3, the result [121,356] reads

CE
T =

3

π3

L̃2

G
. (7.55)

Naturally, the introduction of higher curvature terms in the bulk modifies this result, e.g.,
[62, 121, 131]. In general, higher order gravities give rise to equations of motion involving
more than two derivatives of the metric. In those cases, the metric generically contains
additional degrees of freedom besides the usual massless graviton. From the holographic
perspective, this means that the metric couples to additional operators which are typically
nonunitary10. This is not always the case, however. In fact, there exist families of higher
order gravities whose linearized equations around maximally symmetric backgrounds are
identical to those of Einstein gravity, up to a normalization of the Newton constant — see
footnote 8 and e.g., [106] for details. For those, the only mode is the usual spin-2 graviton,
the metric only couples to the stress tensor, and CT can be straightforwardly extracted from
the effective Newton constant. This generically reads Geff = G/α, where α is a constant
which depends on the new couplings. The appearance of α can be alternatively understood
as changing the normalization of the graviton kinetic term which, holographically, gets
translated into a modification of the stress-tensor correlator charge, which then becomes
α · CE

T .
For ECG, using (7.7), we find then

CECG
T = (1− 3µf2

∞)
3

π3

L̃2

G
. (7.56)

10See e.g., [58, 62] for more detailed discussions of this issue.
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Observe that unitarity imposes CT to be positive, which translates into 1−3µf2
∞ > 0. This

is of course equivalent to asking the effective bulk gravitational constant to be positive. It
can be seen that this constraint is automatically satisfied whenever (7.5) holds.

While we have been able to compute CT for ECG using GECG
eff , it is instructive to

obtain it from an explicit holographic calculation. This will also serve as a highly-nontrivial
consistency check for the new on-shell action method introduced in the previous section.

Let us then consider a metric perturbation: gµν = ḡµν +hµν , on the Euclidean AdS4

vacuum

ds2 =
r2

L2

[
dτ2 + dx2 + dy2

]
+

L2

r2f∞
dr2 . (7.57)

Since all components of the two-point function will be determined by CT , computing one
of them will be enough. It is then sufficient to consider a perturbation of the form hxy =
r2

L2φ(r, τ). Plugging this into the Euclidean version of (7.2) and expanding up to quadratic
order in φ, we find

IECG
E Bulk =

(1− 3µf2
∞)

32πG

∫
d3xdr

[
1√
f∞

(∂τφ)2 +
√
f∞

r4

L4
(∂rφ)2

]
− 1

16πG

∫
d3xΓr

∣∣∣
r=r∞

,

(7.58)
where Γr is a boundary term which appears after integration by parts — see (E.29). Recall
also that, in this coordinates, the boundary corresponds to limr→∞ r ≡ L2/δ, where we
introduce the UV cutoff δ � 1. The equation of motion for φ follows from (7.58), and
reads

∂

∂r

(
r4

L4

∂φ

∂r

)
+

1

f∞

∂2φ

∂τ2
= 0 . (7.59)

In order to solve it, we Fourier-transform the dependence on the coordinate τ ,

φ(r, τ) =
1

2π

∫
dpφ0(p)eipτHp(r) . (7.60)

Hp satisfies the equation

d

dr

(
r4

L4

dHp

dr

)
− p2

f∞
Hp = 0 , (7.61)

whose general solution reads

Hp(r) = c1e
− L2|p|√

f∞r

(
1 +

L2|p|√
f∞r

)
+ c2e

L2|p|√
f∞r

(
1− L2|p|√

f∞r

)
. (7.62)

In order to get a regular solution, we set c2 = 0, and we also fix c1 = 1 so that Hp(r →
L2/δ) = 1. With this solution, we evaluate the Lagrangian, which can be expressed as a
total derivative. Further integrating over the r coordinate and substituting the solution in
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Fourier space, we get

IECG
E Bulk =

√
f∞VR2

64π2GECG
eff

∫
dpdqφ0(p)φ0(q)δ(p+q)

L4

δ4
Hp∂rHp

∣∣∣
r=L2/δ

− 1

16πG

∫
d3xΓr

∣∣∣
r=L2/δ

,

(7.63)
where VR2 =

∫
dxdy, and where we used

∫
dτei(p+τ) = 2πδ(p+ q).

Let us now turn to the boundary contributions in the generalized action (7.51). As
we explain in appendix E.3, when these terms are added to (7.63), most divergences in
Γr

∣∣∣
r=L2/δ

disappear, and we are left with the following result for the full action:

IECG
E = IECG

E Bulk + IECG
EGGHY+GCT (7.64)

=
VR2

64π2GECG
eff

√
f∞

∫
dpdqφ0(p)φ0(q)δ(p+ q)

[
f∞

L4

δ4
Hp∂rHp

∣∣∣
r=L2/δ

− L2p2

δ
H2
p

]
.

Observe that, even though 1/GECG
eff and a∗ECG have a different dependence on µ— see (7.7)

and (7.52) respectively — and that it is a∗ECG the one appearing as an overall constant in
the generalized GHY term and the counterterms (7.51), everything conspires to produce a
single finite contribution which is instead proportional to 1/GECG

eff , as it must.
If we take the limit δ → 0 explicitly in (7.64), we get the simple result

IECG
E [φ0] = − VR2L̃2

64π2Geff

∫
dpdqφ0(p)φ0(q)δ(p+ q)|p|3 . (7.65)

Using the holographic dictionary [57], we can compute one of the components of the bound-
ary stress tensor two-point function in momentum space as

〈Txy(0, 0, p)Txy(0, 0, q)〉 = −(2π)2 δ2IECG
E [φ0]

δφ0(−p)δφ0(−q)
=
L̃2VR2

8Geff
δ(p+ q)|p|3 . (7.66)

Now, from the CFT side, this is given by

〈Txy(0, 0, p)Txy(0, 0, q)〉 =

∫
d3x

∫
d3x′e−ipτe−iqτ

′〈Txy(x)Txy(x
′)〉 , (7.67)

where

〈Txy(x)Txy(x
′)〉 =

CT
2|x− x′|6

[
−1 + 2

(τ − τ ′)2

|x− x′|2
+ 8

(x− x′)2(y − y′)2

|x− x′|4

]
. (7.68)

The integration in (7.67) can be performed without further complications and we obtain
the result

〈Txy(0, 0, p)Txy(0, 0, q)〉 =
π3CTVR2

24
δ(p+ q)|p|3 . (7.69)

Comparing this expression with (7.66), we obtain the result for CT , which agrees with
the one in (7.56), as it should. The fact that our generalized action (7.51) succeeds in
providing the right answer for this quantity, including various non-trivial cancellations
between IECG

E Bulk and IECG
EGGHY+GCT — see appendix E.3 — provides strong evidence for the
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validity of the method developed in section 7.4.
Note finally that, as explained at the beginning of this section, CT provides infor-

mation about many different physical quantities appearing in numerous contexts. Hence,
by the same price we computed (7.56), we gain access to all such quantities for the CFT3

dual to ECG.

7.6 Thermodynamics

In this section we study the thermodynamic properties of the ECG black holes constructed
in section 7.3. First, we compute the Wald entropy, ADM energy and free energy of the
solutions, and compare the result with the one obtained from an explicit on-shell action
calculation, which serves as a further check of the method proposed in section 7.4. Then,
focusing on the flat boundary case, k = 0, we identify the quantity cS which relates the
thermal entropy density to the temperature, and show that, in contradistinction to Einstein
gravity, it defines an independent charge with respect to CT . In subsections 7.6.3 and 7.6.4,
we study the phase space of holographic ECG on S1

β × T2 and S1
β × S2, respectively. In

the first case, we show that the standard phase transition between the ECG AdS soliton
and black brane keeps occurring at the same temperature as for Einstein gravity. In the
second, we show that depending on the value of µ, one, two or three black hole solutions
can coexist at the same temperature. The dominating phases are still thermal AdS at small
temperatures and large black holes at large temperatures, but the Hawking-Page-transition
temperature becomes arbitrarily large as we approach the critical limit µ = 4/27. Besides,
small black holes become thermodynamically stable for µ 6= 0, although their contribution
to the partition function is always subleading with respect to thermal AdS.

7.6.1 Entropy, energy and free energy

Let us start by computing the Wald entropy of the solutions which, for any covariant theory
of gravity is given by [170,171]

S = −2π

∫
H

dd−1x
√
h

∂L
∂Rµν ρσ

εµνερσ , (7.70)

where εµν is the binormal to the horizon. Now, for metrics of the form (7.9), the integration
can be performed straightforwardly, yielding

S = −2πrh
2

L2
VΣ

∂L
∂Rµν ρσ

εµνερσ

∣∣∣∣
r=rh

, (7.71)

where VΣ is the regularized volume of S2, R2 or H2 for k = 1, 0,−1 respectively. Explicitly,
the final result for the ECG black holes reads

SECG =
rh

2VΣ

4GL2

1−
3µL4

(
k + 3rh

2

L2

)[(
k + 3rh

2

L2

)
+ 2k

[
1 +

√
1 + 3kL4µ

rh4

(
k + 3 rh

2

L2

)]]
rh4

[
1 +

√
1 + 3kL4µ

rh4

(
k + 3 rh

2

L2

)]2

 .
(7.72)
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Again, this reduces to the Einstein gravity result

SE =
rh

2VΣ

4GL2
, (7.73)

when we set µ = 0. Once we have S(T ) (defined implicitly), we can use the first law,
dE = TdS, to find the energy. The result is

EECG =
(ωECG)

3
VΣN

8πGL4
. (7.74)

As expected, this coincides with the result one would obtain for the generalized ADM
energy from the asymptotic expansion (7.13).

The entropy of the solutions can be alternatively computed from the free energy
as S = −∂F/∂T . Hence, we can perform an additional check of our generalized action
(7.51), which evaluated on the Euclidean version of the solutions — for which we identify
tE ∼ tE + β — should yield the free energy as FECG = IECG

E /β. Plugging (7.9) in (7.51),
we find that the bulk term is a total derivative that can be integrated straightforwardly,
namely

IECG
E Bulk =

βNVΣ

16πGL2

[
H(rh)−H(L2/δ)

]
, (7.75)

where

H(r) ≡ r3

L2

[
(2− 4f − rf ′)− µ

4

(
2f + rf ′

)2 (
4f − rf ′

)]
. (7.76)

Using the asymptotic expansion (7.13), we get

H(L2/δ) =
2L4

δ3
(1− 2f∞ − 2µf3

∞) +
(ωECG)

3

L2

(1 + 3µf2
∞)

(1− 3µf2
∞)

+O(δ) . (7.77)

We can also evaluate the boundary contributions in (7.51). For these, we use

d3x
√
h = Ndt ∧ dΣk

(√
f∞L

3

δ3
+

kL

2δ
√
f∞
− (ωECG)

3

2
√
f∞L3(1− 3µf2

∞)

)
+O(δ) ,

K =
3
√
f∞
L

+
kδ2

2L3
√
f∞

+O(δ4) , R =
2kδ2

L4
.

(7.78)

Then, we find

IECG
EGGHY+GCT = −βNVΣ(1 + 3µf2

∞)

8πGL4

[
L6f∞
δ3

− (ωECG)
3

2(1− 3µf2
∞)

]
+O(δ) . (7.79)

Now, if we add up both contributions we obtain the finite result

IECG
E =

βNVΣ

16πGL2
H(rh) , (7.80)
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where we made use of the AdS4 embedding equation (7.4). Hence, all boundary contribu-
tions cancel out and the on-shell action is reduced to the evaluation of the function H(r) at
the horizon. Using the near-horizon expansion (7.17), we can finally write the free energy
as

FECG =
NVΣ

8πGL2

[
krh +

rh
3

L2
− 2πTrh

2

N
+ µL4

(
3k

rh

(
2πT

N

)2

+

(
2πT

N

)3
)]

. (7.81)

Note that this can be also written fully in terms of rh using (7.21). When µ = 0, (7.81)
reduces to the Einstein gravity result

FE =
NVΣrh
16πGL2

(
k − rh

2

L2

)
. (7.82)

Using (7.81) and the thermodynamic identity S = −∂F/∂T , we can recompute the entropy
of the solutions. The result precisely matches (7.72), computed usingWald’s formula, which
provides another check for our generalized action.

7.6.2 Thermal entropy charge cS

When the boundary geometry is flat, k = 0, it is convenient to set N2 = 1/f∞, a choice
which fixes the speed of light to one in the dual CFT [121]. In that case, the thermodynamic
expressions simplify considerably. In particular, we find

T =
3rh

4πL2
√
f∞

, ω3 = rh
3

(
1− 27

4
µ

)
, (7.83)

s =
rh

2

4GL2

(
1− 27

4
µ

)
, ε =

rh
3

8πGL4
√
f∞

(
1− 27

4
µ

)
, (7.84)

where we defined the entropy and energy densities s ≡ S/VR2 , ε ≡ E/VR2 . We can
explicitly write these quantities in terms of the temperature, the result being

s =
4π2L̃2f2

∞
9G

(
1− 27

4
µ

)
T 2 , ε =

8π2L̃2f2
∞

27G

(
1− 27

4
µ

)
T 3. (7.85)

From (7.85), it immediately follows that ECG black branes satisfy

ε =
2

3
Ts , (7.86)

as expected for a thermal plasma in a general three-dimensional CFT.
The dependence on the temperature of the thermal entropy density is also fixed for

any CFT3 to take the form

s = cST
2 , (7.87)
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where cS is a theory-dependent quantity. From, (7.85), it follows that

cECG
S =

(
1− 27

4
µ

)
f2
∞ cS,E , where cS,E =

4π2

9

L̃2

G
, (7.88)

is the Einstein gravity result — see e.g., [121]. As we can see, in the holographic model
defined by ECG, cS is no longer proportional to CT , and therefore defines an additional
well-defined independent ‘charge’ which characterizes the theory11. For growing values of
µ, cS monotonously decreases with respect to the Einstein gravity value and, funnily, it
vanishes for the critical case12 , µ = 4/27.

The fact that cS vanishes for certain value of the gravitational coupling is quite
unusual, and does not occur for QTG or Lovelock black holes (in the Einstein gravity
branch) in any number of dimensions — see e.g., [116, 118, 121,129,131]. In fact, in those
cases, the only modification in cS with respect to Einstein gravity is an overall f (d−1)

∞
factor, i.e., the result reads cQTG/Lovelock

S = f
(d−1)
∞ cS,E, where cS,E is the Einstein gravity

result written in terms of L̃. In fact, in view of the results for those theories, one would
have naively expected all ‘(1 − 27/4µ)’ factors in (7.83)-(7.88) not to appear for ECG.
This seems to be a simple manifestation of the fact that the theories belonging to the
Generalized QTG class (including ECG) for which f(r) is determined through a second-
order differential equation possess rather different properties from those for which f(r)
is determined from an algebraic equation — see below and [272, 278, 280, 315] for more
evidence in this direction.

7.6.3 Toroidal boundary: black brane vs AdS4 soliton

In this subsection we study the phase space of thermal configurations when the spatial
dimensions of the boundary CFT form a torus T2. The first obvious saddle corresponds to
Euclidean AdS4 with toroidal boundary conditions, given by

ds2 =
r2

L2

[
dτ2 + dx2

1 + dx2
2

]
+

L2

r2f∞
dr2 , (7.89)

where the coordinates x1 and x2 are assumed to be periodic, x1,2 ∼ x1,2 + l1,2, where l1,2
is the period of each coordinate. Without loss of generality we assume l1 ≤ l2. As before,
τ ∼ τ + β. The next candidate is the Euclidean black brane

ds2 =
r2

L2

[
f(r)

f∞
dτ2 + dx2

1 + dx2
2

]
+

L2

r2f(r)
dr2 , (7.90)

for which the temperature is fixed in terms of the horizon radius through (7.83). Finally,
it should be evident that moving the f(r)/f∞ factor from gττ to g11 or g22 should also give
rise to solutions of ECG, e.g.,

ds2 =
r2

L2

[
dτ2 +

f(r)

f∞
dx2

1 + dx2
2

]
+

L2

r2f(r)
dr2 . (7.91)

11Observe that cS can be rewritten as cECG
S = f2

∞(1 − 3µf2
∞/4)(1 − 3µf2

∞)2cS,E, which makes it more
obvious that this charge is not proportional to CECG

T .
12This would seem to suggest that the black brane has a unique microstate in that case, but it is probably

just another evidence of the problematic properties of the critical theory.
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These are the so called AdS4 ‘solitons’ [241, 357]. The crucial difference with respect
to the black brane is that, for these, regularity no longer imposes a relation between the
temperature and the horizon radius. Instead, it fixes the periodicity of x1 (or x2 if f(r)/f∞
appears in g22 instead) in terms of rh as

l1,2 =
4πL2

√
f∞

3rh
. (7.92)

Of course, τ is still periodic with period β, but, as opposed to the black-brane case, the
temperature can be now arbitrary for a given value of rh.

Now, the Euclidean action vanishes for pure Euclidean AdS4, whereas for the black
brane and the solitons we find, respectively

Ibb
E = −4πf∞L

2

27G

(
1− 27

4
µ

)
T 2l1l2 , Isoliton 1,2

E = −4πf∞L
2

27G

(
1− 27

4
µ

)
l1l2
T l31,2

. (7.93)

The solution which dominates the partition function is the one with the smaller on-shell
action (or free energy, βF ≡ IE). As we can see from (7.93), for the set of values of µ for
which the ECG solutions exist, the free energies of the black brane and the AdS solitons
are always negative, just like for Einstein gravity, which implies that pure AdS4 never
dominates. We observe that for (arbitrarily) small temperatures, the partition function
is dominated by the soliton with the shortest periodicity, the other one being always
subleading. For large temperatures, the black brane dominates instead. At T = 1/l1,
(recall we are assuming l1 < l2), there is a first-order phase transition which connects both
phases. Hence, the phase-transition temperature is not modified with respect to Einstein
gravity. The latent heat, computed as the difference between the energy densities of both
configurations at T = 1/l1, does change and is given by

δQ =
4πf∞L

2

9G

(
1− 27

4
µ

)
l2
l21
. (7.94)

Again, something unusual happens in the critical limit. In that case, the free energy of
both the black brane and the soliton — which have a simple metric function given by
f(r) = 3

2(r2 − rh2)/L2 — vanishes. Then, for µ = 4/27, the black brane, the two solitons
and pure AdS4 are all equally probable configurations.

7.6.4 Spherical boundary: Hawking-Page transitions

Let us now consider the boundary theory on S1
β × S2. In that case, apart from Euclidean

AdS4 foliated by spheres, the other candidate saddle of the semiclassical action corresponds
to the Euclidean spherically symmetric black hole

ds2 =

[
1 +

r2

L2
f(r)

]
dτ2 +

dr2[
1 + r2

L2 f(r)
] + r2dΩ2

(2) , (7.95)

where we have chosen N2 = 1. Also, note that the ‘volume’ of the transverse space is,
in this case, VS2 = 4πL2. As a function of the horizon radius, the temperature of these
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Figure 7.3: Temperature as a function of the horizon radius for various values of µ ∈ [0, 4/27].
Depending on µ, there exist one, two, or three black holes with the same temperature.

solutions is given by (7.21)

T (rh) =
1

2πrh

(
1 + 3

rh
2

L2

)[
1 +

√
1 +

3µL4

rh4

(
1 + 3

rh2

L2

)]−1

. (7.96)

The contribution coming from the cubic term in the action becomes less and less relevant
as we make rh larger, but its effect is highly nonperturbative for small radius. For example,
a non-vanishing value of µ makes the temperature vanish, instead of blowing up, as rh → 0.
More precisely, one finds T ≈ rh/(2π

√
3µL2) in that regime. This is no different from the

behavior observed for the asymptotically flat ECG black holes [45,273,279] — small black
holes do not care whether they are inside AdS4 or flat space.

Besides this, the introduction of the cubic term in the action leads to some additional
differences with respect to Einstein gravity — see Fig. 7.3. For the usual Schwarzschild-
AdS4 Einstein gravity black hole, the temperature is always higher than a certain value,
T > Tmin ≡

√
3/(2πL). In that case, for a given T > Tmin, there exist two black holes,

one large, and one small. There are no solutions for which T < Tmin. For ECG the
situation is quite different. On the one hand, one observes that there is no minimum
temperature, this is, as long as µ 6= 0, there always exists at least one black hole solution
for a given T . We can distinguish two qualitatively different behaviors depending on µ.
For 0 < µ < µT ≡ 1/288, there is an interval of temperatures (Tmin, Tmax) for which three
black hole solutions with the same temperature exist. However, if T ≥ Tmax or T < Tmin.
we just have one. On the other hand, if µ > µT , there is always a single black hole solution
for each temperature. In the critical limit, for which f(r) = 3(r2−rh2)/(2L2), the relation
(7.96) becomes linear [281], and reads T = 3rh/(4πL

2).
In sum, at a fixed temperature T , we have several solutions with S1

β × S2 boundary
geometry: thermal AdS4, and one or three black holes depending on the value of µ. In order
to identify which phase dominates the holographic partition function at each temperature,
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Figure 7.4: We plot IE as a function of the temperature for the different phases of holographic
ECG in S1

β × S2. Solid lines represent the dominant phase in each case. Blue lines correspond
to thermal AdS4, and orange lines to black holes. From left to right and top to bottom: µ =
0, 0.0001, 1/288, 0.02. For µ = 0 we get the usual Einstein gravity result, with two orange branches
corresponding to small and large black holes, and a Hawking-Page transition at THP = 1/(πL). For
0 < µ < 1/288, there exist either one or three black-hole branches, depending on the temperature,
while for µ > 1/288 there is a single black hole for every temperature. As µ approaches the critical
value, the Hawking-Page transition temperature grows as THP ∼ 3/(2πL

√
1− 27µ/4). In the limit

µ = 4/27, the on-shell action is constant (not shown in the figure), IE = 4πL2/(3G), so thermal
AdS4 always dominates, and there is no Hawking-Page transition.

let us again compare the on-shell actions of the solutions. For thermal AdS4, one finds
a vanishing result, whereas for the black holes, the result can be obtained from (7.81),
from which we can obtain IE(T ) implicitly using (7.96). In Fig. 7.4, we plot IE for
various values of µ. At a given temperature, we always have several possible phases: a
pure thermal vacuum (radiation), and one or several black holes. The dominating phase
(shown in solid line) is the one with smaller on-shell action. Regardless of the value of µ,
the qualitative behavior is always the same: for small temperatures, the partition function
is dominated by radiation, while for large enough temperatures there is a Hawking-Page
phase transition [240, 241] to a large black hole. The temperature at which the transition
occurs depends on µ. For Einstein gravity, one finds THP = 1/(πL), while for µ� 1, this
result gets corrected as

THP =
1 + 10µ

πL
+O(µ2) . (7.97)
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Hence, the introduction of the ECG density increases the temperature at which the tran-
sition occurs. The black-hole radius for which the phase transition takes place also grows
if we turn on µ, and is given by rh = L(1 + 26µ+O(µ2)), and the same happens with the
latent heat, δQ = L/G·

(
1 + 38µ+O(µ2)

)
. As we increase µ, the Hawking-Page transition

temperature grows. In fact, it diverges in the critical limit µ = 4/27, which means that no
transition at all occurs in that case. If we define ε ≡ 1−27/4µ, the transition temperature
for ε� 1 can be seen to be given by

THP =
3

2πL
√
ε

[
1− ε

4
+O(ε2)

]
, which occurs for rh =

2L√
ε

[
1− 1

4
ε+O(ε2)

]
.

(7.98)
The reason for the disappearance of the transition is that the critical black holes have a
temperature-independent on-shell action, namely13

IE =
4πL2

3G

[
1− 9 + 8π2T 2L2

18
ε+O(ε2)

]
, (7.99)

which in the ε = 0 limit is a positive constant, therefore greater than the thermal AdS4

value.14 Let us mention that the thermodynamic behavior of our black holes is qualitatively
similar to the one observed for D = 5 Gauss-Bonnet black holes [54]15. Just like for ECG,
a new phase of small stable black holes appears also in that case, as a consequence of the
Gauss-Bonnet term. Again, thermal AdS5 is always globally preferred over such solutions.
Observe also that the fact that there is no phase transition for critical ECG seems to
be related to the fact that, in that case, the solutions become ‘very similar’ to three-
dimensional BTZ black holes (see footnote 7), for which no Hawking-Page transition exists
either [358].

Although we have seen that only radiation and large black holes can dominate the
partition function, the addition of a Gauss-Bonnet term in the action can drastically change
the previous picture, as noted in Refs. [243, 244]. In fact, we already saw in Chapter 5
that the entropy of ECG black holes becomes negative in the zero-mass limit, but that
this can be avoided if we introduce a topological GB term. Thus, by considering the
Lagrangian L → L + αL2

16πGX4, the entropy of spherical black holes is modified according
to S → S + 2παL2/G, while the on-shell Euclidean action is shifted in the opposite way
IE → IE−2παL2/G. It is worth emphasizing that such constant contributions only appear
in the presence of a spherical horizon, and in particular, the GB term does not change the
on-shell action of pure radiation, which is still Iradiation

E = 0. Then, in the zero-size limit,
the entropy and on-shell action of spherical black holes reads

lim
rh→0

IBHs
E = − lim

rh→0
S = (

√
3µ− α)

2πL2

G
. (7.100)

Thus, it seems reasonable to choose α =
√

3µ, so that the entropy vanishes in that limit.

13The fact that the on-shell action of black holes does not depend on the horizon size is yet another
unusual property of the critical theory.

14As ε→ 0, the latent heat also diverges as δQ = 4L/(G
√
ε) ·
(
1− 3ε/4 +O(ε2)

)
, although the entropy

increase tends to a constant value, δS = 8L2π/(3G) ·
(
1− ε/2 +O(ε2)

)
.

15See also [242] for the case of general quadratic gravity — the analysis becomes perturbative in that
case though.
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The effect of that subtraction in the diagrams shown in Fig. 7.4 is to shift the on-shell
action of BHs so that for T = 0 it vanishes. As a consequence, radiation never dominates
the partition function, because for any positive temperature there is a phase of black holes
with IE < 0. In that case, the phase space of the theory is qualitatively different depending
on the value of µ. For µ < µT = 1/288 we would have a Hawking-Page transition between
large and small black holes (this would correspond to the top right diagram in Fig. 7.4).
On the other hand, the phase space has a critical point (not to be confused with the critical
limit of the theory) where the three black-hole phases in Fig. 7.4 (top right) stop existing
separately.16 This occurs for µ = µT which separates the cases for which there are three
phases, from those for which there is only one. The phase transition is of second-order,

and takes place at a temperature Tc =

√
2/3

πL , corresponding to the non-smooth point on
the dashed orange curve in Fig. 7.4 bottom left. The critical exponent of the specific heat
at the transition turns out to be −2/3. More precisely, we find

C ≡ −T ∂
2F

∂T 2
=

π54/3L2

9 · 27/3G

(
T

Tc
− 1

)−2/3

as T → Tc . (7.101)

Finally, for µ > µT there is a single phase of black holes at every temperature and it always
dominates the partition function.

In passing, let us point out that more sophisticated phase transitions connecting
different AdS vacua have been identified for Lovelock gravities in various dimensions [245].
It would be interesting to explore their possible existence in ECG or, more generally, for
the class of theories introduced in [273,278,280].

7.7 Rényi entropy

Rényi entropies [247, 248] are useful probes of the entanglement structure of quantum
systems — see e.g., [230,249,250], and references therein. Roughly speaking, given a state
ρ and some spatial subregion V in a QFT, Rényi entropies characterize ‘the degree of
entanglement’ between the degrees of freedom in V and those in its complement (when
such a bi-partition of the Hilbert space is possible). More precisely, they are defined as

Sq(V ) =
1

1− q
log TrρqV , q ≥ 0 , (7.102)

where ρV is the partial-trace density matrix obtained integrating over the degrees of free-
dom in the complement of the entangling region. Whenever (7.102) can be analytically
continued to q ∈ R, the corresponding EE can be recovered as the q → 1 limit of Sq.

In this section we use the methods developed in [230, 246] to compute the Rényi
entropy for disk regions in the ground state of holographic ECG. In subsection 7.7.1, we
study the dependence of Sq/S1 on µ, as well as on some of the charges characterizing the
CFT. In subsection 7.7.2, we compute the conformal scaling dimension of twist-operators
hq for ECG — see below for definitions — as an intermediate step to obtain in subsection
7.7.3, using the results in [359], the charge t4 characterizing the three-point function of the
stress tensor.

16We thank Robie Hennigar for pointing this out to us.
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7.7.1 Holographic Rényi entropy

In [246], it was shown that the entanglement entropy across a radius-R spherical region Sd−2

for a generic d-dimensional CFT equals the thermal entropy of the theory at a temperature
T0 = 1/(2πR) on the hyperbolic cylinder R × Hd−1, where the curvature scale of the
hyperbolic planes is given by R. The result is particularly useful in the holographic context,
where the latter can be computed as the Wald entropy of pure AdS(d+1) foliated by R×Hd−1

slices17. Later, in [230], it was argued that this result could be in fact extended to general
Rényi entropies, the result being

Sq =
q

(1− q)T0

∫ T0

T0/q
Sthermal(T )dT , (7.103)

where Sthermal(T ) is the corresponding thermal entropy on R × Hd−1 at temperature T .
While for T = T0, general results for the EE across a spherical region can be obtained
for arbitrary holographic higher-derivative theories as long as AdS(d+1) is a solution, the
situation becomes more involved for general q. In that case, (7.103) requires that we know
Sthermal(T ) for arbitrary values of T . Holographically, the calculation can only be performed
if the bulk theory admits hyperbolic black-hole solutions for which we are able to compute
the corresponding thermal entropy. Examples of such theories for which Rényi entropies
have been computed using this procedure include: Einstein gravity, Gauss-Bonnet, QTG
[230] and cubic Lovelock [253]. Analogous studies for theories in which the corresponding
black holes solutions were only accessible approximately — typically at leading order in
the corresponding gravitational couplings — have also been performed, e.g., in [79, 251,
252]. ECG allows us to perform the first exact calculation (fully nonperturbative in the
gravitational couplings) of the holographic Rényi entropy of a disk region in d = 3 for a
bulk theory different from Einstein gravity.

Following [230], let us start by rewriting (7.103) as

Sq =
q

(q − 1)T0

[
S(x)T (x)|1xq −

∫ 1

xq

S′(x)T (x)dx

]
, (7.104)

where we defined the variable x ≡ rh/L̃, and where S and T stand for the thermal entropy
and temperature of the hyperbolic AdS black hole of the corresponding theory. For x = 1,
one has, in general T (1) = T0, whereas xq is defined as a solution to the equation T (xq) =
T0/q. For ECG cubic gravity, the expressions for S(x) and T (x) can be extracted from

17Observe that this means, in particular, that for odd-dimensional holographic CFTs, we can in principle
access a∗ — see (7.40) — in three different ways: 1) from an explicit EE calculation using the Ryu-
Takayanagi functional [360, 361] or its generalizations, e.g., [174, 362, 363], depending on the bulk theory;
2) from the Euclidean on-shell action of pure AdS(d+1) with Sd boundary [246]; 3) from the Wald entropy
of AdS(d+1) with R×Hd−1 boundary [246].
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(7.72) and (7.21) respectively by setting k = −1,

S(x) =
x2L̃2VH2

4G

1−
3µf2

∞

(
3x2

f∞
− 1
)[(

3x2

f∞
− 1
)
− 2

[
1 +

√
1− 3f2

∞µ
x4

(
3x2

f∞
− 1
)]]

x4

[
1 +

√
1− 3f2

∞µ
x4

(
3x2

f∞
− 1
)]2

 ,

T (x) =
1

2πRx

(
3x2

f∞
− 1

)[
1 +

√
1− 3f2

∞µ

x4

(
3x2

f∞
− 1

)]−1

, (7.105)

where, in addition, we have set N2 = L2/(f∞R
2). This makes the boundary metric

conformally equivalent to

ds2
bdy = −dt2 +R2dΞ2 , (7.106)

so that the boundary theory lives on R × H2, with the ‘radius’ of the hyperbolic plane
given by R, as required [230]. From (7.105), it can be seen that xq corresponds to the real
and positive solution of

x2
q

(
3q2x2

q − q2 − 2qxq
)

= 3µf2
∞
(
q2x4

q − 1
)
, (7.107)

which for Einstein gravity reduces to

xE
q =

1

3q

(
1 +

√
1 + 3q2

)
. (7.108)

Observe that we have not said anything yet about the divergent nature of VH2 . Of
course, one expects the entanglement and Rényi entropies to contain (a particular set of)
divergent terms, so one could have only expected some source of divergences to appear in
the calculation. It is a remarkable feature of the procedure outlined above that all necessary
divergent terms in the Rényi entropy (and no others) are produced by the volume of the
hyperbolic plane. In the case of interest for us, corresponding to d = 3, the regularized
volume reads [246]

VH2 = 2π

[
R

δ
− 1

]
, (7.109)

where we introduced a short-distance cut-off δ. From this expression, we shall only retain
the universal piece18, and hence we will replace VH2 → −2π from now on, keeping in mind
that Sq also contains a cut-off dependent ‘area’ law piece. Taking this into account, after
some massaging, which includes using (7.4), we can check that

T (1) = T0 and S(1) = −2πa∗ECG , (7.110)

where a∗ECG was defined in (7.52). Hence, we obtain the same result for the EE of a disk

18As stressed in [364], the universality of constant terms comes with a grain of salt. For example, in
(7.109), one could think of rescaling R by an order-δ constant, which would pollute the constant term. In
the case of EE, this issue was overcome in [364] using mutual information as a regulator. We will ignore
this problem here.
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Figure 7.5: We plot the ratio of the Rényi entropy and the EE, Sq/S1, as a function of the Rényi
index q for various values of the ECG coupling µ.

as the one found in section 7.4 from the free energy of holographic ECG on S3. This is
another check of our proposed generalized action (7.51).

With all the above information together, we are ready to evaluate the Rényi entropy
from (7.104). The result reads

SECG
q =

q

(1− q)
πL̃2

2G

[
1− xq −

x2
q

q
+ x3

q − µf2
∞

(
3

q2xq
− 3− 1

q3
+ x3

q

)]
, (7.111)

which reduces to the Einstein gravity one [230] for µ = 0. In Fig. 7.5, we plot Sq/S1 as
a function of the Rényi index for various values of µ. As we increase µ, Sq/S1 becomes
smaller in the q < 1 region, but it remains larger than 1 for all values of µ. The opposite
occurs for q > 1, where Sq/S1 tends to grow as we increase µ, but Sq/S1 < 1 for all µ.
In the critical limit, there is a jump, and Sq/S1 no longer diverges near q = 0. In fact, in
that case, (7.111) reduces to a q-independent constant for q < 1, Scrit.ECG

q = −πL̃2/G. As
we approach µ → 4/27, S∞ tends to another constant, S∞ → −πL̃2/G × (1 − 1/(3

√
2)).

Note also that the curve is no longer concave for µ ∼ 0.135 or larger.
Explicit Taylor expansions of SECG

q around q = {0, 1,∞} can be easily obtained. A
few terms suffice in such expansions to provide excellent approximations to the exact curve
for most values of µ. At leading order we find, respectively,

lim
q→1

SECG
q = −2πa∗ECG , (7.112)

lim
q→0

SECG
q = − 1

6πq2
cECG
S , (7.113)

lim
q→∞

SECG
q = −πL̃

2

2G

[
1 + 3µf2

∞ −
2

3
√

3(1− µf2
∞)

]
. (7.114)
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Figure 7.6: We plot the ratio of the Rényi entropy and the EE, Sq/S1, as a function of the
quotient (CT/a

∗)ECG for q = {1, 2, 3, 10,∞}. The limits of the range plotted correspond to the
critical theory, (CT/a

∗)ECG = 0, and Einstein gravity (CT/a
∗)ECG = 12/π3, respectively. The

dashed line corresponds to the linear approximation to S∞/S1 in (7.120).

The first result corresponds to the EE, and we have mentioned it already. As for the
second, the appearance in the q → 0 regime of the thermal entropy charge cECG

S , identified
in section 7.6.2, should not come as a surprise either. The reason is the following. As
shown in [230], the Rényi entropy Sq across a Sd−2 in a general CFTd can be alternatively
written as

Sq =
q

(1− q)
Rd−1VHd−1

T0
[F(T0)−F(T0/q)] , (7.115)

where F(T ) is the free energy density of the theory at temperature T on R × Hd−1. The
point is that, as q → 0, the second term in (7.115) dominates over the first. Then, one can
use the fact that, at high temperatures, the free energy density on R×Hd−1 tends to the free
energy density on Rd [365], FR×Hd−1(T ) = FRd(T )

[
1 +O(1/(RT )2)

]
, since 1/R becomes

irrelevant compared to T in that regime. Using the general relation FRd(T ) = −cST d/d,
valid for any CFT in flat space, it follows then that19

lim
q→0

Sq =
VHd−1cS

d

(
1

2πq

)d−1

, (7.116)

which should hold for any CFTd and, in particular, precisely agrees with (7.113) for ECG.
Besides, we can readily check that

∂qS
ECG
q

∣∣
q=1

=
π4

12
CECG
T , (7.117)

as expected from the general relation found in [352].

19See [79,366] for analogous arguments.
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Let us now gain some insight on the dependence of Sq on quantities characterizing
the CFT. In order to do that, we can use the relations

L̃2

G
= a∗

π3

6

[
(CT/a

∗) +
12

π3

]
, µf2

∞ = −1

3

[
(CT/a

∗)− 12
π3

][
(CT/a∗) + 12

π3

] . (7.118)

It is then straightforward to substitute these in (7.107) and (7.111) to obtain Sq as a
function of a∗ECG and (CT/a

∗)ECG. Observe that a∗ appears as a global factor, so that
Sq/S1 is a function of CT/a∗ alone. We plot this ratio for several values of q in Fig.
7.6. Observe that CT/a∗ takes values between 0 and 12/π3 ' 0.3870, corresponding to
the critical value, µ = 4/27, and Einstein gravity respectively. Interestingly, even though
the dependence of Sq/S1 on CT/a∗ is in principle highly non-linear, all curves seem to be
approximately linear in the full range. In addition, we find that

Sq
S1

∣∣∣∣
(CT 1/a

∗
1)

<
Sq
S1

∣∣∣∣
(CT 2/a

∗
2)

for (CT 1/a
∗
1) > (CT 2/a

∗
2) , (7.119)

i.e., Sq/S1 monotonously decreases as CT/a∗ grows, for all values of q. These features are
very similar to the ones observed in [230] for holographic Gauss-Bonnet in d ≥ 4.

We can gain some understanding on the approximately linear behavior of Sq/S1 by
expanding S∞/S1 around the Einstein gravity value, (CT/a

∗)ECG = 12/π3. By doing so,
we obtain

S∞
S1

= 1−
π3
[
(CT/a

∗) + 12
π3

]3/2
72
[
(CT/a∗) + 6

π3

]1/2 ' [1− 2

3
√

3

]
− 5π3

216
√

3

[
(CT/a

∗)− 12

π3

]
+ . . . , (7.120)

where the first omitted correction is quadratic in the expansion parameter. As it turns
out, the linear approximation in (7.120) fits the exact curve very well for most values of
CT/a

∗ — see dashed line in Fig. 7.6. We suspect a similar phenomenon occurs for smaller
values of q.

In spite of this ‘pseudo-linearity’, it seems clear that SECG
q does not have a simple

dependence on universal CFT quantities. This fact, which agrees with the exact d ≥ 4
results of [230] for Gauss-Bonnet and QTG, was actually anticipated in that paper also for
d = 3, where Sq was computed at leading order in the gravitational coupling for a bulk
model consisting of Einstein gravity plus a Weyl3 correction.

7.7.2 Scaling dimension of twist operators

Let us now turn to the scaling dimension of twist operators. In the context of computing
Rényi entropies for some region V using the replica trick, the boundary conditions which
glue together the different copies of the replicated geometry at the entangling surface ∂V ,
can be alternatively implemented through the insertion of dimension-(d − 2) operators
τq extending over ∂V [230, 231, 367, 368]. The replicated-geometry construction is then
replaced by a path integral over the symmetric product of q copies of the theory on a
single copy of the geometry, with the τq inserted. Given V , TrρqV can be then obtained
as the expectation value of these ‘twist operators’, TrρqV = 〈τq〉q, computed in the q-fold
symmetric product CFT. A natural notion of scaling dimension, hq, can be defined for
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τq from the leading singularity appearing in the correlator 〈Tabτq〉, as the stress tensor is
inserted close to ∂V . In particular [230,231],

〈Tabτq〉q = −hq
2π

bab
yd

, (7.121)

where bab is a fixed tensorial structure and y is the separation between the stress-tensor
insertion and ∂V .

Our interest in the hq for ECG is mostly related to the use that we will make of
them in the following subsection, so let us just reproduce the most relevant result needed
to compute them for holographic CFTs [230,231]. This establishes that, given some higher-
derivative bulk theory, hq can be obtained from the thermal entropy and temperature of
the corresponding hyperbolic AdS black hole as

hq =
2πRq

(d− 1)VHd−1

∫ 1

xq

T (x)S′(x)dx . (7.122)

Then, using (7.105), we find, for the universal piece,

hECG
q = −qL̃

2

8G

[
x3
q − xq − µf2

∞

(
x3
q +

2

q3
− 3

q2xq

)]
, (7.123)

which reduces to the Einstein gravity result [230]

hE
q =

qL̃2

8G
xq
(
1− x2

q

)
, (7.124)

when µ = 0. It is easy to perform some checks of this result. In particular, we find

lim
q→0

hECG
q = − 1

12π2q2
cECG
S , ∂qh

ECG
q |q=1 =

π3

24
CECG
T , (7.125)

as expected from the general identities found in [366] and [231], respectively. Similarly,
using (7.111), it is possible to verify that the general relations [366]20

∂jqhq
∣∣
q=1

=
1

4π

[
(j + 1) ∂jqSq

∣∣
q=1

+ j2 ∂j−1
q Sq

∣∣
q=1

]
, (7.126)

hold for general j and arbitrary values of µ, as they should.

7.7.3 Stress tensor three-point function charge t4

For general CFTs in d = 3, the stress tensor three-point function is a combination of
fixed tensorial structures controlled by two theory-dependent quantities [235], which can
be chosen to be CT plus an additional parameter21, t4. The latter was originally introduced
in [221], where it was shown to appear in the general formula for the energy flux reaching

20For j = 1, the second term is ignored.
21In general, in d = 3, there is also a parity-violating structure [369–371], which is controlled by yet an-

other parameter. Capturing this would require introducing another bulk density involving some contraction
of curvature tensors with the Levi-Civita symbol — see e.g., [370].
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null infinity in a given direction after inserting an operator of the form εijT
ij , where ~ε is

some symmetric polarization vector. For any CFT3, the result takes the general form

〈E(~n)〉 =
E

2π

[
1 + t4

(
|εijninj |2

ε∗ijεij
− 1

8

)]
, (7.127)

where E is the total energy, and ~n is the unit vector indicating the direction in which we
are measuring the flux. Hence, the only theory-dependent quantity appearing in the above
expression is t4 which, along with CT , fully characterize 〈TTT 〉 — see e.g., [121, 263] for
the explicit connection. For d ≥ 4, there is an extra parity-preserving structure weighted
by another theory-dependent constant, customarily denoted t2.

Higher-dimensional versions of (7.127) have been used to identify t4 and t2 for holo-
graphic theories dual to certain higher-order gravities in d ≥ 4, such as Lovelock [117,121]
or QTG [131]. It is known that t4 = 0 for general supersymmetric theories [221, 329], as
well as for theories of the Lovelock class [117, 121, 122, 124], including Einstein gravity in
general dimensions. In fact, one of the original motivations for the construction of QTG
in [129], was to provide a nonperturbative holographic model with a non-vanishing t4 in
d = 4. Here, we show that ECG provides an analogous model in d = 3.

In order to determine t4 for ECG, we will use the results in [359], where it was
shown that the scaling dimension of twist operators in holographic theories is related to
the parameters controlling the stress-tensor three-point function. In particular, it was
shown that the expression

hq
CT

=
π3

24
(q − 1)− π3

11520
(420 + t4)(q − 1)2 +O(q − 1)3 , (7.128)

holds for general holographic higher-order gravities in d = 3, at least at leading order in the
couplings. Performing the corresponding expansion in the twist-operator scaling dimension
(7.123), we find

tECG
4 =

−1260µf2
∞

(1− 3µf2
∞)

, (7.129)

which, as expected, vanishes for Einstein gravity. One may worry about the validity of
(7.128) beyond leading order, for which tECG

4 = −1260µ+O(µ2). However, we have good
reasons to believe that (7.129) is correct for general values of µ. First of all, observe that
(7.129) singles out µ = 4/27 as a special value of the coupling, since tECG

4 diverges in that
case. Of course, this is nothing but the critical limit of the theory, for which some sort of
bizarre behavior was to be expected. Secondly, in appendix E.1, we use the results found
in [230] for the twist-operator scaling dimensions in d-dimensional holographic Gauss-
Bonnet and d = 4 QTG, and show that the (d-dimensional versions of) (7.128) provide
expressions for t2 and t4 which exactly agree with the fully nonperturbative ones found
in [121] and [131]. These observations strongly suggest that (7.129) is an exact expression.

Now, in d = 3, imposing the positivity of energy fluxes in arbitrary directions gives
rise to the constraint −4 ≤ t4 ≤ 4, which is valid for general CFTs [121], as long as the
additional parity-odd structure is absent, as in the case of ECG22. When written in terms

22Observe, in particular, that for a CFT3 consisting of ns real conformal scalars and nf/2 Dirac fermions,
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of the gravitational coupling for ECG, this constraint translates into

312

313
≤ f∞ ≤

318

317
, (7.130)

which, together with the previous constraint 1 ≤ f∞ ≤ 3/2 becomes

1 ≤ f∞ ≤
318

317
' 1.00315 . (7.131)

This can in turn be explicitly written in terms of µ as

0 ≤ µ ≤ 100489

32157432
' 0.00312491 . (7.132)

This reduces the range of allowed values of µ quite considerably. Observe that for f∞ =
318/317, t4 = −4, which is precisely the value corresponding to a free fermion. The other
limiting value, t4 = 4, corresponding to a free scalar, would imply a negative value of µ,
and is therefore excluded. Observe also that the bound is maximally violated at the critical
value µ = 4/27.

7.8 Holographic hydrodynamics

One of the paradigmatic applications of higher-order gravities in the AdS/CFT context
has been the construction of counterexamples to the famous Kovtun-Son-Starinets (KSS)
bound for the shear viscosity over entropy density bound [225]. The latter was originally
conjectured to satisfy η/s ≥ 1

4π (in natural units) for any fluid in any number of dimensions,
the saturation occurring for holographic plasmas dual to Einstein gravity AdS(d+1) black
branes. Violations of the bound — generically produced by finite-N effects from the
gauge-theory side — were argued to occur for holographic plasmas dual to black branes
in several higher-order theories — see, e.g., [77,81,226–229] for some of the earliest works
and [259] for a review. A thorough study of various consistency conditions — such as
subluminal propagation of excitations, energy positivity or unitarity — on some of the
holographic theories for which the corresponding branes could be actually constructed
— hence allowing for fully nonperturbative calculations in the higher-curvature couplings
— suggested that the bound can be lowered down to η/s ∼ 0.4 · 1

4π for d = 4 [131], and
arbitrarily close to zero for large enough d [123]. These results give rise to three possibilities
for finite-d: (i) the parameter space which would permit violations of the KSS bound is in
fact not allowed by some other unidentified physical conditions — see below — and the
KSS bound is true after all; (ii) there exists some lower bound, but it is lower than the
KSS one; (iii) there is no bound at all. It was shown later [260] that higher-derivative
theories with nonperturbative couplings are in fact generally acausal unless the spectrum
is supplemented by higher-spin modes. While it is still unclear under what circumstances
such additional degrees of freedom play a relevant role — specially given the success of
holographic higher-curvature models in other holographic applications — the reliability of
the aforementioned conclusions regarding the fate of the bound was put in suspense by
this result. The current belief seems to be that some non-trivial bound, lower than the

t4 = 4(ns−nf)/(ns+nf), which therefore covers the full space of allowed values of t4 [121], the limiting values
corresponding to an arbitrary number of fermions, and to an arbitrary number of scalars, respectively.
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KSS one, does exist for general d — see e.g., [261].
In this section we compute the shear viscosity to entropy density ratio for ECG,

providing the first calculation of such a quantity for a holographic higher-curvature gravity
in d = 3 which is fully nonperturbative in the gravitational coupling. We will proceed
along the lines of [131, 258]. Let us start considering the ECG planar black hole in (7.9),
i.e., we set k = 0 and N2 = 1/f∞,

ds2 =
r2

L2

[
−f(r)

f∞
dt2 + dx2

1 + dx2
2

]
+

L2

r2f(r)
dr2 . (7.133)

Now, it is convenient to perform the change of coordinates z = 1 − rh2/r2, so that the
horizon corresponds to z = 0, the asymptotic boundary being at z = 1. The metric reads
then

ds2 =
rh

2

L2(1− z)

(
−f(z)

f∞
dt2 + dx2

1 + dx2
2

)
+

L2

4f(z)(1− z)2
dz2 . (7.134)

On the other hand, the cubic equation that determines f(r), (7.12), reads, in terms of z

1− f(z) + µ
[
f3 − 3(1− z)2ff ′2 − 2(1− z)3f ′(f ′2 − 3ff ′′)

]
=

(
1− 27

4
µ

)
(1− z)3/2 ,

(7.135)
where now f ′ ≡ df/dz, and so on. In order to determine the shear viscosity, we will need
the near-horizon behavior of f , so let us perform a Taylor expansion of the form

f(z) = f ′0z +
1

2
f ′′0 z

2 +
1

6
f ′′′0 (z)z3 + . . . , (7.136)

The coefficients in this expansion can be of course written in terms of those in the r-
expansion series (7.17), but it is easier to work directly with the variable z. Inserting
(7.136) in (7.135) and imposing it to hold order by order in z, one finds

f ′0 =
3

2
, f ′′′0 =

−144µf ′′20 + 4(135µ+ 4)f ′′0 − 81µ+ 12

216µ
, f

(4)
0 = . . . , (7.137)

etc. All the coefficients are determined by f ′′0 , whose value is fixed by the asymptotic
condition limz→1 f(z) = f∞. Analogously to the discussion in section 7.3.3, there is a
unique value of this parameter for which the desired boundary condition is achieved. This
defines f ′′0 as a function of µ, which we denote f ′′0 (µ). We can compute this numerically
with arbitrary precision, but let us also try an analytic computation using the following
logic. Observe that, for µ = 0, the solution is simply f(z) = 1− (1− z)3/2, from where we
read all the derivatives

f
(n)
0 (0) = (−1)n+1 Γ(5/2)

Γ(5/2− n)
. (7.138)

Now, since the solution for general µ should reduce to the Einstein gravity one when µ→ 0,
the derivatives (7.137) should coincide with the previous ones in that limit. It turns out
that we can use this condition to determine the derivatives of f ′′0 (µ) with respect to µ at
µ = 0. Let us see how this works. Obviously, we have limµ→0 f

′′
0 (µ) ≡ f ′′0 (0) = −3/4.
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Then, we should also have limµ→0 f
′′′
0 (µ) ≡ f ′′′0 (0) = −3/8. If we take this limit in the

second equation of (7.137), we get the condition

lim
µ→0

[
−144f ′′0 (µ)2 + 540f ′′0 (µ)− 81

216
+

2

27

f ′′0 (µ) + 3/4

µ

]
= −3

8
. (7.139)

The limit of the first term is finite and we can simply substitute f ′′0 (0) = −3/4. However,
in the second term we have

lim
µ→0

f ′′0 (µ) + 3/4

µ
= lim

µ→0

f ′′0 (µ)− f ′′0 (0)

µ
≡ df ′′0 (µ)

dµ

∣∣∣∣
µ=0

. (7.140)

Therefore, this equation is actually giving us the value of the derivative of f ′′0 (µ) at µ = 0,
the result being 243/8. The same process can be repeated at every order and we can obtain
all derivatives of this function at µ = 0. Up to second order, we have

f ′′0 (µ = 0) = −3

4
,

df ′′0 (µ)

dµ

∣∣∣∣
µ=0

=
243

8
,

d2f ′′0 (µ)

dµ2

∣∣∣∣
µ=0

= −115911

16
. (7.141)

Now, if the function f ′′0 (µ) were analytic, we could in principle construct it as

f ′′0 (µ) =
∞∑
n=0

1

n!

dnf ′′0 (µ)

dµn

∣∣∣∣
µ=0

µn . (7.142)

However, a convergence analysis, including many terms in the expansion, reveals that this
series is actually divergent for every µ 6= 0 — in other words, the radius of convergence is 0.
The fact that the series diverges is telling us that the function does not allow for a Taylor
expansion around µ = 0. This is an example of a C∞ function which is not analytic23.
Nevertheless, the series can be used to provide an approximate result for small enough µ
if we truncate it at certain n. For example, to quadratic order we obtain

f ′′0 (µ) ≈ −3

4
+

243

8
µ− 115911

32
µ2 , (7.143)

but the approximation is only good for rather small values of the coupling, e.g., for µ =
0.003, the error is ∼ 3% (with respect to the numerical value) and the precision is not
increased by the addition of further terms. Observe also that in the critical limit, µ = 4/27,
we have fcr(z) = 3

2z, and hence f ′′0 (4/27) = 0 in that case.
After this dissertation, which we will use to get a grasp on the small-µ behavior of

η, let us now turn to the actual computation. In order to do so, we perturb the black hole
metric (7.134) by shifting

dx1 → dx1 + εe−iωtdx2 , (7.144)

23See e.g., [372] for another explicit example in a different context.
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where ε is a small parameter. Then, the shear viscosity can be obtained as24 [258]

η = −8πT lim
ω,ε→0

Resz=0L
ω2ε2

, (7.145)

where L is the corresponding full gravitational Lagrangian (including the
√
|g| term) in

(7.2) evaluated on the perturbed metric. Using (7.136), we can evaluate this quantity, and
the result reads

ηECG =
3rh

2

64πGL2f ′0

[
2 + (21f ′20 + 36f ′′20 − 114f ′0f

′′
0 + 36f ′0f

′′′
0 )µ

]
. (7.146)

Then, using the values of f ′0 and f ′′′0 in (7.137), we find

ηECG =
rh

2

32πGL2

[
5 + 27µ+ (4− 36µ)f ′′0 (µ)

]
. (7.147)

Finally, from (7.85) it follows that the shear viscosity over entropy density ratio reads[η
s

]ECG
=

5 + 27µ+ (4− 36µ)f ′′0 (µ)

8π
(
1− 27

4 µ
) . (7.148)

Some comments are in order. First, note that this expression is very different from the rest
of nonperturbative results for η/s available in the literature for d ≥ 4 theories, correspond-
ing to Lovelock [227,374–376] and QTG [131]. In those cases, it is found that η/s depends
on the gravitational couplings in a polynomial way25 — see also [378]. On the contrary,
the ECG result has a very nonpolynomial character, for two reasons. First, the presence
of the function f ′′0 (µ), which is non-analytic, implies that η/s cannot be Taylor-expanded
around µ = 0. And second, the denominator ‘(1−27/(4µ))’ in (7.148) is also a new feature,
which gives rise to a divergence in the critical limit. The appearance of such contribution
in the denominator is rooted in the different way in which ECG modifies the result for
the thermal entropy charge cS with respect to the other theories mentioned above — see
discussion in subsection 7.6.2.

Let us analyze the profile of η/s as a function of µ. When µ� 1, we can use (7.143)
to obtain [η

s

]ECG
≈ 1

4π

(
1 +

189µ

2
− 114453µ2

16

)
. (7.149)

Again, remember that, strictly speaking, this is not a Taylor expansion and it only provides
a good approximation for very small µ. In any case, note that the leading correction is
positive, so η/s is increasing with µ. On the other hand, in the critical limit, we have
f ′′0 (µ→ 4/27)→ 0, so the leading behavior of (7.148) can be captured analytically,[η

s

]ECG
=

9

8π
(
1− 27

4 µ
) +O(1) , for µ→ 4

27
. (7.150)

24See [373] for a recent alternative method.
25Note however that, e.g., for Gauss-Bonnet gravity, some of the remaining second-order coefficients

have a nonpolynomial dependence on the corresponding coupling [126,377].
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Figure 7.7: Shear viscosity to entropy density ratio as a function of µ. The green line represents
the region allowed by the constraint t4 ≥ −4.

Hence, this ratio takes arbitrarily high values as we approach the critical limit26. The
full profile of η/s can be obtained with arbitrary precision from a numerical computation
of f ′′0 (µ). The result is shown in Fig. 7.7. The curve is monotonically increasing, and
blows up in the critical limit, µ = 4/27. Therefore, the KSS bound is not violated for
any value of µ in the dynamically allowed region, 0 ≤ µ ≤ 4/27, which is precisely a
consequence of the nonexistence of µ < 0 solutions with positive energy. In that sense, as
opposed to previously studied theories in higher dimensions, ECG simply does not allow for
violations of the bound, not even in principle. It would be interesting to find out whether
this phenomenon is common to the rest of d = 3 theories constructed in [273] and, more
generally, to the new theories belonging to the Generalized QTG class [272, 278, 280] in
general dimensions.

As we explained in subsection 7.7.3, imposing the positivity of energy fluxes in the
CFT, gives rise to the constraint 0 ≤ µ ≤ 0.00312 — see green region in Fig. 7.7. This
would imply a maximum possible value for η/s in ECG, given by[η

s

]ECG

max.
' 1.253× 1

4π
. (7.151)

From the results here, we can extract some general lessons regarding calculations
of η/s in higher-curvature holographic CFTs. First, we have seen that the ECG result is
highly nonperturbative in the gravitational coupling. There is in principle no reason to
expect this to be different for more general theories. The results found for Lovelock and
QTG, polynomial in the gravitational couplings, are probably less generic — for those, the
metric function f(r) is determined by an algebraic equation, which is a highly exceptional
property [272]. Besides, as we have seen, there may be regions of the parameter space for

26Observe that, from this point of view, the critical limit of ECG is very different from that corresponding
to its higher-dimensional cousins, such as Gauss-Bonnet. In that case, η/s diverges for λGB → −∞, while
it stays finite for the critical value λGB = 1/4.
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which the corresponding black branes do not exist, even for arbitrarily small values of the
couplings. None of this is seen when working perturbatively in the gravitational couplings,
which means that the results obtained in that way must be taken carefully. This is a lesson
which extends to most calculations in higher-curvature gravities.

7.9 Conclusions

In this chapter we have performed a thorough characterization of the holographic CFTs
dual to Einsteinian cubic gravity. One of the improvements with respect to GR is that the
2- and the 3-point functions of the dual theory are now completely general, because we have
two independent parameters, namely L2/G and µ. In this sense, ECG provides us with a
toy model of a nonsupersymmetric CFT (t4 6= 0) in d = 3, analogous to Quasi-topological
gravity in d = 4. In addition, the parameter µ breaks the degeneracy of the charges, and
this allows us to establish relations between several quantities, as we did for the case of
Rényi entropies in Section 7.7.1. The values of the different charges and a comparison with
the EG and QG cases is shown in Table 7.1.

In section 7.4, we proposed a new method for evaluating Euclidean on-shell actions
for higher-order gravities whose linearized equations of motion on maximally symmetric
backgrounds are of second order. Throughout this chapter, we have performed several
successful and highly non-trivial checks of the proposal — see appendix E.2 as well. It
would be interesting to perform further studies of our generalized action (7.38) for other
theories, such as higher-order Lovelock theories, Quasi-topological gravity and its higher-
order generalizations and, more generally, for theories of the Generalized quasi-topological
type. One of the most striking aspects of (7.38) is that it avoids the — usually very chal-
lenging — problem of determining the correct generalization of the Gibbons-Hawking-York
boundary term. At the same time, and somewhat surprisingly, it involves the universal
charge a∗ controlling the EE of spherical regions in the corresponding dual CFT. This acts
as a weight that changes from one theory to another.

One of the most important facts about Einsteinian cubic gravity is that we are able
to compute the thermodynamic properties of black holes analytically. We have shown
that this can be done, equivalently, using Wald’s entropy formula or the Euclidean action
functional (7.38), which is the standard method required by holography. Many properties
of the dual CFT, such as the the entropy density of a plasma, the temperature of the
Hawking-Page transition, or Renyi entropies, can be studied exactly thanks to this.

Finally, we also studied the shear viscosity to entropy density ratio, unveiling a new
phenomena: this quantity diverges for a certain value of the coupling µ, which coincides
with the critical limit of the theory. In addition, the KSS bound is not violated by any
positive value of µ, and is saturated only for µ = 0. The same behaviour has been
recently observed for cubic and quartic Generalized quasi-topological gravities in higher
dimensions [243,244].

Before closing, let us mention some possible extensions of the work presented in this
chapter. Many of the computations presented here can be repeated for the set of all GQGs
that we considered in Chapter 6, which share the nice property of ECG of having accessible
black hole thermodynamics. We obtain some basic formulas for the holographic dictionary
of those theories in Appendix E.4. One could also consider the higher-dimensional versions
of Generalized quasi-topological gravity — certain holographic aspects of these theories at
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CT CT · t4 cS a∗

Einstein Γ(d+2)

8(d−1)Γ(d/2)π(d+2)/2
L̃d−1

G 0 4d−2πd−1L̃d−1

dd−1G
π(d−2)/2

8Γ(d/2)
L̃d−1

G

ECG (d = 3) (1− 3µf2
∞)CE

T -1260µf2
∞C

E
T

(
1− 27

4 µ
)
f2
∞cS,E

(
1 + 3µf2

∞
)
a∗E

QTG (d = 4) (1− 3µf2
∞)CE

T 3780µf2
∞C

E
T f3

∞cS,E
(
1 + 9µf2

∞
)
a∗E

Table 7.1: From left to right: stress-tensor two- and three-point function charges CT
and CT · t4, thermal entropy charge cS, and universal contribution to the entanglement
entropy across a spherical region, a∗, for holographic theories dual to Einstein gravity in
d dimensions, ECG (d = 3) and Quasi-topological gravity (with vanishing Gauss-Bonnet
coupling) in d = 4 [131].

cubic and quartic order were analyzed in Refs. [243,244] — which would allow to explore an
even wider set of CFTs than Quasi-topological and Lovelock gravities [117, 119–122, 125–
128, 130]. More generally, one could study the general set of Einstein-like theories [284]
— which we recall contains the family of GQGs — but in that case the analysis of black
hole solutions becomes much more involved and only perturbative results can be accessed
analytically.
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Euclidean AdS-Taub-NUT solutions

In this chapter we construct a plethora of new Euclidean AdS-Taub-NUT and bolt solutions
of several four- and six-dimensional higher-curvature theories of gravity with various base
spaces B. In D = 4, we consider Einsteinian cubic gravity, for which we construct solutions
with B = S2,T2. These represent the first generalizations of the Einstein gravity Taub-
NUT/bolt solutions for any higher-curvature theory in four dimensions. Then, we show
that it is possible to extend this result to other higher-order theories by including an
additional quartic curvature correction. In D = 6 we consider quartic Quasi-topological
and Generalized quasi-topological terms, for which we obtain new solutions with B = CP2,
although we show that the base spaces S2 × S2,S2 × T2,T2 × T2 are also allowed. In all
cases, the solutions are characterized by a single metric function, and they reduce to the
corresponding ones in Einstein gravity when the higher-curvature couplings are set to zero.
While the explicit profiles must be constructed numerically (except for a few cases), we
obtain fully analytic expressions for the thermodynamic properties of all solutions. The
new solutions present important differences with respect to Einstein gravity, including
regular bolts for arbitrary values of the NUT charge, critical points, and re-entrant phase
transitions. We also find exotic analytic solutions in the critical limit of ECG that represent
NUT-charged AdS wormholes or non-isotropic bouncing cosmologies depending on the sign
of the cosmological constant.

8.1 Introduction

Higher curvature theories of gravity are proving to be increasingly useful in providing us
with knowledge connected with fundamental questions in gravitational physics. Quadratic
curvature theories are renormalizable [30], and it has long been realized that corrections
to the Einstein-Hilbert action that go like powers in the curvature generically arise as
low energy corrections from a UV complete theory of gravity, e.g., String Theory [379].
Furthermore, in the context of the AdS/CFT correspondence conjecture, higher curvature
corrections correspond to 1/N corrections in the large N limit of the dual CFT, allowing
investigation of a much broader class of CFTs [117,121,122,131,220,222].

Imposing the condition that higher-curvature gravity only propagates a massless
graviton (even if only on a constant-curvature background) severely limits the number of
sensible theories available, since they generically contain additional excitations. As we
argued in the last chapter, such theories — that are know to be of the “Einstein-like”
class — are the ones suited for holographic computations. The most well-known class
of higher curvature theories that are Einstein-like is Lovelock gravity [34, 35], in which
the dimensionally extended Euler densities are included in the gravitational action. In
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D ≥ 2k + 1, the kth order Euler density is non-trivial; in this sense Lovelock gravity is a
natural extension of Einstein gravity, and is the unique higher curvature theory maintaining
second order field equations for the metric.

However, other Einstein-like higher-curvature theories exist, and in this thesis we
have described one class of particular interest known as Generalized quasi-topological grav-
ity [45,271–273,278–281]. Let us once again refresh the properties of this family of theories.
The Lagrangian of the new family can be written schematically as

L(gab, Rcdef ) =
1

16πG

[
(D − 1)(D − 2)

L2
+R+

∑
n=2

µnL
2(n−1)R(n)

]
, (8.1)

where L is some length scale, µn are independent dimensionless couplings, and R(n) are
certain linear combinations of order-n densities constructed from contractions of the metric
and the Riemann tensor. The theories are characterized by the following properties: i) they
have second-order equations of motion when linearized around any maximally symmetric
spacetime, i.e., just like Einstein gravity, they only propagate a massless and traceless
graviton on such backgrounds; ii) they possess a continuous and well-defined Einstein
gravity limit corresponding to µn → 0 for all µn; iii) they admit generalizations of the
Schwarzschild-(A)dS black hole — so they reduce to it in the Einstein gravity limit —
characterized by a single function,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΣ2

(D−2) , (8.2)

where dΣ2
(D−2) is the metric of the horizon cross sections (not necessarily spherical); iv) the

function f(r) is determined from (at most) a second-order differential equation which, for
a fixed set of µn, admits a unique black-hole solution completely characterized by its ADM
energy and which, at least in the spherically symmetric case, describes the exterior field of
matter distributions with that symmetry [272]; v) the thermodynamic properties of such
black holes can be obtained from a system of algebraic equations with no free parameters.

The above class of theories can be subdivided if one considers more restrictive criteria.
In particular, replacing i) by the requirement that the full non-linear equations of the theory
are second order selects the Lovelock family [34,380,381]. Keeping i) as it is, but replacing
instead iv) by the requirement that f(r) is determined by an algebraic equation, selects
a more general class of theories, known as Quasi-topological gravities [129, 130, 132, 133]
(which of course include Lovelock as particular cases). More generally, the family of higher-
curvature gravities satisfying i)-v) is larger than the Quasi-topological one. The missing
theories possess black holes whose metric function is determined by second-order differential
equations, and the full set has been coined “Generalized quasi-topological Gravity” (GQTG)
in [278].

One intriguing feature of these new theories, in contradistinction to those belonging
to the Quasi-topological subset (except for Einstein gravity itself) is that some of them
are nontrivial in D = 4. The simplest possible case of that kind, and the first to be
identified, corresponds to a single additional cubic term and goes by the name of four-
dimensional Einsteinian cubic gravity1 (ECG) [271], whose action is given in (8.8) below.

1The D-dimensional version of ECG was originally obtained as the most general cubic theory defined
in a dimension-independent way — i.e., so that the relative coefficients of the cubic invariants involved

222



Chapter 8. Euclidean AdS-Taub-NUT solutions

Many examples of GQTG theories in general dimensions have now been constructed, and
their respective black hole solutions studied and characterized [45, 252, 272–274, 278–282,
315,382,383].

A different class of exact static solutions of Einstein gravity is given by the Taub-
NUT family. The Euclidean section of the corresponding metrics can be written as

ds2 = VB(r)(dτ + nAB)2 +
dr2

VB(r)
+ (r2 − n2)dσ2

B , (8.3)

which, in even dimensions, can be understood as U(1) fibrations over (D− 2)-dimensional
Kähler-Einstein base spaces B with metric gB. In (8.3), τ is a periodic coordinate parametriz-
ing the S1, and J = dAB is the Kähler form on B. The non-triviality of the fibration is
controlled by the presence of a non-zero parameter n, customarily called “NUT charge”.
Depending on the dimension of the set of fixed points of the U(1) isometry — namely those
for which VB(r) = 0 — the solution is said to be a “NUT” or a “bolt”. Taub-bolt solutions
are characterized by (D−2)-dimensional fixed-point sets, whereas smaller dimensionalities
give rise to Taub-NUT solutions.

It has been known for some time that NUT-charged solutions exist in Lovelock
gravity [384–387]. A broad understanding of their thermodynamics remains an ongoing
subject of investigation [388–400] since it was realized that their contribution to the entropy
does not obey the area law, even in Einstein gravity [266, 401]. A recent review of Taub-
NUT spacetimes and their symmetries has appeared [402].

On general grounds, one expects two independent functions to be required to describe
Taub-NUT solutions in general higher-curvature gravities. The relevant observation for us
is that both for Einstein gravity and Gauss-Bonnet, all Taub-NUT solutions are character-
ized by a single function for each choice of base space. This is analogous to the situation
encountered for static black-hole solutions. One is then naturally led to wonder whether
the rest of GQTG theories also admit generalizations of the Einstein gravity Taub-NUT
solutions characterized by a single function, VB(r), just like they admit generalizations of
the Schwarzschild black hole with that property. The answer turns out to be yes and, as
we show here, a plethora of new Taub-NUT and Taub-bolt solutions of the form (8.3) can
be constructed in various dimensions and for different base spaces.

Each choice of D, base space and Taub-NUT class has its peculiarities, but some
aspects of our construction can be explained in general. First of all, and in a similar
fashion to what occurs with black holes, inserting ansatz (8.3) in the equations of motion of
the corresponding GQTG theory we will observe that, whenever the corresponding theory
admits Taub-NUT solutions of that form2, they reduce to a single third-order equation for
VB(r). Interestingly, this equation always admits a simple integrable factor which allows
us to integrate it once. Hence, in each case we are left with a single equation of the form

EB[VB, V
′
B, V

′′
B , r] = C , (8.4)

where C is an integration constant related to the ADM energy of the solution. Also, in
analogy with the black-hole case, one of the integration constants of this second-order

do not depend on D — possessing second-order linearized equations on general maximally symmetric
backgrounds [271]. However, it is only for D = 4 that ECG additionally satisfies properties ii)-v) [45,279].

2Not all GQTG theories will admit all possible Taub-NUT solutions of the form (8.3) for all possible
base spaces.
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differential equation will always be fixed by imposing the solutions to be locally asymptot-
ically AdS. With regards to the second, recall that the defining properties characterizing
VB(r) are, respectively,

VB(r)|r=n = 0 , V ′B(r)|r=n = 4π/βτ , for NUT , (8.5)

VB(r)|r=rb = 0 , V ′B(r)|r=rb = 4π/βτ , for bolt ,

where βτ is the period of τ , and the bolt location satifies rb > n. While the first condition
determines whether we are considering a NUT or a bolt, the second ensures that the
solutions are smooth at r = n and r = rb, respectively and, when possible, it will fix the
other integration constant in (8.4) for our solutions.

For concreteness, we shall restrict ourselves to four- and six-dimensional theories. In
D = 4, we will focus on the simplest possible modification to the Einstein-Hilbert action,
namely, the ECG term. For this, we will construct solutions with base spaces B = S2 and
T2. These are, to the best of our knowledge, the first higher-curvature generalizations of the
Einstein gravity Taub-NUT solutions in four dimensions. Turning to D = 6, we find that
no non-trivial solutions of the form (8.3) can be constructed at cubic order in the GQTG
family. They will exist, however, when quartic invariants are included, and we will restrict
ourselves to that case. For those, we will construct solutions with B = CP2, S2×S2, S2×T2

and T2 × T2.
Although we will not be able to solve (8.4) analytically for VB(r) in general (except

for the critical theories), the thermodynamic properties of the solutions will be accesible in
a fully analytic fashion, again similar to what happened for the black hole solutions con-
structed in [45,272,273,278–280]. The relation between the ADM energy of the solutions,
the NUT charge and rb (when present) will be accessible in each case from the asymptotic
and near r = n or r = rb expansions. On the other hand, in order to compute the free
energy of the solutions, we will make use of the method introduced in [274]. According
to this, given some higher-curvature gravity with Lagrangian density L(gαβ, Rµνρσ) whose
linearized equations on pure AdS match those of Einstein gravity (up to a normalization
of Newton’s constant), the Euclidean on-shell action of any asymptotically AdS solution
can be computed using the formula3

IE = −
∫
M
dDx
√
gL(gαβ, Rµνρσ)− 2a∗

Ω(D−2)L̃D−2

∫
∂M

√
h
[
K + counterterms

]
, (8.6)

where ΩD−2 ≡ 2π(D−1)/2/Γ((D − 1)/2) is the area of the unit sphere SD−2, L̃ is the AdS
radius, and a∗ is the charge appearing in the universal contribution to the entanglement
entropy across a spherical entangling surface SD−3 in the dual CFT. This quantity is
related, for any higher-curvature theory of gravity, to the on-shell Lagrangian of the theory
on pure AdS through [58,59,239,274,288]

a∗ = − π(D−1)/2L̃D

(D − 1)Γ
[
D−1

2

] L|AdS . (8.7)

3The most remarkable aspect of (8.6) is the fact that, for any theory of the kind explained above, the
usual Gibbons-Hawking-York boundary term of Einstein gravity [84, 85] only appears modified through
an overall factor proportional to a∗. This is a considerable simplification with respect to the standard
approach of trying to construct the generalized version of K which makes the corresponding gravitational
action differentiable [88,89,346].
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In [274], it was also argued that the same counterterms required to produce finite on-shell
actions for Einstein gravity solutions can also be used for higher-curvature gravities of this
class if we weight them by the same overall coefficient. With minor modifications in the
D = 6 case — see discussion below Eq. (G.7) — associated with the fact that the solutions
are only locally asymptotically AdS, Eq. (8.6) satisfactorily removes all divergent terms in
the corresponding on-shell actions, and yields thermodynamic masses that agree with the
ADM ones in all cases.

The structure of this chapter is simple. In Section 8.2 we construct Taub-NUT/bolt
solutions of D = 4 Einsteinian cubic gravity and in Section 8.3, we repeat the analy-
sis including an additional quartic density of the Generalized quasi-topological class. In
Section 8.4 we construct the corresponding solutions for D = 6 Quartic Generalized quasi-
topological gravities. In each case, we compute the relevant thermodynamic quantities of
the solutions, with special emphasis on the most standard cases B = S2 and B = CP2,
for which we study the corresponding phase spaces finding interesting new phenomena.
Subsection 8.2.3 is somewhat different from the rest. It is devoted to the critical limit of
Einsteinian cubic gravity, for which the solutions can be constructed analytically. Some
details regarding our numerical computations can be found in appendix F.

8.2 Four dimensions: Einsteinian cubic gravity

The first theory we will consider is four-dimensional Einsteinian cubic gravity with a neg-
ative cosmological constant [271].

Its Euclidean action reads

IE = − 1

16πG

∫
d4x
√
g

[
6

L2
+R− µL4

8
P
]
, (8.8)

where the cubic density P is defined as

P = 12R ρ σ
µ ν R α β

ρ σ R µ ν
α β +R ρσ

µν R αβ
ρσ R µν

αβ − 12RµνρσR
µρRνσ + 8R ν

µ R ρ
ν R

µ
ρ . (8.9)

The explicit form of the field equations of (8.8) can be found in Eq. (5.3). The theory
admits pure AdS4 solutions of radius L̃ related to the action scale L by L̃2 = L2/f∞,
where f∞ is determined through

1− f∞ + µf3
∞ = 0 . (8.10)

Throughout the chapter we will assume 0 ≤ µ ≤ 4/27, for which a unique branch of stable
AdS vacua reducing to the Einstein gravity one as µ → 0 exists. In general, stable vacua
exist for µ < 0 as well, but these are eliminated by the requirement that black holes have
positive energy [45,279]. On the other hand, values of µ larger than 4/27 always give rise
to unstable vacua. The “critical” limit of the theory [281], corresponding to µ = 4/27,
warrants special attention. For that value of the coupling, the effective Newton constant
diverges, and a number of simplifications take place, including the existence of analytic
black hole solutions — as well as various exotic results from the point of view of a putative
CFT dual [274].

Let us consider a metric ansatz with NUT charge n of the form (8.3) where, initially,
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we choose the base spaces B = S2, T2 and H2, although we shall only construct explicit
solutions for the first two. The base-space metrics and 1-forms appearing in (8.3) can then
be written, respectively, as

dσ2
B =


dθ2 + sin2 θdφ2 if B = S2 ,
1
L2 (dη2 + dζ2) if B = T2 ,

dχ2 + sinh2 χdρ2 if B = H2 ,

AB =


2 cos θdφ if B = S2 ,
2ηdζ
L2 if B = T2 ,

2 coshχdρ if B = H2 .

(8.11)

We stress again that the most general ansatz for a Taub-NUT metric in a general higher-
curvature gravity should involve an additional function — for example, gττ = VB(r)NB(r)2

instead. It is a remarkable and highly nontrivial property of ECG that, when evaluated on
(8.3) with the above choice of base spaces, its field equations reduce to a single differential
equation for VB(r). This is given by (omitting the ‘B’ subscript to reduce the clutter)

− 2rV ′ +
2V
(
n2 + r2

)
n2 − r2

+
2kL2 − 6n2 + 6r2

L2
+ µL4

[
6V 3n2

(
n4 − 16n2r2 − 45r4

)
(n2 − r2)5

+
3V r2 (V ′′)2

2 (r2 − n2)
+
(
V ′
)2(3V

(
n4 − 37n2r2 − 2r4

)
(n2 − r2)3 −

3k
(
n2 + r2

)
2 (n2 − r2)2

)
− 3n2r (V ′)3

(n2 − r2)2

+ V ′′

(
6V 2

(
2n4 − 15n2r2 − r4

)
(n2 − r2)3 −

6V rV ′
(
5n2 + r2

)
(n2 − r2)2 +

3V k
(
n2 − 2r2

)
(n2 − r2)2

)

+ V ′

(
6V kr3

(r2 − n2)3 −
6V 2r

(
3n4 + 62n2r2 + r4

)
(n2 − r2)4

)

+ V (3)

(
−

3V 2r
(
4n2 + r2

)
(n2 − r2)2 +

3V r2V ′

2 (r2 − n2)
+

3V kr

r2 − n2

)]
= 0 ,

(8.12)

where k = +1, 0,−1 for S2, T2 and H2, respectively.
Despite its challenging appearance, the above equation has two remarkable proper-

ties. First, it is of third order, instead of fourth, which is what one would have naively
expected. Second, it allows for an integrable factor: after multiplying by (1− n2/r2), the
equation becomes a total derivative and it can be integrated once. By doing so, we are left
with a second-order differential equation of the form (8.4), namely

V

(
2n2

r
− 2r

)
+

2
(
kL2

(
n2 + r2

)
− 3n4 − 6n2r2 + r4

)
L2r

+ µL4

[
6V 3n2

(
n2 + 9r2

)
r (n2 − r2)3

+
(
V ′
)2( 3V n2

n2r − r3
− 3k

2r

)
− (V ′)3

2
+ V ′

(
3V 2

(
17n2 + r2

)
(n2 − r2)2 +

3V k

n2 − r2

)
+

V ′′

(
−

3V 2
(
4n2 + r2

)
r3 − n2r

+
3V V ′

2
+

3V k

r

)]
= 4C ,

(8.13)

where C is an integration constant which will be related to the energy of the solution.
We now require the metric (8.3) to be locally asymptotically AdS; as a consequence
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we must demand V (r)→ f∞
r2

L2 +O(1) as r → +∞. Performing a 1/r expansion we find

V (r) = f∞
r2

L2
+ k − 5f∞

n2

L2
− 2C

r(1− 3f2
∞µ)

+O(r−2) = Vp(r) . (8.14)

The effective Newton constant of the theory is given by

Geff =
G

1− 3f2
∞µ

, (8.15)

so, at least in the spherical case, we can identify the integration constant in (8.13) with the
ADM mass of the solution as C = GM . In an abuse of notation, we will use this definition
for all base spaces. Now, note that since (8.13) is a second-order differential equation, it
possesses a two-parameter family of solutions, of which (8.14) corresponds to a particular
one. In order to find the remaining asymptotic solutions, let us write V (r) = Vp(r)+ r2

L2 g(r)
and expand linearly in g. Taking into account only the leading terms when r → +∞, we
find that g satisfies the following equation

9L2GMµf∞g
′′(r)− 2r(1− 3µf2

∞)2g(r) = 0 . (8.16)

Leaving aside the limiting values µ = 0, 4/27, the general solution is given by

g(r) = AAiryAi

[(
2(1− 3µf2

∞)2

9L2GMµf∞

)1/3

r

]
+BAiryBi

[(
2(1− 3µf2

∞)2

9L2GMµf∞

)1/3

r

]
(8.17)

where AiryAi[x] and AiryBi[x] are the Airy functions of the first and second kind, respec-
tively. When GMµ > 0, the solution involving AiryBi grows exponentially, while the one
with AiryAi decays. Therefore, we must set B = 0 in order for the solutions to be locally
asymptotically AdS. Hence, we learn that the asymptotic boundary condition is fixing one
of the integration constants in (8.13). The remaining one will be fixed by the correspond-
ing regularity conditions in the bulk, as we will show in the following sections. When
GMµ < 0, the solutions (8.17) have an oscillatory character and they are all singular at
infinity (except the trivial one, g = 0). To remove this behaviour we would need to set
both A and B to zero, which would fully specify the solution. This would leave us with no
integration constants to impose regularity in the bulk. This behaviour is very similar to
that found for the static black hole solutions of the theory [45, 279] — see also [273], and
leads us to choose µ ≥ 0, so that the solutions with GMµ > 0 have positive energy.

Einstein gravity

In the following subsections we will consider the base spaces S2 and T2 independently, and
we will construct new Taub-NUT and bolt solutions for them for general values of µ. It is
illustrative however to start analyzing the Einstein gravity case, for which the analysis can
be performed at the same time for all base spaces. Indeed, if we set µ = 0, (8.13) can be
easily solved for VB(r). Imposing the NUT condition VB(r = n) = 0 first, one is left with

VB(r) =
(r − n)

[
(r − n)(3n+ r) + kL2

]
L2(n+ r)

, (8.18)
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where we already fixed the integration constant as

GM = kn− 4n3

L2
. (8.19)

The regularity condition (8.5) imposes

βτ =
8πn

k
, (8.20)

which means that τ cannot be a compact coordinate for B = T2 or, in other words,
the solution is extremal, in the sense that the temperature T ≡ 1/βτ is forced to vanish.
Similarly, for B = H2, one finds that the period of τ would need to be negative. This means
that VH2(r) actually becomes negative for values of r greater than n, which is forbidden by
assumption. Hence, no regular Taub-NUT solution exists in that case for Einstein gravity.

If we impose the bolt condition VB(r = rb) = 0 instead, we find

VB(r) =
(r − rb)

[
(6n2rrb − 3n4 + kL2(n2 − rrb)− rrb(r2 + rrb + r2

b ))
]

L2(n2 − r2)rb
, (8.21)

where the integration constant was fixed as

GM =
kL2(n2 + r2

b )− 3n4 − 6n2r2
b + r4

b

2L2rb
. (8.22)

The regularity condition (8.5) fixes now the bolt radius as a function of n and βτ , namely

rb =
2L2π

3βτ

[
1±

√
1− 3kβ2

τ

4L2π2
+

9n2β2
τ

4L4π2

]
. (8.23)

In order for each solution to be allowed, it must be such that rb > n. Furthermore, the
quantity inside the square root must be positive, which restricts the allowed values of n
for which the corresponding solutions exists.

On general grounds, in order to remove the so-called Misner string [270], an additional
condition must be imposed on βτ both for NUT and bolt solutions when B = S2. As we
explain in the next subsection, this reads βτ = 8πn. It is a remarkable (and peculiar) fact
that in Einstein gravity Eq. (8.5) automatically implements this condition in the case of
the NUT solution. In general, both conditions must be imposed separately.

8.2.1 B = S2

Let us now turn on the Einsteinian cubic gravity coupling. We begin by assuming the
base space to be the one-dimensional complex projective space CP1 or, equivalently, the
two-dimensional round sphere, B = S2. Then, the metric (8.3) reads

ds2 = VS2(r)(dτ + 2n cos θdφ)2 +
dr2

VS2(r)
+ (r2 − n2)

(
dθ2 + sin2 θdφ2

)
. (8.24)
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This metric has “wire singularities” at θ = 0, π, for which it becomes noninvertible. As
shown by Misner [270], it can nevertheless be made regular everywhere using two coordinate
patches. The idea is to define new coordinates τ± = τ ± 2nφ covering the θ ≥ π/2 and
θ ≤ π/2 regions respectively. In the overlap region, τ+ = τ−+4nφ, and since βφ = 2π, one
is forced to impose the periods of τ± to be βτ± = 8πn. For clarity reasons, in what follows
we will work with the metric (8.24) in a single patch, but taking into account that the
period of τ is related to the NUT charge through βτ = 8πn. Observe that this condition is
a consequence of choosing B = S2 and does not depend on the theory. When combined with
the general regularity condition (8.5), this gives rise to the conditions V ′S2(r = n) = 1/(2n)
and V ′S2(r = rb) = 1/(2n) respectively for NUTs and bolts.

The function VS2 in (8.24) is determined from (8.13) with k = 1. Using the asymp-
totic expansion (8.14), we see that when r → +∞ the metric induced on a constant-r
hypersurface is given by

(3)ds2

r2
=

4f∞n
2

L2
(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2 +O(r−2) , (8.25)

where we have introduced the angle coordinate ψ = τ/(2n), whose period is 4π. When
4f∞n

2 = L2, the previous metric is the one of a round S3. For any other value of n, it is
the metric of a squashed sphere, and it is customary [262,263,268,269,403] to rewrite the
NUT charge in terms of a ‘squashing parameter’ α as 4f∞n

2/L2 = 1/(1 + α). In order
to specify the solution, we need to choose a boundary condition at some finite r = rb.
Depending on whether we choose rb = n, or rb > n, we will be considering Taub-NUT or
Taub-bolt solutions.

Taub-NUT solutions

As we have explained, the Euclidean Taub-NUT metric is characterized by the conditions
VS2(r = n) = 0 and V ′S2(r = n) = 1/(2n). Let us then expand VS2(r) around r = n as

VS2(r) =
(r − n)

2n
+
∞∑
i=2

(r − n)iai , (8.26)

for some ai. Plugging this expansion into (8.13), we observe that the O (r − n) and
O
(
(r − n)2

)
equations are automatically satisfied, whereas the O(1) one gives rise to the

following relation between the mass and the NUT charge,

GM = n− 4n3

L2
− µL4

16n3
. (8.27)

Observe that this reduces to the Einstein gravity expression (8.19) for µ = 0. The following
term in the expansion gives a relation between a3 and a2, which we can use to write
the former as a function of the latter, a3(a2). Similarly, the following term allows us
to obtain a4(a2), and so on. Hence, as in the black hole case [45, 279], the full series is
determined by a single free parameter a2. This parameter must be chosen in a way such
that B = 0 in (8.17), which ensures that the solution is locally asymptotically AdS. In
practice, the shooting method can be used to identify a2 for each value of µ, so that the
near r = n expansion yields a good approximation to the exact solution that connects
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Figure 8.1: We plot the metric function VS2(r) · L2/r2 corresponding to Taub-NUT solutions of
ECG with n/L = 0.3 for several values of µ. The examples shown correspond to values of µ and
n which satisfy the positive-mass inequalities (8.28). The red curve corresponds to the metric
function for the Einstein gravity Taub-NUT solution given by (8.18) with k = 1.

with the asymptotic expansion (8.14). There is a unique a2 for each µ that does the job,
corresponding to a unique Taub-NUT solution in each case. We plot the metric function
VS2(r) for different values of µ in Fig. 8.1. These solutions generalize the Einstein gravity
Taub-NUT solution (the red curve in Fig. 8.1), whose metric function is given by (8.18)
with k = 1. As we can see, the qualitative behaviour of VS2(r) is very similar to that of
Einstein gravity for nonvanishing values of the ECG coupling.

One peculiarity of (8.27) for nonvanishing µ is that the mass becomes negative for
small values of n. In particular, the mass is non-negative only when

L2

4f∞
≥ n2 ≥ L2µf2

∞
8

[
1 +

√
4− 3µf2

∞
µf2
∞

]
. (8.28)

The existence of a finite lower bound for n is a new feature, which does not occur for
Einstein gravity. Indeed, in that case (8.28) becomes L2/(4f∞) ≥ n2 ≥ 0. For general
values of the gravitational coupling, we cannot expect the solution to exist whenever n
lies outside the interval in (8.28), because the asymptotic behaviour for negative masses
is pathological. Indeed, as we explained in the discussion below Eq. (8.17), negative mass
solutions would be highly oscillating at infinity, and hence they are not asymptotically AdS.
Solutions with zero mass occur when either the upper or the lower bounds are saturated.
In terms of µ, the M = 0 condition reads

µ =
16n4

L4

[
1− 4n2

L2

]
. (8.29)

In the case of Einstein gravity, the possibilities are n2 = L2/4 and n = 0, for which the
solution reduces to pure Euclidean AdS4 foliated by round S3 slices and S1 × S2 slices,
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Figure 8.2: Free energy of the NUT solution with S2 base. In red we show the Einstein gravity
result and in blue the ECG ones for µ = 8/270, 16/270, 24/270, 32/270, 4/27. The mass M is
proportional to the slope of each curve and solid lines representM > 0 while dashed lines represent
M < 0. For ECG only the solutions with M > 0 exist. We also plot the free energy of the special
critical solution (8.43), whose metric function is given in (8.30). Remarkably, this curve is the
envelope of the free energies with M > 0.

respectively4 [178]. For any nonvanishing value of µ, (8.29) is satisfied identically for n2 =
L2/(4f∞), which can be straightforwardly checked using (8.10). In this case, the solution
also reduces to pure AdS4, the metric factor being simply given by VS2(r) = f∞r

2/L2−1/4.
Besides this solution, there exists another one obtained by choosing n to saturate the lower
bound in (8.28), and which is analogous to the n = 0 one in Einstein gravity. Interestingly,
this solution no longer reduces to pure Euclidean AdS4 for 0 < µ < 4/27 but, rather, it has
a nontrivial profile. In the critical limit, µ = 4/27, the range allowed by (8.28) collapses
to a single possible value, corresponding to n2 = L2/6. In that case, the solution does
correspond to pure AdS4. For other values of n, the critical solution can also be accessed
analytically (see Section 8.2.3), and the result for the metric function reads

V cr
S2 (r) =

3

2L2
(r2 − n2) . (8.30)

This solution has a vanishing mass parameter M = 0, namely, it only exists if we fix the
integration constant C to zero in (8.13). Note that this solution has V cr

S2
′(n) = 3n/L2; it has

a conical singularity at r = n in all cases but one, corresponding to the value n2 = L2/6,
for which it becomes pure AdS4, as mentioned above.

Let us now evaluate the on-shell action of the solutions. In order to do so, we
make use of the generalized action (8.6) where, for ECG, the charge a∗ is given by a∗ =

4Observe however that the n → 0 limit is problematic, in the sense that the period of τ would vanish
in that case. One can of course just set n = 0 from the beginning, which makes the problem disappear.
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(1 + 3µf2
∞)L̃2/(4G). Using this, the full ECG action takes the form

IE = −
∫
d4x
√
g

16πG

[
6

L2
+R− µL4

8
P
]
− (1 + 3µf2

∞)

8πG

∫
∂M

d3x
√
h

[
K − 2

√
f∞
L
− L

2
√
f∞
R
]
,

(8.31)
where R stands for the Ricci scalar of the induced metric on the boundary. The last two
terms in the second line are the standard counterterms in D = 4 which, as explained in
the introduction, also appear weighted by a∗ without further modification according to the
prescription in [274]. An explicit evaluation of all the terms in the above expression for
our new Taub-NUT solutions can be performed fully analytically using the near r = n and
asymptotic expansions. Let us present here the complete calculation in order to illustrate
how it works. For the configuration (8.24), the Lagrangian is a total derivative, so the bulk
part of the action can be integrated exactly,

Ibulk = − 4πβ

16πG

∫ L2/δ

n
dr(r2 − n2)L = − β

4G
F (r)

∣∣∣L2/δ

n
, (8.32)

introducing a UV cutoff δ, where β = 8πn is the periodicity of the Euclidean time and

F (r) =
(
n2 − r2

)
V ′(r)− 2rV (r) +

2r
(
L2 − 3n2 + r2

)
L2

+ µL4

[(
− 6n2V (r)

(n2 − r2)2 −
21n2

(
n2 + r2

)
V (r)2

(n2 − r2)3

)
V ′(r)−

(
5n2 + r2

)
V ′(r)3

4n2 − 4r2

−
6n2r

(
5n2 + r2

)
V (r)3

(n2 − r2)4 − 6n2rV (r)2

(n2 − r2)3 +

(
3r

2 (r2 − n2)
−

3
(
9n2r + r3

)
V (r)

2 (n2 − r2)2

)
V ′(r)2

]
.

(8.33)
Using (8.14) to compute F (L2/δ), we find

Ibulk =
2πn

G

[
F (r → n)−

(
2L4

δ3
− 6n2

δ

)(
1− 2f∞ − 2f3

∞µ
)
− 2GeffM

(
1 + 3f2

∞µ
)

+O(δ/L2)

]
.

(8.34)
Now, for the boundary contributions, we use the trace of the extrinsic curvature at r =
L2/δ, and the Ricci scalar of the induced metric, respectively given by

K =
2(L2/δ)

(L2/δ)2 − n2
V (L2/δ)1/2 +

1

2

V ′(L2/δ)

V (L2/δ)1/2
, R =

2(L2/δ)2 − 2(1 + V (L2/δ))n2

(n2 − (L2/δ)2)2
.

(8.35)
Then, using the asymptotic expansion (8.14) we find the boundary contribution

Iboundary =
2πn

G

(
1 + 3µf2

∞
) [
−f∞

(
2L4

δ3
− 6n2

δ

)
+ 2GeffM

]
+O(δ/L2) . (8.36)

Adding up bulk and boundary contributions, we find

IE =
2πn

G

[
F (r → n)−

(
2L4

δ3
− 6n2

δ

)(
1− f∞ + f3

∞µ
)

+O(δ/L2)

]
=

2πn

G
F (r → n)+O(δ/L2) ,

(8.37)
where in the last equality we used the defining equation of f∞, (8.10). Remarkably, all
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contributions coming from the boundary cancel out, including constant terms. Finally,
taking the limit δ → 0 and using the expansion (8.26), we are left with the simple result

IE =
4π

G

[
n2 − 2n4

L2
+
µL4

16n2

]
. (8.38)

This reduces to the free energy of the corresponding Einstein gravity Taub-NUT solution
when µ = 0, as it should. The energy and entropy can be easily obtained now from
E = ∂IE/∂β and S = βE − IE . Using this, we find that the energy precisely matches the
result for the ADM mass obtained in (8.27), E = M , which is a highly nontrivial check of
the calculation, whereas for the entropy we obtain

S =
4π

G

[
n2 − 6n4

L2
− 3µL4

16n2

]
, (8.39)

which is not given by a simple area law due to contributions from the Misner string.
It is also possible to consider the thermodynamics of these NUT charged solutions

from the perspective of extended phase space thermodynamics. Within this framework, one
introduces potentials conjugate to the cosmological constant — interpreted as a pressure
P = −Λ/(8πG) — and any higher-curvature couplings that appear in the action [404,405].
These considerations are motivated by scaling arguments, since without these terms the
Smarr relation fails to hold. In the case of Taub-NUT solutions in ECG, the extended first
law reads

dE = TdS + V dP + ΥECGd(µL4) , (8.40)

where we have restored the dimensions to the ECG coupling constant. The new potentials
read

V = −8πn3

3
, ΥECG =

1

32Gn3
. (8.41)

Interestingly, the thermodynamic volume here is precisely the same as for Taub-NUT
solutions in Einstein gravity [395]. The same conclusion holds for the thermodynamic
volume of black holes in higher-curvature gravities that belong to the generalized quasi-
topological class. With the thermodynamic quantities defined as above, the Smarr relation
that follows directly from a scaling argument is found to hold:

E = 2TS − 2V P + 4µL4ΥECG . (8.42)

In Fig. 8.2 we plot the Euclidean action (8.38) for several values of µ. Dashed lines
correspond to negative values of the mass, whereas solid lines correspond to solutions with
M > 0. As we mentioned earlier, in principle we only expect solutions with positive mass
M > 0 to exist. A numerical analysis seems to confirm this, since we were not able to
construct any solution withM < 0. This also constrains the validity of the thermodynamic
expressions (8.38) and (8.39) to the interval defined by (8.28). This interval becomes
smaller as µ grows, and it reduces to a single point, n2 = L2/6, in the critical limit.
Interestingly, we observe that the free energy of the critical theory solutions (solid gray
curve) acts as an envelope of all possible solutions with positive mass and arbitrary values
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of µ. Observe that this free energy cannot be obtained from (8.38) in the µ→ 4/27 limit;
the same applies to the mass, which cannot be obtained from (8.27). The correct result
for the on-shell action associated to the critical solutions with metric function (8.30) reads
however

Icr
E =

8πn2

G

[
1− 3n2

L2

]
. (8.43)

As we mentioned above, all these solutions except for the one with n2 = L2/6 have conical
singularities, so the result must be taken with care — e.g., the mass cannot derived from
(8.43) using standard thermodynamic identities. It is a remarkable and somewhat striking
fact that the free energy of this singular solution, as given by (8.43), precisely separates
the free energies of negative-mass solutions from those corresponding to completely regular
positive-mass solutions for general values of µ. The different nature of the critical solutions
can also be seen from the fact that whenever µ 6= 4/27, the solutions with M = 0 corre-
spond to values of n for which IE(n) is locally extremized, whereas the whole µ = 4/27
curve has M = 0.

Taub-bolt solutions

Let us now turn to bolt solutions. These are obtained by imposing VS2(r) to vanish for
some rb > n, i.e., VS2(rb) = 0, plus the regularity condition V ′S2(rb) = 1/(2n). If we
plug a Taylor expansion for VS2(r) around r = rb including these conditions in (8.13), the
equations corresponding to the first nontrivial orders give rise to two equations involving
the mass of the solution M , the bolt radius rb, and the NUT charge n. These read

GM =
n2 + r2

b

2rb
+

1

L2

[
r3
b

2
− 3n4

2rb
− 3rbn

2

]
− µL4

64n2

(6n+ rb)

nrb
, (8.44)

0 =
6

L2
(r2
b − n2)2 + (2− rb/n)(r2

b − n2)− 3µL4

8n2

(r2
b + nrb + n2)

(r2
b − n2)

. (8.45)

The relation rb(n) has several remarkable differences with respect to the Einstein gravity
case. Indeed, for µ = 0, (8.45) has two nontrivial roots, given by (8.23), namely

rb(µ = 0) =
L2

12n

[
1±

√
1− 48n2

L2
+

144n4

L4

]
. (8.46)

Since we want rb to be real and larger than n, this implies that n/L <
[
(2−

√
3)/12

]1/2 '
0.1494. In particular, there is no bolt solution near the undeformed S3 case, corresponding
to n/L = 1/2. The situation is very different in ECG. Indeed, for any nonvanishing value
of µ and for any value of n, there always exists at least one solution satisfying rb > n.
For small and large n/L, there is a unique solution in each case, while intermediate values
of n/L give rise to one or three possible solutions, depending on the value of µ. For
µ < 0.001126, there is a region of values of n/L for which three solutions with rb > n exist.
If µ is greater than this quantity, there is a two-to-one relation between n and rb for all n.
All this is shown in Fig. 8.3.

For the set of parameters for which a unique bolt solution exists, the profile of VS2(r)
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Figure 8.3: We show the bolt radius rb for several values of µ. In red we
show the Einstein gravity value (µ = 0), and the blue lines correspond to µ =
0.0001, 0.001126, 0.01, 8/270, 16/270, 24/270, 32/270, 4/27. For any non-vanishing µ there is at
least one solution for every value of n. For large n there is a new solution which approaches rb → n
asymptotically. The gray dashed line corresponds to NUT solutions.

can be accessed numerically following exactly the same logic as for the NUT solutions. We
plot the resulting metric functions for some values of µ in Fig. 8.3. We can also compute
the on-shell action for the bolt solutions analogously to the NUT case. The final result can
be written as

IE =
π

G

[
n2 − r2

b + 4nrb +
4nrb
L2

(r2
b − 3n2) + µL4 5n2 + 12nrb + r2

b

16n2(r2
b − n2)

]
. (8.47)

Using the chain rule and the relation (8.45), one can show again that E ≡ ∂βIE = M as
given in (8.44), which is a consistency check of the calculation. In addition, the entropy,
given by S = βE − IE, reads

S =
π

Grb

[
−12n3

L2

(
n2 + r2

b

)
+ 4n3 − n2rb + r3

b +
3µL4

(
4n3 − n2rb − 8nr2

b − r3
b

)
16n2(r2

b − n2)

]
.

(8.48)
Just as in the case of the NUT solutions, we can also study the thermodynamics of

the bolts in extended phase space. The extended first law has the same form as in the
NUT case, but now the thermodynamic volume and coupling potential read

V =
4πrh

3
(rh

2 − 3n2) , ΥECG =
rh

2 + 12rhn+ 5n2

128Gn3(rh2 − n2)
, (8.49)

and satisfy the Smarr formula that follows from scaling, which is of the same form as in
the NUT case — see (8.42). Note that, once again, the basic formula for the thermody-
namic volume of the bolts is unaltered by the higher-curvature terms [395]. However the
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Figure 8.4: We plot the metric function VS2(r) · L2/r2 corresponding to Taub-bolt solutions of
ECG with n/L = 0.1 for several values of µ. We choose the largest bolt radius rb when there are
several solutions for the fixed n.

thermodynamic volume is implicitly sensitive to the ECG coupling since the ECG term is
important in determining the value of rh for a given n.

Although we cannot solve (8.45) exactly, we can study its behaviour in several limits.
For example, let us consider the new branch of solutions for which rb is close to n in the
limit µ� 1. We can expand rb in powers of µ1/2. To second order, we get

rb = n+
L2

n

√
3µ

8
+

3µL2

16n3

(
L2 − 12n2

)
+O(µ3/2) . (8.50)

For Einstein gravity, we get rb = n, and the solution reduces to the NUT one. However,
for any given nonvanishing µ, we have two inequivalent solutions: the NUT constructed
in the previous subsection, and this one. In particular, as opposed to the Einstein gravity
case, a bolt solution does exist for n2 = L2/(4f∞), which corresponds to a nonsquashed
spherical boundary geometry. Expansions for the free energy and the mass of this branch
of solutions can be easily obtained in the µ� 1 limit, the results being

IE =
π

G

[
4n2 − 8n4

L2
+

3L2

√
2
µ1/2 +

(
27L2

8
− L4

8n2

)
µ

]
+O(µ3/2) , (8.51)

GM = n− 4n3

L2
+
µL4

32n3
+O(µ3/2) . (8.52)

Note that the mass is nonvanishing when the boundary geometry is that of a round S3,
namely, GM(n2 = L2/(4f∞)) = 3µL/4 +O(µ3/2), so the free energy is not extremized in
that case. Instead, the maximum is reached for n2/L2 = 1/4[1 + µ/2 +O(µ3/2)], which is
also the M = 0 value. Greater values of n would give rise to negative mass solutions, as
illustrated in Fig. 8.5. Note also that IE(n2 = L2/(4f∞)) is greater than the one for the
NUT solution, so that in the region near n2 = L2/(4f∞), the NUT would dominate the
corresponding holographic partition function.

We can also study the behaviour near n = 0, for which there is also a single bolt
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Figure 8.5: Euclidean on-shell action for B = S2 bolt solutions in ECG. In the left panel we
compare the Einstein gravity result with the ECG one with µ = 0.0001, which contains three
branches. For µ > 0.001126 there is only one branch, which is shown in the right panel for
µ = 0.01, 8/270, 16/270, 24/270, 32/270, 4/27. The dashed lines correspond to M < 0, so they
should be excluded. As we can see, when n → 0 the free energy diverges to −∞, except for the
critical case µ = 4/27, which corresponds to the upper line.

solution for each nonvanishing µ. We get approximately

rb =
L2

6n
− 2

(
1− 27

4
µ

)
n+O(n2) , (8.53)

and for the free energy,

IE =
π

G

[
− L4

108n2

(
1− 27

4
µ

)
+

2L2

3

(
1 +

27

4
µ

)]
+O(n2) . (8.54)

If we set µ = 0 in these expressions, we recover the small n expansions for Einstein gravity
bolts corresponding to the (+) root in (8.46). Observe that in the critical limit, µ = 4/27,
the leading term disappears, and the on-shell action is finite for n = 0.

We try to summarize the different possibilities in Fig. 8.5, where we plot IE for ECG
bolt solutions for several values of µ. As we can see, the result is very different from that
of Einstein gravity. There are two cases that we can distinguish: if 0 < µ < 0.001126,
the diagram contains three branches, since there are three different bolt solutions; for
µ > 0.001126 there is a single (elephant-shaped) branch. At µ ' 0.001126, we expect
to have a critical point which would represent a second-order phase transition if the bolt
solution were dominant. In all cases, the solutions exist for much larger values of n than in
Einstein gravity. However, there is an additional upper bound on n coming from imposing
M > 0.

Free energy comparison

Finally, let us compare the Euclidean action of NUT and bolt solutions in order to deter-
mine which one dominates the partition function. In Fig. 8.6 we compare the Euclidean
actions for several values of µ. The case for Einstein gravity is shown in the top-left panel,
and we can see that the NUT solution dominates in all the region n > L/6

√
7− 2

√
10,

where a first order phase transition NUT/bolt takes place. In particular, there are no bolt
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solutions near the undeformed 3-sphere n2 = L2/4. When we switch µ on, there are some
drastic changes. Specially, we recall that for positive values of µ there are no solutions
with negative mass. We plot with dashed lines the would-be Euclidean action of these so-
lutions, but they do not actually exist. This has the effect of inducing zeroth-order phase
transitions in the points where some solution ceases to exist. Another new feature is the
existence of bolt solutions near the round 3-sphere n2 = L2/(4f∞) ≡ n2

0 for all values of
µ > 0. In all the cases, we observe that for n = n0 the NUT solution (corresponding to
pure AdS) dominates, but for n > n0 the NUT solution does not exist because it would
have negative mass. However, for values of n slightly larger than n0, there is still a bolt
solution of positive mass, and a zeroth-order phase transition from NUT to bolt must take
place at n0. For larger values of n, the bolt solution also acquires a negative mass and
there are no solutions. The behaviour is more interesting in the region n < n0. In all the
cases the NUT solution dominates until certain value n = nmin, where there is a transition
to a bolt solution. When µ < 0.00569, the transition is of first-order, as shown in top-right
and bottom-left panels in Fig. 8.6. When µ > 0.00569, the mass of the NUT solution
vanishes before the value of the Euclidean action crosses that of the bolt solution, and a
zeroth-order phase transition takes place, as shown in the bottom-right panel. After that
phase transition the bolt solution exists and dominates for 0 < n < nmin.
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Figure 8.6: Comparison of Euclidean on-shell actions for NUT and bolt solutions for B = S2 in
ECG. Orange lines correspond to NUT solutions, green ones correspond to bolt solutions, and the
black dotted line represents the dominant contribution. Dashed lines represent configurations with
µM < 0, so that such solutions do not exist. Top, left: Einstein gravity result (µ = 0). Top, right:
µ = 0.0001. Bottom, left: µ = 0.0015. Bottom, right: µ = 8/270 ≈ 0.0296. The vertical black
dotted lines correspond to zeroth-order phase transitions in the points where the NUT solutions
cease to exist.
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The appearance of zeroth-order transitions in Taub-NUT solutions is a new feature
whose interpretation is not clear to us. This seems to be a problem that only appears in
four dimensions, since, as we will see, in six dimensions there is no restriction on the mass
of the solutions.

8.2.2 B = T2

Let us now consider a toroidal base space, so that the metric ansatz (8.3) reads

ds2 = VT2(r)

(
dτ +

2n

L2
ηdζ

)2

+
dr2

VT2(r)
+

(r2 − n2)

L2
(dη2 + dζ2) , (8.55)

Here, the coordinates (η, ζ) parametrize a T2 with periods which we choose to be equal,
βη,ζ = l. We note that, unlike the spherical case, the periodicity of the variable τ , which
we denote βτ ≡ 1/T , is not a priori fixed in terms of n [384, 406]. The function VT2(r)
satisfies (8.13) with k = 0. From the general asymptotic expansion (8.14), we can obtain
the metric of constant-r hypersurfaces for r � n. This reads

(3)ds2
∞

r2
=

[
f∞
L2

(
dτ +

2n

L2
ηdζ

)2

+
(dη2 + dζ2)

L2

]
. (8.56)

If we define z = τ/(2n), η/L = −x, ζ/L = y, this can be rewritten as

(3)ds2
∞

r2
=

[
4n2f∞
L2

(dz − xdy)2 + dx2 + dy2

]
. (8.57)

Remarkably, when n2 = L2/(4f∞) — i.e., for the same value n for which in the B = S2

case the corresponding boundary metric becomes that of a round S3 — this reduces to the
so-called Nil geometry5 [407]. The appearance of this kind of geometry should not come
as a surprise, as Tm-bundles over tori Tn are always compact 2-step nilmanifolds (and vice
versa) [408] — in our case above, m = 1 and n = 2.

On the other hand, it is also natural to define τ̂ =
√
f∞τ , whose periodicity is

βτ̂ =
√
f∞βτ ≡ 1/T̂ . Then, (8.56) reduces to the standard metric on T3 for n = 0,

L2

r2
(3)ds2

∞

∣∣∣
n=0

= dτ̂2 + dη2 + dζ2 , (8.58)

so we can also understand (8.56) as a sort of twisted three-torus metric.

Taub-NUT solutions

Let us start with the NUT solutions. Just like in the previous section, we assume that
VT2(r = n) = 0, and we impose V ′T2(r = n) = 4πT in order to avoid a conical singularity

5In fact, an additional change of variables can be used to rewrite (8.57) in the Nil form for any value of
n, up to an overall factor. However, such coordinate change would involve making the periods of η and ζ
depend on n.
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at the NUT. Then, we can consider a Taylor expansion around r = n of the form

V (r) = 4πT (r − n) +
∞∑
i=2

(r − n)iai . (8.59)

Plugging it into (8.13) and solving order by order in (r − n), we obtain the following
relations for the first terms

GM = −4n3

L2
+ µL4(4πT )3 , (8.60)

0 = µL4(4πT )2

(
a2 −

2πT

n

)
, (8.61)

0 = 8πT

[
−2 + 3µL4

(
a2

2 −
3πa2T

n
+

2πT
(
5πT − 2a3n

2
)

n2

)]
. (8.62)

The first equation fixes the “mass” M in terms of n, L, µ and T , while the rest give us
relations between the coefficients of the expansion and the temperature. We can try to
solve these relations in two inequivalent ways.

The first possibility, which is the only one available for Einstein gravity, consists in
setting T = 0 — see equations (8.18), (8.19) and (8.20) with k = 0. This solves the last
two equations and, in fact, completely determines the series expansion for any value of µ,
i.e., we can obtain a2, a3, etc., from the subsequent equations. The series is convergent in a
vicinity of r = n. However, note that in that case, GM = −4n3/L2 < 0. Hence, according
to the general discussion about the asymptotic behaviour, we expect this solution to be
pathological at infinity unless some miraculous fine-tuning occurs. Unfortunately, this is
not the case, and when we solve (8.13) starting from the near-horizon expansion with
T = 0, the oscillatory character appears asymptotically. We are then led to conclude that
regular extremal NUT solutions do not exist for any allowed value of µ.

The second possibility is setting a2 = 2πT/n, which solves the second equation. The
following equations can be used to determine the remaining coefficients, which turn out to
have a nonperturbative dependence on µ, e.g.,

a3 =
2πT

n2
− 1

6πµL4T
. (8.63)

Observe that these do not possess a finite limit when µ → 0. As a matter of fact, we
have failed to construct these solutions for any nonvanishing value of µ different from the
critical limit value µ = 4/27 — see Section 8.2.3 — so we strongly suspect that no regular
NUT solution exists for B = T2 for any 0 < µ < 4/27.

Taub-bolt solutions

Fortunately, the situation is different for bolt solutions. In that case, we impose the
existence of some rb > n such that near r = rb,

VT2(r) = 4πT (r − rb) +

∞∑
i=2

(r − rb)iai . (8.64)
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Figure 8.7: We plot the metric function VT2(r) · L2/r2 corresponding to Taub-bolt solutions of
ECG with n/L = 1 and rb/L = 4 for several values of µ.

This fixes VT2(rb) = 0 and V ′T2(rb) = 4πT . Again, we plug this expansion in (8.13), and
from the first two terms we get

GM =

(
−3n4 − 6n2r2

b + r4
b

)
2L2rb

− 1

8
µL4(4πT )3 , (8.65)

0 =
6
(
r2
b − n2

)2
L2r2

b

−
8πT

(
r2
b − n2

)
rb

− 3µL4n2(4πT )3

rb(r
2
b − n2)

. (8.66)

As usual, the first equation fixes M , while the second relates rb to n and T . It turns out
that for µ ≥ 0, there is a unique solution for T for every n and rb > n. The solution can
be written explicitly as

T =

(
r2
b − n2

)(
2r

2/3
b −

(√
729µn2 + 8r2

b − 27n
√
µ
)2/3

)
12πL2nr

1/3
b

√
µ
(√

729µn2 + 8r2
b − 27n

√
µ
)1/3

(8.67)

For a given n, this is a one-to-one relation between every rb > n and T > 0. In particular,
we have limrb→n T = 0. However, in order to keep GM positive, rb is bounded from
below, rb ≥ nγ(µ), for some constant γ(µ). In particular, for the limiting cases µ = 0 and
µ = 4/27, we have, respectively, γ(0) =

√
3 + 2

√
3 ' 2.5425, and γ(4/27) ' 4.0171. In

each case, for a given n, the radius rb and the “mass” M are fixed by the periodicity of the
coordinate τ . The remaining coefficients in the expansion (8.64) are fully determined once
we choose a2, which is the only free parameter. Once again, this is fixed by demanding
the solution to have the correct asymptotic behaviour. In all cases we find that there is
one and only one value of a2 for which this happens, and so the solutions are completely
determined by n and T . In Fig. 8.7 we show some of the metric functions corresponding
to these solutions computed numerically.

Let us now study the thermodynamic properties of the solutions. The Euclidean
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action can be once again evaluated using the generalized action (8.6), following the same
steps as in the previous subsections. The result is

IE = − l2

8πGT

[
r4
b + 3n4

2rbL4
− µL2 (11n2 + r2

b )(2πT )3

(r2
b − n2)

]
, (8.68)

where we used (8.66) to simplify the result. This on-shell action should be understood as
a function of T and n, which appear implicitly through rb. In the case of Einstein gravity,
for which the metric function can be obtained analytically — see (8.21) with k = 0 — the
result for the on-shell action can be written explicitly as a function of T and n. Using
(8.23) with k = 0, one finds

IE = − l2

108πGTL4

[
8π3L6T 3 +

(
4π2L4T 2 + 9n2

)3/2]
. (8.69)

Now we must account for the fact that we have an extended thermodynamic phase space,
since n is in this case a free variable. However, n cannot be the appropriate thermodynamic
variable as it has units of length instead of energy. Hence, let us define θ ≡ 1/n, which has
the right units. Then, associated with T and θ, we have two potentials: the usual entropy
S, and a new potential Ψ. In terms of the free energy F ≡ TIE , these are given by

S = −
(
∂F

∂T

)
θ

, Ψ = −
(
∂F

∂θ

)
T

, (8.70)

which explicitly read

S =
πl2T

9G

(
2πL2T +

√
4π2L4T 2 +

9

θ2

)
, Ψ = −

l2
√

4π2L4T 2 + 9
θ2

4πGL4θ3
. (8.71)

Finally, the energy is defined as E = F +TS+ θΨ, so that, by construction it satisfies the
first law

dE = TdS + θdΨ . (8.72)

The energy is given by

E =
l2

27πG

[
4π3L2T 3 +

(
2π2T 2 − 9

θ2L4

)√
4π2L4T 2 +

9

θ2

]
. (8.73)

Now, this is a thermodynamic energy, but the energy of the solution should be computed
using the ADM formula, which in this case tells us that EADM = Ml2/(4πL2). Using the
expression for M given in (8.65), we have checked that both energies actually coincide
EADM = E. Hence, the introduction of the variable θ is crucial for the first law of black
hole mechanics to hold in this case.

This picture goes through nicely when the ECG term is turned on. In that case, it is
convenient to express the thermodynamic quantities in terms of the rescaled temperature
T̂ = T/

√
f∞ introduced above equation (8.58). In terms of this, we have the free energy

F (T̂ , θ;µ) =
√
f∞T̂ IE , which can be obtained from (8.68), and the thermodynamic po-
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Figure 8.8: Isotherms in the Ψ-θ plane. Left: µ = 0. Right: µ = 0.12.

tentials S(T̂ , θ;µ) and Ψ(T̂ , θ;µ) defined as in (8.70) (but with respect to T̂ instead of T ).
We find that

EADM = F + T̂ S + θΨ , (8.74)

where the ADM energy is now given by EADM = Ml2/(4πL2
√
f∞) and

S =
l2

4GL2

[
r2
bθ

2 − 1

θ2
− 12µL4π

2f∞T̂
2(5 + r2

bθ
2)

rh2θ2 − 1

]
, (8.75)

Ψ =
l2

8πGL4
√
f∞θ3

[
3rb(θ

2r2
b − 3) + 4πL2T̂

√
f∞(1− θ2r2

b )
]
. (8.76)

It is interesting to study the isotherms on the diagram of Ψ-θ. These are shown in Fig.
8.8 for µ = 0 and µ = 0.12. In the case of Einstein gravity — the same happens for
small values of µ — the isotherms are monotonous. However, when µ is large enough,
the diagram changes drastically. In that case, the isotherms develop a maximum, and the
limit Ψ → 0 corresponding to θ → +∞ is approached from above instead of from below.
However, the phase space seems to be free of critical points.

We have seen that to satisfy the quantum-statistical relation and first law, it is
necessary to treat θ = 1/n as a thermodynamic variable. If we also wish to satisfy the
Smarr formula, then once again we must consider both Λ and µ to be thermodynamic
parameters. The basic construction is identical to the B = S2 case, but now we include θ
as well. A simple computation then reveals the following for the thermodynamic volume
and coupling potential

V =
l2rh
3L2

(
rh

2 − 3

θ2

)
, ΥECG =

π2l2T 3

GL2

(
rh

2θ2 + 5

rh2θ2 − 1

)
, (8.77)

where in the second equation above we note that it is the un-normalized temperature that
appears (i.e. T rather than T̂ ). With these definitions, the extended first law and Smarr
formula hold, with the latter being identical to Eq. (8.42) with the additional term 2θΨ
added.

Let us close this section by mentioning the possibility that the solutions considered in
this subsection can be relevant holographically. In that context, and in analogy to the Taub-
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bolt solutions with B = S2, we expect them to represent saddle points in the semiclassical
partition function for boundary theories living on deformed tori with metric (8.56). While
in the spherical case the boundary is only characterized by n — or, equivalently, the
squashing parameter α —, the B = T2 case is richer, given that n and T̂ are independent
parameters in that case.

8.2.3 Exact Taub-NUT solutions in the critical limit

In this subsection we study the Taub-NUT solutions of critical ECG, which can be con-
structed analytically. As we mentioned earlier, when µ = 4/27, the only AdS vacuum
has a length scale L̃2 = 2L2/3, and the linearized equations on that background vanish
identically. The field equations simplify considerably, which has allowed for the construc-
tion of analytic black hole solutions [281].6 In the case of NUT-charged metrics, a similar
simplification takes place, and we find the following family of exact Taub-NUT solutions,

ds2 = (r2 − n2)

[
3

2L2
(dτ + nAB)2 + dσ2

B

]
+

2L2dr2

3(r2 − n2)
. (8.78)

As we mentioned before, in the case of a spherical base space, B = S2, this solution has
a conical singularity at r = n, except for n2 = L2/6, in whose case the solution is simply
globally Euclidean AdS4 — also known as H4. Hence, only the cases B = T2, H2 are of
interest in Euclidean signature.

The solutions (8.78) can be analytically continued to Lorentzian signature in different
ways, giving rise to very interesting metrics. For example if we make the replacement
n→ in and τ = it we get the following metric

ds2 = (r2 + n2)

[
− 3

2L2
(dt+ nAB)2 + dσ2

B

]
+

2L2dr2

3(r2 + n2)
. (8.79)

This metric is regular everywhere and, in fact, we can allow r to take values in the whole
real line. Hence, this solution usually represents a wormhole or wormbrane, depending
on the topology, connecting two asymptotically AdS4 regions. The cases k = n = 0 and
k = −6n2/L2 = −1 are special as they correspond to pure AdS4. Let us introduce a new
radial coordinate r = n cosh

(
ρ/(
√

2/3L)
)
, so that the metric reads

ds2 = n2 cosh2

(
ρ√

2/3L

)[
− 3

2L2
(dt+ nAB)2 + dσ2

B

]
+ dρ2 , (8.80)

which has an explicit wormhole character. In the spherical case B = S2 the solution reads7

ds2 = n2 cosh2

(
ρ√

2/3L

)[
− 3

2L2
(dt+ 2n cos θdφ)2 + dθ2 + sin2 θdφ2

]
+ dρ2 . (8.81)

6The existence of special points in the parameter space in which the equations simplify has been
previously reported in [409] in the case of Lovelock gravity, where Lorentzian AdS wormholes similar to
those in [281] were constructed.

7Let us note that a very similar NUT-charged wormhole solution was reported in [410] in the context
of Einstein-Skyrme theory.
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This solution has the problem that it suffers from closed time-like curves, because the
time coordinate must be periodic t → t + 8πn. The B = T2, H2 cases are free of them,
because there is no periodicity condition on the time coordinate. In particular, after some
rescalings we can write the T2 solution as

ds2 = cosh2

(
ρ√

2/3L

)−(dt+

√
6

L
xdy

)2

+ dx2 + dy2

+ dρ2 , (8.82)

where the NUT charge has been absorbed in the period of the coordinates x, y. However, we
can also allow x and y to be noncompact. Interestingly, there is an inequivalent Lorentzian
solution that can be obtained by rotating the coordinates as (t, y)→ (iy, it). This reads

ds2 = cosh2

(
ρ√

2/3L

)−dt2 + dx2 +

(
dy +

√
6

L
xdt

)2
+ dρ2 . (8.83)

Going back to the general solution (8.80), we can consider the following transforma-
tion: t → z, ρ → it, L → iL. Here we are changing the sign of L2, which amounts to
changing the sign of the cosmological constant in the ECG action (7.2). Hence, the corre-
sponding metric is a solution of the critical theory with a positive cosmological constant.
The general solution reads

ds2 = −dt2 + n2 cosh2

(
t√

2/3L

)[
3

2L2
(dz + nAB)2 + dσ2

B

]
. (8.84)

These represent bouncing cosmologies with different topologies for the spatial sections
connecting two asymptotically (NUT charged) de Sitter spaces for t → ±∞. The only
exception is the case k = 1, n2 = L2/6, which is actually de Sitter space foliated by S3

spheres. Particularly relevant for cosmology is the flat case k = 0, which after rescaling of
the coordinates can be written as

ds2 = −dt2 + cosh2

(
t√

2/3L

)(dz +

√
6

L
xdy

)2

+ dx2 + dy2

 . (8.85)

The transverse geometry is again a Nil space. Interestingly, this solution represents a
homogeneous but nonisotropic bouncing cosmology. Homogeneity follows from the fact
that Nil space is a coset space and it possesses the isometries (x, y, z)→ (x+ a, y + b, z +
c−a

√
6y/L), for arbitrary (a, b, c). Let us also mention in passing that this solution seems

to be disconnected from the isotropic and homogeneous bouncing solution found in [281],
since we do not recover it in any limit.
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8.3 Four dimensions: Quartic generalized quasi-topological
term

As shown in [273], besides ECG, there are infinitely many theories involving terms of
arbitrarily high order in curvature which allow for black hole solutions with gttgrr = −1 in
four dimensions — this is also expected to be the case in higher dimensions. Hence, it is
reasonable to expect that some of these theories will also possess NUT-charged solutions
characterized by a single function VB(r), i.e., of the form (8.3). In this section we show
this to be the case when we supplement the ECG action (8.8) with a particular quartic
term belonging to the GQTG class [280]. In particular, we study how the ECG Taub-NUT
solutions with B = S2 constructed in section 8.2.1 are modified by the introduction of this
term. Let us then consider the Euclidean action

IE = − 1

16πG

∫
d4x
√
|g|
[

6

L2
+R− µL4

8
P − ξL6

16
Q
]
, (8.86)

where

Q =− 44RµνρσR αβ
µν R γ δ

ρ α Rσγβδ − 5RµνρσR αβ
µν R γδ

ρα Rσβγδ + 5RµνρσR α
µνρ RβγδσR

βγδ
α

+ 24RµνRρσαβR γ
ρ αµRσγβν ,

(8.87)
is a particular GQTG density.

Let us start by determining the AdS vacua of (8.86). As usual, we write the relation
between the action scale L and the AdS radius L̃ as L̃2 = L2/f∞. Then, the possible
values of f∞ are determined by the positive roots of the polynomial

h(f∞) ≡ 1− f∞ + µf3
∞ + ξf4

∞ = 0 . (8.88)

For a given vacuum, the effective gravitational constant can be computed as Geff =
−G/h′(f∞). Hence, in order to get a positive energy graviton, we must demand h′(f∞) < 0,
the critical case corresponding to h′(f∞) = 0. Just like for ECG, there is an additional
constraint coming from imposing the existence of positive-energy solutions. This reads
µ+ 2f∞ξ ≥ 0 and, interestingly, it is equivalent to h′′(f∞) ≥ 0 (assuming f∞ > 0). There-
fore, we need to identify solutions to (8.88) satisfying f∞ > 0, h′(f∞) < 0 and h′′(f∞) ≥ 0.
All these conditions bound the space of parameters (µ, ξ), and we can write the allowed
set as

µ = α2(3 + β)− 4α3

ξ = 3α4 − (2 + β)α3

}
where α ≥ 0, β ≥ 0, 2α− β ≥ 1 . (8.89)

If the parameters belong to this set, there exists at least one AdS vacuum satisfying all
the aforementioned constraints with f∞ = 1/α, Geff = G/β. Remarkably, we do not find
any other allowed vacuum, so in this region of the parameter space the vacuum exists and
it is unique. In Fig. 8.9 we show the region defined by (8.89). It is convenient to divide
it into three different zones. Region A is the one with ξ ≥ 0, and in this case the allowed
AdS vacua is the second largest real root of h. The largest root has h′(f∞) > 0 so it is not
allowed. Region B1 corresponds to ξ < 0. There a third root appears, which becomes the
largest one. This one has h′(f∞) < 0 but h′′(f∞) < 0, so it is not suitable. At this point
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Figure 8.9: Region of the parameter space for which there is at least one physical AdS vacuum.

the physical vacuum is the third largest root of h. If ξ is negative enough, the two roots
larger than the physical one disappear. They coalesce for (µ, ξ) = (3α2− 4α3, 3α4− 2α3),
0 ≤ α ≤ 1/2, in which case there appears a special critical point. This line is the one
which separates regions B1 and B2 in Fig. 8.9. Below that line, in region B2, the physical
vacuum is the largest root of h, which has interesting consequences for the Taub-NUT
solutions.

There is a one-parameter family of critical theories, i.e., for which h′(f∞) = 0. We
can use f∞ to parametrize the value of the couplings in that case, namely

µcr =
3f∞ − 4

f3
∞

, ξcr =
3− 2f∞
f4
∞

. (8.90)

Of course, if we impose ξcr to be zero, we recover critical ECG, for which f∞ = 3/2 and
µcr = 4/27.

When evaluated on the ansatz (8.3) for B = S2,T2,H2, we find again that the field
equations of (8.86) reduce to a single equation for the function VB. As before, we find that
this equation allows for an integrable factor (1 − n2/r2), and we can write it as in (8.4),
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namely

V

(
2n2

r
− 2r

)
+

2
(
kL2

(
n2 + r2

)
− 3n4 − 6n2r2 + r4

)
L2r

+ µL4

[
6V 3n2

(
n2 + 9r2

)
r (n2 − r2)3 +

(
V ′
)2( 3V n2

n2r − r3
− 3k

2r

)
− (V ′)3

2
+ V ′

(
3V 2

(
17n2 + r2

)
(n2 − r2)2 +

3V k

n2 − r2

)

+ V ′′

(
−

3V 2
(
4n2 + r2

)
r3 − n2r

+
3V V ′

2
+

3V k

r

)]
+ ξL6

[
V 4
(
22n6 + 270n4r2 + 36n2r4

)
r (r2 − n2)5

−
4V 3kn2

(
n2 + 9r2

)
r (n2 − r2)4 +

(
V ′
)3( k

n2 − r2
−

V
(
15n2 + r2

)
2(n− r)2(n+ r)2

)
+

(V ′)4 (9n2 + 3r2
)

8n2r − 8r3

+
(
V ′
)2(3V 2

(
13n4 + 30n2r2 + r4

)
r (r2 − n2)3 −

3V k
(
n2 + r2

)
r (n2 − r2)2

)
+ V ′′

(
24V 3n2

(
n2 + r2

)
r (r2 − n2)3

− 6V 2kn2

r (n2 − r2)2 +
3V (V ′)2 (3n2 + r2

)
2 (r3 − n2r)

+ V ′

(
−

3V 2
(
11n2 + r2

)
(n2 − r2)2 − 3V k

n2 − r2

))
+

V ′

(
−

6V 3
(
43n4 + 21n2r2

)
(n2 − r2)4 − 36V 2kn2

(n2 − r2)3

)]
= 4C ,

(8.91)
where k = +1, 0,−1 for B = S2, T2 and H2, respectively.

Let us start by determining the asymptotic behaviour in this case. As usual, we can
separate the solution as the sum of a particular solution plus a homogeneous one. The
particular solution can be obtained by performing a 1/r expansion, which yields

Vp(r) = f∞
r2

L2
+ k − 5f∞

n2

L2
+

2C

h′(f∞)r
+O(r−2) , (8.92)

where h′(f∞) = −1 + 3µf2
∞ + 4ξf3

∞ < 0, according to the unitarity constraint. From this
asymptotic expansion, and using the fact that Geff = −G/h′(f∞) [276], we see that for a
spherical base space, C = GM , where M is the ADM mass [98,99], or more appropriately,
the Abbott-Deser energy [97,102–104]. For the remaining topologies, C is also proportional
to the total energy, but the proportionality constant is different. If we now consider
V (r) = Vp(r)+

r2

L2 g(r) and expand linearly in g, we obtain the following differential equation
keeping only the leading terms when r →∞8

− 3L2Ch′′(f∞)

2h′(f∞)r
g′′(r) + 2h′(f∞)g(r) = 0 . (8.93)

Just like for ECG, the solution is again given in terms of Airy functions,

g(r) = AAiryAi

[(
4h′(f∞)2

3L2Ch′′(f∞)

)1/3

r

]
+BAiryBi

[(
4h′(f∞)2

3L2Ch′′(f∞)

)1/3

r

]
, (8.94)

and the analysis is analogous. If Ch′′(f∞) > 0 there is a growing mode and a decaying one,
8For example, we are neglecting a term g′/r3 against g′′/r.
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so by eliminating the former we obtain an asymptotically AdS solution. If Ch′′(f∞) < 0
all solutions except the trivial one are pathological at infinity. Then, in order to ensure
the existence of solutions of positive mass, C > 0, we demand that h′′(f∞) > 0, which is
the constraint anticipated before.

8.3.1 B = S2

From this point on, we focus on the case B = S2. Then, the Taub-NUT metric takes the
form (8.24), where VS2(r) satisfies (8.91) with k = 1. As usual, the period of τ is fixed to
βτ = 8πn, which removes the Dirac-Misner string.

Taub-NUT solutions

Assuming VS2(n) = 0 and the regularity condition V ′S2(n) = 1/(2n), we can write an
expansion around r = n as

V (r) =
r − n

2n
+
∞∑
i=2

(r − n)iai . (8.95)

If we introduce this expansion in (8.91), we obtain a series of relations that must be satisfied
order by order in (r − n). From the first one we read the mass of the solution, which is
given by

GM = n− 4n3

L2
− µL4

16n3
− ξL6

64n5
. (8.96)

Naturally, this generalizes the ECG result (8.27) and reduces to it for ξ = 0. Also analo-
gously to the ECG case, the following term in the expansion gives a relation between a3

and a2 from where we obtain a3(a2), the next fixes a4(a2), and so on. Therefore, once
again, the complete series is determined by a single free parameter that must be chosen so
that the condition B = 0 in (8.94) is met.

Let us now compute the Euclidean on-shell action of the solutions. For that, we use
the generalized action (8.6), where the charge a∗ is given in this case by a∗ = (1 + 3µf2

∞+
2ξf3
∞)L̃2/(4G). Then, we can write the full action as

IE = −
∫
d4x
√
g

16πG

[
6

L2
+R− µL4

8
P − ξL6

16
Q
]
− a∗

2πL̃2

∫
∂M

d3x
√
h

[
K − 2

√
f∞
L
− L

2
√
f∞
R
]
,

(8.97)
The evaluation of all terms in (8.97) is analogous to the one performed in detail for ECG in
Section 8.2.1. We observe that the divergent terms coming from the various contribution
cancel, and we are left with the following finite answer

IE =
4π

G

[
n2 − 2n4

L2
+
µL4

16n2
+

ξL6

128n4

]
, (8.98)

which generalizes the ECG result (8.38). Taking into account that β = 8πn, we can obtain
the energy and the entropy E = ∂IE/∂β, S = βE − IE . The first exactly coincides with
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the ADM mass in (8.96), E = M , whereas for the entropy we find

S =
4π

G

[
n2 − 6n4

L2
− 3µL4

16n2
− 5ξL6

128n4

]
, (8.99)

which generalizes the ECG answer (8.39).

Taub-bolt solutions

Let us now assume that VS2 vanishes for some r = rb > n. In order to avoid a conical
singularity we demand again that V ′S2(rb) = 1/(2n), so that VS2(r) should be Taylor-
expanded as

VS2(r) =
r − rb

2n
+
∞∑
i=2

(r − rb)iai . (8.100)

Plugging this expansion into (8.91), we find that the mass of the bolt is given by

GM =

(
n2 + r2

b

)
2rb

−
3n4 + 6n2r2

b − r4
b

2L2rb
− µL

4(6n+ rb)

64n3rb
−
ξL6

(
9n2 + 16nrb + 3r2

b

)
512n4rb

(
r2
b − n2

) , (8.101)

where rb is implicitly related to n through

6(r2
b − n2)2

L2r2
b

−
(r2
b − n2)(rb − 2n)

nr2
b

−
3µL4

(
n2 + nrb + r2

b

)
8n2r2

b (r
2
b − n2)

−
L6ξ

(
9n4 + 48n3rb + 30n2r2

b + 16nr3
b + r4

b

)
128n4r2

b

(
r2
b − n2

)2 = 0 .

(8.102)

Just as for ECG, the remaining equations fix the coefficients ai>2 in terms of a2, which
must be chosen so that the solution is asymptotically AdS, a condition that selects a unique
value of a2.

The roots of (8.102) behave in different ways depending on the values of the pa-
rameters. We can characterize several qualitative features depending on the region of the
parameter space shown in Fig. 8.9. First, recall that in the case of Einstein gravity,
µ = ξ = 0, there are two allowed roots when n/L <

(
(2−

√
3)/12

)1/2 — see (8.46) — and
no solutions otherwise. One of the roots goes to zero for n→ 0 and the other one diverges.
When µ 6= 0 or ξ 6= 0 there is no root going to 0 for n → 0. In fact, in this limit we can
expand rb as

rb =
c0L

2

n
+ c1n+O(n3) , with c3

0(6c0 − 1) =
ξ

128
, c1 =

256c3
0 − 48c2

0 + µ

8c2
0(8c0 − 1)

, (8.103)

where we must demand c0 > 0. The first equation gives us some information about the
roots, depending on the region. If ξ > 0, there is a unique value of c0, so there is a single
solution for n→ 0. Indeed, we observe that there is a unique branch in the diagram (rb, n)
if ξ > 0 and that there is a solution for every value of n, including large values. When
−1/16 < ξ < 0, there are two different roots c0, so there are two different solutions for
n→ 0. We see that if ξ ∈ B1, then these solutions extend to every n, while for ξ ∈ B2, the
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Figure 8.10: Roots of the equation (8.102) for several values of the parameters. Only the roots
above the reference dashed line rb = n admit the construction of bolt solutions. Upper left:
behaviour in region A when the parameters are very small (µ = ξ = 10−5 in this case); there is
a range of n with three different bolt solutions. Upper right: µ = 0.05, ξ = 0.05; this represents
the typical case for region A. Lower left: region B1 (µ = 0.05, ξ = −0.002); there are two roots
for every value of n. Lower right: region B2 (µ = 0.05, ξ = −0.0052); there are two roots if n is
smaller than certain value; both diverge as n→ 0.

solutions only exist for n smaller than certain value. Finally, if ξ < −1/16, we find that
there are no bolt solutions. In Fig. 8.10 we summarize the different possibilities.

In all possible cases in which solutions exist, the mass when n→ 0 is given by

GM =
L4(−256c3

0 + 48c2
0 − µ)

64n3
+O(n) , (8.104)

which can be shown to be positive as long as the parameters lie in the allowed region.
Then, the Euclidean on-shell action can be computed along the same lines as in the

NUT case using (8.97). The final result reads

IE =
π

G

[
4nrb

(
r2
b − 3n2

)
L2

+n2+4nrb−r2
b+

µL4
(
5n2 + 12nrb + r2

b

)
16n2(r2

b − n2)
+
ξL6

(
8n3 + 9n2rb + 8nr2

b + r3
b

)
64n3

(
r2
b − n2

)2
]
,

(8.105)
where rb is a function of n given implicitly by (8.102). In the n → 0 limit, we can write
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explicitly

IE =
πL2

G

[
(256c3

0 − 48c2
0 + µ)L2

16n2
+

3µ

4c0
+ 12c0(8c0 − 1) +O(n2)

]
. (8.106)

8.4 Six dimensions: Quartic generalized quasi-topological grav-
ities

We now move on to consider theories in six dimensions. In this case the generalized quasi-
topological gravity class [272,278,280] includes additional densities beyond those in D = 4.
In particular, the Gauss-Bonnet term X4 is no longer topological. Analytic generalizations
of the Einstein gravity static black-hole [44, 54] and Taub-NUT/bolt solutions [384, 385]
have been constructed in the presence of this contribution. In particular, the Taub-NUT
solutions of Gauss-Bonnet [384, 385] and 3rd-order Lovelock gravity [387] were, prior to
these results, and to the best of our knowledge, the only known examples of solutions of
that class for any higher-curvature gravity theory.

In principle, the six-dimensional GQTG family includes two nontrivial terms at cubic
order, corresponding to the usual Quasi-topological gravity density, plus an additional one.
As observed in [129, 130, 207], including the Quasi-topological gravity density in D ≥ 6 is
equivalent, from the point of view of static black-hole solutions, to including the cubic
Lovelock interaction. In D = 6, this is a topological term, and therefore no new nontrivial
black holes exist in that case for Quasi-topological gravity. They do exist, however, when
the additional GQTG term is included [278]. Hence, following the same reasoning as for
ECG in D = 4, one would have expected that new Taub-NUT solutions of the form (8.3)
should also exist for GQTG. Remarkably, we find that this is not the case, and that no
cubic theory admits nontrivial generalizations of the Einstein gravity or Gauss-Bonnet
Taub-NUT solutions characterized by a single function in six dimensions (independent
of the base manifold considered). While there do exist cubic theories that satisfy the
necessary constraints to admit solutions of the form (8.3), it turns out that for any such
theory the field equations on these spaces vanish identically. This is analogous to the C(i)

D

terms discussed in [280] for the case of static, spherically symmetric metrics.
Happily, at quartic order in curvature there exist non-trivial options of both Quasi-

topological and Generalized quasi-topological type.9 We will not present a detailed classi-
fication of such theories here — see [132] and [280] — but limit ourselves to some brief re-
marks. Beginning from a general action containing all 26 possible quartic invariants [106],
we constrain the action by imposing the conditions listed in appendix A of [280]. This
selects theories admitting black hole solutions of the form (8.2) and which, as a conse-
quence [272], do not propagate ghosts on maximally symmetric backgrounds. Next, for
each of the possible four dimensional base manifolds listed below, we generate additional
constraints to ensure the corresponding theory admits solutions of the form (8.3). Surpris-
ingly, demanding the constraints to be simultaneously satisfied for all four base manifolds
B = CP2, S2 × S2, S2 × T2 and T2 × T2 results in a family of theories that yield trivial

9Recall that the distinction between both classes comes from considering the theories for static spher-
ically symmetric spacetimes. While both admit solutions of the form (8.2), the field equations for the
Quasi-topological theories reduce to algebraic polynomial equations for f(r), while for those of the gener-
alized quasi-topological type, the metric function satisfies a non-linear second order differential equation
in each case.

252



Chapter 8. Euclidean AdS-Taub-NUT solutions

field equations. When one relaxes this condition, considering only a subset of the base
manifolds, then nontrivial options exist.

The non-trivial theories can be classified into two groups: Quasi-topological and
Generalized quasi-topological. For the base manifold S2×S2, the only nontrivial theories are
of the generalized quasi-topological type. The constraints can be satisfied simultaneously
for B = CP2, S2 × S2 and T2 × T2, resulting in a three parameter family of non-trivial
theories, each making the same contribution to the field equations for a given base manifold.
We can deduce all of the relevant physics by considering only one member of this class,
which we denote as S below.

Excluding the base manifold S2 × S2, then Quasi-topological options exist for all
remaining base manifolds. The constraints can be satisfied simultaneously, resulting in
a three parameter family of non-trivial Quasi-topological theories. Again, each theory
makes the same contribution to the field equations for a given base manifold, and we need
only consider a single member of this family, which we denote as Z below. Thus, in six
dimensions, we will consider the following two quartic Lagrangian densities:

S = 992Rµ
ρRµνRν

δRρδ + 28RµνR
µνRρδR

ρδ − 192Rµ
ρRµνRνρR− 108RµνR

µνR2

+ 1008RµνRρδRRµρνδ + 36R2RµνρδR
µνρδ − 2752Rµ

ρRµνRδτRνδρτ + 336RRµ
τ
ρ
γRµνρδRντδγ

− 168RRµν
τγRµνρδRρδτγ − 1920RµνRµ

ρδτRν
γ
δ
ηRργτη + 152RµνR

µνRρδτγR
ρδτγ

+ 960RµνRµ
ρδτRνρ

γηRδτγη − 1504RµνRµ
ρ
ν
δRρ

τγηRδτγη + 352Rµν
τγRµνρδRρτ

ησRδγησ

− 2384Rµ
τ
ρ
γRµνρδRν

η
τ
σRδηγσ + 4336Rµν

τγRµνρδRρ
η
τ
σRδηγσ − 143Rµν

τγRµνρδRρδ
ησRτγησ

− 436Rµνρ
τRµνρδRδ

γησRτγησ + 2216Rµ
τ
ρ
γRµνρδRν

η
δ
σRτηγσ − 56RµνρδR

µνρδRτγησR
τγησ ,

(8.107)

Z = −112Rµ
ρRµνRν

δRρδ − 36RµνR
µνRρδR

ρδ + 18RµνR
µνR2 − 144RµνRρδRRµρνδ

− 9R2RµνρδR
µνρδ + 72RµνRRµ

ρδτRνρδτ + 576Rµ
ρRµνRδτRνδρτ − 400RµνRρδRµρ

τγRνδτγ

+ 48RRµ
τ
ρ
γRµνρδRντδγ + 160Rµ

ρRµνRν
δτγRρδτγ − 992RµνRµ

ρδτRν
γ
δ
ηRργτη

+ 18RµνR
µνRρδτγR

ρδτγ − 8RµνRµ
ρδτRνρ

γηRδτγη + 238Rµν
τγRµνρδRρτ

ησRδγησ

− 376Rµ
τ
ρ
γRµνρδRν

η
τ
σRδηγσ + 1792Rµν

τγRµνρδRρ
η
τ
σRδηγσ − 4Rµν

τγRµνρδRρδ
ησRτγησ

− 284Rµνρ
τRµνρδRδ

γησRτγησ + 320Rµ
τ
ρ
γRµνρδRν

η
δ
σRτηγσ . (8.108)

The generalized quasi-topological term S is an appropriate choice for all base manifolds
besides T2 × S2, while the Quasi-topological term Z is an appropriate choice for all base
manifolds besides S2 × S2.

The complete action we consider is then

IE = − 1

16πG

∫
d6x
√
g

[
20

L2
+R+

λGBL
2

6
X4 −

ξL6

216
S − ζL6

144
Z
]
, (8.109)

where we have allowed for the possible contribution of the Gauss-Bonnet term. In this
case, the AdS6 vacua of the theory are characterized by being solutions to h(f∞) = 0,

253



Chapter 8. Euclidean AdS-Taub-NUT solutions

where

h(f∞) ≡ 1− f∞ + λGBf
2
∞ + ζf4

∞ + ξf4
∞ , (8.110)

a definition that will turn out to be useful later on.
As anticipated, when we insert the single-function Taub-NUT ansatz (8.3) in the

equations of motion of this theory, we are left with a single independent equation for VB,
which can be integrated once to leave it in the form (8.4), where the function EB receives
contributions from all terms in (8.109), namely,

EE
B + λGBL

2E(GB)
B + ξL6E(S)

B + ζL6E(Z)
B = CB , (8.111)

where CB is an integration constant. The explicit form of the various terms appearing in
the field equation is the following. The Einstein gravity contributions to the field equation
can be expressed in the form

EE
B =

6L2(n− r)2(n+ r)2V − 6r6 + (30n2 − 2L2)r4 + (−90n4 + 12L2n2)r2 − 30n6 + 6L2n4

3L2r

− (3n4 + 6n2r2 − r4)(1 + κ)

3r
, (8.112)

where κ is defined by

κ =


−1 for B = CP2 and S2 × S2 ,

0 for B = S2 × T2 ,

+1 for B = T2 × T2 .

(8.113)

Next are the Gauss-Bonnet contributions, which for the various base spaces read

EGB
CP2 =− 2n2

9r

(
9V 2 + 6V + 2

)
− 2r

9

(
9V 2 − 6V + 2

)
, (8.114)

EGB
S2×S2 =− 2n2

3r

(
3V 2 + 2V + 1

)
− 2r

3

(
3V 2 − 2V + 1

)
, (8.115)

EGB
S2×T2 =− 2n2

3r
V (3V + 1)− 2r

3
V (3V − 1) , (8.116)

EGB
T2×T2 =− 2V 2

(
n2

r
+ r

)
. (8.117)

The quartic contributions to the field equations are, of course, more complicated. The ones
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due to the generalized quasi-topological term read

E(S)
B = −16

3

[(
18n4 + 37n2r2 + 9r4

(n− r)2(n+ r)2r
V 3 +

19n2 + 9r2

(n− r)(n+ r)
V 2V ′ +

n2 + 9r2

4r
V (V ′)2

)
V ′′

− n2 + 9r2

16r
(V ′)4 +

5n2 − 3r2

4(n− r)(n+ r)
V (V ′)3 +

31n4 + 98n2r2 + 9r4

2(n− r)2(n+ r)2r
V 2(V ′)2

+
152n4 + 143n2r2 + 9r4

(n− r)3(n+ r)3
V 3V ′ +

375n6 + 1693n4r2 + 817n2r4 + 27r6

8(n− r)4(n+ r)4r
V 4 + E

(S)
B

]
,

(8.118)

where EB is a base-dependent contribution, which takes the explicit form

E
(S)

CP2 =

(
6(n2 + r2)

r(n− r)(n+ r)
V + 3V ′ +

1

2r

)
V V ′′ − (V ′)3 +

(
n2

r(n− r)(n+ r)
V − 1

4r

)
(V ′)2

+

(
2(14n2 + 3r2)

(n− r)2(n+ r)2
V 2 +

V

2(n− r)(n+ r)

)
V ′ +

33n4 + 86n2r2 + 9r4

2(n− r)3(n+ r)3r
V 3

+
3(n2 + r2)

2(n− r)2(n+ r)2r
V 2 , (8.119)

E
(S)
S2×S2 =

(
6(n2 + r2)

(n− r)(n+ r)r
V + 3V ′

)
V V ′′ − (V ′)3 +

n2

(n− r)(n+ r)r
V (V ′)2

+
2(14n2 + 3r2)

(n− r)2(n+ r)2
V 2V ′ +

33n4 + 86n2r2 + 9r4

2(n− r)3(n+ r)3r
V 3 − 3(3n2 − r2)

4(n− r)2(n+ r)2r
V 2

− V

2(n− r)(n+ r)r
−
−r log

[
r+n
r−n

]
+ 2n

16n3r
, (8.120)

E
(S)
T2×T2 = 0 . (8.121)

On the other hand, the quartic Quasi-topological contributions yield

E(Z)
B =

2

9

[
40

(
4n2r

(n− r)2(n+ r)2
V 3 + 4

n2

(n+ r)(n− r)
V ′V 2 +

n2

r
(V ′)2V

)
V ′′ − 10n2

r
(V ′)4

+
20n2

(n− r)(n+ r)
V (V ′)3 +

140n2(n2 + 2r2)

r(n− r)2(n+ r)2
V 2(V ′)2 +

560n2(n2 + r2)

(n− r)3(n+ r)3
V 3V ′

− (405n6 − 425n4r2 − 293n2r4 + 9r6)

r(n− r)4(n+ r)4
V 4 + E

(Z)
B

]
, (8.122)
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where now the base-dependent factors E(Z)
B are

E
(Z)

CP2 =
10n2

r(n− r)(n+ r)
V (V ′)2 +

40n2

(n− r)2(n+ r)2
V 2V ′ − 4(45n4 + 8n2r2 + 3r4)

r(n− r)3(n+ r)3
V 3

− 12(2n2 + r2)

r(n− r)2(n+ r)2
V 2 − 2V

3r(n− r)(n+ r)
, (8.123)

E
(Z)
T2×S2 = 0 , (8.124)

E
(Z)
T2×T2 = 0 . (8.125)

It should be emphasized that while for static and spherically symmetric solutions the
quartic Quasi-topological term yields algebraic field equations [132], these become non-
linear second-order differential equations for Taub-NUT metrics. This is an interesting
difference with respect to the Gauss-Bonnet case, for which the equations determining the
metric function are algebraic for both kinds of solutions.

Einstein gravity

Just like in the four-dimensional case, in the following subsections we will be studying
the different base spaces independently. As before, it is illuminating to start with a quick
study of the situation for Einstein gravity, for which the analysis can be performed at the
same time for all base spaces. Indeed, if we set λGB = ξ = ζ = 0, (8.111) can be easily
solved for VB(r). Imposing the NUT condition VB(r = n) = 0 first, one is left with

VB(r) =
(r − n)

[
6(r3 + 3nr2 + n2r − 5n3) + (κ+ 3)(3n+ r)L2

]
6L2(n+ r)2

, (8.126)

where we set the integration constant

CB = −8n3

3

[
12n2

L2
+ κ− 1

]
. (8.127)

The regularity condition (8.5) imposes

βτ =
24πn

(1− κ)
. (8.128)

Hence, we find βτ = 12πn for B = CP2 and B = S2 × S2, βτ = 24πn for B = S2 × T2, and
βτ =∞ for B = T2 × T2, which forbids the existence of regular solutions with a compact
S1 in that case.

If we impose the bolt condition VB(r = rb) = 0 instead, we find

VB(r) =
1

6L2(n2 − r2)2rb

[
6
(
r6rb + 15n4r(r − rb)rb − rr6

b − 5n6(r − rb)− 5n2rrb(r
3 − r3

b )
)

(8.129)

−(κ− 1)L2(r − rb)
(
3n4 − 6n2rrb + rrb(r

2 + rrb + r2
b )
)]
,
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where in this case we related CB to n and rb through

CB = − 1

3rb

[
6(5n6 + 15n4r2

b − 5n2r4
b + r6

b )

L2
+ (κ− 1)(3n4 + 6n2r2

b − r4
b )

]
. (8.130)

Finally, the regularity condition (8.5) produces the following relation between rb, n and
the period of τ ,

rb =
4L2π

10βτ

[
1±

√
1 +

5(κ− 1)β2
τ

8L2π2
+

25n2β2
τ

4L4π2

]
. (8.131)

Just like in D = 4, we must require the quantity inside the square root to be positive and,
of course, rb > 0, which in each case restricts the values of n for which solutions exist.

Besides the regularity condition (8.5), additional constraints on βτ arise both for
NUTs and bolts when demanding the absence of Misner string singularities — see e.g.,
discussion in [411]. For example, for B = CP2, we must demand βτ = 12πn. Just like in
D = 4, for the Einstein gravity NUT this condition is automatically implemented by (8.5).
This is not the case in general, and the conditions must be imposed separately.

8.4.1 B = CP2

Let us now turn on again the higher-curvature couplings in (8.109). The first base space
we consider is CP2. For this, we can write

ACP2 = 6 sin2 ξ2(dψ2 + sin2 ξ1dψ1) , (8.132)

dσ2
CP2 = 6

{
dξ2

2 + sin2 ξ2 cos2 ξ2(dψ2 + sin2 ξ1dψ1)2 + sin2 ξ2(dξ2
1 + sin2 ξ1 cos2 ξ1dψ

2
1)
}
,

(8.133)

where the coordinate ranges10 are 0 ≤ ξ1,2 ≤ π/2 and 0 ≤ ψ1,2 ≤ 2π. Now, we consider
the metric asymptotically, making the rescalings τ → 6nψ and r → r/

√
6. This gives

(5)ds2
bdry

r2
=

6n2f∞
L2

(
dψ +

ACP2

6

)2

+
1

6
dσ2

CP2 (8.134)

at large r. For the specific case of 6n2f∞/L
2 = 1 , this boundary metric is just that of a

round S5 provided that the coordinate ψ has period 2π to ensure regularity. In all other
cases, it is the metric of a squashed sphere [263] and, in analogy with the D = 4 case, it
is customary to parametrize such squashing with the parameter α, defined in terms of n
through 6n2f∞/L

2 = 1/(1 + α) .

We begin our study of Taub-NUT/bolt solutions with this base space by considering
the asymptotic behaviour of the metric. The asymptotic solution for VCP2(r) consists of
a particular and homogeneous solution. The particular solution is found by expanding
VCP2(r) in a 1/r series and solving the field equations to determine the constants order by

10See, for example, [412] for a detailed discussion of CPk in these octant coordinates.
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order. The result is

Vp(r) =f∞
r2

L2
+

1

3
− 3f∞n

2

L2
− 6L2 + 12f∞n

2 − 6L2f∞ + 5L2f2
∞λGB − 6f3

∞n
2λGB

9r2f∞(2f2
∞λGB − 3f∞ + 4)

(
1− 6f∞n

2

L2

)
− CCP2

2h′(f∞)r3
+O(r−4) , (8.135)

where h′(f∞) denotes the derivative of h(f∞) — see (8.110) — with respect to f∞. To
obtain the form of the homogeneous equation, we again write V (r) = Vp(r) + g(r), and
work to linear order in g(r). While both S and Z contribute in the same way to the
particular solution, the contributions differ in the homogeneous equation. The resulting
equation, in the limit of large r, takes the form:

a(r)g′′(r) + b(r)g′(r) + c(r)g(r) = 0 , (8.136)

where a(r) and b(r) are the leading terms in this expansion, taking the explicit forms

a(r) =
8f∞ξL

2r

3

(
1− 6f∞n

2

L2

)2

+ (1− ξ̂)320f∞ζn
2L4

81r

(
1− 6f∞n

2

L2

)2

,

b(r) =− 8f∞ξL
4

(
1− 6f∞n

2

L2

)2

− (1− ξ̂)1520f∞ζn
2L4

81r2

(
1− 6f∞n

2

L2

)2

,

c(r) =− 2r3h′(f∞) , (8.137)

and we have defined

ξ̂ =

{
1 for ξ 6= 0 ,

0 for ξ = 0 ,
(8.138)

to simplify the presentation of the terms above. We recognize that the contributions in
parenthesis in a(r) and b(r) are directly related to the squashing parameter and vanish
when the base is a round sphere; in that case, the solution reduces to just pure AdS.

In the limit of large r, the homogeneous equation can be solved in terms of special
functions. First, when ξ 6= 0 the homogeneous solution reads

g(r) = C1r
2I1

(
r

√
− c(r)

4a(r)

)
+ C2r

2K1

(
r

√
− c(r)

4a(r)

)
, (8.139)

while if ξ = 0 it takes the form:

g(r) = C1r
23/8I 23

24

(
r

√
− c(r)

9a(r)

)
+ C2r

23/8K 23
24

(
r

√
− c(r)

9a(r)

)
, (8.140)

where Iν(x) and Kν(x) are the modified Bessel functions of the first and second kinds, re-
spectively. The explicit form of these solutions is not as important as what their asymptotic
behaviour tells us: because c(r) > 0 by virtue of demanding the graviton is not a ghost,
when a(r) < 0, in each case the homogeneous solution consists of a super-exponentially
growing and super-exponentially decaying part. When a(r) > 0, both of the above solutions
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oscillate more and more rapidly near infinity and are ultimately pathological. Therefore,
to ensure that the solutions are physically reasonable, we must demand that a(r) < 0,
while also requiring h′(f∞) < 0. The general solutions to these constraints with λGB 6= 0
are a bit messy, and so we quote the result explicitly only in the case λGB = 0. In that case
it is a straight-forward matter to show that these conditions are satisfied — independent
of n — provided that

ξ < min

{
0,

27

256
− ζ
}

if ξ 6= 0 or ,

ζ < 0 if ξ = 0 . (8.141)

Interestingly, in contrast to the four dimensional case, here the mass parameter M does
not enter into the constraints, with the result that there is no pathology associated with
the negative mass solutions (see below). Furthermore, note that for ζ non-zero, simply
demanding ξ < 0 is not enough since one must also require that h′(f∞) < 0 — this is the
origin of the more complicated constraint in that case. It can be shown that, for λGB = 0,
ξ = 27/256− ζ corresponds to the critical limit of the theory, which has f∞ = 4/3.

A consequence of these bounds on the coupling is that, when one considers a theory
that contains only a single one of the quartic terms, then it is not possible to reach the
critical limit of the theory at physical coupling. This situation is similar to what happens
to cubic GQTG for spherically symmetric black hole solutions in D ≥ 6.

Taub-NUT solutions

We now consider NUT solutions where VCP2(r = n) = 0. Further restrictions on VCP2(r)
arise due to regularity of the metric. Recall from the discussion above that the boundary
is a squashed S5. Regularity of this boundary metric requires that ψ := τ/(6n) has period
2π, which in turn means τ ∼ τ+12πn. A further constraint is imposed on the derivative of
VCP2(r) near the NUT where the absence of conical singularities at a zero of VCP2 requires
that τ is periodic with period βτ given by βτ = 4π/V ′CP2(r = n). Consistency of these
two regularity conditions fixes βτ = 12πn and so we therefore have the following series
expansion near the NUT:

V (r) =
(r − n)

3n
+
∞∑
i

(r − n)iai . (8.142)

Substituting this expression into the field equations, and expanding in (r − n), we find

16

3

n3(L2 − 6n2)

L2
− 8nL2λGB

9
− 2L6 (ξ + ζ)

81n3
+

4GM

9π
+O

(
(r − n)3

)
= 0 , (8.143)

where we have conveniently redefined the integration constant CCP2 = −4GM/(9π), where
M will correspond to the ADM mass of the solution. The first condition (shown above
explicitly) determines M in terms of the couplings and the NUT charge, and the next two
relations are automatically satisfied. The next non-trivial relation is linear in a3, allowing
one to solve for a3 as a function of the free parameter a2. This trend continues to higher
order in the field equations, and thus there is a single free parameter that is left unfixed
by the field equations and regularity conditions. This is fully analogous to the D = 4 case.
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Figure 8.11: The metric function L2VCP2(r)/r2 is plotted for NUT solutions of the quartic theories.
The top row depicts solutions of the quartic generalized quasi-topological theory with n/L = 1
(left) and n/L = 1/3 (right). The solutions with n/L = 1 all have positive mass, while those with
n/L = 1/3 have negative mass. The bottom row depicts solutions of the quartic Quasi-topological
theory with n/L = 1 (left) and n/L = 1/3 (right). The solutions with n/L = 1 all have positive
mass, while those with n/L = 1/3 have negative mass.

The near horizon solution can be joined to the asymptotic solution that was presented
above by numerically integrating the field equations. The near horizon expansion is used
as initial data, with the shooting method employed to determine the free parameter a2.
A careful choice of this parameter is required to ensure the growing modes present in
the asymptotic solution are not excited. Ensuring this, we find a unique a2 for which
the solution can be integrated, with the result for several values of the coupling shown
in Fig. 8.11. For comparison, the Einstein gravity solution is shown in red and we see
that the solutions to the higher curvature theories are qualitatively the same with the
main difference being that they approach f∞r2/L2 with f∞ depending on the value of the
couplings. We also note that, while the top left and bottom left plots depict solutions with
positive mass, the top right and bottom right plots depict solutions with negative mass.
The fact that the negative mass solutions can be constructed and possess no inherent
pathology is in contrast with the four dimensional case, where the negative mass solutions
possessed pathological asymptotic structure.

Let us now turn to the free energy of the NUTs and compute the regularized on-shell
action for these solutions. With minor modifications, the prescription (8.6) introduced
in [274] can be used to eliminate the divergent terms in the on-shell action. The Euclidean
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action, completed with the generalized boundary term and counterterms is given by

IE = −
∫
d6x
√
g

16πG

[
20

L2
+R+

λGBL
2

6
X4 −

ξL6

216
S − ζL6

144
Z
]

− 1− 4λGBf∞ + 8(ξ + ζ)f3
∞

8πG

∫
d5x
√
h

[
K − 4

√
f∞
L
− L

6
√
f∞
R− L3

18f
3/2
∞

(
RabRab −

5

16
R2

)]

+
λGBf∞ − 6(ξ + ζ)f3

∞
8πG

L3

18f
3/2
∞

∫
d5x
√
h

(
4RijRij −

5

4
R2 +

3

2
X (h)

4

)
. (8.144)

The evaluation is facilitated via the asymptotic expansion presented above and the expan-
sions near r = n in the NUT case or r = rb for the bolts. Near the boundary, the bulk
action has several divergent components that are precisely canceled by the generalized
boundary and counterterms. Note the addition of a new counterterm, nonproportional to
a∗, on the last line above. This appears because, strictly speaking, the spacetime is not
asymptotically AdS — the boundary is not maximally symmetric except for the choice of
NUT parameter that yields the undeformed five sphere. The additional counterterm was
chosen since it vanishes identically when the boundary is maximally symmetric (and so
could be dropped in those cases) but allows for the cancellation of the linear divergence in
the case of B = CP2 considered here.

Just like the four-dimensional case discussed in detail in Section 8.2.1, eliminating
the divergent terms also removes all possible constant terms coming from boundary con-
tributions, leaving us with the bulk action evaluated at r = n, and nothing else. The final
result is

IE =
36π2

G

[
n4

(
4n2

L2
− 1

)
+
L2n2λGB

3
− L6(ξ + ζ)

108n2

]
, (8.145)

from which the total energy and entropy can be found to be,

E =
12π

G

[
n3

(
6n2

L2
− 1

)
+
nL2λGB

6
+
L6(ξ + ζ)

216n3

]
= M ,

S =
36π2

G

[
n4

(
20n2

L2
− 3

)
+
n2L2λGB

3
+
L6(ξ + ζ)

36n2

]
, (8.146)

and the first law dE = TdS is verified to hold.
Similar to the discussion for the S2 base in the case of ECG, here we can also enlarge

the thermodynamic phase space and construct the extended first law. The expression is
slightly more complicated reading

dE = TdS + V dP + ΥGBd(L2λGB) + ΥSd(L6ξ) + ΥZd(L6ζ) , (8.147)

where we have again restored the dimensionality to the coupling constants. The potentials
appearing in the extended first law read

V =
48π3

5
n5 , ΥGB =

1

nG
, ΥS = ΥZ = − π

36Gn3
. (8.148)
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Figure 8.12: Euclidean on-shell action for B = CP2 NUT solutions. The red curve corresponds
to the Einstein gravity result, while the blue curves correspond to ξ + ζ = 27/256, 27/256 −
1/10, 27/256 − 10/95,−10−3,−10−2,−4 × 10−2 and −10−1 (bottom to top through a vertical
slice). The dashed portions of the curves indicate solutions with negative mass, though there is no
pathology associated with these solutions in this case.

The expression above for the thermodynamic volume holds also in Einstein gravity though
there appear to be no previous computations of this quantity in the literature for higher
dimensional Taub-NUT solutions. It is noteworthy that the thermodynamic volume here
is positive, while the thermodynamic volume is negative in the D = 4 case. Of course,
we find that the Smarr relation consistent with scaling is satisfied by the thermodynamic
quantities defined above:

3E = 4TS − 2PV + 2ΥGBL2λGB + 6ΥZ(L6ζ) + 6ΥS(L6ξ) . (8.149)

Note that if we turn off the quartic couplings, then the result for the free energy
reduces to that previously calculated for Einstein gravity and Gauss-Bonnet gravity in [388,
393] up to an overall factor of 8/9, the same discrepancy noted in [263]. We have carefully
revisited the calculations in [388, 393] and have traced the discrepancy to the ratio of
volumes of S2 × S2 to CP2. In [388] it is claimed that the thermodynamic quantities for
both base spaces are identical. However, we have found this to be true only up to an overall
ratio of the volumes of the base spaces. For CP2 normalized so that Rab = gab the volume
is Vol

(
CP2

)
= 18π2, while the volume of S2 × S2 is given by Vol

(
S2 × S2

)
= (4π)2. The

ratio of these volumes is precisely 8/9, which accounts for the observed discrepancy.11

In Fig. 8.12 we show plots of the Euclidean on-shell action for the NUT solutions with
λGB = 0. As is clear from Eq. (8.145), this depends on the higher curvature couplings only
through the combination ξ + ζ. In each case, there is only a single branch and, from the
figure, we see that its qualitative structure depends on whether ξ+ζ is positive or negative.

11In [388] a different set of coordinates is used, but the metric of CP2 is still normalized so that Rab = gab.
Using the fact that the coordinates in [388] have ranges 0 ≤ u ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and
0 ≤ ψ ≤ 4π we obtain the result presented here with the correct overall factor. In higher dimensions,
Vol

(
CPk

)
= 2k(k + 1)kπk/k! and the volume of k 2-spheres is Vol

(
S2 × · · · × S2

)
= (4π)k. In higher

dimensions, we find the ratio between thermodynamic quantities for the two bases is 2kk!/(k + 1)k.
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For consistency with the plots presented earlier in the document, we have indicated regions
of negative mass with dashed curves. However, unlike the four dimensional case, there is
no pathology associated with the negative mass solutions for the quartic theories in six
dimensions. The region of negative mass solutions shrinks and eventually vanishes as
ξ + ζ → 27/256, which corresponds to the critical limit of the theory.

Taub-bolt solutions

We now consider Taub-bolt solutions which satisfy VCP2(rb) = 0 for rb > n. In this section,
we turn off the Gauss-Bonnet coupling to limit the size of the parameter space. Regularity
demands that V ′CP2(rb) = 1/(3n), and therefore we write the near horizon expansion as

V (r) =
(r − rb)

3n
+

∞∑
i=2

(r − rb)iai . (8.150)

Substituting this expansion into the field equations and solving order by order in (r−rb), we
find the first two relations fix the integration constant CCP2 and the relationship between
rb and n:

0 =
4GM

9π
+
ξL6(9r2

b + 48rbn+ 37n2)

243n4rb
− 20ζL6

729n2rb

−
2
(
L2r4

b − 6L2r2
bn

2 − 3L2n4 + 3r6
b − 15r4

bn
2 + 45r2

bn
4 + 15n6

)
3L2rb

, (8.151)

0 =
2(r2

b − n2)2(L2rb − 3L2n− 15r2
bn+ 15n3)

3nL2r2
b

−
ξL6(3r4

b − 46r2
bn

2 − 48rbn
3 − 37n4)

243n4r2
b (r

2
b − n2)

−
20ζL6

(
r2
b + 6

5nrb + n2
)

729n2r2
b (r

2
b − n2)

, (8.152)

where, just as in the NUT case, we have set CCP2 = −4GM/(9π).
Let us now examine the second relation above in more detail. When the higher

curvature terms are turned off, the bolt radius is given by (8.131) with κ = −1, i.e.,

rb(ζ, ξ = 0) =
L2

30n

[
1±

√
1− 180

n2

L2
+ 900

n4

L4

]
. (8.153)

Since rb must be real and larger than n, we must then have n <
√

15(2−
√

2)L/30. As in
the four-dimensional case, there is a maximum value of n for bolts in Einstein gravity. In
particular, this means that there does not exist a bolt solution near the undeformed five
sphere, for which n = L/

√
6. Of course, the behaviour is different with higher curvature

corrections, but there are some notable differences from what was observed in the four
dimensional case.

Depending on the relative size of ξ and ζ, the behaviour of rb as a function of n can
either resemble that of Einstein gravity (namely, there is a largest value of n for which a
bolt exists) or resemble that observed in the four dimensional cubic case discussed earlier
in this chapter (bolts exist for arbitrarily large n). In fact, this classification is completely
determined by the sign of the quantity ζ − 6ξ. If this quantity is positive, there exists a

263



Chapter 8. Euclidean AdS-Taub-NUT solutions

-14. -12. -10. -8. -6. -4. -2. 0.
-100.

-80.

-60.

-40.

-20.

0.

Figure 8.13: A breakdown of the coupling parameter space into useful regions for bolt solutions.
Here the orange and black curves denote lines of ‘critical points’, i.e., for a given NUT charge,
three solutions for rb coalesce. The red dot represents the single point in the physical parameter
space where there is a coalescence of four roots. Within the blue shaded region, ζ < 6ξ and there
are bolts for arbitrarily large n. In the complement, ζ > 6ξ and there is a largest value of n for
which bolts exist. On the black locus of critical points, the critical point is always physical (i.e.
of lowest free energy) within the blue region, otherwise (for the dashed portion of the curve) the
situation can depend on which branch of the cusp minimizes the free energy, and also on whether
or not there are re-entrant phase transitions as described in the text.

maximum value of n; if this quantity is negative, bolts exist for arbitrarily large n.12

From the perspective of the phase structure of the bolts, the most interesting scenario
occurs when there are three values of rb for a particular n — one would expect these
cases could yield swallowtail type behaviour and critical phenomena. We can constrain
the regions of parameter space where three bolts exist by searching for ‘critical points’.
More specifically, such a critical point would occur when ∂n/∂rb = ∂2n/∂r2

b = 0, while
respecting Eq. (8.152). These points will mark transitions in the maximum number of
bolts for given couplings. We were unable to solve the resulting constraints analytically,
but it is straightforward to do so numerically. This results in the breakdown of parameter
space shown in Fig. 8.13.

It is useful to understand the qualitative behaviour of the bolts in the various par-
titions of the parameter space shown in Fig. 8.13. We illustrate this in the top row of
Fig. 8.14, which represents a ‘vertical slice’ through Fig. 8.13 for ξ = −4 × 10−5. The
plot on the right is a zoomed-in copy of the left, and the decreasing opacity of the blue
curves (left to right) denotes ζ becoming more negative, while the red curve corresponds
to the Einstein gravity result when both couplings vanish. We see that when ξ and ζ are
small (or, equivalently, when rb is large) the bolt radius reduces nicely to the Einstein

12This can be deduced in the following way. Take the numerator of Eq. (8.152) and set rb = n + x.
Next, apply Descartes’ rule of signs, treating x as the independent variable, and notice that in the limit of
large n there will be a single sign flip provided that ζ − 6ξ < 0. This guarantees a single positive root for
x, which in turn guarantees the existence of a bolt with rb > n.
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Figure 8.14: Top row: Plots of rb vs. n for fixed ξ = −4 × 10−5 with ζ × 105 =
−20,−23.15,−23.8,−25,−38.03,−70 (more to less opacity, or left to right for any horizontal slice
through the plot). The right plot is a zoomed in version of the left, showing the interesting struc-
ture for bolt solutions. Bottom row: Plots of rb vs. n for positive ζ. The left plot shows curves for
ζ = 10−3 with ξ = −10−3,−10−4,−10−5,−10−6,−10−7,−10−10 (in order of decreasing opacity in
the plot, or right to left along a horizontal slice through the plot). The right plot shows, for the
same values of ξ, the result when ζ = 27/256 − ξ, which corresponds to the critical limit. The
behaviour when ζ > 0 is all qualitatively similar. In all plots, the red curve represents the Einstein
gravity result, and the dashed, gray line represents the limiting circumstance of rb = n.

gravity result. The interesting behaviour is observed for smaller bolt radius. The first
curve corresponds to ζ = −20 × 10−5 which is in the white region of Fig. 8.13 and above
the orange line. We see that in this case, the behaviour is similar to Einstein gravity, with
two possible values for the bolt radius. As ζ is further decreased, the structure of the curve
remains similar but a small ‘flattened’ region begins to form, ultimately becoming vertical
for ζ ≈ −23.16 × 10−5 which corresponds to the point on the orange line of Fig. 8.13.
Continuing to decrease ζ further, we see that a bump emerges, and as a result there are up
to four values of rb for a given n. This behaviour continues until ζ < 6ξ, which corresponds
to the blue shaded region of Fig. 8.13. At this point, the structure of the curve changes
drastically, and there are bolts for arbitrarily large n. Further, in the region where ζ < 6ξ
but remains above the region bounded by the black curve in Fig. 8.13, there are up to three
bolts for a given value of n. As ζ is further decreased we continue to see three bolts for a
given n until we reach the black curve of Fig. 8.13, which corresponds to ζ ≈ 38.03×10−5.
At this point, the three bolts coalesce, and for values of ζ smaller than this there is only
ever a single bolt for a given n.

It is also possible for ζ to take on positive values, provided that ξ < 0 and ζ ≤
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27/256 − ξ. The bottom row of plots in Fig. 8.14 shows representative behaviour in this
case. The qualitative shape of the curve is controlled by the ratio ξ/ζ. When ξ/ζ → 0−,
a peak forms at small n. The overall behaviour is similar to Einstein gravity: there is a
maximum value of n beyond which bolts cannot exist. For n smaller than this value, there
are two values of rb for any given n.

The above discussion highlights the general trend in this parameter space. The lines
of ‘critical points’ mark the boundaries where there is a change in the maximum number
of bolts for a given NUT charge. For a fixed ξ, the structure is (referring to Fig. 8.13):
two bolts and Einstein-like structure in the white region above the orange line; up to four
bolts in the white region below the orange line; up to three bolts in the blue shaded region
above the black line, and one bolt in the blue shaded region below the black line. When ζ
takes on positive values, the structure remains the same as in the white region above the
orange line, but a peak forms at small n as ξ/ζ → 0−.
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Figure 8.15: The metric function L2VCP2(r)/r2 is plotted for bolt solutions of the quartic theories.
The left plot is for different combinations of the quartic couplings with n/L = 7/100. For this
value of the NUT parameter, the bolt solutions in the quartic theories can be compared to Einstein
gravity solutions. In the right plot, the NUT parameter has been set to n/L = 2. For this value
of the NUT parameter there are no bolt solutions in Einstein gravity and the existence of these
solutions is purely because of the quartic curvature terms.

So far, our study of the bolt solutions has focused on the properties of the near
horizon solutions. It is important to verify that these near horizon solutions can be joined
smoothly on to the asymptotic solution (8.135) that was presented at the beginning of this
section. This can be shown by numerically solving the field equations, with some relevant
examples shown in Fig. 8.15. The left plot shows example bolt solutions for n/L = 7/100.
In this regime, both Einstein gravity and the quartic theories admit bolt solutions, and the
two can be compared. The solutions are qualitatively similar but, of course, the solutions
to the quartic solutions asymptote to f∞r2/L2 with f∞ 6= 1. In the right plot, we show
examples for n/L = 2 — for this value of the NUT parameter, there are no bolt solutions
in Einstein gravity.

Finally, turning to the on-shell action, it can be computed using the same prescription
as in the NUT case, but now evaluating for the bolt at r = rb. In performing the calculation,
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we make use of the near horizon equation (8.151) to simplify the result. We find that,

IE = − π2

54L2G

[
243r4

bL
2 − 972r3

b (L
2 + 3r2

b )n− 486L2r2
bn

2

+ 972rb(3L
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b )n
3 + 243L2n4 − 14580rbn

5 +
ζL8

n3(r2
b − n2)

(40rbn
2 + 24n3)

− ξL8

n3(r2
b − n2)

(18r3
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bn+ 222rbn
2)

]
. (8.154)

Making use of the chain rule and the second equation in (8.151), we find that E = ∂βF =
M , justifying the terminology “mass parameter” used earlier. The entropy is just given by
S = βE − IE which reads

S =
π2

54rbG
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]
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(8.155)

We can study the extended thermodynamics of these bolts in the same manner as the
NUTs. The extended first law has the same form as (8.147) but for the bolts the potentials
are given by

V =
6π2rb

5

(
3r4
b − 10r2

bn
2 + 15n4

)
,

ΥS =
πrb(3r

2
b + 24rbn+ 37n2)

108n4G(r2
b − n2)

, ΥZ = − π(5rb − 3n)

81n2G(r2
b − n2)

,

(8.156)

and we recall that here we are working with λGB = 0. These quantities also satisfy the
Smarr relation that follows from scaling, which has the same form here as in (8.149). Again,
the formula for the thermodynamic volume is unaltered from its form in Einstein gravity.
Though, since rb implicitly depends on the higher-curvature couplings, the numerical value
of the thermodynamic volume for fixed n, ξ and ζ will in general differ from the Einstein
gravity value. Contrast this with the situation for the NUTs where the thermodynamic
volume is completely insensitive to the theory of gravity, so long as the theory belongs to
the generalized quasi-topological class.

The Euclidean on-shell action exhibits rich structure for the bolt solutions. In un-
derstanding the behaviour, it is helpful to once again refer to Fig. 8.13. As it turns out,
this figure partitions the parameter space into regions where the behaviour is qualitatively
similar. Referring to Fig. 8.13, the most interesting changes in behaviour occur when the
orange and black lines are crossed, which correspond to actual critical points in the ther-
mal phase space marking the appearance/disappearance of swallowtail structures in the
on-shell action. Also when transitioning from the white-shaded to blue-shaded region, the
action switches from terminating at a cusp at some finite n to existing for all values of n.
In the white region, in all cases but Einstein gravity there will be a zeroth order phase
transition between bolt solutions and NUT solutions at the value of n corresponding to the
maximum value of rb. In Einstein gravity there is also a phase transition at this point, but
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in that case it is first order. As an example that highlights the salient points pertaining
to the bolts, let us once again consider the ξ = −4 × 10−5 slice through the parameter
space for different values of ζ — various relevant examples are shown in Fig. 8.16, where
the Euclidean action of the NUT solutions has been subtracted off, ∆IE = Ibolt

E − INUT
E .

Though the discussion will make reference to numerical values in only this particular case,
the qualitative features are general.

Particularizing now the discussion to ξ = −4 × 10−5, for positive ζ through to
ζ ≈ −23.1565× 10−5 (which corresponds to the orange line in Fig. 8.13), the behaviour is
similar to Einstein gravity, with the on-shell action exhibiting two smooth branches that
end at a cusp located at the maximum value of NUT charge. Precisely when ζ is chosen on
the orange line shown in Fig. 8.13 (ζ ≈ −23.1565×10−5 in this case), the upper branch of IE
develops a cusp, corresponding to a critical point in the system. As ζ is further decreased,
a swallowtail emerges from the cusp on the upper branch, as shown in the second plot of
Fig. 8.16. Further decreasing ζ elongates the swallowtail, and eventually it intersects the
lower branch of IE — for the particular case of ξ = −4 × 10−5, this intersection occurs
for ζ ≈ −23.705 × 10−5. This intersection then gives rise to a region where a re-entrant
phase transition occurs as n is increased, as shown in the center-left plot of Fig. 8.16. The
two vertical black, dotted lines show the locations where these transitions occur. There is
a first order phase transition from phase 1 to phase 2, followed by a zeroth order phase
transition which returns the system back to the initial phase. It is in this sense that we
have a re-entrant phase transition — a monotonous variation of the NUT charge gives
rise to two phase transitions with the final and initial phases coinciding. Let us note that
re-entrant phase transitions were first observed in nicotine/water mixtures in [413]. In the
context of black hole physics, while somewhat exotic, they are well-established — see [414]
for an example in a rotating black hole spacetime, and [415, 416] for black hole examples
in higher curvature theories of gravity. We believe this is the first instance observed for
NUT charged solutions. As ζ is further decreased, the swallowtail continues to elongate,
and for ζ ≈ −23.753× 10−5, the tip of the swallowtail extends past the cusp — this ends
the region of parameter space for which re-entrant phase transitions occur.

There is a drastic change in structure at ζ = 6ξ. Corresponding to the boundary
of the blue-shaded region in Fig. 8.13, this condition yields the largest ζ for which there
is a maximum NUT parameter for which bolts exist. From the perspective of the on-
shell action, essentially what happens is, at this point, the swallowtail has now elongated
“to infinity”. Between ζ = 6ξ and ζ ≈ −38.026 × 10−5 the action displays a swallowtail
structure that is associated with a first-order phase transition. The swallowtail vanishes at a
critical point when ζ ≈ −38.026×10−5 (the black line in Fig. 8.13). For ζ . −38.026×10−5,
the on-shell action displays only a single branch for all values of n.

Lastly, let us make some remarks regarding the critical points that are present at
some points in the parameter space. As mentioned above, the lines of critical points
appearing in Fig. 8.13 are bonafide critical points in the thermodynamic parameter space.
When in the region of the parameter space corresponding to the white region of Fig. 8.13,
the action exhibits a cusp structure qualitatively similar to that shown in the top left plot
of Fig. 8.16. We find that one of the critical points always occurs on the upper branch
of this cusp (those corresponding to the orange curve in Fig. 8.13). These critical points
will, therefore, not be realized since they do not comprise the dominant contribution to
the partition function. The critical points that correspond to the points on the black curve
shown in Fig. 8.13 belong to the lower branch of the cusp in the white region or are on
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the single physical branch in the blue shaded region. These critical points are physically
realized.

At the critical point, certain physical quantities blow up in power law fashion. To get
a sense of the critical exponents governing these divergences, we can study the behaviour
of the specific heat,

C = −T ∂
2F

∂T 2
∝
(

1− T

Tc

)α̃
(8.157)

where F = TIE and α̃ is the critical exponent governing this divergence13. Due to the
complexity of the equations relating the bolt radius to the NUT parameter, it is difficult
to perform an analytic study near the critical point. Instead, to make progress, we plot

log

∣∣∣∣ 1

T
− 1

Tc

∣∣∣∣ vs. log

∣∣∣∣∂F∂T (T )− ∂F

∂T
(Tc)

∣∣∣∣ (8.158)

numerically and extract the slope of this line via a linear fit. As an example, we find in
the case ξ = −4× 10−5 the following fit:

log

∣∣∣∣ 1

T
− 1

Tc

∣∣∣∣ = 2.941 log

∣∣∣∣∂F∂T (T )− ∂F

∂T
(Tc)

∣∣∣∣+ constant (8.159)

which after some simple algebra yields

α̃ = 0.659 (8.160)

which is consistent with α̃ = 2/3 to within the numerical precision. This value for the
critical exponent is often observed for the divergence of the specific heat at constant pres-
sure in black hole systems — see, e.g., [417]. In this sense, it is not surprising to find that
the same critical exponent governs the behaviour near the critical point for the bolts. A
numerical survey of many critical points for different values of the couplings shows that
they are all consistent with this result.

The red dot shown in Fig. 8.13 represents a special point in the parameter space
where two critical points merge. Because of this, one might hope to see novel critical
exponents similar to how the coalescence of multiple critical points leads to non-mean field
theory critical exponents for Lovelock black holes [418]. However, unfortunately, this is
not the case here. The reason is that as the red dot is approached, there is one critical
point on the upper branch of the cusp and one on the lower branch. When these critical
points merge, they also meet at the cusp which acts as a phase boundary — no solutions
exist beyond the tip of the cusp. To within the accuracy of our calculation, the critical
exponent associated with each critical point as the cusp is approached remains consistent
with α̃ = 2/3.

13We use the notation α̃ to avoid confusion with much of the black hole chemistry literature, e.g. [180],
where α is exclusively used in reference to the specific heat at constant volume.

269



Chapter 8. Euclidean AdS-Taub-NUT solutions

0.00 0.02 0.04 0.06 0.08 0.10

-5

-4

-3

-2

-1

0

1

2

0.065 0.070 0.075 0.080 0.085 0.090

-2.0

-1.5

-1.0

-0.5

0.0

0.071 0.072 0.073 0.074
-0.435

-0.425

-0.415

-0.405

0.070 0.072 0.074 0.076 0.078 0.080
-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

0.070 0.072 0.074 0.076 0.078 0.080
-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

0.060 0.065 0.070 0.075 0.080 0.085 0.090
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

0.070 0.072 0.074 0.076 0.078 0.080 0.082 0.084
-0.8

-0.6

-0.4

-0.2

0.0

Figure 8.16: Euclidean on-shell action difference ∆IE = Ibolt
E − INUT

E for B = CP2 solutions in the
quartic theories. Red corresponds to Einstein gravity, while all blue curves have ξ = −4×10−5 for
various values of ζ. Top left: A comparison between Einstein gravity and the quartic theories with
ζ = −10 × 10−5, we see in both cases the action is a ‘cusp’. Top right: Here ζ = −23.5 × 10−5;
the inset shows a zoomed-in plot of the boxed area, showing the swallowtail structure that has
emerged. Center left: Here ζ = −23.74 × 10−5; the swallowtail now intersects the lower branch
of the cusp. The vertical dotted lines correspond to a first order phase transition (leftmost line)
and a zeroth-order phase transition (rightmost line). Center right: Here ζ = −23.82× 10−5. The
swallowtail has elongated, and now extends past the cusp. Bottom left: Here ζ = −24.1 × 10−5.
Bolts now exist for all values of n, and there is a swallowtail structure present. Bottom right:
Here ζ = −38.026× 10−5,−50× 10−5 and −60× 10−5 (more to less opacity, respectively). Along
the first curve, there is a critical point located at n/L ≈ 0.07815, while the other two curves are
smooth. The structure of the on-shell action is qualitatively similar to these last two curves for all
ζ . −38.026× 10−5.
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9
Free energy of CFTs on squashed spheres

Euclidean conformal field theories (CFTs) coupled to background fields can be used to
learn important lessons about the dynamics of the theory in question. A prototypical ex-
ample corresponds to supersymmetric CFTs, where localization techniques have allowed for
notable progress — see e.g., [419]. For non-supersymmetric theories, a natural possibility
consists in coupling the theory to curved background metrics. This approach has produced
some exact and universal results valid for general CFTs [263, 265] and has found various
applications, e.g., in holographic cosmology [264, 403, 420, 421]. Particularly interesting is
the case of spherical backgrounds, whose partition functions — equivalently, free energies:
FSd = − log |ZSd | — have been conjectured to be renormalization-group monotones for
general odd-dimensional QFTs [422–424].

In this chapter, we will consider CFTs on deformed spheres and study the effect
that such deformations have on F . The focus will be on a particular class of squashed
spheres, Sdε , which preserve a large subgroup of isometries of the round ones.1 In particular,
they are characterized by being Hopf fibrations over the complex projective space CPk
(k ≡ (d− 1)/2), namely, S1 ↪→ Sdε → CPk. The metric on these squashed-spheres is given
by

ds2
Sdε

=
ds2

CPk

(d+ 1)
+ (1 + ε)

(
dψ +

ACPk

(d+ 1)

)2

, (9.1)

where ψ is a periodic coordinate which parametrizes the S1, ds2
CPk is the Einstein metric

on CPk normalized so that Rij = gij , and J = dACPk is the Kähler form on CPk. The
parameter ε measures the degree of squashing of the sphere and, in principle, it can take
values in the domain ε ∈ (−1,+∞), the round-sphere corresponding to ε = 0. In d = 3,
which is the simplest case, CP1 ∼= S2, and we can write ds2

S2 = dθ2 + sin2 θdφ2, AS2 =
2 cos θdφ in standard spherical coordinates.

This class of squashed spheres can be easily studied holographically [178, 262, 266–
269], as the relevant bulk geometries belong to the well-known AdS-Taub-NUT/bolt family.
Our first main result — see (9.11) — is a universal formula for the free-energy of a broad
class of holographic CFTs on squashed-spheres. The formula is automatically regularized
and, in fact, does not require knowing the corresponding NUT solutions explicitly. We will
argue that it holds for an infinite number of higher-curvature bulk theories of the GQG type,
and that it correctly reproduces all previous results available in the literature. Additionally
it passes several consistency checks coming from field theory considerations. Our second

1In particular, (9.1) preserves a SU( d+1
2

)×U(1) subgroup of the usual SO(d+ 1) preserved by the usual
round-sphere metric in d-dimensions.
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result — see (9.18) — is an expression for the subleading term in the small squashing-
parameter expansion of FS3

ε
which, based on holographic and free field calculations we

conjecture to be controlled by the stress-tensor three-point function coefficient t4 for general
CFTs. As an additional consequence of our results in the holographic context, we observe
that, for the class of bulk theories just described, the function that determines the possible
AdS vacua of the theory — see (9.4) — acts as a generating functional for the boundary
stress-tensor, in the sense that we can easily characterize its correlators by taking ordinary
derivatives of such function, drastically simplifying the standard holographic calculations
— see (9.5), (9.8), (9.22) and (9.23).

9.1 Holography of Einstein-like higher-order gravities

AdS/CFT [55–57] provides a powerful playground for exploring the physics of strongly
coupled CFTs. In some cases, the possibility of mapping intractable field-theoretical cal-
culations into manageable ones involving gravity techniques allows for the identification of
universal properties valid for completely general CFTs. In this context, higher-curvature
gravities turn out to be very useful, as they define holographic toy models for which many
explicit calculations — otherwise practically inaccessible using field-theoretical techniques
— can be performed explicitly. The idea is that, if a certain property is valid for general
theories, it should also hold for these models. This approach has been successfully used
before, e.g., in the identification of monotonicity theorems in various dimensions [58, 59],
or in the characterization of entanglement entropy universal terms [60–62,359]. Naturally,
particular higher-curvature interactions generically appear as stringy corrections to the
effective actions of top-down models admitting holographic duals [22]. For the purposes
just described, however, it is more useful to consider bulk models which are particularly
amenable to holographic calculations — see e.g., [117,121,122,124,131,274].

Let us start by considering a general higher-curvature Lagrangian, in (d + 1) bulk
dimensions, that we can write as follows

L =
1

16πG

[
d(d− 1)

L2
+R+

∑
n=2

µnL
2(n−1)R(n)

]
, (9.2)

where L is some length scale, G is Newton’s constant, the µn are dimensionless couplings,
and the R(n) stand for the higher-curvature terms, constructed from linear combinations
of order-n curvature invariants. In the previous Lagrangian we are explicitly including one
higher-curvature term at every order, which suffices for our purposes, but we could add
more terms. The first step in order to perform holographic computations for theories of
the form (9.2) is to determine their AdS vacuum. As we saw in Chapter 2, the AdS vacua
of these theories can be obtained by solving the equation [106]

h(f∞) ≡ 16πGL2

d(d− 1)

[
L(f∞)− 2f∞

(d+ 1)
L′(f∞)

]
= 0 , (9.3)

where L(f∞) is the on-shell Lagrangian on pure AdS(d+1) with radius L/
√
f∞. This can

be easily obtained evaluating all Riemann tensors in (9.2) as Rµνρσ = −f∞/L2(gµρgνσ −
gµσgνρ). Also, L′(f∞) ≡ dL(f∞)/df∞. It is easy to see that the R(n) can always be
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normalized so that the function h(f∞) in (9.3) takes the simple form2

h(f∞) = 1− f∞ +
∑

n6=(d+1)/2

µnf
n
∞ . (9.4)

This function will play an important role in our discussion, as we will see. Naturally, for
Einstein gravity one just finds f∞ = 1, and the action scale L coincides with the AdS
radius.

So far, the discussion applies to any higher-derivative gravity. Let us further restrict
(9.2) to the particular subclass of theories whose linearized equations on maximally sym-
metric backgrounds are second-order. Namely, we restrict to those for which the linearized
equations take the form GL

µν = 8πGeffTµν , where GL
µν is the linearized Einstein tensor, Tµν

is some possible matter stress-tensor, and Geff is the effective Newton constant. As we saw
at the beginning of Chapter 7, these theories — which we refer to as Einstein-like [106]
— are very appealing for AdS/CFT, since the holographic dictionary of Einstein gravity
can be applied straightforwardly to them as well. As a warm-up before presenting the
main results of this chapter, it will be useful to derive some basic results for this family of
theories.

Stress-tensor 2-point function from AdS equation

It turns out that the function h(f∞) contains a surprisingly great deal of additional non-
trivial information for Einstein-like theories. Using the results in Chapter 2 — in particular
Eq. (2.88) — we can see that this function determines the effective gravitational constant
through Geff = −G/h′(f∞). From the dual CFT point of view, this translates into the
following relation with the charge CT , which fully characterizes the CFT stress-tensor
two-point function3

CT = −h′(f∞)CE
T , (9.5)

where CE
T stands for the Einstein gravity result4

CE
T =

Γ[d+ 2](L/
√
f∞)d−1

8π
d+2

2 (d− 1)Γ
[
d
2

]
G
. (9.6)

Let us remark that the general formula (9.5) reproduces the result (7.56) for Einsteinian
cubic gravity in d = 3, that was obtained applying a direct holographic procedure. The
result above tells us that any holographic quantity that depends on h′(f∞) will be related
to the central charge CT — a result that will be very useful for us.

2The special case n = (d+1)/2 must be excluded from the sum, as no invariant of that order contributes
to the vacua equation.

3Let us mention that (9.5) was previously proven in the particular case of Lovelock theories in [123,124].
4Observe that our convention for CT differs from that in [263] by a factor 1/S2

d = Γ[d/2]2/(4π2). It
agrees, however, with the convention in [58, 62, 121, 131]. Note also that it is customary to write Einstein
gravity results in terms of L/

√
f∞, instead of L alone. This is irrelevant for Einstein gravity itself, for

which f∞ = 1, but needs to be kept in mind for higher-order theories.
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Stress-tensor 3-point function in d = 3

We have been able to obtain a very simple and closed formula for the stress-energy tensor
2-point function of the CFT dual to any Einstein-like gravity, so we may wonder whether
we can obtain an analogous result for for the 3-point function. This case is quite more
challenging, so we will restrict to d = 3 (D = 4), which is the dimension we have studied the
most throughout this thesis. In Chapter 7 we saw that, for parity-even three-dimensional
CFTs, the 3-point function of the stress-energy tensor is characterized by two “charges”,
that can be chosen as CT plus an additional dimensionless constant that is denoted by
t4 [221, 235]. In Section 7.7.3 we obtained the value of t4 for a CFT dual to ECG — see
Eq. (7.129). That result can be written in an appealing way in terms of the function h(f∞)
— which, for ECG reads h(f∞) = 1− f∞ + µf3

∞ — as follows,

t4 = 210f∞
h′′(f∞)

h′(f∞)
. (9.7)

Since this formula was derived using only one theory (ECG), it might not work in general,
and the value of t4 could be given in general by a different expression. However, we have
shown in Appendix E.4 that the formula above holds not only for ECG, but for all of
the Generalized quasi-topological gravities in D = 4. We remind that these are a subclass
of the family of Einstein-like theories, but the fact that the result holds for all of them
is good enough for our purposes. In addition, this strongly suggests that (9.7) might
actually hold for all of the Einstein-like theories. Hence, one would be able to obtain
the coefficient t4 by taking a couple of derivatives of h(f∞). This represents a dramatic
simplification with respect to the standard holographic calculations involving energy fluxes
— see e.g., [121,131,221].

It is not clear whether a generalization of (9.7) exists for higher dimensions — where
now the 3-point function is controlled by two coefficients, t2 and t4. It would be interesting
to determine if an expression of the form

a(d)t2 + b(d)t4 = f∞
h′′(f∞)

h′(f∞)
, (9.8)

holds for general Einstein-like theories in arbitrary dimensions, for some dimension-dependent
constants a(d) and b(d). Using the available results for t2 and t4 in d = 4 Quasi-topological
gravity [131] and d ≥ 4 Gauss-Bonnet [121], it is straightforward to set: b(4) = −1/21
and a(d) = −(d − 2)(d − 3)/[2d(d − 1)]. In fact, a formula equivalent to (9.8) valid in
the particular case of Lovelock theories — for which t4 = 0 — was shown to be true
in [123,124] for the same value of a(d). This provides additional support for the validity of
(9.8) for general Einstein-like theories. It would be interesting to test the validity for such
additional theories in various dimensions and, if correct in general, to determine the value
of b(d≥5).
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9.2 General formula for holographic free energy on squashed
spheres

Let us now come back to the main topic of this chapter: the holographic computation
of the free energy of CFTs on squashed spheres. In AdS/CFT, the semiclassical partition
function is exponentially dominated by the bulk geometry with the smallest on-shell action
satisfying the appropriate boundary conditions. This means that the free energy of the
holographic CFT can be accessed from the regularized on-shell action of the bulk theory
evaluated on the corresponding gravity solution [425]. When the boundary geometry is a
squashed-sphere of the form (9.1), the relevant bulk solutions are of the so-called Euclidean
Taub-NUT/bolt class [178, 266, 268]. Such solutions are characterized by the NUT charge
n which, on general grounds, holography maps to the squashing parameter of the boundary
geometry ε through

n2

L2
=

(1 + ε)

(d+ 1)f∞
. (9.9)

Naturally, constructing Taub solutions is a more challenging task than classifying
the vacua of the theory and, in fact, only a few examples of such solutions have been
constructed for Einstein-like Lagrangians of the form (9.2). Fortunately, in the preceding
chapter we have computed new Taub-NUT and Taub-Bolt solutions in several higher-
curvature gravities in various dimensions. The simplest instance in d = 3 corresponds to
Einsteinian cubic gravity, whose Taub-NUT/Bolt solutions were obtained in Section 8.2
[275]. In d ≥ 5, analytic Taub solutions have been constructed for Einstein [426] and
Einstein-Gauss-Bonnet gravity [384,385,387] and there have been a number of holographic
applications of these solutions [427–430]. In the previous chapter we generalized these
results by constructing Taub-NUT/Bolt solutions including quartic QT and GQT terms
in d = 5 [275]. In all these cases, the thermodynamic properties of the solutions can be
accessed analytically. In particular, the computation of regularized on-shell actions can
be performed after the introduction of various boundary terms and counterterms which
account for the various UV divergences [88,268,274,343,344,346]. As long as the solution
is the dominant saddle, the resulting on-shell action computes the free energy of the dual
theory on a squashed sphere Sdε . For sufficiently small ε, one finds that the relevant saddle
is generically of the NUT type. For large enough ε, a NUT/Bolt phase transition usually
takes place, and even more exotic transitions between different Bolt solutions are possible,
as we studied in detail in Chapter 8.

We are interested in the behaviour near ε = 0, where the NUT phase dominates. In
order to illustrate these results, let us consider the case of ECG in d = 3, whose action
is given in (8.8). The holographic free energy simply corresponds to the Euclidean action
evaluated on the corresponding solution, and for Taub-NUT metrics the result is given in
(8.38). Applying the relation (9.9) between the NUT charge n and the squashing parameter
ε we get

FECG
S3
ε

= −πL
2(1 + ε)2

Gf2
∞

[
1

2
− f∞

(1 + ε)
− µf3

∞
(1 + ε)3

]
, (9.10)

where we remind that f∞ is a root of the equation h(f∞) = 1− f∞+µf3
∞ = 0. Additional

examples are shown in Appendix G.
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Rather strikingly, we observe that the following simple pattern holds in all cases: the
free energy of a holographic CFT on a squashed Sdε dual to a higher-order gravity theory
can be obtained by evaluating the on-shell Lagrangian of the corresponding theory on pure
AdS(d+1). The dependence on the squashing parameter appears encoded in the AdS radius
of this auxiliary geometry, which is given by L

√
(1 + ε)/f∞. Explicitly, we claim that the

following formula holds

FSdε = (−1)
(d−1)

2
π

(d+2)
2

Γ
[
d+2

2

] L [f∞/(1 + ε)]Ld+1

[f∞/(1 + ε)]
(d+1)

2

. (9.11)

Observe that this expression is automatically regularized, and it provides a direct entry of
the holographic dictionary for at least certain higher-order gravities. In fact, (9.11) cannot
be valid for any theory since it is not invariant under field redefinitions — at least for finite
values of ε — so we have to determine for which theories it applies. We remark that the
previous formula reproduces the result for the free energy of all the Taub-NUT solutions
known in the literature — including in particular the Einstein gravity result in arbitrary
dimension. The point is that we only know how to compute the free energy of Taub-
NUT solutions for a certain type of theories: the special Generalized quasi-topological
gravities considered in Chapter 8 that allow for Taub-NUT solutions characterized by a
single function (8.3). Thus, we claim that the formula (9.11) computes exactly the free
energy of CFTs dual these theories, which are a subset of the GQG family, but presumably
an infinite one.

However, the behaviour of (9.11) near ε = 0 turns out to be universal and provides
us with relations that are valid for any Einstein-like theory. In fact, (9.11) passes three
non-trivial tests:

1. First, note that if we set ε = 0, we must recover the result for the free energy of
the theory on a round Sd, which plays a crucial role in establishing monotonicity
theorems, particularly in three-dimensions [422–424]. Evaluating (9.11) at ε = 0 we
obtain

FSd = −π
(d+2)

2 L̃d−1

Γ
[
d+2

2

] L∣∣∣
AdS

, (9.12)

where L|AdS stands for the Lagrangian of the corresponding theory evaluated on pure
AdSD with radius L̃ = L/

√
f∞. Indeed, this quantity has been argued to satisfy

FSd ∝ L|AdS for general higher-curvature bulk theories, with the proportionality
coefficient precisely agreeing with the one predicted by (9.11) — see e.g., [58, 274].

2. In addition, we know that the round sphere is a local extremum for the function
FSdε [263], namely, dFSdε/dε|ε=0 ≡ F ′Sdε (0) = 0 for general theories. This property is
also nicely implemented in (9.11). Taking the first derivative in that expression and
comparing with (9.3), it is straightforward to show that

F ′Sdε (ε) = (−1)
(d−1)

2
π
d
2 (d2 − 1)Ld−1

16Γ
[
d
2

]
Gf∞

(
1 + ε

f∞

)(d−1)/2

h [f∞/(1 + ε)] . (9.13)

Hence, evaluating at ε = 0 we get F ′Sdε (0) ∝ h(f∞) , which of course vanishes by
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definition, as h(f∞) = 0 is nothing but the embedding condition of AdS(d+1) on the
corresponding theory. It is remarkable how holography ties the CFT fact that round-
spheres are local extrema of the free energy as a function of the squashing parameter,
to the requirement that the AdS geometry solves the bulk field equations.

3. Furthermore, we know that F ′′Sdε (0) is fully determined by the stress tensor two-point
function charge CT for general odd-dimensional CFTs [263]. In particular, for d = 3
and d = 5, it was found (in our conventions) that5

F ′′S3
ε
(0) = −π

4

3
CT , F ′′S5

ε
(0) = +

π6

15
CT . (9.14)

Now, using (9.3), (9.5) and (9.11) we find, after some manipulations,

F ′′Sdε (0) =
(−1)

(d−1)
2 πd+1(d− 1)2

2 d!
CT . (9.15)

This expression reduces to the general results in (9.14), which is another highly non-
trivial check of (9.11). Interestingly, it provides a generalization of the universal
connection between F ′′

Sdε
(0) and CT which must hold for general odd-dimensional

CFTs (holographic or not).

In passing, let us also note that from the boundary CFT point of view, (9.11) tells
us that the problem of computing FSdε for a given theory, can actually be mapped to
the one of evaluating the round Sd free energy for a different theory characterized by the
same bulk Lagrangian, but different couplings µ̃n such that h(f̃∞) = 0 is satisfied for
f̃∞ ≡ f∞/(1 + ε). Interestingly, a similar connection between FSdε and FSd was found
for d = 3, N = 2 supersymmetric CFTs in [433]. Supersymmetry requires additional
background fields to be turned on besides the metric, which makes the corresponding
supersymmetric free energies FSdε inequivalent from our FSdε [263]. Nonetheless, the analogy
suggests that similar mappings between the squashed and round sphere free energies may
exist for higher-dimensional supersymmetric theories, or even for general CFTs.

9.3 Universal expansion on the squashing parameter

As we have seen, the leading term in the ε → 0 expansion of FSdε is quadratic in the
deformation, and proportional to the stress-tensor two-point function charge CT for general
CFTs. A question left open in [263] was the possibility that the subleading term, cubic in
ε, could present an analogous universal behavior, in the sense of being fully characterized
by the corresponding three-point function charges. Since ε encodes a metric deformation,
one expects F (n)

Sdε
to involve integrated n-point functions of the stress tensor. Focusing on

the case of three-dimensional CFTs, the corresponding three-point function is completely
fixed by conformal symmetry up to two theory-dependent quantities [235], which can be
chosen to be CT and the dimensionless parameter t4 [221]. Hence, we expect a linear

5Related expressions had been previously found in the context of three-dimensional N = 2 supersym-
metric CFTs [355] — see also [431–435]. A detailed discussion of the connection can be found in section
5.1 of [263].
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combination of CT and CT t4 to appear in the O(ε3) term. The analysis in [263] shows
however that, besides these contributions, an additional correlator of the form 〈 δT√

gδgT 〉
— which depends on additional details of the specific CFT — appears at that order for
general metric perturbations. The possibility that this term does not really contribute for
certain metric perturbations, including our class of squashings, was left open.

On the other hand, the available partial results — numerical for a free scalar and
a free fermion, and analytic for holographic Einstein gravity — did not suffice to provide
a conclusive answer, even in d = 3. In particular, the exact result for the free energy
in holographic Einstein gravity is a polynomial of order 2 in ε, namely, FE

S3
ε

= πL2(1 −
ε2)/(2G), which means that its Taylor expansion around ε = 0 is trivial, and precisely
ends with the quadratic piece — which is of course controlled by CT in agreement with
(9.14), as can be readily verified using (9.6).

Happily, the new Taub-NUT solutions constructed in the previous chapter for Ein-
steinian cubic gravity provide us with an additional family of holographic models for which
we can access the cubic contribution, and explore its possible universality by testing it
against the free-field numerics. Unlike the Einstein gravity case, the free energy of CFTs
dual to ECG do contain a cubic term in the squashing parameter. We presented the exact
result — valid for finite values of ε — in (9.10), but expanding that formula up to cubic
order we get

FS3
ε

= (1 + 3µf2
∞)

πL2

2f∞G
− π(1− 3µf2

∞)L2

2f∞G
ε2

[
1 +

2µf2
∞

1− 3µf2
∞
ε+O(ε2)

]
. (9.16)

Using the result obtained in Chapter 7 for the holographic mapping between bound-
ary and bulk quantities of Einsteinian cubic gravity [274],

CECG
T = (1− 3µf2

∞)
3L2

π3f∞G
, CECG

T tECG
4 = −3780µf∞

L2

π3G
, (9.17)

we can express the squashed-sphere free energy of the corresponding dual theory for small
values of ε as

FS3
ε

= FS3
0
− π4CT

6
ε2

[
1− t4

630
ε+O(ε2)

]
. (9.18)

As we can see, the leading correction to the round-sphere result agrees with the
general result (9.14), as it should. But now we have a nontrivial subleading piece, cubic in
ε, and proportional to CT t4. In principle, it is far from obvious that the cubic term should
not depend on additional theory-dependent quantities. In order to test its generality, we
can extend the calculation done here for ECG to other higher-order gravities. Let us
take our general formula for the free energy (9.11) as the starting point. We have argued
that this formula applies for an infinite number of theories —at least for all the special
Generalized quasi-topological gravities of the type studied in Chapter 8 — and we have
performed an explicit check for ECG and for a quartic GQG — see Appendix G. According
to this formula, the third derivative of the free energy with respect to ε reads

F (3)

Sdε
(0) = − πL2

G
h′′(f∞) .
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Figure 9.1: We plot the function T (ε) defined in (9.20) near ε = 0 for a free scalar (blue) and a free
fermion (red) using the numerical results for F s,f

S3ε
obtained in [263]. We observe that T (ε = 0) = t4 is

satisfied in both cases with high accuracy, which provides strong evidence in favor of the conjectural
general expression (9.18) suggested by the holographic Einsteinian cubic gravity result. Further
details on the numerical calculations used to produce this plot can be found in the Supplement.

But now, we have seen that h′′(f∞) is related to t4 for a general GQG in D = 4 according
to (9.7), this is, t4 = 210f∞h

′′(f∞)/h′(f∞). Taking also into account the relation between
CT and h′(f∞) given by (9.5), we see that the third derivative F (3)

Sdε
(0) precisely matches

the prediction of (9.18):

F (3)

Sdε
(0) =

π4CT t4
630

. (9.19)

Since both formulas used in the derivation of this result, (9.11) and (9.7), apply at the same
time to an infinite number of higher-order gravities, it follows that for all these theories
the expansion (9.18) holds. The robustness of the holographic result strongly suggests that
this relation could actually be valid for general CFTs.

Finally, we can use the numerical free-field results in [263] to perform two highly
nontrivial tests of the possible validity of (9.18) beyond holography. In order to do so, we
study the function

T (ε) ≡ 630

ε

[
1 +

6(FS3
ε
−FS3

0
)

π4CTε2

]
(9.20)

for the conformally-coupled scalar (s) and the free Dirac fermion (f) free energies near
ε = 0 — details on the numerical method utilized in the computation of F s

S3
ε
and F f

S3
ε
can

be found in Appendix G.2. Naturally, if (9.18) held for these theories, we should obtain
T (ε = 0) = t4 which, for the scalar and the fermion are respectively given by ts4 = +4 and
tf4 = −4 [121, 235]. The result of this analysis is shown in Fig. 9.1, where it is manifest
that this is precisely satisfied in both cases. The extremely different nature of the theories
and techniques used in deriving the holographic and free-field results make us think that
this property extends to arbitrary CFTs.

• Conjecture: for general three-dimensional CFTs, the subleading term in the squashing-
parameter ε expansion of the free energy FS3

ε
is universally controlled by the coeffi-

cient t4 in the three-point function of the stress tensor. In particular, we conjecture
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that (9.18) holds for general theories.

The level of evidence provided here in favor of (9.18) — involving free-field and holographic
higher-order gravity calculations — is very similar to the one initially presented in [61,
62] concerning the universal relation between the entanglement entropy of almost-smooth
corner regions and the charge CT , which was eventually proven for general CFTs in [436]6.

One would expect that if our conjecture is true, an analogous expression should hold
for the free energy of higher odd-dimensional squashed spheres. In that case, one would
expect the O(ε3) term to be controlled by some combination of CT , t4 and the additional
stress-tensor three-point function charge, t2, which is nonvanishing for d > 3. In order
to guess the exact relation, say, in d = 5, one could compute t2 and t4 holographically
for some of the six-dimensional bulk theories for which Taub-NUT solutions have recently
been constructed [275], and follow the same steps taken here for Einsteinian cubic gravity.

9.4 Discussion

In this chapter, we have presented a general formula for the free energy of odd-dimensional
CFTs dual to a certain family of higher-curvature gravities with second-order linearized
equations of motion. The formula (9.11) is expected to hold in the region of parameter
space for which Taub-NUT geometries dominate the corresponding semiclassical partition
function, something that generically occurs for small enough values of ε. In our formula,
UV regularization is automatically implemented and it only involves the evaluation of the
Lagrangian of the corresponding theory on an auxiliary AdS geometry, which represents
a drastic simplification with respect to the usual on-shell action approaches — to the
extent that it does not even require knowing the corresponding Taub-NUT bulk geometry.
We have argued that (9.11) satisfies various highly nontrivial properties expected from
general CFT considerations [263], which AdS/CFT elegantly connects to bulk statements.
Additionally, our formula is also satisfied in all known cases in which the corresponding
holographic calculation involving the on-shell action of Taub-NUT geometries has been
performed. Additional checks for other holographic theories or, preferably, a general proof
of (9.11) would be very desirable.

Furthermore, we have conjectured that the subleading term in the free-energy squashing-
parameter expansion is universally controlled by the stress-tensor three-point function co-
efficient t4, as given in (9.18), for general (2+1)-dimensional CFTs (holographic or not). In
deriving (9.18), we first have made use of the free energy result for holographic Einsteinian
cubic gravity. Then, we have seen that this result also applies when one takes into account
the general formula (9.11) together with the general expression (9.7) for the coefficient t4
— valid at least for all the GQGs in D = 4 — and finally we have cross-checked it with the
numerical results corresponding to a conformally-coupled scalar and a free Dirac fermion,
finding perfect agreement. These checks provide astonishing evidence of the validity of the
conjecture (9.18). In particular, we do not seem to be able to find a counterexample of
the result within the holographic setup. Thus, the next natural step would be attempting
a proof of (9.18) using field-theoretical techniques. However, as we mentioned earlier, the
kind of integrals one would need to perform in that case look rather challenging [263].

6In contrast to (9.18), however, the subleading term in the smooth-limit expansion of the corner en-
tanglement entropy (quartic in the deformation), was later shown not to be generically controlled by the
stress tensor three-point function charges in [437].
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It is not clear as of this moment whether the results presented for d = 3 extend in
some way to higher-dimensional CFTs. According to our general formula (9.11) — that
we expect to be of applicability for an infinite set of higher-order gravities — the value of
the third derivative of the free energy reads

F (3)

Sdε
(0) =

(−1)
(d+1)

2 π
d
2 (d2 − 1)Ld−1

16Γ[d2 ]f
d−1

2∞ G

[
(d− 3)h′(f∞)− f∞h′′(f∞)

]
. (9.21)

Therefore, the question whether F (3)

Sdε
(0) depends only on the stress-energy tensor 3-point

function coefficients is equivalent to whether h′′(f∞) satisfies a relation as the one in (9.8)
for odd d. In order to test that, one would need to compute the energy fluxes [121,131,221]
of several GQG theories of the type presented in Chapter 8 — such as (8.107) and (8.107)
— and check if the coefficients t2, t4 satisfy such relation. We have seen that in d = 3 that
relation exists — see Eq. (9.7) — and consequently the result (9.18) seems to be universal.

In any event, we find that h(n)(f∞) appears to be related to the (n+1)-point function
of the boundary stress tensor, therefore acting as some sort of generating functional. In fact,
the 1-point function h(f∞) = 0 vanishes because it corresponds to the vacuum embedding
equation. The 2-point function is generically determined by h′(f∞) according to (9.5) for
arbitrary Einstein-like theories, and, at least in d = 3, the 3-point function is determined
by h′′(f∞). Interestingly, the “zero-point function”, corresponding to the regularized round-
sphere free energy FSd , also satisfies this pattern, as it can be extracted from an integral
involving h(f∞), namely7

FSd =
(−1)

(d+1)
2 π

d
2 (d+ 1)(d− 1)Ld−1

16Γ
[
d
2

]
G

∫ f∞ h(x)

x
(d+3)

2

dx , (9.22)

which can be obtained by integrating formally both sides of (9.13). In this expression we
are supposed to evaluate the “canonical” primitive of the integrand on f∞, which, in the
case h(x) is a polynomial, is straightforward to obtain.

Integrating by parts in this expression, and using (9.5) and (9.6), it is possible to
find the suggestive relation

CT =
(−1)

(d−1)
2 Γ[d+ 2]

πd+1(d− 1)2
f∞

[
∂FSd

∂f∞

]
, (9.23)

which is equivalent to the one recently found in [438], and which connects two seemingly
unrelated quantities, such as CT and FSd .8 Let us note that there is an ambiguity in this
expression because there are many ways to express FSd as a function of f∞ — in fact, this
quantity is supposed to be a constant fixed by h(f∞) = 0. There is a canonical form of
FSd in which (9.23) works, and this form is FSd = FE

Sd (1 + polynomial in f∞), where FE
Sd

is the Einstein gravity result with the rescaled AdS scale L/
√
f∞. Expressed in this way,

7In even-dimensional CFTs, this expression yields — up to a 2(−1)−1/2/π factor — the coefficient of the
universal logarithmic contribution to the corresponding round-sphere free energy, given by (−1)

(d−2)
2 4a∗,

where a∗ is proportional to one of the trace-anomaly charges (a in d = 4), e.g., [58].
8In terms of a∗, the relation reads CT = −2Γ[d + 2]/[πd(d − 1)2] · f∞

[
∂a∗

∂f∞

]
, which is valid in general

(even and odd) dimensions.
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Eq. (9.23) remains the form of a flow equation for FSd controlled by the parameter f∞.
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Conclusions

In this thesis we have made a great progress in the classification of higher-curvature gravi-
ties according their linearized spectrum and a special family of theories possessing second-
order linearized equations of motion has been identified. These theories have been called
“Einstein-like” and they only propagate a massless graviton on constant curvature back-
grounds. Furthermore, a special subset of these theories, known as Generalized quasi-
topological gravities, turn out to be especially appropriate in order to study black hole
solutions. In this way, we have been able to describe, non-perturbatively, four-dimensional
black hole solutions with higher-curvature corrections. In particular, we managed to study
the corresponding black hole solutions when the Einstein-Hilbert action is supplemented
with an infinite number of higher-curvature terms. It should be noted that this is a quite
remarkable achievement that does not have a precedent in the literature. Besides, we have
observed that all these corrections have universal effects on the thermodynamic properties
of black holes. In particular, the Hawking’s temperature of the corrected black holes van-
ishes in the zero-mass limit — an opposite behaviour to the one found in Einstein gravity,
where the temperature diverges. As a consequence, small black holes are thermodynam-
ically stable and do not evaporate in a finite time. In addition, since we argue that the
theories considered could serve as a basis to construct the most general effective theory for
gravity, there is a chance that these conclusions apply with generality beyond the concrete
theories studied here. As an interesting consequence of the existence of small, stable black
holes, we raise the possibility that these could be a constituent of dark matter.

On the other hand, we have studied the holographic applications of Einsteinian cubic
gravity in the context of the AdS4/CFT3 correspondence. The conformal field theory dual
to Einsteinian cubic gravity turns out to belong to a different universality class from
the one defined by holographic Einstein gravity, and this has allowed us to obtain new
results. As a highlight, we have been able to establish that the partition function of a
three-dimensional conformal field theory placed on a squashed sphere is determined, up
to cubic order in the squashing parameter, by the two- and three-point functions of the
stress-energy tensor. Nevertheless, the main conclusion is that Einsteinian cubic gravity
represents a very interesting holographic toy model that allows us to obtain consistent
answers about conformal field theories. In this sense, we expect that all of the Generalized
quasi-topological gravities — which constitute a numerous family of theories — will also
give rise to consistent holographic duals which, on the other hand, could be easily studied.
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A
Linearized L(Riemann) theories

A.1 Linearization procedure: examples

In this appendix we apply the linearization procedure explained in section 2.1 to two
instances. The first is a general quadratic theory in D-dimensions, for which we give
details of all the steps involved in the linearization process. The second is a Born-Infeld
gravity. Our goal in that case is to illustrate that our method can be easily applied to
theories whose linearization would be difficult to achieve using different methods.

Quadratic gravity

Let us consider the most general quadratic gravity in general dimensions,

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R+ α1R

2 + α2RµνR
µν + α3RµνσρR

µνσρ
}
. (A.1)

In order to obtain L(K, α), we only have to substitute the Riemann tensors appearing in
the above Lagrangian density by the expression (2.27) and use the algebraic properties of
the auxiliary tensor kµν (2.26) to compute all the contractions. We find

R2
∣∣∣
(K,α)

= K2D2(D − 1)2 + 2KαD(D − 1)χ(χ− 1) + α2χ2(χ− 1)2 ,

RµνR
µν
∣∣∣
(K,α)

= K2D(D − 1)2 + 2Kα(D − 1)χ(χ− 1) + α2χ(χ− 1)2 ,

RµνσρR
µνσρ

∣∣∣
(K,α)

= 2D(D − 1)K2 + 4Kαχ(χ− 1) + 2α2χ(χ− 1) .

(A.2)

The final result for L(K, α) reads

L(K, α) =
1

16πG

[
− 2Λ +KD(D − 1) + αχ(χ− 1) (A.3)

+
(
K2D(D − 1) + 2Kαχ(χ− 1)

)(
D(D − 1)α1 + (D − 1)α2 + 2α3

)
+ α2χ(χ− 1)

(
χ(χ− 1)α1 + (χ− 1)α2 + 2α3

)]
.

Then, applying (2.29) we get

e =
1

16πG

[
1

2
+K

(
D(D − 1)α1 + (D − 1)α2 + 2α3

)]
. (A.4)
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The second derivative with respect to α yields

∂2L
∂α2

=
χ(χ− 1)

8πG

[
χ(χ− 1)α1 + (χ− 1)α2 + 2α3

]
. (A.5)

Hence, comparing with (2.30) we can easily obtain the values of a, b and c. The result is

a =
α3

16πG
, b =

α1

32πG
, c =

α2

32πG
. (A.6)

Inserting the values of a, b, c and e into (2.36)-(2.38) gives rise to equations (2.40)-(2.42)
for κeff = 8πGeff , m2

s and m2
g.

Finally, from (2.17) we see that the cosmological constant is related to the background
scale K and the couplings of the theory through

Λ =
(D − 1)(D − 2)K

2
+K2(D − 4)(D − 1)

[
D(D − 1)α1 + (D − 1)α2 + 2α3

]
. (A.7)

Born-Infeld gravity

Let us now consider the following theory, which has the form of a Born-Infeld model

S =
1

κ
D
D−2 (1 + λ)

D−2
2

∫
M
dDx

[√∣∣gµν(1 + λ) + κ
2

D−2Rµν
∣∣−√|gµν |] , (A.8)

where |Aµν | stands for the absolute value of the determinant and λ is a dimensionless
parameter — which we assume to be greater than −1. We work with κ instead of 8πG in
order to simplify the formulas. The normalization is chosen so that to leading order the
action becomes Einstein-Hilbert

S =
1

2κ

∫
M
dDx

√
|g|
[
− 2Λ +R+ ...

]
, (A.9)

where Λ =
[
(1 + λ)1−D/2 − (1 + λ)

]
κ

2
2−D , and the ellipsis mean an infinite series of higher

order terms in curvature. Linearizing this theory can be a non-trivial task, due to the
presence of the determinant and the square root. Using our method, it becomes quite easy
though. First, extracting as common factor the square root of the metric determinant1,
we find the Lagrangian density

κ
D
D−2 (1 + λ)

D−2
2 L =

√
|(1 + λ)δµν + κ

2
D−2Rµν | − 1. (A.10)

Now, we follow our recipe and substitute the “Riemann tensor” (2.27) in this expression

κ
D
D−2 (1 + λ)

D−2
2 L(K, α) =

√∣∣∣ (1 + λ+ κ
2

D−2K(D − 1)
)
δµν + ακ

2
D−2 (χ− 1)kµν

∣∣∣− 1 .

(A.11)
The determinant can be computed using (2.26) and the identity

|A| = etr(logA) . (A.12)
1We use that |Aµν | = |gµαAαν | = |gµν ||Aαβ |.
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The result is

κ
D
D−2 (1+λ)

D−2
2 L(K, α) =

(
1+λ+κ

2
D−2K(D−1)

)D/2(
1+

ακ
2

D−2 (χ− 1)

1 + λ+ κ
2

D−2K(D − 1)

)χ/2
−1 .

(A.13)
This “prepotential” contains all the information about the linearized theory. Let us begin
by determining K. The equation for the background curvature (2.17) becomes[

1 + λ+ κ
2

D−2K(D − 1)
]D/2 − 1 = κ

2
D−2K(D − 1)

[
1 + λ+ κ

2
D−2K(D − 1)

]D/2−1
. (A.14)

A simple algebraic manipulation yields

1 = (1 + λ)
[
1 + λ+ κ

2
D−2K(D − 1)

]D/2−1
. (A.15)

Thus, since we have assumed λ > −1, this equation has always one solution:

K =
1

κ
2

D−2 (D − 1)

[
(1 + λ)−2/(D−2) − (1 + λ)

]
. (A.16)

Now we can compute the parameters a, b, c and e. From (2.29) we get

e =
1

4κ
(1 + λ)−D/2 , (A.17)

where we already evaluated the expression on the background. On the other hand, the
second derivative of L(K, α) with respect to α evaluated at α = 0 yields

1

4χ(χ− 1)

∂2L
∂α2

∣∣∣
α=0

=
1

16
κ

4−D
D−2 (χ− 1)(χ− 2)(1 + λ)

−D
2−2D−4
2(D−2) , (A.18)

where we have also made use of (A.16). Now, comparing this expression with (2.30), we
find the values of the parameters, namely

a = 0, b =
1

16
κ

4−D
D−2 (1 + λ)

−D
2−2D−4
2(D−2) , c = −1

8
κ

4−D
D−2 (1 + λ)

−D
2−2D−4
2(D−2) . (A.19)

Finally, using (2.36)-(2.38) we can compute the physical parameters κeff, ms and mg

κeff = κ(1 + λ)D/2 , m2
s = 2(1 + λ)κ

2
2−D , m2

g = 2(1 + λ)−2/(D−2)κ
2

2−D . (A.20)

Therefore, we have completely characterized the linearized spectrum of this Born-Infeld
model. Since we assumed that λ > −1, all quantities are finite and real, and everything is
well-defined. For D > 2, the background (A.16) is dS (K > 0) when λ < 0, AdS (K < 0)
when λ > 0 and flat when λ = 0. In all cases we have, apart from the massless graviton,
a massive scalar and a massive spin-2 graviton. The masses squared and the effective
gravitational constant are always positive.

287



Appendix A. Linearized L(Riemann) theories

A.2 Classification of theories: examples

In this appendix we provide numerous examples of the different classes of theories charac-
terized in section 2.2.

Theories without massive graviton

In this appendix we will study general f(Lovelock) theories, which are a paradigmatic
example of theories which only propagate the usual massless graviton plus the scalar at
the linearized level [94].

f(Lovelock) gravities

The most general f(Lovelock) action can be written as

S =

∫
M
dDx

√
|g|f(X2,X4, . . . ,X2bD/2c) , (A.21)

where f is some differentiable function of the dimensionally-extended Euler densities2

X2k ≡
1

2k
δµ1ν1...µkνk
α1β1...αkβk

Rµ1ν1
α1β1 · · ·Rµkνk

αkβk , (A.22)

where the generalized Kronecker symbol is defined as δµ1ν1...µkνk
α1β1...αkβk

≡ (2k)!δ
[µ1
α1 δ

ν1
β1
· · · δµkαkδ

νk]
βk

.
Note that the first two densities are nothing but the Einstein-Hilbert term, X2 = R and
Gauss-Bonnet gravity, X4 = R2 − 4RµνR

µν + RµνρσR
µνρσ. A corollary from the results

presented in section 2.3.2 is that f(Lovelock) theories inherit the property of Lovelock
gravities of not propagating the massive graviton3. This means that the linearized equa-
tions of motion for f(Lovelock) gravities should not involve the �̄GLµν term. This is indeed
the case. In particular, they read [94]

ELµν = αGLµν +K β ḡµνRL +
β

D − 1

(
ḡµν2̄− ∇̄ν∇̄µ

)
RL = 0 , (A.23)

where α and β are the following constants4

α ≡
bD/2c∑
k=1

∂kf(X̄ )
k(D − 3)!

(D − 2k − 1)!
Kk−1 , (A.24)

β ≡
bD/2c∑
k,l=1

∂k∂lf(X̄ )
kl(D − 2)!(D − 1)!

(D − 2k)!(D − 2l)!
Kk+l−2 . (A.25)

Here ∂lf(X̄ ) means that we should take a formal derivative of f with respect to the
corresponding dimensionally-extended Euler density, and then evaluate the result in the

2Namely, Lk becomes the Euler density when evaluated for a 2k-dimensional manifold.
3In appendix A.3 we show how the linearized equations of f(R) can be obtained from those of Einstein

gravity. The procedure can be naturally applied as well to f(Lovelock) theories starting from Lovelock,
and the results will match the ones presented in this appendix.

4Note that bD/2c stands for the largest integer smaller or equal to D/2.

288



Appendix A. Linearized L(Riemann) theories

background. Comparing with the linearized equations (2.65), we see that α determines the
effective Einstein constant Geff and β is related to the mass of the scalar field

Geff =
1

16πα
, m2

s =
D − 2− 2βDK

2β
. (A.26)

Note that for β = 0 the scalar mode is also absent, and the only physical field is the
massless graviton. This applies e.g., to pure Lovelock gravities, but also to other non-
trivial theories [94] — some of which we review in the last epigraph of this section. The
parameters a, b, c and e are given by

a = −1

2
c = − α− 2e

4(D − 3)K
, b =

β

4(D − 1)
− α− 2e

8(D − 3)K
, e =

f(X̄ )

4K(D − 1)
, (A.27)

and the background embedding equation (2.17) reads in turn

f(X̄ ) =

bD/2c∑
k=1

2k(D − 1)!

(D − 2k)!
Kk∂kf(X̄ ) . (A.28)

An interesting subclass we shall not consider here is that of Lovelock-Chern-Simons theory
[205,439], which is a particular case of the Lovelock theory. This is most naturally defined
in general dimensions in terms of the tetrad and the spin connection. Their corresponding
equations are first order, and when the torsion is set to zero, the metric field equations
become second order, and the theory is a particular case of the Lovelock action considered
in this thesis, i.e., with a metric-compatible connection. In the latter case, the degrees of
freedom propagated by the theory on a msb are of course the D(D − 3)/2 of the usual
massless graviton. Interestingly, if the torsionless condition is relaxed, the number of
dynamical degrees of freedom is in fact greater — see e.g., [440].

Theories without dynamical scalar

Conformal gravity

In the case of quadratic gravity, the most general theory which does not propagate a scalar
field is [441]

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R+ β

(
R2 − 4(D − 1)

D
RµνR

µν
)

+ γX4

}
, (A.29)

where X4 is again the Gauss-Bonnet term and β and γ are dimensionful constants. Observe
that for D = 3, this action is equivalent to new massive gravity [442]. There are two
different interesting ways of writing this theory in terms of other well-known curvature
tensors. Firstly, it was observed in [443] that the contraction of the Einstein tensor Gµν
with the Schouten tensor5 Sµν is proportional to the curvature invariant in (A.29) that

5The Schouten tensor is defined as Sµν ≡ 1
D−2

(
Rµν − 1

2(D−1)
Rgµν

)
.
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multiplies β

GµνS
µν = − D

4(D − 2)(D − 1)

(
R2 − 4(D − 1)

D
RµνR

µν

)
. (A.30)

Therefore, by rescaling β we see that the theory is equivalent to

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R+ β̄GµνS

µν + γX4

}
. (A.31)

Secondly, it turns out that the quadratic part of (A.29) is equivalent to the higher dimen-
sional version of conformal gravity, consisting of the square of the Weyl tensor, together
with a Gauss-Bonnet term. The square of the Weyl tensor is in fact equal to6

CµνρσC
µνρσ = X4 −

D(D − 3)

(D − 2)(D − 1)

(
R2 − 4(D − 1)

D
RµνR

µν

)
. (A.32)

By using this relation and redefining the couplings, the theory can be written as

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R+ β̃CµνρσC

µνρσ + γ̃X4

}
. (A.33)

Thus, we observe that conformal gravity in any dimension is free of the scalar mode,
and only propagates the two gravitons. Finally, for this theory the effective gravitational
constant and the mass of the extra graviton read respectively

Geff =
G

1− 2K(D − 3)(2β̃ − γ̃(D − 4))
, (A.34)

m2
g =

2−D + 2K(D − 3)(D − 2)(2β̃ − γ̃(D − 4))

4β̃(D − 3)
. (A.35)

If the numerator of (A.35) becomes zero, then the extra graviton is massless. This partic-
ular case will be analyzed in the epigraph on critical gravities. Note finally that in D = 3
both the Weyl tensor and the Gauss-Bonnet term vanish identically, so the theory reduces
to Einstein gravity plus cosmological constant.

Theories with two massless gravitons

The following is an example of a theory propagating two massless gravitons in addition to
the scalar field,

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R+ αR2 −D

(
α+

1

8Λ

)
RµνR

µν

}
. (A.36)

Note that them2
g = 0 condition has the unpleasant feature of mixing the couplings of terms

of different order in curvature. In this case, we see that the RµνRµν coupling depends on

6The Weyl tensor is defined as Cµνρσ ≡ Rµνρσ − 2
D−2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+ 2

(D−1)(D−2)
Rgµ[ρgσ]ν .
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Λ. For this theory, the background scale is related to the cosmological constant by

K =
4Λ

D(D − 1)
. (A.37)

In addition, the effective gravitational constant and the mass of the scalar field read

Ĝeff =
2(D − 1)GK

1 + 2KαD(D − 1)
, m2

s = − 4(D − 1)K
D + 2Kα(D − 1)(D − 2)2

. (A.38)

As far as we know, this theory has not been considered before.

Critical gravities

Critical gravity was introduced in [294] as the four-dimensional quadratic theory for which
the extra graviton is massless and the scalar mode is absent. Hence, it is a special case of
the theories considered in the last two epigraphs — (A.29) and (A.36) — in the particular
case of D = 4. The following action is a generalization of critical gravity to general
dimensions [443]

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R− D2

8Λ(D − 2)2

(
R2 − 4(D − 1)

D
RµνR

µν
)}

. (A.39)

It can be obtained by setting β = −D2/(8Λ(D−2)2) and γ = 0 in (A.29) or, alternatively,
from (A.36) if we put α = −D2/(8Λ(D − 2)2) there. In D = 4, this is the critical theory
considered by [294], and for D = 3, it is equivalent to critical new massive gravity with
a cosmological constant [444]. Furthermore, the effective gravitational constant of this
theory is

Ĝeff = −1

2
(D − 2)2GK , (A.40)

which, assuming G > 0, is only positive for K < 0.

Einstein-like theories

In section 2.4 we already constructed examples of Einstein-like theories in the sense defined
in section 2.2, i.e., theories which only propagate a massless graviton on a msb. However,
the theories considered in that section had the additional property of being defined in
a dimension-independent manner and we coined them Einsteinian. In this appendix we
would like to present some more examples of Einstein-like theories whose definition does
however depend on the spacetime dimension.

Quasi-topological gravity

The first example is Quasi-topological gravity [129–131]. This is a cubic theory which has
the nice property of admitting analytic black hole solutions — which generalize Schwarzschild-
AdS and its Gauss-Bonnet generalization [445]. It consists of a combination of all Lovelock
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gravities up to cubic order plus an additional “Quasi-topological" term:

S =
1

16πG

∫
M
dDx

√
|g| {−2Λ +R+ αX4 + βX6 + γZD} . (A.41)

Here the cubic Lovelock term is given by

X6 ≡− 8R ρ σ
µ ν R

δ γ
ρ σ R

µ ν
δ γ + 4R ρσ

µν R δγ
ρσ R µν

δγ − 24RµνρσR
µνρ
δR

σδ

+ 3RµνρσR
µνρσR+ 24RµνρσR

µρRνσ + 16R ν
µ R

ρ
ν R

µ
ρ − 12RµνR

µνR+R3 ,
(A.42)

and the Quasi-topological one in general dimensions reads in turn [129,130]

ZD ≡R ρ σ
µ ν R

δ γ
ρ σ R

µ ν
δ γ +

1

(2D − 3)(D − 4)

(
− 3(D − 2)RµνρσR

µνρ
δR

σδ

+
3(3D − 8)

8
RµνρσR

µνρσR+ 3DRµνρσR
µρRνσ

+ 6(D − 2)R ν
µ R

ρ
ν R

µ
ρ −

3(3D − 4)

2
RµνR

µνR+
3D

8
R3
)
.

(A.43)

The physical quantities for (A.41) read

Geff =
G

f(α, β, γ,K)
, ms = +∞ , mg = +∞ , (A.44)

where

f(α, β, γ,K) ≡+ 1 + 2Kα(D − 4)(D − 3)

+ 3K2β(D − 6)(D − 5)(D − 4)(D − 3)

+
3(D − 6)(D − 3)

8(2D − 3)
K2γ(16 + 3D(D − 5)) .

Hence, as explained in [129], this theory shares the linearized spectrum of Einstein gravity.
Let us close this section by mentioning that a quartic version of quartictopological gravity
was constructed in [132]. It would be interesting to use our results in section 2.3 to check
that such theory also presents an Einstein-like spectrum. More recently, a quintic version
was constructed [133], and in that case the linearization method presented in Sec. 2.1 was
used to show that the theory has Einstein-like spectrum.

Special f(Lovelock) theories

The second example we would like to consider corresponds to a particular family of
f(Lovelock) gravities. As we explained before, all f(Lovelock) theories are free of the
massive graviton, but do in general propagate the extra scalar. However, as pointed out
in [94] it is possible to construct non-trivial theories — i.e., different from the pure Love-
lock case — which are also free of the extra scalar and hence share the linearized spectrum
of Einstein gravity.

Indeed, whenever β, as defined in (A.25), vanishes, the mass of the scalar diverges
— which is obvious from (A.26). This is achieved whenever ∂k∂lf(L̄) = 0 for all k, l, which
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leaves us with nothing but the usual Lovelock theory or, alternatively, if

bD/2c∑
k,l=1

∂k∂lf(L̄)
kl(D − 2)!(D − 1)!

(D − 2k)!(D − 2l)!
Kk+l−2 = 0 , ∂k∂lf(L̄) 6= 0 , (A.45)

for some k, l. This equation is e.g., satisfied by all theories of the form [94]

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R+ λ

(
RuLs2 − γR2s+u

)}
, (A.46)

where γ is the dimension-dependent constant

γ ≡ u2 + 4(s− 1)s+ u(4s− 1)

(u+ 2s)(u+ 2s− 1)

(D − 2)s(D − 3)s

Ds(D − 1)s
, (A.47)

for any u, s ≥ 0. In particular, for s = u = 1 one finds the cubic class of theories

S =
1

16πG

∫
M
dDx

√
|g|
{
−2Λ +R+ λ

[
RL2 −

(
2(D − 2)(D − 3)

3D(D − 1)

)
R3

]}
. (A.48)

The D = 4 case of (A.48) was also considered in [298] in a slightly different context. The
effective gravitational constant of (A.48) reads

Geff =
G

1 + (D − 6)(D − 3)(D − 1)DλK2
. (A.49)

A.3 f(scalars) theories: examples

Let us now illustrate how the expressions obtained in section 2.3.2 can be used to easily
compute the values of a, b, c and e for theories consisting of functions of invariants, as long
as we know the values of those parameters for the invariants themselves.

f(R) gravity

Let us first consider f(R) gravity, whose Lagrangian in general dimensions we write as

S =

∫
M
dDx

√
|g|f(R) . (A.50)

According to table 2.2, for R we have a = b = c = 0, e = 1
2 and R̄ = D(D−1)K. Therefore,

using the transformation rules (2.95) for the theory above we have

a = c = 0 , b =
1

4
f ′′(R̄) , e =

1

2
f ′(R̄) . (A.51)

Note that these expressions can also be easily obtained from the general f(Lovelock) ones
(A.27). Also, according to (2.17) the background curvatureK is determined by the equation

f(R̄) = 2(D − 1)Kf ′(R̄) . (A.52)
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If f ′′(R̄) 6= 0, we have a scalar mode with mass

m2
s =

(D − 2)f ′(R̄)− 2R̄f ′′(R̄)

2(D − 1)f ′′(R̄)
. (A.53)

The effective gravitational constant is in turn given by

Geff =
G

f ′(R̄)
. (A.54)

f(R,R2
µν , R

2
µνρσ) gravity

Let us now study all theories that can be constructed as functions of invariants up to
quadratic order [446]. The independent scalars are R, Q ≡ RµνRµν , and K ≡ RµνρσRµνρσ,
so let us consider an action of the form

S =

∫
M
dDx

√
|g|f(R,Q,K) . (A.55)

This theory includes, as particular cases, f(R) and general quadratic gravities. In or-
der to simplify the following expressions, let us write R ≡ (R,Q,K). Evaluated on the
background, the invariants read

R̄ =
(
D(D − 1)K, D(D − 1)2K2, 2D(D − 1)K2

)
. (A.56)

Then, the background embedding equation (2.17) can be written in terms of these back-
ground scalars R̄, Q̄, K̄ as

R̄∂Rf(R̄) + 2Q̄∂Qf(R̄) + 2K̄∂Kf(R̄) =
D

2
f(R̄) , (A.57)

which, in particular, generalizes (A.52) for this theory. Finally, the parameters a, b, c and
e are given by

a = ∂Kf(R̄),

b =
[1

4
∂R∂Rf(R̄) + (D − 1)K∂R∂Qf(R̄) + 2K∂R∂Kf(R̄)

+ (D − 1)2K2∂Q∂Qf(R̄) + 4(D − 1)K2∂Q∂Kf(R̄) + 4K2∂K∂Kf(R̄)
]
,

c =
1

2
∂Qf(R̄),

e =
1

2

[
∂Rf(R̄) + 2(D − 1)K∂Qf(R̄) + 4K∂Kf(R̄)

]
,

(A.58)

from which one can easily obtain the values of Geff , m2
s, m2

g.
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A.4 Einsteinian quartic gravities

Here we provide the explicit expressions for the conditions F (2)
g (αi) = F

(2)
s (αi) = F

(3)
g (βi, D) =

F
(3)
s (βi, D) = F

(4)
g (γi, D) = F

(4)
s (γi, D) = 0 appearing in section 2.4. These read:

F (2)
g (αi) ≡+

1

2
α2 + 2α3 = 0 , (A.59)

F (2)
s (αi) ≡+ 2α1 +

1

2
α2 = 0 , (A.60)

F (3)
g (βi, D) ≡− 3

2
β1 + 12β2 + 2Dβ3 + 2D(D − 1)β4 +

(
D − 3

2

)
β5 (A.61)

+
3

2
(D − 1)β6 +

1

2
D(D − 1)β7 = 0 ,

F (3)
s (βi, D) ≡+

3

2
β1 + 2β3 + 8β4 +

(
D +

1

2

)
β5 +

3

2
(D − 1)β6 (A.62)

+ (D − 1)

(
D

2
+ 4

)
β7 + 6D(D − 1)β8 = 0 ,

F (4)
g (γi, D) ≡+ (4D − 9)γ1 + 2(D + 3)γ2 + (2D − 9)γ3 + 24γ4 + 48γ5 + 8γ6 (A.63)

+ 8D(D − 1)γ7 −
1

2
(D + 3)γ8 + 6(2D − 1)γ9 + (2D2 −D − 3)γ10

− 3

2
D(D − 1)γ11 + 12D(D − 1)γ12 +

(
2D2 +

1

2
D − 3

)
γ13

+
1

2
(3D2 − 8D + 6)γ14 + (2D2 − 3)γ15 + (2D2 +D − 3)γ16

+D(D − 1)(2D − 1)γ17 + 2D2(D − 1)γ18 + 2D2(D − 1)2γ19

+ (D − 1)(2D − 3)γ20 +
1

2
D(D − 1)(2D − 3)γ21 + 3(D − 1)2γ22

+D(D − 1)2γ23 +
3

2
D(D − 1)2γ24 +

1

2
D2(D − 1)2γ25 = 0 .
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F (4)
s (γi, D) ≡+ 7γ1 + 2(D − 1)γ2 + 5γ3 + 8γ6 + 32γ7 +

5

2
(D − 1)γ8 (A.64)

+ 6γ9 + 3(D − 1)γ10 +
3

2
(D2 + 3D − 8)γ11 + 24γ12 +

3

2
(3D − 2)γ13

+
1

2
(3D2 + 4D − 10)γ14 + (4D − 1)γ15 + 5(D − 1)γ16

+ (D + 16)(D − 1)γ17 + 2(D + 6)(D − 1)γ18 + 20D(D − 1)γ19

+ (D − 1)(2D + 1)γ20 +
1

2
(D − 1)(2D2 + 13D − 12)γ21

+ 3(D − 1)2γ22 + (D − 1)2(D + 8)γ23 +
3

2
(D − 1)2(D + 4)γ24

+
1

2
D(D − 1)2(D + 20)γ25 + 12D2(D − 1)2γ26 = 0 .

Solving the last two equations order by order in D gives rise to the constraints which
characterize Einsteinian quartic gravities (2.111).
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B
Redefining the metric

Implementing a differential change of variables directly in the action can be problematic if
one is not careful enough. In order to see this, let us consider the equations of motion of
g̃µν — related to gµν according to gµν = g̃µν + Q̃µν — by computing the variation of the
new action S̃[g̃µν ] = S[gµν ]:1

δS̃

δg̃µν
=

δS

δgµν
+

δS

δgαβ

δQ̃αβ
δg̃µν

∣∣∣∣∣
gµν=g̃µν+Q̃µν

(B.2)

Now, it is clear that we can always solve these equations if

δS

δgµν

∣∣∣∣∣
gµν=g̃µν+Q̃µν

= 0 . (B.3)

In other words, implementing the change of variables directly in the equations of the
original theory produces an equation that solves the equations of S̃. However, the equations
of S̃ contain more solutions. These additional solutions are spurious and appear as a
consequence of increasing the number of derivatives in the action, so they should not be
considered. A possible way to formalize this intuitive argument consists in introducing
auxiliary field so that the redefinition of the metric becomes algebraic. Let us consider the
following action

Sχ =

∫
dD
√
|g|
{
L (gµν , χµνρσ, χα1,µνρσ, χα1α2,µνρσ, . . .) +

∂L
∂χµνρσ

(Rµνρσ − χµνρσ)

+
∂L

∂χα1,µνρσ
(∇α1Rµνρσ − χα1,µνρσ) +

∂L
∂χα1α2,µνρσ

(∇α1∇α2Rµνρσ − χα1α2,µνρσ) + . . .
}
,

(B.4)
where we have introduced some auxiliary fields χµνρσ, χα1,µνρσ, . . .χα1...αn,µνρσ. Let us
convince ourselves that this action is equivalent to (4.1). When we take the variation with

1Note that in the second term we used the chain law for the functional derivative, that in general is
given by

δS

δφ

δφ

δψ
=
δS

δφ

∂φ

∂ψ
− ∂µ

(
δS

δφ

∂φ

∂µψ

)
+ . . . (B.1)
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respect to χα1...αi,µνρσ, we get

∑
j=0

∂2L
∂χα1...αi,µνρσ∂χβ1...βj ,ληγχ

(
∇β1 . . .∇βjRληγχ − χβ1...βj ,ληγχ

)
= 0 . (B.5)

In this way, we get a system of algebraic equations for the variables χα1...αi,µνρσ that always
has the following solution

χµνρσ = Rµνρσ , (B.6)

χα1,µνρσ = ∇α1Rµνρσ , (B.7)

χα1α2,µνρσ = ∇α1∇α2Rµνρσ , (B.8)

. . . (B.9)

If L is a non-degenerate function of the auxiliary variables, this is also the unique solution,
and we will assume that this is the case. When we plug this solution back in the action
we recover (4.1), so that both formulations are equivalent.

Now let us perform the following redefinition of the metric in Sχ:

gµν = g̃µν + Q̃µν , where Q̃µν = Q̃µν

(
g̃αβ, χαβρσ, χα1,αβρσ, . . .

)
, (B.10)

this is, Q̃µν is a symmetric tensor formed from contractions of the χ variables and the
metric, but it contains no derivatives of any field. In this way, the change of variables is
algebraic and can be directly implemented in the action. Therefore, we get

S̃χ [g̃µν , χ] = Sχ

[
g̃µν + Q̃µν , χ

]
, (B.11)

where we are collectively denoting χ to all the auxiliary variables for simplicity. Now, both
actions are equivalent, and so are the field equations:

δS̃χ
δg̃µν

=
δSχ
δgαβ

(
δµαδ

ν
β +

∂Q̃αβ
∂g̃µν

)∣∣∣∣
gµν=g̃µν+Q̃µν

, (B.12)

δS̃χ
δχ

=
δSχ
δχ

+
δSχ
δgµν

∂Q̃µν
∂χ

∣∣∣∣
gµν=g̃µν+Q̃µν

(B.13)

The first equation implies that δSχ
δgµν

= 0, and using this into the second one, we see that
the equations for the auxiliary variables become δSχ/δχ = 0, that of course have the
same solution as before (B.6). When we take that into account, Q̃µν becomes a tensor
constructed from the curvature of the original metric gµν , so that we get

gµν = g̃µν + Q̃µν

(
g̃αβ, Rαβρσ,∇α1Rαβρσ, . . .

)
. (B.14)

Note that this is slightly different to (4.2), because Q̃µν is formed with the curvature tensor
of gµν , but the indices are contracted with g̃µν . Nevertheless, if we work perturbatively,
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we can replace Rαβρσ by R̃αβρσ, and the expression is the same as (4.2).
Now, according to Eq. (B.12), the equation for the metric g̃µν is simply obtained

from the equation of gµν by substituting the change of variables:

δSχ
δgµν

∣∣∣∣
gµν=g̃µν+Q̃µν

= 0 (B.15)

However, note that this is not the same as substituting (B.6) in the action and taking
the variation, which would yield

δS̃χ [g̃µν , χ(g̃µν)]

δg̃µν
=

δS̃χ
δg̃µν

+
δS̃χ
δχ

δχ

δg̃µν
(B.16)

=
δSχ
δgαβ

(
δµαδ

ν
β +

∂Q̃αβ
∂g̃µν

)∣∣∣∣
gµν=g̃µν+Q̃µν

− δSχ
δgαβ

∂Q̃αβ
∂χ

δχ

δg̃µν

∣∣∣∣
gµν=g̃µν+Q̃µν

.

This equation is formally different to (B.12) due to the second term, and it is equivalent
to (B.2). The second term appears because the auxiliary variables χ(g̃µν) do not solve the
equation δS̃χ

δχ = 0, but δSχ
δχ = 0. However, we must solve δS̃χ

δχ = 0 in order to get a solution

of S̃χ [g̃µν , χ], and according to (B.13) this would only happen if δSχ
δgµν

∂Q̃µν
∂χ = 0, so that the

only consistent solutions of (B.16) are those that satisfy (B.15). This explains why the
only solutions of (B.2) that we should consider are the ones that satisfy (B.3).

299



C
Numerical construction of the solutions

In this appendix we explain the numerical procedure which allows us to construct the black
hole solutions analyzed in the main text. The same procedure has been previously used
e.g., in [45,272,278,280]. First, we observe that (5.14) is a stiff differential equation. This is
because the terms involving derivatives of f(r) appear as corrections, and, in particular, the
coefficient that multiplies f ′′ is usually small. Thus, the numerical resolution is problematic
in terms of stability and we need to use, at least, A-stable methods. In our calculations,
we used implicit Runge-Kutta methods, but, of course, other methods with larger stability
regions can be used as well. Once we have an appropriate numerical method, (5.14) can
be solved by imposing the boundary conditions explained in the text.

In principle, we should start the solution at the horizon r = rh, where we know rh
and a1 = f ′(rh) in terms of the mass and the solution is specified once we choose a value of
a2 = f ′′(rh)/2, as explained in the main text. In practice, the numerical method cannot be
started at rh, since at that point the equation is singular. Instead, we start the solution for
some other value, rh + ε, very close to the horizon (ε� 1). Then, the second-order Taylor
polynomial of f around the horizon can be used to compute f(rh + ε) and f ′(rh + ε). This
yields f(rh + ε) = a1ε + a2ε

2, f ′(rh + ε) = a1 + 2εa2. The numerical resolution can then
be started at rh + ε by using these initial conditions, where the only free parameter is a2.
Then, a2 is chosen by imposing the solution to be asymptotically flat. From the asymptotic
expansion analysis in section 5.2.3, we know that there exists a family of solutions which
are exponentially growing when r → ∞. Almost any choice of a2 will excite this mode
and the solution will not be asymptotically flat. Indeed, we expect that there is a unique
choice of a2 for which the solution is asymptotically flat.

In order to find a2, we use the shooting method to glue the numeric solution with the
asymptotic expansion (5.20). The idea is the following: we first fix a value r∞ sufficiently
large, for which the asymptotic expansion fasympt.(r∞) is a good approximation. Then we
choose a value for a2 and we compute numerically the solution up to r∞, which would yield
a value fnumeric(r∞; a2). The appropriate value of a2 is such that it glues both solutions:
fnumeric(r∞; a2) = fasympt.(r∞). In all the cases analyzed, there is a unique value of a2 for
which this happens, and it must be chosen with great precision. In practice, it is difficult to
extend the numeric solution to very large r, since the equation becomes more and more stiff,
but it is always easy to compute the numeric solution up to a value for which it overlaps
with the asymptotic expansion. Once a2 has been determined, the interior solution r < rh
can also be computed by starting the numeric method at rh−ε. In this case, the numerical
resolution offers no problems.

Once a value of µL1/4 has been chosen, we can compute rh and a1 as functions of the
mass using (5.33) and (5.34). Equivalently, a2 will also be a function of the mass, although

301



Appendix C. Numerical construction of the solutions

we do not know it explicitly. Applying the previous method to various values of M , we
can find the corresponding values of a2. In Fig. C.1, we show a2(M) constructed from the
interpolation of discrete values. As we can see, in the limit M >> L/G, we recover the
Schwarzschild value a2 = −(2GM)−2. On the other hand, its is possible to prove that

lim
M→0

a2 = lim
M→0

a1

2rh
=

1√
3µL2

, (C.1)

which is in fact valid for arbitrary values of µ. Finding an explicit expression for a2(M) (or
at least a more efficient way of computing it for different values of the couplings) would be
of interest, in particular in order to perform additional studies of the solutions presented
here e.g., in the contexts of holography or gravitational phenomenology, e.g., along the
lines of [119–122, 129, 131, 227, 447, 448] and [449], respectively. In this respect, let us
mention that an improvement with respect to the numerical scheme that we used here
was presented in [282], where ECG solutions were constructed using a continuous fraction
approach [450,451].

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4

Figure C.1: We plot a2 as a function of the mass (interpolation) for µ = 4/3 and for the
Schwarzschild solution, a2 = −(2GM)−2.
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D
General formulas for D = 4 GQG theories

D.1 (A)dS asymptotes and general horizon geometries

In the main text we have focused on static, spherically symmetric and asymptotically flat
solutions. Our results can be easily extended to (A)dS asymptotes as well as to planar or
hyperbolic horizon geometries. In particular (6.3) can be generalized to

S =
1

16πG

∫
d4x
√
|g|

[
R− 2Λ +

∞∑
n=2

L2n−2λnR(n)

]
, (D.1)

We can search for solutions of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΣ2

(k) , (D.2)

where dΣ2
(k) is the metric of a 2-dimensional maximally symmetric space of curvature

k = 1, 0,−1, i.e., , the metric of the unit sphere, flat space or hyperbolic space. The
generalized version of the equation which determines the metric function f(r) then reads
(note that M is no longer the mass in the planar and hyperbolic cases):

− (f − k)r − L4
∞∑
n=3

n(n− 1)λn
8

(
L2f ′

2r

)n−3
[
f ′3

n
+

(n− 3)f + 2k

(n− 1)r
f ′2 − 2

r2
f(f − k)f ′

(D.3)

− 1

r
ff ′′

(
f ′r − 2(f − k)

) ]
= 2GM +

1

3
Λr3 . (D.4)

The generalized versions of equations (6.19) and (6.20) read

2GM =− 1

3
Λr3

h + krh − rh
∞∑
n=3

λn

(
2πTL2

rh

)n−1

(kn+ (n− 1)2πTrh) , (D.5)

k − r2
hΛ =4πTrh +

∞∑
n=3

λn

(
2πTL2

rh

)n−1

(kn+ (n− 3)2πTrh). (D.6)

Wald’s entropy reads in turn

303



Appendix D. General formulas for D = 4 GQG theories

S =
Vkr

2
h

4G

[
1−

∞∑
n=3

nλn

(
2πTL2

rh

)n−1(
k(n− 1)

(n− 2)2πTrh
+ 1

)]
+ 2πkλ2

L2

G
, (D.7)

where Vk is the volume of the transverse space with metric dΣ2
(k). We note that M is not

actually the mass if k 6= 1, but the energy density in every case is ρ = E/Vk = M/(4π).
In the same way, we define the entropy density s = S/Vk. Then, the equations above can
be solved parametrically in terms of χ = 2πTL2/rh as follows

rh = L

[
kh′(χ)

3h(χ)− χh′(χ)

]1/2

, (D.8)

T =
χrh

2πL2
=

χ

2πL

[
kh′(χ)

3h(χ)− χh′(χ)

]1/2

, (D.9)

ρ =
r3
h

4πGL2
h(χ) =

Lh(χ)

4πG

[
kh′(χ)

3h(χ)− χh′(χ)

]3/2

, (D.10)

s =
1

4G

[
h′(χ)r2

h + kL2

∫ χ

χ2

dx
h′′(x)

x

]
(D.11)

=
kL2

4G

[
h′2(χ)

3h(χ)− χh′(χ)
+

∫ χ

χ2

dx
h′′(x)

x

]
,

where

h(x) :=
L2Λ

3
+ x−

∞∑
n=3

λnx
n . (D.12)

D.2 Linearized equations

We can obtain the embedding equation of a maximally symmetric background of curvature
K by plugging f(r) = k −Kr2 in (D.4) with M = 0. Then we get the equation

h
(
−L2K

)
= 0 (D.13)

which determines the possible vacua of the theory. For any of them, we know that the
theory only propagates a massless graviton, due to the results in Chapter 3 [272].1 Thus,
the linearized equations satisfied by a metric perturbation hµν over a maximally symmetric
background ḡµν , read simply

GLµν = 8πGeffTµν , (D.14)

1We have verified this explicitly for all densities in Eqs. (3.74)-(3.81).
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Appendix D. General formulas for D = 4 GQG theories

where GLµν is the linearized Einstein tensor, given in Eq. (2.24), and where the effective
gravitational constant Geff reads

Geff =
G

h′ (−L2K)
. (D.15)

Observe that, for theories with Einstein-like spectrum, this can be generically obtained by
using the fact that G/Geff is the slope of Eq. (D.13) evaluated on the background [106,271].
Finally, in the transverse gauge, ∇̄µhµν = ∇̄νh, we can write

− 2̄hµν = 16πGeffTµν . (D.16)
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E
Holographic studies of ECG

E.1 〈TTT 〉 parameters from hq

In this appendix we show that the formulas in [359] for the twist operator scaling dimensions
hq around q = 1 can be used to obtain the exact values of the parameters t2 and t4 for
holographic Gauss-Bonnet in general dimensions, and for QTG in d = 4. The general-d
version of (7.128) reads [359]

hq
CT

= 2π
d
2

+1 Γ(d/2)

Γ(d+ 2)
(q − 1) +

h′′q (1)

2CT
(q − 1)2 +O(q − 1)3 , (E.1)

where

h′′q (1)

CT
=− 2π1+d/2Γ(d/2)

(d− 1)3d(d+ 1)Γ(d+ 3)

[
d
(
2d5 − 9d3 + 2d2 + 7d− 2

)
+ (d− 2)(d− 3)(d+ 1)(d+ 2)(2d− 1)t2 + (d− 2)(7d3 − 19d2 − 8d+ 8)t4

]
.

(E.2)
This expression is valid for general holographic higher-order gravities, at least at leading
order in the gravitational couplings.

E.1.1 Gauss-Bonnet in arbitrary dimensions

In this case, the expression for the scaling dimension of twist operators is given by [230]

hq
CT

=
Γ(d/2)

4Γ(d+ 2)
π1+d/2qxd−4

q (x2
q − 1)

[
d− 3− (d+ 1)x2

q + (d− 3)
1− 2d−1

d−3λf∞

1− 2λf∞
(x2
q − 1)

]
,

(E.3)
where xq satisfies the following quartic equation

x4
qd−

2

q
x3
q − (d− 2)x2

q + λf∞

[
4
xq
q
− x4

qd+ d− 4

]
= 0 . (E.4)

A Taylor expansion around q = 1 gives

xq = 1 +
1

1− d
(q − 1) +

d

(d− 1)3

−2d+ 3 + λf∞(4d− 10)

−2 + 4λf∞
(q − 1)2 +O(q − 1)3 . (E.5)
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Plugging this expansion into (E.3), we find

hq
CT

=
2Γ(d/2)π1+d/2

Γ(d+ 2)
(q − 1) (E.6)

− (d− 1)Γ(d/2)π1+d/2

Γ(d+ 2)

[
−1 + 4d− 2d2 + λf∞(6− 16d+ 4d2)

]
(q − 1)2 +O(q − 1)3 .

Comparing this with (E.1), we find that t2 and t4 should be given by

t2 =
4d(d− 1)λf∞

(d− 2)(d− 3)(1− 2λf∞)
, t4 = 0 , (E.7)

which matches the exact nonperturbative result [121].

E.1.2 Quasi-topological gravity

In this case, the scaling dimension hq was obtained in [230] in terms of the charges a, c
and t4 of the theory as

hq =
aq

4πx2
q

(x2
q − 1)

[
x4
q

(
1− 5

c

a
− 10

c

a
t4

)
− x2

q

(
1− c

a
− 8

c

a
t4

)
+ 2

c

a
t4

]
, (E.8)

where

c = π2 L̃3

8πG

(
1− 2λf∞ − 3µf2

∞
)
, (E.9)

a = π2 L̃3

8πG

(
1− 6λf∞ + 9µf2

∞
)
, (E.10)

t4 =
3780µf2

∞
1− 2λf∞ − 3µf2

∞
, (E.11)

and where xq satisfies the following quartic equation

2x6
q −

x5
q

q
− x4

q + 2λf∞x
3
q

(
1

q
− x3

q

)
+ µf2

∞

(
−1 +

3xq
q
− 2x6

q

)
= 0 . (E.12)

Moreover, we have [131]

t2 =
24f∞ (λ− 87µf∞)

1− 2λf∞ − 3µf2
∞

, (E.13)
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which properly reduces to the Gauss-Bonnet formula (E.7) for µ = 0 and d = 4. Before
computing the Taylor expansion of hq around q = 1, we invert (E.9) and find1

L̃3

8πG
=

a

2π2

(
3
c

a

(
1 +

3t4
1890

)
− 1

)
, (E.14)

λf∞ =
1

2

c
a

(
1 + 6t4

1890

)
− 1

3 ca(1 + 3t4
1890)− 1

, (E.15)

µf2
∞ =

c
a

t4
1890

3 ca
(
1 + 3t4

1890

)
− 1

. (E.16)

and rewrite (E.12) in terms of c/a and t4. We get

xq(q) = 1− q − 1

3
+

4 + 8t4
1890 −

2
3
a
c

9
(q − 1)2 +O(q − 1)3 , (E.17)

and plugging it into (E.8), we find

hq
c

=
2

3π
(q − 1) +

7ac − 24− 84t4
1890

27π
(q − 1)2 +O(q − 1)3 . (E.18)

Comparing the leading term, we notice that CT should be related to c via CT
c = 40

π4 , which
is correct. Finally, using

a

c
= 1− t2

6
− 4

45
t4 , (E.19)

we find

h′′q (1)

2CT
= −π3 102 + 7t2 + 4t4

6480
, (E.20)

which exactly agrees with the general formula (E.2) when we particularize it to d = 4.

E.2 Generalized action for Gauss-Bonnet gravity

In this appendix we perform an additional check of the generalized action introduced in
section 7.4. In particular, we apply it here to a theory for which the exact generalization
of the GHY term is known, namely, D-dimensional Gauss-Bonnet gravity [88,89]. The full
Euclidean action of the theory reads

IGB
E = − 1

16πG

∫
M
dDx
√
g

[
(D − 1)(D − 2)

L2
+R+

L2λ

(D − 3)(D − 4)
X4

]
+ IGB

GHY + IGB
CT ,

(E.21)

1There seems to be a small typo in eq. (2.58) of [230]. Note also that our convention for t4 differs by a
factor of 1890 with respect to that in [230], but agrees with the one in [131].
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where the generalization of the GHY term reads

IGB
GHY = − 1

8πG

∫
∂M

dD−1x
√
h

{
K +

L2λ

(D − 3)(D − 4)
δa1a2a3
b1b2b3

Kb1
a1

(
Rb2b3a2a3

− 2

3
Kb2
a2
Kb3
a3

)}
,

(E.22)
and the counterterms can be chosen as [178,342–345]

IGB
CT =

1

8πG

∫
∂M

dD−1x
√
h

{
(D − 2)(f∞ + 2)

3f
1/2
∞ L

+
L(3f∞ − 2)

2f
3/2
∞ (D − 3)

R+
L3Θ[D − 6]

2f
5/2
∞ (D − 3)2(D − 5)

×
[
(2− f∞)

(
RabRab −

D − 1

4(D − 2)
R2

)
− (D − 3)(1− f∞)

D − 4
X4(h)

]
+ . . .

}
. (E.23)

With these boundary contributions, the Gauss-Bonnet action functional is differentiable
and finite in AdS spaces. Since Gauss-Bonnet gravity has an Einstein-like spectrum in
pure AdSD (in fact, in any background), our generalized GHY term should also be appli-
cable to GB gravity, as long as the boundary consists only of asymptotically AdS pieces.
The prescription in (7.38) gives the following result when applied to the Gauss-Bonnet
Lagrangian,

IGB
GGHY + IGB

GCT = −
1− 2λf∞

D−2
D−4

8πG

∫
∂M

dD−1x
√
h

[
K − D − 2

L̃
− L̃

2(D − 3)
R

− L̃3Θ[D − 6]

2(D − 3)2(D − 5)

(
RabRab −

D − 1

4(D − 2)
R2

)
+ . . .

]
,

(E.24)

where we included a set of counterterms valid up to D = 7 and where L̃ = L/
√
f∞. Recall

that the coefficient in front of the integral is proportional to the universal constant a∗

appearing in the EE across a spherical region, which for GB gravity reads

a∗ =

(
1− 2λf∞

d− 1

d− 3

)
L̃d−1Ω(d−1)

16πG
. (E.25)

In order to compare both boundary terms, let us consider a metric of the form

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2dΣ2

k , (E.26)

where dΣ2
k is the metric of a maximally symmetric space of curvature k = −1, 0, 1 and

τ has period β. For f(r) = f∞r
2/L2 + k, the previous metric reduces to pure Euclidean

AdSD, with the boundary at r = +∞, which we regulate as r → L2/δ. Let us now switch
on arbitrary radial perturbations

f(r) = f∞
r2

L2
+ k +

f1

r
+
f2

r2
+
f3

r3
+ . . . . (E.27)
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Evaluated at r → L2/δ, the boundary terms coming from both prescriptions yield, respec-
tively

IGB
GHY+CT =

βπ

4G

[
(5f∞ − 6)L6

δ4
+
f1(5f∞ − 6)L2

f∞δ
+

(5f∞ − 6)
(
4f2f∞ − 3L2k2

)
8f2
∞

+O(δ2)

]
,

IGB
GGHY+GCT =

βπ

4G

[
(5f∞ − 6)L6

δ4
+
f1(5f∞ − 6)L2

f∞δ
+

(5f∞ − 6)
(
4f2f∞ − 3L2k2

)
8f2
∞

+O′(δ2)

]
.

This is, all divergent and finite terms are equal! The difference only appears in the decaying
terms, which of course give no contribution to the action. For the sake of simplicity, we
evaluated the above expressions for D = 5, but it is straightforward to check that the same
phenomenon happens in higher dimensions (with the expressions above we have checked
D = 6, 7). Therefore, at least from a practical point of view, our generalized boundary
term is as good as the Gauss-Bonnet one when applied to asymptotically AdS spaces. We
expect our method to work also for general Lovelock gravities, as well as for QTG, and the
rest of theories belonging to the Einstein-like class in the classification of [106].

E.3 Boundary terms in the two-point function

In this appendix we evaluate explicitly the boundary contribution in (7.51) for the metric
perturbation considered in section 7.5. The sum of all boundary contributions appearing
in (7.64), which includes the one coming from IECG

E Bulk in (7.58), as well as the generalized
GHY term and the counterterms in (7.51), reads

IECG
E bdry = − 1

8πG

∫
d3x

[
1

2
Γr + (1 + 3µf2

∞)
√
h

(
K − 2

√
f∞
L
− L

2
√
f∞
R
)]

, (E.28)

where Γr comes from integration by parts in the bulk action, and is given by

Γr =
1√
f∞

[
− 2(4f∞ − 3)r3

L4
+

4f∞ − 3

L4

(
2r4φ∂rφ+ r3φ2

)
+

(f∞ − 1)r5

L4
(∂rφ)2 (E.29)

+ 6µf2
∞

(
−r

2
(∂τφ)2 + r2∂rφ∂

2
τφ
)]

. (E.30)

The rest are the boundary terms in the action (7.51). The induced metric on a hypersurface
of fixed r is

(3)ds2 =
r2

L2

(
dτ2 + dx2 + dy2 + 2dxdyφ(r, τ)

)
. (E.31)

At quadratic order in φ we have

√
h =

r3

L3

(
1− 1

2
φ2

)
, R =

L2

2r2

(
3(∂τφ)2 + 4φ∂2

τφ
)
, K =

3
√
f∞
L
− r
√
f∞
L

φ∂rφ .

(E.32)
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Then, we obtain at that order

IECG
E bdry =

1

8πG

∫
d3x

[
3r3

L4
√
f∞

(1− f∞ + µf3
∞)

(
−1 +

φ2

2
+ rφ∂rφ

)
− 3(f∞ − 1)r5

2
√
f∞L4

(∂rφ)2

+
r√
f∞

(
(1 + 3µf2

∞)

(
3

4
(∂τφ)2 + φ∂2

τφ

)
+

3µ

2
f2
∞(∂τφ)2

)
− 3µf3/2

∞ r2∂rφ∂
2
τφ

]
.

(E.33)
The first term vanishes because 1−f∞+µf3

∞ = 0 is precisely the AdS4 embedding equation
(7.4). Now it proves useful to perform the Fourier transformation of φ:

φ(r, τ) =
1

2π

∫
dpφ0(p)eipτHp(r) , (E.34)

with Hp(r) = e
− L2|p|√

f∞r
(

1 + L2|p|√
f∞r

)
. Then,

IECG
E bdry =

VR2

16π2G

∫
dpdqδ(q + p)φ0(p)φ0(q)

[
− 3(f∞ − 1)r5

2
√
f∞L4

(∂rHp)
2

+
rH2

p√
f∞

(
(1 + 3µf2

∞)

(
−3

4
pq − q2

)
− 3µ

2
f2
∞pq

)
+ 3µq2f3/2

∞ r2Hq∂rHp

]
.

(E.35)
Now, since ∂rHp ∼ 1/r3 , the first and last terms vanish for r → ∞. Then, we are left
with the final result

IECG
E bdry = −VR2(1− 3µf2

∞)

64π2G
√
f∞

∫
dpdqδ(q + p)φ0(p)φ0(q)p2rH2

p (r) , (E.36)

which appears in the main text.

E.4 Generalization to higher orders

The results in Chapter 7 can be generalized for all the theories in (6.3),

L(gµν , Rµνρσ) =
1

16πG

[
6

L2
+R+

∞∑
n=2

L2n−2λnR(n)

]
. (E.37)

Let us briefly study several holographic aspects of this theory — they will be of vital
importance in Chapter 9. First, let us introduce the function

h(x) ≡ 16πGL2

6

[
L(x)− x

2
L′(x)

]
= 0 , (E.38)
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where L(x) is the on-shell Lagrangian on pure AdS4 with radius L/
√
x. For the Lagrangian

above, this function reads explicitly

h(x) = 1− x+
∞∑
n=3

λnx
n . (E.39)

Then, according to the results of Chapter 2 — see equation (2.17) —, the possible
AdS vacua of the theory have a radius L̃ = L/

√
f∞, where f∞ is a positive solution of the

equation h(f∞) = 0. In this way, the roots of h(x) represent the AdS vacua, and this is a
general property of any higher-derivative gravity, not only of (E.37). Now, once a vacuum
is chosen we can compute the effective Newton’s constant. For any Einstein-like theory we
know that Geff can be again computed in terms of h (see (2.88)),2

Geff = − G

h′(f∞)
. (E.40)

But we have learned in this chapter that the effective Newton’s constant is essentially what
determines the central charge of the 2-point function, CT .

CT = −h′(f∞)
3

π3

L̃2

G
. (E.41)

This result applies, in particular, to the theories (E.37), since they are Einstein-like. Fur-
thermore, they have the additional advantage of allowing for simple black hole solutions
whose thermodynamic properties can be studied analytically. In fact, we already studied
in Appendix D the black hole solutions of (E.37) for any value of the cosmological constant.
Adapting those results in order to match the conventions of the different metrics in (7.10),
we obtain the general expressions for the radius rh, the temperature T , the total energy E
and the entropy S,

rh = L

[
kh′(χ)

3h(χ)− χh′(χ)

]1/2

, (E.42)

T =
Nχ

2πL

[
kh′(χ)

3h(χ)− χh′(χ)

]1/2

, (E.43)

E = −VΣNh(χ)

4πGL

[
kh′(χ)

3h(χ)− χh′(χ)

]3/2

, (E.44)

S = −kVΣ

4G

[
h′2(χ)

3h(χ)− χh′(χ)
+

∫ χ

χ2

dx
h′′(x)

x

]
, (E.45)

and from these one can also get the free energy as F = E − TS. These quantities are
expressed parametrically in terms of χ, and by taking values of that variable we generate
the different curves such as S(E), rh(E), S(T ), etc. We do not intend to perform here
a detailed characterization of these relations, but they can be used in order to obtain a
general formula for the 3-point function charge t4, using the formulas (E.1) and (E.2) found
in [359]. Applying the previous expressions to the case k = −1 (for which N = L̃/R and

2Of course, we must demand h′(f∞) < 0 in order for the vacuum to be physical.
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VΣ = −2πL2), we can write a parametric expression for the scaling dimension of twist
operators,

hq =
L2h(χ)h′(χ)

4Gχ(χh′(χ)− 3h(χ))
, (E.46)

q =

√
f∞
χ

[
h′(χ)

χh′(χ)− 3h(χ)

]−1/2

(E.47)

As a check, for χ = f∞ we get q = 1, h1 = 0. In the same way, all the derivates of hq at
q = 1 are going to be related to derivatives of h(χ) at χ = f∞. For the first and second
derivatives we obtain

h′q(1) = −h
′(f∞)

8f∞G
, (E.48)

h′′q (1) =
14h′(f∞) + 7f∞h

′′(f∞)

64f∞G
. (E.49)

We check that h′q(1) precisely coincides with (E.1) if we take into account (E.41), while
h′′q (1) together with (E.2) yields the following formula for t4

t4 = 210f∞
h′′(f∞)

h′(f∞)
. (E.50)

Since this expression only involves the evaluation of certain quantity on the vacuum, it is
probably correct not only for all of the GQGs in (E.37), but for all of the Einstein-like
theories.
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F
Numerical methods for Taub-NUT solutions

We have presented in our investigation a number of numerical solutions for the NUT and
bolts. Here we provide some details on how these solutions were obtained. The differential
equations solved here are in general stiff, which results in difficulties in the numerical
scheme. All numerical solutions presented in this work were obtained using Mathematica,
utilizing the ImplicitRungeKutta method of NDSolve. This method satisfies A-stability,
making it a suitable method for stiff differential equations. High WorkingPrecision was
used in the numerical solver, ranging between 20 and 50 on a case by case basis.

Let us make some remarks on the details of the numerical scheme, focusing on the
B = CPk bases. The metric function VB(r) was expanded near a NUT or a bolt as

VCPk(ε) =
ε

(k + 1)n
+ a2ε

2 , (F.1)

where ε = (r−n) for the NUTs or ε = (r−rh) for the bolts is taken to be some small, positive
quantity — typically 10−2L−10−3L in this work. The parameter a2 is not fixed by the near
horizon solution, and must be determined via the shooting method. Specifically, for a given
choice of a2, Eq. (F.1) is used to generate initial data for the differential equation, namely
VCPk(ε) and V ′CPk(ε). Finding a numerical solution then reduces to finding a sensible value
of a2.

A generic choice of a2 will lead to the excitation of the growing modes that appear in
the asymptotic expansion of the metric function. The correct choice of a2 will result in a
numerical solution that approaches the 1/r part of the asymptotic expansion at sufficiently
large r. Regardless of the choice of a2, the numerical scheme will eventually breakdown
because of the accumulation of errors due to finite working precision. It is useful to study
the point at which the numerical solution fails as a function of the shooting parameter a2

— an example of this is shown in the left plot of Fig. F.1. This figure makes clear that
there is a special value of a2 that allows the solution to be integrated the furthest. It also
appears that this is the unique value of a2 that joins the numerical solution smoothly onto
the asymptotic expansion — see Fig. F.2.

While with the proper choice of a2 the solution can be visually seen to join onto the
asymptotic expansion smoothly, it is nice to have quantitative confirmation of this. In the
right plot of Fig. F.1 we show a residual that measures how closely the numerical solution
matches the asymptotic expansion in a region where they overlap. The residual shown was
calculated according to

Residual =

∫ rfail

0.9rfail

L
∣∣Vnumeric(r)− V1/r(r)

∣∣
r2

dr , (F.2)
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Figure F.1: Left: A plot of rfail the r value at which the numerical scheme fails vs. the shooting
parameter a2. Right: A plot of the residual as a function of the shooting parameter a2. In both
plots, the dotted line corresponds to a2L

2 = 0.1181855186708097. Both plots are for the case of
NUT solutions in the quartic generalized quasi-topological theory for B = CP2 with ξ = −10,
n/L = 1/3 and ε = 10−2L. A working precision of 40 was used in producing these particular plots.

where again rfail is the point at which the numerical solution breaks down. In performing
this calculation, terms up to O(r−3) where included in the asymptotic expansion. The plot
shows that the error blows up a2L

2 = 0.1181855186708097 is approached from the left,
while it goes to zero when approached from the right. This confirms that the numerical
solution is indeed becoming arbitrarily close to the asymptotic solution, and the asymptotic
solution can be used to continue the solution to infinity.

On the contrary, there are some regions in the parameter space (for example, when
the mass is negative in D = 4) for which we argued that the solutions do not exist due to a
bad asymptotic behaviour. In those cases we are not able to match the numerical solution
with the asymptotic expansion, and this confirms that those solutions do not exist.

Several strategies may be used in order to improve the precision of the numerical
methods. For example, instead of working with the function V (r) one may work with
f(r) = L2V (r)/r2, which should approach the constant f∞ at infinity. Also, more terms
can be included in the expansion (F.1), so that one does not need to choose a very small
ε (we recall that the full expansion depends only on a2). Let us close by mentioning that
the numerical problem is considerably more stiff in D = 6 than in D = 4. In the latter
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Figure F.2: An example of a numeric solution. Here the solid blue curve corresponds to the result
of the numeric integration, while the dotted curve corresponds to the asymptotic expansion. The
plot is for the case of NUT solutions in the quartic Quasi-topological theory for B = CP2 with
ζ = −10, n/L = 1/3, a2L

2 = 0.1181855186708097 and ε = 10−2L. A working precision of 40 was
used in producing this plot.

case we do not require to increase substantially the WorkingPrecision and the parameter
ε can be chosen as small as 10−3L. The numerical integration in D = 6 is less stable and
requires a larger value of ε and higher values of WorkingPrecision.
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G
Free energy of CFTs on squashed spheres

G.1 Explicit checks of formula (9.11)

We have verified that our conjectured formula (9.11) correctly reproduces the free energies
of all Taub-NUT solutions known in the literature, computed using the standard on-shell
action approach. This includes Einstein gravity and Gauss-Bonnet in general dimensions
as well as the recently constructed solutions of Einsteinian cubic gravity and Quartic
Generalized Quasi-topological gravities in d = 3 and d = 5 respectively.

In the case of (d + 1)-dimensional Gauss-Bonnet, the complete Euclidean action,
including the generalized Gibbons-Hawking boundary term [85, 88, 89] and counterterms
[343,344] reads

IGB
E = −

∫
dd+1x

√
g

16πG

[
d(d− 1)

L2
+R+

λGBL
2X4

(d− 2)(d− 3)

]
− 1

8πG

∫
∂
ddy
√
h

[
K+ (G.1)

2L2λGB

(d− 2)(d− 3)

[
J − 2GijKij

] ]
− 1

8πG

∫
∂
ddy
√
h

{
− (d− 1)(f∞ + 2)

3Lf
1/2
∞

− L(3f∞ − 2)Θ[d− 3]

2f
3/2
∞ (d− 2)

R− L3Θ[d− 5]

2f
5/2
∞ (d− 2)2(d− 4)

[
(2− f∞)

(
RijRij −

d

4(d− 1)
R2

)
−(d− 2)(1− f∞)

d− 3
X (h)

4

]
+ · · ·

}
,

where X4 = RµνρσR
µνρσ − 4RµνR

ρσ +R2 is the Gauss-Bonnet density, Kij is the extrinsic
curvature of the boundary with K = hijKij its trace, J = hijJij with

Jij =
1

3

(
2KKikK

k
j +KklK

klKij − 2KikK
klKlj −K2Kij

)
, (G.2)

and Gij is the Einstein tensor of the boundary metric hij . We have also explicitly included
the counterterms that ensure a finite on-shell action for d < 7. The dots stand for additional
contributions that are required in higher-dimensions. Computing the on-shell action of
Taub-NUT solutions in this theory yields

FEGB
Sdε

=
(−1)

(d−1)
2 π

d
2 (1 + ε)

(d+1)
2 d(d− 1)Ld−1

16Γ
[
d+2

2

]
f

(d+1)
2∞ G

[
1− f∞(d+ 1)

(d− 1)(1 + ε)
+

(f∞ − 1)(d+ 1)

(d− 3)(1 + ε)2

]
,

(G.3)
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which is in precise agreement with the result obtained using the conjectured relation-
ship (9.11).

Our next example is ECG plus a quartic generalized quasi-topological term in d = 3.
The Euclidean action with generalized boundary and counterterms reads 1

IE =−
∫
d4x
√
g

16πG

[
6

L2
+R− µL4

8
P − ξL6

16
Q
]

− (1 + 3µf2
∞ + 2ξf3

∞)

8πG

∫
∂
d3x
√
h

[
K − 2

√
f∞
L
− L

2
√
f∞
R
]
,

(G.4)

where

P =12R ρ σ
µ ν R α β

ρ σ R µ ν
α β +R ρσ

µν R αβ
ρσ R µν

αβ − 12RµνρσR
µρRνσ + 8R ν

µ R ρ
ν R

µ
ρ , (G.5)

Q =− 44RµνρσR αβ
µν R γ δ

ρ α Rσγβδ − 5RµνρσR αβ
µν R γδ

ρα Rσβγδ + 5RµνρσR α
µνρ RβγδσR

βγδ
α

+ 24RµνRρσαβR γ
ρ αµRσγβν .

Evaluating the on-shell action for Taub-NUT solutions we find [275]

FS3
ε

= −πL
2(1 + ε)2

Gf2
∞

[
1

2
− f∞

(1 + ε)
− µf3

∞
(1 + ε)3

− ξf4
∞

(1 + ε)4

]
, (G.6)

which matches precisely the results from the conjectured formula (9.11).
As our last example, the Euclidean action with generalized boundary terms for the

quartic generalized quasi-topological theories in d = 5 is given by [275]

IE =−
∫
d6x
√
g

16πG

[
20

L2
+R+

λGBL
2

6
X4 −

ξL6

216
S − ζL6

144
Z
]

− 1− 4λGBf∞ + 8(ξ + ζ)f3
∞

8πG
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∂
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h
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f∞
L
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√
f∞
R− L3

18f
3/2
∞

(
RijRij −

5

16
R2

)]

+
λGBf∞ − 6(ξ + ζ)f3

∞
8πG

L3

18f
3/2
∞

∫
∂
d5x
√
h

(
4RijRij −

5

4
R2 +

3

2
X (h)

4

)
, (G.7)

1Note that here we use the simple method for generating generalized boundary and counterterms in-
troduced in [274]. There it was found that for Einstein-like higher-order gravities a finite on-shell action
for asymptotically AdS spaces is obtained by using the Gibbons-Hawking-York boundary term along with
the counterterms for Einstein gravity all weighted by a∗ — c.f. Eq. (4.19) of that work.
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where X4 is the Gauss-Bonnet density and

S = 992Rµ
ρRµνRν

δRρδ + 28RµνR
µνRρδR

ρδ − 192Rµ
ρRµνRνρR− 108RµνR

µνR2

+ 1008RµνRρδRRµρνδ + 36R2RµνρδR
µνρδ − 2752Rµ

ρRµνRδτRνδρτ + 336RRµ
τ
ρ
γRµνρδRντδγ

− 168RRµν
τγRµνρδRρδτγ − 1920RµνRµ

ρδτRν
γ
δ
ηRργτη + 152RµνR

µνRρδτγR
ρδτγ

+ 960RµνRµ
ρδτRνρ

γηRδτγη − 1504RµνRµ
ρ
ν
δRρ

τγηRδτγη + 352Rµν
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ησRδγησ
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τ
ρ
γRµνρδRν

η
τ
σRδηγσ + 4336Rµν

τγRµνρδRρ
η
τ
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τγRµνρδRρδ
ησRτγησ

− 436Rµνρ
τRµνρδRδ

γησRτγησ + 2216Rµ
τ
ρ
γRµνρδRν

η
δ
σRτηγσ − 56RµνρδR

µνρδRτγησR
τγησ ,

(G.8)

Z = −112Rµ
ρRµνRν

δRρδ − 36RµνR
µνRρδR

ρδ + 18RµνR
µνR2 − 144RµνRρδRRµρνδ

− 9R2RµνρδR
µνρδ + 72RµνRRµ

ρδτRνρδτ + 576Rµ
ρRµνRδτRνδρτ − 400RµνRρδRµρ

τγRνδτγ

+ 48RRµ
τ
ρ
γRµνρδRντδγ + 160Rµ

ρRµνRν
δτγRρδτγ − 992RµνRµ

ρδτRν
γ
δ
ηRργτη

+ 18RµνR
µνRρδτγR

ρδτγ − 8RµνRµ
ρδτRνρ

γηRδτγη + 238Rµν
τγRµνρδRρτ

ησRδγησ

− 376Rµ
τ
ρ
γRµνρδRν

η
τ
σRδηγσ + 1792Rµν

τγRµνρδRρ
η
τ
σRδηγσ − 4Rµν

τγRµνρδRρδ
ησRτγησ

− 284Rµνρ
τRµνρδRδ

γησRτγησ + 320Rµ
τ
ρ
γRµνρδRν

η
δ
σRτηγσ . (G.9)

are two densities belonging to the quartic generalized quasi-topological family of theo-
ries [280]. Computing the on-shell Euclidean action for Taub-NUT solutions of this theory
yields

FS5
ε

=
π2L4(1 + ε)3

Gf3
∞

[
2

3
− f∞

1 + ε
+

2λGBf
2
∞

(1 + ε)2
− 2(ξ + ζ)f4

∞
(1 + ε)4

]
(G.10)

which, again, precisely matches the result obtained using the conjectured relationship (9.11).
Finally, let us note that on-shell Euclidean actions for Taub solutions in Einstein

gravity and Gauss-Bonnet gravity have been previously computed in [388,393]. Our results
agree with those calculations up to an overall factor of 8/9 in d = 5, a factor of 3/4 in
d = 7, and more generally by a factor of

2kk!

(k + 1)k
(G.11)

in d = 2k + 1 dimensions. These factors are precisely the ratio of the volume of a product
of k 2-spheres to the volume of CPk. This discrepancy was observed in [263] in the case
d = 5. Both there and in the present work properly accounting for these factors is impor-
tant for matching the general results expected from field theory considerations, e.g., the
proportionality factor between F ′′S5

ε
(0) and CT . This, combined with our careful analysis

of the computations in [388, 393], gives us confidence that the results presented here are
correct.
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G.2 Free-field calculations

The numerical results for a free (conformally-coupled) scalar field and a free Dirac fermion
used in the main text were presented in [263]. We quickly summarize them here, along
with some further details on the manipulations we performed to produce the curves in Fig.
9.1.

In each case, the corresponding partition functions are given, for a generic back-
ground metric, by

Zs =

∫
Dφ e

− 1
2

∫
d3x
√
g

[
(∂φ)2+Rφ2

8

]
, Z f =

∫
Dψ e−

∫
d3x
√
g[ψ†(i /D)ψ] , (G.12)

where φ and ψ stand, respectively, for a bosonic scalar field and a Dirac fermion. Also,
R stands for the Ricci scalar of gµν and /D is the Dirac operator on the corresponding
background. For a given background geometry M, the free energy of these fields can be
written in a unified way as

FM =
(−1)f

2(f−1)
log det

[
DM/Λ

f
]
. (G.13)

Here, Λ is an energy cutoff, DM stands for the conformal Laplace operator or the Dirac
operator in each case, and f = 1, 2 for the fermion and the scalar respectively. Using a
heat-kernel regulator [403,452], one can write the above expression as

log det
[
DM/Λ

f
]

=
∑
i

∫ ∞
1/Λ2

dt

t
e−tλ

3−f
i , (G.14)

where λi are the eigenvalues of DM. This expression can in turn be split into two parts,
containing UV and IR modes, respectively. Once the UV divergences are conveniently
identified and regularized introducing appropriate counter-terms — something that can be
done numerically in a systematic way, as explained in [263] — one is left with a finite and
unambiguous answer for the free energy, in each case.

Plots of the numerical results obtained for F f
S3
ε
and F s

S3
ε
as functions of the squashing

parameter ε can be found in [263]. Here we would like to make a technical comment about
the procedure followed to obtain the curves appearing in Fig. 9.1. Naturally, the idea is
to plug the numerical results for F f

S3
ε
and F s

S3
ε
into the function T (ε) and identify the value

T (0). In practice, this procedure requires a small treatment of the data near ε = 0. The
issue comes from the fact that T (ε) involves dividing numerical expressions by ε, which
produces divergences very close to ε = 0. For example, we know that, for any CFT, the
ε = 0 limit of −6(FS3

ε
− FS3

0
)/(π4CTε

2) must be equal to one. However, the interpolating
curves we obtain from the numerical data do not exactly account for the divergent piece
in the denominator, which produces a spurious behavior very close to ε = 0. This is
illustrated in Fig. G.1 in the case of the scalar. Luckily, the issue appears only within
a very small neighborhood of ε = 0, and we can safely correct these numerical values
with a simple interpolation without losing any physical information about the tendency
of the function in that region. Taking this into account, the functions T (ε) can be safely
constructed without polluting the numerical data, producing compelling evidence in favor
of our general conjecture in (9.18).
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Appendix G. Free energy of CFTs on squashed spheres
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Figure G.1: We plot −6(FS3ε−FS30)/(π4CTε
2) as a function of ε using the numerical results in [263].

In general, this function must cross the ε = 0 axis at 1, which requires a small treatment (resulting
in the dashed green line) of the numerical data in a small neighborhood of ε = 0.

323



H
Resumen

Las teorías de gravedad de orden superior en curvatura son extensiones de la relativi-
dad general que aparecen como descripciones efectivas de teorías de gravedad cuántica,
tales como la teoría de cuerdas. Mientras que a bajas energías el comportamiento del
campo gravitacional en las teorías de curvatura superior es prácticamente indistinguible
del predicho por relatividad general, las diferencias pueden ser dramáticas en situaciones
de gravedad extrema, como en el caso de los agujeros negros. Por lo tanto, es una tarea
apasionante el estudiar cómo las geometrías de agujero negro son modificadas por las cor-
recciones de curvatura, con la esperanza de que algunas características problemáticas de los
agujeros negros observadas en relatividad general sean mejoradas, indicando así los efectos
de una teoría de gravedad cuántica subyacente. Sin embargo, hay algunas dificultades aso-
ciadas a las teorías de orden superior en derivadas, como la existencia de inestabilidades,
la propagación de “fantasmas”, o simplemente la extremada complejidad de las ecuaciones
diferenciales que rigen la dinámica del campo gravitacional. En esta tesis, identificamos
una nueva familia de gravedades de orden superior en curvatura que son capaces de evitar
algunos de estos problemas. Conocidas como gravedades cuasi-topológicas generalizadas
(Generalized quasi-topological gravity, GQG), tales teorías representan extensiones de rel-
atividad general que están ausentes de inestabilidades y “fantasmas” a nivel lineal, y cuyas
ecuaciones para métricas estáticas y esféricamente simétricas adquieren una forma sufi-
cientemente sencilla que permite el estudio no perturbativo de soluciones de agujero negro.
El miembro no trivial más sencillo de esta clase de teorías (que fue el primero en ser
descubierto), es conocido como Einsteinian cubic gravity (ECG), y jugará un papel pro-
tagonista en esta tesis. Además de sus interesantes propiedades, argumentaremos que las
teorías del tipo GQG capturan la corrección de curvatura superior más general cuando se
tiene en cuenta la posibilidad de realizar redefiniciones de la métrica. Entonces usaremos
estas teorías para estudiar de un modo no perturbativo las correcciones al agujero negro
de Schwarzschild en cuatro dimensiones, prestando especial atención a la modificación de
las relaciones termodinámicas. La predicción más notable de estas teorías es que la tem-
peratura de Hawking de los agujeros negros neutros y estáticos tiende a cero en el límite
de masa pequeña, en lugar de divergir como predice la relatividad general. Como conse-
cuencia, los agujeros negros pequeños son termodinámicamente estables y su proceso de
evaporación conlleva un tiempo infinito. Además, las gravedades de orden superior en cur-
vatura encuentran aplicaciones muy interesantes en la correspondencia anti-de Sitter/teoría
de campos conforme (AdS/CFT en inglés), una dualidad que relaciona una teoría clásica de
gravedad en un espacio AdS con una teoría cuántica de campos que vive en la frontera de
este espacio. En este contexto, las gravedades de curvatura superior se pueden considerar
“modelos de juguete” holográficos que permiten, por ejemplo, obtener lecciones universales
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Appendix H. Resumen

acerca de la dinámica de las teorías conformes de campos, o poner a prueba la generalidad
de los resultados predichos por las aplicaciones holográficas de relatividad general. En esta
tesis, exploramos varios aspectos holográficos de Einsteinian cubic gravity, la cual propor-
ciona un modelo de juguete para una teoría conforme de campos no supersimétrica en tres
dimensiones. Además, construimos nuevas soluciones euclídeas tipo AdS-Taub-NUT, que
permiten estudiar teorías conformes de campos definidas sobre esferas aplastadas. Usando
estos resultados, deducimos una expresión universal para la expansión de la energía libre
de estas teorías en tres dimensiones hasta orden cúbico en el parámetro de deformación.
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I
Conclusiones

En esta tesis se ha producido un gran avance en la clasificación de teorías de orden superior
en curvatura en función de su espectro de modos a nivel lineal, y se ha identificado una fa-
milia especial de teorías cuyas ecuaciones linealizadas son de segundo orden. Estas teorías
han sido llamadas “Einstein-like” y sólo propagan un gravitón sin masa sobre espacios max-
imalmente simétricos. Algunas de dichas teorías, llamadas gravedades cuasi-topológicas
generalizadas, resultan además especialmente apropiadas para estudiar soluciones de agu-
jero negro. De esta manera hemos podido describir de forma no perturbativa agujeros
negros en cuatro dimensiones cuando se incluyen correcciones de curvatura superior. En
particular, hemos sido capaces de estudiar los agujeros negros resultantes cuando la teoría
de Einstein es corregida con un número infinito de términos de curvatura. Ha de ser notado
que esta es una hazaña notable y que no tiene precedente en la literatura. Además hemos
observado que todas estas correcciones tienen unos efectos universales sobre las propiedades
termodinámicas de los agujeros negros. En particular, la temperatura de Hawking de los
agujeros negros corregidos tiende a cero cuando la masa es pequeña, un comportamiento
opuesto al observado en relatividad general, donde la temperatura diverge. Como conse-
cuencia, los agujeros negros pequeños son estables y no se evaporan en un tiempo finito.
Además, dado que argumentamos que las teorías consideradas podrían servir como una
base para construir la teoría efectiva de gravedad más general posible, cabe la posibilidad
de que estas conclusiones se apliquen de hecho con casi total generalidad más allá de las
teorías estudiadas. Como una consecuencia interesante de la existencia de agujeros negros
pequeños estables, planteamos la posibilidad de que estos pudieran ser un constituyente
de la materia oscura.

Por otra parte, hemos estudiado las aplicaciones holográficas de “Einsteinian cubic
gravity” en el contexto de la correspondencia AdS4/CFT3. La teoría de campos conforme
dual a Einsteinian cubic gravity pertenece a una clase de universalidad diferente a la
definida por la relatividad general, y esto nos ha permitido obtener nuevos resultados. Por
ejemplo, hemos podido establecer que la función de partición de una teoría conforme de
campos tridimensional en una esfera aplastada viene determinada, hasta orden cúbico en
el parámetro de deformación, por las funciones de dos y tres puntos del tensor de energía-
momento de la teoría. Sin embargo, la principal conclusión es que Einsteinian cubic gravity
representa un modelo de juguete holográfico muy interesante que nos permite obtener
respuestas consistentes acerca de teorías de campos conformes. En este sentido, esperamos
que todas las gravedades cuasi-topológicas generalizadas, las cuales constituyen una familia
numerosa, darán lugar también a duales holográficos consistentes que, no obstante, pueden
ser estudiados fácilmente.
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