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Introduction

From a highbrow point of view, (perturbative) string theory is a topological
extension of the quantum field theory (QFT) of particle physics. Whereas
QFT, in its perturbative approach, is a theory of summing over different
connected and closed weighted graphs - networks of connected worldlines -,
the perturbative picture of string theory is that of a theory of summing over
surfaces - networks of worldsheets. This already establishes one of the suc-
cesses and beauties of string theory. The graphs of QFT are not manifolds,
have annoying vertices, and the set of graphs with many faces gets extremely
complicated (the complexity in the perturbation rises with a factorial in the
power of the weight). In string-theory however, the surfaces are two-folds,
and summing over in-equivalent surfaces is way more easy: we know every-
thing about the classification of two-folds as we have the elementary result
that the only distinction between two-folds is it’s genus. The perturbation is
simply in this genus.
But we know from particle physics that not all is captured by the pertur-
bative analysis: solitons, monopoles, symmetry braking, dualities, etc. have
not been discovered trough graph computations but are extremely important
in our understanding of the theory. With these lessons learned from QFT,
string theorists have always tried to capture non-perturbative effects of the
theory. In fact the biggest successes and breakthroughs in the field are non-
perturbative ones: the discovery of D-branes and the proposal of M-theory
and certain dualities. Indeed, most dualities and M-theory are only certainly
known to hold in low-energy regimes, but the conviction of many workers in
the field is that those results are in fact exact.
Anyway, at present there is not yet a full, non-perturbative picture of the
entire body of string theory, and after forty years of hard work we must be
a little pessmistic about ever finding such a description. For one, in the
late 90’s there has emerged quite some research on one proposal that might
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capture a microscopic and non-perturbative description of M-theory, which
is known under the name M(atrix)-theory[7]. The proposal to describe the
fundamental theory in terms of a matrix quantum mechanics has proven to
be successful in quite some extent, and indeed has proven to describe a lot
of the objects and physics of strings[8] and M-theory. But it certainly had
some flaws - some missing objects, some high-order mismatches - which led
to a diminishing in its popularity (together with the expanding popularity of
AdS/CFT which emerged at the same time of the M(atrix) proposal).
Recently however, it has become clear that the Matrix theory looks quite
successful in handling time-like singularities, surprisingly shifting its appli-
cations from the microscopic to the cosmological. This is of course exiting,
as we would really like to have some clue about what happened around
time-like singularities like the big-bang, or the center of a black-hole. That
matrix theory might provide a proper frame-work for addressing these ex-
treme physical situations lies in the nature of its description of space-time.
Many cosmologists and high-energy physicists in general do suspect that
around these extreme time-like singularities the nature of space-time itself
may need replacement and that concepts of space and time are actually emer-
gent entities that open up only at ”low energies”. This vague intuition finds
concreteness in matrix theory, where space-like coordinates get replaced by
non-commuting matrices. A system of N fundamental objects is represented
by a set of N×N matrices. Originally the coordinates of N fundamental ob-
jects were described by N parameters per dimension. This idea is replaced:
in extremely high energies or at extremely low length-scales, positions are de-
scribed by one matrix per dimensions, N diagonal term and the off-diagonal
terms. The emergence of every-day space is in the low-energy limit, where
the matrices are diagonalized and indeed to reduce to a set of N degrees of
freedom.

This thesis reviews the ideas of matrix string theory and its cosmological
implications. The first chapter introduces important back ground concepts
of superstring theory itself, such as the D-brane, M-theory and some of the
dualities of string theory. It does not treat the bosonic string in any way,
but still this document tries to be self-contained to some extent. The five
supersymmetric strings are simply introduces without a lot derivation, and
I should refer to the bilbliography for excellent text-books where both the
bosonic string and the background of superstring theory are explained. I also
refrained from conformal analysis.
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The second chapter introduces Matrix theory and discusses some of the ob-
jects it reproduces. Also a scattering computation is verified. The final
chapter deals with the cosmological implications of the Matrix proposal.
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Chapter 1

The web of dualities and
M-Theory

At present, since the second revolution in string theory, the string is not seen
anymore as the unique and defining object in string theory. In fact, we now
know that string theory consists of more and equally fundamental objects. I
will quite hands on set up the content of the theory that will be of interest
in this document. Based on superconformal grounds, we will embed the two-
dimensional world-sheet of the superstring into a D=10 dimensional target
space.
There are five different physically consistent string theories, all with different
objects and fields. These five are called:

Type-I, Type-IIA, Type-IIB, Heterotic SO(32), Heterotic E8×E8

Without giving complete derivations or historical motivations, I will briefly
describe what defines the differences between the theories.

Type-IIA and Type-IIB theories are in a way the most straightforward string
set-ups. They constructed by identifying the modes of the expansion that
solves the bulk equation of motion for the fermionic part of the action. Iden-
tifying right and left movers, and noting that these are independent, the
theory is split in a left and right sector. Each mover can admit one of two
physically admissable boundary conditions, called Ramond (R) and Neveu-
Schwarz (NS), introducing four pairs or sectors. This theory is not yet con-
sistent as the spectrum contains a tachyon. By consistently projecting out
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suitable subsets of the full spectrum, physical consistency is obtained. Such
sub-selection (called GSO-projection) can be done in two ways, one yielding
a theory with four sectors, such that the left and right-moving sectors have
equal chirality (Type-IIB), and one such that the left-moving Ramond sector
has negative chirality while the right Ramond sector has positive chirality
(Type-IIA).

From the equi-chiral Type-IIB, which is clearly an N = 2 supersymmet-
ric (susy) theory, one can build the so-called Type-I theory by projecting
out even further specific subsets of the spectrum. From its construction is
is clear that the group Z2 acts on Type-IIB in an invariant way, since left
and right-movers have the same chirality. That is, the theory is left invariant
under Π : IIB → IIB, Π(σ) = −σ. We can project out half of the Type-IIB
theory by constructing P = 1

2
(1 + Π) and only keeping states with positive

eigenvalue under P . This (naive) construction yields an N = 1 superstring
theory. The construction is naive in the sense that it yields an anomalous
theory, an objects have to be added in order to make it stable. We will dis-
cuss the content below.

Perhaps the most counterintuitive string-theoretic constructions are the Het-
erotic strings. The way they are build might seem a little strange, but they
have always been perceived as the most promising in making contact with
the standard model trough a Grand Unification program.
Recall that also in the bosonic string we have left and right movers, and that
this theory lives - critically - in 26 dimensions. Now let’s take only the left
movers, and perceive the fact that the target-space is 26-dimensional merely
as the statement that we have 26 left moving degrees of freedom. Let’s take
at the same time the right-movers of the superstring in ten dimensions and
look at them too as ten right-moving degrees of freedom.
Now the construction of the Heterotic string, is to combine these two obser-
vations into one string, namely by taking a string with as right-movers su-
perstring degrees of freedom and as left-movers the bosonic ones. The model
consists of an Xµ boson, a Majorana-Weyl fermion ψµ and a Majorana-Weyl
fermion λA, where µ = 0, . . . , 9 and A = 1, . . . , 32 where the number of 32
follows from anomaly cancelations. As the heterotic string is not of our main
interest, we will not delve deeply into it at all. The λA then may carry ei-
ther an SO(32) or an E8 × E8 gauge symmetry. This choice defines the two
different heterotic string types: Heterotic-SO(32) or Heterotic-Ex×E8
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I will quite boldly and top-down state their field-content and the different
objects that are present in the theories, not following the text-book approach
starting with the derivations and motivations - starting with the action and
variations or setting up the different movers etcetera. I will, along the way,
take some theories apart and discuss in more depth it’s features to motivate
why they are a member of this arena of five.

1.1 The five SUSY string theories and their

content

The fact that there are five different theories finds its origin in the evaluation
of the fermionic Lagrangian, and the notion that upon demanding the varia-
tion of the action to vanish, some conditions emerge on the boundary of the
world-sheet. Different theories emerge by making different GSO-projections
of physical states, to protect the vacuum from being tachyonic, or they are
built by concisely choosing proper degrees of freedom for different sections
of the space of solutions for the bulk. I will state the content of the theories
and some of the fundamental objects we encounter therein. As mentioned,
the motivation and some brief derivations will become clear as we go along.

Type-IIA

Fields:

For our purposes this realm is of particular interest. The field-content is
divided into four sectors, denoted by (left, right), referring to left- and right-
moving modes (levels of solutions of the bulk-field equations), such that each
left and right segment can be either in the Ramond (R) or in the Neveu-
Schwarz (NS) (nicknames for overall relative sign of chirality between the
left and right sector). By field-content we mean the body of zero-mode,
massless fields.

(R,R): a one-form C(1) in the 8 and a three-form C(3) in the 56.
(NS,NS): a scalar Φ(0) in the 1, an anti-symmetric two-form B(2) in the 28
and a traceless symmetric two-form G(2) in the 35.
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(NS,R): a chiral spin-1
2

spinor in 8 dimensions and a spin-3
2

field of 56 di-
mensions.
(R,NS): idem as the (NS,R) but with opposite chiralities.
Thus this is a theory with two gravitinos, and this can only be understood
from a supersymmetric gravitational theory with two supercharges. Hence
we are dealing with a N = 2 supersymmetry.

Objects:

The superstring, or fundamental string (F-string). The free objects are closed
but can get broken into open strings in the presence of D-branes.Inspired by
the coupling of the point particle to the electromagnetic field, we can write
down the coupling

∫
MF

B(2).

Focussing on the (R,R) sector, an F-string couples to a D-brane. In the Type-
IIA, the F-string couples electrically to the 0-brane and the 2-brane due to
the C(1), C(3) respectively. It couples magnetically to a 4- and 6-brane due
to the ?C(3), ?C(1) respectively. Here ? denotes the Hodge-star, and in ten
dimensions, ?C(n) is a (8− n)−form. There is room for defining an 8-brane.
This would require a 9-form C(9) with fieldstrengt F (10) = dC(9). Such a ten-
form is static in the full ten dimensions, but nevertheless can get interesting
when embedding the IIA theory in a higher-dimensional manifold.
For reasons explained when delving deeper into IIB-theory and dualities, we
also have an object dual to the F-string that couples to the (NS,NS) dual
B(2) form ?B(2): the NS5−brane.
When writing down the solutions of effective Type-IIA actions, we also en-
counter gravitational wave-like objects (GW) and their dual objects, Kaluza-
Klein monopoles (KK).

Type-IIB

Fields:

The field-content of the (NS,NS) sector is the same as in the type II-A.
Also, the (NS,R) and (R,NS) sector are the same with the difference that
they have the same chiralty. The big difference is seen in the (R,R) sector:
(R,R): a scalar C(0) in the 1, an anti-symmetric C(2) two-from in the 28 and
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a self-dual anti-symmetric C(4) = ?C(4) in the 35. It is interesting that in
this theory, some (R,R) and (NS,NS) fields have the same dimensions. By
times it will prove handy to arrange them in doublets, a construction we will
not yet pursue at this point.
Here too we are dealing with an N = 2 supergravity (sugra), which is differ-
ent from the IIA sugra due to the opposite relative helicity structure.

Objects:

The different objects are of course due to the (R,R) sector. The F-string can
now couple to a (-1)-brane, which is an object solely localized in time, hence
interpreted as an instantonic mode. The coupling is electric with the C(0)

scalar. We also encounter a 1-brane and a 3-brane, with electric couplings
with the C(2) and C(4) respectively. The 3-brane is a bit peculiar because
of the self-duality of the form it is coupled to. It plays an important role in
for example Ads/CFT duality. Analogously to the II-A case, we also have a
5- and 7-brane with magnetic coupling to the ?C(2) and ?C(0) respectively.
These two objects are also interesting in their own. We will come across the
7-brane in the topic of F-theory and will discuss 5-branes when investigat-
ing the full spectrum of M(atrix)-theory. Here too we can define a 9-brane,
even tough it’s field-strenght is not defined in ten dimensions. Yet again, if
for example we would like to embed II-B theory into say an 11-dimensional
theory, the 9-brane would couple to a (static) eleven-form.
The IIB also has an NS5−brane. Also in the II-B spectrum we encounter
gravitational waves, and their KK monopoles

Type-I

Fields:

Recall that the Type-I is constructed from Type-IIB by projecting out all the
content that has negative eigenvalue of the projection operator P = 1

2
(1+Π).

First of all, P maps the IIB (NS,R) sector to the (R,NS) sector and vice-
versa, so they alone will not survive, but if we build a sector (NS,R)⊕(R,NS),
defined by taking the linear combinations of the field-content, this and only
this will end up in Type-I. This reveals the N = 1 susy structure. Now
from the (NS,NS) sepctrum, we see that P acts odd on the two-from B(2)

and is projected out, while in the (R,R) sector we have to dismiss C(0) and
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C(4). In summing up, we keep the 1,8,28,35, but all with multiplicity of one.

Objects:

Projecting out all these fields is accompanied by a great loss of objets. What
remains is an F−string, but in the Type-I it is not orientable, due to the Z2-
projection, and it’s open. Moreover, looking at the remaining Ramond-fields,
we see that only the D1-brane and the D5-brane survived the projection. Also
the NS5-brane has disappeared.

Heterotic SO(32) and E8 × E8

We now have fermions only on the right-moving sector, so we have a sin-
gle NS or R branch. Here we already see how heterotic strings will be N = 1
susys. We distiguish between the zero modes in the de fact physical ten
dimensions, and the ones on the sixteen extra’s, which are embedded on a
self-dual compactified 16-torus.
In the physical dimensions we have again in the NS sector a two-form A(2)

splitting up in a scalar (1), an antisymmetric part B(2) (28) and a traceless
symmetric part G(2) (35). In the Ramond we have vector fermion consisting
of a one chiral fermion array in the 8 and the spin-3

2
gravitino in the 56.

Furthermore, on compactified dimensions we must distuish between two rep-
resentations, where the difference between the two heterotic theories is de-
fined. As it does not concern us in this document and the spectrum is a bit
less straightforward I will only state here that the Ramond sectors of both
heterotic theories are equal and have left-moving fermions in the 16× 8 and
480 × 8, and that the difference is in the NS sector, where we have one
eight-component vector in the 1

2
· 32 · 31 dimensional representation of either

SO(32) or E8 × E8.

1.1.1 Effective Actions

Having established the field-content of the theories it will be intstructive
for averything that follows to think about the actions that are associated
with these fields. We should keep in mind that these actions only refer to the
massless level of the spectrum and thereby make sense only in the low-energy
regime. But since string theory has a mass-gap of order 1

l2s
, where ls dentotes
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the string lenght, it is exact in the window [0, 1/l2s ]. One note about the
string length: the basis paramter of relativistic string theory is the string
tension - the mass per unit length if you like - which is related to the Regge-
slope. Originally, string theory was formulated to model Regge-trajectories
of mesonic interactions, where the Regge-slope measures the ratio of spin
and mass of meson collisions. Anyway, the tension, T , of the string theory is
related to the string length ls and the Regge-slope α′ trough T = 1

2πα′
= 1

2πl2s
.

Also string theory has it’s string couling constant gs which measures the
strength of string self-interactions in string Feynman diagrams. As string
theory models gravitons as massless exitations of closed strings, Newton’s
constant GN is a paramter set by gs.
Starting with the Type-II theories, we note that the actions for the (NS,NS)
sectors are the same. It is in fact straightforward to write it down:

SIINS =
1

4πα′

∫
d2σ
√
h
(
G(2) +B(2)

)
∂X∂X + α′RΦ(0) =

1

4πα′

∫
d2σ
√
h(habGµν + iεabBµν)∂aX

µ∂bX
ν + α′RΦ(0) (1.0)

In this action, h denotes the world-sheet metric and R the world-sheet Ricci-
scalar. Note that the dilaton contribution is of an order in α′ higher then the
two-form fields. Furthermore it is comforting that variations in the fields X
proportional to Killing vectors leave the action invariant. This is the action
for the worldsheet of the F−string, where it’s coupling with B(2) is manifest.
It might be interpreted as a direct generalization of the Polyakov action, and
in fact reduces to this if B(2) = 0 and the dilaton vanishes everywhere.
To set up an action involving the (R,R) fields, we should keep in mind that
these fields couple to higher dimensional objects, anything up top the 8-
brane. Hence we would like an action that described the field-content in the
full ten-dimensional space-time. We can describe integrate low-dimensional
forms on target-space by means of the pull-back map. In case of the (NS,NS)
anti-symmetric two-form we might for example take φ∗Bab = Bµν∂aX

µ∂bX
ν ,

as we already implicitly did with the generalized Polyakov.
The (R,R) sector has, for the full Type-II theory, form-fields

C = C
⋃

?C

C = {C(0), C(1), . . . , C(4)}, ?C = {?C(0), ?C(1), . . . , ?C(4)} = {C(8), . . . , C(4)}
When explicitly writing down the action, pulling everything back to target-
space, for the field-strengths G(n+1) = dC(n) a symmetric factor 1

2(n+1)!
is
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convenient. Now the (R,R) sector action should at least have:

SIIA =

∫
d10xΣ2

n=1

1

2(2n− 1)!
dC(2n−1) ∧ dC(2n−1) +∫

d10x
1

4
(G(2))2 +

1

48
(G(4))2 (1.-2)

Like in ordinary field theories, we might supplement this with a Chern-Simons
term, something proportional to for example∫

B(2)dC3dC3

Indeed such terms will only contribute on a (non-trivial) boundary. Here
I make a distinction between G(4) and dC(3) because in the full picture,
G(4) = dC(3) + dB(2) ∧ C(1), which is a result of dimensional reduction from
eleven to ten dimensions, a construction which will be discussed later on.
Now the target-space field-equations for the (NS,NS) sector deserves some
attention. As above, we wil denote the field-strength of B(2) as H(3) =
dB(2). Furthermore we demand that the dilaton obeys a covariant Klein-
Gordan wave equation, hence introducing an action proportianol to SΦ ∝∫
d10x(∇Φ)2. Furthermore we take the same symmetry-convention for the

field-strecht as in the (R,R) sector, thus the B−field generates a term SB ∝∫
d10x 1

12
(H(3))2. And the graviton is, just as in General Relativity, imple-

mented in the field-theory by means of the Ricci-scalar. We recall that the
string couling constant is related to the dilaton v.e.v. throug: gs = eΦ. We
nog can write down the full bosonic type-IIA Supergravitational action1

SIIA =
g2
s

16πGN

∫
d10x
√
−G
[
e−2Φ(R + 4(∇Φ)2 − 1

12
(H(3))2)

−1

4
(G(2))2 − 1

48
(G(4))2

]
(1.-2)

What is most interesting and non trivial is that in the massless regime Type-
IIA is an (N = 2) supergravity (sugra) in ten dimensions. In fact, from the
study of sugra’s in ten dimensions we know that there are five distinct of
such sugra’s. One might be tempted to try and match every sugra with a
superstring theory partner but this can not be done: one of the five sugras

1We adapt numerical and sign conventions of Bergshoeff et. al. [13]
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can not be the action of a consistent string theory, and one action serves
in a way as the effective action of both the Type-I string and the Heterotic
SO(32) theory. This is a strong hint that, at least in the low energy regime,
these two theories can be mapped into each other.
Likewise we van construct the supergravity action for the type-IIB case, with
the subtlety that the four-form and its associated field-strength are self-dual.
We will at this point exploit the fact that some of the dimensions of the fields
of the NS and R sector are the same and place them en doublets. Let us
thus define:

BD =

(
B(2)

C(2)

)
, HD = dBD

And we introduce the important modular parameter

τ = C(0) + ie−Φ

For the scalar content of the type-IIB, we construct the matrix

M =
1

=t

(
|τ |2 −<τ
−<τ 1

)
(1.-2)

This matrix is constructed such that the term 1
4
Tr[∂µM∂µM−1] gives the

correct contribution to the scalar part of the action, both NS and R. Now
the total two-form contribution can be written down in terms of the doublet
defined above and this scalar matrix. The total action becomes:

SIIB =

∫
d10x
√
−G
(
R− 1

12
HT
DMHD +

1

4
Tr[∂µM∂µM−1]

)
− 1

480
(G(5))2 (1.-2)

Note the extra factor of one-half in front of the five-form which is due to
its self-duality. Again, the five-form G(5) should be supplemented with an
extra Ramond-NS mixed five-form, G(5) → dC(4) + B(2) ∧ HD, which also
finds it origin in a dimensional reduction. Again we did not write down the
Chern-Simons term.

1.1.2 The Symmetries of IIB

Let’s look closer to the sugra action of Type-IIB and its symmetries. In the
form as written above, we see how the action SIIB is invariant under de group
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op Möbius transformations,

SL(2,R) = {Λ|Λ =

(
a b
c d

)
, ab− cd = 1, a, b, c, d ∈ R}

. SL(2,R) acts on the theory as:

Λ ◦M = ΛMΛT , Λ ◦HD = Λ−THD (1.-2)

Thus we established full SL(2,R)-invariance of the low-energy Type-IIB the-
ory. One specific element of these Möbius transformations generates a strong-

weak, so-called S-duality, namely Λ =

(
0 1
−1 0

)
This element acts on τ as

τ 7→ −1/τ and and on the fields as

HD =

(
B(2)

C(2)

)
S7→
(
−C(2)

B(2)

)
.

Taking this together and recalling that the F-string couples to the NS two-
form and the D-1 brane to the D1-brane, this result implies that F-strigs
at strong couling must behave as D1-branes in weak couling and vice versa.
The same must carry over the the dual objects - the NS5-brane and the
D5-brane. The D3-brane plays a special role, because the self-dual four-form
is invariant under S, and the D3-brane looks like a fixed point under this map.

With this SL(2,R) symmetry at hand, we may wonder how it acts on the
objects. We made some general statemenst on dualistic behavious, lets take
it a but more serious.

D

F

D

Figure 1.1: In a picture it is easy to pick out the D- and F-string. But is
there a symmetry that relates these to similar objects?
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We saw how the F-string is the propagtor of the B(2) NS form, and let it

have one unit of charge, denoted as

(
1
0

)
Likewise, let de D1-brane carry

one R-charge,

(
0
1

)
Or, in general,

(
p
q

)
=

(
#F
#D

)
We may boldly propose that this doublet of IIB objects transforms under the
SL(2,R) or, for this matter, the integer subgroup SL(2,Z). The presence of
such D-strings breaks the symmetry group

SL(2,R)→ SL(2,Z).

Note that the charges of the F- and D-strings themselves are integer, since
the theory admits in mobth sections dual 5-branes carrying magnetic charges,
giving a generalized Dirac quantization condition.
First of all, in case of the F-string, we generally have:(

1
0

)
SL(2,Z)→

(
a b
c d

)
·
(

1
0

)
=

(
a
c

)
Now a well educated guess might be that the D-string is the SL(2,Z)

partner of the F-string. This is quickly justified by noting that indeed the
D-string has not got NS-charge, and one R-charge, and for the F-string it
is vice versa. Moreover, the bosonic degrees of freedom of the two objects
equal, since it are precisely the massless modes of the F-string ending on a
D-string that generate these degrees of freedom, that is oscillations of the
D-string are generated by the degrees of freedom of the F-string. Supersym-
mertry requires both the fermionc degrees of freedom to be the same too.
Now lets fouces our attention to the most general string doublet, with m
F-strings and n D-strings. For the sake of argument we will focus on the case
with m > (n−1) and gcd(m,n) = 1. The requirement m > (n−1) is needed
s that every pair of D-strings can get connected by a string, and we take m
and n relatively prime to focus on stable states only. Were there a greatest
common divisor, then the configuration might split up in two pathces or sec-
tors, equal to this commong divisor. We want to rule this possibility out.
Now as the branes are tied up by strings, their separation length will tend
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to get small, in fact of the order of the string-lenght scale. We must know
what happen with Dp-branes in general at such scales and beyond.
For that matter, lets stack up N Dp-branes, parallel, and lets have them
approach each-other. Let us denote coordiantes of the Dp-brane as
{x0, x1, . . . , xp, x̄p+1, . . . , x̄9} where a bar over a coordinates means that the
coordinate is identified with a Dirichelet boundary condition, that is it is
constant, and for one Dp-brane we might as well set x̄ = 0.
Now each of these Dp-branes naturally carries a U(1) gauge-group, so the
total symmetry for a stack of N Dp-branes is U(1)N . As these branes ap-
proach, as indeed is the case when they are part of a network and tied up
by strings, letting the string length go to zero, this gauge-group is enhanced
to U(1)N → U(N), and we are in the case of a field theory of 9 − (p + 1)
gauge fields Φj with precisely this gauge-group. We know how to write down
a field-theory for such a configuration: it is a Yang-Mills theory with U(N).
In any such theory the fields are subject to a self-interaction:

Lself = g2
YM

9∑
i,j=p+1

[Φi,Φj]
2 (1.-2)

This contribution vanishes in its vacuum, when both Φi,Φj are in the center
of the general linear group, Φi,Φj ∈ C(GL), and this centrum is generated
by the diagonal matrices. Thus the ground state is completely described by
9− (p+ 1) N-dimensional diagonal matrices. Thus one such field equals

Φj = diag(φ1
j , φ

2
j , . . . , φ

N
j )

But for each field Φj we also have N degrees of freedom describing the j−th
coordinate of the N branes. So up to permutation at least, they must be the
same, that is, the diagonal matrices describe the coordinates of the branes,
and we rename Φj → Xj. The other way around: The coordinates of the
stack of branes get promoted to matrices, where in the ground-state this
interpretation is really straightforward. The interesting and central question
of this document will be how to interpret the fields as they are not in their
ground-state, and off-diagonal terms will emerge.
Now an U(N) gauge group behaves in many ways as a direct product of a
SU(N) and a U(1). Observe that indeed in the vacuum, the center of mass
coordinate is proportional to the trace TrXj and this part is described by
the U(1) mentioned above. This center of mass position should be arbitrary,
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as we’d like a global translation invariance. There is here some similarity
with ’t Hooft’s large N conjecture which states that an SU(N) Yang-Mills
gauge theory converges towards a string theory as N goes to infinity. ’t Hooft
was led to this conjecture by inspecting Feynman diagrams for the SU(N)
case (a quark theory with N colors) and observed how in the large N limit
only diagrams with spherical topology survived, with a ’t Hooft Yang-Mills
coupling proportional to 1/N , a first order correction coming from torus-like
topologies. In the case at hand, we are actually describing a Yang-Mills
theory in SU(N) gauge, identifying it with the study of D-branes, but we
will touch this topic into more detail later on.

1.2 T-duality

We may wonder wether the theories described above are really distinct, or
actually in some way different realizations of the same under- or overlying
theory. There is a lot of strong evidence that the latter statement indeed is
the case, something which is very apparent when investigating the Type-II
theory with some more scrutinity, and trying to make contact between the
A- and B-side.

1.2.1 T-duality from the states

First of all, The occurrence of the Dp-brane found it’s origin in a duality
in the bosonic string. When trying to make contact with reality, we may
decide to compactify a (spatial) direction, that is choose one dimension to
be projected onto a compact manifold with some characteristic length-scale.
The easiest example of such a manifold is a circle, but in trying to compactify
more spatial dimensions at once we can come across more exotic manifolds.
Hence we take X i ≡ X i + 2πR where Ri denotes the radius of the circle.
Now in this compactified picture evaluation of the spectrum shows a discrete
symmetry taking Ri ↔ 1/Ri while simultaneously swapping the number of
times the string wraps itself around the radius, n, with the quantum of mo-
mentum w - a quantum number which is immediately obtained due to the
compactification.

18



R

1/R

Figure 1.2: The T-dual map. The left-and right outer circles represent circles
of infinite radius (the vertical axis is scaled hyperbolically). The smaller circle
on the left is a typical compactification circle with it’s smaller, dual circle
inside. In the middle is the self-dual circle. By duality we might as well
focus on the left half of the cone-like figure above

Taking this T-duality - R ↔ 1/Ri, ni ↔ wi, reverses the sign of the
rightmovers: X i

+ 7→ −X i
+. We can construct the fermionic picture thus, as to

preserve full supersymmetry of the full action, by simultaneously demanding
that χi+ 7→ −χi+. Since, rather peculiarly, the zero mode in the Ramond
sector of this chiral spinor described the Clifford-algebra, we have for the full
Clifford-algebra under T-duality:

Γµ
T−→ Γµ (µ 6= i)

Γi
T−→ −Γi

9∏
k=1

Γk ≡ Γ11 T−→ −Γ11

As the chirality is the eigenvalue of the Γ11 we see how T-dulaity reverses

chirality since P±
T−→ P∓. Now the difference between the Type-IIA and

Type-IIB theory lies in the choice of relative chirality between the left- and
rightmovers. IIA has opposite chirality, while IIB has the same chiralty. We
choose things so as to take the left sector with a positive chirality for both
theories, and only choosing specific right-moving chiralty. As the projection-
operator P± = 1

2
(1 ± Γ11), acting on the right-moving sector, changes sign,

we see how a T-duality, on the abstract level for sure, gives

Type-IIA
T↔ Type-IIB (1.-5)
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The flip in the Γ11 plays a rather central role in the T-duality. Take for
instance Type-IIA, where we hace a left chiral spinor times a right chiral
spinor both in the 8 but in total: 8L × 8R. To make the Clebsch-Gordan
decomposition we make spinor bi-linears from the full algebra generated by
the gamma’s (that is, {1,Γµ,Γµ1µ2 , . . . ,Γ11}).
With some abusive notation we may write 8L × 8R = |χR〉〈χL|.

Thus we notice how the Dp-branes IIA are sent to D(p-1)-branes IIB, if
the compactification is done parallel to the D-brane. Let’s get this listed up
in a table:

Parallel T Transverse T
Dp-brane in IIA D(p-1) in IIB D(p+1) in IIB

Parallel

Transverse

Figure 1.3: A sketch of the distinction between a parallel and a transverse
T-duality. The vectors have a length of 2πR, with R the radius of compacti-
fication
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1.3 M-theory

Already at this point we have seen some hints that not only the string theories
are related by dualities, but that they might in fact be embedded into some
bigger thing. The first hint was the suspected presence of a 9- and 8-brane.
But also the dilaton is quite suspect. We have some reason to suspect the
dilaton to be some kind of a Kaluze-Klein degree of freedom, emerging from
a compactification from a higher manifold of extension. Also we noticed how
IIA and IIB are N = 2, D = 10 sugra’s, while it is a famous statement
in sugra that the highest dimension for which such a sugra is consistent is
D=11.
We will give some general remarks on such an 11-D sugra, and will look at
what happens when we compactify the extra dimension. We will try and
identify the compactified objects with string objects.
First of all we are to have a graviton in D = 11. This is represented by the
SO(9) and has the 44. Furthermore as a SUSY the graviton needs a super-
symmetric fermionic partner, the gravitino ΨM . It should obey a Dirac field
equation and hence it enters the action as:

S ∝
∫
d11xΨ̄MΓMNP∂NΨP

Here ΓMNP = Γ[MΓNΓP ] with Γ an element of the Clifford algebra in eleven
dimensions. This anti-symmetric three-field is to be augmented with an anti-
symmetric three-form A(3) to preserve supersymmetry. As a gauge-field, A(3)

is defined up to a two-form, as has Field-strength F (4) = dA(3)

Now the unique 11-D sugra has an bosonic action:

S =
2π

(2π`)9

∫
d11x
√
−G(R− 1

2× 4!
Fµ1µ2µ3µ4F

µ1µ2µ3µ4)

Where the lengthy tensor-product should be read as (F (4))2.
Let’s dare and interpret this action as one of some kind of 11-dimensional
string theory. What is most interesting is that the only form that contributes
to the action, is a 3-form, which couples electrically to a two-dimensional
surface - the M2-brane -, and magnetically to a five-dimensional surface -
the M5-brane.
What we’d like to see is how to construct the Type-IIA and -IIB theories
by compactifying such an 11-dimensional theory. We ask ourselves what
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happens if we take the extra coordinate of the 11-D sugra to by periodic,
that is take x11 → x11 + 2πR11. Intuitively we can predict the interpretation
of an F-string in such a compatified field. Namely, let an M2-brane have one
of its coordinates stretched out along the axis of x11, that this compactifies
to a string, like in figure (2.1):

Figure 1.4: An M2-brane compactifies to a string

This way construction is easily extend to other objects: the D2-brane gets
the interpretation of an unwrapped M2-brane in the compactified 11-D theory
(an M2-brane that did not lay along the axis of compactification), and the
D4-brane is like the M2-case, an M5-brane that has one dimension wrapped
into a small compact manifold. The unwrapped M5-brane becomes, in the
10-D, an NS5-brane. This way we see how a lot of the objects of Type-IIA
theory come into play. We are only looking for interpretation of the Dp-
branes for p = 0, 6, 8. These constructions are a bit more technical, although
the D0-brane is rather straightforwardly interpreted as a so-called Kaluza-
Klein state - a degree of freedom is a residue in compatification schemes.

The statement that, upon compactification on a circle, IIA becomes IIB,
translates naturally to M-theory in the following array:

M
S1

→ Type-IIA
S1

→ Type-IIB

⇓
M

T→ Type-IIB

Here S1 is the circle and T the torus. From this point of view the sym-
metries of IIB become rather appealing: they become equivalent with the
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symmetries of the torus. To see this, note that the torus is parameterized
with a τ = τ1x1 + τ2x2 with x1,2 linear independent normal vectors. We can
map this onto a complex torus taking τ → τ1 + iτ2. Both parameterizations
have the following symmetries: τ 7→ τ + 1 where we normalized the radii of
the torus, and τ 7→ −1/τ . The group generated by these operations over an
arbitrary field F is precisely the group SL(2,F). We can even see how the
SL(2Z) dual of the F-string is indeed the the D-string as follows:
Let the targetspace coordinates of 11-D M-theory be {x0, x1, . . . , x9, x11}
where we skip x10 and denote it with x11 to remind us that this is the 11-th
M-direction. Now consider again an M2-brane with one of its sides stretched
out along the x11, and one along the, say, x1 coordinate
Upon a reduction of the 11-th coordinate this becomes the IIA-string, and
after a T-duality along the 9-th direction this becomes the IIB-string.
On the other hand, suppose the M-brane was strechted out along {x1, x9}
and we would apply the same reduction scheme. Then after the x11 reduction
we would end up with and IIA D2-brane, and after the T-duality along x9

we would find the IIB D1-brane. In summing up:

M21,11

S1
11→ IIA F-string

S1
9→ IIB F-string

M21,9

S1
11→ D2-brane

S1
9→ D1-brane (1.-8)

Where the last line is equivalent to:

M21,11

S1
9→ D2-brane

S1
11→ D1-brane (1.-8)

Thus the two lines in 1.-8 are related by a flip x11 ↔ x9. Thinking about
IIB as a direct compactification from M-theory on a torus, this is the mod-
ular switch τ = τ1 + iτ2 ↔ τ2 + iτ1 which is a simple reparameterization of
the torus, in fact an SL(2,Z) transformation. Now we see how indeed the
D-string is the IIB SL(2,Z) dual of the F-string.
Now actually the bound state (m,n) of m charges of the F-string and n
charges of the D-string, gets a clear interpretation. It is the M2-brane,
wrapped m times around the x11 and n times around the x9.
This wrapping procedure also yields that the D3-brane in IIB must behave
as a fixed point under the SL(2,Z), because an D3-brane is constructed by
taking the M5-brane and wrapping two of its directions on the torus. In this
procedure, it doesn’t matter what modular transformation we apply to the
torus of compactification, as the D3-brane is wrapped on both moduli of the
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torus.

1.4 F-theory

This construction of making the IIB by wrapping M-theoretic coordinates on
a torus, has the disadventage that it does not reveal the “pre-theory” of full
ten dimensional Type-IIB. The symmetries of IIB have a beautiful geometric
generalization known under the name of F-theory. It think the F here stands
for Fibercation, but I couldn’t find evidence for this. Its appearance follows
most naturally when seeking 7-branes in the SL(2Z) duality of Type-IIB. To
this ends we introduce a set of coordinates: {x0, x1, . . . , x7, z}, z = x8 + ix9.
Reconsider the sugra action of Type-IIB and take in account only the scalar
fields:

Sscalar =
1

k2

∫
d10x
√
−G(R +

1

4
Tr[∂µM∂µM]) =

1

k2

∫
d10x
√
−G(R− ∂τ ∂̄τ̄

2(=τ)2
) (1.-8)

Variation with respect to τ̄ yields the equation of motion

∂∂̄τ +
2∂τ ∂̄τ

τ̄ − τ
= 0 (1.-8)

A reasonable Ansatz is to look for holomorphic functions ∂τ = 0, for example

τ(z) =
1

2πi
Ln(z − zi).

Before we proceed, recall the way SL(2,Z) acted on τ . We have noticed how
this Möbius group was freely generated over Z by the two generators defined
by S : τ 7→ −1/τ, T : τ 7→ τ + 1. This defines a region in the complex plane
of inequivalent tori, called the fundamental domain.
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Figure 1.5: The shaded area is F = {z ∈ C||z| ≥ 1,−1 < <z < 1}

Now to return to the scalar action, and its Ansantz recall that the R-
potential C(0) is electrically coupled to the D-instanton, and magnetically to
the D7-brane. Furthermore we took this scalar in a doublet with the dilaton,
and previously we assumed the dilaton to be constant over the manifold. We
now allow the dilaton and hence the modular parameter to vary over the
base. With these idea in mind lets try to make the ideas a bit more rigorous.

Let B be a base manifold of real dimension d and let M be the elipti-
cally fibered manifold obtained by adjoining a torus T2 at every point on
B (dim(M) = d + 2). Of course, B will be the manifold on which a IIB
theory will be projected whileM will play the role of the manifold on which
the envelopping theory is to be defined.
Endow B with a coordinate system ~z and let, as in the above, the modular
structure of T2 be denoted by τ(~z) where τ ∈ F is in the fundamental do-
main.
For this fibration to work we need the modular invariance to be manifest on
the base manifold, that is: ∮

γ

τdz = g · τ

with g ∈ SL(2,Z) and γ ∈ B a closed on the base manifold.
F-theory is defined as:
Type IIB string theory compactifed on B with λ(~z) = τ(~z), with λ the scalar
doublet of Type-IIB, λ = C0 + ie−Φ.
For consistency, we need F-theory to be compatible with M-theory dualities
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explained in the previous chapter. Recall that we constructed IIB from M-
theory by compactifying the latter on T2. We obtained in this construction
IIB on S1 and regained the IIB itself in nine dimension by examining the
limit where we let the radius of this S1 go to zero. But before this limit, the
relation is summed up as:
M-theory on T2 ↔ IIB on S1.
We want this equivalence to prevail. For this consider, in all its generality,
F-theory on M× S1, that is IIB on B × S1. The above consideration asks
for the equivalence:
F-theory on M× S1 ↔ M-theory om M.
Aiming not only for IIB-type dualities we more generally work with the fol-
lowing philosophy, where we write a caligraphic subscript to denote a mani-
fold of definition:

[F-theory]M ↔ [String Theory]K

⇓
M-theoryM ↔ [String Theory]K×S1

⇓
Type-IIBM ↔ [String Theory]K×T2

The entry String Theory refers to any of the five admissable string theories.
This buisines is indeed rather abstract. To make this program suitable for
actual compactifications, an explicit construction is made for the fibration of
the torus. As the topic of F-theory is beyond the scope of this document I
will not go into this in great detail, but refer to e.g. [5]

1.5 Large N field theory and the Gauge/Gravity

correspondance

One of the objectives of string theory is to get a better understanding of how
gravity fits into the framework of physics as we know it. Microscopic physics
is has a stunning exact decription in terms of quantum field theories, and
still the most celebrated physical theory whith the highest predictive power
is the Standard Model. As gravity has no role whatsover in the Standard
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Model, we must adapt either our percetion of this quantum field theories, or
our understanding of gravity. We cannot stick with the idea that one sector
- the macroscopic - is described by General Relativity while the microscopic
is a pure QFT, since this would for example violate general Heisenberg in-
equalites at an overlap region between te two sectors. String theory, altough
not complete or completely rigorous, unifies quantum fields with the gravi-
tational field.
There is a surprinsing result that relates (Conformal) field theories with string
theories, known as Gauge/Gravity dualities. This idea really find its roots
in a propsal made by ’t Hooft in the early development of string theory: the
large N limit of Yang-Mills theory.

In ordinary SU(3) QFT - Quantum Chromodynamics (QCD) - it is extremely
hard to do actual computations. The best we can do at the moment is to
do so called lattice computations. That this is so hard and that it realies
mainly on computational and algorimic skill is easily seen by looking at how
this technique works. One namely makes local patches in space times dis-
crete, for example one represents such a patch in terms of a lattice with N3

points, and between any such points one leaves open the possibility of an
interaction Ji. The configuration space one needs to model is thus of the
order 2(N3), generally a number even a large computer has problems dealing
with.
One would like to find another way of dealing with the problems, or even try
and construct an approximation scheme. With these motivations, ’t Hooft
proposed to investigate genreal SU(N) YM theories.
We think of SU(N) QFT as a QCD with N colors. It admits one fundamen-
tal mass cut-off scale MQCD and the interactions and vertices are weighted
by the Yang-Mills coupling gYM . As any parameter in QFT‘s, this couling
depends on the typical energy of the system (it admits a runnig coupling
constant).
QCD has some divergent one-loop diagrams such as the gluon self-energy.
To regularize these divergences we should renormalize the QCD coupling.
Briefly, this is done - with the aid of dimensional regularization - by:

gYM = µ−ε/2Zggs,Ren.(µ)

where Zg = 1 + 1
ε
αs,Ren.µ

β0
4π

+ . . ., ε = d − 4 with d the total space-time
dimension, and β0 = 11

3
C − 2

3
N , C the adjoint Casimir of SU(N) and N
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the number of colors in the theory. The parameter αs,Ren. obeys the beta
equation

µ
d

dµ
αs,Ren.(µ) = − β0

2π
α2
s,Ren.(µ)

with a typlical solution

αs,Ren. =
4π

β0Ln(µ2/M2
QCD)

where µ dentoes the typical energy scale and MQCD. From this solution,
asymptotic freedom is clear, even for the limit N →∞. This is the ’t Hooft
limit:

N →∞, Ng2
YMfixed

so that the leading terms stay of the same order.
The Feynman rules are straightforward, and can be obtained by looking at
the SU(N) invariant Lagrangian. In terms of the two parameters declared
in the ’t Hooft limit, Vertices (V) are weighted with a factor of N

λ
, propa-

gators (E) with λN and loops (F) with a factor of N . So in total a typical
Feynaman diagram had a couplling of NV−E+FλE−V = N (2−2g)λE−V , where
g denots the number of handles of the manifold the Feynman diagram rep-
resents. Thus the diagram with spherical - g = 0 - topology are the most
important in the ’t Hooft limit. This diagrammatic limit is called planar.
The next to leading order has the toroidal - g = 1 - topology, etcetera.
Indeed, this is in close analogy with the string theory, where the string Feyn-
man diagrams have the same perturbative behaviour.

Figure 1.6: The perturbative expansion of a string theory in terms of its geni
of tori

This leads to proposing that in fact a SU(N) QCD becomes a string the-
ory in the large N limit. We will see some evidence for explicit constructions
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later on.
More generally one would like to know how to construct such dualities,
and to know what kind of string theory we have on the other side of the
field theory. A famous example of such an equivalence in the AdS/CFT
correspondance[26], which originally proposed that a stack of N D3 branes
has a dual descripiton in terms of a conformal field theory. More generally,
lets look at a typical SU(N) supersymmetric Yang-Mills theory in, say, four
dimensions. The supersymmetry is maximal for N = 4 supercharges. We
take this example becomes it has so many symmetries: it is in fact on of the
scarce examples of a conformal theory with conformal group SO4,2. We thus
have N2 − 1 gluons, four fermions and some six Higgs fields. Globally the
fermions have an SU(4) rotation symmetry.
Now to think of a dual string theory, we should preserve some sense of the
conformal symmetry group SO4,2. We could, for this purpouse, look for a
Riemannian manifold M with a maximal AdS5 metric (the group of isome-
tries of this metric is indeed isomorphic to SO4,2). So we try and project a
string theory on a manifold AdS5×V , with V some five dimensional manifold
if we think of the original susy’s. We could also think of a six-dimensional
manifold if our purpose was to compare the CFT with an M-theory.
Now motivated by the compactification prcedures, it looks naturally to choose
V = S5, a propolsal that finds back-up bearing in mind the SU(4) ' SO(6)
symmetry group on the ferminoc sector of the SYM.
This are hints that mathcalN = 4 SU(N) SYM might be the same as one of
the five susy string theories on AdS5×S5, hence establishing a gauge/gravity
duality. The surprising interpretation of the result is that the de facto physics
on the string side is realized in the AdS5, which is five-dimensional, wheras
the CFT lives in four dimenisons.
The proper AdS/CFT correspondance is more explicit and is the first rigor-
ous example of the Holographic Principle.
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Chapter 2

Matrix theory

Whether or not M-theory is exact: it proves to serve as a fine and luminous
guideline in getting the picture of the web of dualities. It is a bit like having
a map of the world that works perfectly fine for all the places where you once
have been, but you can’t really tell whether it will be a good guide to the
places you haven’t seen yet.
Anyway, it would be sufficient to have some idea or feeling for the fundamen-
tal degrees of freedom of this theory, since for now it merely is an effective
one. These degrees of freedom are expected to open up only at some very
high energy scale, presumably around or below the string length-scale, where
it is suspected that elementary concepts such as space and time may be dif-
ferent.
We have seen that for a stack of N D-branes, coordinates get interpreted as
the diagonal entries of coordinate matrices. We discovered this while inves-
tigating the symmetries of a Type-IIB theory, arranging fields and scalars in
doublets. Now let’s run back to the arguments and reconsider the case for
a D(-1)-brane, the instanton brane. Recalling the Yang-Mills action, we can
write down the field theory for a collection of N such instantons, it is simply:

S =
∑
i<j

[Xi, Xj]
2 +

∑
i,a,b

ΓiabTrχ
a[X i, χb] (2.0)

We decided to include the coordinate-fermion interaction - which is readily
taken up from the Yang-Mills reduction procedure. Now first of all, note how
all the defining coordinates of the instanton are matrix-values. Amplitudes

30



are, in this Euclidian measure, schemetcally of the form:

A ∝
∫

[DX][Dψ]e−S (2.0)

We immediately see that the trivial vacuum, described by pairwise com-
muting matrices, is the only critcal point os S. A non-susy stable vacuum
seizes to exist, because when scaling the fields X → λX, the action scales as
X → λ4X, so we always need S = 0 for critical points.
From the picture of M-theory, Type-IIB is obtained by compactifying the
11-D sugra on a torus. In order to get hold of some of the degrees of freedom
of M-theory itself these instantons look promising. Now recall that at the
same time IIB can be obtained by dualizing IIA on a circle, and to obtain the
instanton, we need to take a D0-brane and compactify the time-like direction.
As it is most instructive to think of M-theory as the strong limit of IIA, we
are led to focussing out interest on these D0-branes, in way the precursors
of the promising instantonic modes. Now we might boldly state that also
in the IIA theory the D-branes are described by matrices, and the D0-brane
is again fully matrix-valued. To make it even more bold, we could propose
that these fully-matrix valued D0-branes stay matrix-valued in the strong
M-regime, and there could play the role of fundamental degree of freedom,
with an action described by a SYM-equation. This does makes sense as the
D0-branes are part of the M-theory spectrum, where we recall that the IIA
interpretation of these particles are in the Kaluza-Klein modes.
This is in fact the matrix proposal, some subtleties to be treated below be-
side.
To describe IIB fully in terms of a matrix quantum mechanics, where the
particles are the instantons, is proposed in [28]. The top-down procedure
mentioned above is built up in [7] and has led to the area sometimes referred
to as M(atrix) theory. For now we will be interested in the latter.

2.1 M(atrix) Theory

Although at times taken implicitly, from now on we will describe target space
in terms of light-cone coordinates
{X−, X1, . . . , XD−1, X+} and X+ will serve as time.
With the remarks made above in mind, the Matrix proposal is as follows:
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Full, uncompactified, eleven-dimensional M-theory is completely captured by
a Matrix quantum-mechanics - Super-Yang-Mills (SYM) - theory of N D0-
branes in the limit N →∞, in the infinite momentum frame (IMF)

This is a very strong statement and needs thorough checking. To begin
with all the objects of M-theory need to be recovered from the SYM, and we
will try and do so. Actually, all the Type-IIA objects need to be recovered
by appropriate compactification of the SYM.
We will make this proposal somewhat more explicit by concretely setting up
the Lagrangian and the Hamiltonian of the SYM, and then try and find the
M- and string-theoretic objects it should encompass.
We give here the Lagrangian we will work with, that described precisely the
dimensional reduced SYM stated above. The construction really hinges on
the de facto reduction procedure and will be discussed in the next section.

L =

∫
1

2R11

Tr
[
D0X

iD0X
i +

1

2
[Xi, X

j]2 + θT (iθ̇ − γi[X i, θ])
]

(2.0)

This is the Lagrangian of the BFSS Matrix Theory proposal. The X i are
eight scalar fields represented by N×N matrices. The fermionic fields θα and
θα̇ are likewise N × N matrices. This Lagrangian will be a guide for many
that follows. As the theory is formulated in the IMF, we can formulate it in
an Hamiltonain picutre as well. We will do so at times when we need this.
In the Lagrangian, R11 is the M-theory radius of compactification that is to
yield Type-IIA theory. The statement is that this Lagrnagian is to describe
M-theory itself, so the limit R11 →∞ is to be taken, as well as N/R11 →∞.
So in a way this is a large N field theory duality.

2.2 Dimensional reduction of a SYM

To describe this matrix quantum mechanics of a D0-brane or particle, we are
to start with the full ten-dimensional SYM action and dimensionally reduce
it all the way down to 1 + 0 dimensions. We will start on the most general
ground: a bosonic part decribed by the field-strenght, and a fermionic part
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that resembles an action which - upon variation - yields a Dirac equation:

LSYM = LB + LF

LB = −1

4

∫
d10xTr(F 2)

LF =
i

2

∫
d10xTr(λ̄Γ ·Dλ) (2.-1)

where the bosonic trace is over the lie-structure indices and the fermionic
trace over the spinor indices.
Now the procedure of dimensional reduction is straightforward. We expand
both the field-strength’s gauge-field and the spinor in a Fourier series:

Aaµ(xν) =
∑
(n)

Aaµ,(n)(x
0)exp(i

∑
j

njx
j

Rj

) (2.0)

λa(xν) =
∑
(n)

λa(n)exp(i
∑
j

njx
j

Rj

) (2.1)

Here (n) is the vector of all quanta of compactification, (n) = (n1, . . . , n9).
Reality of A is expressed in the condition A∗(n) = A(−n) Now to plug the

mode expansion into the fieldstrength we simply recall that Fµν = [Dµ, Dν ] =
∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν . What comes into the expression is the term F 2,

that is:

F 2 = 2(∂µA
a
ν)

2−2(∂µA
a
ν)(∂

νAµa)+4fabc(∂µA
a
ν)A

µbAνc+fabcfadeAbµA
c
νA

µdAνe

Now just plug in the Foerier expansion, pick up a volume factor (2π)9R1R2 · · ·R9.
Now each factor gets a mass factor M2

(n) = n2
j/R

2
j . We compactify on the

nine-torus an shrink it down to zero volume at fixed shape and all these
masses yield infinity for (n) 6= 0 so these modes decouple from the mass-gap,
so we only need to take into account the zero-array. We end up with

−1

4
F 2 = g−1

∫ [
(Ȧa0(0))

2 − 2fabcȦaν(0)A
0b
(0)A

νc
(0) −

1

2
fabcfadeAbµ(0)A

c
ν(0)A

µd
(0)A

νe
(0)

]
Here the reduced Yang-Mills coupling carries the toridal volume. Drop the
zero-subscript and recall how Ai = X i, A0 = A and introduce the covariant
derivate Dt = ∂t + A to find

Sbos = −1

g

∫ [
(DtX

a
i )2 +

1

2
fabcfadeXb

iX
c
jX

idXje
]

(2.1)
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which is in terms of matrix commutator:

Sbos =
1

g

∫
Tr
[
(DtXi)

2 +
1

2
[Xi, Xj]

2
]

(2.1)

with the covariant derivative in the adjoint, Dt = ∂t + [A, ·] The fermionic
case is done is exactly the same way.

2.3 The M2-brane

One of the objects we need to recover is the brane that couples electrically
to the sugra 3-form of M-theory, the M2-brane. Its construction from Matrix
theory is rather entertaining, and is perhaps best motivated by starting with
the M2-brane action itself, to try to recast is into a form that fits in the
Matrix proposal.
For this, lets consider the world-volume action of the M2-brane:

S = −T
∫
d3σ
√
−γ(γab∂aX

µ∂bXµ − Λ) (2.1)

The shift Λ is included to pertain some sense of scale invariance.
First of all, variation with respect to γ gives as equation of motion for this
metric:

γab = ∂aX
µ∂bXµ ≡ hab

Note that in the metric γab, the indices now run over a, b = 0, 1, 2 which will
diminish our ability of gauge-fixing as many terms as in the Polyakov action
for the string: we have six independent components for γ and only three
symmetries: two diffeomorphisms and one scale-invariance.
First we will show that we can perceive this action in a symplectic way, writ-
ing it down in terms of Poisson-brackets. Then we will forge these brackets
into Lie-brackets, and map them onto a matrix representation, yielding stan-
dard matrix-commutators. Although the procedure is straightforward it is
not trivial.
First of all lets set γ0i = 0, i = 1, 2. Furthermore take γ00 = − 4

ν2
|∂iXµ∂jXµ| ≡

− 4
ν2
h. This way the metric has the form:

γµν =

 − 4
ν2
h 0 0

0 h11 h12

0 h12 h22
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In terms of this gauge the action becomes simply

S − Tν

4

∫
d3σ(Ẋµ)2 − 4

ν2
|h|

To obtain the symplectic form, we introduce

{X, Y } = εij∂iX∂jY (2.1)

with εij the totally antisymmetric tensor in two indices.
A straightforward calculation shows how these brackets allow one to ex-

press the action as

S =
Tν

4

∫
d3σ
[
(Ẋµ)2 − 2

ν2
{Xµ, Xν}2

]
(2.1)

The objective is to forge the bracket of functions into a commutator of
matrices. This might smell like the quantum mechanical procedure of replac-
ing the classical Poisson-brackets of functions on a sympletctic manifold with
a defining Hamiltonian with operators in commutators, it has got nothing to
do with that.
So we will look at functions Xµ on Σ × R where in case of the M2-brane,
dim(M) = 2. For the sake of argument we will take the M2-brane to be
spherical, Σ = S2. We have not discussed such an object, but remind that
only globally this will alter some properties. Locally this will behave as a flat
membrane. In fact the procedure described below can be done for M2-branes
with the structure of any Riemaniann manifold: SN ,TN or CPN .

Any function on the S2 M2-brane depends on three coordinates,

F : Σ→ Σ, F = F (ξ1, ξ2, ξ3)

subject to the constraint ξ2
1 +ξ2

2 +ξ2
3 = 1 - we take the radius to be unitary as

we can always find a diffeomorphism φ(Σ) that fixes this. Furthermore the Σ
itself is subjected to a symplectic structure by means of {ξA, ξB} = εABCξC .
Now consider the Lie-algebra SU(2) with it’s N−dimensional representation,
with generators JA, A = 1, 2, 3. The Lie structure is defined by [JA, JB] =
iεABCJC . Now we wish to map the symplectic structure in a bijective way
onto the Lie-structure, by mapping

π : Symp(Σ)→MatN(SU(2)), π(ξA) =
2

N
JA (2.1)
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For this map to be well defined, we first of all need π({ξA, ξB}) = [JA, JB] -
which is true (upto a factor of i that will be absorbed into the map) because
of the explicit expressions of both the brackets - and we need to check that the
Jacobi-identity on the Lie-side is satisfied on the symplectic manifold, that
is, we need to check if {{ξA, ξB}, ξC} + {{ξC , ξA}, ξB} + {{ξB, ξC}, ξA} = 0,
which is easily checked.
With these remarks we construct the map such that

π({f, g}) =
−iN

2
[F,G]

for polynomials functions f, g on Σ and formal polynomial series in the poly-
nomial ring R[JA1 , JA2 , . . . , JAN

], JAi
∈ MatN(SU(2)), elements of the N-

dimensional matrix representation of the SU(2). In our example, Σ = S2

and functions are expanded in terms of spherical harmonics:

f(ξ1, ξ2, ξ3) =
∑
l,m

clmY
m
l (ξ1, ξ2, ξ3)

where in turn the harmonics are expanded as:

Y m
l (ξ1, ξ2, ξ3) =

Now using the map π as defined above, we can map this function onto an
element of the polynomial ring, finding

Ym
l = (

2

N
)l
∑

Now we establish the matrix form of the function of the membrane:

π(f) = F =
∑

clmYm
l

Hence we can map the Poisson bracket in (2.3) onto a matrix commutator:

{X,X}2 → [X,X]2

Now on the symplectic side, we may consider the average of a function f , on
the Σ with V ol(Σ) = 4π. This average is

< f >=
1

4π

∫
d2σf
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At the same the Lie-algebra function F has this sense of an average as

< F >=
1

N
Tr(F )

We will identify these two in a large N limit, or in general:

1

N
Tr →

N→∞

1

V ol(Σ)

∫
d2σ

2.4 5-branes in Matrix theory

We have seen that the construction of the M2-brane is from a matrix point of
view rather hands-on. The M5-brane plays a somewhat more peculiar role,
and in fact it in some polarization it seems to be missing in fundamental
matrix theory at all. To fix this, additional degrees of freedom are intro-
duced to fix this. This procedure is quite unnatural and is one of the hints
that Matrix theory is not by itself the final and complete description of full
M-theory. We will some back to more discrepancies later on, but lets first
investigate the five-brane. We really need the five-brane in order to impose
a Dirac quantization condition in Matrix theory.
As we formulated matrix theory in lightfront coordinates {X+, X−, X1, . . . , X9},
we can distinguish between two different types of 5-branes: one of which has
two of its sides stretched along the lightcone axis X±, called the longitudinal
5-brane (L5-brane), and one which has every side transverse to these two
axes - the transverse 5-brane (T5-brane).
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+-

i

Figure 2.1: The difference between an longitudinal and a transverse 5-brane.
The longitudinal 5-brane has two of its sides along the ± axis. The transverse
brane hangs on the axis labeled by i. In fact this axis is an 8-dimensional
manifold.

We try and look for this object in Matrix theory.
To do so describe we divide space-time coordinates into {Xm, Xa} with 1 ≤
m ≤ 4, 5 ≤ a ≤ 9 with Xm describing the five brane’s spatial coordinates.
Lets have the brane on the hyspersurfave Xa = xa0. Hence the introdution of
the brane globally breaks

SO(9)→ SO(4)× SO(5) = SO(4)‖ × SO(5)⊥

By the same token, let (ρ, ρ̇) denote the spinor indices on the brane, that is
in the SO(4), and (α, α̇) denote perpendicular spinor indices, in the SO(5).
As the 5-brane and the choice for it alligning introduces a system of prefer-
eation, it brakes half of the supersymmetries on worldsheet. Without loss of
generality say that (ηρα, η̄

ρ̇
α) are left unbroken while complementrary (ηρ̇α, η̄

ρ
α)

refrain from having susy partners.
As the five-brane does not seem to be embedded into the framework of Ma-
trix theory like the membrane was, the idea is to put it in by hand, that is to
say to introduce a new set of bosons and ferminons with the sole purpouse
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of describing the 5-brane. This procedure, which does work as is explained
below, is indeed a bit awkward, ans says more about the incompleteness off
the model then the nature of the five-brane.

Thus we introduce a set of superspace variables (vρρ̇, χαρ̇) a complex bo-
son and fermion respectively, and rather in analogy with the dimensional
reduction procudre described above, we now wrap the full Lagrangina down
to six dimension in order to write down the additional five-brane Lagrangian.
Recalling the position of the brane at Xa = x0 the Lagrangian reads:

L5−brane = |Dtv
ρρ̇|2 + χDtχ− vρ ˙rho(X

a − xa0)2vρρ̇ −
χρ̇α(Xa − xa0)γαβa χβρ̇ − vρρ̇(θ − θ0)ραχ

αρ̇ + vρρ̇[X
m, Xn]σρσmnv

ρ̇
σ − |v|4 (2.1)

This additional Lagrangian might look cumbersome, but the first two parts
are simply the kinetic terms of the new variables themselves supplemented
with two covariant corrections with repspect to the five-brane itself. Then
there is a coupling between the bosonic and fermionic terms, weighted by θ,
and then there is a mass term and a v.e.v. term respectively.
To check whether this approach works properly it should be checked if the
known interactions and processes that worked in original matrix theory, still
work with a five-brane in the background, so we check if the altered zero-
brane dynamics and interactions still coincide with the supergravity.

2.4.1 Dirac Quantization in M(atrix)

The presence of the M2 and M5 brane in M-theory assures a qunatization
of their charges because of the Dirac quantization condition (recall that M2
couples electrically to the 11D-SUGRA three-form, and the M5 brane couples
magnetically). In the case of Matrix theory we have seen that the five-brane
has a different and somewhat less manifest description then the two-brane,
so we need to inverstigate the quantization of charges a bit more carefull.
To this end we consider a two-brane in the background (2.2). Lets take for
the membrane matrix-coordinates (X5, X6) with the other coordinates in the
ground-state diagonal form with a scalar behaviour. We choose to represent
the brane-coordinates as X5 = R5P,X

6 = R6Q and rotate the matrices P
and Q such that [P,Q] = 2πi. To avoid confusion, bare in mind that this is
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not a second-quantization procedure.
Now as this membrane is embedded in a five-brane background, from an M-
theoretic point of view it should feel the presence of the five-brane trough
the magnetic flux of the three form AMNP . In concreto, we have a potential
Bµ =

∫
dX5dX6A56µ.

The clever idea of [19] is to seek this effect in Matrix theory in a Berry phase
due to the fermion zero modes. For this consider the membran motion X(t)
with ∂tX(t) � 0 so that a Born-Oppenheimer approximation allows for a
Berry fase one the vacuum:

〈X; 0| ∂
∂Xµ

|X; 0〉.

The Berry phase is a quantity in quantum mechanics that arises when slowly
varying one or more parameters in the moduli space around a loop. In this
example, for absoluteness the five-brane wavefunction that is to pick up a
phase should know have a sense of direction of the Xµ, and so only the
fermionic part χ in 2.2 will contribute. Now we have a two-brane in a five-
bran background, and lets take the coordinates ~X = (X7, X8, X8) transverse
to both these objects. Furthermore pick for the two-brane coordintes in the
explicit representation X5 = 2πiR5

d
dσ
, X5 = R6σ and have the fermionic part

of the Lagrangian (2.2) as:

H =

∫
dσχ̄(γ52πiR5

∂

∂σ
) + γ6R6σ + ~γ · ~X

Where we for rhe moment surpressed spinor indices and ~γ = −iγ5γ6~τ with τ
the vector of Pauli matrices. Now for chiral zero-modes under the γ5γ6 this
system is indeed identical to that of a spin-1

2
particle in a magnetic field if

we identify ~X with a magnetic field ~B and the Hamiltonian reduces for these
modes to

H = χ0
~B · ~τχ0.

This Berry phase establishes the Dirac quntization condition and tthe couling
between the two branes. That the coulping is not spoiled by higher chiral
modes is because each higher chiral mode comes with two Berry phases of
opposite chiralty, cancelling eachother.
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2.5 Matrix interactions

Do do computations on physical systems, e.g. boson scattering, we give a
more explicit form of the potential, in preperation for a computation on 2
boson scattering.

The central potential V = −1
2
Tr[X i, Xj]2 can be worked out as follows.

First of all note the the summation over i, j is pairwise, so let’s focus on one
term, e.g. V1 = −Tr 1

2
[X, Y ]. Now first of all lets look at a 2 × 2 example.

We notate the matrices as

X =

(
x1 αx12

αx21 x2

)
, Y =

(
y1 αy12

αy21 y2

)
(2.1)

and we introduce the handy variables ∆x = x2 − x1, ∆y = y2 − y1. We take
the matrices to be Hermitian, α12 = α∗21 so in this example we can drop the
subscripts. Now the potential reads

V (∆x,∆y, αx, αy) = 4|αxα∗y|2 + |αx∆y − αx∆y|2 (2.1)

Indeed this is a system of two non-linearaly coupled anharmonic oscillators.
More generally, for N particles, we should split up our matrices in terms of
its diagonal part and its off-diagonal part (a U(1) × SU(N) division) and
calculate the potential. Now the matrix looks like

X =


x1

x2 (αxij)
x3

(αxji) x4

x5


and we introduce ∆x

ij = xj − xi. We do the same for the other coordinates
Y, Z, . . .. Now the potential is readily generalized:

V = Det(Λ)2 −
∑
i,j,n,m

(αmij∆
n
ij + αnij∆

m
ij )

2 (2.1)

with Λ = 4(αij). To convince ourselves that M(atrix) theory is in a way a
proper framework to describe the degrees of freedom of an eleven-dimensional
SUGRA, we should match objects, fields and interactions. For this section
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we will study a system the system of two gravitions and check if the descrip-
tion mathces the SUGRA side. With the remarks made above in mind, we
consider a two-boson collision and by comparision to the oscillator we deter-
mine its potential.
Like in GR, we do not expect to be able to immideiatly do an exact cal-
culation so we work in a background field method and we’ll make some
approximations along the way. Starting out with the lagrnaginan (2.1) we
express the bosonic fields in terms of a background plus fluctuations

X i = Bi +H i

with |H i| � 1, and here |H| denotes the entry-wise absolute value (so that
the condition |H| � 1 surely caries over to the determinant). Now recalling
the YM origin, only the fields X i were interpreted as matrix coordinates, the
ter X0 = A is still a potential to be cast in the covariant expression of the
derivative. In the background approach we thus have a covariant derivative
with respect to this background, Dbg

µ A
µ = ∂tA − i[Bi, X i] and it proves

convenient to impose a Lorentz-like gauge for this:

Dbg
µ A

µ = 0 (2.1)

Now this gauge fixing procedure deserves some care. Recall from the Fadeev-
Popov procedure the philosophy of gauge fixing actions:
In calculating partition functions,

Z =

∫
[DAµ]eiS[A]

we integrate over too many gague equavalent configurations. Instead, if G
is the gauge group, we want to integrate over only one represetant of the
group, that is only one gauge configuration. The set of gauge inequivalences
is denoted [G/H] the set generated by unique representants of iets ideal. So
we really need:

Z =

∫
[G/H]

[DAµ]eiS[A]

To gauge-fix the term we are certainly to work with the above expression.
Analytically we can impose a gauge fixing in any Lagraninging by introducing
a Lagrange multiplier with gauge fixing term Sg.f., so that the equations of
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motion of that very multiplier yield the gauge condition. Analytically this is
fine at the cost of a Fadeev-Popov determinant:

Z =

∫
[DAµ] ∆

FP
ei(S[A]+Sg.f.)

The clever trick due to those Fadeev and Popov is to represent the deter-
minant as a Grassmann expononent so that an extra term is added to the
action, the ghost term Sghost:

Z =

∫
[DAµ][DC][DC̄]ei(S[A]+Sg.f.+Sghost)

In the example above, the additional ghost action yields

Sghost = ∂τC∂τ C̄ − [Bi, C̄][Bi, C].

Now we are ready to analyze the full action with respect to the gauge con-
dition (2.5). Plugging in the background expanions into the Larganginan,
inserting the ghosts and taking Euclidian time (τ = it, A → −iA), yields a
full action:

S =
1

2R

∫
Tr
[
(∂τB

i)2 + (∂τY
i)2 + (∂τA)2 + (∂τC)2 +

1

2
[Bi, Bj]2 − [Bi, Y j]2 − [Bi, A]2 − [Bi, C]2

−2iḂj[A, Y j] + θT θ̇ − θTγi[Bi, θ]
]

+O(A3, C3, Y 3, θ3) (2.0)

In this expressions, squares involving the ghosts are actually to be read as
(∂τC)2 = (∂τ C̄)(∂τC) and [Bi, C]2 = [Bi, C̄][Bi, C].
To take a toy model, lets look at a two-boson system - a system that de-
scribes two gravitons in M(atrix)-tehory, and place it in its centre of mass
frame, with an impact paramter b > 0. Let the motion be along X1 and the
impact paramter be parematrized along X2 so the system is represented in
the background:

B1 =

(
vt 0
0 −vt

)
, B2 =

(
b 0
0 −b

)
, Bi = 0, i > 2 (2.0)

This is a 2 × 2 system, hence the matrices are in U(2), with generators
[ta, tb] = −εabctc = fabctc for example ta = i

2
σa the Pauli matrices. In order
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to calculate the potentials we need such an algebra for explicity (X i = X i
at
a).

Now the procedure is straightforward: the background field is plugged into
(2.2). Note that all the kinetic parts in de Lagrangian should be partially
integrated to yield terms like −∂2

τY . Well, in terms of this lie-algebra valued
matrices, we obtain the action

S =
2∑

a=1

{
(
1

2
Y i
a +

1

2
Aa + C̄a)(∂

2
τ − r2)(

1

2
Y i
a +

1

2
Aa + Ca)

}
+

(Y i
3 + A3 + C̄3)∂2

τ (Y
i

3 + A3 + C3) + 4v(A1Y2 − A2Y1) + θT+(∂τ − vtγ1 − bγ2)θ−+(2.0)

Here r2 = (vτ)2 + b2.
Now we work by the philosophy of the introduction of the section and realte
this system to that of the harmonical oscillator. We need to determine the
masses of the oscillators, which is done by standard procedure: we write the
energy in terms of the oscillator matrix and determine the eigenvalues.
What we see is that each element of the set {A, Y i, C, ψ) contributes to the
oscillator. We have two ghosts C bot with mass r2, eight bosons Y i with
mass r2,

In a ground-state approximantion we are left with an effective potential

Veff =
∑
b

ωb −
∑
f

ωf −
∑
gh

ωgh =

(
8 · r +

√
r2 + 2v +

√
r2 − 2v

)
b
−
(
2 · r

)
g
−
(

8 ·
√
r2 + v + 8 ·

√
r2 − v

)
f
(2.0)

expaniding this potential in a series in v/r2, all the odd powers in v cancel,
and in this full supersymmetry we find

V = −15

16

v4

r7
+O(

v6

r11
) (2.0)

In case of lower less susy, for example in fewer dimensions, the lowest order
contribution is V = −7

8
v2

r5
.

2.6 Matrix String Theory

Matrix theory allows for a picturesque way of describing string interactions.
In fact we must get an idea of how string theory emerges from Matrix the-
ory. [8] While doing so, we will encounter a richer spectrum of symmetries,
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as described below.
Recall how the world-sheet of a string is described by the coordinatesXµ(σ, τ)
where, in the case of the superstring, µ = 0, ..., 9. Preferring a light-cone
gauge we introduce X± = 1

2

√
2(X0 ±XD−1). Of these fields, X− will serve

as a time-component and X+ gets compactified on a circle of radius R, while
the eight fields X i, i = 1, ..., 8 will be coined the transverse fields. Thus our
theory is embedded in S1 ×M8, M8 a Riemanian manifold. The compacti-
fication gives rise to a winding number N , so that to the time-like field X+

a momentum p+ is associated, with p+ = N/R. The winding number is
interpreted as the number of times the string has wrapped itself along the
direction of compactification.
Thus, in units of R, the spatial world-sheet coordinate σ runs in the half-open
interval [0, N [≡ AN . In order to describe te joining and splitting of strings
we decide to make a partition of this interval:

AN =
N⋃
I=1

AI , AI = [I − 1, I[ (2.0)

At the same time we introduce a partition of the transverse fields:

X i
I = X i|AI

(2.0)

That is to say, X i
I is the restriction of X i to the partition cell AI . In each

partition field, σ now runs in [0, 1[ and the have the identification:

X i
I(σ + 1, τ) = X i

I+1(σ, τ). (2.0)

We can think of this as if, instead of having one string, we now have N
strings glued together. Now interpret these restricted fields as eigenvalues of
an N ×N matrix, so that the field itself gets a matrix description:

X i =


X i

1

X i
2

. . .
. . .

X i
N

 (2.0)

We decomposed, at least locally: R8 7→ (R8)N . The previous chapters have
proven the justification of thus construction.
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In terms of the matrices, relation (2.6) can be written as:

X i(σ + 1) = V X i(σ)V −1 (2.0)

where we introduced the N ×N matrix V:

VN =


1

1
. . .

1
1


where the subscript of V denotes it’s dimensionality. Going back to the
partition of the interval, we would like to have a description of a multi-string
state. To do so we introduce sub-partitions of AN .
Let n1 and n2 be two integers such that n1 + n2 = N . Now introduce the
subpartition of AN as:

AN = An1 ∪ An2 ,

with An1 =
⋃n1

I=1[I − 1, I[ and An2 it’s complement. Finer subpartitions are
defined inductively. A two-string state is now obtained by posing boundery
conditions to the restriction of the fields to An1 and An2 indepently. That
is: X i

n1
= X i

1 and X i
N = X i

n1+1. Thus the splitting of a string of length
N into two strings of lenght n1 and n2 is described by the splitting of an
N ×N matrix into two sub-matrices, n1× n1 and n2× n2 respectively. Note
how the momenta of the seperate strings become p+

k = nk/R. The boundary
conditions in the sub-partitions are again described by the matrix V as:
X i(σ + 1) = Vnk

X i(σ)V −1
nk

.
Due to the periodic boundary-conditions, we are now in fact studying the
partition of an interval into cycles:

(12 · · ·N) 7→ (12 · · ·n1)(n1 + 1 · · ·n1 + n2) · · · (N − nk + 1 · · ·N) (2.0)

Each particular partition corresponds uniquely to a conjugacy class of SN ,
the symmetric group in N integers.
Now to adept group theoretic language, note that the group SN acts on the
fields X i

I as:
g ·X i

I = X i
g(I), g ∈ SN
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Thus, for each representative of a conjugacy class [g] of the element g we
observe:

X(σ + 1) ' gX(σ) (2.0)

We might as well have looked at the field Y = hX, with h any element of SN ,
(since it doesn’t matter how we arrange the matrix (2.6)), with the boundary
conditions Y (σ+ 1) = hgh−1Y (σ), so the equivalence is well defined only for
conjugates of g. The total manifold of our theory becomes the quotient
(R8)N/SN , called an orbifold. We now are in the position to say more on the
Hilbert space of this theory. First of all, let Hg be the hilbert space of states
subject to the boundary condition (2.6). Now the symmetric group acts on
thuis Hilbert space as

h(Hg)→ Hhgh−1

Now let Cg = {h|[h, g] = 0} the centralizer subgroup. It is clear for h ∈ Cg,
h(Hg) = Hg. So not we can decompose the total Hilbert space as Hg’s wich
are invariant under their own centralizer or:

H(M/G) =
⊕
[g]

H̃g(M) (2.0)

with H̃g the sub Hilbert sector left invariant under actions from the central-
izer subgroup.
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Chapter 3

Matrix Cosmology

The scales of energy and length of the theory of strings are generally to ex-
treme to expect that we will detect even a small hint of its presence at inter-
actions that we observe at the earth. We do not expect any application of the
string theoretic framework to the field of the Standard Model and the refining
of its parameters. The only hope there is is that indeed the Standard Model,
bases on he famous gauge group-product SU(3)colour × (SU(2) × U(1))Y is
in fact merely an effective theory, and that we should think of the gauge
group-product as embedded in a smaller gauge-group, for example SU(5),
SO(10) or even some of the exceptional semi-simple Lie-groups. If so, in-
deed string theory would become more promising, as it has sectors based on
gauge-groups such as SO(32) of E8×E8 which might be stems of a sequence
of embeddings such as SU(3)×SU(2)×U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E8. Now
even if a GUT would pop up, that is even if the Large Hadron Collider would
detect high-energetic GUT particles in say SO(10) then still that does not
say awkwardly much about the relevance of the E8 because this semi-simple
Lie-group has much more generators (248 to be precise, each of which should
resemble some kind of gauge boson). One might go around this an reason
that string theory is more like an abstract theory, and that any of (and only)
it’s sub-theories - theories with sub groups of the relevant gauge groups - are
realized in physical universes. But this is not satisfactory, really because of
the nature of E8. The eighth exceptional group is the biggest of the excep-
tional family and admits pretty much any Lie-group as a subgroup, hence
making string theory more like a theory of anything instead of everything.

The theory of General Relativity has been varified mainly outside the
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earth atmosphere - in our planetary system and far beyond. This is so be-
cause the lenght-scales at which the curvature of space-time become relevant
at length-scales beyond the terrestrial scale

The entrance of non-commuting matrices as representatives for the co-
ordinates of a system op N Dp-branes, needed that these N branes were
very close together. In any typical Big-Bang cosmology, it is proposed that
around the time of the big-bang, energy densities are extremely high and
length-scales extremely low. This makes us suspect that as we run back in
time from now, the description of local coordinates in de universe should get
more and more a matrix, non-commuting character. We will in fact investi-
gate such a scenario to find that indeed at early times, the universe should
have a strong matrix-like character.

time commutativity

Big-Bang

Now
~0

Figure 3.1: As we run back in time, Dp-brane coordinates will tend to behave
more and more like non-commuting matrices

As the matrix proposal should be valid around and below the string
length-scale, we will consider other extremely high-energetic, dense and com-
pact objects like black holes.

3.1 A Matrix Big Bang

As Matrix theory originated by investigating physics at an below the string
length scale, it is unrealisic to expect for direct evidence. However, if there is
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one consequence of the matrix proposal that should become visible or have
consequence, then it is the appearence of the new, off-diagonal degrees of
freedom. After all, to any physical system that first had its positional degrees
of freedom described by N variables, one now attaches additional degrees,
more or less one degree for every pair, in a hermitian way, so this introduces
about 1

2
N2 new variables that behave more or less like (an)harmonic coupled

oscillators, each oscillator with its own frequency and energy. We migth
indeed expect a macroscopic system to be effected by these additional, in
principle invisible variables, that is each macroscopic system has underlying
micropscopic physics that hides the off-diagonal variables, but albeit these
variables are hidden in the sense that they aer not on the diagonal and thus
do not have welll-defined notion of position in space-time, they do contribute
to the microscopic, and in the in to the macroscopic frequencies and energies.
Whatismore, as at these extreme space-time and energy scales the concept
of space itself finds a redefinition, the matrix proposal may be promising to
get a hold on cosmological space-time singularities.
As the effects are so small, only the largest of closed systems should expose
these underlying micropscopics. We will look at possible consequnces in two
such large systems: black holes and the universe itself.

3.1.1 A specific dilaton dependence

To model a string theoretic cosmology, we have to make some remarks on
the role of the dilatonic field that is present in both of the type-II theories.
An interesting example of a non-constant dilaton background Φ = Φ(Xµ) is
the choice

Φ(xµ, X+) = −QX+ (3.0)

Here X+ denotes the lightlike lightcone coordinate and {xµ} is the set of
coordinateds complimentary to X+. We call this the lightlike linear dilaton.
Generally, the linear dilaton is defined as Φ(xµ, X) = qX where now X is
just a plain coordinate and again {xµ} the compliment of X. It is well known
that this background allows for preservation of conformal invariance. To see
this, the stress-enregy tensor is easily calculated as

T (z) = −2(∂Xµ∂Xµ + ∂X∂X) + q∂2X

and the o.p.e. of T (z) with itsels yields the additional term in the fourth
order pole equal to 3q2, obtaining a central charge c = D+3q2. For origianal
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bosonic theory stays conformally invariant for c = 26 hence for any D we

can choose k =
√

26−D
3

, and D becomes something like a free parameter.

Normally this introduces non-critical string-theories for which indeed we can
pick D 6= 26.
Yet in the case of the lightlike linear dilaton, (3.1.1), we should think of Q
itself as a lightlike coordinate with Q2 = 0, circumventing non-criticality.
In this dilaton dependence, the string couling becomes

gs = e−QX
+

,

the coupling is time-dependent. That the value of Q is of no physical signif-
icane stems from the scale-invariance of the lightcone coordinates. Namely,
the flat ten-dimensional metric reads

ds2 = −2dX+dX− + (dX i)2,

which is left invariant under rescalings X+ → aX+, X− → a−1X−. In this
string-frame the only dynamics takes place in the dilaton itself. In Einstein
frame, this is not so, as

ds2
E =

1
√
gs

= eQX
+/2ds2 = e−QX

+/2(2dX+dX− + (dX i)2)

Now space-time itself is a dynamical quantity and the notion of space-time
originates in X+ →∞, which we will identify with the time of a Big Bang.
Now form a matrix theory perspective, this dilaton dependence could be
interpreted in two ways. First of all, our action

L =

∫
1

2R
Tr
[
D0X

iD0X
i +

1

2g2
s

[Xi, X
j]2 + θT (iθ̇ − 1

gs
γi[X

i, θ])
]

could be interpreted as a t theory with a time-dependent Yang-Mills coupling,

gYM = 1/gs = eQX
+

due to the dynamics of the dilaton. Now we see how at late times the self-
interaction blows up and the masses of the off-diagonal elemens get very
large. To make the statement precise: the masses of the off-diagonal terms
get generally exited above the string-theory mass gap and decouple from the
physics: they can be integrated out. On the other hand, at early times these
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masses become light and at or below the mass-gap.
There is a more geometric interpretation to this. For this, lets write this
action with the flat metric explicitly, for example take the self interaction:

1

g2
s

[Xi, X
j]2 =

1

g2
s

ηjmηin
(
X iXjXmXn+XjX iXnXm−X iXjXnXm−XjX iXmXn

)
Considering rescalings of the metric η, η → f(τ)η, this might as wel be

intepreted as a rescaling of the coupling: gs → f−1gs. The same is true for
the fermionic part. Or the other way around, a rescaling of the couling can
be interpreted as a rescaling of the metric. so, in our example, we should
evaluate the SYM worldsheet at a metric

ds2 = eQτ (−dτ 2 + dσ2)

where we explicitely interpret X+ as time. Now the nature of the big-bang
character is more clear. At early times, say at the big bang, the metric is
turned on, so time gets a preferred role over space - it becomes a modulus
that tweaks the presence op space.

3.2 Matrix Black Holes

The formulation of the BFSS proposals demands a limit of N → ∞. This
limit is rather un-physical in the sense that we cannot compute a generic
rate of accuracy for a given large N . This rate of accuracy really depends of
specific physical situations under consideration, for example graviton scatter-
ing. Now as N increases, more and more degrees of freedom are introduced
into the problem - the off-diagonal terms that is. At a certain stage, these
degrees do not contribute so much to the model: a lot of them will end up
in a ground state. Now a legitimate question to ask is: what is a minimum
value Nmin for N: at what stage does the model become reliable enough in a
given physical constellation?
To address this question for a specific configuration, lets consider a black
hole[14], and try to describe it in terms of the matrix degrees of freedom.
First of all, this minimum, or cut-off, should depend on the degrees of free-
dom on the black hole itself, thus on its entropy.

In the DLCQ, the coordinate X− is compactified on a circle of radius R,
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thus the light-like momentum P− is quantized in units of 1/R: P− = N/R.
This N divides the lightlike coordinate X− into sectors labeled by N , and
indeed the IMF is defined by sending N →∞. Now let the black-hole be in a
rest frame, that is, pick coordinates {X+, X−, X1, . . . , X9} = {X+, X−, X⊥}
and take an inertial frame with {P+, P−, P⊥} = {M,M, 0}. The radius of
the black hole is Rs, the Schwarzschild radius, and the black hole is embedded
into the coordinate frame as in figure (3.2).

1

2

...

n

+ -

Figure 3.2: A black hole embedded in the light-front frame. Generally, it
will not fit into the inner, fundamental sector marked by the compactification
radius R (the dark-grey sector). The fundamental domain really only refers
to the X+-domain.

The black hole in general, for large enough Rs, will not fit into the fun-
damental sector of the light-like coordinate. But we may boost the frame in
such a way that by Lorentz-contraction it will fit into the first sector. Let us
make the boost such that its longitudinal momentum becomes N/R, hence
giving a contraction: ∆X− = M

P−
Rs = MR

N
Rs. For the black hole to fit in the

longitudinal domain is R > ∆X− thus,

N > MRs = Nmin (3.0)

Simply extending the Schwarzschild solution of the Einstein field-equations to
arbitrary dimension D, yields a Schwarzschild radius of Rs ∝ (GM)1/(D−3),
thus explicitly for the minimum Nmin:

Nmin ∝ G
1

D−3M
D−2
D−3 (3.0)
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And thrilling enough, the right hand side of equation (3.2) is proportional to
the Beckenstein-Hawking entropy.
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Chapter 4

Layman Summary

As this document is written, the group of particle physicists working at the
Large Hadron Collider is gathering in Genève to discuss the results of the
past year’s measurements. In the time frame in which the collider has been
active, it indeed only rediscovered particles that were already known to exist
and even though there are some slight peaks in the data inside Higgs-window,
we have not yet exclusive new results - but it has been announced that within
two years we will have a conclusive result as to the existence of the Higgs-
boson. Let us for the moment imagine that the Higgs would be detected.
For the physics community, this would really be a celebration as it would
more or less complete our understanding of a great deal of the microscopic
theory of particles and their interactions - that is up to some length scale.
We might compare this results with Mendeleev’s proposition of the atomic
table, in which he actually predicted the existence of some atoms with spe-
cific properties. For this model, the actual discovery of those atoms really
was a celebration of this table and rightfully established this model as a great
scientific breakthrough.
The standard model a table just like that of Mendeleev’s, it only tries to table
the fundamental particles at smaller scales (the sub-constituents of atoms).
The current status quo is that we have discovered every single particle of
the table, except the so-called Higgs boson. So detection of the Higgs would
more or less confirm the way we think of elementary particles.
But Mendeleev’s table and the discovery of all the atoms did not mean the
end of atomic physics whatsoever. And equally the detection of the Higgs
will not imply the end of particle physics at all. It is very likely that, anal-
ogously to the atom, the fundamental particles like electrons and quarks,
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are themselves not as elementary as we may think but are compounds of
more fundamental objects. String theory is a theory that investigates such
microscopics by proposing that in fact all known particles are actually con-
stituents or vibrations of strings. This rather innocent looking proposal has
rather extreme conceptual consequences. For instance it demands that the
four dimensional world as we perceive it is in fact ten-dimensional, with the
six missing dimensions curled up on tiny geometric objects with extremely
small volumes.
One specific conceptual implications is that at the smallest length-scales the
notion of position and space gets a different description. To make this exten-
sion of the description of position concrete, consider a system of two objects,
say the system of two bugs in a room. For each moment in time, to completely
describe the positions of this system, we must give for each bug three num-
bers or coordinates, (x, y, z)bug1, (x, y, z)bug2. We might as well pair these two
arrays as {(x1, x2), (y1, y2), (z1, z2)}. It might sound trivial, but these num-
bers are, like any kind of numbers, subject to the property that x · y = y · x.
In matrix theory, at the smallest length-scale, these numbers are replaced by
bigger geometrical objects, matrices:

(x1, x2)→ X =

(
x1 a
b x2

)
where a and b are interaction terms between the two bugs. If the bugs are
far apart, these interaction terms are pretty much equal to zero, but when
they approach eachother they are to be taken into account. A most drastic
difference between matrices and numbers is that gerenally for two matrices:
X · Y 6= Y · X Only when all the interaction terms vansish, that is when
the bugs are far apart, we have X · Y = Y · X and the ordinary notion of
coordinate numbers is re-established.
Indeed in everyday life, at length-scales we are used to, such description are
not relevant. Yet, in huge objects that are extremely compact, the effect of
this alternative description enters at the level of the energy of the system.
There is a meausure of the amount in which two objects fail to obey yhe
law x · y = y · x, and this object is simply the entity x · y = y · x. We call
this measure the commutator and denote it with [x, y]. If [x, y] = 0, we are
dealing with regular mathematical objects, but if not, if [x, y] 6= 0 care is
needed. In the energy, this commutator enters in the form κ[x, y]2, where
κ is some constant. This contribtution does become relevant in such large
compact systems. Examples of such systems are black holes and a universe
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around the time of a big-bang. This thesis investigates these effects in such
systems.
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