REVIEW OF NEAR-FORWARD 7N SCATTERING AMPLITUDES AT HIGH ENERGIES

G. HOHLER

Introduction

7N scattering at high energies and small momentum transfer has
been investigated by many authors from different points of view. It is
the aim of the present article to summarize the information following
from experimental data and general principles as unitarity, analyticity
and charge independence. The treatment is based on recent work of the
Karlsruhe group and it has not been attempted to give a coﬁplete survey
of the existing literature.

(1)

The invariant amplitudes are defined in the usual way
T = =A@t +3 y.(a+a") B(u,t) (1.1)

where v = (s - u)/4M and s,t,u are the Mandelstam variables. M = nucleon
mass, h = mﬂ+ = 1 unless stated otherwise. In addition to A and B we
introduce a combination

C(v,t) = A + B (1.2)

which occurs in the optical theorem. C and B are the t-channel helicity
no flip and flip amplitudes. Some authors use the notation A' instead

of C.
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The forward amplitudes c? (v,0)

2.1 Imaginary parts
"
The optical theorem allows to calculate Im C™ (v,0) from total

(2)

cross section data , which are available up to 65 GeV/c

Im ¢*w = ko = % [U(Tr—p) + G(Tr+p):l (2.1)

(Notation : C(v,0) = C(w), v= w+ t/4M. w= V1 + k2 = pion lab.energy).
o' decreases from 27.8 mb at 5 GeV/c to 24.5 mb at 20 GeV/c and all
published fits suggested a further decrease at higher energies. Therefore
it was a surprise that in the Serpuchov experiment o* was found to be
practically constant between 25 and 65 GeV/c. Nevertheless the data can
be fitted by a reasonable curve and the connection between the Brookhaven
and Serpuchov data at 20 GeV/c is better than that of the two series

of Brookhaven data at 8 GeV/c (Fig. 1). (At Serpuchov the c(w+p) "data"

have been obtained from T n scattering in a T d experiment).

In the 5-20 GeV/c range o decreases according to a power law
o = 033 K O® @.2)

Fig. 2a shows that the Serpukov data are lying as well as it could be on
the same straight line. Of course one cannot exclude that o tends to a
constant in the high energy limit, but the present data do not give an

indication in favour of this possibility.

One could think that Fig. 2a is in contradiction with another

. + . -1/2 , .
plot of the same data, showing o(7 p) as a function of k Fig. 2bt)

(3)

(see for instance Fig. 12 in ref. . Plots of this type led many authors
to the conclusion that the data suggest a finite o in the high energy
limit, encouraging investigations on possible violations of Pumeranchuk's
theorem. Obviously one has to prefer a direct plot of the quartity of

interest. The second plot is misleading as far as o 1is concerned.

A smooth interpolation of all recent total cross secwian :at3

including results presented at the Kiev Conference 1970 has b..x:



(2)"

given in our "Tables of 7N Forward Amplitudes . Tables and references

of experimental data available in Nov. 1969 can be found in the compilation

)

of Giacomelli et al.

2.2 Real parts
Experimental information on the real parts at high energies can be

obtained in two ways :

i) Re C, (w) follows from elastic scattering experiments in the

)

Coulomb interference region

ii) |Re C (w)|can be determined from an extrapolation of charge

exchange angular distributions to the forward direction

dog 1 -2 -, .2
T (0°) = — [ReC W™+ (ImC ()7} (2.3)

lab 8

if Im C° (w) is calculated from ¢ , using the optical theorem. The compila-

(4)

contains all data available in Nov. 1969. A

(6)

collection of more recent data is given in Ref. -

tion of Giacomelli et al.

A theoretical prediction for Re c* (w) follows from forward dispersion
+
relations, if an assumption on the high energy behaviour of ¢~ is made. The

isospin even and odd cases will be discussed separately.

2.2.1 RecC’ (w)
The dispersion relation reads

4 g2y P2 % Jua e

2y, 27 p vz 7
M(1-wp) (o mB) )k k

Ra C+(w)= Re CT(1)+

where wg = 1/2M. In order to show clearly the influence of the high energy

contribution on the real part, we rewrite the dispersion relation in the

(7

following way



TGk fp = TR @.5)

where
2,2
i + + f'k
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If kz << kg, the integral in (2.7) can be approximated by the first
term of a power series
©
2 IR - SN
IOk = agki+..., ap= 2J A CIEIACO) (2.8)
2n K k .
[}
Under rather weak conditions on o+(k') the first term should be a good
approximation up to at least ko/4.
If (2.8) is inserted, (2.5) contains 3 parameters : Re ct (L,
a, and fz. It turns out that the dependence on f2 is so weak that its
value has to be determined from another dispersion relation (cf. Ref.(a’g).

Inserting f2 = 0.081 and Re ct (m)exp from phase shifts and Coulomb
interference experiments, the parameters Re c* (1) and a, can be determined

from (2.5), (2.8).

The quantity Re ct (1) is essentially the s-wave scattering

length
+ M+1 _+
Re C (1) = g M fort (2.9)
Its determination has recently been discussed in Ref.(lo). The numerical

value is small and not even the sign is well-determined at present (see

Ref. (®) for earlier determinations).



If ko 220 GeV/c, I(k’ko)exp is comparable with the uncertainty
of Re C+ (w) in the energy region, where phase shifts are available. In
the region of the Coulomb interference data, a plot of I(k,ko)exp shows
that the first term of the expansion (2.8) is a reasonable approximation
up to about 15 GeV/c or even further. This result is confirmed by the
fact that the evaluation of equ. (2.7) according to models which are in
agreement with the Serpuchov data gives a straight line in the above

momentum interval (Fig. 3).

Unfortunately this result is in contradiction to Lindenbaum's

hope that Re C+ —-data and dispersion relations correspond to a "crystal
ball that can view the road to Asymptopia"(ll). Even if the data were
more accurate, our discussion shows that one obtains information mainly
on the first term of the expansion (2.8). In fact the "crystal ball" did
not show that the decrease of 0+ changes to a constant behaviour already

a few GeV/c above Lindenbaum's highest momentum.

Furthermore it seems that the result of the very . difficult Coulomb
(7), which was not noticed in

5

Lindenbaum's discussion. The data below 15 GeV/c give ) exp (2 £0.5) 10 °,
bl

which is appreciably larger than the contribution to the integral (2.8) from

interference experiment has a systematic error

the interval 20...€5 GeV/c, if the Serpuchov data are inserted. It is hard

to see, how the missing part could be obtained from a reasonable extrapolation
of c+ to higher momenta. Another aspect of the same discrepancy is the

(12)

deviation in Fig. 17 of Ref.

Originally the Coulomb interference experiment was motivated as
an attempt to test microscopic causality. This problem is discussed from

%)

our point of view in Ref.

It is clear from (2.5) and Fig. 3 how a model for the high
energy behaviour cen be tested and how it has to be constructed in order
to be compatible with all data and analyticity. The main point is to
introduce one parameter which can be adjusted to give the correct value of

a, in (2.8).



Recently several authors have proposed other methods fer testi..
high energy models without showing that there is any advantage in comparicun
with our simple procedure. In fact, if a model fulfils (2.5) (Fig. 3), it
cannot be ruled out unless one imposes additional conditions. If (2.5) is
violated, it can happen that other tests are fulfilled, but this would

only indicate that these tests use only part of the informatiomn.

In particular it is hard to see, why it should be better to uss
contour integrals (Refs.(3’13)) or the reciprocal amplitude (Ref.,(u')e piieass
it is easy to notice disadvantages of these methods. Since the first ter:
of the expansion (2.8) dominates strongly in the region of interest, it
does not help to consider other expansions which have a better convergznca

(Re£. (1)),

Usually it is expected that ot will show an appreciable energy

(12)). Thera

dependence in the energy range of the Batavia machine (Ref.
remains the possibility that one will find essentially the same constancy
as in the range of the Serpuchov machine. This would suggest that the

integral

j [:o+(w) - 0+(G>):] dk
o (2.10)

exists. One could think that a serious difficulty would occur in this case,
remembering Igi's famous argument, which led to the introduction of the

P' Regge pole(16)

. However Igi's conclusion was based on a tacit assumption,
which has no theoretical foundation. Obviously he had not seen an earlier

paper, in which Lehmann's sum rule was derived(17)

Re ct(s) = Re CT(1)+ —T2 . - 2

M(l—'(‘dé) T (2.11)

2 = + +
b f 2 J dk [G (w)-o (W)] .
+
In this case the asymptotic behaviour of Im C is not simply related tc
that of Re C+, since the low energy contribution to the dispersion integral

s s +
is important even for Re C (w) at vory large w.



2,2.2 Re C_ {(w)

The unsubtracted dispersion relation reads

Re G (w) _ 87 £ gf k' k'2
(

w mz - mg " k'2 - kz) w'

o (w") (2.12)

o
In order to treat the unknown high energy behaviour of o carefully, we
perform a subtraction in the integral(la) and write the dispersion relation

in the following way

- 2 pt 1 - 1
Y = Re C () exp - -—kz % ———'02 (m; (wz - wlzs)
81 w 4 w k' -k
o
2 by [] - T
- 2.k dd {% P K de' Ao (w)2 (2.13)
47 k'T -k

[
The fit (2.2) has been used for g up to infinity. In order to correct

for a possible difference A o between the fit and the true ¢ , the
integral on the r.h.s. was added. |Re c” (w)‘exp follows from charge
exchange data as described in § 2.2. The choice of the sign is discussed

in detail in Refs.(ﬁ’lg).

Fig. 4 shows a plot of y as a function of w2 - w;

straight line at low energies and, if A ¢ 1is large enough, a curvature

. We expect a

at higher energies. Fig. 4 shows that not even the sign of a curvature
can be detected. Small deviations can be ascribed to errors in the analysis

(6) (%)

of the charge exchange data as discussed in Ref.

We conclude that there are no indications for a violation of
¢ 1 e-independence or of our analyticity assumption. Possible deviations
from the power law (2.2) (including a finite high energy limit of ¢ )
occur in such a way that the integral on the r.h.s. of equ. (2.13) is

néglig; le in the energy range of the experimental data.

ie slope of the straight line in Fig. 4 gives a very accurate

determination of J ¢ J = - 0.0485 + 0.0005. If the unsubtracted dispersion

(x) However one should notice that the separation of strong and
electromagnetic contributions to the amplitude is not yet well
understood at low energies (see, for instance § 7 in Ref. 6 ).

AL



integral exists J is an integral over total cross sections

R 5 L) (2.14)

The interesting point is now that an accurate determination of J is
already possible from Re ¢ -data in the 1-6 GeV/c region, where the
high energy contribution (k > 20 GeV/c) to the subtracted integral
on both sides of equ. (2.13) is negligible. Subtracting from J (2.14}
the known part (0 < k < ko = 20 GeV), one obtains a value for the

high energy part of (2.14)

L ) j dk " W) = (40 t5) . 10” (2.157
2T
k

is analogy to (2.8).

It is very interesting to compare the result (2.15) with a
direct evaluation of the integral, assuming that the power law (2.2)
is valid up to infinity. The two values agree within the errors and
we conclude that this is a good argument in favour of the validity
of the unsubtracted dispersion relation and of the Pomeranchuk theorem.
If the integral (2.15) would be divergent, the agreement of the two

numbers would have to be considered as fortuitous.

Another discussion of the real parts has recently been publ:ished

by Horn and Yahil(lg)

. The authors came to a different conclusion, but:
this is obviously due to the fact that they ignored most of the information
following from charge-exchange experiments. They used only one of the

nine experiments on which Fig. 4 is based.

Our treatment is also at variance with a recent preprint by
.. (20 . : . : .
W1t( ), who started with the remark that the usual dispersion relation is

not a powerful tool for analyzing high energy data. He proposed another

464



method, claiming that it would be helpful in rejecting otherwise
acceptable models. However it is hard to see, how a function c” (w),
which fulfills the usual dispersion relation and is a good interpolation
of all relevant data could be rejected by any other method, unless new
conditions are imposed in addition to analyticity. Furthermore Wit's
calculation has the difficulty that his input for Re C~ is not quite
consistent with the usual dispersion relation and the high energy model,

which is being tested.

+
Derivative of the Amplitude C~
(21)

3.1 Isospin even case

Fixed-t dispersion relations are useful not only at t = O but
also in the t-interval O < t < - 26, in which Im C can be calculated
from phase shifts. However it is clear that the method is less powerful

than at t = 0, where Im C follows from total cross sections.

Aside from C+ (v,0) the most favourable case is .the derivative
+
(3/3t) C at t = 0, since information on the imaginary part can be obtained
from the slope of the diffraction peak and, even more directly, from the

()

analysis of Coulomb interference experiment

The dispersion relation reads

st = st + s (w) +

T |
f B t=0 dow'
-
1

(3.1)
1
J do’ 2w tw 4 (u',0)
2 2
(w' + w) :
1

+

1!

whaizs C 15 now considerad as a function of w and t, the derivative being

+ .
taken at fixed w. $7 {w) is defined by

P o= L (3.2)



and S denotes the nucleon Born term. At high energies it is convenient

to 1ntroduce the slope parameter b* (w)

2 Im ¢ (w,t)

3t W) oF (W) (3.3)

NIW

t=0

+
The determination of the subtraction constant S (0) has been

2
discussed in Refs.(lo’ D

st (0 = 1.13 + 0.10 (3.4)

The same fit gives information on a weighted average of b+ (w = 2 GeV)

©

bt s = J bt w) o k—3 = 6.0 (Gev/c) 2
bt (3.5)
w
which is in reasonable agreement with the experimental information (Fig.5)

The b+—va1ues following from phase shifts and Coulomb inter-

(5)

ference data show an energy dependence between 2 and 20 GeV/c (Fig.5)
which corresponds to a "shrinkage" of the diffraction peak as expected
in the early days of Regge pole theory. The shrinkage has already been
noticed by Lasinsky et al.(2 in their careful investigation of the

slope of the diffraction peak.

+ .
Since the energy dependence of b (w) is not known above 20 GeV
we have considered two possibilities in our evsluation of the dispersion

relation (3.1) :
i) the logarithmic increase of b+(w) continues up to infinity,

ii) b+(w) = const above 20 GeV/c.

+
Fig. 6 shows that the predicted S (w) agrees well with the
direct calculation of this quantity from phase shifts up to about 1 GeV/c.

+
Of course part of the agreement is due to our choice of S (0).



The discrepancy in the 1-2 GeV range is probably caused by a
deficiency of the S+—values, which were calculated from phase shifts
as given in the table(23), assuming that the contributions of all
higher partial waves (2 > 5) are negligible. Instead of this assumption
one should insert the "Born term" contributions to the real parts of
the higher partial waves, which were used in the CERN phase shift
analysis. Unfortunately these terms are not included in the table
and since the phase shift analysis of the CERN group have never published
a detailed account of their most recent analysis (1967/68), it was not
possible for us to check, whether the discrepancy can be explained in

(%) .

this way

We think that a careful evaluation of the dispersion relation
(3.1) gives a more reliable information on S+(w) above 1 GeV/c than a
phase shift analysis, in which the somewhat mysterious "Born terms'
of partial wave dispersion relations play an important role. Therefore
the prediction from (3.1) should be taken as an input in phase shift
analysis together with the prediction for the forward amplftude(z),

which is even more reliable.

It seems that the above mentioned '"Born term contributions' to
higher partial waves have been ignored in all evaluations of "Finite
Energy Sum Rules" and "Continuous Moment Sum Rules'". Therefore the
discrepancy between our prediction and the Regge pole model fit of

Barger and Phillips(za)

, in which CMSR were used; is not surprising.
It would be worthwhile to estimate the influence of & > 5
partial waves in backward scattering above 1 GeV/c, where the lower

partial waves cancel each other to a considerable extent.

Finally it should be mentioned that the predicted s* ) has a

comparable magnitude but the opposite sign in comparison with the

(5)

assumption made by Foley et al. in their analysis of the Coulomb

(x) I am grateful to Prof. DONNACHIE for a discussion on this question.



interference data. These authors assumed that the ratio of the real
and imaginary parts is independent of t at small t, whereas our result
predicts a strong-dependence. It is remarkable that our ]Re C+| is
increasing, if t goes from zero to small negative values. Of course

this quantity has to decrease at larger negative t.

+
Fig. 6 shows a positive background in S (w), on which
resonance structures are superimposed. This background is related to
+
the subtraction constant S (0), which came out even larger in the

(25) (%)

recent work of Cheng and Dashen . But their value is based on
real parts at low energies only. It enlarges the discrepancy in Fig. 6

and extends it to the 0.5 — 1 GeV range (See also our discussion in
Ref (10)

3.2 1Isospin odd case

The deTivative (3/3t) C (w,t) at t = O and high energies
is of interest for the treatment of the "cross-over zero" of
do_/dt - dc+/dt at t o - 0.1 (GeV/c)2 and for the determination of
the magnitude of B (w,0) from the slope of dco/dt at t = O.

The dispersion relation for S (w), equ. (3.2)

3 -
_ _ = ImC (o',t)], _ tg= (ot
ST(wW) = S. (w) + w 2 at t=0 o' =t k'o (w9 d'
N L 2 2 21 M f 2
w' - w (w' + w)
1 (3.6)
(26)

was recently investigated by Jakob . Using a similar method as in

§ 3.1 he obtained the average value (T = 2 GeV).

w

<b > = J b (W o (w) E%ﬂ/,g o (w) %9 = 0.28 = 14 (Gev/c) ™2
w
Iy

v 3.7)

(x) I am grateful to Prof. Dashen for a private communication.



and a reasonable consistency between the dispersion relation and

the phase shift input up to about 1 GeV/c (Fig. 7).

The value of the slope is compatible with the result of

(27)

Baacke and with the application of Finite Energy Sum Rules by

Dolen, Horn and Schmidt (see Fig. 6 of Ref. (28)).

The value (3.7) is larger than expected from the first
detailed discussion of the cross-~over effect in 1964 (Ref. (29)).
It seems that there has been no serious attempt to obtain an improved
value from more recent data. Our preliminary discussion of the Coulomb

(5)

interference data suggests that the slope at t = O is more signi-
ficant than the cross-over zero, since the cross section difference
starts with a large slope at t = O and turns over to a flat t-depen-
dence already near t & - 0.05 (GeV/c)2 (see the 16 GeV/c data in
Fig. 2b of Ref. (30)(x)). If theoretical predictions, for instance
from Regge cut models, show a similar behaviour, one should be more
interested in the slope of the cross section difference at t = 0

than in the exact t-value of the zero, the latter one being sensitive

to small correction terms.

The consistency of Regge cut models with the dispersion
relation (3.6) is an important test, since according to the absorption
picture the main effect of the cut is expected in the no-flip amplitude.
Presumably it will be difficult to reproduce the large slope b~. In
general the comparison of the predictions from Regge cut models with
experimental data does not include the data of Ref.(s) except for the

values of Re Ci(w,O). (See for instance Ref.(al)).

(x) This work is being continued by E. Krubasik(33), who is also
investigating several other points of the analysis in Ref.(s),
which in our opinion should be reexamined in a critical way,
for instance the influence of the parametrization of the strong
amplitude and the determination of the slopes b .



ATEY

The slope of dco/dt at t = 0 has not yet found much
attention, although more accurate data would probably be the best
source of information on the highest nucleon resonances. Fig. 8
shows indications for large structures even in the 3-4 GeV/c region.
The background in this region and the high energy behaviour are of
interest for Regge pole and cut model fits. One should notice that
the attempts to separate no-flip and flip contributions at small t
depend on more or less arbitrary assumptions for instance on the
t-dependence of residue functions and should not be taken too

(32)

seriously. Our result in Ref. was a guess, based on the old

value for the position of the cross-over zero.

A more reliable separation of no-flip and flip terms will
be obtained in a new investigation, using (3.6) and also the data
in Ref.(S). Presumably B (w,0) will come out appreciably larger than

(32)

in Ref. and similar analyses of other authors.

The Amplitude N (v, t)

In Regge pole models it is generally assumed that the
amplitudes A+ and \JB+ have the same high energy behaviour as the C+
amplitude, the first terms of an asymptotic expansion belonging to
the exchange of P and P' Regge poles. Several good fits to differen-
tial cross section and polarization data were obtained, in which P

™

+
and P' gave rather large contributions to the A -amplitude

However it was shown that some of these fits were not

acceptable, if the combination of the data

do do do
0

+ dt -3t "% d@© (4.1)

was considered or the compatibility with the inverse dispersion

34)

relation was tested

(%) A systematic investigation of the ambiguity of fits of this type

has recently been performed by Daum et al. 33a)



In the more recent Regge model fit of Barger and Phillips(za)

this difficulty was solved by introducing a third Regge pole P" and
using continuous moment sum rules as an additional constraint. The
authors found the remarkable result that C+ Q vB+, i.e. A+ came out
considerably smaller than before. But in their opinion the relation
was "evidently not exact". It should rather be considered as a useful
starting=-point for future analyses. According to Fig. 10 of Ref.(ZA)
(first paper) the ratio of the Pomeron residues of the B* and c*
amplitudes at t = O is 0.6, the value 1.0 being expected in the case

of the equality c* = vB* for the leading term.

Therefore in the Barger-Phillips model the ratio of the
s-channel helicity flip and no-flip amplitudes goes to a finite value

in the high energy limit

f —
+-= -t w A Z .
5 {1 ‘M C | ———— finite value (4.2)
++ t fixed
S > o

s—channel helicity is not conserved and a subtraction is required in

+
the dispersion relation for A .

Starting from a comparison between phenomenological Lagrangians

(35)

and dispersion relations , we have investigated in great detail the

+
consequences of the conjoncture that the dispersion relation for A is

(36)

. +
valid without a subtraction In this case A° (w,t) » O at fixed

t if w > » and, in the usual Regge pole model, one has to assume a complete

decoupling of the P and P' Regge poles from the A+-amp1itude. As pointed

(36)

out in Ref. helicity conservation.

f+ 1

—_— 0 -u—)—>0 if wo> e (4.3)
L

is a consequence, but if helicity is conserved, A" can still go to infinity

in the high energy limit.



In the special case of the forward amplitude one obtains a

new sum rule
At 0,00 = % S %?~ Im AY (,0) (6.4)
1
which is analogous to the famous Goldberger-Miyazawa-Oehme sum rule for
the C_—amplitude at threshold. If phase shifts are inserted, one obta:ins

in both cases a saturation of the order of 80 7 from the integral between

threshold and 2 GeV.

+
The evaluation of the unsubtracted dispersion relation for 4

Re A" (v,t) = 2 dv' Im AT (v',t) —2— (4.5)
L 02 2
. vt -y
in the large t-interval - 26 < t < 4 is also encouraging, since it leads

to a prediction for A+(O,t) which agrees as good as it can be expectec
with an independent determination of this function from the subtracted
dispersion relation(g). The agreement would have to be considered as

fortuitous, if the integral in (4.5) would not exist. It is remarkable
that the integral is strongly dominated by the 33-contribution, which

even gives a better approximation, if it is taken alone.

Since reliable phase shifts are available only up to 2 GeV,
the dispersion integrals had to be cut off at this energy. Some informa-
tion on A" at higher energies was derived from the combination (4.1) of
experimental data, which is proportional to the component AI of A+ ortho-
gonal to ct in the complex plane. It turns out that Ai_is decreasing

(36)).

as expected according to our conjoncture (Fig. 4 of Ref. In a Regge

pole model the leading pole would be o (or €) and a very crude estimate

(36)y

gives ag 2-0.7 (Ref. However H.P. Jacob has shown that a model of

this type is not consistent with the dispersion relation and CERN phase

37)

shifts . It is difficult to draw a final conclusion, since the errors

of the phase shifts are not known.



+
In principle the conjoncture A° - O can be tested, if the

energy dependence of the spin-rotation parameters is known in both
+ +

reaction m p + m p. A special diagram for this purpose has been

(36, ,

proposed in Ref. However the ratio f+_/f++ is already small
(% 0.2) at 2 GeV and, of course, it will never be possible to decide,
whether it goes to zero or to a small finite value in the high energy

limit.

One should notice that = p data alone are of little help
for our purpose, since the corresponding amplitude A_ = A+ + A is
not expected to be dominated by A+, which is probably small, but rather
by A~ which goes to infinity at high energies. Furthermore A~ is not

so well known that one could solve for A+.

It is interesting to notice that one of the consequences of
our conjoncture, namely the decoupling of the f-trajectory, can be
tested in TN backward scattering. An analysis of the backward dispersion

relation(38)

led to results, which are compatible with the vanishing
of the FNN-coupling to A+, but the accuracy is still poor because of

x
uncertainties of the phase shifté.)

The encouraging results in the case of ©N scattering and
indications for helicity conservation in the reaction yp + p°p led

Gilman et al.(39)

to the proposal that helicity conservation is a
general property of diffraction scattering of hadrons. This paper found

much attention and triggered a large number of further investigationms.

The assumption A+ ~+ 0 for the N amplitude was also proposed

(40)

by Pfeffer et al. , but these authors essentially repeated the

arguments given in our earlier publication.

(41)

+
_ Sundermeyer used CMSR for an investigation of the A -ampli-
tude. However Jakob pointed out that this result is not reliable because

of the poor consistency with the fixed-t dispersion relation.

(%) The possibility that the f-meson lies on the Pomeron trajectory has
been reconsidered recently by Achuthan, Schlaile and Steiner(38a),
In this case the high energy behaviour A* + 0 follows already from

the decoupling of the Pomeron.
A}
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(42)

Carlitz et al recently proposed a model, in which the

Pomeron can only decouple together with the f-meson, i.e. At> 0 is

a consequence of helicity conservation.

Two attempts have been made to relate the decoupling of P

and f to more basic assumptions :

(43)

i) Renner started from Tensor Meson Dominance and

derived the decoupling of the f-meson.

(46)

ii) Jones and Salam assumed that the coupling vertices

of the exchanged tensor meson are the same as those of the free field

cnergy momentum tensor and derived helicity conservation.

(45)

Gross and Wess have shown that conformal invariance

requires the flip amplitude to vanish asymptotically in a domain, where
all energy variables are large compared to the masses relevant to the

theory. It seems that an extension of the result to our case of small

. : : s . . x
|t| is possible only, if additional assumptions are 1ntr0duced( ).

s-channel helicity conservation leads to conditions for

(46)

t-channel exchanges, which were studied by several authors

(47)

The paper of Harari and Zarmi was sometimes mentioned

as containing an argument against the decoupling of the Pomeron from
+ . +
A, since these authors concluded that the P-contribution to B seemed

+
to be "fairly small" in constrast with its contribution to C . However

(48)

Mannheim used another result of this paper as one of his argument

in favour of "spin-dependence" of the Pomeron coupling, which means

that P is decoupled from A in the leading order. Finally Harari and

Zarmi tested a combination of the decoupling of P and their interesting

ideas on duality(47)

(47a)(xx).

and found agreement with the experimental 7N

data

(x) I am grateful to Prof. J. Wess for a discussion

(xx) After having completed the manuscript, I received a pr :print of a review,
which contains further references on helicity conservation.



5.

Unitary Bounds

Up to now we have discussed consequences of dispersion
relations. There is another class of results for the wN amplitude, which

is based mainly on unitary and experimental data. There exist excellent

(49)

reviews on this subject for instance Ref. and I shall mention only

(50)(see 3150(53).

two new results, which have recently been found by our group

5.1 McDowell-Martin Bound

G have shown that from

Several years ago McDowell and Martin
unitarity alonme a lower bound could be obtained for the derivative with
respect to momentum transfer of the absorptive part of the wN forward
scattering amplitude. They noticed that this bound is remarkably close
to the data above 7 GeV/c. During the last year similar methods were
used in investigations of several authors, who assumed that the bound
is of interest only in the case of a highly absorptive and spin-independent
process.

0 +
o) the bound was investigated for m p elastic scattering

In Ref.
at all energies above threshold, generalizing the method to the spin
dependent case. It turned out that the strongest version of the McDowell
Martin bound is almost saturated by the experimental data (from phase
shifts) at 0.6 and 1.9 (GeV/c), where the non-resonant background dominates
the scattering amplitude (Fig. 9). At 2 GeV/c the strongest version is
about 30 7 higher than the bound, which is usually applied at higher
energies.Unfortunately the bound cannot be used in order to obtain a bound
for the high energy part of the dispersion integral (3.1), since one would
need information on the asymptotic behaviour of total elastic cross
sections.

5.2 The Roy-Singh-bound for the charge-exchange amplitude(sz)

Roy and Singh have derived a very interesting bound relating
the difference of total mp cross sections and the total charge-exchange

cross section.

lim (o_-0,)° & lim “2— o (5.1)
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It was thought that the comparison with experimental data was of
interest, although the proof is valid only for the high energy
limit. Unfortunately it turned out that the inequality is violated

at very high finite energies in the case of the usual models(so).

Conclusion

Fixed-t dispersion relations and charge-independence are
useful for an interpolation of experimental data, determinations of

7N parameters and testing high energy models and phase shift sets.

As long as all wN data are compatiblé with the conjoncture
that A+ - 0 in the high energy limit, it should be imposed as a
condition on high energy models rather than the weaker condition
of helicity conservation, since the number of adjustable functions

is smaller in the first case.

+

It is a challenge to theoreticians to derive A - O from
more basic assumptions. Furthermore one could hope that investigations
on high energy bounds will help to disentangle the amplitudes.

The importance of two experiments has been stressed :

. . ; . £,
i) More accurate differential cross section data for 77 p in

the Coulomb interference region(x)

ii) More accurate data on the slope of the charge—exchange

differential cross section at t = O.

Of course the continuation of measurements of polarization

and spin-rotation parameters will also be of great interest.

(x) Eden et al(SA) have recently discussed another phenomenon, which
could be detected by an experiment of this type.
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Fig. 1

Fig. 2a
Fig. 2b

Fig. 3

Fig. 7

Fig. 9

FIGURE CAPTIONS

+
Data for the total cross section o . The fits are explained
in Ref.

Data for o (Sept. 1970)

Plots of o, as a function of k_l/z

Test of high energy models for ct. I(k,ko)is defined in (2.6),
(2.7). For details see Ref.(7)

Test of the dispersion relation for C~ and determination of J.
y is defined in (2.13). For details see Ref.(6)

The slope b (W) of Im C+, equ. (3.3). x from CERN experimental
phase shifts, o from Glasgow A phase shifts. § from Coulomb
interference data(®).

Prediction for S+(m) from the dispersion relation (3.1). + S+(w)
from CERN Experimental phase shifts, A from Glasgow A phase
shifts. BP refers to Ref.24, the value being very small between
2 and 8 GeV. '"Foley" is the assumption in Ref. 5), The solid
and dashed lines are predictions from the assumptions i) and

ii) described in the text.

Determination of < b~ >, eq. (3.7). The method is similar as in
Figs. 3 and 4. A best straight line fit through the points from
CERN phase sifts up to 1.5 GeV leads to the value (3.7). The
consistency is reasonable.

Slope of the differential cross section for charge-exchange
scattering at t = 0. do/dt = do/dt| (1 + bot). Solid line

t=0 (32)
helicity flip contribution, dashed line : Regge pole model .
For detail see Ref.

Ratio of experimental slopes and McDowell-Martin bounds(so).
Solid line : strongest version of the bound, calculation using
CERN phase shifts. Dashed line : case of exponential diffraction
peak. Experimental points from slopes of do/dt, using total
elastic cross sections in the bound.
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