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Abstract

The one-loop effective action for N = 2 and N = 4 supersymmetric Yang-Mills

theories are computed to order F 5 and F 6 respectively by the use of heat kernel

techniques in N = 1 superspace. The computations are carried out via the intro-

duction of a new method for computing DeWitt-Seeley coefficients in the coincidence

limit.

To order F 5, the bosonic components of both N = 2 and N = 4 supersymmetric

Yang-Mills theories are extracted and compared with the existing literature. For

N = 4 super Yang-Mills theories the F 5 terms are found to be consistent with

the non-Abelian Born-Infeld action computed to this order by superstring methods

and various other means of computing deformations of supersymmetric Yang-Mills

theory. The result proved to be the final piece of a puzzle, leaving little doubt that

there exists a unique deformation of maximally symmetric super Yang-Mills theories

at this order. The F 6 terms will be of importance for comparison with superstring

calculations, including direct tests of the AdS/CFT conjecture.

The bosonic components of N = 2 supersymmetric Yang-Mills are also shown

to be consistent with existing literature, and will be of importance for testing of

generalizations of the AdS/CFT conjecture.
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Chapter 1

Introduction

Supersymmetry was discovered a little over thirty five years ago, and continues to be

an area of intense theoretical scrutiny. It has an interesting and rather unique history

[1, 2] in that is was independently discovered in various guises by four different

research teams [3, 4, 5, 6, 7, 8], all motivated by purely aesthetic and theoretical

considerations, but still remains to be observed in nature. One of the major goals

of the next generation of particle accelerators is the detection of supersymmetry.

Despite this lack of experimental evidence, supersymmetry plays an increasingly

valuable and dominant role in much of modern theoretical high energy physics. It

is the cornerstone of superstring theory [9, 10, 11, 12], the most notable of recent

attempts to unify general relativity and quantum field theory.

The discovery of supersymmetry simultaneously realized the theoretical desires

of finding a non-trivial extension of the Poincaré algebra, and an underlying re-

lationship between fermions and bosons, the two classes of previously unrelated

fundamental particles in Yang-Mills theories and in particular the standard model.

It brought with it a powerful new set of tools and ideas in addition to an array

of other appealing features, and of course great promise for movement towards a

quantum theory of gravity.

An incredibly productive area of research in recent years relates to the connection

between string theories and Yang-Mills theories. Initially prompted by the observa-

tion that low energy effective actions for massless degrees of freedom in open string

theories are generalizations of Yang-Mills theories [13, 14], the interface between the

two has yielded valuable insights on both sides. Indeed, the overlap between the

two has proven to be far richer than one may have initially guessed based on the

requirement that string theory must, if it does indeed provide the foundation for a

unified theory of all four fundamental interactions, reproduce all of the successes of

the standard model. More recently, added impetus has come from the discovery of
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D-branes [15, 16] and the fact that their low energy effective actions are also exten-

sions of supersymmetric Yang-Mills theory. Perhaps the most notable example of

this connection is the Maldacena AdS/CFT conjecture [17, 18, 19] which identifies

two seemingly unrelated theories. Namely, it identifies a theory possessing gravita-

tional degrees of freedom, type IIB superstring theory formulated in an AdS5 × S5

background, with one which has none at all, namely four-dimensional N = 4 super-

symmetric Yang-Mills theory. For details see the reviews [20, 21, 22, 23, 24, 25, 26]

and references therein.

Maldacena’s original arguments have since been generalized to include a conjec-

tured duality between certain N = 2 superconformal supersymmetric Yang-Mills

theories and superstring theories in special backgrounds [27, 28, 29, 30, 31, 32], and

more recently, by the discovery of supergravity dual for the N = 1 superconformal

β-deformation of N = 4 supersymmetric Yang-Mills theory [33].

Accordingly, detailed tests of these conjectures will require comparison of the

effective action for specific N = 2 and 4 supersymmetric Yang-Mills theories with

results derived from superstring calculations.

This interface between superstring theory and supersymmetric gauge theories

provides much of the motivation behind the work presented in this thesis, the precise

details of which are given below. The bulk of the research carried out is presented in

chapters 5 and 6, which are based solely on the single author publications [34, 35].

In short, higher order contributions of the effective actions of N = 2 and N = 4

non-Abelian super Yang-Mills theories were obtained, with the intent of testing, or

laying some of the groundwork for future tests, of various links between superstring

theory and super Yang-Mills theory. The present work therefore sits entirely on

the supersymmetric quantum field theory side. Heat kernel techniques, N = 1

superfields and the background field formalism are the primary tools, and along the

way a new method for efficiently computing DeWitt-Seeley coefficients is revealed.

1.1 Background

It is now well known the low energy effective action for the massless vector degrees

of freedom in open string theories is a deformation of the Yang-Mills action, and

admits an expansion in powers of the string tension α′ [13, 14]. It is a functional

of the background field strength Fab and its covariant derivatives ∇a1 . . .∇anFbc,

with a generic structure of the form
∑∞

n=0 (α′)n cn F
n+2, where here and in all that

follows (unless specified otherwise) F n denotes terms of mass dimension 2n in F

2



and its covariant derivatives1. The corrections proportional to powers of α′ arise

due to additional interactions induced by virtual massive superstring modes. The

non-derivative terms in the effective action were computed to all orders in α′ in

type I string theory [36, 37] using path integral techniques and are given by the

Born-Infeld action [38]

SBI =

∫
d10x

√
det(δµν + 2πα′Fµν). (1.1.1)

Direct computation of a four point string scattering amplitude yields the term pro-

portional to (α′)2 in the expansion of the Born-Infeld action [37, 39]. Derivative cor-

rections to the Born-Infeld action were first considered in [40] (also see [41, 42, 43]),

where terms involving four F ’s and four derivatives were extracted from the four

point superstring scattering amplitude (terms involving two derivatives vanish).

Contributions with four derivatives and arbitrary numbers of F ’s were computed

via string sigma-model loop calculations in the boundary state operator formalism

in [44]. This work revealed a fascinating link between the derivative corrections and

the curvature tensor for a nonsymmetric metric on the sigma model target space.

These four-derivative calculations have been extended to superspace in [45] (see also

[46]).

In a not completely unrelated development, with the discovery of D-branes [15,

16] it was quickly established that the low energy effective action describing their

massless degrees of freedom are also deformed maximally supersymmetric Yang-

Mills theories, which are themselves a considerable source of interest [47, 48, 49, 50,

51, 52, 53, 54, 55, 56]; for a review see [57]. For D-brane probes in the background

of a stack of D-branes, the expansion parameter is not α′, but is determined by the

vacuum expectation values of scalar fields which specify the separation of the probe

from the stack.

For a single Dp-brane, the lowest order terms in the derivative expansion of the

effective action for the massless modes (corresponding to constant field strength)

are known to all orders in α′, and are given by a ten dimensional supersymmetric

Born-Infeld action dimensionally reduced to p + 1 dimensions [36, 37, 58, 59, 60,

61, 62, 63, 64]. In the case when there are N coincident D-branes the gauge group

becomes U(N) [65] and the leading order term in the α′ expansion of the effective

action is D = 10 supersymmetric U(N) Yang-Mills theory dimensionally reduced to

p + 1 dimensions. The first detailed investigation was carried out in [66], but the

precise structure of this effective action still remains largely unknown. In contrast

1More specifically, terms of the form ∇2mFn−m, with n > m, consisting of n−m field strengths

and 2m covariant derivatives.
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to the Abelian case, its determination is complicated by the Bianchi identity

[Fab, Fcd] = 2i∇[a∇b]Fcd, (1.1.2)

and so it not possible to unambiguously separate the effective action into derivative-

independent and derivative-dependant terms2. In the non-Abelian case therefore one

cannot truncate to constant field strength, and derivative terms must be considered

[57]. Currently only a few terms in the α′ expansion are known.

Of particular relevance is the fact that supersymmetry seems to be a sufficiently

strong constraint to uniquely specify the form (up to field redefinitions) of the de-

formation of a maximally supersymmetric Yang-Mills theory to some order in F n

[51, 52]. For example, it has been shown in the Abelian case that supersymmetry

uniquely fixes deformations to fourth order [48, 49] and sixth order [50] in D = 10.

More recently it was proven [71, 72] that in the case of constant field strength,

Abelian Yang-Mills theory in D = 10 has a unique deformation given by the Born-

Infeld action. The proof is based on the assumption that certain BPS solutions

should exist to the equations of motion. It is argued in [71] that since BPS config-

urations are intimately related to supersymmetry, the result lends support to the

idea that supersymmetry is constraining the form of the deformation.

In the non-Abelian case, if supersymmetry is sufficient to fix the form of the

deformation to some order in F n, then any means to compute a supersymmetric

deformation of the non-Abelian Yang-Mills action at this order must yield the terms

in the non-Abelian D-brane effective action at this order. This in turn means that

the structure of the D-brane effective action can be examined using a number of

techniques, and not just by direct computation. In particular, the effective action

for non-Abelian super Yang-Mills theory at this order should correspond to non-

Abelian D-brane energy effective action, since the former is a deformation of classical

Yang-Mills action. However, since it will be dependent on the choice of gauge, with

a change of gauge inducing a field redefinition3, direct comparison of low-energy

effective actions with deformations obtained by other means is potentially non-

trivial. It was argued in [37] (also see [73]) that field redefinitions only effect terms

2This ambiguity ultimately gives rise to some freedom in how one may choose to define a ‘non-

Abelian Born-Infeld action’. A proposal to resolve the ambiguity was suggested in [66], where all

commutators of field strengths are to considered as belonging to the derivative-dependent part,

and the non-Abelian Born-Infeld action is defined in terms of symmetrized traces of products

of field strengths. Although this definition does not seem to be universally adopted within the

literature, or at least there appears to be some confusion, this will not concern the present work.

For discussions and results relating to this and the now well know symmetrized trace prescription

see [57, 67, 66, 68, 69, 70] and references therein.
3For related matters see [73, 37].
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in the effective action which contain covariant derivatives of the field strength, and

so the non-derivative terms should be the same for all methods of calculation if the

deformation is unique.

The single strongest piece of evidence to suggest that maximal supersymmetry

is sufficient to fix the form of the deformation at order F 5 comes from [74], where

the authors claim to have found a single and unique supersymmetric deformation

to D = 10, N = 1 supersymmetric Yang-Mills theory at this order. Up to a single

multiplicative constant κ, the bosonic field strength contribution was found to be:

κ trAd

(
F ab(∇aF

cd)(∇eFbc)Fde− (∇eF ab)F cd(∇aFbc)Fde−
1

2
(∇eF ab)(∇eFca)FbdF

dc

− 1

2
(∇eF ab)Fda(∇eFbc)F

cd +
1

8
(∇eF ab)F cd(∇eFab)Fcd

− iF abFbcF
cdF e

aFde + iF abF cdF e
aFbcFde +

i

2
F abF deFbcF

c
aFde

)
. (1.1.3)

Prior to this, extending the method of [71] (for a review see [75]), an order (α′)3

deformation4 in D = 10 was calculated in [78], and was found to be precisely (1.1.3)

up to some overall normalization. Furthermore, a number of tests have successfully

been applied to confirm that expression (1.1.3) is consistent with string theoretic

predictions [79, 80]. A string theory calculation of the full five-point scattering

amplitude for gluons has been carried out [81, 82, 83, 84], from which it is inferred

that the corresponding low-energy effective action has again precisely the order (α′)3

terms (1.1.3). Other approaches also provided information on the Born-Infeld action

at this order [54, 56, 55, 69].

Prior to the publication [34], which forms the basis of chapter 5 of this thesis,

there was evidence that the F 5 deformation was not unique. As noted in [78, 74, 81],

the results of a computation of one-loop effective action for N = 4 super Yang-

Mills theory in four dimensions using supergraphs [85, 86] yielded different non-

derivative F 5 terms to the D = 4 version of (1.1.3). If the F 5 contributions (1.1.3)

are to be uniquely specified by maximal supersymmetry, they should be found in the

one-loop effective action for D = 10, N = 1 supersymmetric Yang-Mills theory5.

Consequently one should expect that in restricting this result to D = 4, the F 5

contributions to the one-loop effective action for N = 4, D = 4 supersymmetric

Yang-Mills theory should be generated [87, 88]. The work [85, 86] was inconsistent

4Partial results at order (α′)3 had previously been obtained in [76], [77] and [43]. Partial F 5

terms in ten dimensional super Yang-Mills were provided by [76].
5This statement rests on the tacit assumption that the one-loop effective action generates the

entire F 5 contribution. This is generally believed to be the case, for example see the review [51]

and references therein.
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with this.

In [34], the one-loop effective action for non-Abelian N = 4 supersymmetric

Yang-Mills theory is calculated in N = 1 superfield form through to order F 6 in the

absence of a chiral scalar background. Prior to this the effective action was known

in superfield form only up to order F 4 (see for example [89, 90]). The technique

employed is a modification of that developed in [91, 92] based on the properties

of ‘moments’ of heat kernels6. At order F 5, extraction of components from the

resulting superfield expression yields, up to an overall multiplicative factor, perfect

agreement with (1.1.3).

As already noted, the F 5 results in [85, 86] were originally found to be in dis-

agreement with the result (1.1.3). However, soon after the release of [34], the authors

of [85, 86] discovered and corrected an error7 to yield consistent results [85]. This

finally cleared up the matter.

Taken together, the fact that all of these results [78, 81, 79, 80, 74, 34, 85] com-

puted by four independent means yield the same expression, (1.1.3), now leaves little

doubt that this F 5 deformation of maximally supersymmetric Yang-Mills theory is

in fact a unique deformation at this order.

The one-loop non-Abelian F 6 terms in the effective action of N = 4 supersym-

metric Yang-Mills theory computed in [34] are potentially important for comparison

with string theoretic results at this order, as are the recently computed two-loop

Abelian F 6 terms [100]. Koerber and Sevrin [101] have computed deformations of

supersymmetric Yang-Mills theory to order F 6 based on the approach of requiring

certain BPS solutions to the equations of motion [78]. Order (α′)4 terms extracted

from five gluon [84] and six gluon [102, 103, 104, 105] scattering amplitudes calcu-

lated in superstring theory will allow the calculation of F 6 terms in the effective

action for the massless modes in superstring theory, but this is yet to be completed.

Comparison of the F 6 structures from N = 4 supersymmetric Yang-Mills theory,

BPS arguments and superstring theory will be important in establishing whether

supersymmetry is a sufficiently strong constraint to uniquely determine the non-

Abelian D-brane effective action at this order.

Evidence which suggests that this uniqueness does not extend to all orders, and

that in general one should not expect a direct correspondence between the non-

Abelian D-brane effective action and quantized super Yang-Mills at higher orders,

comes from the fact that the F 8 terms in the one-loop Abelian N = 4 super Yang-

Mills effective action [106] differ from the F 8 terms in the Born-Infeld action [87].

6For an alternative techniques see for example [93, 94, 95, 96, 97, 98, 99] and references therein.
7Effectively pointed out in footnote 8 of [34].
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For a detailed discussion see [106, 107].

It should be mentioned that the issue of derivative corrections to both the Abelian

and non-Abelian Born-Infeld action has also been approached from the viewpoint

of non-commutative geometry [108, 109, 110, 111, 112, 113, 114, 115].

In [35], on which chapter 6 is based, the results and methods of [34] (chapter

5) are extended to compute the one-loop effective action for arbitrary non-Abelian

N = 2 super Yang-Mills theories to order F 5. Technically, this proves at least as

challenging as the computation of the one-loop effective action of N = 4 super Yang-

Mills to order F 6. The results of both [34] and [35] should be useful for future direct

tests of the AdS/CFT conjecture and its generalizations relating to the existence of

supergravity duals for certain superconformally invariant non-Abelian N = 2 super

Yang-Mills theories [17, 116, 117, 118, 119, 120, 121].

As already mentioned, the one-loop computations in superspace in this thesis are

approached using heat kernel techniques, for which the associated mathematics and

physics literature is vast (see for example [93, 94, 96, 99] and references therein).

The technique adopted is a modification of what shall be referred to as the Gaussian

approach [91, 92], which is closely related to other well know approaches [122, 123,

124] (and for example see [125]) for computing the asymptotic expansion of heat

kernels which employ plane wave expansions of the delta function and Gaussian

integration identities. For a recent guide to the literature and a detailed review of

heat kernel expansions and an array of approaches see [99].

1.2 Outline

Since the N = 1 superfield formalism is used throughout, chapter 2 is dedicated

to a review of this formalism. In particular, some of the fundamental ingredients

will be discussed, as will classical N = 2 and 4 super Yang-Mills theories. Chapter

3 is concerned with the quantization of Yang-Mills theories in the context of the

background field formalism, which is described in general before being applied to

case of N = 2 and 4 super Yang-Mills theories in superspace.

Chapter 4 will begin with a brief review of heat kernels and some associated

computational techniques. This will include their relation to the one-loop effective

action and to propagators, as well as their asymptotic expansion. The Gaussian

differential equation approach [91, 92] will then be described in some detail.

Chapters 5 and 6 deal with the computation of contributions to the one-loop

effective actions of non-Abelian N = 4 and N = 2 super Yang-Mills theories re-

spectively. A modified version of the Gaussian approach is developed in the process,

7



and a new technique for computing DeWitt-Seeley coefficients in the coincidence

limit is described. A detailed comparison with existing literature is carried out, and

we conclude with some brief remarks concerning the extension of the computational

technique employed.

The three appendices are concerned with the conventions and notion used, the

computerization of the computational techniques employed, and the details of some

derivations. For the curious reader, and for completeness, a compact disc has also

been attached. The contents of the CD are not necessary for the reading of the

thesis, and merely document the computerized calculations in full detail.
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Chapter 2

Field theory in N = 1 superspace

In this chapter we will briefly review classical field theory in flat N = 1 superspace,

with certain emphasis being placed on the N = 2 and N = 4 supersymmetric Yang-

Mills theories. Additionally it serves to familiarize the reader with the notation

and conventions adopted in this thesis, which are based primarily on those of the

textbooks [126] and [127]. Further details of these can be found in appendix A.

The reader is assumed to have some familiarity with the N = 1 superfield

formalism, some supermathematics, standard classical field theory and group the-

ory. For a more thorough and systematic treatment of superfield theories and su-

persymmetry in general, the reader is directed to some of the pioneering articles

[3, 4, 5, 6, 7, 8, 128, 129, 130], textbooks [126, 127, 89, 131], and review articles and

lecture notes [132, 133, 134, 135, 136, 137, 138, 139, 140]. For details on supermath-

ematics the textbooks [141, 142, 143, 144] are recommended.

In this work we will be interested in field theories formulated in flat N = 1 super-

space, which is an extension of Minkowski space R3,1, augmented by four fermionic

or anticommuting coordinates. Field theories formulated in this space display many

desirable features both classically and at the quantum level. They exhibit manifest

global N = 1 supersymmetry and provide a powerful set of tools permitting one to

perform calculations and obtain results which would otherwise be intractable in the

component formalism. Ultimately, however, such theories must at some stage be

reduced to field theories in R3,1 since this is currently the only means to physically

interpret them. Superfield theories encode a great deal of information and rather

trivial looking actions in superspace describe comparatively more complicated ac-

tions in Minkowski space.

We begin our review by recalling the coset construction of N = 1 superspace.

9



2.1 N = 1 superspace and superfields

2.1.1 Superspace

The notion of (real) superspace was first introduced by Salam and Strathdee [145,

146] (also see [5, 6]) just after the work of Wess and Zumino [7]. It is an application

of the coset space method proposed originally by Cartan in 1946 [147] and later

rediscovered independently in a more physical context [148, 149, 150, 151, 152]. Just

as Minkowski space can be realized as the coset space Π(1, 3)/SO(1, 3) (the Poincaré

group modulo its Lorentz subgroup), Salam and Strathdee’s idea was to identify a

new space with the coset space SΠ(1, 3)/SSO(1, 3) (the N = 1 super Poincaré

group SΠ(1, 3), modulo a subgroup SSO(1, 3), the Grassmann shell of the Lorentz

group) and consider field theories on this space. Since SΠ(1, 3) is a generalization of

Π(1, 3), this procedure leads to a generalization of Minkowski space, a supermanifold

which necessarily includes anticommuting coordinates.

One may also consider the complex extension of the N = 1 super Poincaré

group, and the notion of complex superspace which is parameterized by coset space

coordinates associated with the complex extension of the N = 1 super Poincaré

group modulo the complex extension of the Grassmann shell of the Lorentz group.

In doing so one may view real superspace as a hypersurface in complex superspace, a

notion heavily related to the so-called chiral and antichiral subspaces of superspace

which play a major role in the N = 1 superfield formulation.

In general the coset approach provides a systematic way for constructing field

representations of a particular group realized on the coordinates of a coset space of

that group. The procedure includes the identification of vierbiens, spin connections

and covariant derivatives. For a brief summary see [153]. We now state a few results

from this construction pertinent to N = 1 superfield theories.

Real superspace, denoted by R4|4 = R4
c × R4

a, is parameterized by the coset

space coordinates zA = (xa, θα, θ̄α̇), where xa are real c-numbers (ie xa ∈ Rc) and

(θα)∗ = θ̄α̇ are complex a-numbers (ie θα, θ̄α̇ ∈ Ca)). These coordinates possess the

following well-know transformation properties under the action of the super Poincaré

group. Under spacetime translations

x′a = xa + ca θ′α = θα θ̄′α̇ = θ̄α̇; (2.1.1)
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under Lorentz transformations

x′a = exp(λ)a
bx

b

θ′α =

(
exp

(1

2
λabσab

))α

β

θβ

θ̄′α̇ =

(
exp

(1

2
λabσ̃ab

)) β̇

α̇

θ̄β̇;

(2.1.2)

and under supersymmetry transformations

x′a = xa − iεσaθ̄ + iθσaε̄ θ′α = θα + εα θ̄′α̇ = θ̄α̇ + ε̄α̇. (2.1.3)

It is clear that the θα and θ̄α̇ are left and right Weyl spinors, together forming a

Majorana spinor.

The most general super Poincaré transformation on R4|4 is found to be

x′a = exp(λ)a
bx

b + ca − iεσaθ̄ + iθσaε̄

θ′α =

(
exp

(1

2
λabσab

))α

β

θβ + εα

θ̄′α̇ =

(
exp

(1

2
λabσ̃ab

)) β̇

α̇

θ̄β̇ + ε̄α̇.

(2.1.4)

The antichiral and chiral subspaces are parameterized by zA
+ = (x+, θ

α
+) and

zA
− = (xa

−, θ̄−α̇) respectively, which are defined by

xa
+ = xa + iθσaθ̄ (2.1.5)

θα
+ = θα. (2.1.6)

and

xa
− = xa − iθσaθ̄ = (xa

+)∗ (2.1.7)

θ̄−α̇ = θ̄α̇ = (θ+α)∗, (2.1.8)

Both are closed with respect to transformations by the super Poincaré group (2.1.4).

2.1.2 Tensor superfields and covariant derivatives

Field theories formulated on superspace make use of tensor superfields: field repre-

sentations of the group SΠ(1, 3) which are defined on the coset coordinates zA and

classified by the irreducible representations of the subgroup SSO(1, 3).

All irreducible representations of the Lorentz group SO(1, 3) (and hence SSO(1, 3))

are described in section A.1 of appendix A . Tensor superfield representations of the

11



super Poincaré group of Lorentz type (n
2
, m

2
) are superfields which carry n undotted

and m dotted spinor indices (simultaneously symmetrized in both) and transform

under the action of the super Poincaré group as:

V ′(z′) = e
1
2
λabMabV (z). (2.1.9)

Here the (external) tensor indices have been suppressed and it is understood that

the generator of the associated Lorentz representation Mab acts on these indices.

The coordinates z, z′ ∈ R4|4 are related by a super Poincaré transformation. One

can rewrite such a representation using differential operators as

V ′(z) = g(c, ε, ε̄, λ)V (g−1z) (2.1.10)

with z′ = g−1z being related by a super Poincaré transformation corresponding to

the group element g−1 and

g(c, ε, ε̄, λ) = exp
(
i(−caPa +

1

2
λabLab + εαQα + ε̄α̇Q̄

α̇)
)
. (2.1.11)

Here the operators are easily identified by examining (2.1.4). They are:

Pa = i∂a (2.1.12)

Lab = i(xb∂a − xa∂b + (σab)
αβθα∂β − (σ̃ab)

α̇β̇ θ̄α̇∂̄β̇ −Mab) (2.1.13)

Qα = i∂α + (σa)αα̇θ̄
α̇∂a (2.1.14)

Q̄α̇ = −i∂α̇ − (σa)αα̇θ
α∂a. (2.1.15)

Again the Lorentz generator Mab acts only on the field’s Lorentz indices.

The action of an infinitesimal supersymmetry transformations on an arbitrary

superfield V (z) can then be expressed as

δV (z) = i(εαQα + ε̄α̇Q̄
α̇)V (z). (2.1.16)

The derivative of a tensor superfield is itself not a tensor superfield since the

derivatives ∂A do not (anti)commute with all of the generators (2.1.12)-(2.1.15). In

particular [∂A,Qα} and [∂A, Q̄α̇}, where the graded commutator [ . , . } is defined by

[X,Y} = X ·Y − (−1)ε(X)ε(Y)Y ·X, (2.1.17)

do not vanish. Naturally one is interested in finding covariant derivatives DA =

(Da, Dα, D̄
α̇) which map tensors to tensors,

[DA,Pa} = [DA,Qα} = [DA, Q̄α̇} = 0. (2.1.18)
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They can be determined systematically via the coset construction, and are given by

Da = ∂a Da = ηabDb = ∂a (2.1.19)

Dα = ∂α + iθ̄α̇(σa)αα̇∂a Dα = εαβDβ Dα = −∂α − iθ̄α̇(σ̃a)
α̇α∂a (2.1.20)

D̄α̇ = ∂̄α̇ + iθα(σ̃a)α̇α∂a D̄α̇ = εα̇β̇D̄
β̇ D̄α̇ = −∂̄α̇ − iθα(σa)αα̇∂a. (2.1.21)

They satisfy the (anti)commutation relations

{Dα, Dβ} = {D̄α̇, D̄β̇} = [Dα, ∂a] = [D̄α̇, ∂a] = 0 (2.1.22)

{Dα, D̄α̇} = −2i(σa)αα̇∂a, (2.1.23)

the latter indicating that flat superspace possesses torsion.

One may also establish

DA(UV ) = DA(U)V + (−1)ε(U)εAUDA(V )

ε(DAV ) = εA + ε(V ) (mod 2)
(2.1.24)

and that the spinor covariant derivatives, Dα and D̄α̇, are related under complex

conjugation

(DαV )∗ = (−1)ε(V )D̄α̇V
∗ (D2V )∗ = D̄2V ∗ (2.1.25)

where V and U are arbitrary superfields and we have introduced the notation

D2 = DαDα D̄2 = D̄α̇D̄
α̇. (2.1.26)

One may expand a tensor superfield in a finite Taylor series with respect to its

odd coordinates, the coefficients of which, called component fields, are supersmooth

in xa ∈ Rc. Such a series terminates since θαθβθγ = θ̄α̇θ̄β̇ θ̄γ̇=0. Collectively the

component fields are referred to as a supermultiplet. It is often most convenient

to define component fields so that they correspond to taking multiple covariant

derivatives followed by setting θα = θ̄α̇ = 0. Following [127], the act of setting

θα = θ̄α̇ = 0 will be referred to as a space projection, and denoted as |. Accordingly,

for a real but otherwise unconstrained superfield V (z) = V (z)∗, the components can

be defined as

A(x) = V (z)
∣∣∣ ψα(x) = DαV (z)

∣∣∣ ψ̄α̇(x) = D̄α̇V (z)
∣∣∣

F (x) = −1

4
D2V (z)

∣∣∣ F̄ (x) = −1

4
D̄2V (z)

∣∣∣ Cαα̇(x) =
1

2
[Dα, D̄α̇]V (z)

∣∣∣
χα(x) = −1

4
DαD̄

2V (z)
∣∣∣ χ̄α̇(x) = −1

4
D̄α̇D

2V (z)
∣∣∣

H(x) =
1

32
{D2, D̄2}V (z)

∣∣∣. (2.1.27)
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As is very well known, as a consequence of (2.1.4), (2.1.9), and (2.1.18), the

components play the role of ordinary tensor fields when one reduces a field theory in

superspace to one on Minkowski space. The supersymmetry transformations man-

ifest themselves at the component level by relating some of these ordinary tensor

fields. One can readily establish how the components transform under the action

of an infinitesimal supersymmetry transformation by taking various numbers of co-

variant derivatives of (2.1.16) followed by space projection. In the process one

uses (2.1.18), (2.1.27) and exploits the similarity of the supersymmetry generators

(2.1.14), (2.1.15) and the covariant derivatives.

One may also consider superfields defined on the subspace of superspace with

coordinates zA
+ = (x+, θ

α
+) or zA

− = (xa
−, θ̄−α̇), which are known as chiral and antichiral

superfields respectively, as first introduced by Ferrara, Wess and Zumino [154]. This

idea turns out to be of great significance in superfield theory primarily due to the fact

chiral superfields have a much shorter Taylor expansion, and therefore yield smaller

multiplets than the unconstrained superfield V (z) described above. For example, a

chiral superfield Φ(z+) possess only three component fields:

Φ(z+) = A(x+) + θαψα(x+) + θ2B(x+). (2.1.28)

or more fully

Φ(z) =A(x) + θαψα(x) + θ2F (x) + iθσaθ̄∂aA(x)

+
i

2
θ2θ̄σ̃a∂aψ(x) +

1

4
θ2θ̄2∂a∂aA(x).

(2.1.29)

Equivalently, one may consider chiral and antichiral superfields as superfields

satisfying constraints. A chiral superfield Φ(z) satisfies the constraint

D̄α̇Φ(z) = 0, (2.1.30)

the solution to which is given in (2.1.29). Similarly an antichiral superfield Φ̄(z)

satisfies

DαΦ̄(z) = 0. (2.1.31)

The constraints are really just those of holomorphicity (for example see [127, 153]),

implying these fields are defined on the chiral subspaces. The constraints are inte-

grable because {Dα,Dβ} = 0.

Finally, it is useful to note that it is possible to recast many of the properties

of superspace integration, delta functions (see section A.2) and component field

extraction in terms of the covariant derivatives. In particular, for an arbitrary

superfield V (z), one has: ∫
d8z DA(V (z)) = 0 (2.1.32)
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∫
d6z V (z) = −1

4

∫
d4xD̄2V (z) = −1

4

∫
d4xD̄2V (z)

∣∣ (2.1.33)∫
d6z̄ V (z) = −1

4

∫
d4xD2V (z) = −1

4

∫
d4xD2V (z)

∣∣ (2.1.34)∫
d8z V (z) = −1

4

∫
d6zD̄2V (z) =

1

16

∫
d4xD2D̄2V (z) =

1

16

∫
d4xD2D̄2V (z)

∣∣∣
= −1

4

∫
d6z̄D2V (z) =

1

16

∫
d4xD̄2D2V (z) =

1

16

∫
d4xD2D̄2V (z)

∣∣∣
=

1

16

∫
d4xDαD̄2DαV (z)

∣∣∣ =
1

16

∫
d4xD̄α̇D

2D̄α̇V (z)
∣∣∣. (2.1.35)

The (anti)chiral delta function can be expressed as

δ+(z − z) = −1

4
D̄2δ(8)(z − z) δ−(z − z) = −1

4
D2δ(8)(z − z). (2.1.36)

2.1.3 Actions and equations of motion

As with all classical field theories, the object of central interest in theories formulated

in N = 1 superspace is the action functional. More precisely, superfield theories

are expressed in terms of an action which when extremized yields the dynamical

equations of motion. Generally speaking this means defining, for a given set of

tensor superfields vM(z) and their derivatives, a super Poincaré invariant action

(super)functional S : vM(z) 7→ Rc as follows:

S[vM(z)] =

∫
d8z L(vM , DAv

M , . . . , DA1 . . . DAk
vM)

+

{∫
d6z Lc(v

M , DAv
M , . . . , DA1 . . . DAk

vM) + c.c.

} (2.1.37)

where c.c. denotes the complex conjugate. Here the super Lagrangian density L is

simply a scalar superfield (ie a Lorentz scalar combination of vM(z) and its deriva-

tives), and Lc a chiral scalar superfield subject to the constraint D̄α̇Lc = 0. Actions

constructed in this manner are manifestly invariant under super Poincaré transfor-

mations (for complete details see [89, 127]).

The component form of any such action, by which it is meant the action cast

in terms of the superfield’s components in Minkowski space, is in general found

by putting together the rules for reducing superspace integrals to Minkowski space

and the definition of the component fields. Usually one works with the covariant

derivative identities (2.1.35) and (2.1.27). This prescription yields

S[v] =

∫
d8z L(v) +

{∫
d6z Lc(v) + c.c.

}

=

∫
d4x

(
1

32
{D2, D̄2}L(v)−

(1

4
D2Lc(v) + c.c.

)) ∣∣∣∣∣.
(2.1.38)
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Unlike field theories expressed in ordinary spacetime we now have an added

complication due to the existence of chiral and antichiral subspace. Accordingly one

is required to generalize the notion of the functional derivative.

Consider a dynamical system of tensor superfields vM(z) = (V m(z),Φµ(z), Φ̄µ̇(z)),

where V m(z) = (V m(z))∗, D̄α̇Φµ(z) = 0 and Φ̄µ̇ = (Φµ(z))∗. Under an arbitrary

infinitesimal variation of these fields, vM(z)→ vM(z) + δvM(z), the variation of the

action δS is expressed as

δS[v] = S[v + δv]− S[v]

= S[V + δV,Φ + δΦ, Φ̄ + δΦ̄]− S[V,Φ, Φ̄]

=

∫
d8z δV m(z)

δS

δV m(z)
+

∫
d6z δΦµ(z)

δS

δΦµ(z)
+

∫
d6z̄ δΦ̄µ̇(z)

δS

δΦ̄µ̇(z)

(2.1.39)

and δS/δV m(z), δS/δΦµ(z) and δS/δΦ̄µ̇(z) are the left (super)functional derivatives

of S at V m(z), Φµ(z) and Φ̄µ̇(z) respectively. The classical equations of motion are

then expressed through the stationary action principle, i.e. solutions are the set of

fields which satisfy the equations

δS

δV m
=

δS

δΦµ
=

δS

δΦ̄µ̇
= 0. (2.1.40)

Finally it should be pointed out that (at least currently) no physical meaning is

usually ascribed to superfields or superspace. Its usage is ordinarily viewed as an

elegant and useful mathematical book-keeping device for the different component

fields in a supermultiplet. Consequently all physical meaning of any superfield theory

is obtained purely through the underlying component action in Minkowski space.

2.2 Superfield theories

In this section we begin by examining the simplest N = 1 superfield theory, the

so-called Wess-Zumino models, which illustrate the important features of N = 1 su-

perfield theories. Discovered and discussed in detail by Wess and Zumino [155], these

models where the first examples of four dimensional supersymmetric field theories

with linearly realized supersymmetry. Afterward we will consider the generalization

to include local gauge invariance, namely supersymmetric Yang-Mills theories.
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2.2.1 Extended Wess-Zumino models

From a physical point of view, the most general action involving n chiral fields

Φi(z) = (Φ̄i(z))
∗, i = 1, . . . , n, with D̄α̇Φi = DαΦ̄i = 0, is

S[Φ, Φ̄] =

∫
d8z Φ̄iΦ

i +

∫
d6z Lc(Φ) +

∫
d6z̄ L̄c(Φ̄) (2.2.41)

where Lc(Φ) and L̄c(Φ̄) are finite polynomials in Φ and Φ̄ respectively. This will

be referred to as the extended Wess-Zumino model, since the case where n = 1 and

Lc is at most a third order polynomial is generally known as just the Wess-Zumino

model.

Recalling that the power series expansion of a chiral superfield is given by equa-

tion (2.1.29), we can express the components as

Ai(x) = Φi(z)
∣∣∣ ψi

α(x) = DαΦi(z)
∣∣∣ F i(x) = −1

4
D2Φi(z)

∣∣∣ (2.2.42)

and similarly for Φ̄i(z). The component action is easily found to be:

S =

∫
d8z Φ̄iΦ

i +

(∫
d6z Lc(Φ) + c.c.

)
=

∫
d4x

(
Ai(x)∂a∂aĀi(x)−

i

2
ψiα(x)∂αα̇ψ̄(x)α̇

i + F i(x)F̄i(x)

+
{(
− 1

4

∂2Lc(A(x))

∂Ai(x)∂Aj(x)
ψiα(x)ψj

α(x) +
∂Lc(A(x))

∂Ai(x)
F i(x)

)
+ c.c.

})
. (2.2.43)

Consequently at the component level the extended Wess-Zumino action (2.2.41)

describes a system of n complex scalar fields Φi(x), n complex scalar auxiliary fields

F i(x) and n Majorana spinors.

Using the techniques described in subsection 2.1.2, one finds that under infinites-

imal supersymmetry transformations with parameters εα = (ε̄α̇)∗ the component

fields transform linearly as follows:

δAi(x) = −εψi(x)

δψi
α(x) = −2εαF

i(x)− 2iε̄α̇∂αα̇A
i(x)

δF i(x) = −iε̄α̇∂αα̇ψ
iα(x).

(2.2.44)

At this stage one may determine the equations of motion for the component

fields by either using the principle of least action on the component action, or by

deriving the superfield equations of motion. It is generally easier to take the latter

route, and obtain the component equations of motion by operating on the superfield

equations of motion with various numbers of covariant derivatives followed by space

projections.
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Having eliminated the auxiliary fields through their equations of motion, one

finds that the resulting component action possess non-linear, on-shell supersymme-

try which is dependent on the particular Wess-Zumino model under consideration.

This is a typical feature of N = 1 superfield theories.

As a final remark, examination of the quantum properties of the extended Wess-

Zumino models shows that in fact the most general renormalizable model is one

where Lc(Φ) is at most cubic having the general form

Lc(Φ) = a+ biΦ
i +mijΦ

iΦj + λijkΦ
iΦjΦk (2.2.45)

Here mij is the mass matrix, and cubic terms generate interactions, in complete

analogy to standard quantum field theory.

2.2.2 Supersymmetric Yang-Mills theories

In superspace

Examination of the first term in the extended Wess-Zumino action (2.2.41),∫
d8z Φ̄iΦ

i (2.2.46)

immediately reveals a global symmetry. More specifically, consider a finite dimen-

sional (perhaps reducible) representation R of a compact connected Lie group G,

generated by a set of Hermitian generators (T I)i
j which satisfy

[T I , T J ] = if IJKT K (T I)† = T I I = 1, 2, . . . , dimG (2.2.47)

where the structure constants f IJK will be assumed to be antisymmetric. The action

(2.2.46) is then invariant under the global symmetry transformations

Φ
′i(z) =

(
eiξIT I)i

j
Φj(z) Φ̄

′

i(z) = Φ̄j(z)
(
e−iξIT I)j

i
ξI ∈ Rc. (2.2.48)

which will extend to the entire action provided Lc is also invariant.

Promoting this symmetry to a local or gauge symmetry leads to supersymmetric

Yang-Mills models. The scalar field Φi satisfies the chirality constraint D̄α̇Φ =

0, which cannot be maintained under local transformations in which the gauge

parameter is an arbitrarily superfield, ie

D̄α̇(Φ′(z)) = D̄α̇(eiξ
I(z)T I

Φ(z)) 6= 0 (2.2.49)

for arbitrary superfield ξI(z). For consistency we must demand that ξI(z) itself be

chiral, which immediately ruins the invariance of Φ̄Φ.
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The solution to this problem is to introduce a real but otherwise arbitrary ‘com-

pensating’ or gauge superfield that takes values in the Lie algebra, V (z) = V I(z)T I ,

and has the following gauge transformation properties1

e2V ′(z) = eiΛ̄(z)e2V (z)e−iΛ(z) (2.2.50)

where

Λ(z) = ΛI(z)T I D̄α̇ΛI(z) = 0

Λ̄I(z) = Λ̄I(z)T I DαΛ̄I(z) = 0 (2.2.51)

(ΛI(z))∗ = Λ̄I(z).

The gauge superfield V , also known as the Yang-Mills superfield, is used to yield

the gauge invariant action ∫
d8z Φ̄e2V Φ (2.2.52)

where the gauge transformations are now:

Φ′(z) = eiΛ(z)Φ(z) Φ̄′(z) = Φ̄(z)e−iΛ̄(z) (2.2.53)

with Λ and Λ̄ subject to (2.2.51). The component form of this action describes the

coupling of a Yang-Mills field to spin 1/2 matter.

The covariant derivatives DA do not preserve the gauge transformation proper-

ties. In analogy to ordinary gauge theories it is natural to look for gauge covariant

derivatives, and attempt to identify torsion and curvature in terms of them. Accord-

ingly one introduces a set set of gauge covariant derivatives, D(+)

A = (D(+)
a ,D(+)

α , D̄α̇(+)),

which satisfy

(D(+)

A Φ)→ (D(+)

A Φ)′ = eiΛ(D(+)

A Φ) ⇒ D
′(+)

A = eiΛD(+)

A e−iΛ. (2.2.54)

As usual one achieves this by introducing gauge connections taking values in the Lie

algebra, in this case the superfields Γ(+)

A (z) = ΓI(+)

A (z)T I , such that

D(+)

A = DA + iΓ(+)

A (z) (D(+)

A Φ) = (DAΦ(z)) + iΓ(+)

A (z)Φ(z). (2.2.55)

This immediately implies that the connection transforms as

Γ
′(+)

A (z) = eiΛΓ(+)

A (z)e−iΛ − i(eiΛDAe
−iΛ) (2.2.56)

under gauge transformations. Examining (2.2.54) and the transformations proper-

ties (2.2.50) of the gauge field V (z) introduced above, one particular choice of a

1The choice of 2V (z) instead of just V (z) is merely a matter of convenience.

19



gauge connection is:

D(+)

α = e−2VDαe
2V D̄α̇(+) = D̄α̇

D(+)

a = −1

2
(σ̃a)

α̇αD(+)

αα̇ = − i

4
(σ̃a)

α̇α{D(+)

α , D̄(+)

α̇ } (2.2.57)

Γ(+)

α = −i(e−2VDαe
2V ) Γ(+)

α̇ = 0 Γ(+)

a = −1

4
(σ̃a)

α̇αD̄α̇(e−2VDαe
2V ).

The supertorsion H C
AB and supercurvature F (+)

AB = F I(+)

AB T I tensors are then identi-

fied from their definitions through the (anti)commutation relations

[D(+)

A ,D(+)

B } = D(+)

A D
(+)

B − (−1)εAεBD(+)

B D
(+)

A

= H C
AB D

(+)

C + iF (+)

AB (2.2.58)

of the gauge covariant derivatives, which satisfy the following algebra [156]

{D(+)

α ,D(+)

β } = {D̄(+)

α̇ , D̄(+)

β̇
} = 0

{D(+)

α , D̄(+)

α̇ } = −2iD(+)

αα̇ = −2i(σa)αα̇D(+)

a

[D(+)

α ,D(+)

ββ̇
] = 2iεαβW̄

(+)

β̇
W̄ (+)

β̇
= W̄ I(+)

β̇
T I (2.2.59)

[D̄(+)

α̇ ,D(+)

ββ̇
] = 2iεα̇β̇W

(+)

β W (+)

β = W I(+)

β T I

[D(+)

αα̇ ,D
(+)

ββ̇
] = (σa)αα̇(σb)ββ̇G

(+)

ab = −εαβ(D̄(+)

α̇ W̄ (+)

β̇
)− εα̇β̇(D(+)

α W (+)

β ).

Contraction of the spinor indices in the last commutator yields the Bianchi identity

(D(+)αW (+)
α ) = (D̄(+)

α̇ W̄ (+)α̇).

The supercurvature superfields (or gauge superfield strengths)

W (+)

α = −1

8
D̄2(e−2VDαe

2V )

W̄ (+)

α̇ =
1

8
e−2VD2(e2V D̄α̇e

−2V )e2V ,
(2.2.60)

are used to construct the ‘pure’ or kinetic part of the gauge superfield’s action:

1

4g2C(R)
trR

(∫
d6z W α(+)W (+)

α +

∫
d6z̄ W̄ (+)

α̇ W̄ α̇(+)

)
. (2.2.61)

Here g is a coupling constant, trR indicates the trace over the gauge indices of

the representation R, and C(R) is a Casimir coefficient defined by trR(T IT J) =

C(R)δIJ . One can readily establish that this part of the action is invariant un-

der gauge transformations due to the cyclic properties of the trace and the fact

that the superfield strengths have the following homogeneous gauge transformation

properties

W (+)

α → W
′(+)

α = eiΛW (+)

α e−iΛ

W̄ (+)

α̇ → W̄
′(+)

α̇ = eiΛ̄W̄ (+)

α̇ e−iΛ̄.
(2.2.62)
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Alternatively one may have sought gauge covariant derivatives D(–)

A which main-

tained the gauge transformation property

(D(–)

A Φ̄T)→ (D(–)

A Φ̄T)′ = eiΛ̄(D(–)

A Φ̄T) ⇒ D
′(–)
A = eiΛ̄D(–)

A e−iΛ̄. (2.2.63)

The difference is merely a matter of representation, and the + and − representations

(the chiral and antichiral representations respectively) are explicitly related by

D(+)

A = e−2VD(–)

A e2V . (2.2.64)

The subsequent field strengths are related through similar identities, for example

W (+)

α = e−2VW (–)

α e2V . (2.2.65)

Often one expresses the chiral part of the action (2.2.52) in terms of gauge

covariantly chiral scalar fields

Φ̄e2V Φ = Φ̄(+)Φ(+) = Φ̄(–)Φ(–) (2.2.66)

which satisfy

Φ(+) = Φ Φ̄(+) = Φ̄e2V D̄(+)

α̇ Φ(+) = D(+)

α Φ̄(+)T = 0 (2.2.67)

Φ(–) = e2V Φ Φ̄(–) = Φ̄ D̄(–)

α̇ Φ(–) = D(–)

α Φ̄(–)T = 0. (2.2.68)

Clearly in these representations the gauge covariantly chiral and antichiral scalars

are not directly related by Hermitian conjugation. An ‘in-between’ or ‘central’

representation which maintains this property, is defined by splitting the vector field

as

e2V = ewew̄ w̄† = w = wIT I . (2.2.69)

The corresponding gauge covariant derivatives, field strengths and gauge covariantly

(anti)chiral superfields are then defined by

Dα = e−wDαe
w, D̄α̇ = ew̄D̄α̇e

−w̄

Da = −1

2
(σ̃a)

α̇αDαα̇ = − i

4
(σ̃a)

α̇α{Dα, D̄α̇} (2.2.70)

[D̄α̇,Dββ̇] = 2iεα̇β̇Wβ, [Dα,Dββ̇] = 2iεαβW̄β̇.

The action is representation independent and from here onward a particular repre-

sentation will only be specified as necessary.

The complete action in N = 1 superspace describing non-Abelian Yang-Mills

fields V coupled to matter Φ is:

S[Φ, Φ̄, V ] =

∫
d8z Φ̄e2V Φ +

(∫
d6z Lc(Φ) + c.c

)
+

1

2g2C(R)

∫
d6z trR(W 2) (2.2.71)
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having used ∫
d6z trR(W 2) =

∫
d6z̄ trR(W̄ 2) (2.2.72)

modulo total derivative terms. This action will be gauge invariant provided the

coefficients in the powers series expansion of Lc are gauge invariant tensors of the

gauge group.

Yang-Mills theories in components

We will now briefly examine (2.2.71) at the component level and demonstrate that

it is in fact a supersymmetric Yang-Mills theory.

Before we proceed we must first examine exactly how V transforms under gauge

transformations. Recalling (2.2.50), with a little work one may obtain the following

expression, which describes how V transforms under an infinitesimal gauge trans-

formation:

δV =− i

2
LV (Λ̄ + Λ) +

i

2
LV coth(LV )(Λ̄− Λ)

=
i

2
(Λ̄− Λ)− i

2
[V, Λ̄ + Λ] +

i

6
[V [V, Λ̄− Λ]] +O(V 4) (2.2.73)

where LA(B) = [A,B], or more explicitly

L0
A(B) = B Ln

A(B) = [A,Ln−1
A (B)]. (2.2.74)

In deriving (2.2.73) we have used the identities

eA+λB = eA
(
1 +

∫ 1

0

dξ e−ξAλBeξA
)

=
(
1 +

∫ 1

0

dξ eξAλBe−ξA
)
eA (2.2.75)

and

eABe−A =
∞∑

n=0

1

n!
Ln

A(B) = eLAB (2.2.76)

for operators A and B, and infinitesimal parameter λ.

In order to simplify the discussion we will consider the special case where the

real gauge field V I(z) has the following component content:

V I(z)
∣∣∣ = DαV

I(z)
∣∣∣ = D2V I(z)

∣∣∣ = 0 V I
αα̇(x) =

1

2
[Dα, D̄α̇]V I(z)

∣∣∣
χI

α(x) = −1

4
DαD̄

2V I(z)
∣∣∣ χ̄I

α̇(x) = −1

4
D̄α̇D

2V I(z)
∣∣∣ (2.2.77)

N I(x) =
1

32
{D2, D̄2}V I(z)

∣∣∣.
which implies V 3 = 0. Due to the fact that the component field Va(x) turns out

to be the Yang-Mills vector potential, V is in general known as a vector multi-

plet. This simplified component content can be achieved by eliminating some of
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the component fields in V (z) through a gauge choice known as the Wess-Zumino

gauge [157]. This choice of gauge unfortunately breaks supersymmetry, but it can be

restored by accompanying the supersymmetry transformations by a compensating

gauge transformation. See [89, 127] for details.

The most general gauge transformation consistent with the gauge choice (2.2.77)

is found by examining δV at the component level. For example, a space projection

of (2.2.73) along with the definition of the components of V immediately yields

δV
∣∣∣ =

i

2
(Λ̄− Λ)

∣∣∣ = 0 ⇒ Λ̄
∣∣∣ = Λ

∣∣∣. (2.2.78)

Proceeding in this way, one finds that the most general gauge transformation con-

sistent with the Wess-Zumino gauge is given by

Λ(z) = eiHξ(x) ξ = ξIT I = ξ† (2.2.79)

which acts on V as

δV =
i

2
(Λ̄− Λ)− i

2
[V, Λ̄ + Λ]. (2.2.80)

Operating on this and (2.2.79) with covariant derivatives, we can project out the

transformation properties of the components. In doing so we establish that they all

transform according to standard non-Abelian Yang-Mills transformation laws

δV I
a = ∂aξ

I − ξKfKJIV J
a

χI
α = −ξKfKJIχJ

α (2.2.81)

N I = −ξKfKJINJ .

Similarly the components of Φ, defined by (2.2.42), transform as

δAi = iξK(T K)i
jA

j

δψi
α = iξK(T K)i

jψ
j
α (2.2.82)

δF i = iξK(T K)i
jF

j.

It is a straight forward exercise, using the techniques described earlier, to extract

the component action. The pure Yang-Mills part of the action reduces to:

1

2g2C(R)

∫
d6z trR(W 2)

=
1

g2C(R)

∫
d4x trR

(
− 1

4
F abFab − iχσa∇aχ̄+ 2N2

)
(2.2.83)

where

∇a = ∂a − iVa, [∇a,∇b] = −iFab

Fab = ∂aVb − ∂bVa − i[Va, Vb], ∇aχ̄
α̇ = ∂aχ̄

α̇ − i[Va, χ̄
α̇] (2.2.84)

Va = V I
a T I N = N IT I χα = χI

αT I .
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The component field N is auxiliary. The component action for the remainder of the

Yang-Mills action is found to be∫
d8z Φ̄e2V Φ +

{∫
d6z Lc(Φ) + c.c

}
=

∫
d4x

(
− (∇aĀi)(∇aAi) + 2ĀiN

I(T I)i
jA

j − i

2
ψσa∇aψ̄(x)i − ψ̄iχ̄

I(T I)i
jA

j

− Āiχ
I(T I)i

jψ
j + F i(x)F̄i(x)

+
{(
− 1

4

∂2Lc(A(x))

∂Ai(x)∂Aj(x)
ψiα(x)ψi

α(x) +
∂Lc(A(x))

∂Ai(x)
F i(x)

)
+ c.c.

})
(2.2.85)

where

∇aA
i = ∂aA

i − iV I
a (T I)i

jA
j

∇aχ
i
α = ∂aχ

i
α − iV I

a (T I)i
jχ

j
α

(2.2.86)

and (2.2.71) is just the off-shell supersymmetric extension of a field theory with n

complex scalar fields Ai(x) coupled to a Yang-Mills field V I
a (x).

The most general renormalizable N = 1 Yang-Mills action is then described by

the action (2.2.71) where L is given by (2.2.45), provided the coefficients mij and

λijk are invariant tensors of the gauge group.

The equations of motion in superspace

To complete this discussion we will derive the superspace equations of motion for

the general super Yang-Mills action (2.2.71). The most direct approach is as follows.

For an alternative for pure super Yang-Mills theory see [127].

Under an arbitrary variation δV of the gauge superfield, the variation of the

action (2.2.71) is given by

δV S =S[Φ, Φ̄, V + δV ]− S[Φ, Φ̄, V ]

=

∫
d8z Φ̄δe2V Φ +

1

g2C(R)

(
trR

∫
d6z (δW α)Wα

)
=

∫
d8z Φ̄δe2V Φ +

1

2g2C(R)

(
trR

∫
d8z δ(e−2VDαe2V )W (+)

α

)
(2.2.87)

having used the definition of W (+)
α (2.2.60). Writing e2(V +δV ) in the form (2.2.75),

integration by parts and the cyclic property of the trace lead to

δV S =

∫
d8z

(
2Φ̄

∫ 1

0

dξe2ξV δV e−2ξV e2V Φ

− 1

g2C(R)
trR

∫ 1

0

dξe−2ξV δV e2ξV (D(+)αW (+)

α )

)
(2.2.88)
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where

(D(+)αW (+)

α ) = DαW (+)

α + {(e−2VDαe2V ),W (+)

α }. (2.2.89)

The identity

Ln
AT I = (−1)n(Ǎn)IJT J A = AIT I Ǎ = AItI , (2.2.90)

where (tI)JK = −if IJK are the generators of the adjoint representation, gives∫ 1

0

dξe−2ξV δV e2ξV = δV I

(
e2V̌ − 1

2V̌

)IJ

T J (2.2.91)

and one readily obtains

δV S =

∫
d8z δV I

(
2

(
1− e−2V̌

2V̌

)IJ

Φ̄ T Je2V Φ

− 1

g2

(
e2V̌ − 1

2V̌

)IJ

(D(+)αW (+)

α )J

)
. (2.2.92)

This leads to the equations of motion

δS

δV I
= 2

(
1− e−2V̌

2V̌

)IJ

Φ̄ T Je2V Φ− 1

g2

(
e2V̌ − 1

2V̌

)IJ

(D(+)αW (+)

α )J = 0. (2.2.93)

Using

eAT Ie−A = (e−Ǎ)IJT J A = AIT I Ǎ = AItI (2.2.94)

the Bianchi identity D(+)αW (+)
α = D̄(+)

α̇ W̄ (+)α̇, and recalling the definitions of Φ(+)

and Φ̄(+) (2.2.67), the equations become

(D(+)αW (+)

α )I = (D̄(+)

α̇ W̄ (+)α̇)I = 2g2Φ̄(+)T IΦ(+). (2.2.95)

It follows that

(DαWα)I = (D̄α̇W̄
α̇)I = 2g2φ̄T Iφ (2.2.96)

in any representation, where the scalars are gauge covariantly chiral: D̄α̇φ = Dαφ̄
T =

0.

The equations of motion for Φ and Φ̄ are comparatively much simpler to derive.

Under an arbitrary variation of the chiral fields one finds

δΦS =S[Φ + δΦ, Φ̄ + δΦ̄, V ]− S[Φ, Φ̄, V ]

=− 1

4

∫
d6z D̄2

(
Φ̄i(e

2V )i
j

)
δΦj − 1

4

∫
d6z̄ δΦ̄iD

2
(
(e2V )i

jΦ
j
)

+

∫
d6z δΦi∂Lc(Φ)

∂Φi
+

∫
d6z̄ δΦ̄i

∂L̄c(Φ̄)

∂Φ̄i

, (2.2.97)
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which immediately gives

δS

δΦi
= −1

4
D̄2
(
Φ̄j(e

2V )j
i

)
+
∂Lc(Φ)

∂Φi
= 0 (2.2.98)

δS

δΦ̄i

= −1

4
D2
(
(e2V )i

jΦ
j
)

+
∂L̄c(Φ̄)

∂Φ̄i

= 0. (2.2.99)

2.2.3 N = 2, 4 super Yang-Mills

In this section we will briefly describe N = 2 and the maximally supersymmetric

N = 4 super Yang-Mills theories. The latter is in fact nothing more than a special

case of the former, and can be obtained in component form by dimensional reduction

of N = 1 supersymmetric Yang-Mills theory from D = 10 [158, 159]. It was the

first known four dimensional field theory that was ultraviolet finite to all orders

in perturbation theory. When formulated in N = 1 superspace, only one of the

supersymmetries is manifest and linearly realized, the remaining supersymmetries

being nonlinearly realized. Extended supersymmetry transformations in N = 1

superspace have been considered in [160, 89, 161]. For complete details [89].

N = 2

The most general N = 2 super Yang-Mills action, cast in N = 1 superfield form,

consists of two parts,

SN=2 = Spure + Shyper, (2.2.100)

the ‘pure’ and ‘hypermultiplet’ parts. The pure N = 2 super Yang-Mills action is

given by:

Spure =
1

g2C(R)
trR

(∫
d8z e−2V Φ̄e2V Φ +

1

2

∫
d6z W 2

)
. (2.2.101)

The chiral superfields transform in the adjoint representation of the gauge group, and

have been expressed in (2.2.101) in the form Φ = ΦIT I , with (T I)i
j the Hermitian

generators of an arbitrary representationR of the gauge group. Similarly V = V IT I .

The standard form for the super Yang-Mills action (2.2.71) is achieved by exploiting

(2.2.94), which leads to

1

C(R)
trR
(
e−2V Φ̄e2V Φ

)
= Φ̄I(e2V̌ )IJΦJ . (2.2.102)

Needless to say, the pure part of the action (2.2.101) is invariant under the following

gauge transformations

e2V ′ = eiΛ̄e2V e−iΛ Φ′ = eiΛΦe−iΛ (2.2.103)

V = V † = V IT I Λ = ΛIT I = Λ̄† DαΛI = 0. (2.2.104)
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The hypermultiplet part of the action is

Shyper =

∫
d8z
(
Q̄e2VQ+ ¯̃Q(e−2V )TQ̃

)
+
√

2

∫
d6z Q̃TΦQ+

√
2

∫
d6z̄ Q̄Φ̄ ¯̃QT

+M
∫

d6z Q̃TQ+M
∫

d6z̄ ¯̃QQ̄T (2.2.105)

whereM the mass of the chiral scalars Q and Q̃, which transform respectively in a

representation R and its conjugate Rc of the gauge group. These two chiral scalars

are the N = 1 components of an N = 2 multiplet called the hypermultiplet.

Shyper is invariant under the gauge transformations

e2V ′ = eiΛ̄e2V e−iΛ Φ′ = eiΛΦe−iΛ (2.2.106)

Q′ = eiΛQ Q̃′ = (e−iΛ)TQ̃ (2.2.107)

V = V † = V IT I Λ = ΛIT I = Λ̄† DαΛI = 0 (2.2.108)

where T I are the generators of the representation R. This can be written as in the

previous section by making the following redefinition of the chiral scalars(
Q

Q̃

)
= Aχ A =

1√
2

(
1 −i1

1 i1

)
χ =

(
χ1

χ2

)
(2.2.109)

with 1 the identity matrix in the representation R. Under this redefinition Shyper

becomes

Shyper =

∫
d8z χ̄e2V χ+

M
2

{∫
d6z χT χ+ c.c.

}
+

1√
2

{∫
d6z χTZΦχ+ c.c.

}
(2.2.110)

where now V = V I T̃ I , Φ = ΦI T̃ I and

Z =

(
0 −i1

i1 0

)
. (2.2.111)

The new generators T̃ I are defined by

T̃ I =

(
T I
− −iT I

+

iT I
+ T I

−

)
T I
± =

1

2

(
T I ± (T I)T

)
, (2.2.112)

are Hermitian and antisymmetric,

(T̃ I)† = T̃ I (T̃ I)T = −T̃ I , (2.2.113)

thereby generating a real representation of the gauge group equivalent to R⊕Rc.
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From an N = 2 superfield perspective, the field strength Wα and the covariantly

chiral version φ of the chiral scalar Φ are leading N = 1 components of a covariantly

chiral N = 2 superfield strength W . In N = 1 superspace this ‘second supersym-

metry’ manifests itself by mixing φ and Wα in a form which is analogous to the

mixing of the components of an N = 1 chiral scalar under N = 1 supersymmetry

transformations (ie see (2.2.42) and (2.2.44)). As noted above, the two chiral scalars

Q and Q̃ are the N = 1 components of the hypermultiplet, and also become mixed

under the ‘second supersymmetry’ transformations.

For example, in the massless case, writing all fields in the central representation,

Φc = ew̄Φe−w̄, Qc = ew̄Q, Q̃c = (e−w̄)TQ̃ and so on, the action (2.2.100) is invariant

under the following N = 2 supersymmetry transformations:

δWα = −1

4
εαD̄2Φ̄c + iε̄α̇Dαα̇Φc δW̄α̇ = −1

4
ε̄α̇D2Φc + iεαDαα̇Φ̄c (2.2.114)

δΦc = εαWα δΦ̄c = ε̄α̇W̄
α̇ (2.2.115)

δQc = −iχΦ̄cQc +
1

4
D̄2(χ ˜̄Qc) δQ̃c = −iχΦ̄cQ̃c −

1

4
D̄2(χQ̄c) (2.2.116)

δQ̄c = iχQ̄cΦc −
1

4
D2(χQ̃T

c ) δ ¯̃Qc = iχ ¯̃QcΦc +
1

4
D2(χQT

c ) (2.2.117)

χ = λ(θ) + λ̄(θ̄). (2.2.118)

Here chiral and antichiral parameters λ and λ̄ = λ∗ respectively are independent of

spacetime, and posses the expansion λ = γ + θαεα + θ2(β1 + iβ2), where γ param-

eterizes central charge transformations, and β1, β2 parameterize SU(2)/U(1). See

[89] for complete details.

N = 4

Taking the special case where M = 0 and the representation R as the adjoint, we

obtain N = 4 super Yang-Mills. Defining ΦI
i = (ΦI , QI/g, Q̃I/g) this is usually

written in the form

S =
1

g2C(R)
trR

(∫
d8z e−2V Φ̄ie2V Φi +

1

4

∫
d6z W 2 +

1

4

∫
d6z̄ W̄ 2

+

(√
2

3!

∫
d6z εijk[Φi,Φj]Φk + c.c.

))
. (2.2.119)

with ε123 = 1 for the totally antisymmetric εijk tensor. Besides the manifest N = 1

supersymmetry and SU(3) symmetry, this action possess the following three addi-

tional non-linearly realized supersymmetries (parameterized by εai , i = 1, 2, 3):

δWα = −1

4
εiαD̄2Φ̄i

c + iε̄iα̇Dαα̇Φci δW̄α̇ = −1

4
ε̄iα̇D2Φci + iεαi Dαα̇Φ̄i

c (2.2.120)

δΦci = εαi Wα δΦ̄i
c = ε̄iα̇W̄

α̇. (2.2.121)
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A note on superconformal field theories

As a final remark we note that, analogous to massless field theories formulated

on R3,1 which are invariant under the group of conformal transformations (which

include the Poincaré transformations), massless field theories formulated on R4|4

are invariant under the so-called N = 1 superconformal group, having amongst its

subgroups the N = 1 super Poincaré group. From the perspective of the AdS/CTF

correspondence, the existence of this symmetry is of key significance. For present

purposes it is sufficient to merely note that the massless N = 2 (and therefore

N = 4) non-Abelian super Yang-Mills theories are indeed N = 1 superconformally

invariant. For further details relating to this matter and this symmetry group, see

[89, 127].
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Chapter 3

Quantization of non-Abelian super

Yang-Mills theories

The functional approach to the quantization of superfield theories is conceptually

identical to that for ordinary field theories, with only minor modifications necessary

to deal with additional complications due to the existence of the chiral and antichiral

subspaces. In this chapter we will briefly review the quantization procedure for

both field and superfield theories in the context of the background field formulation.

The first section is devoted to a general discussion of this formulation including

generating functionals and the background field effective action. In the second

section we explicitly treat the cases of N = 2 and 4 super Yang-Mills theories

at one-loop order.

3.1 Generalities

3.1.1 The background field formalism

Generally speaking, the background field formalism is concerned with explicitly

maintaining the classical gauge invariance at the quantum level. Ordinarily this

gauge invariance is lost in the gauge fixing process and preserving it can vastly

simplify calculations and analysis.

More specifically, traditionally one would calculate the gauge invariant elements

of the S-matrix by computing Green’s functions from a generating functional. In

order to generate well defined propagators, one must make a choice of gauge which

results in a gauge dependent generating functional. The generating functional itself

needn’t be gauge invariant since it not physically observable, however all compu-

tations must ultimately yield gauge invariant physical observables. Consequently,
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during the course of computing the S-matrix, one is forced to handle non-invariant

quantities whose final gauge invariance is assured by the application of a renormaliza-

tion scheme which satisfies the generalized Ward identities [162, 163, 164, 165, 166].

Such identities are typically very complicated.

One way around such complications is to adopt the background field method,

which more fully exploits the classical gauge invariance. In this scheme the gener-

alized Ward identities are trivially satisfied, in that the classical gauge invariance is

manifest at all stages during computations. For this reason the technique is used ex-

tensively in modern quantum field theory, superfield theories, including supergravity

theories, and recent attempts in quantizing gravity, including string theory.

The procedure was first introduced by B. DeWitt [167, 93, 168, 169, 170, 171, 172,

173, 174] in the context of ordinary gauge field theories. Although initially applied

at one-loop order in the loop expansion of effective action, the procedure was soon

generalized, first by ’t Hooft, to include multiloop processes [175, 176, 177, 178]. For

a review see [179].

Being universal enough to admit superspace generalizations, the approach was

soon applied to superfield and supergravity theories [180, 181, 182, 89, 183, 184].

In applying the approach to super Yang-Mills theories formulated in superspace we

roughly follow the works [180, 89].

3.1.2 Condensed Notation

The background field technique is identical in its application to field theories and

superfield theories, and can be simultaneously summarized by adopting a two-fold

condensed DeWitt notation [93, 185] (also see [127]). Accordingly, an index adorned

with a hat will indicate a DeWitt index, doing double duty as a discrete label for the

field components and as a continuous label for the points in either D dimensional

spacetime or N = 1 superspace. Summation over repeated DeWitt indices thereby

implicitly includes integration over the appropriate space. More explicitly, given a

(super)field theory with field content vM(y), we will write

vM̂ = vM(y) (3.1.1)

where y is either a point in flat D dimensional spacetime, y ∈ RD−1,1, or N = 1

superspace, y ∈ R4|4. In the case of ordinary field theory vM simply enumerates

all fields and components in the dynamical theory, all of which are considered to

be real vM = (vM)∗. In the superfield case vM will denote all unconstrained, chiral

and antichiral fields: vM = (V m,Φµ, Φ̄µ̇), where V m = (V m)∗, D̄α̇Φµ = 0, and

Φ̄µ̇ = (Φµ)∗. In general the field vM posses Grassmann parity ε(vM) = εM .
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To illustrate the usage of this notation consider coupling of the (super)fields vM̂

to their sources jM̂ , which is in general now simply written as jM̂v
M̂ . Expanding

the condensed notation

jM̂v
M̂ =

∫
d(M)y jM(y)vM(y), (3.1.2)

where d(M)y denotes the appropriate integration measure(s) for the theory under

consideration. For ordinary field theories in D dimensional spacetime we have

d(M)y = dDx jM̂v
M̂ =

∫
dDx jM(x)vM(x), (3.1.3)

and for superfield theories

d(M)y = d(M)z d(M)z =


d8z

d6z

d6z̄

M = m

M = µ

M = µ̇

(3.1.4)

jM̂v
M̂ =

∫
d(M)z jM(z)vM(z)

=

∫
d8z Jm(z)V m(z) +

∫
d6zΘµ(z)Φµ(z) +

∫
d6z̄ Θ̄µ̇(z)Φ̄µ̇(z). (3.1.5)

In the latter case the sources jM = (Jm,Θµ, Θ̄µ̇) are respectively unconstrained,

chiral and antichiral superfields. We will also find a need to introduce delta functions

δM̂
N̂

, where for field theory we have

δM̂
N̂

= δM
Nδ

D(x, x′); (3.1.6)

and superfield theory

δM̂
N̂

= δM
Nδ

(M)(z, z′) δ(M)(z, z′) =


δ8(z, z′)

δ+(z, z′)

δ−(z, z′)

M = m

M = µ

M = µ̇

(3.1.7)

such that in general

δM̂
N̂
vN̂ = vM̂ . (3.1.8)

We will also adopt the following conventions for left and right functional deriva-

tives of a functional F [Ψ] with respect to fields ΨM̂ :

M̂... N̂ ,F,P̂ ... Q̂ [Ψ] =

−→
δ

δΨM̂
· · ·
−→
δ

δΨN̂
F [Ψ]

←−
δ

δΨP̂
· · ·
←−
δ

δΨQ̂
. (3.1.9)
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In the event that a functional has additional arguments the meaning should be clear

from the context.

Finally, in this notation one may write the functional supertrace sTr of a given

linear differential operator ∆ as

sTr∆ = (−1)εM ∆M̂
M̂

=

∫
d(M)y (−1)εM ∆M

M(y, y). (3.1.10)

where the (super)functional supermatrix ∆M̂
N̂

= ∆M
N(y, y′), is obtained by oper-

ating on y and first index of the δ-functions defined above:

∆M̂
N̂

= ∆δM̂
N̂
. (3.1.11)

In turn one may then formally define the functional superdeterminant sDet of an

operator as:

sDet∆ = exp(sTr(ln ∆)). (3.1.12)

3.1.3 The background field effective action

Background-quantum splitting

The object of primary interest in modern quantum field theory is the effective action,

from which the S-matrix is uniquely determined. The effective action has a long

history (for example see [186, 187]) but appears to have been formally introduced

first perturbatively by J. Goldstone, A. Salam and S. Weinberg [188] and then later

nonperterbatively [189, 93]. The ultimate goal of the background field method is

the computation of an effective action which retains the gauge symmetries of the

classical action. In what follows we restrict attention to those (super)field theories

with irreducible and closed gauge algebras, to which class the super Yang-Mills

theories belong.

Suppose that we are given such a theory with classical action S0[v] which is

invariant under the infinitesimal gauge transformations

δvM̂ = RM̂
K̂[v]ζK̂ S0,M̂ [v]RM̂

K̂[v] = 0 (3.1.13)

for some functional supermatrix RM̂
K̂[v], with ζK̂ being the gauge parameters1.

Closure of the gauge algebra means that the so-called generators of the gauge trans-

formations, RM̂
K̂[v], satisfy

RM̂
Ĵ ,N̂

[v]RN̂
K̂[v]− (−1)εJ εKRM̂

K̂,N̂
[v]RN̂

Ĵ [v] = RM̂
L̂[v]C

L̂
Ĵ K̂[v], (3.1.14)

1The index K runs over all gauge parameters which possess Grassmann parity εK. In the

superfield case they are in general unconstrained superfields, chiral and antichiral superfields.
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for some functionals CL̂Ĵ K̂[v], called the structure coefficients of the gauge algebra,

which satisfy

CL̂Ĵ K̂[v] = (−1)εJ εKCL̂K̂Ĵ [v]. (3.1.15)

Irreducibility requires that RM̂
K̂[v0]ζ

K̂ = 0 has no non-trivial solutions with compact

support in y (ie in superspace or spacetime), where v0 satisfies the classical equations

of motion S0,M̂ [v0] = 0.

The basic procedure one follows when applying the background field technique

is to split all of the fields vM̂ which appear in the classical action into a quantum

piece vM̂
Q and a background piece vM̂

B . In general this splitting may be written as

vM̂ = ΩM̂(vB, vQ). (3.1.16)

We will consider a splitting which is subject to the constraints

vM̂ = ΩM̂(v, 0) = ΩM̂(0, v). (3.1.17)

which are imposed to ensure that the original action is recovered in the absence of a

background, and so that to leading order in a quantum field expansion one obtains

the original action as a functional of the background field. As a power series these

conditions imply that

ΩM̂(vB, vQ) = vM̂
Q + vM̂

B + non-linear terms. (3.1.18)

The splitting function ΩM̂ is chosen such that the spilt action S0[Ω
M(vB, vQ)]

possesses a gauge symmetry where the background fields vM̂
B enjoy the same gauge

transformation properties as the original field vM̂ . The quantum fields vM̂
Q are to

be the integration variables in the subsequent functional integrals. For the purpose

of constructing a gauge invariant effective action, it is often sufficient to consider a

linear splitting for all fields, and vM̂ is simply replaced by vM̂
B + vM̂

Q in the classical

action. Such is the case for Yang-Mills theories formulated on Minkowski space. For

non-Abelian superfield theories however, a linear splitting is inadequate primarily

due to the non-linearity of the gauge transformations (2.2.73).

The original gauge transformations (3.1.13) can now be ‘distributed’ between

the background and quantum fields. In particular the split action S0[Ω(vB, vQ)] will

maintain its original gauge invariance, but the separate variation is ambiguous. As

a consequence the gauge transformations have two significant interpretations.

The first interpretation, which guides our choice of splitting, is the background

picture where the background fields posses the original transformation properties:

δvM̂
B = RM̂

K̂[vB]ζK̂. (3.1.19)
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This implies that

δvM̂
Q =

δvM̂
Q

δΩN̂

(
RN̂

K̂[Ω(vB, vQ)]− δΩN̂

δvP̂
B

RP̂
K̂[vB]

)
ζK̂ (3.1.20)

for S0[Ω
M(vB, vQ)] to remain invariant. It is essential under this interpretation

that the infinitesimal variation of vM̂
Q be independent of the background field, and

desirable that it be linear. We will assume that such a splitting can be found, and

that equation (3.1.20) becomes

δvM̂
Q = QM̂

K̂[vQ]ζK̂ (3.1.21)

which explicitly takes the form

dvM
Q = QM

NKv
N
Q ζ

K (3.1.22)

with some constants QM
NK. In practice this usually means that the quantum gauge

field transforms covariantly, as a non-gauge field would prior to splitting. The ex-

istence of this interpretation will eventually guarantee that the effective action be

manifestly invariant under the original transformations.

The second interpretation is the quantum picture, where the background fields

remain invariant

δvM̂
B = 0 ⇒ δvM̂

Q =
δvM̂

Q

δΩN̂
RN̂

K̂[Ω(vB, vQ)]ζK̂. (3.1.23)

It is this interpretation which must be considered when gauge fixing.

Background Gauge Fixing

After splitting, the theory is gauge fixed by carefully selecting background dependent

gauge fixing functions χK̂[vB, vQ], ε(χK) = εK, which transform covariantly in the

background picture, (3.1.19) and (3.1.21). This gauge fixing is chosen to break the

quantum gauge invariance (3.1.23) whilst yielding a gauge fixed action which will

remain invariant in the background picture.

The background field generating functional Z[j, vB] is then given by

Z[j, vB] = N

∫
[dvQ]δ(F K̂) sDet

(δχĴ [vB, vQ]

δζK̂

)
exp

{
i(S0[Ω(vB, vQ)] + jM̂v

M̂
Q

)}
,

(3.1.24)

having applied the well known Faddeev-Popov prescription, the validity of which

requires that (3.1.14) be satisfied, and so the gauge algebra is closed. In the above
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expression: N is a normalization constant2; [dvQ] denotes the functional integration

measure of the quantum fields; the sources jM̂ are coupled only to the quantum

fields; δ indicates a functional delta function, the presence of which breaks the

gauge invariance; F K̂ is given by

F K̂[vB, vQ] = χK̂[vB, vQ]− f K̂, (3.1.25)

the fields f K̂ being arbitrary external fields; and the argument of the superdeter-

minant is the variation of χK̂[vB, vQ] with respect to the gauge parameters in the

quantum picture.

Since the generating functional is independent of the choice of ‘gauge slice’ and

hence of the superfields f K̂, one is free to functionally integrate the generating

functional with respect to them. In the process one may weight the integral by an

arbitrary term, but in doing so must maintain normalization, ie in the generating

functional one includes a term

1 =

∫
[df ][da] exp

{
i

2γ

(
f ĴYĴ K̂f

K̂ + aĴ ỲĴ K̂a
K̂)}

ε(YĴ K̂) = ε(ỲĴ K̂) = εJ + εK ε(aK) = ε(fK) + 1 (mod 2)

YĴ K̂ = (−1)εJ+εK+εJ εKYK̂Ĵ ỲĴ K̂ = −(−1)εJ εKỲK̂Ĵ

(3.1.26)

In this expression γ is a gauge parameter chosen for computational convenience,

and YĴ K̂ an arbitrary functional supermatrix (which may possess background field

dependance) chosen also for convenience subject to f ĴYĴ K̂f
K̂ being invariant under

background field transformations. The superfields aK̂ are the Nielsen-Kallosh ghosts

[190, 191, 192, 193], introduced purely to maintain normalization, and they therefore

possesses opposite statistics to f K̂ to ensure cancellation of superdeterminants. More

specifically we require∫
[df ] exp

{
i

2γ
f ĴYĴ K̂f

K̂
}

=

(∫
[da] exp

{
i

2γ
aĴ ỲĴ K̂a

K̂
})−1

(3.1.27)

and the operator ỲĴ K̂ is chosen to ensure this. The operators Y and Ỳ differ trivially,

in the sense that all entries are equal ‘up to sign’, which is merely a consequence of

our choice to introduce the symmetrized operator in f ĴYĴ K̂f
K̂.

In ordinary Yang-Mills theories YĴ K̂ is commonly chosen to be a functional iden-

tity supermatrix, in which case these ghosts decouple and may be ignored. However

in many situations, as with super Yang-Mills theories, their presence is significant

2The irrelevant normalization constant in all subsequent path integral formulae will generically

be denoted by N, although in general they will differ.
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due to the fact that the inclusion of a background dependent operator YJK signifi-

cantly simplifies the theory. Employing the identities

sDet∆ = N

∫
[dξ][dξ′] exp

{
iξ′

M̂
∆M̂

N̂
ξN̂
}

ε(ξ′M) = ε(ξM) = 1 (3.1.28)

(sDet∆)−1 = N

∫
[dξ][dξ′] exp

{
iξ′

M̂
∆M̂

N̂
ξN̂
}

ε(ξ′M) = ε(ξM) = 0, (3.1.29)

equation (3.1.26) and

δχĴ

δζK̂
=
δχĴ

δvM̂
Q

δvM̂
Q

δζK̂
=
δχK̂

δΩN̂
RN̂

K̂[Ω(vB, vQ)], (3.1.30)

the generating functional (3.1.24) becomes

Z[j, vB] = N

∫
[dvQ][dc′][dc][da] exp

{
i(S[vB, vQ, c

′, c, a] + jM̂v
M̂
Q )
}

(3.1.31)

where

S[vB, vQ, c
′, c, a] = S0[Ω(vB, vQ)] + Sgf [vB, vQ] + Sgh[vB, vQ, c

′, c′a], (3.1.32)

having defined

Sgf [vB, vQ] =
1

2γ
χĴYĴ K̂χ

K̂ (3.1.33)

Sgh[vB, vQ, c
′, c′a] =

1

2γ
aĴ ỲĴ K̂a

K̂ + c′Ĵ
δχĴ

δΩN̂
RN̂

K̂[Ω(vB, vQ)]cK̂. (3.1.34)

The fields cK and c′K are the Faddeev-Popov ghosts, and satisfy ε(cK) = ε(c′K) =

ε(vM
Q ) + 1.

In complete analogy to the conventional case, the generating functional for con-

nected background Green’s functions W [j, vB] is related to the background generat-

ing functional Z[j, vB] by

W [j, vB] = −i lnZ[j, vB]. (3.1.35)

Defining the background mean field ψM̂

ψM̂ =
δW [j, vB]

δjM̂
, (3.1.36)

then the generalized background field effective action is obtained by making the

Legendre transform

Γ[ψ, vB] = W [j, vB]− jM̂ψ
M̂ (3.1.37)

where jM̂ is expressed in terms of ψM̂ via (3.1.36). As usual we note that functional

differentiation with respect to the mean field yields the source

M̂ ,Γ[ψ, vB] = (−1)εM Γ,M̂ [ψ, vB] = −jM̂ . (3.1.38)
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As a consequence of all this, the background field effective action Γ[0, vB] is

explicitly gauge invariant under the same transformations as the original action.

Physically it is the sum over all one-particle-irreducible diagrams with background

fields on external legs and quantum fields inside loops. We will now demonstrate that

it possesses the desired symmetries and is equivalent to the conventional effective

action evaluated in an unusual background field dependent gauge.

Symmetries of the background field effective action

Endowing the sources with the gauge transformation properties

δjM = −(−1)εMεKjNQN
MKζ

K, (3.1.39)

it follows, by construction, that the background field generating functional Z[j, vB]

as given in (3.1.24) will be invariant under the transformations

δvM̂
B = RM̂

K̂[vB]ζK̂. (3.1.40)

This is simply proven by simultaneously invoking the change of integration variable

vM
Q → vM

Q +QM
NKv

N
Q ζ

K. (3.1.41)

As a consequence one can easily establish that the generalized background field

effective action Γ[ψ, vB] is invariant under (3.1.40) and

δψM = QM
NKψ

NζK. (3.1.42)

The background field effective action Γ[0, vB] is therefore invariant under (3.1.40)

alone, the same gauge symmetry as the classical action.

Relation to the conventional effective action

To establish the background field effective action is equivalent to the conventional

effective action when computing the S-matrix, consider slightly modifying Z[j, vB]

as given in (3.1.31) to become

Z[j, vB] = N

∫
[dvQ][dc′][dc][da]

exp
{

i
(
S[vB, vQ, c

′, c, a] + jM̂
(
ΩM̂(vB, vQ)− ΩM̂(vB, 0)

))}
. (3.1.43)

with S[vB, vQ, c
′, c, a] still being given by (3.1.32). Here the sources are not just

coupled to the quantum fields, but rather

ΩM̂(vB, vQ)− ΩM̂(vB, 0) = vM̂
Q + non-linear terms (3.1.44)

39



for reasons which will become clear. For the purposes of computing the S-matrix

the higher order coupling terms are irrelevant, and so this definition of Z[j, vB] is,

for all practical purposes, equivalent to the previous one. Introducing the inverse

splitting function

vM̂
Q = ΥM̂(vB, v) vM̂ = ΩM̂(vB,Υ(vB, v)). (3.1.45)

we now make the following change of integration variable in (3.1.43):

vM̂ = ΩM̂(vB, vQ). (3.1.46)

This gives rise to a superdeterminant factor sDet(δvQ/δv) in the path integral, which

is equal to unity in the superfield case, or yields an irrelevant factor to be absorbed

into the normalization in the standard field theory case. Such a change of integration

variable leads to

Z[j, vB] = Z̃[j] exp
(
−ijM̂v

M̂
B

)
(3.1.47)

where Z̃[j] is just the conventional generating functional

Z̃[j] = N

∫
[dv][dc′][dc][da] exp

{
i(S ′[vB, v, c

′, c, a] + jM̂v
M̂
)}

, (3.1.48)

with gauge fixed action

S ′[vB, v, c
′, c, a] = S[vB,Υ(vB, v), c

′, c, a]

= S0[v] +
1

2γ

(
χ̃ĴYĴ K̂χ̃

K̂ + aĴ ỲĴ K̂a
K̂
)

+ c′Ĵ
δχ̃Ĵ

δvN̂
RN̂

K̂[v]cK̂, (3.1.49)

having chosen YĴ K̂ as before, along with non-conventional background dependant

gauge fixing conditions

χ̃K̂[vB, v] = χK̂[vB,Υ(vB, v)]. (3.1.50)

From the conventional definitions

W̃ [j] = −i ln Z̃[j] (3.1.51)

ψ̃M̂ =
δW̃ [j]

δjM̂
Γ̃[ψ̃] = W̃ [j]− jM̂ ψ̃

M̂ (3.1.52)

and noting that (3.1.47) leads to

W [j, vB] = W̃ [j]− jM̂v
M̂
B (3.1.53)
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and therefore

ψM̂ = ψ̃M̂ − vM̂
B , (3.1.54)

we observe that

Γ[ψ, vB] = W [j, vB]− jM̂ψ
M̂

=
(
W̃ [j]− jM̂v

M̂
B

)
− jM̂

(
ψ̃M̂

B − vM̂
B

)
= Γ̃[ψ̃] = Γ̃[ψ + vB]. (3.1.55)

Setting ψ = 0 gives the desired result

Γ[0, vB] = Γ̃[vB]. (3.1.56)

Computing the background field effective action

In practice one computes Γ[0, vB] perturbatively, often expanding it in a functional

power series in ~, the so-called loop expansion. Reinserting factors of ~, and putting

together (3.1.31), (3.1.35), (3.1.37) and (3.1.38) one obtains:

e
i
~ Γ[0,vB ] = N

∫
[dvQ][db] exp

{
i

~
(
S[vB, vQ, b]− ~

1
2

M̂ ,Γ[0, vB]vM̂
Q

)}
, (3.1.57)

where for simplicity all ghosts (Faddeev-Popov and Neilson-Kallosh) are now de-

noted by b = (c′, c, a), and their total integration measure by [db]. Bearing in mind

that Sgh[vB, vQ, b] (as given in (3.1.32)) is quadratic in ghosts, one now makes the

field redefinitions vQ → ~ 1
2vQ and b → ~ 1

2 b, and expands S[vB, vQ, b] in a power

series in ~ 1
2 (or equivalently in vQ) as

S[vB, vQ, b] = S0[vB] + ~Sgh[vB, 0, b] +
∞∑

n=1

~n
2

n!
S,M̂1... M̂n

S[vB, 0, b] v
M̂1
Q . . . vM̂n

Q .

(3.1.58)

Inserting this expansion into (3.1.57) yields

e
i
~ (Γ[0,vB ]−S0[vB ]) = N

∫
[dvQ][db] exp

{
i

2
vM̂

Q M̂ ,S,N̂ [vB, 0, b]v
N̂
Q + iSgh[vB, 0, c]

+
∞∑

n=3

~n
2
−1

n!
S,M̂1M̂2... M̂n

[vB, 0, b]v
M̂1
Q vM̂2

Q . . . vM̂n
Q

− ~−
1
2

(
Γ,M̂ [0, vB]− S,M̂ [vB, 0, b]

)
vM̂

Q

}
. (3.1.59)

Anticipating the loop expansion we write

Γ[0, vB] = S0[vB] +
∞∑

n=1

~nΓ(n)[0, vB] (3.1.60)
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which may be inserted into (3.1.59) to perturbatively compute Γ[0, vB]. Γ(n)[0, vB] is

the n-loop contribution to the background field effective action. We note here that

for each term in this expansion to be separately invariant under the background

symmetries, we require that the total gauge fixed action (including ghosts) have

each term in a power series expansion in the quantum fields being separately invari-

ant. This places restrictions on the possible choices of splitting function. For our

purposes it is sufficient to note that demanding that the transformation (3.1.21) be

homogenous satisfies this need for all the Yang-Mills theories.

To one-loop order, which is the present case of interest, one immediately finds

eiΓ
(1)[0,vB ] = N

∫
[dvQ][db] exp

{
i

2
vM̂

Q M̂ ,S,N̂ [vB, 0, b]v
N̂
Q + iSgh[vB, 0, b]

}
, (3.1.61)

and, as is well known, is just a product of functional superdeterminants of the

operators in the quantum quadratic part of the action.

As a final remark, one must of course regulate and renormalize as usual in the

process of computing Γ[0, vB].

3.2 Quantizing super Yang-Mills theories

3.2.1 Quantum-background splitting

In this section we will apply the background field method to N = 2 super Yang-

Mills theories, with the ultimate goal of computing contributions to the one-loop

effective action. For simplicity, and for reasons which will be described later, we

will not be interested in the full background field effective action, and will only

concern ourselves with the case where the gauge superfield V acquires a background

expectation value. All of the chiral scalar superfields are therefore to be interpreted

as quantum fields to be integrated over. We will briefly comment on the effects and

complications of providing these scalars with a non-zero background.

First recall the N = 2 super Yang-Mills action3 (2.2.100):

S =
1

g2
trR

(∫
d8z e−2V Φ̄e2V Φ +

1

2

∫
d6z W 2

)
+

∫
d8z
(
Q̄e2VQ+ ¯̃Q(e−2V )TQ̃

)
+
√

2

∫
d6z Q̃TΦQ+

√
2

∫
d6z̄ Q̄Φ̄ ¯̃QT +M

∫
d6z Q̃TQ+M

∫
d6z̄ ¯̃QQ̄T. (3.2.62)

3From here onward we assume that the generators of the gauge group have been normalized

such that trR(T IT J) = δIJ .
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As described earlier in some detail, this action is invariant under the following gauge

transformations:

e2V ′ = eiΛ̄e2V e−iΛ Φ′ = eiΛΦe−iΛ

Q′ = eiΛQ Q̃′ = (e−iΛ)TQ̃
(3.2.63)

where

V = V † = V IT I Λ = ΛIT I = Λ̄† DαΛI = 0 (3.2.64)

To facilitate usage of the ‘central’ representation described briefly in subsection

2.2.2, we first rewrite the gauge field V in the following way

e2V = ewew̄ w̄† = w = wIT I . (3.2.65)

In doing so, we have introduced an additional gauge freedom, which manifests itself

in the transformations

ew′ = eiΛ̄eweik ew̄′ = e−ikew̄e−iΛ k = kIT I k† = k (3.2.66)

for a real but otherwise unconstrained superfield k.

A suitable background-quantum splitting scheme for the field V is then defined

by

ew = ewBewQ (3.2.67)

or equivalently

e2V = ewBewQew̄Qew̄B = ewBe2VQew̄B , (3.2.68)

where as usual the subscripts B and Q denote background and quantum pieces

respectively. Other possible splittings include e2V → e2VBe2VQ or e2V → e2VQe2VB and

naturally lend themselves to the background chiral and antichiral representations

respectively, but come at the cost of losing convenient conjugation properties.

Under the proposed splitting (3.2.67), the resulting action will be gauge invariant

under the transformations

ew′ = ew′Bew′Q = eiΛ̄ewBewQeik

ew̄′ = ew̄′Qew̄′B = e−ikew̄Qew̄Be−iΛ
(3.2.69)

The quantum interpretation of this is:

w′B = wB ew′Q = e−wBeiΛ̄ewBewQeik = eiΩ̄ewQeik

w̄′B = w̄B ew̄′Q = e−ikew̄Qew̄Be−iΛe−w̄B = e−ikew̄Qe−iΩ
(3.2.70)

or

V ′B = VB e2V ′Q = eiΩ̄e2VQe−iΩ (3.2.71)
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where new ‘background gauge parameters’ have been defined:

eiΩ = ew̄BeiΛe−w̄B eiΩ̄ = e−wBeiΛ̄ewB . (3.2.72)

This interpretation must be adopted to correctly gauge fix the theory.

The background picture is:

ew′B = eiΛ̄ewBeik ew′Q = e−ikewQeik

ew̄′B = e−ikew̄Be−iΛ ew̄′Q = e−ikew̄Qeik (3.2.73)

or

e2V ′B = eiΛ̄e2VBe−iΛ V ′Q = e−ikVQe
ik. (3.2.74)

As desired, in the background picture VB transforms exactly as the original gauge

field V , and VQ transforms linearly, homogenously and independently of the back-

ground. This will provide the symmetry at quantum level provided it is not violated

by our choice of gauge.

In describing the effect of this splitting on the action, it is convenient to introduce

background gauge covariant derivatives. With this splitting scheme the original

gauge covariant derivatives in the central representation (2.2.2) split as

Dα = e−wDαe
w = e−wQe−wBDαe

wBewQ = e−wQDBαe
wQ (3.2.75)

D̄α̇ = ew̄D̄α̇e
−w̄ = ew̄Qew̄BD̄α̇e

−w̄Be−w̄Q = ew̄QD̄Bα̇e
−w̄Q (3.2.76)

where background gauge covariant derivatives are defined by

DBα = e−wBDαe
wB , D̄Bα̇ = ew̄BD̄α̇e

−w̄B (3.2.77)

and satisfy the algebra

DBa = −1

2
(σ̃a)

α̇αDBαα̇ = − i

4
(σ̃a)

α̇α{DBα, D̄Bα̇} (3.2.78)

[D̄Bα̇,DBββ̇] = 2iεα̇β̇WBβ, [DBα,DBββ̇] = 2iεαβW̄Bβ̇

with W̄Bα̇ and WBβ the background superfield strengths (compare with the algebra

(2.2.2)). These superfields, and the background gauge covariant derivatives which

define them, have the following gauge transformation properties in the background

picture:

D′Ba = e−ikDBae
ik D′Bα = e−ikDBαe

ik D̄′Bα̇ = e−ikD̄Bα̇e
ik (3.2.79)

W ′α
B = e−ikW α

Be
ik W̄ ′α̇

B = e−ikW̄ α̇
Be

ik. (3.2.80)
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Notice that they are background covariantly chiral, as are the background gauge

parameters defined earlier, ie DBαW̄
α̇
B = D̄Bα̇W

α
B = DBαΩ̄I = D̄Bα̇ΩI = 0.

It is also convenient to introduce the background covariantly chiral fields φ, ϕ

and ϕ̃ in place of the chiral fields Φ, Q and Q̃:

φ = ew̄BΦe−w̄B D̄α̇φ = 0

ϕ = ew̄BQ D̄α̇ϕ = 0 (3.2.81)

ϕ̃ = (e−w̄B)TQ̃ ¯̃Dα̇ϕ̃ = 0.

The last of these, ϕ̃, is covariantly chiral in the conjugate representation D̃α =

(ew̄B)TDα(e−w̄B)T, as indicated. These new fields fields transform covariantly in the

background picture,

φ′ = e−ikφeik ϕ′ = e−ikϕ ϕ̃′ = eikϕ̃. (3.2.82)

At this stage it is worth pointing out that a linear background-quantum splitting

of the chiral scalars φ, ϕ and ϕ̃ (or equivalently Φ, Q and Q̃) is sufficient if one

wishes to compute the full background effective action. Such a splitting has the

desirable effect of generating new mass-like terms for the quantum fields, at the

cost of introducing cross (or quantum field interaction) terms in the quadratic part

of the quantum action. Usually such terms are removed by choosing appropriate

gauge fixing conditions, the superfield equivalent of the Rξ gauge [194, 195], which

although consistent with the background field approach are inherently non-local.

For a detailed treatment see [196, 197].

Under the proposed background splitting, the original superfield strength Wα

splits as

Wα =
1

8
[D̄α̇, {Dα, D̄α̇}]

=
1

8
[ew̄QD̄α̇

Be
−w̄Q , {e−wQDBαe

wQ , ew̄QD̄Bα̇e
−w̄Q}]

=
1

8
ew̄Q [D̄α̇

B, {e−2VQDBαe
2VQ , D̄Bα̇}]e−w̄Q

=
1

8
ew̄Q [D̄α̇

B, D̄Bα̇(e−2VQDBαe
2VQ) + {DBα, D̄Bα̇}]e−w̄Q

= ew̄Q

(
1

8
D̄2

B(e−2VQDBαe
2VQ) +WBα

)
e−w̄Q . (3.2.83)
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The superfield strength piece of the original action therefore splits as

trR

∫
d6z

1

2
W 2

= trR

∫
d6z

1

2

(
1

8
D̄2

B(e−2VQDα
Be

2VQ) +Wα
B

)(
1

8
D̄2

B(e−2VQDBαe
2VQ) +WBα

)
= trR

∫
d6z

1

2

(
1

64
D̄2

B(e−2VQDα
Be

2VQ)D̄2
B(e−2VQDBαe

2VQ)

+
1

4
W α

B D̄2
B(e−2VQDBαe

2VQ) +W 2
B

)
= −trR

∫
d8z

(
1

32
(e−2VQDα

Be
2VQ)D̄2

B(e−2VQDBαe
2VQ)

+
1

2
Wα

B(e−2VQDBαe
2VQ)

)
+ trR

∫
d6z

1

2
W 2

B, (3.2.84)

where, having used chirality, all but the purely background contribution has been

lifted to an expression on full superspace.

Thus the original action (3.2.62) becomes:

Ssplit =
1

g2
trR

{∫
d8z e−2VQφ̄e2VQφ− 1

32

∫
d8z

(
(e−2VQDαe2VQ)D̄2(e−2VQDαe

2VQ)

− 16Wα(e−2VQDαe
2VQ)

)
+

1

2

∫
d6z W 2

}
+

∫
d8z
(
ϕ̄e2VQϕ+ ¯̃ϕ(e−2VQ)Tϕ̃

)
+
√

2

∫
d6z ϕ̃Tφϕ+

√
2

∫
d6z̄ ϕ̄ φ̄ ¯̃ϕT +M

∫
d6z ϕ̃T ϕ+M

∫
d6z̄ ¯̃ϕ ϕ̄T, (3.2.85)

where here, and subsequently, we unambiguously omit the B subscript on field

strengths and gauge covariant derivatives since they are all background.

3.2.2 Gauge fixing

Adopting the notation K = (κ, κ̇), which runs over chiral and antichiral fields re-

spectively, suitable gauge fixing conditions are given by [194, 195]

F K̂ = χK̂ − f K̂ χK =

χI = −1
4
(e−w̄B)IJ(D̄2VQ)J

χ̄I = −1
4
(ewB)IJ(D2VQ)J

K = κ

K = κ̇
(3.2.86)

where the background generating functional is weighted by

exp

{
i

2gγ

(
f ĴYĴ K̂f

K̂ + aĴ ỲĴ K̂a
K̂)} ε(aK) = 1, (3.2.87)

with YĴ K̂ chosen to be

YĴ K̂ =

−1
4
D̄2
(
(e−2VB)IJδ−(z, z′)

)
−1

4
D2
(
(e2VB)IJδ+(z, z′)

) J = κ, K = κ̇

J = κ̇, K = κ
(3.2.88)
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and therefore

ỲĴ K̂ =

+1
4
D̄2
(
(e−2VB)IJδ−(z, z′)

)
−1

4
D2
(
(e2VB)IJδ+(z, z′)

) J = κ, K = κ̇

J = κ̇, K = κ
(3.2.89)

and all other components in both operators vanishing. To elucidate the meaning

of such a weighting, one can easily show by using the (anti)chirality of χK̂ and aK̂,

integration by parts, and lifting the integrals to full superspace, that this has the

effect of contributing the following gauge fixing term Sgf and Neilson-Kallosh ghost

term SNK to the total generating functional:

Sgf =
1

32g2γ
trR

∫
d8z VQ{D2, D̄2}VQ (3.2.90)

SNK =
1

g2γ
trR

∫
d8z āa. (3.2.91)

Here the Neilson-Kallosh ghosts belong to the adjoint representation of the gauge

group, and are background (anti)chiral ie a′ = ew̄Ba′e−w̄B and D̄α̇a = 0.

Noting that VQ varies with respect the gauge parameters ζK̂ = (ΛI(z), Λ̄I(z)) in

(3.2.71) as (also see (3.2.72) and (2.2.73))

δVQ =− i

2
LVQ

(Ω̄ + Ω) +
i

2
LVQ

coth(LVQ
)(Ω̄− Ω) D̄α̇Ω = DαΩ̄ = 0

(3.2.92)

and the gauge fixing functions vary with respect to VQ as

δχK =

−1
4
(e−w̄B)IJ(D̄2δVQ)J

−1
4
(ewB)IJ(D2δVQ)J

K = κ

K = κ̇
(3.2.93)

it then follows that the Faddeev-Popov ghost part of the action becomes

SFP = c′Ĵ
δχ̃Ĵ

δζK̂
cK̂

=

∫
d6z c′IδχI +

∫
d6z̄ c̄′Iδχ̄I

= −1

4

∫
d6z c′I(ew̄B)IJD̄2(δV J

Q ))− 1

4

∫
d6z̄ c̄′I(e−wB)IJD2δV J

Q )

= trR

(∫
d8z (C′ + C̄′)δVQ)

)
. (3.2.94)

This has been simplified using the (anti)chirality of ghosts c′K̂ = (c′I(z), c̄′I(z)), and

we have defined background (anti)chiral ghosts belonging to the adjoint representa-

tion: C ′ = ew̄Bc′e−w̄B , C̄ ′ = e−wB c̄′ewB , D̄α̇C
′ = DαC̄

′ = 0, where in the last three
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lines of this expression it is to be understood that δVQ is to be replaced by the ex-

pression (3.2.92), which in turn has Ω and Ω̄ replaced by the background (anti)chiral

ghosts C and C̄ respectively. This finally gives

SFP = − i

2
trR

(∫
d8z (C ′ + C̄ ′)LVQ

[
C̄ + C − coth(LVQ

)(C̄ − C)
])

(3.2.95)

and illustrates the highly non-trivial interaction between the Faddeev-Popov ghosts

and the quantum gauge field.

Putting this all together we obtain the background generating functional in the

absence of sources:

Z[0, wB, w̄B] = N

∫
[dVQ][dφ][dϕ][dϕ̃][dc][dc′][da]eiStotal , (3.2.96)

the total action being

Stotal = Ssplit + SFP + SNK + Sgf (3.2.97)

with Ssplit, Sgf, SFP, and SNK being given by (3.2.85), (3.2.90), (3.2.95) in (3.2.91)

respectively.

3.2.3 Quantum field expansion

Since we are interested in only one-loop contributions to the background effective

action, the total action needs only to be expanded up to terms quadratic in quantum

fields. All such quadratic contributions, with the exception of VQ and Faddeev-Popov

ghosts, can be trivially read off from Stotal.

To extract the Faddeev-Popov ghost contribution one uses

LVQ

[
C̄ + C − coth(LVQ

)(C̄ − C)
]

= C − C̄ + [VQ, C̄ + C] +O(V 2
Q), (3.2.98)

and so

SFP = − i

2
trR

(∫
d8z (C ′ + C̄ ′)(C − C̄)

)
+ cubic terms

= − i

2
trR

(∫
d8z (C̄ ′C − C ′C̄)

)
+ cubic terms (3.2.99)

having used the ghosts’ (anti)chirality.

Noting that

(e−2VQDαe
2VQ) = 2(DαVQ)− 2[VQ, (DαVQ)] +O(V 3

Q) (3.2.100)

48



then the total quadratic VQ contribution, which comes from the split field strength

(3.2.84) and Sgf, is given by

1

32g2
trR

∫
d8z

(
− (e−2VQDαe2VQ)D̄2(e−2VQDαe

2VQ)

− 16Wα(e−2VQDαe
2VQ) +

1

γ
VQ{D2, D̄2}VQ

)
=

1

32g2
trR

∫
d8z

(
− 4(DαVQ)D̄2DαVQ − 32WαDαVQ

+ 32Wα[VQ, (DαVQ)] +
1

γ
VQ{D2, D̄2}VQ

)
+O(V 3

Q)

=
1

8g2
trR

∫
d8z

(
VQDαD̄2DαVQ − 8W αDαVQ

+ 8VQ[Wα, (DαVQ)] +
1

4γ
VQ{D2, D̄2}VQ

)
+O(V 3

Q),

having integrated by parts, and used the cyclic property of the trace.

Re-scaling g →
√

2g, followed by VQ → gVQ, φ → gφ, a → ga, C → 2iC, and

dropping terms linear in quantum fields since they will not contribute to the effective

action, the total action Stotal up to terms quadratic in quantum fields is

Stotal = S0[VB] + S2. (3.2.101)

The classical action S0[VB] is just

S0[VB] =
1

4g2
trR

∫
d6z W 2, (3.2.102)

and the action quadratic in quantum fields is

S2 =
1

16

∫
d8z VQ

(
DαD̄2Dα + 8WαDα +

1

4γ
{D2, D̄2}

)
VQ

+

∫
d8z
(
φ̄φ+ ϕ̄ϕ+ ¯̃ϕϕ̃

)
+M

∫
d6z ϕ̃T ϕ+M

∫
d6z̄ ¯̃ϕ ϕ̄T

+

∫
d8z
(
C ′C̄ + C̄ ′C

)
+

∫
d8z

1

2γ
āa. (3.2.103)

Notice that there is no longer a trace over the gauge indices in S2, since VQ, φ

and the ghosts are now expressed as a column vectors with respect to their gauge

indices, and W α is contracted with generators of the adjoint representation of the

gauge group.

By playing with the covariant derivatives (3.2.78), one can prove the identity,

2 = DaDa −W αDα + W̄α̇D̄α̇

= −1

8
DαD̄2Dα +

1

16
{D2, D̄2} −WαDα −

1

2
(DαWα)

= −1

8
D̄α̇D2D̄α̇ +

1

16
{D2, D̄2}+ W̄α̇D̄α̇ +

1

2
(D̄α̇W̄

α̇) (3.2.104)
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where 2 is called the super d’Alembertian. Using this, the vector part of S2 simply

becomes

− 1

2

∫
d8z VQ

[
2 +

1

16

( 1

2γ
+ 1
)
{D2, D̄2}

]
VQ. (3.2.105)

This takes its simplest form in the supersymmetric Fermi-Feynman gauge [198, 180,

89] where the gauge parameter γ = −1/2, which from here onward is the gauge we

choose.

The resulting theory describes a single massless vector multiplet VQ and six chiral

scalars all propagating the presence of a Yang-Mills background. Four of these chiral

scalars are massless and are in the adjoint representation of the gauge group, three

of which are ghosts and posses odd statistics. The final two chiral scalars each have

massM, and together transform in the some real representation of the gauge group

R⊕Rc.

3.2.4 Chiral fields coupled to external Yang-Mills

In the following chapters we will compute the super Yang-Mills background one-loop

effective action by employing heat kernel techniques. As it stands, the operator in

the vector part of S2 is of Laplace type, but in order to handle chiral fields in the

action using heat kernel techniques, and to correctly cast the chiral contribution in

the form of superdeterminants, we must convert it into a more usable form. This is

achieved as follows.

In the absence of any interactions, the most general classical action describing a

massive chiral scalar field in a real representation R coupled to a super Yang-Mills

background is given by:

S[Φ, Φ̄, VB] =

∫
d8z Φ̄e2VBΦ +

m

2

{∫
d6z ΦT Φ + c.c.

}
. (3.2.106)

In deriving the background one-loop effective action for this theory, Γ
(1)
Φ,m,R, we are

faced with evaluating

eiΓ
(1)
Φ,m,R =

∫
[dΦ]eiS[Φ,Φ̄,VB ]. (3.2.107)

First we re-write the classical action in the more desirable form using (anti)chirality

and the antisymmetry of the group generators:

S[Φ, Φ̄, VB] =
1

2
ΦM̂HM̂N̂(m)ΦN̂ (3.2.108)

where

ΦM̂ =

(
Φ(z)

Φ̄(z)

)
(3.2.109)
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and

HM̂N̂(m) =

(
m1Rδ+(z, z′) −1

4
D̄2e−2VBδ−(z, z′)

−1
4
D2e2VBδ+(z, z′) m1Rδ−(z, z′)

)
. (3.2.110)

This latter is of course a massive generalization of YĴ K̂ given in equation (3.2.88).

The one-loop effective action is therefore just

Γ
(1)
Φ,m,R =

i

2
ln sDet(H(m)) (3.2.111)

We now employ the ‘doubling trick’ (see for example [89, 127]), which involves noting

that the change in integration variable of Φ→ iΦ in (3.2.107) leaves the functional

integration measure unchanged, but has the overall effect of redefining the mass

m→ −m. Consequently

sDet(H(m)) = sDet(H(−m)) (3.2.112)

and so we are free to write

Γ
(1)
Φ,m,R =

i

4
ln sDet(H(m)H(−m)). (3.2.113)

Computing H(m)H(−m) one finds

H(m)H(−m) =

(
2

(+)

+ −m2
1R 0

0 2
(–)

− −m2
1R

)(
1R δ+(z, z′)

1R δ−(z, z′)

)
(3.2.114)

where we have introduced the background (anti)chiral d’Alembertian operators 2±

in terms of background gauge covariant derivatives in (anti)chiral representations

2
(+)

+ =
1

16
D̄(+)2D(+)2 D(+)

α = e−2VBDαe
2VB D̄α̇(+) = D̄α̇ (3.2.115)

2
(–)

− =
1

16
D(–)2D̄(–)2 D(–)

α = Dα D̄α̇(–) = e2VBD̄α̇e−2VB . (3.2.116)

The operators 2+ and 2− act on background covariantly chiral and antichiral scalars

respectively (in the appropriate representations). One can readily show by applying

both sides of equation (3.2.104) to such scalars, and by using the Bianchi identities

DαWα = D̄α̇W̄
α̇, that in any representation

2+ Ψ =
1

16
D̄2D2Ψ = (DaDa −WαDα −

1

2
(DαWα))Ψ D̄α̇Ψ = 0 (3.2.117)

2− Ψ̄ =
1

16
D2D̄2Ψ̄ = (DaDa + W̄α̇D̄α̇ +

1

2
(D̄α̇W̄

α̇))Ψ̄ DαΨ̄ = 0. (3.2.118)

Alternatively, one may prove these identities by pushing the outer derivative through

to annihilate the scalar and in doing so use the covariant derivative algebra. Conse-

quently we find that these are Laplace-type operators, which are necessary to define

the heat kernels.
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The effective action then becomes4

Γ
(1)
Φ,m,R =

i

4
ln sDet(2(+)

+ −m2
1R) +

i

4
ln sDet(2(–)

− −m2
1R). (3.2.119)

3.2.5 N = 2 super Yang-Mills to one-loop

Returning now to the problem of computing the N = 2 super Yang-Mills one-loop

effective action, Γ(1)[wB, w̄B], we find

eiΓ
(1)[wB ,w̄B ] = N

∫
[dVQ][dφ][dχ][dc][dc′][da]eiS2 (3.2.120)

with

S2 = −1

2

∫
d8z VQ2VQ +

∫
d8z
(
φ̄φ+ χ̄χ

)
+M

{∫
d6z χT χ+ c.c.

}
+

∫
d8z
(
C ′C̄ + C̄ ′C

)
−
∫

d8z āa (3.2.121)

where the field χ, which transforms in a real representation of the gauge group

equivalent to R ⊕ Rc, has been introduced through a field redefinition of ϕ and ϕ̃

similar to that performed in subsection 2.2.3. Ultimately the effective action at the

one-loop level (3.2.120) reduces to a linear combination of two types of contribution

[89, 196]:

Γ(1)[wB, w̄B] =
i

2
ln sDet2− 3Γ

(1)
Φ,0,Ad + Γ

(1)
Φ,0,Ad + Γ

(1)
Φ,M,R⊕Rc

. (3.2.122)

In this expression the second term on the right originates from the three massless

ghosts, the third from the massless chiral scalar φ, and the fourth from the hyper-

multiplet scalars.

3.2.6 N = 4 super Yang-Mills to one-loop

The case of N = 4 super Yang-Mills is obtained from the N = 2 case by setting the

hypermultiplet mass M = 0 and the representation R (and Rc) to be the adjoint.

The one-loop effective action (3.2.122) simply becomes

Γ(1)[wB, w̄B] =
i

2
ln sDet2− 3Γ

(1)
Φ,0,Ad + Γ

(1)
Φ,0,Ad + 2Γ

(1)
Φ,0,Ad

=
i

2
ln sDet2, (3.2.123)

a result which was first established by [180] (also see [199]).

4Results like this also have some validity where the mass terms come from chiral scalar back-

grounds living in the Cartan subalgebra, for a discussion see [197].
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Chapter 4

Heat kernel techniques

In this chapter we will briefly survey the role of heat kernels in quantum field theories,

with particular emphasis on the Schwinger-DeWitt technique, before introducing

some recent refinements in the so-called Gaussian approach.

4.1 The Schwinger-DeWitt technique

Heat kernels where first introduced into quantum physics by Fock [200] and Schwinger

[187], completely elaborated for applications in quantum field theory in curved space

by DeWitt [201, 167, 202, 93], and continue to be an active area of research in both

mathematics and physics. The literature is vast, and it would be impossible to give

a complete list of references here. Instead we direct the reader to [203, 204, 96, 99],

and references therein.

For physicists, heat kernels, their expansions and associated computational tech-

niques provide a very powerful and versatile set of tools for analyzing various aspects

of quantum dynamics. These include the study of effective actions, divergences,

renormalisation, and anomalies. The techniques are universal enough to admit ap-

plication to a wide range of theories on manifolds with and without boundaries,

including supermanifolds, quite often regardless of group structure and spin. They

are particularly useful when computing one-loop contributions to the effective action.

Again we direct the reader to [99] for a detailed review of heat kernel expansions

and the array of possible approaches.

Although generalizations of the following discussions are well known [93], for

the current purposes it is sufficient to consider only Laplace-type operators in flat

space (R3,1 or R4|4) which posses a mass term1. As is standard practice, any massless

1By which we mean operators that are at most second order and of the form: ∂A∂A + V A∂A +

P −m2.
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operators, which may give rise to infrared divergences, are regulated via the inclusion

of a mass (or infrared regulator) which is set to zero at the end of calculations.

Given such an operator H, which in general will possess some background de-

pendence on background fields, the associated Green’s function GM̂
N̂

= GM
N(y, y′)

is defined by

HM̂
N̂
GN̂

P̂
= −δM̂

P̂
. (4.1.1)

This admits the Fock-Schwinger or proper time representation

GM̂
N̂

= i

∫ ∞

0

dsKM̂
N̂

(s) (4.1.2)

where KM̂
N̂

(s) = K(y, y′; s) is the heat kernel associated with the operator H. It is

defined as the solution to the Schrodinger type or pseudo-heat equation

i
∂

∂s
KM̂

P̂
(s) +HM̂

N̂
KN̂

P̂
(s) = 0, (4.1.3)

subject to the initial condition

lim
s→+0

KM̂
N̂

(s) = δM̂
N̂
. (4.1.4)

Equivalently it may be formally defined as2

KM̂
N̂

(s) =
(
eis(H+iε)

)M̂
N̂
, ε→ +0. (4.1.5)

In the well known Schwinger-DeWitt technique, one seeks a solution to (4.1.3)

of the form (suppressing gauge indices and restricting to D = 4 in the standard field

theory case):

K(y, y′; s) =
i

(4πis)2
eiσ(y,y′)/2s−ism2

F (y, y′; s) (4.1.6)

where σ(y, y′) is half the square of the proper distance between x and x′, ie σ(x, x′) =
1
2
(x − x′)2 in Minkowski space. In superspace and associated subspaces, suitable

generalizations are straightforward (for details see for example [127]). The function

F (y, y′) has an asymptotic expansion in the limit s→ 0 of the form:

F (y, y′; s) =
∞∑

n=0

(is)nan(y, y′). (4.1.7)

The an(y, y′) are known as heat kernel or DeWitt-Seeley coefficients, and can be

computed in a variety of ways [99]. The best known method is the recursive DeWitt

technique [203, 93], where the general solution (4.1.6) with asymptotic expansion

(4.1.7), is inserted back into the heat equation (4.1.3). One then identifies terms

carrying the same powers of s and in doing so obtains a recursion relation between

the coefficients.
2The convergence factor of iε shall be dropped in subsequent equations and its presence implied.
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4.2 The heat kernel and one-loop effective action

It is well known that the one-loop effective action is simply related to the functional

supertrace of a heat kernel. The former is given by

Γ(1)[vB] =
i

2
sTr lnH (4.2.8)

whereH is the operator which appears in the part of the action quadratic in quantum

(super)fields. The heat kernel appears via use of the identity

sTr lnH = −
∫ ∞

0

ds s−1 sTr eisH (4.2.9)

up to some additive numerical constant, which can be established by separately

considering the variation of the left and right hand side, and using

H−1 = −i

∫ ∞

0

ds eisH (4.2.10)

and (2.2.75). Equation (4.2.9) then immediately leads to

Γ(1)[vB] = − i

2

∫ ∞

0

ds s−1 sTr eisH = − i

2

∫ ∞

0

ds s−1K(s) (4.2.11)

having used (4.1.5), and where K(s) denotes the functional supertrace of the heat

kernel

K(s) = (−1)εMKM̂
M̂

(s). (4.2.12)

This expression for the one-loop effective has a potential divergence at the lower

limit of the proper time integration (this is a UV divergence) and can be regulated

using the following scheme:

Γ(1)
ρ =

µ2ρ

2

∫ ∞

0

ds (is)ρ−1K(s), (4.2.13)

where µ and ρ are the renormalization point and regularization parameter respec-

tively.

4.3 The Gaussian approach

We will now describe the main heat kernel technique used in this thesis, the Gaus-

sian approach [91, 92], which is closely related to other more well known approaches

[122, 205, 206, 123, 124] which employ plane wave expansions of the delta func-

tion and Gaussian integration identities. The key observation is that the covariant
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derivatives in the operator in the heat kernel occur only in commutators (giving rise

to field strengths and derivatives of field strengths) when computing DeWitt-Seeley

coefficients in even dimensions. The Gaussian approach attempts to optimize this

expansion of the heat kernel in nested commutators.

In short, this technique can be used for computing heat kernels to some order in

their asymptotic expansion, or in some simple cases cases the entire heat kernel to

all orders. In contrast to iterative methods, where one computes successive DeWitt-

Seeley coefficients, the procedure provides a means by which one can collectedly

compute all of the coefficients up to some desired order. The technique is universal

enough to be adapted to superfield theories, and proves very useful in computing

the effective action in the derivative expansion.

At the early stages of the work presented in this thesis, the Gaussian approach

had only been applied to a few cases [91, 92], and a more general application was yet

to be attempted. Originally it was hoped, which was the motivation for following

this path, that this approach would provide a relatively simple means of computing

higher order DeWitt-Seeley coefficients in N = 4 super Yang-Mills formulated in

N = 1 superspace. Unfortunately, as will be discussed later, it turns out that one

can not proceed without modifying the approach. After doing so one obtains with

yet another method for computing DeWitt-Seeley coefficients.

The basic idea behind the Gaussian approach is to attempt to solve a differential

equation satisfied by the heat kernel by using various identities similar to those which

may be employed when attempting to compute moments of Gaussian integrals. One

either attempts to solve the differential equation to some order in an expansion, or

in some simple cases to all orders.

The easiest way to describe the approach is through a simple example. The ideas

are easily extended to more complicated cases.

4.3.1 The non-supersymmetric case

The simplest possible case which displays sufficient complication is an ordinary non-

supersymmetric field theory, with operator of the form

H = ∇a∇a −m2, (4.3.14)

and where the background field strength Fab defined by the covariant derivatives

[∇a,∇b] = −iFab, (4.3.15)

is covariantly constant:

[∇c, Fab] = (∇cFab) = 0. (4.3.16)
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This example proves simple enough to fully compute the heat kernel K(x, x′; s) to

all orders in its asymptotic expansion, as we now illustrate, first in the coincidence

limit.

Starting with a Fourier representation for the delta function in Minkowski space

δ(4)(x− x′) =

∫
d4k

(2π)4
eika(xa−x′a), (4.3.17)

and the definition

KM̂
P̂
(s) =

(
eisH

)M̂
N̂

(4.3.18)

of the heat kernel where H is given by (4.3.14), one obtains

K(x, x′; s) = eisH
1δ(4)(x− x′)

=

∫
d4k

(2π)4
eisHeik

a(xa−x′a)

=

∫
d4k

(2π)4
e−ism2

eik
a(xa−x′a)

(
e−ika(xa−x′a)eis∇

a∇aeik
a(xa−x′a)

)
(4.3.19)

The term in parentheses can be evaluated as

e−ika(xa−x′a)e∇
a∇aeik

a(xa−x′a) = eisX
aXa (4.3.20)

where Xa is just a ‘shifted’ covariant derivative

Xa = ∇a + ika, (4.3.21)

which satisfies

[Xa, Xb] = −iFab. (4.3.22)

The procedure thus far is well known and has been around for some time [123,

124], to the extent that it can now be found in textbooks (for example see [125]).

Strictly speaking, however, when applying this approach in the context of the back-

ground field technique one should really write the delta-function as

δ(4)(x− x′)1 =

∫
d4k

(2π)4
eika(xa−x′a) I(x, x′) (4.3.23)

where the additional factor I(x, x′) is a functional of the background fields, satisfies

I(x, x) = 1, and is included to ensure the correct gauge transformation properties

of the heat kernel3 at x and x′ . This factor is the parallel displacement propaga-

tor, for complete details see [207] and references therein. To one-loop order in the

background effective action, where one needs only to consider the heat kernel in the

coincidence limit, this factor can be ignored.

3Typically the Green’s function, operator H and therefore the heat kernel should have indices

which transform covariantly. Consequently so must the delta function.
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The coincidence limit

In the coincidence limit the kernel becomes

K(x; s) = lim
x′→x

K(x, x′; s) = e−ism2

∫
d4k

(2π)4
eisX

aXa . (4.3.24)

From this perspective it is not immediately apparent that this quantity is itself

not a differential operator, and it is of some significance to note that it is not.

The heat kernel possess an asymptotic expansion, the coefficients of which are the

DeWitt-Seeley coefficients in the coincidence limit, all of which are functionals of

field strengths and covariant derivatives thereof. As a consequence one can expect

to be able expand the exponential in (4.3.24) in a power series in s and arrange the

terms into commutators at each order.

To prove this assertion [208, 207], one can easily show that K(x; s) is not a

differential operator by demonstrating that it commutes with an arbitrary function

f(x). This is achieved by taking a Fourier decomposition of the function, and

operating on it:

K(x; s)f(x) = K(x; s)

∫
d4k̃

(2π)4
eik̃xf(k̃)

=

∫
d4k̃

(2π)4
eik̃xf(k̃)

∫
d4k

(2π)4
e−ism2

eis(∇+ik+ik̃)2

= f(x)K(x; s) (4.3.25)

where in the last line a change of variable k → k − k̃ has been made.

Consider now the massless case

K̃(x; s) =

∫
d4k

(2π)4
eisX

aXa . (4.3.26)

We now explain how to compute K̃(x; s) using the Gaussian approach. What makes

the approach different for other plane wave approaches, is that we now different with

respect to s to obtain

dK̃(x; s)

ds
= iK̃a

a(x; s), (4.3.27)

where we have introduced the notation

K̃a1...an(x; s) =

∫
d4k

(2π)4
Xa1 . . . Xane

isXaXa . (4.3.28)

This is the cornerstone of the scheme, and it is this differential equation which one

attempts to solve in the Gaussian approach. In particular, if we can express K̃a
a(x; s)
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in terms of K̃(x; s), then (4.3.27) is a linear differential equation for K̃(x; s) which

is easily solved. One achieves this by making repeated use of the identity

0 =

∫
d4k

(2π)4

∂

∂kan

(
Xa1 . . . Xan−1e

isXaXa
)
. (4.3.29)

This is reminiscent of the method one may use to determine the moments∫
d4k

(2π)4
ka1 . . . kan−1e

−k2

(4.3.30)

of a Gaussian integral, in terms of the Gaussian integral itself. Accordingly, the

objects K̃a1...an(x; s) defined in (4.3.28) shall be referred to as moments of the kernel4.

Choosing the case n = 2 in (4.3.29), one obtains

0 = iδ b
a K̃(x; s) +

∫
d4k

(2π)4
Xa

∂

∂kb

eisX
2

= iδ b
a K̃(x; s)− 2s

∫
d4k

(2π)4
Xa

(∫ 1

0

dξ eisξX2

Xbe−isξX2

)
eisX

2

(4.3.31)

where the identity

[A, eB] =

∫ 1

0

dξ eξB[A,B]e(1−ξ)B, (4.3.32)

has been applied.

In the present case, the quantity∫ 1

0

dξ eisξX2

Xbe−isξX2

=
∞∑

n=0

sn

(n+ 1)!
Ln

iX2(Xb) with LA(B) = [A,B] (4.3.33)

can be exactly evaluated due to the simplifying assumption that the field strength

is covariantly constant, [Xa, [Xb, Xc]] = 0. Ultimately this allows one to solve the

differential equation (4.3.27) exactly. In the general case one is forced to solve the

differential equation merely to some order in s.

Since

Ln
iX2(Xb) = (−2)n(F n)b

aX
a (4.3.34)

where

(F 0)a
b = δa

b (F n)a
b = F a

c1
F c1

c2
F c2

c3
. . . F

cn−1

b, (4.3.35)

it follows that ∫ 1

0

dξ eisξX2

Xbe−isξX2

= Bb
c(s)X

c (4.3.36)

where

Bb
c(s) =

(
e−2sF − 1

−2sF

)b

c

. (4.3.37)

4Occasionally this term will be used to collectively refer to all moments including K̃(x; s) itself.
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Noting that [∇a, B
b
c(s)] = 0, equation (4.3.31) reduces to

0 = iδb
aK̃(x; s)− 2sBb

c(s)K̃
c

a (x; s), (4.3.38)

and since Ba
b(s) is invertible

K̃ b
a (x; s) = −i

(
F

e−2sF − 1

)b

a

K̃(x; s). (4.3.39)

Insertion of this into the differential equation (4.3.27) yields

dK̃(x; s)

ds
= tr

(
F

e−2sF − 1

)
K̃(x; s), (4.3.40)

which is the desired linear differential equation for K̃(x; s). This can be rewritten

as
d ln K̃(x; s)

ds
= tr

(
F

e−2sF − 1

)
. (4.3.41)

Integrating both sides gives

ln K̃(x; s) = tr ln

(
e2sF − 1

2F

)− 1
2

+ c, (4.3.42)

c being an integration constant independent of s. This gives

K̃(x; s) = C det

(
e2sF − 1

2F

)− 1
2

(4.3.43)

with C = ec. This constant can be determined in a variety of ways. The simplest

and most direct approach is to match the leading order terms in the asymptotic

power series in s of (4.3.43) and its original definition (4.3.26) (for an alternative

approach see [91]). In the latter case one simply expands the exponential eisX
aXa

after rescaling ka → s−
1
2ka as

K̃(x; s) =
1

s2

∫
d4k

(2π)4
e−ik2

(1+is∇2 +
2i√
s
ka∇a + . . .) = − i

(4πs)2
+O(s−1). (4.3.44)

Expression (4.3.43) gives

K̃(x; s) =
C

s2
+O(s−1) (4.3.45)

and comparison of the two provides the constant. This in turn yields the standard

result [187, 209, 210, 211]:

K̃(x; s) = − i

(4π)2
det

(
e2sF − 1

2F

)− 1
2

= − i

16π2s2
det

(
sF

sinh sF

) 1
2

(4.3.46)

From here one can proceed to compute the one-loop effective action as described in

section 4.2.
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Non-coincident points in spacetime

The above exercise can be repeated to compute the full heat kernel at non-coincident

points, which only slightly complicates the calculation. This is useful in the case of

higher loop contributions to the effective action, where one requires the full propa-

gator in the presence of background fields.

Defining

K̃(x, x′; s) =

∫
d4k

(2π)4
eik(x−x′)eisX

2I(x, x′) (4.3.47)

the differential equation is now

dK̃(x, x′; s)

ds
= iK̃a

a(x, x
′; s) (4.3.48)

where

K̃a1...an(x, x′; s) =

∫
d4k

(2π)4
Xa1 . . . Xane

ik.(x−x′)eisX
2I(x, x′). (4.3.49)

Using

0 =

∫
d4k

(2π)4

∂

∂kb

eik(x−x′)Xae
isX2I(x, x′) (4.3.50)

which reduces to

K̃ b
a (x, x′; s) = −i

(
F

e−2sF − 1

)b

a

K̃(x, x′; s)

− i(x− x′)c

(
F

e−2sF − 1

)b

c

K̃a(x, x
′, s), (4.3.51)

we are forced to deal with the moment K̃a(x, x
′, s) which was absent in the coinci-

dence limit.

Using the identify

0 =

∫
d4k

(2π)4

∂

∂kb

eik(x−x′)eisX
2I(x, x′) (4.3.52)

it follows that

K̃a(x, x
′; s) = −i(x− x′)b

(
F

e−2sF − 1

)
ab

K̃(x, x′; s), (4.3.53)

and so equation (4.3.51) can be written as

K̃ab(x, x
′; s) = −

{
i

(
F

e−2sF − 1

)
ba

+ (x− x′)c(x− x′)d

(
F

e−2sF − 1

)
bc

(
F

e−2sF − 1

)
ad

}
K̃(x, x′; s) (4.3.54)
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The differential equation is then

d ln K̃(x, x′; s)

ds
= tr

(
F

e−2sF − 1

)
+ i(x− x′)a(x− x′)b

(
F 2

(e2sF − 1)(e−2sF − 1)

)
ab

. (4.3.55)

which integrates to give

K̃(x, x′; s) = − i

16π2s2
det

(
sF

sinh sF

) 1
2

e
i
4
(x−x′)a(F coth sF )ab(x−x′)b

C(x, x′), (4.3.56)

where the integration ‘constant’ C(x, x′) must satisfy the boundary condition

C(x, x) = 1. The constant is determined by imposing

K̃(x, x′; s→ +0) = δ(4)(x− x′) (4.3.57)

on the solution, where one finds C(x, x′) = I(x, x′). In more complicated examples

I(x, x′) plays a far more active role [207].

In the next chapter, when we treat Yang-Mills theories in superspace, it will

not be possible to solve the differential equation exactly. Instead of attempting to

solve it to some order, it turns out to be more economical to modify the approach.

In doing so we will develop a general algorithm for computing the DeWitt-Seeley

coefficients in the coincidence limit.
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Chapter 5

One-loop effective action for N = 4

super Yang-Mills theory

Having developed all of the necessary background material we will now proceed to

compute contributions to the one-loop effective action for non-Abelian N = 4 super

Yang-Mills theories in N = 1 superspace. This will be achieved through application

of the Gaussian approach, which first needs to be modified due to the presence of a

non-Abelian gauge group.

This chapter is based on the original work [34], which was primarily concerned

with testing the conjectured correspondence between the effective action of N = 4

super Yang-Mills and non-Abelian D-brane effective action from superstring theory.

This correspondence was based on the notion that maximally supersymmetry might

provide a sufficiently strong constraint to uniquely determine the allowed deforma-

tions of super Yang-Mills theories. See chapter 1 for greater details.

The one-loop effective action of N = 4 super Yang-Mills was computed in [34]

for the first time to order F 6 in superspace. Here we provide the full details of

this calculation. The bosonic component of the F 5 terms are extracted, and the

results are compared to existing literature. To facilitate this comparison a detailed

treatment of the F 5 field strength structures is necessary. The results are shown to

be consistent with the form of the non-Abelian D-brane effective action computed

to this order by superstring methods and various other means of computing defor-

mations of maximally supersymmetric Yang-Mills theory, leaving little doubt that

there is a unique deformation at this order. Some improvements and updates have

also been made since the publication of [34].
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5.1 The heat kernel

Recall that we wish to compute the regulated N = 4 super Yang-Mills one-loop

effective action via

Γ(1)
ρ =

µ2ρ

2

∫ ∞

0

ds (is)ρ−1eim2sK(s). (5.1.1)

In his expression, µ and ρ are the renormalization point and regularization parameter

respectively; m is an infrared regulator; and K(s) is the functional supertrace of the

heat kernel

K(s) = trAd

∫
d8z lim

z′→z
eis2δ(8)(z, z′) ≡ trAd

∫
d8z lim

z′→z
K(z, z′; s); (5.1.2)

and δ(8)(z, z′) the full superspace delta function.

δ(8)(z, z′) = δ(4)(x, x′)δ(2)(θ − θ′)δ(2)(θ̄ − θ̄′). (5.1.3)

The operator 2 is the (super) d’Alembertian

2 = DaDa −WαDα + W̄α̇D̄α̇ (5.1.4)

where the background gauge covariant derivatives satisfy the algebra

{Dα,Dβ} = {D̄α̇, D̄β̇} = 0

{Dα, D̄α̇} = −2iDαα̇ = −2i(σa)αα̇Da

[Dα,Dββ̇] = 2iεαβW̄β̇ W̄β̇ = W̄ I
β̇
T I (5.1.5)

[D̄α̇,Dββ̇] = 2iεα̇β̇Wβ Wβ = W I
βT I

[Dαα̇,Dββ̇] = (σa)αα̇(σb)ββ̇Gab = −εαβ(D̄α̇W̄β̇)− εα̇β̇(DαWβ).

Introducing a plane wave basis for the delta functions

δ(4)(x, x′) =

∫
d4k

(2π)4
eikaωa (5.1.6)

δ(2)(θ − θ′) = 4

∫
d2κ eiκα(θ−θ′)α , δ(2)(θ̄ − θ̄′) = 4

∫
d2κ̄ eiκ̄α̇(θ̄−θ̄′)α̇

(5.1.7)

where

ωa = xa − x′a − iθσaθ̄
′ + iθ′σaθ̄, (5.1.8)

and defining ∫
dη = 16

∫
d4k

(2π)4

∫
d2κ

∫
d2κ̄, (5.1.9)

one finds, analogous to the example in the previous chapter, that K(z, z′; s) has the

form

K(z, z′; s) =

∫
dη eikaωaeiκα(θ−θ′)αeiκ̄α̇(θ̄−θ̄′)α̇

eis∆ (5.1.10)
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with

∆ = XaXa −WαXα − W̄ α̇X̄α̇. (5.1.11)

As before the X’s are shifted covariant derivatives defined by

Xa = Da + ika

Xα = Dα + iκα − kαα̇(θ̄ − θ̄′)α̇ (5.1.12)

X̄α̇ = D̄α̇ + iκ̄α̇ + kαα̇(θ − θ′)α,

and satisfy

{Xα, Xβ} = {X̄α̇, X̄β̇} = 0, {Xα, X̄α̇} = −2iXαα̇,

[Xα, Xββ̇] = 2iεαβW̄β̇, [X̄α̇, Xββ̇] = 2iεα̇β̇Wβ (5.1.13)

[Xa, Xb] = Gab.

Taking the limit z′ → z in (5.1.10), which we implicitly take from this point onward,

one obtains

K(z; s) ≡ lim
z′→z

K(z, z′; s) =

∫
dη eis∆. (5.1.14)

The leading term in the asymptotic expansion of K(z; s) is of order s2, a fact

which can be seen by making the re-scaling ka → s−
1
2ka, and by observing that

the integral over the fermionic parameters κα and κ̄α̇ will bring down at least four

factors of s. Defining the DeWitt-Seeley coefficients an(z) in the usual manner,

K(z; s) =
i

(4πis)2

∞∑
n=0

(is)nan(z) ai(z) = 0, i = 0, 1, 2, 3, (5.1.15)

then the one-loop effective action then takes the form

Γ
(1)
N=4 =

1

32π2

∞∑
n=4

(n− 3)!

m2n−4

∫
d8z trAd(an), (5.1.16)

which is an expansion in inverse powers of the infrared regulator m, and is free of

ultra-violet divergences. Here the DeWitt-Seeley coefficients are real but otherwise

unconstrained superfields. At the component level the non-trivial coefficients, an

for n ≥ 4, contain bosonic field strength terms of the form F n, and we see that the

mass m plays a similar role to α′ in string theory in that it effectively keeps track

of such terms.

In the present case computing the one-loop effective action to all orders is not

possible, which will be illustrated in the next section. Our goal therefore is to extend

the known results by computing a5 and a6. The first non-trivial coefficient a4 is

well-known (see for example [89, 90]), and at the component level its bosonic term
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corresponds exactly with the associated term in the non-Abelian Born Infeld action

[66]. This coefficient can easily be obtained by simply expanding the exponential

eis∆ in (5.1.14). After re-scaling ka one finds

K(z; s) =
s2

4!

∫
dη e−ik2

(Wκ− W̄ κ̄)4 +O(s3) (5.1.17)

and so

trAd(a4) =
1

3
trAd(2W

2W̄ 2 −W αW̄α̇WαW̄
α̇). (5.1.18)

It is easy to see that computing the DeWitt-Seeley coefficients by the direct process

of expanding the exponential quickly becomes very laborious and cumbersome. It is

appears to be more efficient than the recursive DeWitt method when computing the

first non-trivial coefficient, but is not particularly tidy or systematic for computing

higher coefficients. In the next section we will make some modifications to the Gaus-

sian approach, in that we will not actually attempt to directly solve the differential

equation satisfied by the heat kernel. A more systematic method which amounts to

expanding the exponential and collecting terms into commutators is developed.

5.2 The modified Gaussian approach

As before we begin by differentiating K(z; s) with respect to s, generating the dif-

ferential equation

dK(z; s)

ds
= iKa

a(z; s)− iW αKα(z; s)− iW̄ α̇Kα̇(z; s), (5.2.19)

where again the notation

KA1A2...An(z, t) =

∫
dη XA1XA2 . . . XAneis∆ (5.2.20)

has been adopted, and the integration measure is defined in (5.1.9). Using

0 =

∫
dη

∂

∂kb

(
Xae

is∆
)

(5.2.21)

and

[A, eB] =

∫ 1

0

dξ eξB[A,B]e(1−ξ)B, (5.2.22)

it follows that

0 = iδ b
a K(z; s)− 2s

∫
dη Xa

∞∑
n=0

(is)n

(n+ 1)!
Ln

∆(J b) eis∆ (5.2.23)

where

Ja = Xa − i

2
Wσa(θ̄ − θ̄′)− i

2
(θ − θ′)σaW̄ . (5.2.24)
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After contracting the spacetime indices this can be written as

K a
a (z; s) =

2i

s
K(z, t)−

∫
dη Xa

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Ja) eis∆. (5.2.25)

Similarly,

0 =

∫
dη
∂

∂κβ

(
Xαeis∆

)
(5.2.26)

and

0 =

∫
dη
∂

∂κ̄β̇

(
X̄α̇eis∆

)
(5.2.27)

lead to

WαKα(z; s) =
2i

s
K(z; s)− (DαWα)K(z; s) +

∫
dη Xα

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Wα) eis∆

(5.2.28)

and

W̄ α̇Kα̇(z; s) =
2i

s
K(z; s) + (D̄α̇W̄

α̇)K(z; s) +

∫
dη X̄α̇

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(W̄ α̇) eis∆

(5.2.29)

respectively.

Inserting the expression (5.2.25), (5.2.28) and (5.2.29) into the differential equa-

tion (5.2.19), one obtains:

dK(z; s)

ds
− 2

s
K(z; s) =− i

∫
dη Xa

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Ja) eis∆

− i

∫
dη Xα

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Wα) eis∆

− i

∫
dη X̄α̇

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(W̄ α̇) eis∆, (5.2.30)

where the K(z; s) pieces have been brought to the left hand side and the Bianchi

identity, DαWα = D̄α̇W̄
α̇, has been used.

The significance of this expression is seen in terms of the asymptotic expansion

(5.1.15), which we first rewrite as

K(z; s) =
i

(4π)2

∞∑
n=4

(is)n−2an. (5.2.31)

The left hand side of (5.2.30) is then

dK(z; s)

ds
− 2

s
K(z; s) = − 1

16π2

∞∑
n=4

(n− 4)(is)n−3an =
s2a5

16π2
+

2is3a6

16π2
+ · · · (5.2.32)
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It is now clear that in this particular combination of the kernel and its derivative

the first non-trivial coefficient a4 is absent1. Exploiting this fact, the objective now

becomes to determine the DeWitt-Seeley coefficients by expanding the right hand

side of (5.2.30) in a power series in s, and identifying it with the right hand side

of (5.2.32). In contrast to the Gaussian approach as applied earlier, we make no

attempt to solve the differential equation 5.2.30) by expressing the right hand side

in terms of K(z; s). This turns out to be the most efficient way to proceed, and as

will been seen shortly, it is far from obvious whether, to some given order in s, the

right hand side of (5.2.30) is even expressible in terms of K(z; s).

The background has been arbitrary to this point. However from now on it

will be placed on-shell, DαWα = D̄α̇W̄
α̇ = 0 (see (2.2.96) in the absence of scalar

background), since this is sufficient for the purpose of making comparisons with the

literature and computing the S-matrix.

Since the summation on the right hand side of (5.2.30) involves the repetitive

calculation of commutators, it is first useful to establish the following relations:

[∆, Xa] = 2Gb
aXb + (DaW

α)Xα + (DaW̄
α̇)X̄α̇

[∆, Xα] = (DαW
β)Xβ

[∆, X̄α̇] = (D̄α̇W̄
β̇)X̄β̇ (5.2.33)

[∆, Y ] = (DaDaY ) + 2(DaY )Xa −Wα(DαY )− W̄ α̇(D̄α̇Y )

−(−1)ε(Y ) [Wα, Y } Xα − (−1)ε(Y ) [W̄ α̇, Y } X̄α̇.

These are not entirely trivial to establish and are significantly simplified by working

on-shell. For example, in the process one is required to establish that on-shell

(DaGab) = i(σb)αα̇{Wα, W̄ α̇}. See appendix B for full details.

From the commutation relations (5.2.33) it is clear that the summations on the

right hand side of (5.2.30) will generate a series of moments of the form KA1...Ai
(z; s)

as defined in (5.2.20). Furthermore, it is not difficult to show that to order n in this

summation, the moments generated have at most (n + 1) indices. It is convenient

to always place these indices in a specific order: first undotted, then dotted, then

spacetime. This can be achieved through the commutation relations (5.1.13). With

such an ordering, the leading term in a moment’s asymptotic power series has the

1This feature is not particular to the current example. Differential equations of the form (5.2.30),

where the first non-trivial coefficient is absent, arise naturally when applying these techniques to

heat kernels associated with ‘reasonable’ operators. This is most obvious in ordinary D dimensional

spacetime with Laplace-type operators.
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following behaviour2

KA1...Ap+q(z; s) ∼
1

s2

(
1

s

)[ p
2 ]
s4−q = s2−q−[ p

2 ] q ≤ 4 (5.2.34)

where KA1...Ap+q(z; s) has p spacetime indices, q spinor indices and [p
2
] denotes the

largest integer part of p
2
. Moments with more than two undotted or dotted indices

vanish as XαXβXγ = X̄α̇X̄β̇X̄γ̇ = 0.

From these considerations it is now quite clear that the summations in the dif-

ferential equation (5.2.30) cannot be done explicitly, since they all quickly lead to

a proliferation of more and more complicated terms, and moments with ever in-

creasing numbers of indices. Expressing each of these moments in terms of K(z; s)

through identities such as (5.2.21), (5.2.26) and (5.2.27) would be a formidable task,

and it is much easier to expand each of these moments into a power series.

Given the above power series arguments, and from comparison with equation

(5.2.32), the summation in equation (5.2.30) can be seen to truncate at n = 2k − 5

when evaluating ak for k ≥ 5. Moreover, it turns out that after tracing over gauge

indices the last term in this truncated summation always vanishes due to the cyclic

property of this trace, making it necessary to sum only to n = 2k− 6. In particular

this means that to evaluate a5 and a6 one is permitted to truncate at n = 4 and 6

respectively. To show this, we note that in evaluating ak, the terms in the summation

coming from n = 2k − 5 are always of the form

s2k−5Tαβα̇β̇b1...b2k−8Kαβα̇β̇b1...b2k−8
(z; s) k ≥ 5 (5.2.35)

to the order of interest. The coefficient T in this expression is in general a graded

commutator, and the moment is only ever required to leading order. To leading

order this moment is proportional to the identity matrix in its group indices, and

consequently we are left with terms which consists solely of a graded commutator.

In performing the trace over the gauge indices such terms vanish.

2To clarify the terminology adopted here and in what follows: the expressions ‘leading term’

or ‘leading order’ refer to the first (expected) non-trivial term in the asymptotic expansion of the

moment, ie K(z; s) has a leading term of order s2. Analogously ‘subleading order’ refers to the

second (expected) non-trivial term and so on.
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5.3 The F 5 terms

5.3.1 Evaluating a5

Before proceeding to compute a5 and a6 it is instructive to examine the differential

equation (5.2.30) in a little more detail. Since

Ln
A(BC) =

n∑
m=0

n!

m!(n−m)!
Ln−m

A (B) Lm
A (C), (5.3.36)

if A has even Grassmann parity, then

Ln
∆(Ja −Xa) =

i

2
(σa)αα̇L

n
∆((θ̄ − θ̄′)α̇Wα − (θ − θ′)αW̄ α̇)

=
i

2
(σa)αα̇

(
(θ̄ − θ̄′)α̇adn

∆(W α)− (θ − θ′)αLn
∆(W̄ α̇)

)
+Ma

n (5.3.37)

where

Ma
n =

i

2
(σa)αα̇

n−1∑
m=0

n!

m!(n−m)!

(
Ln−m−1

∆ (W̄ α̇) Lm
∆ (Wα) + Ln−m−1

∆ (Wα) Lm
∆ (W̄ α̇)

)
.

The differential equation (5.2.30) can then be expressed in the form

dK(z; s)

ds
− 2

s
K(z; s) =− i

∫
dη Xa

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Xa) eis∆

− i

∫
dη Xα

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Wα) eis∆

− i

∫
dη X̄α̇

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(W̄ α̇) eis∆

− i

∫
dη Xa

∞∑
n=1

(is)n

(n+ 1)!
Ma

n eis∆. (5.3.38)

This will simplify the computation for two reasons. Firstly, to order n in the

summation, the last of the four terms on the right hand side will generate moments

with at most n indices (whereas the first three generate moments with at most n+1).

By investigating its powers series behaviour, one ultimately finds that this last term

will not contribute when computing a5. Secondly, the form (5.3.38) allows us to take

advantage of the fact, which was merely noted and not exploited fully in [34], that

there is significant cancellation between several terms generated by the summation

in the first three of the four terms on the right hand side of (5.3.38). To see why

this is so, and to remove the need for calculating such terms, we employ the identity

(5.3.36) as

BLn
A(C) = Ln

A(BC)−
n∑

m=1

n!

m!(n−m)!
Lm

A (B) Ln−m
A (C). (5.3.39)
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This yields

XaL
n
∆(Xa) +XαL

n
∆(W α) + X̄α̇L

n
∆(W̄ α̇) =

Ln
∆(XaXa)− Ln

∆(W αXα)− Ln
∆(W̄ α̇X̄α̇)−

n∑
m=1

n!

m!(n−m)!

{
Lm

∆ (Xa) L
n−m
∆ (Xa)

+ Lm
∆ (Xα) Ln−m

∆ (Wα) + Lm
∆ (X̄α̇) Ln−m

∆ (W̄ α̇)

}
(5.3.40)

having used the equations of motion. The first three terms on the second line then

give Ln
∆(∆) = 0, and so ultimately (5.3.38) reduces to

dK(z; s)

ds
− 2

s
K(z; s) = −i

∫
dη Xa

∞∑
n=1

(is)n

(n+ 1)!
Ma

n eis∆

+ i

∫
dη

∞∑
n=1

n∑
m=1

(is)n

m!(n−m)!(n+ 1)

{
Lm

∆ (Xa) L
n−m
∆ (Xa)

+ Lm
∆ (Xα) Ln−m

∆ (W α) + Lm
∆ (X̄α̇) Ln−m

∆ (W̄ α̇)

}
eis∆. (5.3.41)

Determining the coefficient a5 now only involves computing

i

∫
dη

4∑
n=1

n∑
m=1

(is)n

m!(n−m)!(n+ 1)

{
Lm

∆ (Xa) L
n−m
∆ (Xa)+

Lm
∆ (Xα) Ln−m

∆ (Wα) + Lm
∆ (X̄α̇) Ln−m

∆ (W̄ α̇)

}
eis∆. (5.3.42)

To illustrate how one proceeds in this modified approach we will consider the n = 1

contribution. Using the commutation relations (5.2.33), the n = 1 term gives

− s
2!

∫
dη
(
[∆,Xa]X

a + [∆, Xα]Wα + [∆, X̄α̇]W̄ α̇
)

eis∆

=− s

2

(
GabKab(z; s) + (DaW α)Kαa(z; s) + (DaW̄ α̇)Kα̇a(z; s)

− (DαW
β)W αKβ(z; s)− (D̄α̇W̄

β̇)W̄ α̇Kβ̇(z; s)

+
(
(DαW

β)(DβW
α) + (D̄α̇W̄

β̇)(D̄β̇W̄
α̇)
)
K(z; s)

)
. (5.3.43)

This expression is further simplified by noting that

2GabKab(z; s) = GabGabK(z; s) (5.3.44)

and that terms of the form sK(z, t) ∼ O(s3) do not contribute to the order of

interest.
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There now only remains the problem of expanding the contributing moments to

the required order in s. In the present situation, computing a5, this does not generate

any additional difficulties since it is only necessary to expand all surviving moments

to leading order in their power series expansion in powers of s. As described earlier

such expressions are readily obtained by directly expanding the exponential. For

instance:

Kα(z; s) =

∫
dη Xαeis∆ =

s

24π2
(WαW̄

2 + W̄ 2Wα − W̄α̇WαW̄
α̇) +O(s2). (5.3.45)

Later a more systematic approach will be described.

Carrying out this procedure for the entire right hand side of equation (5.3.38)

for n = 1 to 4, trAd(a5) can be identified. A complete list of the required moments

computed to leading order is given below (also see3 appendix C). The numerical

factor common to all moments is H = i(4πi)−2.

Kαβα̇β̇ab(z; s) = − 2i

s3
εαβ εα̇β̇ ηab 1 H (5.3.46)

Kαβα̇β̇(z; s) = − 4

s2
εαβ εα̇β̇ 1 H (5.3.47)

Kαβα̇ab(z; s) =
2

s2
εαβ ηab W̄α̇ H (5.3.48)

Kαα̇β̇ab(z; s) =
2

s2
εα̇β̇ ηab Wα H (5.3.49)

Kαβα̇β̇a(z; s) = 0 (5.3.50)

Kαβα̇(z; s) = −4i

s
εαβ W̄α̇ H (5.3.51)

Kαα̇β̇(z; s) = −4i

s
εα̇β̇ Wα H (5.3.52)

Kαβab(z; s) =
i

s
εαβ ηab W̄

2 H (5.3.53)

Kαα̇ab(z; s) =
i

s
ηab

(
WαW̄α̇ − W̄α̇Wα

)
H (5.3.54)

Kαβab(z; s) = − i

s
εαβ ηab W

2 H (5.3.55)

Kαβα̇a(z; s) = −2i

s
εαβ (DaW̄α̇) H (5.3.56)

Kαα̇β̇a(z; s) = −2i

s
εα̇β̇ (DaWα) H (5.3.57)

Kαβ(z; s) = 2εαβW̄
2 H (5.3.58)

Kαα̇(z; s) = 2
(
WαW̄α̇ − W̄α̇Wα

)
H (5.3.59)

Kα̇β̇(z; s) = −2εα̇β̇W
2 H (5.3.60)

3In particular see subsection C.2.2. Note that this appendix involves knowledge of Mathematica

syntax. The usage of Mathematica will be described later.
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Kαab(z; s) = −1

3

(
WαW̄

2 + W̄ 2Wα − W̄α̇WαW̄
α̇
)
ηab H (5.3.61)

Kα̇ab(z; s) =
1

3

(
W 2W̄α̇ + W̄α̇W

2 −WαW̄ α̇Wα

)
ηab H (5.3.62)

Kαβa(z; s) =
2

3
εαβ

(
W̄α̇(DaW̄

α̇) + 2(DaW̄α̇)W̄ α̇
)
H (5.3.63)

Kαα̇a(z; s) =
2

3

(
Wα(DaW̄α̇)− W̄α̇(DaWα)

+ 2(DaWα)W̄α̇ − 2(DaW̄α̇)Wα

)
H (5.3.64)

Kα̇β̇a(z; s) = −2

3
εα̇β̇

(
Wα(DaWα) + 2(DaW

α)Wα

)
H (5.3.65)

Kα(z; s) = −2is

3

(
W̄α̇WαW̄

α̇ − W̄ 2Wα −WαW̄
2
)
H (5.3.66)

Kα̇(z; s) =
2is

3

(
WαW̄α̇Wα −W 2W̄α̇ − W̄α̇W

2
)
H (5.3.67)

Kα̇a(z; s) =
is

6

(
WαW̄α̇(DaWα)−W 2(DaW̄α̇)− W̄α̇W

α(DaWα)

+ 2Wα(DaW̄α̇)Wα − 2Wα(DaWα)W̄α̇ − 2W̄α̇(DaW
α)Wα

+ 3(DaW
α)W̄α̇Wα − 3(DaW

α)WαW̄α̇ − 3(DaW̄α̇)W 2
)
H (5.3.68)

Kαa(z; s) = − is

6

(
W̄α̇Wα(DaW̄

α̇)− W̄ 2(DaWα)−WαW̄α̇(DaW̄
α̇)

+ 2W̄α̇(DaWα)W̄ α̇ − 2W̄α̇(DaW̄
α̇)Wα − 2Wα(DaW̄α̇)W̄ α̇

+ 3(DaW̄α̇)WαW̄
α̇ − 3(DaW̄α̇)W̄ α̇Wα − 3(DaWα)W̄ 2

)
H (5.3.69)

To summarize, we see that the problem of computing the original kernel to

subleading order has been reduced to computing several moments to leading order.

The final result, trAd(a5), is dramatically simplified by recognizing that all terms

may be reduced to a linear combination of only two types of structures, which serve

as a basis of tensor structures. This fact can be established through dimensional

analysis and use of the algebra (5.1.5), integration by parts, the cyclic property of

the trace, and by applying various on-shell identities such as4

DαWβ = DβWα, D̄α̇W̄β̇ = D̄β̇W̄α̇, DαDβWγ = D̄α̇D̄β̇W̄γ̇ = 0,

DαDβD̄α̇W̄β̇ = 4εαβ{W̄α̇, W̄β̇}, DαD̄α̇DβW
α = −4{W̄α̇,Wβ}, (5.3.70)

(DaGab) = i(σb)αα̇{W α, W̄ α̇}, (DaDaW
α) = [W β,DβW

α].

The latter is easily established by using (3.2.104). The basis of tensor structures

which most naturally presents itself in this superfield approach consists of: terms

with two contracted spacetime covariant derivatives acting in various ways on two

chiral and two antichiral superfield strengths (for example (DaW α)(DaWα)W̄ 2);

4See appendix B for further details regarding these identities.
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and a single spinor covariant derivative with five superfield strengths (for exam-

ple (DαW
β)WαWβW̄

2).

We choose to bring terms of the first type into a form where the two contracted

spacetime covariant derivatives act separately on the first two superfield strengths5,

and terms of the second type into a form where the spinor covariant derivatives acts

on the first superfield strength. The final result is:

trAd(a5) =
1

30
trAd

(
(DaWα)(DaWα)W̄ 2 + (DaW α)(DaW̄α̇)W̄ α̇Wα

− (DaWα)(DaW̄α̇)WαW̄
α̇ − 3(DαW

β)W αWβW̄
2

− (DαW
β)W αW̄α̇WβW̄

α̇
)

+ c.c., (5.3.71)

where the complex conjugate of any term is effectively obtained by replacing all

undotted spinor indices (and unbarred objects) by dotted spinor indices (and barred

objects) and vice-versa. The corresponding piece of the one-loop effective action can

immediately be deduced by insertion into equation (5.1.16).

The above computation may readily be carried out by hand. However, at higher

orders it is useful to use Mathematica to carry out much of the symbolic manipula-

tion. See appendix C for the details of this process.

5.3.2 a5 at the component level

We are now in a position to extract the component form of trAd(a5). For the purposes

of comparison with existing literature, it is only necessary to consider the contri-

bution containing the field strength Fab and its covariant derivatives. Extraction of

this component is most easily achieved by setting all6 but the vector component to

zero in the vector multiplet’s component expansion,

V (z) = θσaθ̄Va, (5.3.72)

which leads to

Wα =
i

2
(σa)αα̇(σ̃b)α̇βθβFab +O(θ2θ̄)

DcWα =
i

2
(σa)αα̇(σ̃b)α̇βθβ(∇cFab) +O(θ2θ̄) (5.3.73)

DαWβ = − i

2
(σa)βα̇(σ̃b)α̇

αFab +O(θθ̄)

5Terms of the first type where the two contracted spacetime covariant derivatives act on the

same superfield strength can be expressed as a linear combinations of terms of the second type by

using the last of the on-shell relations in (5.3.70).
6The auxiliary field vanishes on shell.
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or equivalently

Wα

∣∣∣ = 0 DαWβ

∣∣∣ = − i

2
(σa)βα̇(σ̃b)α̇

αFab (5.3.74)

DaWα

∣∣∣ = 0 DβDcWα

∣∣∣ = − i

2
(σa)βα̇(σ̃b)α̇

α(∇cFab) (5.3.75)

and similar expressions for antichiral superfield strengths. Higher order terms in

these expansions will not contribute given the form of the result (5.3.71). As before,

here

∇a = ∂a − iVa, [∇a,∇b] = −iFab

Fab = ∂aVb − ∂bVa − i[Va, Vb]. (5.3.76)

Simplifying the component result is rather straightforward but very time con-

suming7. In doing so it is necessary to use the σ matrix identities (A.1.17), (A.1.18),

(A.1.19), (A.1.20) and

εabcdεefgh = −4! δ[a
e δ

b
fδ

c
gδ

d]
h . (5.3.77)

In the end, the contribution to
∫
d2θ d2θ̄ trAd(a5) coming solely from the vector

component of the super Yang-Mills background, which will be denoted by trAd(a5)|v,
is found to be

trAd(a5)
∣∣∣
v

=
1

30
trAd

(
2
(
(∇eF ab)(∇eFbc)F

cdFda + (∇eF ab)(∇eF
cd)FbcFda

+ (∇eF ab)(∇eFca)FbdF
dc
)

− 1

2

(
(∇eF ab)(∇eFab)F

cdFcd + (∇eF ab)(∇eF
cd)FabFcd + (∇eF ab)(∇eF

cd)FcdFab

)
+ 2i

(
F abFbcF

cdF e
aFde − 2F abF cdFbcF

e
aFde + F abF cdF e

aFbcFde

))
. (5.3.78)

Comparison of this result with existing expressions in the literature is a highly

non-trivial exercise, being complicated by the fact that in the non-Abelian case there

are many possible field strength tensor structures, all of which are not independent.

This is in contrast to the relatively transparent situation in superspace (where we

found that there where only a few basis structures). To proceed further we will need

to examine these F 5-type structures in greater detail. As a final point of interest, it

turns out that the bosonic component given above is itself not expressed minimally

(this is also the case for some other results in the literature, for example [85]), in that

one of the terms may be eliminated in favour of some of the others. This point will

be addressed in the next section, the detailed analysis of which was first published

in an appendix of [35].

7See appendix B or the attached CD for a computerized approach.
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5.3.3 A basis for F 5 structures

The array of possible structures of the form F n are not independent since they can be

related by: the antisymmetric property of the field strength Fab = −Fba; integration

by parts; the cyclic property of the trace over the gauge indices; the Bianchi identity

∇aFbc +∇cFab +∇bFca = 0; (5.3.79)

the equations of motion

∇aFab = 0. (5.3.80)

As a consequence of these it is also useful to establish the ‘non-Abelian’ identity

[Fab, Fcd] = 2i∇[a∇b]Fcd, (5.3.81)

and

∇2Fab = 2i[F c
a , Fcb], (5.3.82)

where the last expression in (5.3.70) is the superspace analogue of the latter.

An independent set of such tensor structures forms a basis, and different bases

are used throughout the literature since different calculational procedures naturally

select different bases. For example, we have just seen in the previous section that

the structures arising at order F 5 were almost completely determined by the use of

superspace: in superspace and hence at the component level, both covariant deriva-

tives act on adjacent field strengths and are always contracted with one another.

Comparing various results in the literature [212, 79, 80], we see completely differ-

ent structures, such as those where covariant derivatives are contracted with field

strengths8.

Furthermore, in the present case of F 5 structures in four dimensional spacetime,

the analysis is further complicated by the fact that some structures are related in a

much less obvious way, which in general depends crucially on value of n in F n and

the spacetime dimension. This is elaborated upon below.

To simplify this discussion we will first introduce the following notation (where,

since the discussion is independent of the gauge group, the trace is over an arbitrary

8An additional complication which arises when comparing results manifests itself under field

redefinitions of the vector potential [73, 37]. We avoid such complications by working on-shell

∇aFab = 0, since at this order (and lower orders) tensor structures which can be removed by, or

are sensitive to field redefinitions, vanish on-shell. This can be seen explicitly in [78].
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representation R):

s0,0 = trR(F abFbcF
cdFdeF

e
a) s0,1 = trR(F abFbcF

cdF e
aFde)

s0,2 = trR(F abF cdFbcF
e
aFde) s0,3 = trR(F abF cdF e

aFbcFde)

s0,4 = trR(F abFbcF
c
aF

deFde) s0,5 = trR(F abF deFbcF
c
aFde)

s1,0 = trR((∇eF ab)(∇eFab)F
cdFcd) s1,1 = trR((∇eF ab)(∇eF

cd)FabFcd)

s1,2 = trR((∇eF ab)(∇eF
cd)FcdFab) s1,3 = trR((∇eF ab)(∇eFbc)F

cdFda)

s1,4 = trR((∇eF ab)(∇eFca)FbdF
dc) s1,5 = trR((∇eF ab)(∇eF

cd)FbcFda)

s1,6 = trR((∇eF ab)Fda(∇eFbc)F
cd) s1,7 = trR((∇eF ab)F cd(∇eFab)Fcd)

s1,8 = trR((∇eF ab)Fbc(∇eF
cd)Fda) s1,9 = trR((∇eF ab)Fab(∇eF

cd)Fcd)

s1,10 = trR((∇eF ab)F cd(∇eFcd)Fab) s1,11 = trR((∇eF ab)F dc(∇eFcb)Fda)

s2,1 = trR(F ab(∇aF
cd)(∇eFbc)Fde) s2,3 = trR((∇aF ef )(∇bFef )F

acFcb)

s2,4 = trR((∇aF ef )(∇bFef )F
bcFca) s2,5 = trR((∇aF ef )F cb(∇bFef )Fac)

s2,6 = trR((∇bF
ef )F cb(∇aFef )Fac) s2,7 = trR((∇bF cd)(∇cF

ea)FdeFab)

s2,9 = trR((∇eF
bc)(∇aF de)FabFcd) s2,10 = trR((∇aF de)(∇bFec)FabF

c
d)

s2,11 = trR((∇aF
de)(∇cFbe)F

abFcd) s2,12 = trR((∇aF de)(∇eF
cb)FabFcd)

s2,13 = trR((∇eF
bc)Fcd(∇dF ea)Fab) s2,14 = trR((∇aF cd)(∇bFde)F

e
cFab)

s2,15 = trR((∇aF
cd)(∇eF ab)FcbFed) s2,16 = trR(F de(∇eF

cb)Fab(∇aFcd))

s2,17 = trR(Fab(∇eF
bc)F ed(∇aFdc)) s2,18 = trR(Fab(∇eF

bc)Fcd(∇aF de)).

In the notation adopted here, the first index on si,j takes the values 0, 1 or 2:

terms without covariant derivatives (ie pure9 F 5 terms) if 0; terms with contracted

covariant derivatives if 1; and two covariant derivatives which are not contracted

with one another otherwise. The second index is arbitrary, and serves to enumerate

different structures for a given value of the first index. This list is of course not

complete, and excludes terms which can obviously be reduced to a linear combination

of the above (modulo integration by parts and the equations of motion).

In D = 4 the following set provides a basis for all such possible tensor structures:

{s0,0, s0,1, s0,2, s0,3, s1,0, s1,1, s1,2, s1,3, s1,4, s2,3}, (5.3.83)

which consists of four pure F 5 structures, five structures with contracted covariant

derivatives acting on adjacent field strengths, and a single structure with two co-

variant derivatives which are not contracted. We will now prove this fact. Other

9The prefix ‘pure’ will be used to refer to such terms to avoid confusion with the generic usage

of F 5.
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bases in various dimensions can be found elsewhere in the literature, for example see

[78, 74, 101]. See [101] for a discussion (without explicit detail) on an alternative F 5

basis which is perhaps the most economical for expressing the non-Abelian D-brane

effective action. As will be explained, the basis we chose here turns out to be more

useful for comparison with the literature.

Pure F 5 terms

One can establish that the six F 5 terms: s0,0, s0,1, s0,2, s0,3, s0,4 and s0,5, are not

linearly independent in four dimensions. Any two may be eliminated by generating

two independent identities relating all six. This is a consequence of the simple

fact that for any n × n matrix A, the trace of An+1 may be expressed in terms

of the product of the traces of lower powers of A. For example, given a traceless

(antisymmetric) 4× 4 matrix A:

tr(A5) =
5

6
tr(A2)tr(A3). (5.3.84)

Such identities can be derived by considering the power series expansion of

det(1 + λA) = exp tr ln(1 + λA) (5.3.85)

in λ, given the knowledge that for an n×n matrix, the right hand side will terminate

at order λn. To be clear, the analogy here is to consider the field strength F as a

4× 4 matrix in its spacetime indices.

In the case at hand the presence of the additional gauge index complicates such

derivations, and it is far simpler to use the more novel approach which makes use

of the rather trivial σ matrix identity

tr(σaσ̃bσcσ̃dσeσ̃f ) = tr(σbσ̃aσf σ̃eσdσ̃c). (5.3.86)

This is proven by a simple rearrangement of indices, and is of course particular to

D = 4. The identity implies(
tr(σaσ̃bσcσ̃dσeσ̃f )tr(σ̃gσhσ̃iσj) + c.c

)
trR(FabFcdFefFghFij + FabFefFcdFghFij) = 0, (5.3.87)

which, using the other σ matrix identities, reduces to

s0,1 − 2s0,2 + s0,3 +
1

2
s0,4 +

3

2
s0,5 = 0. (5.3.88)

Similarly one can use (5.3.86) to establish(
tr(σaσ̃bσcσ̃dσeσ̃f )tr(σ̃gσhσ̃iσj) + c.c

)
trR(FabFcdFghFefFij + FabFefFghFcdFij) = 0, (5.3.89)
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which becomes

s0,0 − 2s0,1 − s0,2 +
3

2
s0,4 −

1

2
s0,5 = 0. (5.3.90)

Equations (5.3.88) and (5.3.90) allow two of the six F 5 structures to be expressed

in terms of the other four. We choose to treat s0,4 and s0,5 as dependent:

s0,4 =− 3

5
s0,0 + s0,1 + s0,2 +

1

5
s0,3 (5.3.91)

s0,5 =
1

5
s0,0 − s0,1 + s0,2 +

3

5
s0,3. (5.3.92)

D2F 4 terms

Using the equations of motion, the Bianchi identity, integration by parts, the cyclic

property of the trace and the non-Abelian identity each of the terms s1,i with

6 ≤ i ≤ 11 are quite readily expressed in terms of the proposed basis:

s1,6 =− 2is0,1 + 2is0,2 − s1,4 − s1,5 (5.3.93)

s1,7 =4is0,5 − 2s1,1 =
4i

5
s0,0 − 4is0,1 + 4is0,2 +

12i

5
s0,3 − 2s1,1 (5.3.94)

s1,8 =− 2is0,0 + 2is0,1 − 2s1,3 (5.3.95)

s1,9 =4is0,4 − s1,0 − s1,2 = −12i

5
s0,0 + 4is0,1 + 4is0,2 +

4i

5
s0,3 − s1,0 − s1,2 (5.3.96)

s1,10 =4is0,4 − s1,0 − s1,2 = −12i

5
s0,0 + 4is0,1 + 4is0,2 +

4i

5
s0,3 − s1,0 − s1,2 (5.3.97)

s1,11 =− 2is0,1 + 2is0,2 − s1,4 − s1,5. (5.3.98)

DaDbF
4 terms

Again using these properties one can generate the following independent equations:

s2,1 =is0,2 − is0,3 +
1

4
s1,1 −

1

2
s2,5 − s2,9 (5.3.99)

s2,9 =− is0,1 + is0,2 − s1,4 −
1

2
s2,3 +

1

2
s2,6 (5.3.100)

s2,4 =− is0,4 + is0,5 +
1

2
s1,2 −

1

2
s1,10 + s2,3 (5.3.101)

s2,5 =s2,6 (5.3.102)

s2,7 =s2,9 (5.3.103)

s2,13 =s2,18 = −is0,0 + is0,1 − s1,3 (5.3.104)
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s2,12 =− s2,15 (5.3.105)

s2,12 =− s1,5 + s2,7 (5.3.106)

s2,10 =s2,14 = −s2,11 − s2,12 (5.3.107)

s2,10 =− s2,1 + s2,9 (5.3.108)

s2,16 =− s2,17 =
i

2
s0,4 −

i

2
s0,5 − s2,13 + s2,14. (5.3.109)

Furthermore, two more independent equations can be produced by again using

identity (5.3.86). For example

(
tr(σaσ̃bσcσ̃dσeσ̃f )tr(σ̃gσhσ̃iσj) + c.c

)
(
trR((∇bFcd)∇a(Fgh)FijFef − (∇aFfe)∇b(Fgh)FijFdc)

)
= 0, (5.3.110)

and

(
tr(σaσ̃bσcσ̃dσeσ̃f )tr(σ̃gσhσ̃iσj) + c.c

)
(
trR((∇aFgj)∇f (Fhi)FbcFed − (∇bFgj)∇c(Fhi)FafFde)

)
= 0, (5.3.111)

reduce to

s1,0 + s1,1 − 4s1,4 + 4s2,1 + 2s2,4 = 0 (5.3.112)

and

s1,1− s1,2 + 4s1,3− 4s1,4 + 8s1,5− 2s2,3 + 2s2,4− 4s2,9 + 4s2,12− 8s2,15 = 0 (5.3.113)

respectively. The latter identities prove quite difficult to establish via other means.

This completely exhausts all possible combinations, and brings us to a final set

independent relations.

The basis

All tensor structures can now be expressed in this basis (5.3.83). Introducing the

condensed notation

{a, b, c, d, e, f, g, h, i, j}

≡ as0,0 + bs0,1 + cs0,2 + ds0,3 + es1,0 + fs1,1 + gs1,2 + hs1,3 + is1,4 + js2,3,

we list for completeness all terms expressed in this basis:
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s0,4 = { −3
5
, 1, 1, 1

5
, 0, 0, 0, 0, 0, 0 }

s0,5 = { 1
5
, −1, 1, 3

5
, 0, 0, 0, 0, 0, 0 }

s1,5 = { 2i, −5i, 0, −i, 3
4
, 3

4
, 3

4
, 1, −3, 0 }

s1,6 = s1,11 = { −2i, 3i, 2i, i, −3
4
, −3

4
, −3

4
, −1, 2, 0 }

s1,7 = { 4i
5
, −4i, 4i, 12i

5
, 0, −2, 0, 0, 0, 0 }

s1,8 = { −2i, 2i, 0, 0, 0, 0, 0, −2, 0, 0 }
s1,9 = s1,10 = { −12i

5
, 4i, 4i, 4i

5
, −1, 0, −1, 0, 0, 0 }

s2,1 = { −i, 2i, i, 0, −1
2
, −1

4
, −1

2
, 0, 1, −1

2
}

s2,4 = { 2i, −4i, −2i, 0, 1
2
, 0, 1, 0, 0, 1 }

s2,5 = s2,6 = { i, −i, −i, −i, 1
2
, 1

2
, 1

2
, 0, 0, 1 }

s2,7 = s2,9 = { i
2
, −3i

2
, i

2
, − i

2
, 1

4
, 1

4
, 1

4
, 0, −1, 0 }

s2,10 = s2,14 = { 3i
2
, −7i

2
, − i

2
, − i

2
, 3

4
, 1

2
, 3

4
, 0, −2, 1

2
}

s2,11 = { 0, 0, 0, 0, −1
4
, 0, −1

4
, 1, 0, −1

2
}

s2,12 = −s2,15 = { −3i
2
, 7i

2
, i

2
, i

2
, −1

2
, −1

2
, −1

2
, −1, 2, 0 }

s2,13 = s2,18 = { −i, i, 0, 0, 0, 0, 0, −1, 0, 0 }
s2,16 = −s2,17 = { 21i

10
, −7i

2
, − i

2
, − 7i

10
, 3

4
, 1

2
, 3

4
, 1, −2, 1

2
}

As noted in the previous section, the component results obtained for a5 were not

expressed in any basis in D = 4. In the notation introduced here, the component

result (5.3.78) is

trAd(a5)
∣∣∣
v

=
1

30

(
2
(
s1,3 + s1,5 + s1,4)−

1

2

(
s1,0 + s1,1 + s1,2

)
+ 2i

(
s0,1 − 2s0,2 + s0,3

))
. (5.3.114)

where it is understood that the trace in the definition of the si,j above is over the

adjoint representation. The term s1,5 is not a member of the basis (5.3.83) and is

eliminated to give

trAd(a5)
∣∣∣
v

=
1

30
{4i,−8i,−4i, 0, 1, 1, 1, 4,−4, 0}. (5.3.115)

5.3.4 Comparison with literature

Making comparisons with F 5 expressions found in the literature now becomes a

rather simple exercise. At the time of the publication of [34], the F 5 contributions

to the non-Abelian D-brane effective action had been calculated in full by several

different methods (see the introduction for details). A direct computation of the

N = 4 super Yang-Mills effective action to this order in D = 4 using supergraph

techniques had also been attempted in [85, 86].
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As detailed in the introduction, Koerber and Sevrin [78] used an approach based

on the requirement that certain BPS solutions should exist to the equations of

motion derived from the non-Abelian D-brane effective action10, extending earlier

use of this method for the Abelian case [71]. At order (α′)3 in D = 10 this approach

yields11 (1.1.3).

A number of successful tests have been applied to this result, confirming that

the expression (1.1.3) is indeed consistent with string theoretic predictions [79, 80]

and a unique deformation of D = 10, N = 1 supersymmetric Yang-Mills theory

[74]. Most recently a direct string theory calculation of the full five-point scattering

amplitude for gluons has been carried out [81], from which it is inferred that the

corresponding low energy effective action has precisely the order (α′)3 terms (1.1.3).

After restricting the expression (1.1.3) to D = 4, and expressing it in the basis

adopted here via the conversion table given above, it agrees exactly with the above

N = 4 super Yang-Mills results trAd(a5)|v (5.3.78) and (5.3.115) (up to an overall

normalized factor).

As noted earlier, this agreement was first seen in [34]. Published prior to this,

the computation [85, 86] of the one-loop N = 4 super Yang-Mills effective action to

order F 5 using supergraph techniques (which gave bosonic component results only)

disagreed with results from string theory. In particular, the pure F 5 terms where

found to be different. However, soon after the release of [34], the authors of [85, 86]

corrected an error, yielding consistent results [85].

The fact that all of these results [78, 81, 79, 80, 74, 34, 85] computed by four

independent means yield the same result, (1.1.3), leads one to confidently conclude

that the F 5 deformation of maximally supersymmetric Yang-Mills theory is in fact

uniquely given by this expression. Evidence which suggests that this uniqueness

does not extend to all orders, and that in general one should not expect a direct

correspondence between the non-Abelian D-brane effective action and quantized

super Yang-Mills at higher orders, comes from the fact that the F 8 terms in the

one-loop Abelian N = 4 super Yang-Mills effective action [106] differ from the F 8

terms in the Born-Infeld action [87]. For a detailed discussion see [106, 107].

It is perhaps worthy to note that due to the expected correspondence between

the ultraviolet divergent part of the one-loop effective action of super Yang-Mills

theory and the singular piece of the one-loop effective action in open superstring

theory in the limit α′ → 0 (see [214, 76]), the one-loop results computed here should

10For other approaches see [70, 213] and references therein.
11Partial results at order (α′)3 had previously been obtained in [76], [77] and [43]. F 5 terms in

ten dimensional super Yang-Mills were given in [76].
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provide information about the F 5 terms of the latter.

Finally it should also be pointed out, which was apparently overlooked by many

authors, that with a little work the bosonic one-loop effective action to order F 5 for

N = 4 super Yang-Mills theory could have been extracted from pre-existing liter-

ature. In particular the bosonic DeWitt-Seeley coefficients associated with scalars,

vectors or spinors in the presence of a non-Abelian background Yang-Mills field in

arbitrary spacetime dimension had effectively been computed to order F 5 some time

ago [87, 88, 215, 76].

From the tables in [76] and [87], one can assemble the total bosonic component

of the DeWitt-Seeley coefficients associated with a theory possessing N1 vectors, N0

scalars and N1/2 spinors all in the adjoint representation, coupled to a Yang-Mills

background by using12

atot
n = N1 an(∆1) + (N0 − 2N1) an(∆0)−

N1/2

γ
an(∆1/2) (5.3.116)

where γ = 1, 2, 4 for Dirac, Majorana and Majorana-Weyl spinors respectively, and

an(∆s) (s = 0, 1, 1
2
) denotes the contribution generated by the presence of second

order (scalar, vector, spinor) operators in the original action.

The general a4 and a5 coefficients provided in [76] were obtained from one-

loop counterterms computed in [215], however the pure F 5 contributions had not

been extracted. From these one readily generates the following on-shell bosonic

component for the D = 4, N = 4 super Yang-Mills theory DeWitt-Seeley coefficient

(see the D = 10, N = 1 expression in [76]):

trAd(a5) =
2

5!
(4s1,3 − 4s1,6 − s1,1 + s1,9) + (F 5 terms). (5.3.117)

Despite its incompleteness, and regardless of the fact that there exists the possi-

bility of ‘communication’ between pure F terms and those containing derivatives

via (5.3.81), a comparison between this expression and the result (5.3.115) can be

made without any additional work. That such a comparison of partial results is

even possible is a consequence of the particular form of the chosen basis13. Specif-

ically, in casting any expression in our chosen basis, any pure F 5 terms will be

expressed as a linear combination of the pure F 5 structures s0,0 − s0,3 only. The

omitted pure F 5 terms in (5.3.117) will therefore not contribute terms containing

derivatives when expressed in this basis, and so a comparison of derivative terms

becomes possible. Using the conversion table provided in subsection 5.3.3 one finds

12In the notation used in [76] and [87] an = b2n.
13In contrast, the scheme described in [101] yields a basis which is not useful for this purpose.
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that (5.3.117) becomes

trAd(a5) =
1

30

{
14i

5
,−4i,−2i,−8i

5
, 1, 1, 1, 4,−4, 0

}
+ (F 5 terms). (5.3.118)

Comparing this to with (5.3.115), one indeed finds exact agreement of the derivative

terms.

5.4 The F 6 terms

5.4.1 Expanding moments

Employing the procedure outlined above to compute ak for k > 5 will necessarily

involve asymptotically expanding moments to higher than leading order. We will

therefore require some sort of prescription if this scheme is to be generalized. As one

may expect, it is possible to appeal to a set of techniques similar to those already

used. More specifically, to evaluate any moment to arbitrary order one proceeds

iteratively by using the following generalizations of the identities (5.2.21), (5.2.26)

and (5.2.27):

0 =

∫
dη

∂

∂kb

(
XA1 . . . XAneis∆

)
(5.4.119)

0 =

∫
dη

∂

∂κβ

(
XA1 . . . XAneis∆

)
(5.4.120)

0 =

∫
dη

∂

∂κ̄β̇

(
XA1 . . . XAneis∆

)
. (5.4.121)

Occasionally differentiation with respect to s will also be useful, as in (5.2.19):

dmKA1...An(z; s)

dsm
=

∫
dη XA1 . . . XAn(i∆)meis∆. (5.4.122)

A combination of the two procedures is also useful, as in (5.2.30). Of course, none

of this actually computes the moment directly, but is used with the intention of

expressing it in terms of other moments with the same number or more indices,

which are generally easier to compute. In this procedure, expanding a moment to

some order will usually require knowledge of the expansion of several other moments

to the same or lower order. Consequently at some point it will be necessary to

evaluate at least one moment directly by expanding the exponential.

5.4.2 The moment hierarchy and a6

Computing a6 involves summing from n = 1 to 6 on the right hand side of (5.3.41),

which generates a hierarchy of moments, a partial list being given below (all but
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K(z; s) required to subleading order):

Kαβα̇β̇ab(z; s)

Kαβα̇β̇a(z; s) Kαβα̇ab(z; s) Kαα̇β̇ab(z; s) Kαβα̇β̇(z; s)

Kαβα̇a(z; s) Kαα̇β̇a(z; s) Kαβab(z; s) Kαα̇ab(z; s) Kα̇β̇ab(z; s) Kαβα̇(z; s) Kαα̇β̇(z; s)

Kαβa(z; s) Kαα̇a(z; s) Kα̇β̇a(z; s) Kαab(z; s) Kα̇ab(z; s) Kαβ(z; s) Kαα̇(z; s) Kα̇β̇(z; s)

...

Kab(z; s) Kαa(z; s) Kα̇a(z; s) Kα(z; s) Kα̇(z; s)

K(z; s)

Generally speaking, the following structure is present in the hierarchy: from top

to bottom the moments decrease in the number of indices, increase in difficulty of

expansion, and the exponent of s in the leading order term increases (each row

contains moments with the same leading order behaviour). From left to right, the

moments decrease in their difficulty of expansion, and clearly many are related by

complex conjugation.

In the prescription outlined above, the expansion of any moment generally hinges

on having computed the expansion of a number of those next to or above it in the

hierarchy, so naturally one begins at the top and works down. However one needn’t

actually attempt to identify the order in which the moments need to be computed

prior to attempting to determine a DeWitt-Seeley coefficient, since this becomes

self evident during the process. Moreover, one should note that there is a certain

amount of freedom to the order in which one can compute these moments, and so

no concrete ordering can be given.

To be more explicit about this entire process, consider the following examples

which cover all important points.

Example 1

To give the general flavour of the method we will consider a simple example in full

detail. The leading order moments given earlier, (5.3.46)-(5.3.69), have been listed

in approximately hierarchical order, so consider computing a typical moment such

as Kαβa(z; s) to leading order. As previously mentioned, this moment can readily

be computed by directly expanding the exponential; however if the moments above

it in the hierarchy are known, it is simpler to proceed as follows.

Firstly we note that one is free to compute this moment by choosing either of
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the following identities:

0 =

∫
dη

∂

∂κ̄β̇

(
XαXβX̄α̇Xae

is∆
)

(5.4.123)

or

0 =

∫
dη

∂

∂κa

(
XαXβeis∆

)
. (5.4.124)

Choosing the former, which after the contraction of α̇ and β̇, leads directly to

Kαβa(z; s) =
1

2

∫
dη XαXβX̄α̇Xa

∞∑
n=0

(is)n+1

(n+ 1)!
Ln

∆(W̄ α̇) eis∆. (5.4.125)

Knowledge of the commutation relations (5.2.33) and power series behaviour of

moments (5.2.34) reveals that the summation in (5.4.125) truncates at n = 2 when

computing Kαβa(z; s) to leading order. Explicitly one therefore obtains

Kαβa(z; s) =
1

2

∫
dη XαXβX̄α̇Xa

2∑
n=0

(is)n+1

(n+ 1)!
Ln

∆(W̄ α̇) eis∆

=
1

2
(is)

∫
dη XαXβX̄α̇XaW̄

α̇ eis∆

+
1

2

(is)2

2!

∫
dη XαXβX̄α̇Xa[∆, W̄

α̇] eis∆

+
1

2

(is)3

3!

∫
dη XαXβX̄α̇Xa[∆, [∆, W̄

α̇]] eis∆. (5.4.126)

With a certain level of familiarity with the commutation relations and power series

behaviour of moments, it becomes rather obvious that the only possible terms which

may contribute to the order of interest will be

Kαβa(z; s) =
1

2
(is)

(
−(DaW̄

α̇)Kαβα̇(z; s)− W̄ α̇Kαβα̇a(z; s)
)

+
1

2

(is)2

2!

∫
dη XαXβX̄α̇Xa

(
2(DbW̄ α̇)Xb + {W̄ β̇, W̄ α̇}X̄β̇

)
eis∆

+
1

2

(is)3

3!

∫
dη XαXβX̄α̇Xa

(
{W̄ β̇, 2(DbW̄ α̇)}X̄β̇Xb

+2Db({W̄ β̇, W̄ α̇})XbX̄β̇

)
eis∆

=
1

2
(is)

(
−(DaW̄

α̇)Kαβα̇(z; s)− W̄ α̇Kαβα̇a(z; s)
)

+
1

2

(is)2

2!

(
−2(DbW̄ α̇)Kαβα̇ab(z; s) + {W̄ β̇, W̄ α̇}Kαβα̇β̇a(z; s)

+Da({W̄ β̇, W̄ α̇})Kαβα̇β̇(z; s)
)

+
1

2

(is)3

3!

(
2{W̄ β̇, (DbW̄ α̇)}Kαβα̇β̇ab(z; s)

+2Db({W̄ β̇, W̄ α̇})Kαβα̇β̇ab(z; s)
)
. (5.4.127)
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Inserting the previously computed expansions for Kαβα̇β̇ab(z; s), Kαβα̇β̇(z; s),

Kαβα̇ab(z; s), Kαβα̇β̇a(z; s), Kαβα̇(z; s), Kαβα̇a(z; s) as given higher up in the lead-

ing order hierarchy by equations (5.3.46), (5.3.47), (5.3.48), (5.3.50), (5.3.51) and

(5.3.56) respectively, leads to

Kαβa(z; s) = εαβ

(
2(DaW̄α̇)W̄ α̇ + W̄α̇(DaW̄

α̇)
)
H

− εαβ(DaW̄α̇)W̄ α̇H − 1

3
εαβ{W̄α̇, (DaW̄

α̇)}H. (5.4.128)

Expanding this yields (5.3.63) as required. One can check this result by starting

with (5.4.124) rather than (5.4.123).

Example 2

Returning now to the problem of computing the moment hierarchy of a6, the moment

Kαβα̇β̇(z; s) turns out to be a rather important object in this hierarchy in that all

other moments may be expressed in terms of it, at least to the order of interest. Its

power series to subleading order is not difficult to compute by directly expanding

the exponential, and takes the simple form:

Kαβα̇β̇(z; s) = − 4i

(4πis)2
εαβεα̇β̇ +O(s0), (5.4.129)

where the subleading s−1 term vanishes due to the equations of motion. Alter-

natively, one may prove without detailed computation that the subleading term

vanishes by considering the differential equation for Kαβα̇β̇(z; s) itself, as follows.

We first note that this moment has the general power series behavior

Kαβα̇β̇(z; s) =
1

s2
Aαβα̇β̇ +

1

s
Bαβα̇β̇ +O(s0) (5.4.130)

for some Aαβα̇β̇ and Bαβα̇β̇, which implies that

dKαβα̇β̇(z; s)

ds
= − 2

s3
Aαβα̇β̇ −

1

s2
Bαβα̇β̇ +O(s0). (5.4.131)

Since

dKαβα̇β̇(z; s)

ds
= i

∫
dη XαXβX̄α̇X̄β̇∆eis∆

= iK a

αβα̇β̇a
(z; s)− i

∫
dη XαXβX̄α̇X̄β̇W

γXγe
is∆, (5.4.132)

using the identity

0 =

∫
dη

∂

∂ka

(
XαXβX̄α̇X̄β̇Xae

is∆
)

(5.4.133)
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one can establish

iK a

αβα̇β̇a
(z; s) =− 2

s
Kαβα̇β̇ +

i

2s

∫
dη XαXβ ((σa)γα̇(θ − θ′)γ) X̄β̇Xae

is∆

− i

2s

∫
dη XαXβ

(
(σa)γβ̇(θ − θ′)γ

)
X̄α̇Xae

is∆

− i

∫
dη XαXβX̄α̇X̄β̇Xa(J

a −Xa)eis∆

− i

∫
dη XαXβX̄α̇X̄β̇Xa

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Ja) eis∆. (5.4.134)

Insertion of this into the differential equation (5.4.132) yields

dKαβα̇β̇(z; s)

ds
+

2

s
Kαβα̇β̇ =

i

2s

∫
dη XαXβ ((σa)γα̇(θ − θ′)γ) X̄β̇Xae

is∆

i

2s

∫
dη XαXβ

(
(σa)γβ̇(θ − θ′)γ

)
X̄α̇Xae

is∆

− i

∫
dη XαXβX̄α̇X̄β̇Xa(J

a −Xa)eis∆

− i

∫
dη XαXβX̄α̇X̄β̇Xa

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆(Ja) eis∆

− i

∫
dη XαXβX̄α̇X̄β̇W

γXγe
is∆. (5.4.135)

We deduce from (5.4.130) and (5.4.132) that the left hand side of (5.4.135) has the

power series expansion

dKαβα̇β̇(z; s)

ds
+

2

s
Kαβα̇β̇ =

1

s2
Bαβα̇β̇ +O(s−1). (5.4.136)

Without the need for further computation, an inspection of the power series be-

haviour of the right and side of (5.4.135) reveals that Bαβα̇β̇ must vanish.

Example 3

Computing Kαβα̇(z; s) involves the identity

0 =

∫
dη

∂

∂κ̄γ̇

(
XαXβX̄α̇X̄β̇eis∆

)
(5.4.137)

which, after the contraction of β̇ and γ̇, leads to

Kαβα̇(z; s) =

∫
dη XαXβX̄α̇X̄β̇

∞∑
n=0

(is)n+1

(n+ 1)!
Ln

∆(W̄ β̇) eis∆. (5.4.138)

To leading or subleading order, the summation can be truncated at n = 0 or 2

respectively. Alternatively one may have chosen to start with the identity

0 =

∫
dη

∂

∂kb

(
XαXβX̄α̇Xa eis∆

)
(5.4.139)
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to obtain an expression for Kαβα̇(z; s), but this ends up being far more complicated

primarily due to the ka dependence of Xα and X̄α̇. In general, if the moment

in question has less than four spinor indices, it is more convenient to choose the

identities (5.4.120) or (5.4.121) rather than (5.4.119). However, if there are four

spinor indices there is no choice and (5.4.119) must be used.

Summing from n = 0 to 2 in (5.4.138) one finds that to subleading order

Kαβα̇(z; s) can be expressed in terms of

s3Kαβα̇β̇ab(z; s), s2Kαβα̇β̇(z; s), sKαβα̇β̇(z; s) and sKαβα̇(z; s),

where onlyKαβα̇β̇(z; s) is actually required to subleading order. Notice thatKαβα̇(z; s)

itself appears in this list (multiplied by s). This is a typical feature of this approach,

and one can either rely on the fact that Kαβα̇(z; s) is already known to leading order,

or bring it to the left hand side and premultiply both sides by an inverse operator

(to appropriate order) to generate an new expression for Kαβα̇(z; s) in terms of only

Kαβα̇β̇ab(z; s) and Kαβα̇β̇(z; s).

Example 4

As a final example, consider expanding the moment Kαβ(z; s) to subleading order.

In this case it is far more convenient to differentiate with respect to s. The power

series expansion of Kαβ(z; s) will look like

Kαβ(z; s) = A+ sB +O(s2), (5.4.140)

and so,
dKαβ(z; s)

ds
= B +O(s). (5.4.141)

After a little work one can establish

dKαβ(z; s)

ds
= iK a

αβa (z; s)− iW̄ α̇Kαβα̇(z; s). (5.4.142)

So if both Kαβab(z; s) and Kαβα̇(z; s), which are higher up the hierarchy, are known

to subleading order (to order unity in s), Kαβ(z; s) can immediately be evaluated

to subleading order (ie identification of B). Additionally this generates the leading

order identity

K a
αβa (z; s) = W̄ α̇Kαβα̇(z; s), (5.4.143)

which serves as a useful consistency check. More specifically, inspection of (5.3.53)

and (5.3.51) show that

K a
αβa (z; s) = W̄ α̇Kαβα̇(z; s) =

4i

s
εαβ W̄

2 H (5.4.144)
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and indeed (5.4.143) is satisfied. For another detailed example of moment expansion

see section C.3 of appendix C.

As can be seen from these examples, one particular advantage offered by this ap-

proach stems from the fact that there is often a freedom to choose between one of the

identities (5.4.119), (5.4.120), (5.4.121) and (5.4.122) when expanding a particular

moment. This provides one with a readily available means for checking intermediate

results along the way to computing a DeWitt-Seeley coefficients. Alternatively, since

the different choices often generate expressions which relate a particular moment to

different sets of moments above it in the hierarchy, the freedom of choice can be used

to generate consistency conditions like (5.4.143) amongst members in the hierarchy.

To illustrate this point, consider expanding Kαα̇(z; s) by using either

0 =

∫
dη

∂

∂κβ

(
XαXβX̄α̇eis∆

)
(5.4.145)

or

0 =

∫
dη

∂

∂κ̄β̇

(
XαX̄α̇X̄β̇eis∆

)
. (5.4.146)

To first order, the former leads to

Kαα̇(z; s) = isW βKαβα̇(z; s) +
s2

2
{W̄ β̇,W β}Kαβα̇β̇(z; s), (5.4.147)

while the latter leads to

Kαα̇(z; s) = −isW̄ β̇Kαα̇β̇(z; s)− s2

2
{W̄ β̇,W β}Kαβα̇β̇(z; s). (5.4.148)

Equating these yields the first order relation

W̄ β̇Kαα̇β̇(z; s) +W βKαβα̇(z; s) = is{W̄ β̇,W β}Kαβα̇β̇(z; s), (5.4.149)

which the reader can easily verify is satisfied by the first order moments (5.3.46)-

(5.3.69) given earlier.

Ultimately one can generate a web of consistency checks and tests that actually

makes it rather difficult to miss any errors in a calculation. To leading order these

checks appear rather trivial, however at higher orders they become more complicated

and prove to be useful in providing confidence in the final result.

Having summed the right hand side of (5.3.38) from n = 1 to 6 and expanded

all surviving terms to order s3, a6 can finally be identified (and of course a5 is also

recovered). This computation is a very laborious task, and to this order so many

terms are generated that it is no longer practical to compute by hand. The final

result is calculated with the aid of the symbolic mathematical program Mathematica,

which in itself is still a laborious task. The details are outlined in appendix C, and for
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full details see the attached CD. The final expression for trAd(a6) is given below, and

is a somewhat simplified version of that presented in [34]. The further simplifications

are due mainly to integration by parts. Because of the size of the expression, and the

fact that there are many equivalent ways of expressing the result, it is a significant

challenge to find the most compact and symmetric looking form. By extensive use

of commutation relations, equations of motion and the cyclicity of the trace, the

result is brought into a manifestly real form involving only seven distinct types of

terms, each listed schematically below (where Gab was defined in (5.1.5)):

W 2 W̄ 2 D4
a, W 2 W̄ 2 Gab D2

a, W 3 W̄ 2 Dα D2
a, W 2 W̄ 3 D̄α̇ D2

a,

W 3 W̄ 3 Dα D̄α̇, W 4 W̄ 2 D2
α, W 2 W̄ 4 D̄2

α̇ .

Here, for example, W 2 W̄ 2D4
a is taken to mean terms which contain (some spe-

cific permutation and contraction of) two chiral superfield strengths, two antichiral

superfield strengths and four spacetime covariant derivatives. The final result is

trAd(a6) =

1
2

1
7!

(
80(DaDbWα)

(
(DaWα)(DbW̄α̇)W̄ α̇ + (DaW̄α̇)(DbW̄

α̇)Wα − (DaW̄α̇)(DbWα)W̄ α̇
)

−24(DaDbWα)
(
(DaWα)W̄α̇(DbW̄

α̇) + (DaW̄α̇)W̄ α̇(DbWα)− (DaW̄α̇)Wα(DbW̄
α̇)
)

−112(DaDbWα)
(
Wα(DaW̄α̇)(DbW̄

α̇) + W̄α̇(DaW̄ α̇)(DbWα)− W̄α̇(DaWα)(DbW̄
α̇)
)

+152GabWα
(
(DaWα)(DbW̄α̇)W̄ α̇ + (DaW̄α̇)(DbW̄

α̇)Wα − (DaW̄α̇)(DbWα)W̄ α̇
)

+256GabWα
(
(DaWα)W̄α̇(DbW̄

α̇) + (DaW̄α̇)W̄ α̇(DbWα)− (DaW̄α̇)Wα(DbW̄
α̇)
)

−40GabWα
(
Wα(DaW̄α̇)(DbW̄

α̇) + W̄α̇(DaW̄ α̇)(DbWα)− W̄α̇(DaWα)(DbW̄
α̇)
)

+(DαW β)
(
8(DaWα)(DaWβ)W̄ 2 + 40(DaW̄α̇)(DaWα)WβW̄ α̇ + 92(DaW̄α̇)(DaW̄ α̇)WαWβ

+140(DaWα)(DaW̄α̇)W̄ α̇Wβ − 48(DaWα)(DaW̄α̇)WβW̄ α̇ − 132(DaW̄α̇)(DaWα)W̄ α̇Wβ

)
+(DαW β)

(
− 8(DaWα)Wβ(DaW̄α̇)W̄ α̇ + 8(DaW̄α̇)Wα(DaWβ)W̄ α̇ + 36(DaW̄α̇)W̄ α̇(DaWα)Wβ

+36(DaWα)W̄α̇(DaW̄ α̇)Wβ − 44(DaW̄α̇)Wα(DaW̄ α̇)Wβ

)
+(DαW β)

(
68Wα(DaWβ)(DaW̄α̇)W̄ α̇ + 40W̄α̇(DaWα)(DaWβ)W̄ α̇ − 68W̄α̇(DaW̄ α̇)(DaWα)Wβ

+40Wα(DaW̄α̇)(DaW̄ α̇)Wβ − 108Wα(DaW̄α̇)(DaWβ)W̄ α̇ + 28W̄α̇(DaWα)(DaW̄ α̇)Wβ

)
+(DαW β)

(
− 156WαWβ(DaW̄α̇)(DaW̄ α̇) + 40W̄α̇Wα(DaWβ)(DaW̄ α̇) + 64W̄ 2(DaWα)(DaWβ)

−52WαW̄α̇(DaW̄ α̇)(DaWβ) + 116WαW̄α̇(DaWβ)(DaW̄ α̇)− 104W̄α̇Wα(DaW̄ α̇)(DaWβ)
)

+(DαW β)
(
− 24(DaWα)WβW̄α̇(DaW̄ α̇)− 8(DaW̄α̇)WαWβ(DaW̄ α̇) + 32(DaW̄α̇)W̄ α̇Wα(DaWβ)

+32(DaWα)W̄α̇Wβ(DaW̄ α̇)− 24(DaW̄α̇)WαW̄ α̇(DaWβ)
)

+(DαW β)
(
− 20Wα(DaWβ)W̄α̇(DaW̄ α̇) + 8W̄α̇(DaWα)Wβ(DaW̄ α̇) + 48W̄α̇(DaW̄ α̇)Wα(DaWβ)

+36Wα(DaW̄α̇)W̄ α̇(DaWβ) + 12Wα(DaW̄α̇)Wβ(DaW̄ α̇)− 56W̄α̇(DaWα)W̄ α̇(DaWβ)
)

+(DαW β)(D̄α̇W̄ β̇)
(
− 112WαWβW̄ α̇W̄β̇ + 16W̄ α̇WαWβW̄β̇ + 60W̄ α̇W̄β̇WαWβ

+28WαW̄ α̇W̄β̇Wβ + 4WαW̄ α̇WβW̄β̇ + 4W̄ α̇WαW̄β̇Wβ

)
+(DαW β)Wα(D̄α̇W̄ β̇)

(
− 70WβW̄ α̇W̄β̇ − 128W̄ α̇WβW̄β̇ − 58W̄ α̇W̄β̇Wβ

)
+(DαW β)W̄ α̇(D̄α̇W̄ β̇)

(
50WαWβW̄β̇ + 156WαW̄β̇Wβ + 50W̄β̇WαWβ

)
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+(DαW β)
(
− 48WαWβ(D̄α̇W̄ β̇)W̄ α̇W̄β̇ + 8W̄ α̇W̄β̇(D̄α̇W̄ β̇)WαWβ − 32WαW̄ α̇(D̄α̇W̄ β̇)W̄β̇Wβ

+56W̄ α̇Wα(D̄α̇W̄ β̇)W̄β̇Wβ + 52W̄ α̇Wα(D̄α̇W̄ β̇)WβW̄β̇ − 36WαW̄ α̇(D̄α̇W̄ β̇)WβW̄β̇

)
+(DαW β)(DγWα)

(
− 939WβW γW̄ 2 − 13W γWβW̄ 2 − W̄α̇WβW γW̄ α̇ + 557W̄α̇W γWβW̄ α̇

−295W̄ 2WβW γ + 15W̄ 2W γWβ − 61WβW̄ 2W γ + 85W γW̄ 2Wβ + 59WβW̄α̇W γW̄ α̇

−125W γW̄α̇WβW̄ α̇ − 9W̄α̇WβW̄ α̇W γ − 13W̄α̇W γW̄ α̇Wβ

)
+(DαW β)Wβ(DγWα)

(
875W γW̄ 2 + 59W̄ 2W γ + 31W̄α̇W γW̄ α̇

)
+(DαW β)W γ(DγWα)

(
− 87WβW̄ 2 − 231W̄ 2Wβ − 3W̄α̇WβW̄ α̇

)
+(DαW β)W̄α̇(DγWα)

(
67WβW γW̄ α̇ − 13W γWβW̄ α̇ + 107W̄ α̇WβW γ − 69W̄ α̇W γWβ

−169WβW̄ α̇W γ + 485W γW̄ α̇Wβ

))
+ c.c.

Again the corresponding contribution to the effective action can be obtained by

inspection. Extraction of the component form of a6 is now in principle straightfor-

ward, and contains F 6-type field strength terms. These are potentially important

for comparison with recent string theoretic results [101, 102, 103], as are the recently

computed two-loop Abelian F 6 terms [100]. A detailed comparison remains to be

carried out.

5.4.3 Comparison with literature

It is possible, however, to perform a quick yet highly non-trivial test on the F 6

results. The form of the one-loop effective action for N = 4 super Yang-Mills

theory is known in the Abelian case in the constant field strength approximation

[87, 88, 216, 217], and the coefficient of F 6 is zero. Inspection of trAd(a6) reveals

that in the Abelian limit, F 6 contributions with constant field strength can come

only from terms of the form: W 4 W̄ 2 D2
α and W 2 W̄ 4 D̄2

α̇, which encompass the

last seven lines in trAd(a6) as it is given. The terms of the form W 3 W̄ 3 Dα D̄α̇

(for example (DαW
β)(D̄α̇W̄

β̇)W αWβW̄
α̇W̄β̇) all clearly vanish on-shell since in the

Abelian case

WαWβ =
1

2
εαβW

2 W̄α̇W̄β̇ = −1

2
εαβW̄

2. (5.4.150)

Employing the identities (5.4.150), in the Abelian limit with constant field strength

trAd(a6) explicitly reduces to

1

4

1

7!
(DαW

β)(DβW
α)W 2W̄ 2

[
(939− 13 + 1 + 557 + 295 + 15 + 85

+ 61 + 59 + 125− 9 + 13)

+ (−875− 59 + 31)
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+ (−87− 231 + 3)

+ (−67− 13− 107− 69− 169− 485)

]
+ c.c.

=
1

4

1

7!
(DαW

β)(DβW
α)W 2W̄ 2

[
2128− 903− 315− 910

]
+ c.c. (5.4.151)

The terms in the square parentheses indeed sum to zero, and one finds non-trivial

cancellation consistent with [87, 88, 217].

Finally, we can attempt to make some contact with the results from string theory

and the (∂F )4 derivative corrections of the Born-Infeld Lagrangian. In [40], and later

found by other means [44, 101], it was shown that up to a multiplicative constant τ

these corrections are given by

τ
(
(∂eF ab)(∂eFba)(∂

fF cd)(∂fFdc) + 2(∂eF ab)(∂fFba)(∂eF
cd)(∂fFdc)

−4(∂eF ab)(∂fFbc)(∂eF
cd)(∂fFda)− 8(∂eF ab)(∂eFbc)(∂

fF cd)(∂fFda)
)
, (5.4.152)

modulo terms proportional to the equations of motion ∂aFab = 0 (ie terms removable

by field redefinitions). These four terms, up to terms proportional to the equations

of motion, integration by parts and the Bianchi identity, provide a basis for all

possible (∂F )4 tensor structures [44].

Examination of tr(a6) reveals that, in the Abelian limit, only those terms given

in the first three lines will contribute (∂F )4 terms to the effective action of N = 4

super Yang-Mills theory at one-loop. In this limit the corresponding pieces of tr(a6)

reduce to:

− 1

180
(∂a∂bWα)

(
Wα(∂aW̄α̇)(∂bW̄

α̇) + 2(∂aWα)(∂bW̄α̇)W̄ α̇
)

+ c.c. (5.4.153)

Projecting out the bosonic field strength part of this gives

− 1

16(6!)

(
tr(σaσ̃bσcσ̃d)tr(σ̃eσf σ̃gσh) + c.c

)
(∂m∂nF ab)

(
Fcd(∂mFef )(∂nFgh) + 2(∂mFcd)(∂nFef )Fgh

)
(5.4.154)

which reduces to14

− 1

360
(∂e∂fF ab)

(
8Fbc(∂eF

cd)(∂fFda) + 4(∂eFbc)F
cd(∂fFda)

−Fba(∂eF
cd)(∂fFdc)− 2(∂eFba)(∂fF

cd)Fdc

)
. (5.4.155)

14See the attached CD for a derivation.
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It is a simple matter to show using the equations of motion, the Bianchi identity

and integration by parts that [44]

(∂e∂fF ab)Fbc(∂eF
cd)(∂fFda) = −1

2
(∂eF ab)(∂fFbc)(∂eF

cd)(∂fFda) (5.4.156)

(∂e∂fF ab)(∂eFbc)F
cd(∂fFda) =

1

2
(∂eF ab)(∂fFbc)(∂eF

cd)(∂fFda)

− (∂eF ab)(∂eFbc)(∂
fF cd)(∂fFda) (5.4.157)

(∂e∂fF ab)Fba(∂eF
cd)(∂fFdc) =

1

2
(∂eF ab)(∂eFba)(∂

fF cd)(∂fFdc)

− (∂eF ab)(∂fFba)(∂eF
cd)(∂fFdc) (5.4.158)

(∂e∂fF ab)(∂eFba)(∂fF
cd)Fdc = −1

2
(∂eF ab)(∂eFba)(∂

fF cd)(∂fFdc) (5.4.159)

and so (5.4.155) reduces to

− 1

6!

(
(∂eF ab)(∂eFba)(∂

fF cd)(∂fFdc) + 2(∂eF ab)(∂fFba)(∂eF
cd)(∂fFdc)

−4(∂eF ab)(∂fFbc)(∂eF
cd)(∂fFda)− 8(∂eF ab)(∂eFbc)(∂

fF cd)(∂fFda)
)
. (5.4.160)

Up to an overall multiplicative constant this is precisely the expression (5.4.152),

the (∂F )4 corrections to the Born-Infeld lagrangian [40, 44, 101]. As noted in [57],

which is clear from this work, that this (∂F )4 term forms part of supersymmetric

invariant, and has emerged in other contexts [218, 219].

If one assumes that maximal supersymmetry provides a sufficiently strong con-

straint for uniquely fixing such terms in the full effective action for N = 4 super

Yang-Mills theory at order F 6, the above comparison would suggest that either (up

to field redefinitions): there are no higher loop (∂F )4 contributions to the effective

action of Abelian N = 4 super Yang-Mills theory; or that the total (∂F )4 con-

tribution from higher loops is proportional to precisely the linear combination of

superfield structures given in (5.4.153).
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Chapter 6

One-loop effective action for N = 2

super Yang-Mills theory

This chapter is based to the published work [35], and deals with extending theN = 4

results computed in the previous chapter, to evaluate the one-loop effective action to

order F 5 for arbitrary N = 2 super Yang-Mills theories. The computation parallels

that of the N = 4 case, being an application of the modified Gaussian approach

with a few adjustments for application to chiral subspace. At the component level

the results are shown to be in agreement with existing literature, and will be useful

for future tests of the AdS/CFT correspondence for theories other than N = 4

super Yang-Mills theories which possess supergravity duals. For related discussions,

material and different approaches to analogous problems also see [220, 221, 222, 223,

199, 224, 225, 106, 97, 226, 227, 228, 197]

6.1 The chiral heat kernel

We saw earlier in subsection 3.2.5, that to evaluate the one-loop effective action for

arbitrary N = 2 super Yang-Mills theories, we need to compute

Γ(1)[wB, w̄B] =
i

2
ln sDet2− 2Γ

(1)
Φ,0,Ad + Γ

(1)
Φ,M,R⊕Rc

(6.1.1)

where ln sDet2 was computed to order F 6 in the last chapter, and

Γ
(1)
Φ,m,R =

i

4
ln sDet(2+ −m2

1R) +
i

4
ln sDet(2− −m2

1R) (6.1.2)

with 2+ and 2− given by (3.2.117). We therefore need only compute, Γ
(1)
Φ,m,R,

the one-loop effective action for chiral fields in the presence of a super Yang-Mills

background in some real representation R of the gauge group, to assemble the

95



effective action for N = 2 super Yang-Mills to a given order. Here we work to order

F 5. In terms of heat kernels, this amounts to computing

Γ
(1)
Φ,m,R =

µ2ρ

4

∫ ∞

0

ds isρ−1eim
2s
(
K+(s) +K−(s)

)
. (6.1.3)

In this expression: µ and ρ are the renormalization point and regularization pa-

rameter respectively; the mass m is either an explicit mass (as in the case of the

hypermultiplet mass M in (3.2.121)), or a infrared regulator for massless chiral

scalars (as in the case of φ in (3.2.121) and the ghosts)1; and K+(t) and K−(t) are

the functional traces of the chiral and antichiral heat kernels respectively, which are

defined by:

K±(s) = trR

∫
d6z±

∫
d6z′±δ±(z, z′) eis2±δ±(z, z′) ≡ trR

∫
d6z±K±(z; s). (6.1.4)

Here δ±(z, z′) are the (anti)chiral delta functions,

δ+(z, z′) = −1

4
D̄2

1δ(8)(z, z′) (6.1.5)

δ−(z, z′) = −1

4
D2

1δ(8)(z, z′) (6.1.6)

δ(8)(z, z′) = δ(4)(x, x′)δ(2)(θ − θ′)δ(2)(θ̄ − θ̄′), (6.1.7)

and for brevity dz± has been used to denote the integration measure over the

(anti)chiral subspace of full superspace.

One can show that (for example see [127])

K+(t) = K−(t) (6.1.8)

and so

Γ
(1)
Φ,m,R =

µ2ρ

2

∫ ∞

0

ds (is)ρ−1eim
2sK+(s). (6.1.9)

requiring computation of only the chiral kernel.

For our purposes, as before, it suffices to consider an on-shell background,

DαWα = D̄α̇W̄
α̇ = 0, so that

2+ =
1

16
D̄2D2 = DaDa −WαDα (6.1.10)

acting on chiral superfields.

1One may also have introduced a background for the adjoint scalar Φ in (2.2.100) taking values

in the Cartan subalgebra, which then generates masses for the vector multiplet, the hypermultiplet

and ghosts. For a discussion see [197].
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The chiral kernel’s asymptotic expansion in s is expressed in terms of the DeWitt-

Seeley coefficients a+
n(z), which are chiral superfields and at the component level

contain bosonic field strength terms of the form F n:

K+(z; s) =
i

(4πis)2

∞∑
n=0

(is)na+

n(z), a+

0 (z) = a+

1 (z) = 0. (6.1.11)

Prior to the publication [35], only the first non-trivial coefficient a+

2 was known in

superfield form in the non-Abelian case [229, 230, 231, 232]:

a+

2 = W 2. (6.1.12)

Evaluating Γ
(1)
χ,m,R therefore amounts to computing the DeWitt-Seeley coeffi-

cients:

Γ
(1)
χ,m,R =

1

32π2ρ

∫
d6z trR(a+

2 ) +
1

32π2

∞∑
n=3

(n− 3)!

m2n−4

∫
d6z trR(a+

n). (6.1.13)

The coefficient a+

2 clearly provides information about divergences of the theory, and

we see from (3.2.122) that N = 2 super Yang-Mills will be ultra-violet finite at

one-loop provided

2 trAdW
2 = trR⊕Rc W

2. (6.1.14)

This is the well known result [233].

It turns out that the coefficients a+
n with n ≥ 3 are expressible in terms of

D̄2 acting on field strengths and their covariant derivatives, and so this allows the

second term on the right hand side of (6.1.13) to be lifted to a gauge-invariant

superfunctional on full superspace. This is easily proven as follows.

By differentiating the kernel K+(z; s) with respect to s, one observes that:

dK+(z; s)

ds
=

i

16

∫
d6z′+δ+(z, z′)D̄2D2eis2+δ+(z, z′)

=
i

16
D̄2

(∫
d6z′+δ+(z, z′)D2eis2+δ+(z, z′)

)
=

i

16
D̄2
(

lim
z′→z
D2eis2+δ+(z, z′)

)
, (6.1.15)

since

D̄α̇δ+(z, z′) = 0. (6.1.16)

On the other hand, (6.1.11) yields

dK+(z; s)

ds
= − 1

16π2

∞∑
n=3

(n− 2)(is)n−3a+

n(z). (6.1.17)
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Comparison of (6.1.15) and (6.1.17) demonstrates that the DeWitt-Seeley coeffi-

cients other than a+

2 are expressible in the desired form.

At this stage it is convenient to introduce a new set of coefficients by writing

limz′→z D2eis2+δ+(z, z′) as an asymptotic series,

lim
z′→z
D2eis2+δ+(z, z′) =

i

(4πis)2

∞∑
n=0

(is)ncn(z), (6.1.18)

where a relatively simple computation reveals the first non-trivial coefficients are

given by

c0 = −41, c1 = 0, (6.1.19)

whilst comparison of (6.1.15), (6.1.17) and (6.1.18) yields

a+
n (z) =

1

16(n− 2)
D̄2(cn−1(z)) n ≥ 3. (6.1.20)

The effective action can then be written as

Γ
(1)
χ,m,R =

1

32π2ρ

∫
d6z trR(W 2)− 1

128π2

∞∑
n=3

(n− 3)!

(n− 2)m2n−4

∫
d8z trR(cn−1), (6.1.21)

the second term now being expressed on full superspace. At the component level cn

for n ≥ 2 contains bosonic field strengths of the form F n+1.

The determination of the effective action is thereby reduced to computing the

new coefficients cn, which can of course be obtained by the same techniques used

for computing DeWitt-Seeley coefficients. If desired, the DeWitt-Seeley coefficients

themselves can be recovered through identity (6.1.20), which is nothing more than

a projection onto the chiral subspace. Computationally it turns out to be more

efficient to compute the new coefficients, rather than attempt to compute the a+
n

and rearrange them into expressions on full superspace, which in itself is a non-trivial

task.

Since we wish to compute the effective action to order F 5, we will be required to

evaluate c2, c3 and c4. As a brief look ahead, recall that the expansion of the heat

kernel in the N = 4 super Yang-Mills case was

K(z; s) = − is2a4

(4π)2
+

s3a5

(4π)2
+ . . . (6.1.22)

Computing the F 5 terms (ie a5) in that case merely involved the determination of

the second non-trivial coefficient of K(z; s). In the present chiral case, where the

power series behaviour of the associated kernel has the form (6.1.18), one is forced

to compute the fourth non-trivial coefficient to acquire contributions to the same

order. For this reason one may anticipate that the computation of the F 5 terms is
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much more difficult in the latter situation, which is in fact exactly what happens.

It turns out that the computation of c3 and c4 is of comparable difficultly to the

computation of a5 and a6 respectively as presented in the previous chapter. At first

glance this seems quite surprising given the very simple basis we saw for the F 4 and

F 5 structures in superspace2 (see equations ((5.1.18)) and ((5.3.71))).

6.2 Details of the computation

6.2.1 The general scheme

Introducing a plane wave basis for the chiral delta function3,

δ+(z, z′) = 41

∫
d4k

(2π)4
eikaωa

∫
d2κ eiκ

α(θ−θ′)α (6.2.23)

where4

ωa = xa − x′a − iθσaθ̄
′ + iθ′σaθ̄. (6.2.24)

In the coincidence limit, D2eis2+δ+(z, z′) becomes

lim
z′→z
D2eis2+δ+(z, z′) = K α

+ α(z; s) =

∫
dη+ X̃αX̃αeis∆, (6.2.25)

with the definitions

X̃a = Da + ika X̃α = Dα + iκα (6.2.26)

∆+ = X̃aX̃a −WαX̃α (6.2.27)∫
dη+ = 4

∫
d4k

(2π)4

∫
d2κ (6.2.28)

and with the usual notation

K+A1A2...An(z; s) =

∫
dη+ X̃A1X̃A2 . . . X̃Ane

is∆+ (6.2.29)

for the moments of the kernel. Note that there is also a shift −kαα̇(θ̄ − θ̄′)α̇ in

Dα which always vanishes in the coincidence limit since there are no D̄α̇ operators

present. The X̃’s satisfy the algebra

{X̃α, X̃β} = 0, [X̃a, X̃b] = Gab, [X̃α, X̃a] = i(σa)αα̇W̄
α̇. (6.2.30)

2Unmentioned in the preceding chapter, due to its relative unimportance there, is the remarkable

fact the two terms trR(W 2W̄ 2) and trR(WαW̄α̇WαW̄ α̇) (modulo total derivative terms) form a

basis for on-shell F 4 structures in superspace, (as do pure F 4 turns in M4). This is merely a

consequence of the identities (5.3.70).
3From here onward we work in the chiral representation.
4Note that although ωa is not itself chiral, D̄α̇(ωa) = −i(σa)αα̇(θ−θ′)α, the entire delta function

is annihilated by D̄α̇ since (θ − θ′)3 = 0.
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In this notation the power series (6.1.18) is:

K α
+ α(z; s) =

i

(4πis)2

∞∑
n=0

(is)ncn(z). (6.2.31)

Differentiating K α
+ α(z; s) with respect to s yields the differential equation

dK α
+ α(z; s)

ds
= iK α a

+ α a(z; t). (6.2.32)

As before we use the identity

0 =

∫
dη+

∂

∂kb

(
X̃αX̃βX̃ae

is∆+

)
(6.2.33)

to establish

K α a
+ α a(z; s) =

2i

s
K α

+ α(z; s)−
∫

dη+ X̃αX̃αX̃
a

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆+
(X̃a) eis∆+ .

(6.2.34)

Thus the differential equation (6.2.32), becomes:

dK α
+ α(z; s)

ds
+

2

s
K α

+ α(z; s) = −i

∫
dη+ X̃αX̃αX̃

a

∞∑
n=1

(is)n

(n+ 1)!
Ln

∆+
(X̃a) eis∆+ ,

(6.2.35)

where the left hand side in terms of the expansion (6.2.31) is

dK α
+ α(z; s)

ds
+

2

s
K α

+ α(z; s) = − 1

16π2

∞∑
n=0

n(is)n−3cn(z). (6.2.36)

As expected the differential equation yields an expansion where the first non-trivial

coefficient c0(z) is absent. The objective now becomes to determine the coefficients

cn(z) by expanding the right hand side of (6.2.35) in a power series in s, and iden-

tifying it with the right hand side of (6.2.36).

We will make repeated use of the following commutation relations:

[∆+, X̃a] = 2Gb
aX̃b + (DaW

α)X̃α + i(σa)αα̇W̄
α̇W α

[∆+, X̃α] = (DαW
β)X̃β − 2i(σa)αα̇W̄

α̇X̃a (6.2.37)

[∆+, Y ] = (DaDaY ) + 2(DaY )X̃a −Wα(DαY )− (−1)ε(Y ) [Wα, Y } X̃α.

Comparing these with the equivalent relations in the previous chapter (5.2.33), it is

clear that that the absence of an operator like ¯̃Xα̇ introduces complication rather

than any simplification.

As before these relations indicate that summation will generate a series of mo-

ments of the formK+A1...Ai
(z; s) as defined in (6.2.29). Furthermore, it is not difficult
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to show that to order n in this summation, the moments generated have at most

(n+3) indices. In this case it is convenient to place these indices in a specific order:

first spinor, then spacetime. This can be achieved through the commutation rela-

tions (2.2.59). With such an ordering the leading term in a moment’s asymptotic

power series has the following behaviour:

K+A1...Aq+p(z; s) ∼
1

s2

(
1

s

)[ p
2 ]
s2−q = s−q−[ p

2 ] q ≤ 2 (6.2.38)

where K+A1...Aq+p(z; s) has q undotted spinor indices, p vector indices and [p
2
] denotes

the largest integer part of p
2
. Moments with greater than two undotted spinor indices

vanish since X̃αX̃βX̃γ = 0.

From these considerations, and by comparison with (6.2.36), the summation in

(6.2.35) truncates at n = 2k−1 when evaluating ck(z) for k ≥ 2. Moreover, it turns

out the last term in this truncated summation always vanishes due to the fact that

it takes the form

− i
(2is)2k−1

(2k)!
(Da1Da2 . . .Da2k−2Ga2k−1a2k)K α

+ αa1a2...a2k
(z; s) k ≥ 2, (6.2.39)

where the moment is only ever required to leading order in its power series in s. To

this order the moment is always totally symmetric in its spacetime indices, whereas

G is antisymmetric. Consequently all such terms vanish5, and when evaluating ck(z)

the summation truncates at n = 2k − 2.

Computing moments which result from the summation in (6.2.35) to appropriate

order in s is achieved either through direct expansion of the moment’s exponential,

or iteratively through the use of the identities

0 =

∫
dη+

∂

∂kb

(
X̃A1 . . . X̃Aneis∆+

)
, (6.2.40)

0 =

∫
dη+

∂

∂κα

(
X̃A1 . . . X̃Aneis∆+

)
(6.2.41)

and
dmK+A1...An(z; t)

dsm
=

∫
dη+ X̃A1 . . . X̃An(i∆+)meis∆+ . (6.2.42)

As before these are used to express the desired moment in terms of moments which

are easier to compute, which lie higher up the ‘moment hierarchy’.

As noted above, there is a rough correspondence in the amount of work involved

in computing the coefficients an(z) of the last chapter, and the coefficients cn−2(z)

defined here (where n ≥ 5). At a practical level the reason for this is twofold:

5Alternatively, to this order the moment is proportional to the identity matrix in its group

indices and the coefficient therefore vanishes under integration by parts.
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the presence of the three differential operators, X̃αX̃αX̃
a, which sit in front of the

summation in the differential equation (6.2.35) (compared to just one in previous

chapter); and the fact that the moments involved need to be computed higher order

than previously. It is impractical (and unnecessary) to provide the full details of the

c3 and c4 calculations here, however to give the reader a feel for the vast size of the

computations involved a few specific details pertinent to the computation c3 and c4

will now be given6.

6.2.2 Computing c3

To compute c3 one is required to evaluate the truncated summation from equation

(6.2.35):

− i

∫
dη+ X̃αX̃αX̃

a

4∑
n=1

(is)n

(n+ 1)!
Ln

∆+
(X̃a) eis∆+ . (6.2.43)

A detailed investigation of the resulting c3 moment hierarchy reveals that it contains

ten moments, four of which need to be computed to subleading order, while all others

are required to leading order. The expansion of these moments is achieved through

the use of the methods described above and in the previous chapter. A complete list

is given in hierarchical order below (although there is much freedom in the ordering).

The numerical factor common to all moments is H = i(4πi)−2.

K α
+ α(z; s) = − 4

s2
1 H (6.2.44)

K α
+ αab(z; s) = − 2

s3
(iηab 1+ sGab) H (6.2.45)

K α
+ αabcd(z; s) =

1

s4
(ηabηcd + ηadηbc + ηacηbd) 1 H (6.2.46)

K α
+ αa(z; s) = − 2

3s
(σa)αα̇(WαW̄ α̇ + 4W̄ α̇Wα)H (6.2.47)

K α
+ αabc(z; s) = − 1

3s3

(
i
(
ηab(σc)αα̇ + ηbc(σa)αα̇ + ηac(σb)αα̇

)(
WαW̄ α̇ + 4W̄ α̇Wα

)
+ 4(DaGbc) + 4(DbGac)

)
H (6.2.48)

K+αabcd(z; s) =
i

2s3
(ηabηcd + ηadηbc + ηacηbd)WαH (6.2.49)

K+αabc(z; s) =
1

2s2
(ηab(DcWα) + ηac(DbWα) + ηbc(DaWα))H (6.2.50)

K+αab(z; s) =
1

s2
ηabWαH (6.2.51)

6Alternatively see the attached CD which fully details the computation of a6 from the previous

chapter and is, in fact, significantly simpler.
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K+αa(z; s) = − i

s
(DaWα)H (6.2.52)

K+α(z; s) = −2i

s
WαH (6.2.53)

Some of the moments have been simplified. For example, the prescription for

evaluating K α
+ αa(z; s) first yields

K α
+ αa(z; s) = −2

s

(
i(DαDaWα) +

2i

3
DbGba + (σa)αα̇W̄

α̇Wα

)
H (6.2.54)

which after some work gives (6.2.47).

Dropping terms which do not contribute to the order of interest, but without

any further simplification, the n = 1 contribution to (6.2.43) is immediately found

to be:

s

2

(
2GbaK α

+ αab(z; s) +
(
2(DbGa

b)− (DαDaWα) + i(σa)γγ̇W̄
γ̇W γ

)
K α

+ αa(z; s)

− (DγDaDaWγ)K
α

+ α(z; s) + 4(DαGba)K+αab(z; s) + (D2DaDaW
α)K+α(z; s)

+
(
4(DαDbGa

b) + (D2DaWα)− 2i(σa)γγ̇W̄
γ̇(DαW γ)

)
K+αa(z; s)

+ 2(D2Gba)K+ab(z; s)

)
(6.2.55)

The reader may care to compare this expression with (5.3.43), the corresponding

n = 1 term in the computation a5.

It should be quite clear the calculational procedure employed here gives rise to a

large number of terms; a great many combinations of covariant derivatives acting on

field strengths. After summing from n = 1 to 4 in (6.2.35), the resulting expressions

can be vastly simplified, and since the two terms trR(W 2W̄ 2) and trR(WαW̄α̇WαW̄
α̇)

(modulo total derivative terms) form a basis for such on-shell structures in super-

space, much work needs to be done to bring them into this form. This lies in stark

contrast to the calculation of a4, which merely involves two or three lines (see 5.1.17

and (5.1.18)). All results will be given in in section 6.3 below.

6.2.3 Computing c4

It cannot be overstated that despite the eventual simplicity of the results the com-

putation of c4 is very involved and requires a vast amount of work. As with a6 in

the previous chapter, so many terms are generated in computing c4 that it is no

longer practical to compute by hand. Again the final result is calculated with the

aid ofMathematica.

With a little familiarity, and from the details given above regarding c3, it is

not difficult to see that in computing c4 this process gives rise to a proliferation of
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terms. Indeed, simply expanding the summation from n = 1 to 6 in the differential

equation (6.2.35) generates literally thousands of terms. In turn each of these terms

contain a moment, which themselves contain tens of terms upon expansion, even

after significant simplification.

In total the c4 moment hierarchy consists about twenty moments. Some of these

moments are required to be expanded to ‘subsubleading’ order (as opposed to at

most subleading order in the previous chapter). This in itself can be a substan-

tial task. As an exemplar, consider the moment K+αabc(z; s), which needs to be

computed to subleading order. One is free to expand this via

0 =

∫
dη+

∂

∂kc

(
X̃αX̃aX̃be

is∆+

)
(6.2.56)

or

0 =

∫
dη+

∂

∂κβ

(
X̃αX̃βX̃aX̃bX̃ce

is∆+

)
, (6.2.57)

which is again a freedom that can be used to check results. Using the first of these

identities, to the order of interest one finds

K+αabc(z; s) = is

∫
dη+ X̃αX̃βX̃aX̃bX̃c

3∑
n=1

(is)n

(n+ 1)!
Ln

∆+
(W β) eis∆+ . (6.2.58)

In evaluating the summation it becomes clear that to fully expand this moment

to subleading order, the moments K α
+ αabcd(z; s), K

α
+ αab(z; s), K

α
+ αabc(z; s) are re-

quired to subleading order, whilst the moments K α
+ αabcdef (z; s), K

α
+ αabcde(z; s),

K α
+ αa(z; s), K

α
+ α(z; s), K+αabcd(z; s), K+αab(z; s), in addition to K+αabc(z; s) itself

are all required to leading order. After a substantial amount of work, and even after

significant simplification, to subleading order this moment is found to be:

K+αabc(z; s) =
1

2s2

(
ηab(DcWα) + ηac(DbWα) + ηbc(DaWα)

)
H

+
i

12s

(
6Wα(DaGbc)− 6Wα(DbGac) + 6Wα(DcGab)− 6Gab(DcWα)

− 6Gac(DbWα)− 6Gbc(DaWα)− 14(DaGbc)Wα − 2(DbGac)Wα

− 6(DcGab)Wα +W γ(DcDαWγ)ηab −Gdc(DdWα)ηab − (DαW
γ)(DcWγ)ηab

+ (DcW
γ)(DαWγ)ηab − 3(DcDαW

γ)Wγηab − (DdWα)Gdcηab

+W γ(DbDαWγ)ηac −Gdb(DdWα)ηac − (DαW
γ)(DbWγ)ηac

+ (DbW
γ)(DαWγ)ηac − 3(DbDαW

γ)Wγηac − (DdWα)Gdbηac

+W γ(DaDαWγ)ηbc −Gda(DdWα)ηbc − (DαW
γ)(DaWγ)ηbc

+ (DaW
γ)(DαWγ)ηbc − 3(DaDαW

γ)Wγηbc − (DdWα)Gdaηbc
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− 4iW γW̄ γ̇Wγηbc(σa)αγ̇ + 4iW γWγW̄
γ̇ηbc(σa)αγ̇ − 8iW̄ γ̇W γWγηbc(σa)αγ̇

+ 3iW γW̄ γ̇Wαηbc(σa)γγ̇ − 4iW γWαW̄
γ̇ηbc(σa)γγ̇ + 3iW̄ γ̇W γWαηbc(σa)γγ̇

− 4iW̄ γ̇WαW
γηbc(σa)γγ̇ + 3iWαW

γW̄ γ̇ηbc(σa)γγ̇ − 3iWαW̄
γ̇W γηbc(σa)γγ̇

− 4iW γW̄ γ̇Wγηac(σb)αγ̇ + 4iW γWγW̄
γ̇ηac(σb)αγ̇ − 8iW̄ γ̇W γWγηac(σb)αγ̇

+ 3iW γW̄ γ̇Wαηac(σb)γγ̇ − 4iW γWαW̄
γ̇ηac(σb)γγ̇ + 3iW̄ γ̇W γWαηac(σb)γγ̇

− 4iW̄ γ̇WαW
γηac(σb)γγ̇ + 3iWαW

γW̄ γ̇ηac(σb)γγ̇ − 3iWαW̄
γ̇W γηac(σb)γγ̇

− 4iW γW̄ γ̇Wγηab(σc)αγ̇ + 4iW γWγW̄
γ̇ηab(σc)αγ̇ − 8iW̄ γ̇W γWγηab(σc)αγ̇

+ 3iW γW̄ γ̇Wαηab(σc)γγ̇ − 4iW γWαW̄
γ̇ηab(σc)γγ̇ + 3iW̄ γ̇W γWαηab(σc)γγ̇

− 4iW̄ γ̇WαW
γηab(σc)γγ̇ + 3iWαW

γW̄ γ̇ηab(σc)γγ̇ − 3iWαW̄
γ̇W γηab(σc)γγ̇

− (DaDbDcWα)− (DaDcDbWα)− (DbDaDcWα)− (DbDcDaWα)

− (DcDaDbWα)− (DcDbDaWα)
)
H (6.2.59)

The size of this expression is quite typical, and is by no means an extreme example.

As noted, this moment was required to be expanded to subleading order, whilst

others are required to be to evaluated to the next highest order, and can be seen

to contain hundreds of terms. It is clearly impractical to give full details of the

calculation.

Again, which is probably the most time consuming part of this process, the final

result can be brought into a compact form through use of integration by parts,

the cyclic property of the trace, the equations of motion, the repeated use of the

commutation relations (5.1.5), and application of on-shell identities such as those

given in (5.3.70).

Unlike c2 and c3, c4 is not obviously real after simplification and one must work

a little harder to demonstrate its reality. It can be brought into a manifestly real

form by using the identities (modulo total derivative terms):

trR

(
(DaWα)(DaW̄α̇)W̄ α̇Wα

)
= trR

(
(DaW̄α̇)(DaW

α)WαW̄
α̇
)

(6.2.60)

and

trR

(
(DaWα)(DaWα)W̄ 2 + 2(DαW

β)WαWβW̄
2
)

= trR

(
(DaW̄α̇)(DaW̄

α̇)W 2 + 2(D̄α̇W̄
β̇)W̄ α̇W̄β̇W

2
)
. (6.2.61)

As previously discussed, unlike some other methods, one can employ a variety of

checks during the course of this calculation. So it should be stressed that although

a large amount of work is required here, one can be confident in the accuracy of the

results.
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6.3 Results

6.3.1 Superfield form

Having simplified all results, to order F 5, the one-loop effective action is found to

be:

Γ
(1)
Φ,m,R =

1

32π2ρ

∫
d6z trR(W 2)− 1

128π2m2

∫
d8z trR(c2)−

1

256π2m4

∫
d8z trR(c3)

− 1

192π2m6

∫
d8z trR(c4) (6.3.62)

where

trR(c2) =0 (6.3.63)

trR(c3) =
2

15
trR(WαW̄α̇WαW̄

α̇ − 4W 2W̄ 2) (6.3.64)

trR(c4) =
1

105
trR

(
2(DaW α)(DaW̄α̇)WαW̄

α̇ − 6(DaWα)(DaWα)W̄ 2

− 3(DaW α)(DaW̄α̇)W̄ α̇Wα + 18(DαW
β)WαWβW̄

2

+
5

2
(DαW

β)W αW̄α̇WβW̄
α̇
)

+ c.c.

(6.3.65)

Prior to integration by parts this procedure actually yields

trR(c2) =
1

3
trR(GabGba) = −1

6
trR

(
(D̄α̇W̄β̇)(D̄β̇W̄ α̇) + (DαW β)(DβWα)

)
(6.3.66)

which vanishes under integration by parts since on-shell (DαDβWγ) = 0. It is not

actually necessary that one compute this coefficient since its trivial contribution to

the effective action can be deduced using dimensional reasoning and integration by

parts.

6.3.2 Component form

The component form of the above expressions can be extracted through the same

techniques employed previously in subsection (5.3.2). The bosonic component of

trR(c3) is:

trR(c3)
∣∣∣
v

=
1

30
trR(2F abFabF

cdFcd + 3F abF cdFabFcd

− 4F abFbcF
cdFda − 16F abFbcFadF

dc). (6.3.67)
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Using the results of subsection 5.3.3, the bosonic component of trR(c4) expressed in

the basis (5.3.83) is:

trR(c4)
∣∣∣
v

=− 1

210
trR

(
19(∇eF ab)(∇eFab)F

cdFcd + 11(∇eF ab)(∇eF
cd)FabFcd

+ 13(∇eF ab)(∇eF
cd)FcdFab + 32(∇eF ab)(∇eFbc)F

cdFda

− 60(∇eF ab)(∇eFca)FbdF
dc +

261i

5
F abFbcF

cdFdeF
e
a

− 89iF abFbcF
cdF e

aFde − 41iF abF cdFbcF
e
aFde −

7i

5
F abF cdF e

aFbcFde

)
=

1

210
{261i

5
,−89i,−41i,−7i

5
, 19, 11, 13, 32,−60, 0} (6.3.68)

6.4 Comparison with literature

As mentioned in chapter 5, to date the bosonic DeWitt-Seeley coefficients asso-

ciated with scalars, vectors or spinors in the presence of non-Abelian background

Yang-Mills fields in arbitrary spacetime dimension have been separately computed

to low order [87, 88, 215, 76]. Since at the component level the action (3.2.106)

corresponds to supersymmetric matter (a set of massive scalars and their fermionic

superpartners) coupled to a background non-Abelian supersymmetric Yang-Mills

field, a non-trivial check of the results derived here is available.

At the component level the starting action (2.1.37) contained two scalars and two

Majorana-Weyl spinors in D = 4, so from [76, 87] and equation (5.3.116), one gen-

erates the following on-shell bosonic components of the DeWitt-Seeley coefficients:

trAd(a3) = 0 (6.4.69)

trAd(a4) = − 1

240
trAd

(
2F abFabF

cdFcd + 3F abF cdFabFcd

− 4F abFbcF
cdFda − 16F abFbcFadF

dc
) (6.4.70)

trAd(a5) =
1

21

1

5!
trAd

(
− 10(∇eF ab)(∇eFbc)F

cdFda − 32(∇eF ab)(∇eFca)FbdF
dc

+ 8(∇aF ef )(∇bFef )F
acFcb +

1

2
(∇eF ab)Fab(∇eF

cd)Fcd

− 42(∇eF ab)Fda(∇eFbc)F
cd + 6(∇bF

ef )F cb(∇aFef )Fac

+ 6(∇eF ab)(∇eFab)F
cdFcd −

19

2
(∇eF ab)(∇eF

cd)FabFcd

− 28(∇aF de)(∇bFec)FabF
c
d

)
+ (F 5 terms) (6.4.71)

The vanishing of a3 is non-trivial (being non-zero in some dimensions other than

D = 4), and as indicated only the derivative terms of a5 have so far been extracted

from [215]. Inspection reveals immediate agreement, up to an overall numerical
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multiplicative constant, between a3, a4 and the bosonic components of c2 and c3

respectively. Taking into account the relationship between the coefficients cn and a+
n

in superspace, equation (6.1.20), and restricting R to be the adjoint representation,

exact agreement is found.

To facilitate comparison with a5 a basis change is necessary. Using the conversion

table provided in subsection 5.3.3 one finds that result (6.4.71) becomes

trAd(a5) =
1

21

1

5!
{234i

5
,−32i,−74i,−168i

5
, 19, 11, 13, 32,−60, 0}. (6.4.72)

The pure F 5 terms are or course irrelevant here, and comparing this expression with

(6.3.68), and again taking into account (6.1.20), exact agreement of the derivative

terms is found.

6.5 N = 2 super Yang-Mills to one-loop

Finally, all of the previous results can be collected together to give the one-loop

effective action for an arbitrary N = 2 super Yang-Mills theory in the absence of a

scalar background to order F 5 in superfield form. For the reader’s convenience the

result to this order is:

Γ(1)[wB, w̄B] =
i

2
ln sDet(2−M)− 2Γ

(1)
Φ,m,Ad + Γ

(1)
Φ,M,R⊕Rc

(6.5.73)

where

Γ
(1)
Φ,m,R =

1

32π2ρ

∫
d6z trR(W 2)− 1

256π2m4

∫
d8z trR(c3)

− 1

192π2m6

∫
d8z trR(c4) (6.5.74)

and

i

2
ln sDet(2−M2) =

1

32π2M4

∫
d8z trAd(a4) +

1

16π2M6

∫
d8z trAd(a5), (6.5.75)

the various coefficients being given by

trR(c3) =
2

15
trR(WαW̄α̇WαW̄

α̇ − 4W 2W̄ 2) (6.5.76)
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trR(c4) =
1

105
trR

(
2(DaWα)(DaW̄α̇)WαW̄

α̇ − 6(DaW α)(DaWα)W̄ 2

− 3(DaWα)(DaW̄α̇)W̄ α̇Wα + 18(DαW
β)W αWβW̄

2

+
5

2
(DαW

β)W αW̄α̇WβW̄
α̇
)

+ c.c. (6.5.77)

trAd(a4) =
1

3
trAd(2W

2W̄ 2 −WαW̄α̇WαW̄
α̇) (6.5.78)

trAd(a5) =
1

30
trAd

(
(DaWα)(DaWα)W̄ 2 + (DaW α)(DaW̄α̇)W̄ α̇Wα

− (DaWα)(DaW̄α̇)WαW̄
α̇ − 3(DαW

β)WαWβW̄
2

− (DαW
β)W αW̄α̇WβW̄

α̇
)

+ c.c. (6.5.79)

In the above expressions M and m are infrared regulators andM is either a physical

hypermultiplet mass or is also infrared regulator7.

Corresponding computations in string theory have yet to be carried out, and so

comparisons in this respect await future developments.

7The regulators may all coincide, or differ depending motivations or taste [234].
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Chapter 7

Conclusions

The work presented here was based on the two papers [34] and [35]. In [34] the one-

loop effective action for N = 4 super Yang-Mills theory in the absence of a chiral

background was, for the first time, computed to order F 6 in full superfield form. To

date the contribution computed there still stands as the only such F 6 result. The

bosonic field strength components were extracted from the F 5 contributions and the

results, being shown to be consistent with those obtained via other means, eventually

proved to be the first correct determination of this contribution. Although a bosonic

F 5 computation had been attempted prior to [34] using what proved to be a more

cumbersome approach [85, 86], the results where found to contain an error. As noted

in [78, 74, 81], the original results of [85, 86] where at odds with those from string

theory and other approaches [78, 81, 79, 80, 74], and in particular cast some doubt

on the notion that there exists a unique deformation of maximally supersymmetric

Yang-Mills theory at this order. The work [34] finally cleared up this matter and

when considered alongside all other results, provided the final convincing piece of

evidence of a unique deformation at this order. It still remains to be determined

whether supersymmetry uniquely fixes deformations of maximally supersymmetric

Yang-Mills theory at higher orders.

In [35] the results of [34] where extended to include the F 5 contributions to the

effective action for any N = 2 super Yang-Mills theory. It was shown that results

obtained there where consistent with existing literature. Given the large amount of

work required to compute the F 5 terms in this case, and the very simple expressions

which result, one is left with the distinct impression that there may exist a more

economical alternative. No approach has yet presented itself as being any simpler,

and this notion may be worthy of further investigation. The results of both [34]

and [35] may prove useful in direct tests of the AdS/CFT conjecture and its recent

generalizations.
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It is now well appreciated that computing the non-Abelian D-brane effective

action to some order necessarily involves field strength terms with and without

covariant derivatives due to the fact that such terms are related by the Bianchi

identity. As yet there still remains no clear means for uniquely truncating and

obtaining partial results at a given order as one readily does in the Abelian case.

Different methods of computation naturally give rise to results with very different

looking field strength tensor structures, with additional complications stemming

from field redefinitions. Since there seems to be no set of tensor structures which

naturally stand out, a clear and detailed analysis of tensor structures needs to be

carried out at each order of the expansion to facilitate a comparison of results. It

was shown in chapter 5 in all its gory detail that any such comparison, even at an

order as low as F 5, is a highly non-trivial exercise which requires the identification

of a basis. As yet no general scheme has been found which identifies bases at a

given order, or even any way of knowing the number of terms in such a basis. Some

work in this direction has been done [69, 101], however explicit details regarding

the F 6 basis were not provided in [101]. An obvious next step would be to clearly

identity and F 6 basis (and conversions into it), up to field redefinitions, which will

be necessary for the comparison of the various F 6 results [101, 102, 84] and any

which become available in the future.

The bosonic F 6 contributions to the one-loop effective action for N = 4 super

Yang-Mills theory are yet to be extracted from the superfield results of [34] (a

simplified version of which was given in chapter 5). This is perhaps the subject of a

future work. One should not necessarily expect these results to coincide with those

of the non-Abelian D-brane effective action since higher loop F 6 contributions are

expected in N = 4 super Yang-Mills theory, and have not been included. However,

if one assumes or could prove a unique deformation at this order, comparison with

string theory results would provide information about the higher loop contributions.

During the course of this investigation a new method for computing DeWitt-

Seeley coefficients in the coincidence limit was discovered and described in detail.

Although any technique for computing these coefficients could have been adopted

to meet our needs, this method proved to be quite efficient and readily adaptable to

computerization. If one is interested in computing multi-loop contributions to the

effective action, one must compute full propagators in the presence of background

fields, and therefore the associated heat kernels at non-coincident points. Directly

generalizing the modified Gaussian approach to compute the full non-coincident

DeWitt-Seeley coefficients is relatively straight forward. In order to maintain man-

ifest gauge covariance, which is indeed the goal of the background field method,
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one must introduce a additional factor (the parallel displacement propagator) into

the Fourier decomposition of the delta-function to ensure the correct gauge trans-

formation properties of the heat kernel. This idea has been explored in the recent

work [207], and a new method for computing the full non-coincident DeWitt-Seeley

coefficients is described. For complete details see [207] and references there. Also

see [235, 228, 236, 237, 238, 239] for recent use of this method.

As a suggestion for future work, one may care to attempt to generalize the mod-

ified Gaussian approach to harmonic superspace and or to include theories involving

gravitation.
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Appendix A

Notation

A.1 Two component spinors

In this body of work extensive use is made of the two component spinor formula-

tion first introduced by B. L. van der Waerden [240, 241, 242] and since developed

into a powerful formalism to supplement tensor analysis. Not only is this formal-

ism useful for describing spinor representations of the Lorentz group, but also more

generally tensors products. Utilized by Akulov and Volkov [6], and Wess and Zu-

mino [157] (also see [154]) in the context of supersymmetry, this formalism is well

adapted to supersymmetry in four spacetime dimensions in contrast to the more

well known four component Dirac spinors1. For a detailed treatment of these ideas

see [243, 127]. For the current purpose the formalism can be summarized as follows.

Throughout, letters near the beginning of the Greek (Latin) alphabet will used for

spinor (spacetime) indices.

In Minkowski space two inertial coordinate systems xa and x′a with a = 0, 1, 2, 3

are related by the non-homogenous transformations

x′a = Λa
bx

b + cb = (eλ)a
bx

b + cb (A.1.1)

which preserve the spacetime interval

ds2 = ηabdx
adxb = ηabdx

′adx′b ηab = diag(−1, 1, 1, 1), (A.1.2)

ηab being the Minkowski metric. This invariance yields the constraint

ηab = Λc
aΛ

d
bηcd ⇒ detΛ = ±1. (A.1.3)

The set of all transformations (A.1.1) which satisfy (A.1.3) and detΛ = 1 is the

Poincaré group Π(1, 3), and the homogenous subset with ca = 0 is the (proper)

1Golfand’s original articles [4, 3] used Dirac spinors which necessitate the use of chiral projectors.
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Lorentz group SO(1, 3). An infinitesimal Lorentz transformation is given by

δxa = λa
bx

b. (A.1.4)

Locally isomorphic to the Lorentz group is the group of 2 × 2 complex matri-

ces with unit determinant SL(2,C). An object ψα, α = 1, 2, transforming in the

fundamental representation of SL(2,C),

ψ′α = Λ β
α ψβ Λ ε SL(2,C) (A.1.5)

is called a two-component left-handed Weyl spinor. The representation is denoted

(1
2
, 0) and is known as the left-handed spinor representation of the Lorentz group.

Right-handed Weyl spinors are those objects ψ̄α̇, α̇ = 1, 2, which transform according

to the conjugate representation

ψ̄′α̇ = Λ̄ β̇
α̇ ψ̄β̇ (Λ β

α )∗ = Λ̄ β̇
α̇ (A.1.6)

which is denoted (0, 1
2
), and is called the right-handed spinor representation of the

Lorentz group.

Spinors may have their dotted and undotted indices raised and lowered by ε, the

antisymmetric (spinor metric) tensors as follows:

ψα = εαβψβ ψα = εαβψ
β (A.1.7)

ψ̄α̇ = εα̇β̇ψ̄β̇ ψ̄α̇ = εα̇β̇ψ̄
β̇ (A.1.8)

where

εαβ = −εβα εαβ = −εβα εαβεβγ = δα
γ ε12 = −ε12 = 1 (A.1.9)

εα̇β̇ = −εβ̇α̇ εα̇β̇ = −εβ̇α̇ εα̇β̇εβ̇γ̇ = δα̇
γ̇ ε1̇2̇ = −ε1̇2̇ = 1. (A.1.10)

Infinitesimal Lorentz transformations of two component spinors are then given

by

δψ′α =
1

2
λab(σab)

β
α ψβ δψ̄′α̇ =

1

2
λab(σ̃ab)

β̇
α̇ ψ̄β̇ (A.1.11)

λab = −λba = ηbcλa
c (A.1.12)

with λa
b being introduced in (A.1.1) and (A.1.4). The generators (σab)

β
α and (σ̃ab)

β̇
α̇

of (1
2
, 0) and (0, 1

2
) respectively, are defined in terms of the four (σa)αα̇ matrices

σ0 =

(
1 0

0 1

)
σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0

0 −1

)
(A.1.13)
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(σ̃a)
α̇α = εαβεα̇β̇(σa)ββ̇ (A.1.14)

via

(σab)
β

α = −1

4
(σaσ̃b − σbσ̃a)

β
α = −(σba)

β
α (A.1.15)

(σ̃ab)
α̇

β̇
= −1

4
(σ̃aσb − σ̃bσa)

α̇
β̇

= −(σ̃ba)
α̇

β̇
. (A.1.16)

The σ matrices satisfy the following useful properties:

tr(σaσ̃b) = (σa)αα̇(σ̃b)
α̇α = −2ηab (A.1.17)

(σa)αα̇(σ̃a)
β̇β = −2δ β

α δ β̇
α̇ (A.1.18)

σaσ̃bσc = (ηacσb − ηbcσa − ηabσc) + iεabcdσ
d (A.1.19)

σ̃aσbσ̃c = (ηacσ̃b − ηbcσ̃a − ηabσ̃c)− iεabcdσ̃
d (A.1.20)

with εabcd (ε0123 = −1) the totally antisymmetric Levi-Civita symbol.

The index free notation describing the contraction of spinor indices that will be

adopted here, is governed by the following rules:

ψχ = ψαχα = −ψαχ
α ψ2 = ψψ (A.1.21)

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = −ψ̄α̇χ̄α̇ ψ̄2 = ψ̄ψ̄ (A.1.22)

ψσaχ̄ = ψα(σa)αα̇χ̄
α̇ ψ̄σaχ = ψ̄α̇(σ̃a)

α̇αχα. (A.1.23)

Later we will also find useful that any two objects carrying (un)dotted spinor indices

satisfy

ψαφβ − ψβφα = 2ψ[αφβ] = εαβψφ ψαφβ − ψβφα = 2ψ[αφβ] = −εαβψφ (A.1.24)

ψ̄α̇φ̄β̇ − ψ̄β̇φ̄α̇ = 2ψ̄[α̇φ̄β̇] = −εα̇β̇ψ̄φ̄ ψ̄α̇φ̄β̇ − ψ̄β̇φ̄α̇ = 2ψ̄[α̇φ̄β̇] = εα̇β̇ψ̄φ̄. (A.1.25)

In this two component notation the familiar four component Dirac spinor Ψ can

be expressed as a column

Ψ =

(
ψα

χ̄α̇

)
(A.1.26)

containing one left spinor ψα and one right spinor χ̄α̇. If (ψα)∗ = χ̄α̇ the Dirac spinor

is a Majorana spinor, and imposing the Weyl constraint simple sets one of these two

component spinors to zero.

Spacetime indices are often written in terms of a pair of spinor indices, for exam-

ple an arbitrary four vector V a is considered to belong to the (1
2
, 1

2
) representation

of the Lorentz group, and is written as a bi-spinor

Vαα̇ = (σa)αα̇V
a. (A.1.27)
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Finally, taking the tensor product

(
1

2
, 0)⊗ (

1

2
, 0)⊗ · · · ⊗ (

1

2
, 0)︸ ︷︷ ︸

n−times

⊗ (0,
1

2
)⊗ (0,

1

2
)⊗ · · · ⊗ (0,

1

2
)︸ ︷︷ ︸

m−times

, (A.1.28)

one obtains new representations of the Lorentz group which are reducible. Irre-

ducible representations of this form act on tensors which are symmetrized (sepa-

rately) in its n-undotted spinor indices an m-dotted spinor indices. Such irreducible

representations are denoted (n
2
, m

2
), and classify all finite-dimensional irreducible

representations of the Lorentz group.

A.2 Differentiation and integration in superspace

Partial differentiation of the superspace coordinates are characterized by the follow-

ing straight forward properties:

∂A = (∂a, ∂α, ∂̄
α̇) =

∂

∂zA
=

(
∂

∂xa
,
∂

∂θα
,
∂

∂θ̄α̇

)
(A.2.29)

with

∂Az
B = δ B

A ⇒


∂ax

b = δ b
a ∂aθ

α = ∂aθ̄
α̇ = 0

∂αθ
β = δ β

α ∂αx
a = ∂αθ̄

α̇ = 0

∂̄α̇θ̄β̇ = δα̇
β̇

∂̄α̇xa = ∂̄α̇θα = 0

(A.2.30)

and

ε(∂A) = ε(zA) = εA

ε(∂AV ) = εA + ε(V ) (mod 2)

∂A∂B = (−1)ε(A)ε(B)∂B∂A (A.2.31)

∂A(UV ) = ∂A(U)V + (−1)ε(U)εAU∂A(V )

(∂aV )∗ = ∂aV
∗ (∂αV )∗ = −(−1)ε(V )∂̄α̇V

∗ (∂̄α̇V )∗ = −(−1)ε(V )∂αV ∗

for arbitrary superfields U and V , and where ε(·) denotes Grassmann parity.

Also desirable would be

∂AzB = δA
B ⇒


∂axb = δa

b ∂aθα = ∂aθ̄α̇ = 0

∂αθβ = δα
β ∂αxa = ∂αθ̄α̇ = 0

∂̄α̇θ̄
β̇ = δ β̇

α̇ ∂̄α̇xa = ∂̄α̇θα = 0

(A.2.32)

and so we define the raising and lowering of indices as

ηab∂b = ∂a εαβ∂β = −∂α εα̇β̇∂̄
β̇ = −∂̄α̇. (A.2.33)
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Integration over Grassmann odd parameters was first treated by Berezin [143]

and is equivalent to differentiation. The basic properties for integration over super-

space and its (anti)chiral subspaces are as follows:∫
dθα θ

β = ∂αθ
β = δ β

α

d2θ =
1

4
εαβdθαdθβ ⇒

∫
d2θ =

1

4
∂α∂α

∫
d2θ θ2 = 1

(A.2.34)

∫
dθ̄α̇ θ̄β̇ = ∂̄α̇θ̄β̇ = δα̇

β̇

d2θ̄ =
1

4
εα̇β̇dθ̄α̇dθ̄β̇ →

∫
d2θ̄ =

1

4
∂̄α̇∂̄

α̇

∫
d2θ̄ θ̄2 = 1

(A.2.35)

d8z = d4x d2θ d2θ̄ d6z = d4x d2θ d6z̄ = d4x d2θ̄ (A.2.36)

(∫
d8z V (z)

)∗
=

∫
d8z (V (z))∗

(∫
d6z V (z)

)∗
=

∫
d6z̄ (V (z))∗ (A.2.37)

where V (z) is an arbitrary superfield. The limits of integration over xa are as-

sumed to be (−∞,∞) unless otherwise stated. Ignoring any contributions from the

component fields in these limits, integration by parts is in general given by∫
d4x ∂a(V (z)) = 0

∫
d2θ ∂α(V (z)) = 0

∫
d2θ̄ ∂̄α̇(V (z)) = 0 (A.2.38)

for arbitrary superfield V (z). For example:∫
d8z ∂A(U(z)V (z)) = 0 (A.2.39)

for superfields U(z) and V (z), implies∫
d8z (∂AU(z))V (z) = −(−1)ε(U)εA

∫
d8z U(z)(∂AV (z)). (A.2.40)

A change of integration variables zA 7→ z′A(z) gives rise to a Jacobian like factor

known as the superdeterminant or Berezinian, Ber(∂z′B/∂zA) (for details see [89,

127]. We will only consider changes of coordinates consistent with super Poincaré

transformations (2.1.4), and so for our purposes is sufficient to note the Berezinian

is unity in this case.

Delta functions can be defined on R4|4 and its subspaces as follows:

δ(8)(z − z′) = δ(4)(x− x′) δ(2)(θ − θ′) δ(2)(θ̄ − θ̄′) (A.2.41)

δ(2)(θ − θ′) = (θ − θ′)2 δ(2)(θ̄ − θ̄′) = (θ̄ − θ̄′)2 (A.2.42)

δ+(z − z′) =
1

4
∂̄α̇∂̄

α̇δ(8)(z − z′) = δ(4)(x− x′) δ(2)(θ − θ′) (A.2.43)

δ−(z − z′) =
1

4
∂α∂αδ

(8)(z − z′) = δ(4)(x− x′) δ(2)(θ̄ − θ̄′) (A.2.44)
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They have properties ∫
d8z δ(8)(z − z′)V (z) = V (z′) (A.2.45)

δ(8)(z) = δ(8)(−z) (δ(8)(z))2 = δ(8)(0) = 0 (A.2.46)∫
d6z δ+(z − z′)Φ(z) = Φ(z′) D̄α̇Φ(z) = 0 (A.2.47)∫
d6z̄ δ−(z − z′)Φ̄(z) = Φ̄(z′) DαΦ̄(z) = 0. (A.2.48)
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Appendix B

Some derivations

Here we collect together the derivations of a few results which have been used exten-

sively throughout this work. We make use of the gauge covariant derivative algebra

(5.1.5), the equations of motion

DαWα = D̄α̇W̄
α̇ = 0, (B.1.1)

the (anti)chirality of the field strengths

DαW̄α̇ = D̄α̇Wα = 0, (B.1.2)

and the generalized Jacobi identity

(−1)εAεC [A, [B,C}} + (−1)εCεB [C, [A,B}} + (−1)εBεA [B, [C,A}} = 0, (B.1.3)

where the graded commutator [., .} was defined in (2.1.17).

Since

DαWβ −DβWα = εαβDγWγ, (B.1.4)

from the equations of motion it follows that

DαWβ = DβWα. (B.1.5)

Similarly one can show

D̄α̇W̄β̇ = D̄β̇W̄α̇. (B.1.6)

It is useful to establish DαDβWγ = D̄α̇D̄β̇W̄γ̇ = 0, which is easily demonstrated by

noting

DαDβWγ = DαDγWβ = −DγDαWβ = −DγDβWα = DβDγWα = DβDαWγ

= −DαDβWγ, (B.1.7)

from which the desired result follows.
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A less obvious result, (DaGab) = i(σb)αα̇{Wα, W̄ α̇}, which is equivalent to es-

tablishing (Dα̇αGαα̇ββ̇) = 4i{W β, W̄ β̇} with Gαα̇ββ̇ ≡ (σa)αα̇(σb)ββ̇Gab, is proven as

follows:

(Dα̇αGαα̇ββ̇) = [Dα̇α, [Dαα̇,Dββ̇}}

= [Dα̇α,−εαβ(D̄α̇W̄β̇)− εα̇β̇(DαWβ)}

= − [Dβα̇, (D̄β̇W̄
α̇)} − [Dαβ̇, (DβW

α)} using (B.1.5), (B.1.6)

= − [Dβα̇, [D̄β̇, W̄
α̇}} − [Dαβ̇, [Dβ,W

α}}

= − [W̄ α̇, [Dβα̇, D̄β̇}} − [W α, [Dαβ̇,Dβ}} using (B.1.1), (B.1.2), (B.1.3)

= − [W̄ α̇, 2iεβ̇α̇Wβ} − [Wα, 2iεβαW̄β̇}

= 4i{W β, W̄ β̇}. (B.1.8)

Using the XA algebra (5.1.13), one can now establish the commutation relations

(5.2.33):

[∆, Xa] = [XbXb −WαXα − W̄ α̇X̄α̇, Xa}

= Xb [Xb, Xa} + [Xb, Xa} Xb −Wα [Xα, Xa}

− [W α, Xa} Xα − W̄ α̇ [X̄α̇, Xa} − [W̄ α̇, Xa} X̄α̇

= (DbGba) + 2Gb
aX

b − i(σa)αα̇W
αW̄ α̇

+ (DaW
α)Xα − i(σa)αα̇W̄

α̇Wα + (DaW̄
α̇)X̄α̇

= 2Gb
aX

b + (DaW
α)Xα + (DaW̄

α̇)X̄α̇, (B.1.9)

where (B.1.8) has been used. Likewise,

[∆, Xβ] = [XaXa −W αXα − W̄ α̇X̄α̇, Xβ}

= [Xa, [Xa, Xβ}} + 2 [Xa, Xβ} Xa −W α [Xα, Xβ}

− [Wα, Xβ} Xα − W̄ α̇ [X̄α̇, Xβ} − [W̄ α̇, Xβ} X̄α̇

= −i(σa)ββ̇ [Xa, W̄ β̇} − 2i(σa)ββ̇W̄
β̇Xa + (DβW

α)Xα + 2iW̄ α̇Dβα̇

= (DβW
α)Xα, (B.1.10)

having used (B.1.1) and (B.1.2). The relation [∆, X̄α̇] = (D̄α̇W̄
β̇)X̄β̇ is similarly

established. The last of the commutation relations in (5.2.33) is straight forward to

compute.

Other on-shell identities, such as those found in (5.3.70), are established by

more direct means but involve similar manipulations. For example DαDβD̄α̇W̄β̇ =

4εαβ{W̄α̇, W̄β̇} is derived by simply pulling the undotted covariant derivatives through

the dotted derivative to annihilate the antichiral field strength.
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Appendix C

The Gaussian approach in

Mathematica

This appendix details the method in which Mathematica has been used to aid the

computation of various DeWitt-Seeley coefficients in superspace and their bosonic

fieldstrength component extraction. It is presented in the style of an annotated

Mathematica notebook using its standard form conventions, where: bold maths

typeset is to be read as input; indented maths typeset as output (most of which is

suppressed due to size); and comments are italicized. Included are all the essential

ingredients for the calculation of higher order coefficients, but their usage is illus-

trated through the full computation of trAd(a5) only1. An attempt has been made

to maintain the previously defined notations, and any deviations from these have

been highlighted.

Obvious modifications and additions to the code are necessary for the computa-

tion of chiral coefficients a+
n (z) and higher orders.

The code was originally written with the intention of checking and augmenting

low order computations done by hand. As such, its usage is rather adhoc and

merely mirrors the processes one follows in performing the computations manually.

The procedure is therefore not fully automated and requires much user intervention

and input, particularly in simplifying results. This particular hybrid approach has

probably been pushed to its practical limit, and if one where to proceed to compute

higher order coefficients than those presented in the body of the thesis, the method

would need to be more fully automated.

1 See the attached CD for the complete trAd(a6) computation using Mathematica.
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C.1 Code

C.1.1 Noncommutative multiplication (·) and c-numbers

A · (B + C ) := A · B + A · C

A · (B + C ) · D := A · B · D + A · C · D

(A + B ) · C := A · C + B · C

A · (B + C ) := A · B + A · C

A · (B + C ) · D := A · B · D + A · C · D

(A + B ) · C := A · C + B · C

A · 0 := 0

A · 0 := 0

0 · A := 0

0 · A := 0

A · 0 · B := 0

A · I := A

A · B · I := A · B

I · A := A

I · A · B := A · B

A · I · B := A · B

(a ∗ A ) · B := If[num[a], aA · B, If [num[A], Aa · B, error]]

A · (a ∗ B ) := If[num[a], aA · B, If [num[B], BA · a, error]]

C · (a ∗ A ) · B := If[num[a], aC · A · B, If [num[A], AC · a · B, error]]

num[a ] := NumberQ[a]

num[a b ] := True/; num[a] == True&& num[b] == True

num[s] = True; num[sn ] := True

num[H] = True; num[σ ] := True

num[εα ] := True; num[ηα ] := True

num[δα ] := True

C.1.2 Behaviour of operators

The following differential operators Ya and Da correspond to Xa and Da respectively,

as defined in chapter 5. The K’s are to be read as moments (see below).

op[Xα ] := 1; op[X̄α ] := 1; op[Ya ] := 1

op[K[s]] := 1; op[Kα [a ]] := 1

op[a ] := 0
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Xα · A := Dα[A] + (−1)ε[A]A · Xα/; op[A] == 0

Xα · A · B := Dα[A] · B + (−1)ε[A]A · Xα · B/; op[A] == 0

B · Xα · A := B · Dα[A] + (−1)ε[A]B · A · Xα/; op[A] == 0

B · Xα · A · C := B · Dα[A] · C + (−1)ε[A]B · A · Xα · C/; op[A] == 0

¯̄Xα · A := D̄α[A] + (−1)ε[A]A · X̄α/; op[A] == 0

X̄α · A · B := D̄α[A] · B + (−1)ε[A]A · X̄α · B/; op[A] == 0

B · X̄α · A := B · D̄α[A] + (−1)ε[A]B · A · X̄α/; op[A] == 0

B · X̄α · A · C := B · D̄α[A] · C + (−1)ε[A]B · A · X̄α · C/; op[A] == 0

Ya · A := Da[A] + (−1)ε[A]A · Yα/; op[A] == 0

Ya · A · B := Da[A] · B + (−1)ε[A]A · Yα · B/; op[A] == 0

B · Ya · A := B · Da[A] + (−1)ε[A]B · A · Yα/; op[A] == 0

B · Ya · A · C := B · Da[A] · C + (−1)ε[A]B · A · Yα · C/; op[A] == 0

Dα [a ∗ A ] := If[num[a], aDα[A], If [num[A], Dα[a]A, derror]]

D̄α [a ∗ A ] := If[num[a], aD̄α[A], If [num[A], D̄α[a]A, derror]]

Da [a ∗ A ] := If[num[a], aDa[A], If [num[A], Da[a]A, derror]]

Dα [0] := 0; D̄α [0] := 0; Da [0] := 0

Dα [θγ ] := δ γ
α ; Dα [θ̄γ ] := 0

D̄α [θγ ] := 0; D̄α [θ̄γ ] := −δ γ
α

Da [θγ ] := 0; Da [θ̄γ ] := 0

Dα [δ γ
β ] := 0; D̄α [δ γ

β ] := 0; Da[δ
γ
β ] := 0

C.1.3 Ordering of differential operators

The following effectively places the indices on moments in the desired order: dotted

spinor, undotted spinor, then spacetime.

Ya · Xα := Xα · Ya − iσa,α,eiW̄
ei++

Ya · Xα · A := Xα · Ya · A − iσa,α,eiW̄
ei++ · A

A · Ya · Xα := A · Xα · Ya − A · (iσa,α,eiW̄
ei++)

A · Ya · Xα · B := A · Xα · Ya · B − A · (iσa,α,eiW̄
ei++) · B

Ya · X̄α := X̄α · Ya − iσa,α,fjW
fj++

Ya · X̄α · A := X̄α · Ya · A − iσa,α,fjW
fj++ · A

A · Ya · X̄α := A · X̄α · Ya − A · (iσa,α,fjW
fj++)

A · Ya · X̄α · B := A · X̄α · Ya · B − A · (iσa,α,fjW
fj++) · B
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As can be seen, additional dummy indices are generated incrementally.

X̄β · Xα := −Xα · X̄β − 2iσgk,α,βYgk++

X̄β · Xα · A := −Xα · X̄β · A − 2iσgk,α,βYgk++
· A

A · X̄β · Xα := −A · Xα · X̄β − 2iσgk,α,βA · Ygk++

A · X̄β · Xα · B := −A · Xα · X̄β · B − 2iσgk,α,βA · Ygk++
· B

i = 1; j = 1; k = 1;

C.1.4 Moments and their leading order behaviour

Below,K[s] denotes the heat kernel K(z; s), and Kα [s, {p, q, r}] its moments KA1...Ap+q+r(z; s)

possessing p dotted spinor, q undotted spinor, and r spacetime indices.

Xα · K[s] := Kα[s, {1, 0, 0}]

A · Xα · K[s] := A · Kα[s, {1, 0, 0}]

Xα · Kβ [s, {a , b , c }] := Kα,β[s, {a + 1, b, c}]

A · Xα · Kβ [s, {a , b , c }] := A · Kα,β[s, {a + 1, b, c}]

X̄α · K[s] := Kα[s, {0, 1, 0}]

A · X̄α · K[s] := A · Kα[s, {0, 1, 0}]

X̄α · Kβ [s, {a , b , c }] := Kα,β[s, {a, b + 1, c}]

A · X̄α · Kβ [s, {a , b , c }] := A · Kα,β[s, {a, b + 1, c}]

Yα · K[s] := Kα[s, {0, 0, 1}]

A · Yα · K[s] := A · Kα[s, {0, 0, 1}]

Yα · Kβ [s, {a , b , c }] := Kα,β[s, {a, b, c + 1}]

A · Yα · Kβ [s, {a , b , c }] := A · Kα,β[s, {a, b, c + 1}]

Moments with greater than two undotted or dotted spinor indices vanish

Kα [s, {a , b , c }] := 0/; a ≥ 3 ∨ b ≥ 3

Leading order behaviour is made explicit (see equation (5.2.34))

kc1 = {Kα [s, {a , b , c }] → Kα[s, {a, b, c}, 2 − (a + b + IntegerPart[
c

2
])],

K[s] → K0[s, {0, 0, 0}, 2]}

kc2 = {sn A · Kα [s, a , b ] → snA · Kα[s, a, b + n],

s A · Kα [s, a , b ] → snA · Kα[s, a, b + 1]}
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C.1.5 Chirality conditions and equations of motion

Dγ [W̄α ] := 0; Dγ [W̄α ] := 0

D̄γ [Wα ] := 0; D̄γ [Wα ] := 0

Dγ [W γ ] := 0; D̄γ [W̄ γ ] := 0

Dα [Dβ [W γ ]] := 0; Dα [Dβ [Wγ ]] := 0

D̄α [D̄β [W̄ γ ]] := 0; D̄α [D̄β [W̄γ ]] := 0

C.1.6 Graded commutators, 〈 , 〉, and (anti)commutation

relations

Below ∆a,α,α̇ denotes the operator ∆ defined in equation (5.1.11). For simplicity

all spacetime indices are placed in the lower position, and as usual repeated indices

indicate contraction.

〈A · B , C 〉 := A · 〈B, C〉 + (−1)ε[B]ε[C]〈A, C〉 · B

〈A · B · D , C 〉 := A · 〈B · D, C〉 + (−1)ε[B·D]ε[C]〈A, C〉 · B · D

〈A , B · C 〉 := 〈A, B〉 · C + (−1)ε[B]ε[A]B · 〈A, C〉

〈A , B · C · D 〉 := 〈A, B〉 · C · D + (−1)ε[B]ε[A]B · 〈A, C · D〉

〈A + B , C 〉 := 〈A, C〉 + 〈B, C〉

〈A , B + C 〉 := 〈A, B〉 + 〈A, C〉

〈a ∗ A , B 〉 := If[num[a], a〈A, B〉, If [num[A], A〈a, B〉, gcerror]]

〈A , a ∗ B 〉 := If[num[a], a〈A, B〉, If [num[B], B〈A, a〉, gcerror]]

〈∆a ,α ,β , Yb 〉 := 2Ga,b · Ya + Db[Wα] · Xα + Db[W̄ β] · X̄β

〈∆a ,α ,β , Xγ 〉 := Dγ [Wα] · Xα

〈∆a ,α ,β , X̄γ 〉 := D̄γ [W̄ β] · X̄β

〈∆a ,α ,β , A 〉 := Da[Da[A]] + 2Da[A] · Ya − Wα · Dα[A] − W̄ β · D̄β[A]

−(−1)ε[A]〈Wα, A〉 · Xα − (−1)ε[A]〈W̄ β, A〉 · X̄β

〈∆a ,α ,β , θγ 〉 := −W γ

〈∆a ,α ,β , θ̄γ 〉 := W̄ γ

L0[A , B ] := B

Ln [∆a n ,α n ,β n
, A ] := Ln[∆an,αn,βn

, A]

= 〈∆an,αn,βn
, Ln−1[∆an−1,αn−1,βn−1

, A]〉

$RecursionLimit = ∞;
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C.1.7 Assigning parity

ε[Xa ] := 1; ε[X̄a ] := 1; ε[Ya ] := 0; ε[∆a ] := 0

ε[Wα ] := 1; ε[Wα ] := 1; ε[W̄α ] := 0; ε[W̄α ] := 0; ε[Ga ] := 0

ε[θα ] := 0; ε[θ̄α ] := 0; ε[δ β
α ] := 0

ε[Dα [A ]] := Mod[ε[A] + 1, 2]

ε[D̄α [A ]] := Mod[ε[A] + 1, 2]

ε[Da [A ]] := ε[A]

ε[〈A , B 〉] := Mod[ε[A] + ε[B], 2]

ε[A · B ] := Mod[ε[A] + ε[B], 2]

ε[A · B · c ] := Mod[ε[A] + ε[B · C], 2]

ε[a ∗ A · B ] := If[num[a], ε[A · B], perror]

ε[A + B ] := ε[A]

ε[a ∗ A ] := If[num[a], ε[A], If [num[A], ε[a], perror]]

C.1.8 Index contraction, raising and lowering

lower = {A · W β · B εα ,β → A · Wα · B,

A · G f [W β ] · B εα ,β → A · Gf [Wα] · B,

A · H k [G f [W β ]] · B εα ,β → A · HK [Gf [Wα]] · B

A · Da [g ] · B ηa ,b → A · Db[g] · B

A · Db [g ] · B ηa ,b → A · Da[g] · B

A · G f [Da [g ]] · B ηa ,b → A · Gf [Db[g]] · B

A · G f [Db [g ]] · B ηa ,b → A · Gf [Da[g]] · B,

A · Ga ,b · B ηa ,c → A · Gcb · B,

A · Ga ,b · B ηc ,a → A · Gcb · B,

A · Ga ,b · B ηb ,c → A · Gac · B,

A · Ga ,b · B ηc ,b → A · Gac · B,

Ga ,a → 0};

conditionindex = {A · W α · B · W α · C → −A · Wα · B · Wα · C,

A · G a [W α ] · B · W α · C → −A · Ga[Wα] · B · Wα · C,

A · H b [G a [W α ]] · B · W α · C → −A · Hb[Ga[Wα]] · B · Wα · C,

A · G a [W α ] · B · H b [W α ] · C → −A · Ga[Wα] · B · Hb[Wα] · C,

A · W α · B · H b [G a [W α ]] · C → −A · Wα · B · Hb[Ga[Wα]] · C};
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C.1.9 Cycling (via trace) to bring expressions into the de-

sired basis

φ[A ] := 0

φ[Dα [A ] · B ] := 1

φ[D̄α [A ] · B ] := 1

φ[Da [A ] · Da [B ] · C ] := 1

cycle[a ∗ A · B ] := If[num[a], a cycle[A · B],

If [num[A], A cycle[a · B], cerror]]

cycle[a ∗ A · B · C ] := If[num[a], a cycle[A · B · C],

If [num[A], A cycle[a · B · C], cerror]]

cycle[A · B ] := If[φ[A · B] == 1, A · B, cycle[(−1)ε[A]ε[B]B · A]]

cycle[A · B · C ] := If[φ[A · B · C] == 1, A · B · C,

cycle[(−1)ε[A]ε[B·C]B · C · A]]

C.1.10 Miscellaneous

In simplifying the results, we will later make use of the the graded commutator,

(2.1.17), and properties of the covariant derivatives.

expandall = {〈A , B 〉 → A · B − (−1)ε[A]ε[B]B · A,

Da [A + B ] → Da[A] + Da[B],

Da [A · B ] → Da[A] · B + A · Da[B],

Da [A · B · C ] → Da[A] · B · C + A · Da[B · C],

Dα [A + B ] → Dα[A] + Dα[B],

Dα [A · B ] → Dα[A] · B + (−1)ε[A]A · Dα[B],

Dα [A · B · C ] → Dα[A] · B · C + (−1)ε[A]A · Dα[B · C],

D̄α [A + B ] → D̄α[A] + D̄α[B],

D̄α [A · B ] → D̄α[A] · B + (−1)ε[A]A · D̄α[B],

D̄α [A · B · C ] → D̄α[A] · B · C + (−1)ε[A]A · D̄α[B · C]}

Usage of the following reduces computation time.

listify[a + b ] := {a, b}

unlistify[{a , b }] := a + b

ker[a ] := a · K[s]

C.2 Computing trAd(a5)

We now compute trAd(a5), by summing from n = 1 to 4 in equation (5.3.42).
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C.2.1 The summation

i
4∑

n=1

n∑
m=1

(
(is)n

m!(n − m)!(n + 1)

(
Lm[∆am,αm,βm

, Yc] · Ln−m[∆µn−m,νn−m,ρn−m
, Yc]

+Lm[∆am,αm,βm
, Xω] · Ln−m[∆µn−m,νn−m,ρn−m

, Wω]

+Lm[∆am,αm,βm , X̄ω̇] · Ln−m[∆µn−m,νn−m,ρn−m
, W̄ ω̇]

))

%/.{Ga ,b · Ya · Yb →
1

2
Ga,b · Ga,b};

unlistify[Map[ker, listify[%]]];

%/.kc1;

%/.kc2;

Non-contributing moments are removed,

%/Kα [s, a , b /; b ≥ 3] → 0;

total = %//.{Kα [s, a , b ] → Kα[s, a], K0[s, a ] → K[s]}

= −1
2
sDc[Wα1 ] ·Kα1,c[s, {1, 0, 1}]− 1

2
sDc[W β1 ] ·Kβ1,c[s, {0, 1, 1}]

+
1
2
sDω[Wα1 ] ·Wω ·Kα1 [s, {1, 0, 0}] +

1
2
sD̄ω̇[W̄ β1 ] · W̄ ω̇ ·Kβ1 [s, {0, 1, 0}]

+ . . .

where much of the result has been suppressed.

C.2.2 Hierarchy of moments to leading order

All contributing moments need only be asymptotically expanded to leading order, a

complete list in approximately hierarchal order (see subsection 5.4.2) being given

below. These moments may be computed by hand, or as shown below in section C.3.

The numerical factor common to all is H = i(4πi)−2.

moments = {Kα ,β ,γ ,δ ,a ,b [s, {2, 2, 2}] → −
2i

s3
εα,β εγ,δ ηa,b I H,

Kα ,β ,γ ,δ [s, {2, 2, 0}] → −
4

s2
εα,β εγ,δ I H,

Kα ,β ,γ ,a ,b [s, {2, 1, 2}] →
2

s2
εα,β ηa,b W̄γ H,

Kα ,β ,γ ,a ,b [s, {1, 2, 2}] →
2

s2
εβ,γ ηa,b Wα H,

Kα ,β ,γ ,δ ,a [s, {2, 2, 1}] → 0
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Kα ,β ,γ [s, {2, 1, 0}] → −
4i

s
εα,β W̄γ H,

Kα ,β ,γ [s, {1, 2, 0}] → −
4i

s
εβ,γ Wα H,

Kα ,β ,a ,b [s, {2, 0, 2}] → −
i

s
εα,β ηa,b W̄ γ̇ · W̄γ̇ H,

Kα ,β ,a ,b [s, {1, 1, 2}] →
i

s
ηa,b

(
Wα · W̄β − W̄β · Wα

)
H,

Kα ,β ,a ,b [s, {0, 2, 2}] → −
i

s
εα,β ηa,b W γ · Wγ H,

Kα ,β ,γ ,a [s, {2, 1, 1}] → −
2i

s
εα,β Da[W̄γ ] H,

Kα ,β ,γ ,a [s, {1, 2, 1}] → −
2i

s
εβ,γ Da[Wα] H

Kα ,β [s, {2, 0, 0}] → −2εα,βW̄ γ̇ · W̄γ̇ H,

Kα ,β [s, {1, 1, 0}] → 2
(
Wα · W̄β − W̄β · Wα

)
H,

Kα ,β [s, {0, 2, 0}] → −2εα,βW γ · Wγ H,

Kα ,a ,b [s, {1, 0, 2}] →
1

3

(
Wα · W̄ γ̇ · W̄γ̇ + W̄ γ̇ · W̄γ̇ · Wα − W̄ γ̇ · Wα · W̄γ̇

)
ηa,b H,

Kα ,a ,b [s, {0, 1, 2}] →
1

3

(
W γ · Wγ · W̄α̇ + W̄α̇ · W γ · Wγ − W γ · W̄ α̇ · Wγ

)
ηa,b H,

Kα ,β ,a [s, {2, 0, 1}] → −
2

3
εα,β

(
W̄ γ̇ · Da[W̄γ̇ ] + 2Da[W̄ γ̇ ] · W̄γ̇

)
H,

Kα ,β ,a [s, {1, 1, 1}] →
2

3

(
Wα · Da[W̄β] − W̄β · Da[Wα]

+2Da[Wα] · W̄β − 2Da[W̄β] · Wα

)
H,

Kα ,β ,a [s, {0, 2, 1}] → −
2

3
εα,β

(
W γ · Da[Wγ ] + 2Da[W γ ] · Wγ

)
H,

Kα [s, {1, 0, 0}] →
2is

3

(
W̄ γ̇ · Wα · W̄γ̇ − W̄ γ̇ · W̄γ̇ · Wα − Wα · W̄ γ̇ · W̄γ̇

)
H,

Kα [s, {0, 1, 0}] →
2is

3

(
W γ · W̄α · Wγ − W γ · Wγ · W̄α − W̄α · W γ · Wγ

)
H,

Kα ,a [s, {0, 1, 1}] →
is

6

(
W γ · W̄α · Da[Wγ ] − W γ · Wγ · Da[W̄α]

−W̄α · W γ · Da[Wγ ] + 2W γ · Da[W̄α] · Wγ − 2W γ · Da[Wγ ] · W̄α

−2W̄α · Da[W γ ] · Wγ + 3Da[W γ ] · W̄α · Wγ − 3Da[W γ ] · Wγ · W̄α

−3Da[W̄α] · W γ · Wγ

)
H

Kα ,a [s, {1, 0, 1}] →
is

6

(
W̄ γ̇ · Wα · Da[W̄γ̇ ] − W̄ γ̇ · W̄γ̇ · Da[Wα]

−Wα · W̄ γ̇ · Da[W̄γ̇ ] + 2W̄ γ̇ · Da[Wα] · W̄γ̇ − 2W̄ γ̇ · Da[W̄γ̇ ] · Wα

−2Wα · Da[W̄ γ̇ ] · W̄γ̇ + 3Da[W̄ γ̇ ] · Wα · W̄γ̇ − 3Da[W̄ γ̇ ] · W̄γ̇ · Wα

−3Da[Wα] · W̄ γ̇ · W̄γ̇

)
H};
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C.2.3 Simplification

At this stage we have effectively computed a5(z), and only need simplify the result.

This is essentially achieved through pattern matching, after first having decided on

a basis.

total//.moments//Expand;

%//.expandall//Expand;

%//.lower//.conditionindex;

Selective integration by parts brings any terms containing two spacetime covariant

derivatives not acting on adjacent field strengths into such a form.

%//.{A · Da [B ] · C · Db [D ] → (−1)ε[Db[D]]ε[A·Da[B]·C]Db[D] · A · Da[B] · C,

Db [D ] · A · Da [B ] · C → −D · Db[A · Da[B] · C]}//.expandall//Expand;

On-shell identities (see equation (5.3.70)) are implemented.

%//.{Da [Da [W γ ]] → 〈Wψ, Dψ[W γ ]〉, Da [Da [Wγ ]] → 〈Wψ, Dψ[Wγ ]〉,

Da [Da [W̄ γ ]] → 〈W̄ ψ̇, D̄ψ̇[W̄ γ ]〉, Da [Da [W̄γ ]] → 〈W̄ ψ̇, D̄ψ̇[W̄γ ]〉}

//.expandall//Expand;

Using the cyclic property of the trace all terms are cycled into the standard form,

where all covariant derivatives are placed on the left.

unlistify[Map[cycle, listify[%]]];

All repeated spinor indices on the left are raised.

%//.conditionindex//Expand;

All terms with two covariant derivatives are cast in terms of final basis structures.

Here the basis terms fi,j and f̄i,j are related through complex conjugation, (fi,j)
∗ =

f̄i,j.

%//.{Da [Wα ] · Da [Wα ] · W̄ β · W̄β → −f0,1,

Da [Wα ] · Da [W̄ β ] · Wα · W̄β → −f0,2,

Da [Wα ] · Da [W̄ β ] · W̄β · Wα → −f0,3,

Da [W̄ β ] · Da [W̄β ] · Wα · Wα → −f̄0,1,

Da [W̄ β ] · Da [Wα ] · W̄β · Wα → −f̄0,2,

Da [W̄ β ] · Da [Wα ] · Wα · W̄β → −f̄0,3}
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The equations of motion are used to reduce the total number of terms with a single

spinor covariant derivative.

%//.{Dα [W β ] · A · Wβ · B · Wα · C → Dα[W β] · A · Wα · B · Wβ · C,

D̄α [W̄ β ] · A · W̄β · B · W̄α · C → D̄α[W̄ β] · A · W̄α · B · W̄β · C}

All terms with a single spinor covariant derivative are then cast in terms of final

basis structures.

%//.{Dα [Wβ ] · Wα · W β · W̄ γ · W̄γ → −f1,1,

Dα [Wβ ] · Wα · W̄ γ · W β · W̄γ → −f1,2,

Dα [Wβ ] · W̄ γ · W̄γ · Wα · W β → −f1,1,

Dα [Wβ ] · Wα · W̄ γ · W̄γ · W β → −f1,1,

Dα [Wβ ] · W̄ γ · Wα · W β · W̄γ → −f1,2,

Dα [Wβ ] · W̄ γ · Wα · W̄γ · W β → −f1,2,

D̄α [W̄β ] · W̄α · W̄ β · W γ · Wγ → −f̄1,1,

D̄α [W̄β ] · W̄α · W γ · W̄ β · Wγ → −f̄1,2,

D̄α [W̄β ] · W γ · Wγ · W̄α · W̄ β → −f̄1,1,

D̄α [W̄β ] · W̄α · W γ · Wγ · W̄ β → −f̄1,1,

D̄α [W̄β ] · W γ · W̄α · W̄ β · Wγ → −f̄1,2,

D̄α [W̄β ] · W γ · W̄α · Wγ · W̄ β → −f̄1,2}

Finally the definition of H is implemented, and the coefficient trAd(a5) is isolated

(see (5.2.32)) to yield the final result (5.3.71).

%
16π2

s2
/.

{
H →

i

(4πi)2

}
//Simplify

=
1
30

(
f0,1 − f0,2 + f0,3 − 3f1,1 − f1,2 + f̄0,1 − f̄0,2 + f̄0,3 − 3f̄1,1 − f̄1,2

)

C.3 Expanding moments

In this section, through example, we briefly demonstrate how one may expand mo-

ments. The ideas extend to all orders, where again the only real complication is that

of simplification.

Consider the first order moment hierarchy given above. Suppose we have already

computed, to first order, all but the last moment, Kαa(s), and we wish to complete

the list. In such a case the list of moments would be just as before, but missing this

entry:

moments = DeleteCases[moments, x : (Kα [s, {1, 0, 1}] → )];
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This moment could readily be computed hand, although its position near the base of

the hierarchy ensures it is one of the most difficult to compute. Alternatively one

may choose proceed as follows.

Using the ideas described in the body of the present work, the identity

0 =

∫
dη

∂

∂κβ

(
XαXβXae

is∆
)

(C.3.1)

directly leads to

Kαa(s) =

∫
dη XαXβXa

∞∑
n=0

(is)n+1

(n+ 1)!
Ln

∆(W β) eis∆. (C.3.2)

To the order of interest this is implemented as:

3∑
n=0

(is)n+1

(n + 1)!
Xα · Xβ · Ya · Ln[∆an,αn,βn

, W β]//Expand

unlistify[Map[ker, listify[%]]];

%/.kc1;

%/.kc2;

Non-contributing moments are now removed.

%/Kα [s, a , b /; b ≥ 2] → 0;

%//.{Kα [s, a ] → Kα[s, a], K0[s, a ] → K[s]};

The previously computed moments are now used.

%//.moments//Expand;

%//.expandall//Expand;

%//.lower//.conditionindex;

From inspection of the result, we make the dotted spinor index replacement βi → γ̇.

The first order result follows, and is subsequently added to the list of moments.

%/.βn → γ̇//Simplify

=
is
6

H
(
W̄ γ̇ ·Wα · Da[W̄γ̇ ]− W̄ γ̇ · W̄γ̇ · Da[Wα]−Wα · W̄ γ̇ · Da[W̄γ̇ ]

+ 2W̄ γ̇ · Da[Wα] · W̄γ̇ − 2W̄ γ̇ · Da[W̄γ̇ ] ·Wα − 2Wα · Da[W̄ γ̇ ] · W̄γ̇

+ 3Da[W̄ γ̇ ] ·Wα · W̄γ̇ − 3Da[W̄ γ̇ ] · W̄γ̇ ·Wα − 3Da[Wα] · W̄ γ̇ · W̄γ̇

)
moments = Join[moments, {Kα ,a [s, {1, 0, 1}] → %}];
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C.4 Component extraction

It is easy to show, using (5.3.73) that the final result given above (5.3.71) will yield,

at the component level, the bosonic fieldstrength contribution:

a5comp =
1

30

(( 1

64
∇p[Fa,b] · ∇p[Fc,d] · Fe,f · Fg,h + ∇p[Fa,b] · ∇p[Fe,f ] · Fc,d · Fg,h

+∇p[Fa,b] · ∇p[Fe,f ] · Fg,h · Fc,d

)(
tr[a, b, c, d]t̃r[e, f, g, h] + tr[a, b, c, d]∗t̃r[e, f, g, h]∗

)
−

i

128

(
3Fa,b · Fc,d · Fe,f · Fg,h · Fi,j − Fa,b · Fc,d · Fg,h · Fe,f · Fi,j

)
(
tr[a, b, c, d, e, f ]t̃r[g, h, i, j] + tr[a, b, c, d, e, f ]∗t̃r[g, h, i, j]∗

))
;

where * denotes complex conjugation, and

tr[a, b, c, d] = tr(σaσ̃bσcσ̃d) t̃r[a, b, c, d] = tr(σ̃aσbσ̃cσd)

tr[a, b, c, d, e, f ] = tr(σaσ̃bσcσ̃dσeσ̃f ).

We implement these, and a few other identities (ie see equations (A.1.17), (A.1.19)

and (5.3.77)):

tr[a , b , c , d ] := −2ηa,cηb,d + 2ηb,cηa,d + 2ηa,bηc,d − 2iεa,b,c,d

t̃r[a , b , c , d ] := −2ηa,cηb,d + 2ηb,cηa,d + 2ηa,bηc,d + 2iεa,b,c,d

σ[a , b , c ] := ηa,cσb + ηb,cσa − ηa,bσc + iεa,b,c,mσm

σ̃[a , b , c ] := ηa,cσ̃b + ηb,cσ̃a − ηa,bσ̃c − iεa,b,c,mσ̃m

x ∗ := x/.Complex[a , b ] :→ Complex[a, −b]

perm1 = Permutations[{e, f, g, h}]; perm2 = Permutations[{e, f, g}];

εε[a , b , c , d , e , f , g , h ] := Sum[−Signature[perm1[[j]]] ηa,perm1[[j]][[1]]

ηb,perm1[[j]][[2]]ηc,perm1[[j]][[3]]ηd,perm1[[j]][[4]], {j, 1, 4!}]

εε[a , b , c , e , f , g ] := Sum[−Signature[perm2[[j]]] ηa,perm2[[j]][[1]]

ηb,perm2[[j]][[2]]ηc,perm2[[j]][[3]], {j, 1, 3!}]

Expand[σ[a, b, c]σ̃[d, e, f ]]//.{σa σ̃b → −2ηa,b, σa σ̃b → −2δba, σ̃a σb → −2δba,

δ
m
e εa ,b ,c ,m → εa,b,c,e, σm σ̃n εa ,b ,c ,m εe ,f ,g ,n → −2εε[a, b, c, e, f, g]}

//Expand

= −2ηa,fηb,eηc,d + 2ηa,eηb,fηc,d − 2ηa,bηe,fηc,d + 2ηa,fηb,dηc,e − 2ηa,dηb,fηc,e

− 2ηa,eηb,dηc,f + 2ηa,dηb,eηc,f − 2ηa,fηb,cηd,e + 2ηa,cηb,fηd,e − 2ηa,bηc,fηd,e

+ 2ηa,eηb,cηd,f − 2ηa,cηb,eηd,f + 2ηa,bηc,eηd,f − 2ηa,dηb,cηe,f + 2ηa,cηb,dηe,f

+ 2iηe,f εa,b,c,d − 2iηd,f εa,b,c,e + 2iηd,eεa,b,c,f − 2iηb,cεd,e,f,a + 2iηa,cεd,e,f,b

− 2iηa,bεd,e,f,c
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tr[a , b , c , d , e , f ] := −2ηa,fηb,eηc,d + 2ηa,eηb,fηc,d − 2ηa,bηe,fηc,d + 2ηa,fηb,dηc,e

−2ηa,dηb,fηc,e − 2ηa,eηb,dηc,f + 2ηa,dηb,eηc,f − 2ηa,fηb,cηd,e + 2ηa,cηb,fηd,e

−2ηa,bηc,fηd,e + 2ηa,eηb,cηd,f − 2ηa,cηb,eηd,f + 2ηa,bηc,eηd,f − 2ηa,dηb,cηe,f

+2ηa,cηb,dηe,f + 2iηe,fεa,b,c,d − 2iηd,fεa,b,c,e + 2iηd,eεa,b,c,f − 2iηb,cεd,e,f,a

+2iηa,cεd,e,f,b − 2iηa,bεd,e,f,c

The bosonic component is now simplified.

Expand[a5comp]//.εa ,b ,c ,d εe ,f ,g ,h → εε[a, b, c, d, e, f, g, h]//Expand;

a5comp = %//. Join[Evaluate[lower/. G → F ], {∇a [0] → 0}];

Having decided on what F 5 structures are distinct,

structures = {Fa ,b · Fb ,c · Fc ,d · Fd ,e · Fe ,a → s0,0,

Fa ,b · Fb ,c · Fc ,d · Fe ,a · Fd ,e → s0,1,

Fa ,b · Fc ,d · Fb ,c · Fe ,a · Fd ,e → s0,2,

Fa ,b · Fc ,d · Fe ,a · Fb ,c · Fd ,e → s0,3,

Fa ,b · Fb ,c · Fc ,a · Fd ,e · Fd ,e → s0,4,

Fa ,b · Fd ,e · Fb ,c · Fc ,a · Fd ,e → s0,5,

∇p [Fa ,b ] · ∇p [Fa ,b ] · Fc ,d · Fc ,d → s1,0,

∇p [Fa ,b ] · ∇p [Fc ,d ] · Fa ,b · Fc ,d → s1,1,

∇p [Fa ,b ] · ∇p [Fc ,d ] · Fc ,d · Fa ,b → s1,2,

∇p [Fa ,b ] · ∇p [Fb ,c ] · Fc ,d · Fd ,a → s1,3,

∇p [Fa ,b ] · ∇p [Fc ,a ] · Fb ,d · Fd ,c → s1,4,

∇p [Fa ,b ] · ∇p [Fc ,d ] · Fb ,c · Fd ,a → s1,5};

one can easily generate all obviously equivalent structures

gen[Fa ,b · e → h ] := {Fb,a · e → −h, e · Fa,b → h}

gen[∇p[Fa ,b ] · e → h ] := {∇p[Fb,a] · e → −h, e · ∇p[Fa,b] → h}

While[Length[structures] < 6 25 5 + 6 24 4,

structures = Union[Flatten[Join[{structures}, Map[gen, structures]]]]]

and express the result in terms of them, as follows.

136



a5comp//.structures//Simplify

= − 1
60

i
(
2s0,0 − 12s0,1 + 14s0,2 + s0,4 − 7s0,5

− is1,0 − is1,1 − is1,2 + 4is1,3 + 4is1,4 + 4is1,5

)
Using the results of section 5.3.3, we can now express the F 5 terms in our chosen

basis

%//.{s0,5 →
s0,0

5
− s0,1 + s0,2 +

3s0,3

5
,

s0,4 → −
3s0,0

5
+ s0,1 + s0,2 +

s0,3

5
,

s1,5 → 2is0,0 − 5is0,1 − is0,3 +
3

4
s1,0 +

3

4
s1,1 +

3

4
s1,2 + s1,3 − 3s1,4}//Expand

//Simplify

=
1
30

i (4s0,0 − 8s0,1 − 4s0,2 − is1,0 − is1,1 − is1,2 − 4is1,3 + 4is1,4)

which is the final result (5.3.115).
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