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Abstract

In this thesis, we discuss novel techniques used to compute perturbative scattering am-

plitudes in gauge theories. In particular, we focus on the use of complex momenta and

generalised unitarity as efficient and elegant tools, as opposed to standard textbook

Feynman rules, to compute one-loop amplitudes in gauge theories. We consider scatter-

ing amplitudes in non-supersymmetric and supersymmetric Yang-Mills theories (SYM).

After introducing some of the required mathematical machinery, we give concrete exam-

ples as to how generalised unitarity works in practice and we correctly reproduce the n-

gluon one-loop MHV amplitude in non-supersymmetric Yang-Mills theory with a scalar

running in the loop, thus confirming an earlier result obtained using MHV diagrams:

no independent check of this result had been carried out yet. Non-supersymmetric scat-

tering amplitudes are the most difficult to compute and are of great importance as they

are part of background processes at the LHC. Lastly, we explore an alluring and fasci-

nating relation between colour-ordered amplitudes in N = 4 SYM and amplitudes in

supersymmetric Quantum Electrodynamics (SQED) at the one-loop level. Furthermore,

we consider the possibility of recursive structures of two-loop amplitudes in maximally

SQED similar to the ones discovered for the N = 4 SYM theory.
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Chapter 1

Prolegomenon

Although we have long left behind the a-tom of Democritus, we are nevertheless strug-

gling to understand and describe our modern version of atom. Particle physics as we

are taught, and as we in turn try to teach, is concerned with the study of objects so

infinitesimally smaller than Democritus’ atoms that the only viable method to probe

them is to collide1 them and describe their behaviour after the collision. Thankfully,

a proportion of mankind is inclined toward a thorough understanding of the universe

through every means at its disposal, and it has managed to define a physical quan-

tity that describes the behaviour of such a particle collision: the scattering cross section

which is proportional to the probability that the process will indeed occur. We interpret

the probability as the absolute value squared of a quantum mechanical amplitude.

Scattering amplitudes are computed in an expansion in power series of coupling

constants. At the leading order (LO), many methods both numerical MADGRAPH [1],

CompHEP [2] and analytical (see rest of the thesis) are available. However, there are

some instances in which a next-to-next-to-leading order (NNLO) enhances the scattering

amplitude by several orders of magnitude. At the LHC, statistical evidence for the scalar

Higgs boson responsible for generating mass in electro-weak (EW) symmetry breaking,

is expected to be found. A NNLO calculation for the Higgs boson would boost its

cross section by a factor of two [3–6]. Additionally, a whole host of supersymmetric

partners of the known particles is awaited with much trepidation. Below, we show a

table representing some sort of “priority” wishlist of next-to-leading (NLO) processes

expected to take place at the LHC which the experimental particle physics community

has addressed to the attention of the theoretical community. Be that as it may, the

signatures for new physics will be so intertwined with the physics we already know that

1Our most favourite particle collider is the Large Hadron Collider (LHC), which is currently out of
order and scheduled to resume in November 2009.

7
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process relevant for
(V ∈ {Z,W, γ})

1. pp→ V V jet tt̄H, new physics
2. pp→ tt̄ bb̄ tt̄H
3. pp→ tt̄+ 2 jets tt̄H
4. pp→ V V bb̄ VBF→ H → V V , tt̄H, new physics
5. pp→ V V + 2 jets VBF→ H → V V
6. pp→ V + 3 jets various new physics signatures
7. pp→ V V V SUSY trilepton

Table 1.1: The LHC “priority” wishlist, extracted from [7].

calculations at least at NLO order will be required in order to separate the new and

interesting events from the known background.

Theory hand-in-hand with experiment have given to mankind a somewhat compre-

hensive and accurate description of the realm of particle physics, the standard model

(SM). It purports to happily nest three of the four known fundamental forces of nature,

i.e. electro-weak theory and quantum chromodynamics (QCD), next to each other in a

quantum gauge field theory with gauge group SU(3)×SU(2)×U(1). However, the story

is not all flowers and roses in that, for instance, gravity is not incorporated into the SM.

Also, one of the problems that mostly affects the SM is its incapacity to explain the

hierarchy problem, the discrepancy between the energy scale of EW theory mEW ∼ 103

GeV and grand unified theory (GUT) or Planck scale MPl = G
−1/2
N ∼ 1018 GeV, i.e.

the discrepancy between the mass of the Higgs boson and the GUT scale or the Planck

mass. It is thought that the SM should be coming naturally from a GUT with gauge

groups SU(5) or SO(10) that spontaneously breaks to SU(3)×SU(2)×U(1) at energies

MGUT ∼ 1014 − 1016 GeV.

Traditionally, scattering amplitudes in gauge theories are computed using Feynman

rules, which are derived from an action. Alas, although the result is generally simple and

elegant, the number of diagrams grows factorially as the number of external particles

involved in the scattering process increases. Inevitably, one is led to develop alternative

and more efficient ways of calculating scattering amplitudes by exploring as many and

diverse roads as possible.

One such road was undertaken in [8] where a duality was found between type IIB

string theory residing in the product space of 5-dimensional anti-de-Sitter space (AdS)

and a 5-sphere, AdS5 × � 5, and conformal N = 4 super-Yang-Mills (SYM) theory in
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Minkowski space with gauge group SU(Nc), where the number of colours Nc → ∞ [9].

The duality, generally known as the AdS/CFT correspondence, relates a weakly-coupled

string theory to a strongly-coupled four-dimensional gauge theory.

In [10], another remarkable duality was found between weakly-coupled N = 4

SYM in Minkowski space and weakly-coupled topological string theory on a Calabi-

Yau ��� 3|4. In the same paper, a geometrical property of amplitudes in N = 4 SYM

was evinced, namely that tree-level2 scattering amplitudes in N = 4 SYM localise on

curves in twistor space [11]. For example, the simplest of such scattering amplitudes,

the maximally helicity violating (MHV) amplitudes, localise on algebraic curves of de-

gree 1 in twistor space. This observation explained the simplicity of tree-level scattering

amplitudes computed in a Feynman manner. The geometrical interpretation of ampli-

tudes in twistor space led to a novel diagrammatic approach [12] for computing tree

amplitudes in which the MHV amplitudes are employed as vertices, which are in turn

glued by scalar propagators. In [13–15], a mathematical justification for these rules in

terms of a light-cone Lagrangian formulation was given.

In spite of the situation at one loop being initially less clear, the diagrammatic

approach of [12] was extended in [16] to compute one-loop MHV amplitudes in N = 4

SYM, confirming earlier results of [17]. Subsequently, MHV amplitudes in N = 1 SYM

and pure Yang-Mills were given in [18, 19] and [20] respectively, confirming earlier work

[21] and presenting for the first time the infinite sequence of MHV amplitudes in pure

Yang-Mills theory. However, it was realised that the MHV diagrammatic approach

only computes the cut-constructible part of an amplitude, thus missing3 certain rational

contributions to the amplitude. In [22], the rational terms for the MHV amplitudes in

pure Yang-Mills were presented, thus providing the complete n-gluon MHV amplitude

in QCD using a supersymmetric decomposition of one-loop amplitudes in QCD.

In [23, 24], an entirely different road was followed which led to certain on-shell

recursion relations for tree-level amplitudes in gauge theory. Based on the existence

of relations between tree and one-loop amplitudes in N = 4 SYM [25–28] and using

complex momenta and complex analysis, recursion relations were found which allow

one to construct all n-point scattering amplitudes starting from complex three-point

amplitudes. Similar recursive structures were later discovered for tree-level amplitudes

in gravity [29, 30]. At one loop, these on-shell recursive relations were applied to

construct the rational parts of MHV scattering amplitudes in QCD [31–36]. On the

gravity side, use of on-shell recursive relations yielded some one-loop results in [37].

2The tree-level amplitudes arise from a one-instanton computation which leads to a formalism similar
to that introduced in [184].

3Rational terms are present in both supersymmetric and non-supersymmetric amplitudes. However,
in supersymmetric theories the rational terms are uniquely linked to the cut-constructible parts [17, 21].
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A study of collinear limits of maximally supersymmetric gauge theories amplitudes

[38], led to the discovery of intriguing iterative structures of amplitudes in planar N = 4

SYM. Namely, it was shown how the two-loop four-point MHV amplitude in N = 4

SYM could be expressed in terms of one-loop amplitudes. This observation prompted

speculation that the same iterative structure should hold for n-point MHV amplitudes

for any number of loops and, to this end, an impressive three-loop calculation of the

four-point MHV amplitude in N = 4 SYM was carried out in [39]. There, an all-

loop resummed formula for the n-point MHV amplitude was conjectured according to

which multi-loop amplitudes could be recast in terms of one-loop amplitudes together

with some kinematic-independent quantities. A two-loop calculation of the five-point

amplitude [40] further confirmed the conjecture of [39].

The profound implications of the AdS/CFT correspondence were put to work in

a seminal paper [41] in which the calculation of the four-point amplitude reproduced

the strong-coupling limit of the all-loop ansatz proposed in [39]. This new finding

suggested that a polygonal n-sided Wilson loop, this time evaluated at weak-coupling,

could be related to the perturbative n-point MHV amplitude in N = 4 SYM. The

latter conjecture was succesfully shown to hold at one-loop for the four-point [42] and

n-point [43] amplitude. A two-loop calculation for the four- [44] and five-sided [45]

Wilson loop, gave more evidence to the Wilson loop conjecture and at the same time

testified favourably for the proposal of [39]. However, while a computation of the two-

loop six-point MHV amplitude in N = 4 SYM [46] revealed an incompleteness of the

ansatz whereby the addition of a function (called remainder function) was needed, a

parallel computation of the six-sided Wilson loop at two loops [47, 48] confirmed both

the results of [46] and the correctness of the Wilson loop/MHV amplitude duality.

1.1 Outline

The thesis focuses on twistor string inspired methods to compute perturbative scattering

amplitudes. In particular, the use of complex momenta and a novel approach to (gener-

alised) unitarity will play a fundamental role throughout this thesis. In Chapter 2 we

introduce the reader to some necessary machinery, which will be helpful (hopefully) to

understand later chapters. Specifically, we review the spinor helicity formalism and the

use of complex momenta to compute scattering amplitudes together with the simplest

example of MHV amplitude, the three-point gluon amplitude. We present supersym-

metric Ward identities (SWI), which are essential in computing scattering amplitudes

with fermions or scalars running in the loop. Furthermore, we introduce the CSW con-

struction by sketching the derivation of a five-point Next-to-MHV (NMHV) amplitude
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which has three negative-helicity gluons. We end the chapter by recalling on-shell re-

cursion relations which, based on the use of complex analysis, allow the construction of

n-point tree-level amplitudes in terms of n− 1-point and lower-point amplitudes.

Much of what lies at the heart of this thesis goes back to the S-matrix programme

developed in the sixties. Although initially incepted as a theory for the strong inter-

action, it gradually lost momentum and allure due to the development of QCD, which

was emerging as the correct theory describing the strong interaction. However, in the

nineties it was taken up again, refined and, with the introduction of dimensional regu-

larisation which was alien to the original formulation of the S-matrix programme, put

to work to produce results which were unthinkable to obtain with Feynman graph tech-

niques. In Chapter 3 we witness the revival of the S-matrix programme by working

through simple examples.

In Chapter 4 we, based on the original work [49] of the author of this thesis, offer

a complete rederivation of the n-point one-loop MHV amplitude in pure Yang-Mills

by means of generalised unitarity. Due to a supersymmetric decomposition of QCD

amplitudes (shown in Chapter 2) in terms of N = 4, N = 1 and pure Yang-Mills

contributions, the knowledge of the scalar contribution to a QCD amplitude provides

the last bit of information toward the full one-loop QCD amplitude4. Most of the

calculation is found in the chapter, although we defer the nitty gritty to Appendix

C and D. We conclude the chapter by considering NMHV pure Yang-Mills one-loop

amplitudes. We stress the difficulties arising in computing such an amplitude and we

offer a detailed and original5 calculation of the coefficient of the three-mass triangle

integral function. Having the reader mastered Chapter 2 and Chapter 3, she/he will

find Chapter 4 extremely digestible.

Since much of the thesis is focussed on gluon amplitudes, we felt obliged to pay trib-

ute to (supersymmetric) quantum electrodynamics (SQED). In Chapter 5 we prove a

relation between coefficients of certain integral functions in (S)QED and the correspon-

dent integral functions in (S)YM. We then proceed to conclude the chapter by exploring

the possibility of hidden recursive structures of two-loop amplitudes in N = 2 SQED

similar to the ones discovered in N = 4 SYM. Although not on the same footing as those

in N = 4 SYM, we nevertheless manage to expose an approximate recursive structure

for N = 2 SQED which deserves to be more deeply explored. All of the chapter is based

on the original work [51] of the author of this thesis.

Nearing the end of the thesis, we could not have finished without mentioning the

4Up to some rational coefficients. See discussions in Chapter 3 and Chapter 4.
5The coefficient of the NMHV three-mass triangle function in pure Yang-Mills was computed by the

author of this thesis in an unpublished work. Much later on, it was published by other authors in [50].
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duality between Wilson loop diagrams and N = 4 SYM scattering amplitudes. By

switching back to gluons, in Chapter 6 we introduce the reader to this remarkable

duality and use it to compute6 the one-loop splitting amplitude from light-like Wilson

loops finding agreement with a previous version of the calculation by means of unitarity.

In Chapter 7 we conclude the thesis with a summary of the work done and we

discuss what the future may hold. A series of Appendices on spinors and Dirac traces,

on Feynman rules, on tensor integrals and twistor space follows suit.

6This result was first arrived at by the author of this thesis in an unpublished work. It was subse-
quently published by others in [52].



Chapter 2

Some Preliminaries

It is common and unfortunate knowledge that computing scattering amplitudes in gauge

theories by means of Feynman rules is a rather tedious and lengthy procedure. The

complexity of the calculation of the amplitudes grows beyond control as the number

of both external and internal particles increases. Nevertheless, the final result is often

quite simple and neat. Why? Scattering amplitudes are functions of several variables

which describe colour quantum numbers, polarisation states and kinematics. All this

redundant information comes from employing Feynman rules. In order to disentangle

all of the information and render the computation more manageable, it has become

common to express the polarisation states by recurring to the spinor helicity formalism

and to organise the colour dependence of the scattering amplitude in colour ordered

subamplitudes, or primitive amplitudes. In § 2.1 we describe what colour ordering an

amplitude means while we postpone the spinor helicity formalism to § 2.2. The use

of complex momenta to deal with the kinematics of scattering amplitudes is given in

§ 2.3.1 of this chapter. Rudiments of supersymmetry are elucidated in § 2.3.2.

2.1 Colour Ordering

We may begin this section by recalling that colour decomposition dates back in time to

the early formulation of string theory as a theory for Quantum Chromodynamics (QCD)

[53–57]. The basic idea behind colour ordering is to divide a scattering amplitude

into smaller gauge invariant pieces by using group theory arguments. We take our

gauge group to be SU(Nc) as it is the most commonly studied. Quarks and antiquarks

transform in the fundamental Nc and antifundamental N̄c representations respectively,

carrying indices i, j̄ = 1, 2, . . . , Nc, whilst gluons carry an adjoint colour index a =

13
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1, 2, . . . , N 2
c −1. The colour structure is encoded in the gauge group structure constants,

which may be written in terms of traces of products of Hermitian Nc ×Nc fundamental

representation matrices, the SU(Nc) generators (Ta)
j̄

i , with a = 1, 2, . . . , N 2
c − 1, as

fabc = − i√
2
Tr[[T a, T b], T c], (2.1.1)

where we employ the following normalisation

[T a, T b] = i
√

2fabcT c, Tr[T aT b] = δab. (2.1.2)

According to the Feynman rules, we shall have a factor of (T a) j̄
i for each gluon-quark-

antiquark vertex, a structure constant f abc for each pure gluon three-vertex and con-

tracted products of structure constants f abef cde for each pure gluon four-vertex. Clearly,

replacing all the structure constants f abc by means of (2.1.1) produces a long string of

trace factors of the form Tr(. . . T a . . .)Tr(. . . T a . . . ) . . . (. . .) if we consider only external

gluonic states. If we include external quarks, then there will also be some strings of

trace factors terminating with (anti) fundamental indices of the form Tr(T a . . . T b) j̄
i .

Let us now introduce the Fierz identity

(T a) j̄
i (T a) l̄

k = δ l̄
i δ

j̄
k − 1

Nc
δ j̄
i δ

l̄
k , (2.1.3)

where summation over repeated indices is understood. At tree level, by means of (2.1.3),

we are able to cast all the structure constants in terms of sums of single traces of

generators. As we are mostly concerned with gluon scattering, we may write a general

amplitude as

Atree
n = gn−2

∑

σi∈Sn/Zn

Tr[T aσ1T aσ2 . . . T aσn ]Atree
n (σ1, σ2, . . . , σn), (2.1.4)

where g is the gauge coupling, Sn is the set of permutations of n objects and Zn

is the subset of cyclic permutations so that the sum in (2.1.4) is taken over the set

of inequivalent traces. The Atree
n (σ1, σ2, . . . , σn) quantities are the partial amplitudes,

which contain all the kinematic information. These colour ordered sub-amplitudes are

simpler to deal with because they correspond to only one specific colour ordering and

thus they depend on less kinematic variables1. For example, the simplest of such sub-

amplitudes, will be

Atree
3 = g (Tr[T a1T a2T a3 ]Atree

3 (1, 2, 3) + Tr[T a1T a3T a2 ]Atree
3 (1, 3, 2)) . (2.1.5)

1Specifically, they will depend on only adjacent momenta.
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The usefulness of partial amplitudes really becomes manifest as the number of external

legs increases. For example, computing the five-gluon amplitude would require only ten

colour-ordered diagrams as opposed to forty if we use all the Feynman diagrams. Had we

to include matter in the fundamental representation, the strings of matrices appearing

in (2.1.4) would carry (anti)-fundamental indices i, j̄; however, the matrices will not be

traced as the i, j̄ indices of the fundamental representation run freely. Equation (2.1.3)

is a mathematical statement about the tracelessness of the T a generators of SU(Nc):

the 1/Nc term subtracts the trace of U(Nc) group in which SU(Nc) is embedded. If we

consider a theory with gauge group U(Nc) = SU(Nc) × U(1), then the U(1) generator

will be given by

(T a
U(1))

j̄
i =

1√
Nc

δj̄
i , (2.1.6)

which, once added to (2.1.3), will cancel the term proportional to 1
NC

. Thus, from a

physical point of view, (2.1.3) instructs us to subtract at each vertex the contribution

coming from a U(1) gauge boson, generally called the photon as it is colourless and it

does not couple to gluons. At loop level, additional colour structures, such as double

traces in the one-loop n-gluon amplitude, appear. In the large-Nc limit (Nc → ∞)

[9], the single-trace terms would give rise to planar leading-colour contributions while

multi-trace terms would give rise to non-planar subleading-colour contributions. For

example, the one-loop five-gluon amplitude takes the following colour decomposition

A1-loop
5 = g5

[

∑

σ∈S5/Z5

NcTr(T aσ1 , . . . , T aσ5 )A1-loop
5 (σ1, . . . , σ5) (2.1.7)

+
∑

σ∈S5/(S2×S3)

Tr(T aσ1T aσ2 )Tr(T aσ3T aσ4T aσ5 )A1-loop
5,non-planar(σ1, . . . , σ5)

]

.

Nevertheless, one may utilise formulæ which relate double-traces terms to permutations

of colour-ordered quantities [17, 58, 59].

We conclude this section by mentioning that it was ’t Hooft [9] who realised that

for gauge theories with gauge group SU(Nc), apart from the coupling gYM there exists

a dimensionless parameter, 1/Nc, which can be employed in an expansion. The ’t Hooft

limit Nc → ∞ with λ = g2Nc = constant and Nc the number of colours, has been at the

core in the studies of the AdS/CFT correspondence [8]. Succinctly, without entering this

vast topic and referring the reader to the original work, the correspondence conjectures

an equivalence between conformal four dimensional gauge theories and string theories

in AdS ×X. The most studied and used version of this correspondence involves N = 4

supersymmetric gauge theory with gauge group SU(Nc) on one side and Type IIB string

theory on AdS5 ×
� 5 on the other. The correspondence is also conjectured to hold for

M-theory and non-conformal gauge theories although it is much less understood for the

last two cases.
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2.2 Spinor Helicity Notation

We can now turn to the second important ingredient for calculating scattering ampli-

tudes. Introduced back in the early eighties to represent polarisation vectors [60–64],

spinors of massless particles have brought about a major simplification in the calcula-

tion of scattering amplitudes. Spinors of lightlike particles are solutions of the massless

Dirac equation

pµγ
µu(p) =6 pu(p) = 0 , (2.2.1)

where u(p) is a four component spinor and γµ, µ = 0, . . . , 3, in the chiral representation

of Dirac γ-matrices, are

γ0 =

(

0 1

−1 0

)

, γi =

(

0 σi

σi 0

)

, γ5 =

(

0 1

1 0

)

(2.2.2)

where σi are the standard Pauli matrices. We write a generic negative-chirality spinor

λα with α = 1, 2 and, similarly, a generic positive-chirality spinor λ̃α̇ with α̇ = 1, 2,

where all indices are raised and lowered with the antisymmetric tensors εab, εα̇β̇ and so

on. We define antisymmetric Lorentz-invariant scalar products between spinors as

〈λη〉 = εαβλ
αηβ = εαβλαηβ = λαηα , (2.2.3)

[λ̃η̃] = εβ̇α̇λ̃
α̇η̃β̇ = εβ̇α̇λ̃α̇η̃β̇ = λ̃α̇η̃

α . (2.2.4)

It follows that for negative-chirality spinors we have 〈λη〉 = −〈ηλ〉 and similarly for

positive-chirality spinors. The Dirac spinors can be written as two two-component

spinors

u(p) =

(

uα(p)

ũα̇(p)

)

. (2.2.5)

By writing a momentum vector pµ as a bi-spinor pαα̇ with one spinor index a and ȧ of

each chirality, we then have

pαα̇ = pµσ
µ
αα̇ = p0 � + ~p · ~σ (2.2.6)

=

(

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)

, (2.2.7)

from which pµp
µ = det(pαα̇) follows. Hence, pµ is light-like (p2 = 0) if det(pαα̇) = 0

which entails that massless vectors are those which can be cast as

pαα̇ = λαλ̃α̇ , (2.2.8)
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for some Weyl spinors (λα, λ̃α̇) defined up to the scaling

(λ, λ̃) → (cλ, c−1λ̃) ∈ � , (2.2.9)

for a complex number c2.

It is interesting to consider spinors in different signatures. In Minkowski signature

(+ − −−) for real null momenta, the spinors λα and λ̃α̇ have to be taken complex

conjugates of each other

λα̇ = ±λ̃α̇ , (2.2.10)

where the ± refers to whether pµ has a positive (incoming particle) or negative (outgoing

particle) energy. For complex momenta, the spinors λα and λ̃α̇ are independent complex

variables while in signature (++−−), the spinors λα and λ̃α̇ are real and independent.

However, pµp
µ = det(pαα̇) holds generally so that we can write the scalar product for

any two light-like vectors p and q as

−2(p · q) = 〈λpλq〉[λ̃pλ̃q] , (2.2.11)

where in (2.2.11) we use the standard sign convention found in the perturbative field

theory literature which differ by a minus sign from the string literature.

To describe massless particles of helicity ±, in addition to their momentum vector

pµ, we introduce a spinor representation for their polarisation vectors εµ

ε+µ (pi, κi) =
〈κi|γµ|pi]√

2〈κipi〉
, ε−µ (pi, κi) =

〈pi|γµ|κi]√
2[piqi]

, (2.2.12)

where κ is some massless reference momentum. In terms of bi-spinor, (2.2.12) can be

written as

ε+αα̇ =
λκiαλ̃piα̇√
2〈λκi

λpi
〉
, ε−αα̇ =

λpiαλ̃κiα̇√
2[λpi

λκi
]
. (2.2.13)

The polarisation vectors εµ are constrained by the Lorentz gauge condition ε±(p, κ) ·
p = 0 since 〈λλ〉 = [λ̃λ] = 0. By judiciously choosing the reference momenta κi of

like-helicity gluons to be identical and to equal the external momentum of one of the

opposite-helicity set of gluons, it is possible to greatly simplify a calculation by making

2If we were not in a complex Minkoswki space, the scaling c would be a pure phase c = eiφ.
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many terms and diagrams vanish due to the following standard properties:

ε±i (κ, pi) · κ = 0 , (2.2.14)

ε+i (κ, pi) · ε+i (κ, pi) = ε−i (κ, pi) · ε−i (κ, pi) = 0 , (2.2.15)

ε+i (κ, pj) · ε−j (κ, pi) = ε+i (κ, pj) · ε−j (κ, pi) = 0 . (2.2.16)

We remark how the polarisation vectors in (2.2.12) (or in (2.2.13)) are independent

of the choice of κ up to a gauge transformation3.

We conclude this section by listing some of the most useful spinor identities in dealing

with scattering amplitudes calculations:

〈q|γµ|q] = 2qµ (Gordon identity) , (2.2.17)

〈p|γµ|q] = [q|γµ|p〉 (Charge conjugation) , (2.2.18)

〈p|γµ|q]〈r|γµ|s] = −2〈pr〉[qs] (Fierz rearrangement) , (2.2.19)

〈pq〉〈rs〉 = 〈pr〉〈qs〉 + 〈ps〉〈rq〉 (Schouten identity) . (2.2.20)

for some null momenta p, q, r, s.

2.3 Tree-Level Amplitudes

In this section we deal with three-point amplitudes and describe how the use of complex

momenta yields a result which would otherwise be zero had real momenta been used.

In particular, we derive the first term of the series of MHV tree amplitudes for gluons

as conjectured by Parke and Taylor [65] and proved by Berends and Giele [66]. The role

of supersymmetry at tree level is also reviewed. Tree-level supersymmetry is a powerful

constraint on tree amplitudes. Supersymmetric Ward identities (SWI) [67, 68] relate

amplitudes with different external states but the same number of particles and the same

amount of total helicity. We denote An ≡ Atree
n throughout this section. Also, a factor

of gn−2 will be omitted in all the tree-amplitude expressions.

2.3.1 Complex Momenta and MHV Tree-Level Amplitudes

The notion of complex momenta in the realm of quantum field theories is certainly

not new. Complex momenta are extremely useful in computing three-point amplitudes

3See [10] for a proof of the independence of κ.
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Figure 2.1: Examples of application of complex momenta: three-point amplitude and
generalised unitarity cuts.

involving on-shell states as for any three massless legs i, j and k process with real

momenta, sij = 0 which imposes collinearity on all three momenta. As we will see in

§ 2.5.3, complex momenta were essential ingredients in deriving recursion relations at

tree level as well as being the building blocks for computing amplitudes by means of

generalised unitarity cuts. Recall from (2.2.10) that for real null momenta, spinors λα

and λ̃α̇ are complex conjugate of each other so that spinor products are complex square

roots of the Lorentz products

〈jl〉 = ±√
sjle

iφjl , [jl] = ±√
sjle

−iφjl . (2.3.1)

Hence, for vanishing sij all the spinor products follow suit. However, for complex

momenta, (2.3.1) does not hold anymore. In order to explain the latter statement, let

us have a look at the three-point vertex depicted in Figure 2.1. Momentum conservation

dictates that

λ1λ̃1 = λ2λ̃2 + λ3λ̃3. (2.3.2)

For complex momenta, we can choose either the holomorphic or anti-holomorphic spinors

to be proportional. Let us choose the antiholomorphic spinors λ̃

λ̃1 = c1λ̃2 , λ̃3 = c2λ̃2 , (2.3.3)

which entails that

[λ̃1λ̃2] = [λ̃2λ̃3] = [λ̃3λ̃1] = 0 , (2.3.4)

for some complex c1 and c2. With this choice of kinematics, the tree-level amplitude

with two negative-helicity and one positive-helicity states does not vanish although all

the momentum invariants sij do according to (2.2.11). For the case of gluons, the A3

can be computed by means of the three-gluon-vertex as provided by the colour-ordered
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Feynman rules

A3(1
−, 2−, 3+) =

i√
2

[

ε−1 · ε−2 ε+3 · (p1 − p2) + ε−2 · ε+3 ε−1 · (p2 − p3) (2.3.5)

+ ε+3 · ε−1 ε−2 · (p3 − p1)
]

.

Judiciously choosing the reference vectors as κ1 = κ2 and κ3 = p1 and Fierz-rearrange

the expression, (2.3.5) reduces to only one term

A3(1
−, 2−, 3+) = i

√
2ε−2 · ε+3 ε−1 · p2 (2.3.6)

= i
[κ13]〈12〉
[κ12]〈13〉

[κ12]〈21〉
[κ11]

= i
[κ13]

[κ11]

〈12〉2
〈31〉

〈32〉
〈32〉

= i
〈12〉3

〈23〉〈31〉 ,

which can be written as

A3(1
−, 2−, 3+) = i

〈12〉4
〈12〉〈23〉〈31〉 . (2.3.7)

Equation (2.3.7) is the first term of the MHV tree-level amplitude for n gluons,

conjectured by Parke and Taylor [65] and proved by Berends and Giele [66]

An(1+, . . . , i−, . . . , j−, . . . , n+) = i
〈14〉4

〈12〉〈23〉 · · · 〈n1〉 . (2.3.8)

There exists a similar expression for two positive-helicity and the rest all negative-

helicity states obtained by taking the complex conjugate of (2.3.8)

An(1−, . . . , i+, . . . , j+, . . . , n−) = −i [14]4

[12][23] · · · [n1]
, (2.3.9)

called the googly MHV amplitude. We notice that both (2.3.8) and (2.3.9) hold for

n ≥ 4 for real momenta. Other useful tree-level amplitudes results are

An(1+, . . . , n+) = 0 , (2.3.10)

An(1+, . . . , i−, . . . , n+) = 0 ,

An(1−f , 2
+
f , 3

+, . . . , n+) = 0 ,

where . . . are any number of positive-helicity gluons. We prove (2.3.10) in the next

section within the context of supersymmetry. While these relations hold for any loop

in SUSY theories, they cease to hold at loop-level in QCD.
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2.3.2 Supersymmetry at Tree Level

At tree level, gluon scattering amplitudes are the same in pure YM as they are in N = 4

so that we can regard tree-level QCD as effectively supersymmetric. The reason behind

this interesting observation goes as follows. If we consider an n-gluon tree amplitude,

there are no fermions anywhere in any Feynman diagrams. As such, we could regard

the fermions as living in the adjoint representation, which amounts to saying that the

pure YM theory could be regarded as supersymmetric [69]. This statement holds for

any number of supersymmetries and it leads to the more general result

Atree
QCD = Atree

N=1 = Atree
N=2 = Atree

N=4 . (2.3.11)

The way gluon tree-level amplitudes in pure YM relate to supersymmetric ampli-

tudes with fermions and scalars is mathematically implemented by SWI4, which were

first considered in [67–70]. At one loop, (2.3.11) ceases to hold; nevertheless, we can

still make use of the useful supersymmetric decomposition for gluon amplitudes which

we review in § 2.4.

To obtain the SWI, let us consider an amplitude written in terms of fields Φi acting

on the vacuum

〈0|Φ1Φ2 · · ·Φn|0〉 . (2.3.12)

In an N = 1 supersymmetric theory we introduce a supercharge Q(η), with η the

fermionic parameter of the supersymmetry. Q(η) annihilates the vacuum, for we con-

sider unbroken supersymmetric theories. Thus, we can write

0 = 〈0|[Q(η),Φ1Φ2 · · ·Φn]|0〉 =

n
∑

i=1

〈0|Φ1 · · · [Q(η),Φi] · · ·Φn|0〉 . (2.3.13)

In order to prove the vanishing of the tree-level amplitudes (2.3.10), we need the

expressions of the commutators of the supercharge Q(η) with the gluons g±(k) and the

fermions Λ±(k)

[Q(η), g±(k)] = Γ±(k, η)Λ±(k) , [Q(η),Λ±(k)] = Γ∓(k, η)g±(k) , (2.3.14)

where

Γ+(k, η) = θ[qk] , Γ−(k, η) = θ〈qk〉 . (2.3.15)

4The following is also nicely reviewed in a number of places including [71, 72].
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In (2.3.15) θ is a Grassmann parameter and q a null vector with Weyl polarisation

spinors φ(q) and φ̄(q) such that

ηα(q) =
θφα(q)√

2
, η̄α̇(q) =

θφ̄α̇(q)√
2

. (2.3.16)

We begin with the first formula of (2.3.10), the amplitude with all-plus helicity

gluons. We act on

〈0|Λ+
1 g

+
2 · · · g+

n |0〉

0 = 〈0|[Q(η),Λ+
1 g

+
2 · · · g+

n ]|0〉 (2.3.17)

= 〈qk1〉An(g+
1 , g

+
2 , . . . , g

+
n ) + 〈qk2〉An(Λ+

1 ,Λ
+
2 , . . . , g

+
n )

+ · · · + 〈qkn〉An(Λ+
1 , g

+
2 , . . . ,Λ

+
n ) .

In (2.3.17), only the first amplitude does not vanish for gluinos, like quarks, must satisfy

helicity conservation at each interaction. Thus, we proved that the all-plus amplitude

of (2.3.10) vanishes as well. The one negative-helicity case follows a similar pattern. We

begin by acting on 〈0|Λ+
1 g

−
2 · · · g+

n |0〉

0 = 〈0|[Q(η),Λ+
1 g

−
2 · · · g+

n ]|0〉 (2.3.18)

= 〈qk1〉An(g+
1 , g

−
2 , . . . , g

+
n ) + 〈qk2〉An(Λ+

1 ,Λ
−
2 , . . . , g

+
n ) ,

where we have omitted all the amplitudes violating helicity conservation. By choosing

the reference vector in the same manner as we did to derive (2.3.6), we retrieve the

second and third formula of (2.3.10). Setting q = k1 and q = k2 yields the answer.

The first non-zero amplitudes appear with two negative-helicity gluons. We act on

〈0|g−1 , · · · , g−i , · · · ,Λ+
j , · · · g+

n |0〉

0 = 〈0|[Q(η), g−1 · · · g−i · · ·Λ+
j · · · g+

n ]|0〉 (2.3.19)

= 〈qk1〉An(Λ−
1 , · · · , g−i , · · · ,Λ+

j , · · · g+
n ) + 〈qki〉An(g−1 , · · · ,Λ−

i , · · · ,Λ+
j , · · · g+

n )

+ 〈qkj〉An(g−1 , · · · , g−i , · · · , g+
j , · · · g+

n ) .

Setting q = k1, we find an expression relating gluon amplitudes to an amplitudes with

two fermions of opposite helicity

An(g−1 , · · · ,Λ−
i , · · · ,Λ+

j , · · · g+
n ) =

〈1kj〉
〈1ki〉

An(g−1 , · · · , g−i , · · · , g+
j , · · · g+

n ) . (2.3.20)

Extending the supersymmetry to N = 4, allows one to enlarge (2.3.20) as to include

scalar particles. We can summarise all the previous SWI identities relating non-zero
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amplitudes as

An(g−1 , · · · ,Π−
i , · · · ,Π+

j , · · · g+
n ) =

(

〈1kj〉
〈1ki〉

)2(1−|hΠ|)

An(g−1 , · · · , g−i , · · · , g+
j , · · · g+

n ) ,

(2.3.21)

where Π is either a scalar or a fermion and hΠ = 0, 1
2 the corresponding helicity5. For

scalar particles helicity ± refers to particle or antiparticle. We conclude by mentioning

that the derivation of (2.3.21) made no use of perturbative approximations. Thus,

(2.3.21) is valid to any order in the loop expansion of supersymmetric theories as well

as for QCD at tree-level.

2.4 Supersymmetric Decomposition

Supersymmetric field theories play a fundamental role in the understanding of the gauge

theories of the Standard Model (SM). For instance, we have seen in the previous section

how computing a tree-level gluon amplitude in AQCD is equivalent to computing the

same amplitude in N = 4 SYM although the complexity of the calculation in the latter

theory is notably less than in the former one. In general, at tree level, we could use any

SYM theory with an adjoint multiplet to find the corresponding amplitude in QCD. At

one loop we can still make use of supersymmetric theories to compute a purely gluonic

amplitude in QCD.

N = 4 SYM, which has the maximum amount of supersymmetry for theories con-

taining particles with spin less or equal to 1, comes with an adjoint multiplet consisting

of 1 gluon Aµ with 2 degrees of freedom (d.o.f), 6 real scalars φI with 6 d.o.f and 4

Weyl fermions χα with 8 d.o.f. In the literature the multiplet is usually written as

(1, 4, 6, 4, 1). Theories with a reduced amount of supersymmetry are also phenomeno-

logically important. The N = 1 chiral multiplet (0, 1, 2, 1, 0) comprises 1 Weyl fermion

and 2 real scalars (1 complex). By merely counting the number of particles in the

adjoint representation of the above multiplets, it turns out that it is possible to write

down the following supersymmetric decomposition for one-loop amplitudes of gluons in

QCD

Aone-loop
QCD = Aone-loop

N=4 − 4Aone-loop
N=1,chiral + Aone-loop

N=0 , (2.4.1)

where N = 0 refers to a complex scalar running in the loop.

At one loop, computation of amplitudes in supersymmetric theories is far less trou-

blesome than it is in QCD. This is primarily due to the fact that there are diagram-by-

5We recall that in a n-point MHV amplitude htot =
P

hi = n − 2 − 2 = n − 4.
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diagram cancellations which remove four powers of loop momentum in the numerator for

N = 4 and two powers for N = 1. These cancellations in turn allow only box integrals

to appear in N = 4 and box, triangle and bubble integrals in N = 1 [17, 21]. Thus, the

main hurdle in computing the RHS of (2.4.1) comes from the non-supersymmetric part

of it which is nevertheless still easier to compute than the LHS as a scalar cannot prop-

agate spin information around the loop. We conclude this section by mentioning other

multiplets found in supersymmetric theories, the N = 2 vector multiplet (1, 2, 2, 2, 1),

the N = 2 hyper multiplet (0, 2, 4, 2, 0) and the N = 1 vector multiplet (1, 1, 0, 1, 1).

2.5 Modern Methods

In an era in which loop calculations are vital to distinguish new physics from the known

background, tree-level scattering amplitudes ought to be a relatively feasible calcula-

tion to perform. The usual approach is to follow the recipe as given by the Feynman

rules. This set of rules, although mechanical, become rather inefficient as the number

of particles increase, for the number of diagrams increase factorially as the table below

shows. Furthermore, individual diagrams are rich in complicated tensor structures and

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 2.1: The number of Feynman diagrams contributing to the scattering process gg →
n g. Extracted from [71].

are not independently gauge invariant due to their being off-shell: profileration of terms

throughout the calculation becomes exceedingly cumbersome as Figure 2.2 shows. Al-

though scarcely distinguishable, the black scribbles are actually dot products of on-shell

gluons momenta kµ with the gluon polarization vectors εµ.

An alternative and more efficient approach, based on Feynman rules, are Berends-

Giele recursion relations [66], which make use of recursive methods that connect together

off-shell currents. The simplification, in particular in massless theories, arises from

employing colour ordering and spinor helicity formalism which we described earlier in

this chapter. Although the use of gauge invariance and on-shell conditions keep off-

shell quantities to a minimum, the calculation still suffers from rather long expressions

which render inputing numerical quantities a quite strenuous task. In recent times6, two

related methods to perform tree-level calculation appeared. We describe them below.

6We mean geologically speaking.
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Figure 2.2: The five-gluon tree level amplitude computed in a Feynman fashion.

2.5.1 The CSW construction

In an influential paper, [12], a novel diagrammatic approach stemmed from an insight

which relates the perturbative expansion of N = 4 super Yang-Mills theory to D-

instanton expansion in the topological B model in super twistor space7 CP 3|4 [10]. A

experimental investigation of YM amplitudes in twistor space yielded the interesting

fact that MHV amplitudes localise on complex lines in twistor space. In turn, lines

in twistor space map to points in space-time. This suggested to use MHV vertices as

building blocks in the following manner

1. Draw all possible MHV diagrams using MHV amplitudes as vertices.

2. Connect all the MHV vertices, helicities − to +, by off-shell scalar propagators
i

P 2 assuming conservation of momentum P flowing between the vertices (opposite

helicities are connected by the propagator).

3. Assign a holomorphic spinor |P [
i 〉 = |Pi|κ] to each legs attached to a propagator,

where κ is an arbitrary spinor fixed for all diagrams. A similar off-shell continua-

tion is viable also for anti-holomorphic spinor variables.

4. Sum all the contributions of all MHV diagrams8.

7For the interested reader, a light introduction to twistor space and the fundamental relation between
MHV amplitudes and lines in twistor space are given in Appendix E. For a thorough introduction we
refer to the original work referenced above.

8The κ-dependence disappear after summing over all the possible MHV diagrams.
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A remarkable simplification happens, for if we wish to compute a scattering ampli-

tude with q negative-helicity gluons for example, then we will have v = q − 1 vertices

and d = q − 2 propagators. For n external legs the number of diagrams grows at most

as n2. To gain a feeling on how to use the above rules, let us consider a simple example,

the five-point NMHV amplitude A5(1
−, 2−, 3−, 4+, 5+) which has three negative-helicity

gluons. We will study NMHV amplitudes in § 4.3.

We know from our discussion in § 2.3.1 that this amplitude is given by the Parke-

Taylor formula (2.3.8)

A5(1
−, 2−, 3−, 4+, 5+) =

[45]3

[12][23][34][51]
, (2.5.1)

where we have used the anti-holomorphic spinors. We now recompute (2.5.1) by utilising

the above rules.

First, we draw all the diagrams contributing to the amplitude which can be seen in

Figure 2.3. We then consider the first diagram (the top-left one). We have

〈1(−P [
51)〉3

〈(−P [
51)5〉〈51〉

1

P 2
51

〈23〉3
〈34〉〈4P [

51〉〈P [
512〉

(2.5.2)

=
〈1|P51|κ]3

〈5|P51|κ]〈51〉
1

[15]〈51〉
〈23〉3

〈34〉〈4|P51 |κ]〈2|P51|κ]

=
[5κ]3〈23〉3

[1κ][51]〈34〉〈4|(5 + 1)|κ]〈2|(5 + 1)|κ] .

Setting |κ] = |5] makes (2.5.2) vanish so that only the three remaining diagrams will

contribute to the tree-amplitude. From the top-right diagram in Figure 2.3, the contri-

butions are (rotating clockwise)

− 〈34〉2[45]3
[12][51]〈45〉[52]〈15〉[53]

, (2.5.3)

− 〈12〉2[45]3
[34][51]〈15〉[53]〈5P34 ]

, (2.5.4)

− 〈14〉2[45]3
[23][51]〈45〉[52]〈15〉[53]

. (2.5.5)

Summing all the above contributions gives the expected (2.5.1).
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Figure 2.3: The four allowed diagrams contributing to A5(1
−, 2−, 3−, 4+, 5+). Observe

how all vertices are MHV.

2.5.2 CSW Extended: Fermions and Massless Scalars

We have seen above how the CSW rules allow for a relatively hassle-free computation

of gluonic tree-level amplitudes. A natural extension of the CSW rules would be to

include massless scalars and fermions in the adjoint or fundamental representation of

YM theory. In § 2.3.2, SWI were introduced to relate gluonic amplitudes to amplitudes

containing scalars or fermions in the adjoint (see (2.3.21). On the other side, particles

in the fundamental representation are obliged to be adjacent. Thus, there is no a priori

justification not to extend the CSW rules to theories with particles other than gluons.

For example, to compute the five-point NMHV amplitude A5(1
−
q , 2

−, 3−, 4+, 5+
q ) we

would have to replace some external and internal gluon lines with fermion dotted lines

in such a way as to keep the fermions adjacent. The MHV diagrams contributing to the

amplitude can be seen in Figure 2.4.

It would be ideal to extend the CSW procedure to include quantum corrections to

the overall result. Although initially the picture emerging from twistor string theory

was not encouraging, in a remarkable paper [16] the CSW rules were applied to the

calculation of the one-loop n-point MHV amplitude in N = 4 SYM, confirming earlier

results at n-point [17]. Furthermore, in [18] and [20] the CSW procedure was employed

to compute the one-loop n-point MHV amplitude in N = 1 SYM and in pure Yang-Mills

respectively, thus providing all the cut-constructible contributions to the n-point MHV

gluon amplitude in QCD9. In § 4, we recalculate the n-point MHV amplitude in pure

9Recall the supersymmetric decomposition (2.4.1)
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q
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Figure 2.4: The four allowed diagrams contributing to A5(1
−
q , 2

−, 3−, 4+, 5+
q ). We point

to the fact that helicity conservation is respected and all the vertices are still MHV.

Yang-Mills by means of generalised unitarity.

2.5.3 The BCFW Recursion Relations

As mentioned in § 2.3.1, a major novelty in computing scattering amplitudes came with

the introduction of complex spinors λ, λ̃ ∈ � 4. In a rather influential paper [23], it was

shown how the use of complex analysis, in particular the Cauchy’s theorem, permitted

the construction of n-point tree-level amplitudes in terms of n−1-point amplitudes and

lower point amplitudes10. It is this recursive structure of tree-level amplitudes which

we explain below.

The main idea behind the BCFW recursion relations is to shift the null momenta

pk and pl of two external particles in an amplitude by shifting their spinors

λl → λl − zλk λ̃k → λ̃k + zλ̃l , (2.5.6)

where z is a complex number. Thus we make the amplitude a rational function of z,

which we denote by A(z). The shift (2.5.6) satisfies conservation of momentum, only

possible for complex momenta; also, the particles k and l may have any helicity.

Having an amplitude defined in � 4 allows us to use Cauchy’s Theorem and, assuming

10Ultimately, the calculation can be reduced to three-point amplitudes which are the only amplitudes
derived from Feynman rules (see Appendix B).
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for now that Â(z) → 0 as z → ∞, we write

0 =
1

2πi

∮

C∞

dz

z
Â(z) = Â(0) +

∑

poles p

RespA(z)

zp
. (2.5.7)

Since A(z) will have poles whenever a Feynman propagator goes on-shell, this in turn

implies that the residue is given by

lim
P 2

ij→0

[

P 2
ijA
]

∑

h=±

A(P h
ij , i, . . . , j)A(−P−h

ij , j + 1, . . . , i− 1) , (2.5.8)

where the sum is taken over all the possible internal helicities.

If we choose l : l ∈ {i, . . . , j}, then the propagator Pij will be shifted and there will

be a pole in z because

P̂ij(z)
2 = (Pij + zλkλ̃l)

2 = P 2
ij − z〈k|Pij |l] , (2.5.9)

yielding

z ≡ zij =
P 2

ij

〈k|Pij |l]〉
. (2.5.10)

Thus, combining the residue of this pole with (2.5.7) we arrive at

A(1, . . . , n) =
∑

i,j∈P
h=±1

AL(zij)
1

P 2
ij

AR(zij) , (2.5.11)

where

AL(zij) = A(P̂ h
ij , i, . . . , j) , (2.5.12)

AR(zij) = A(j + 1, . . . , i− 1,−P̂−h
ij ) ,

and P is the set of all partitions into two ranges of external lines that include line l. A

diagrammatic representation of (2.5.11) is shown in Figure 2.5.

We conclude this section by sketching the proof that for Yang-Mills theory

lim
z→∞

A(z) = 0 , (2.5.13)

and we refer the interested reader to [24] for a more detailed analysis of the proof.

We choose gluon k to have negative helicity; the case where l has positive helicity

follows the same reasoning with MHV replaced by MHV vertices. According to the CSW
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∑

±

± ∓

1
P 2

ij

l̂
j

i i− 1

j + 1

k̂

Figure 2.5: A diagrammatic representation of (2.5.11).

rules set above, the basic CSW construction consists of a number of MHV vertices

continued off-shell connected by some propagators. In view of the shifts (2.5.6), the

anti-holomorphic spinor of the propagator’s momentum becomes (λ̃P )α̇ = (P̂ij)αα̇κ
α

with κ an arbitrary spinor. Since P̂ij = Pij + zλkλ̃l, choosing κ = λk will render λ̃P

independent of z and so will be all the MHV vertices connected to it. The only vertex

remaining dependent on z is precisely the one containing the negative-helicity gluon k.

In a googly MHV amplitude, the shifted spinor λ̃k + zλ̃l will appear in the denominator

thus vanishing as z → ∞.

2.5.4 The MHV Amplitude as a Solution of the BCF Recursion Re-

lation

Following [23], in this section we show how the simple MHV tree-level amplitude which

we recall is of the form

An(1−, 2+, . . . ,m−, . . . , n+) = ign−2 〈1m〉4
〈12〉 · · · 〈(n− 1)n〉〈n1〉 , (2.5.14)

satisfies (2.5.11).

Following the shift (2.5.6), we choose to shift gluons 1 and 2

λ̃1 → λ̃1 − zλ̃2 , λ2 → λ2 + zλ1 . (2.5.15)

If we take m > 3 there is only one non-vanishing contribution to (2.5.11), namely

i = 2 and j = 3, a pictorial representation of which is provided in Figure 2.6. For m ≤ 3

the analysis is similar although with a different partition of momenta.

The shifted momentum flowing through our partition becomes P̂23 ≡ P̂ so that,

according to (2.5.9), P̂ 2
23(z) vanishes when z = P 2

23/〈1|P |2]. Assuming that the Parke-



CHAPTER 2. SOME PRELIMINARIES 31

− +

3̂+

2̂+
1̂−

m−

4+

1/P̂23

Figure 2.6: The only diagram contributing to An(1−, 2+, . . . ,m−, . . . , n+) for m > 3.
Notice that the vertex on the left is a googly MHV amplitude.

Taylor formula is valid for n− 1 gluons, the BCF recursion relations yields

〈1̂m〉4
〈45〉 · · · 〈n1̂〉〈1̂P̂ 〉〈P̂4〉

1

P 2
23

[2̂3]3

[3P̂ ][P̂2]
, (2.5.16)

where P 2
23 = 〈23〉[32] and hatted quantities are the shifted momenta. Since we shifted

only the anti-holomorphic component of p1 we can omit the hats in (2.5.16) everywhere

they appear in 〈 〉 brackets (similarly for the holomorphic component of p2 in [ ] brackets).

Since P̂ij(z) = Pij + zλkλ̃l , we have that

〈xP̂ij(z)〉[P̂ij(z)l] = 〈x|P̂ij(z)|l] = 〈x|Pij(z)|l] , (2.5.17)

〈kP̂ij(z)〉[P̂ij(z)y] = 〈k|P̂ij(z)|y] = 〈k|Pij(z)|y] , (2.5.18)

for any generic spinor x and y. Thus, we can recast 〈1P̂ 〉 as

〈1P̂ 〉 =
〈1|2 + 3|2]

[P̂2]
=

〈13〉[32]
[P̂ 2]

, (2.5.19)

and similarly

〈P̂4〉 = −〈43〉[32]
[P̂2]

, [3P̂ ] =
〈12〉[32]
〈1P̂ 〉

, [P̂2] = −〈13〉[32]
〈1P̂ 〉

. (2.5.20)

Inserting (2.5.19) and (2.5.20) into (2.5.16) we retrieve the Parke-Taylor formula (2.5.14)

for MHV tree-level amplitudes.



Chapter 3

Unitarity

The concept of the unitarity of the scattering matrix S lies at the heart of any consistent

quantum field theory. Without it, we would have to forsake conservation of probability,

clearly an unquestionable requirement. In this chapter, by recurring to the analytic

properties of Feynman integrals, we formulate the Cutkosky rules [73–76], which allow

to compute the discontinuity of a scattering amplitude, i.e. its absorptive part, by

replacing propagators connecting external states by delta functions, a procedure which

goes under the name of cutting the amplitude. The main idea is that, given the disconti-

nuity of the amplitude in some channel, it is possible in principle to reconstruct the full

amplitude by means of dispersion integrals. We will see how this can be accomplished

by employing only on-shell information, a rather desirable feature.

A modern approach to unitarity as pioneered in [17], reverses the cutting by sewing

tree-level amplitudes to form one-loop amplitudes. Rather than computing dispersion

integrals, it relies on the existence of a basis of known scalar integrals reducing the

computation of amplitudes to purely algebraic exercises in some cases. This knowledge

of the set of integral functions comes from the underlying QFT, which was not an

accepted tool in the times of the old S-matrix approach of the sixties. Unitarity is well

described in many textbooks (see [178] for example) on quantum field theory and, for

our purpose, we revise the details of the most salient aspects of it, referring more to

concrete examples as we go along and to later sections.

32
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3.1 The Optical Theorem

By recalling that a scattering amplitude is given by the non-forward part of S, T =

−i(S − 1), unitarity S†S = 1 implies

−i(T − T †) = T †T , (3.1.1)

so that in terms of initial pin and final pfin states, we can write the LHS of (3.1.1) as

−i(〈pfin|T |pin〉 − 〈pfin|T †|pin〉) = −i
(

〈pfin|T |pin〉 − 〈pin|T |pfin〉
)

(3.1.2)

= −i(2π)4δ(4)
(

∑

(pfin − pin)
)

×
(

S(pin → pfin) − S̄(pfin → pin)
)

= −i(2π)4δ(4)
(

∑

(pfin + pin)
)

Disc S(pfin; pin) ,

where we have taken pin states as incoming and pfin states as outgoing and

〈afin|T |bin〉 = (2π)4δ(4)
(

∑

(afin − bin)
)

S(bin → afin) . (3.1.3)

Hence, the LHS of (3.1.1) corresponds to a discontinuity in the scattering amplitude,

that is a branch cut in complex momenta. This discontinuity gives the absorptive part

of an amplitude. In order to obtain the RHS of (3.1.1) one could insert a complete set

of intermediate states {qi}

1 =
∑

i

∫

d4qi
(2π)4

δ(+)(q2i −m2
i )|qi〉〈qi| , (3.1.4)

so that

〈pfin|T †T |pin〉 =
∑

n

(

n
∏

i=1

∫

d4qi
(2π)4

δ(+)(q2i −m2
i )

)

〈pfin|T †|qi〉〈qi|T |pin〉 (3.1.5)

= (2π)4δ(4)
(

∑

(pfin + pin)
)

∑

n

∫

dLIPS(n)S̄(pfin → qi)S(pin → qi) ,

where dLIPS is the multiparticle Lorentz-invariant phase space measure.

dLIPS =
∏

i

d4qiδ
(+)(q2i −m2

i )δ
(4)
(

pfin + pin −
∑

i

qi

)

. (3.1.6)
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2Im

p1fin
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pnin
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∑

qi

∫

d

∏

qi

(
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qi

)(

qi

pnfin

p1fin

)

(3.1.8)

Figure 3.1: The optical theorem (3.1.7): the imaginary part of the forward scattering
amplitude given as a sum of intermediate states.

Combining the LHS and RHS of (3.1.1) we arrive at the Optical Theorem

−iDiscS(pfin; pin) =
∑

n

∫

dLIPS(n)S̄(pfin → qi)S(pin → qi) , (3.1.7)

a pictorial representation of which is given in Figure 3.1.

3.2 Cutkosky Rules

At loop level, the discontinuity of the amplitude may be computed by “cutting” it.

It was shown in [73–76] how, by applying a series of steps, the discontinuity of any

Feynman diagram could be retrieved. At one loop the rules are as follows:

1. Cut, in a given kinematic invariant, the two propagators separating the external

states carrying that kinematic invariant from the rest of the diagram.

2. Replace each cut propagator by a delta function,

i

p2 ± iε
= P

( i

p2

)

∓ πδ(p2) → ∓πδ(p2) , (3.2.1)

where P stands for the principal value prescription.

3. Perform the integration over the two-particle dLIPS

dLIPS(`2,−`1;P`) = d4`1δ
(+)(`21)d

4`2δ
(+)(`22)δ

(4)(`2 − `1 + P`) , (3.2.2)

to obtain the discontinuity in the branch cut of a kinematic invariant in a particular

channel. P` is the momentum flowing outside the loop.
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3.2.1 One Step Backward, Two forward

At this point, performing the dispersion integrals would in principle provide the full

amplitude. However, it would be rather favourable to avoid carrying out cumbersome

integrations and, to this end, we depart from the Cutkosky rules and we go one step

backward: we replace the delta functions associated with cuts with propagators thus

generating Feynman integrals, that is we promote the cut to a full loop integral. The

result can then be written in terms of a basis of integral functions. By repeating this in

all kinematic channels, we can reconstruct the full amplitude. It was in [17] that this

alternative route was successfully applied for the first time by computing the one-loop

MHV amplitudes in N = 4 SYM. We are going to discuss this alternative procedure

below.

At one loop, any colour-ordered amplitude to O(ε0) can be expressed in terms of a

linear combination of known scalar integrals

A1-loop
n =

∑

i∈B

ciIi + rational terms , (3.2.3)

where B is a basis of integrals which comprises scalar bubble, triangle and box integral

functions and the coefficients ci are rational functions of momenta and polarisation

vectors. For the moment we put the so-called rational terms appearing in (3.2.3) aside.

The way to proceed is to evaluate the cuts in each channel and express them as linear

combinations of cuts of integrals Ii times some coefficients ci in that channel. To

elucidate the procedure, let us take the simplest case known, namely a one-loop MHV

amplitude in N = 4 SYM. In § 4, we will offer a more intricate case which needs

considerable more effort to be disentangled.

It was shown in [17] that MHV amplitudes in N = 4 SYM can be expressed in terms

of only integral box functions Ii

A1-loop
n =

∑

i|Ii∈B

ciIi . (3.2.4)

Let us consider a cut in a particular channel with momentum K, where

s = (k1 + . . .+ k2)
2 = K2 . (3.2.5)
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l1

l2

−K

m2 + 1

m1 − 1

K

m1

m2

Figure 3.2: A pictorial representation of (3.2.6).

We obtain from the LHS of (3.2.4)

−iDiscA1-loop
n =

∑

helicity

∫

d4−2ε`1
(2π)4−2ε

d4−2ε`2
(2π)4−2ε

πδ(+)(`21)Atree(`1,m1, . . . ,m2,−`2)

× πδ(−)(`22)Atree(`2,m2 + 1, . . . ,m1 − 1,−`1) (3.2.6)

→
∑

helicity

∫

d4−2ε`1
(2π)4−2ε

d4−2ε`2
(2π)4−2ε

i

`21
Atree(`1,m1, . . . ,m2,−`2)

× i

`22
Atree(`2,m2 + 1, . . . ,m1 − 1,−`1) ,

a pictorial representation of which can be found in Figure 3.2. Dimensional regularisa-

tion is employed in (3.2.6) to regulate both IR and UV divergences.

In light of the tree-level amplitudes results given in 2.3.10, the two tree amplitudes

appearing in (3.2.6) must be MHV in order not to be zero. Moreover, the negative-

helicity states i and j can reside either both in the same tree amplitude or in opposite

ones. The two planar cut diagrams that contribute to the channel in consideration are

depicted in Figure 3.3.

Summing over the N = 4 multiplet1 gives rise to the same integrand for both cases

as a few lines of algebra show

−AMHV,tree
n

〈(m1 − 1)m1〉〈`1`2〉2〈m2(m2 + 1)〉
〈(m1 − 1)`1〉〈`1m1〉〈m2`2〉〈`2(m2 + 1)〉 . (3.2.7)

The way to proceed is to transform the denominator to scalar propagators by rewriting

1

〈`1m1〉
=

[m1`1]

2`1 ·m1
=

[m1`1]

(`1 −m1)2
, (3.2.8)

and similarly for any other spinor product involving loop momentum2. By doing so,

1Here we only sum over internal helicity states for the cut diagram on the right of Figure 3.3.
2We wish to stress that (3.2.8) is only true when on-shell, i.e. this way of manipulating the denom-
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Figure 3.3: The two possibilities: either i and j on the same side of the cut or on opposite
sides.

an hexagon integral with the numerator written as a function of the loop momentum

is obtained. Notice that in Yang-Mills theory, a computation of a generic n-point

amplitude gives up to n loop propagators and up to rank n tensors integrals

In[P (`µ)] = −i(4π)2
∫

d4−2ε`

(2π)4−2ε

P (`µ)

`2(`−K1)2(`−K1 −K2)2 · · · (`+Kn)2
. (3.2.9)

Let us stress once more that in arriving at (3.2.6) we have replaced the delta functions

with Feynman propagators. Had we not done so, we would have had to integrate over

the two-particle LIPS of the internal particles rather than integrating over full momenta.

A way to perform tensor integrals of the form (3.2.9) is to use some sort of integral

reduction such as the Passarino-Veltman (PV) reduction [77]. In practice, by knowing

which tensors the integral can depend on, the PV reduction breaks the integrand into

a sum of integrals with a lower number of propagators. Iterating this procedure, we

are left with a sum of scalar integrals, each of which corresponds to an integral of the

basis. Matching the various integrals to the basis then allows one to read off the various

coefficients. However, in a general amplitude, it is not sufficient to look in a single

channel. Eq. (3.2.6) only gives the discontinuity of the Feynman integrals which share

a branch cut in that particular channel: several integrals contributing to the amplitude

may appear only in this channel, others may share different channels and must be taken

only once. Combining the several cuts into a single function yields the full amplitude,

up to some rational terms which we have hitherto neglected and we are now going to

discuss.

On general grounds, a loop amplitude will have some additional rational functions of

kinematic variables which in general elude the cut-construction method. Indeed, while

it was shown in [17] that one-loop amplitudes in SYM are free of rational terms, such

rational terms do make their appearance in QCD amplitudes. Theories whose rational

inator into scalar propagators must be done before promoting the delta functions to full off-shell loop
integrals.
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terms are uniquely linked to cuts are called cut-constructible3. Amplitudes in SYM

belong to this category and are thus completely determined by the study of their cuts.

In light of the supersymmetric decomposition 2.4.1 of QCD amplitudes, one is then left

to find only those rational terms coming from the pure Yang-Mills contribution, i.e. a

scalar running in the loop. A way to compute these missing rational terms requires

continuing the cut momenta to 4− 2ε dimensions. We will return to 4− 2ε-dimensional

unitarity in § 3.4 where we will rederive the + + ++ amplitude in pure Yang-Mills.

This amplitude, which vanishes in SYM theory, consists of purely rational terms.

3.3 Generalised Unitarity in D = 4

We have seen in the previous section how the discontinuity across a cut in the amplitude

can be computed by a unitarity cut where the two cut propagators are put on-shell. In

(3.2.6), we considered a cut in a given channel’s kinematic invariant and we emphasised

the fact that (3.2.6) is only sensitive to integrals which share the same cut in the same

channel. Sewing together two tree amplitudes to form the cut in a given channel selects

only those integrals which have both propagators cut thereby yielding the coefficients

only for those integrals. Thus, a careful consideration of cuts in all the other channels

is required to obtain the full amplitude. If one were allowed to cut more propagators

at once fewer terms would survive and it would greatly simplify the calculation by

cutting loop amplitudes into smaller tree amplitudes. This observation goes under the

name of generalised unitarity. Although known since [76], generalised unitarity was put

into practice only in [78] to compute amplitudes in N = 4 SYM, specifically targeting

coefficients of box integrals. Ideally, we would like to have just the right number of cuts

to isolate a single integral and a single coefficient. This is only possible for box integrals

and, following the reasoning offered in [79], we move on to show it below.

3.3.1 The Box Example

Cutting four propagators fixes the coefficient of a box integral as a product of four

tree amplitudes. In four dimensions the four delta functions completely freeze the loop

momentum. Hence, obtaining the coefficient becomes an algebraic exercise of purely

multiplying tree amplitudes. Since we will go through a more complicated n-point

box integral in a later section, we give here a simpler example which embodies all

3In [17, 21] a power-counting criterion which cut-constructible theories obey was found. It was shown
that SYM theory satisfies this power-counting criterion. Namely, the criterion states that the degree n
of the polynomial numerator in a n-point loop integral is reduced to n − 4 and n − 2 for N = 4 and
N = 1 SYM respectively.
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Figure 3.4: A possible quadruple-cut contributing to the 1−2−3+4+5+ amplitude. The
remaining quadruple-cuts are obtained by a colour-ordered cyclic permutations of the
external states.

the characteristics of the general example. Let us try to compute the coefficient of a

box integral for a MHV five-point amplitude, A1-loop
5 (1−, 2−, 3+, 4+, 5+). For such an

amplitude there are five possible one-mass box integrals each with a different massive

corner, K12 = (k1 + k2), K23, K34, K45 or K51. The quadruple-cut associated with the

one-mass box integral IK12 is depicted in Figure 3.4, where

I(K12) =

∫

d4−2ε`

(2π)4−2ε

1

`2(`−K12)2(`−K123)2(`+ k5)2
. (3.3.1)

However, we do not have to compute all the coefficients. The coefficients of I(K51)

and I(K45) are related to the coefficients of I(K23) and I(K34) respectively since the

amplitude A1-loop
5 (1−, 2−, 3+, 4+, 5+) is antisymmetric under the reflection (12345) ↔

(21543).

Applying generalised cuts leads us to a product of four tree-amplitudes. According

to the discussion of § 2.3.1, if we restrict to four dimensions, the three three-point

amplitudes would vanish unless we take the momenta to be complex. Let us examine

the momentum `2 which is connecting two three-point vertices. As momenta are complex

the holomorphic λ and anti-holomorphic λ̃ spinor components of the momenta k3 and

k4 are independent and their kinematics goes as follows

λ`2 ∼ λ3 ∨ λ̃`2 ∼ λ̃3 , (3.3.2)

λ`2 ∼ λ4 ∨ λ̃`2 ∼ λ̃4 .

In general s34 6= 0 which entails that λ3 � λ4 and λ̃3 � λ̃4. Thus the only allowed
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solutions are

(λ`2 ∼ λ3 ∧ λ̃`2 ∼ λ̃4) ∨ (λ`2 ∼ λ4 ∧ λ̃`2 ∼ λ̃3) . (3.3.3)

Eq. (3.3.3) implies that two adjacent three-vertices must have opposite helicity configu-

rations in order not to vanish. Moreover, the four-point amplitude with all-like helicities

or all-like helicities but one vanish according to (2.3.10). This further constrains the

helicity configurations, forcing the internal legs associated to momenta `1 and `4 to

have both positive helicities thus fixing the helicity configuration of each vertex. Hence,

the only possible solution is the first set of conditions in (3.3.3). The coefficient of the

one-mass box integral is then the product of four tree-amplitudes

c12 = Atree
4 (−`4, 1−, 2−, `1)Atree

3 (−`1, 3+, `2)Atree
3 (−`2, 4+, `3)Atree

3 (−`3, 5+, `4)

=
〈12〉3

〈`41〉〈2`1〉〈`1`4〉
[3`2]

3

[`13][`2`1]

〈`2`3〉3
〈`24〉〈4`3〉

[`35]
3

[5`4][`4`3]

= − 〈12〉3[3|`2`3|5]3
〈2|`1|3]〈4|`2`1`4|5]〈1|`4`3|4〉

, (3.3.4)

which can be simplified to a function of only one loop momentum

c12 =
〈12〉3〈4|`2|3]2[45]3

〈2|`2|3]〈34〉〈15〉[45]〈4|`2 |5]
(3.3.5)

= − 〈12〉3s34s45
〈23〉〈34〉〈45〉〈51〉

= i s34s45Atree
5 (1−, 2−, 3+, 4+, 5+) .

Substituting the appropriate invariants, the one-mass box integral I(K12) is given by

I(K12) = −i 2 rΓ
s34s45

{

− 1

ε2

[(

(−s34)−ε + (−s45)−ε + (−s12)−ε

)]

(3.3.6)

+ Li2

(

1 − s12
s34

)

+ Li2

(

1 − s12
s45

)

+
1

2
ln2

(

s34
s45

)

+
π2

6

}

.

The two remaining I(K23) and I(K34) boxes with their helicity assignment of the

quadruple cuts are shown in Figure 3.5. A similar calculation to the one above shows

that the coefficients for I(K23) and I(K34) are similar to (3.3.5) with different kinematic

invariants multiplying the tree amplitude. Hence, we can write down the full box
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Figure 3.5: The remaining quadruple-cuts contributing to the one-loop 1−2−3+4+5+

amplitude.

contribution to the one-loop amplitude as

A1-loop
5 (1−, 2−, 3+, 4+, 5+) = rΓAtree

5 (1−, 2−, 3+, 4+, 5+) (3.3.7)
{

− 1

ε2

[(

(−s34)−ε + (−s45)−ε + (−s12)−ε

)]

+ Li2

(

1 − s12
s34

)

+ Li2

(

1 − s12
s45

)

+
1

2
ln2

(

s34
s45

)

+
π2

6
+ cyclic permutations

}

.

If we were to compute this amplitude in N = 4 SYM, (3.3.7) would be the end of

the story. The quadruple cut calculates the contribution to the amplitude coming

only from the box functions. In N = 1 SYM, the same calculation would yield the

box contributions to the amplitude in that theory although, due to conservation of

helicity4, such quadruple cuts as the one appearing on the left of Figure 3.5 would not

appear as we could only have fermions and scalar running in the loop (at least in the

chiral N = 1). However, we would need to compute triangle and bubble functions as

well which do appear in N = 1 SYM. In non-supersymmetric theories a further twist

appears, for rational terms which contribute to the amplitude cannot be detected by

four-dimensional cuts. An ingenious implementation of generalised unitarity allows for

non-supersymmetric amplitudes to be fully reconstructed from their cuts at the cost of

working in 4−2ε dimensions. In the next section we introduce the concept of generalised

unitarity in D = 4 − 2ε dimensions. In § 4 we show how to carry out quadruple and

4The bottom vertices of the left quadruple cut appearing in Figure 3.5 do not satisfy helicity con-
servation, thus vanishing in N = 1 SYM.
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triple cuts in order to compute the cut-constructible part of an n-point MHV amplitude

in scalar Yang-Mills theory.

3.4 Generalised Unitarity in D = 4 − 2ε

As mentioned above, one-loop amplitudes in supersymmetric theories are somewhat spe-

cial5. Their form is completely reconstructed by their cuts in four dimensions in the sense

that each term of the amplitude is intimately linked to cuts. In non-supersymmetric

theories amplitudes contain additional rational terms which are not linked to disconti-

nuities. Hence, the usual approach to reproduce the amplitude from its cuts seems to

fail. However, the latter observation is only true if we work in D = 4, that is if we keep

in the amplitude terms only up to O(ε0). In fact, if we extend the cut-momenta states

to D = 4− 2ε and keep higher orders in ε, rational terms R will develop discontinuities

of the form R(−s)−ε = R−ε log(−s)R+O(ε2) which in turn can be detected by cuts. In

virtue of the supersymmetric decomposition (2.4.1), we have to resort to D-dimensional

unitarity only for a scalar running in the loop. The usual manner to approach such

a calculation is to think of the massless scalar in D dimensions as a massive scalar

in four dimension and decompose the massless scalar with D-dimensional momentum

`(4−2ε) into a four-dimensional part with momentum `(4) and a −2ε-dimensional part

with momentum `(−2ε) such that

`2(4−2ε) = `2(4) + `2(−2ε) = `2(4) − µ2 , (3.4.1)

where the −2ε-dimensional and four-dimensional subspaces are taken to be orthogonal

and `2(−2ε) = µ2. We emphasise that the “mass” µ2 has to be integrated over.

The idea of using unitarity in D = 4 − 2ε dimensions was first outlined and put

into practice in [80–82]. A more recent example is given in [83] where the + + ++,

−+++ and +++++ one-loop amplitudes in pure Yang-Mills, which vanish in SYM,

together with the MHV amplitudes −−++ and −+−+ are recomputed by means of

generalised unitarity in D = 4 − 2ε, showing agreements with the results obtained in

previous calculations [81, 84]. In order to elucidate how generalised unitarity in higher

dimensions works, hereafter we reproduce the calculation carried in [83] for the simple

case of + + ++ one-loop gluon amplitude with a complex scalar running in the loop.

5It is conjectured that all-loop amplitudes in N = 4 can be arrived at by a study of their cuts.
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Figure 3.6: One of the two possible quadruple cuts contributing to the 1+2+3+4+ am-
plitude. The other diagram, which is identical to the one depicted here, is obtained by
flipping the internal helicities so that the final result is achieved by doubling the contri-
bution coming from the diagram in this Figure.

This amplitude6 is given to all-orders in ε by [81]

Ascalar
4 (1+, 2+, 3+, 4+) =

2i

(4π)2−ε

[12][34]

〈12〉〈34〉K4 , (3.4.2)

where7

K4 ≡ I4[µ
4] = −ε(1 − ε)I8−2ε

4 = −1

6
+ O(ε) . (3.4.3)

Let us consider the quadruple-cut diagram illustrated in Figure 3.6. Following the

rules described in § 3.2, it is obtained by sewing four three-point scattering amplitudes

with one massless gluon and two massive scalars of mass µ2. The three-point amplitudes

for any two massive internal scalar particles and a gluon with positive helicity is given

by [85]

A(`+1 , k
+, `−2 ) =

〈κ|`1|k]
〈κk〉 , (3.4.4)

where κ is an arbitrary reference spinor, and momentum conservation guarantees that

`1 + `2 + k = 0.

Thus, the D-dimensional quadruple cut of Figure 3.6 is given by

〈κ1|`1|1]
〈κ11〉

〈κ2|`2|2]
〈κ22〉

〈κ3|`3|3]
〈κ33〉

〈κ4|`4|4]
〈κ44〉

. (3.4.5)

6It was first computed in [86] using a string-inspired formalism.
7Integrals with µ2m as integrand are related to 4 + 2m − 2ε-dimensional integrals.
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Figure 3.7: The triple-cut diagram contributing to the 1+2+3+4+ amplitude. There are
four such diagrams obtained by cyclic permutations of the external particles.

Choosing κ1 = 2 and κ2 = 1 and the fact that the internal on-shell momenta square

to µ2, the first two terms of (3.4.5) reduce to

〈κ1|`1|1]
〈κ11〉

〈κ2|`2|2]
〈κ22〉

= −µ2 [12]

〈12〉 . (3.4.6)

Similarly, taking κ3 = 4 and κ4 = 3, the remaining two terms of (3.4.5) are

〈κ3|`3|3]
〈κ33〉

〈κ4|`4|4]
〈κ44〉

= −µ2 [34]

〈34〉 , (3.4.7)

so that (3.4.5) becomes

µ4 [12]

〈12〉
[34]

〈34〉 . (3.4.8)

Lifting the four delta functions of the quadruple cut to Feynman propagators, we arrive

at the scalar box integral as given in (3.4.3). Including a factor of two coming from the

fact that a complex scalar runs in the loop, the final result of (3.4.2) is reproduced.

In the triple-cut depicted in Figure 3.7, we see that one of the tree-amplitudes is an

amplitude with two helicity-positive gluons and two massive scalars8, the form of which

was given in [82]

A(`+3 , 3
+, 4+, `−1 ) = µ2 [34]

〈34〉[(`3 − k3)2 − µ2]
, (3.4.9)

while the remaining two tree-level amplitudes are as before. Thus, the triple cut in

8Recall that this tree amplitude vanish in four dimensions (as µ2 → 0).
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Figure 3.7 gives rise to the following integrand

−µ4 [12][34]

〈12〉〈34〉
1

[(`3 − k3)2 − µ2]
, (3.4.10)

which, after uplifting the three delta functions to Feynman propagators yields again

(3.4.2), thus showing that there are no new contributions coming from triple cuts.

Having exhausted our introductory chapter on (generalised) unitarity, we move

to the next chapter where we recalculate by means of generalised unitarity the cut-

constructible part of the n-gluon MHV amplitude in pure Yang-Mills.



Chapter 4

Scalar One-Loop Amplitudes

It is common knowledge that the unitarity method, introduced in [17, 21] and further

developed in [88], proved itself to be a powerful as well as elegant tool for computing

loop scattering amplitudes (see [79] and references therein for a comprehensive review).

In fact, recent years have witnessed impressive achievements in the calculation of two-

and higher-loop scattering amplitudes with much of the effort mostly focused on the

maximally supersymmetric N = 4 Yang-Mills theory (MSYM) [38, 39, 89, 90]. This is

primarily due to the simplicity of the perturbative expansion in the ’t Hooft (planar)

limit of MYSM suggested by an intriguing duality that relates MSYM at strong coupling

to weakly-coupled gravity on AdS5×S5 [8]. A short while ago, this duality was exploited

as a different manner to compute amplitudes in MSYM [41] and in the case of four-gluon

amplitudes agreement was found with an all-loop order ansatz put forward in [39].

In this chapter, following the original work [49] of the author of this thesis, we focus

on one-loop MHV amplitudes in pure Yang-Mills theory. These amplitudes are of par-

ticular interest as they constitute an example of one-loop n-point scattering amplitudes

in QCD, where both external and internal particles are gluons. In pure Yang-Mills the

n-gluon one-loop amplitudes may be decomposed as

An
gluon = An

N=4 − 4An
N=1,chiral + An

scalar . (4.0.1)

Although each contribution of (4.0.1) has been computed for the case of MHV am-

plitudes using the unitarity method [17, 21], the MHV diagram approach [16, 18–20]

and, to some extent, generalised unitarity [78, 91], an explicit double-check of the last

term of (4.0.1), namely the contribution arising from a complex scalar particle running

in the loop, is still lacking for the case of MHV amplitudes with non-adjacent negative-

46
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helicity gluons1. As we felt obliged to do so, we aim to rederive the cut-constructible

scalar contribution to the n-gluon MHV amplitude by means of the generalised unitarity

method [75, 76, 78, 88].

At one loop, generalised unitarity instructs us to cut the amplitude into a product

of up to four on-shell tree amplitudes and to replace the propagators connecting the

sub-amplitudes by on-shell delta functions2, which put the internal particles on shell.

When four propagators are cut (quadruple cut) the momentum integral is completely

frozen and the resulting product of four tree-amplitudes3 can be identified directly

with coefficients of scalar box functions [78]. One route to obtain the coefficients for the

remaining scalar triangle and bubble functions is to use triple cuts and conventional two-

particle cuts. An efficient method to extract directly, individual coefficients of specific

scalar integral functions using a convenient parametrisation for the cut momenta was

presented recently in [92].

For the extraction of triangle and bubble coefficients we want to follow a slightly

different approach [83, 91]. Here one considers the triple cut of a one-loop amplitude,

which in general has contributions from triangle and box functions. One can in principle

subtract off the box contributions using quadruple cuts but strictly speaking this is

not needed. The three delta functions do not completely freeze the loop integration,

hence we simplify the integrand as much as possible using the three loop momentum

constraints where the loop momenta are allowed to take complex values. In the final

step the cut integral is lifted back up to a loop integral by replacing the on-shell delta

functions by the corresponding propagators. The result contains terms that have the

correct cuts in the channel under consideration, and possibly terms with cuts in other

channels; the latter terms can be dropped. Considering all possible cuts should then

give the complete amplitude. An important comment is in order here. The procedure

outlined above also produces linear triangle integral functions (triangle integrals with

one loop momentum in the numerator), which, as is well known, can be written as

linear combinations of scalar triangle and bubble integrals. Therefore, this method

can also produce bubble functions which a priori would require the use of additional

two-particle cuts. At this point we do not have a proof that two-particle cuts can be

avoided for general amplitudes but, for the examples considered in [83, 91] and in our

calculation, this method produces the correct answers. The examples include NMHV

one-loop amplitudes with adjacent negative-helicity gluons considered in [91], all four-

1So far that term has only been calculated using MHV diagrams in [20], while the special case of
adjacent negative-helicity gluons was first found in [21].

2Since the solutions of the momentum constraints can be complex in general we replace a cut prop-
agator by δ(l2i ) and not by δ(+)(l2i ). Also in the subsequent manipulations of the integrands we allow
the loop momenta to be complex.

3To be more precise, in general the result is a weighted sum over the two complex solutions of the
momentum constraints.
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point one-loop amplitudes in pure Yang-Mills considered in [83] and the MHV one-loop

amplitudes considered in this chapter. Obviously, it would be interesting to study this

observation in more detail.

In this chapter we focus on the rederivation of the cut-constructible parts of MHV

one-loop amplitudes by considering a complex scalar running in the loop. In the case

that both negative-helicity gluons are adjacent all quadruple cuts vanish and, hence,

the answer does not contain box functions. In the case that the negative-helicity gluons

are not adjacent box functions do contribute and can be determined either directly

using quadruple cuts (see [91]) or with the triple cut method outlined above. As a

consistency check we have also considered the quadruple cuts in section § 4.2. Therefore,

in the following discussion we will concentrate on the triple cuts, which in the case at

hand allow us to determine the full cut-constructible part of this class of amplitudes.

Explicitly, the non-vanishing triple cuts of the scalar loop contribution to the n-gluon

MHV amplitude (see Figure 4.1 and Figure 4.2 ) take the form:

An
scalar

∣

∣

∣

cut
=
∑

±

∫

d4`1 d
4`2 d

4`3 δ(`
2
1) δ(`

2
2) δ(`

2
3) δ

4(`3 − `1 −Q)δ4(`1 − `2 − P )(4.0.2)

×Atree(`1, (m2 + 1), . . . , j−, . . . ,−`2)Atree(`2,m1,−`3)Atree(`3, . . . , i
−, . . . ,m2,−`1) ,

where the allowed values of m1 and m2 are

j + 1 ≤ m1 ≤ i− 1, i+ 1 ≤ m2 ≤ j − 1 . (4.0.3)

The tree amplitudes entering the integrand involve two MHV amplitudes with two

scalars and one anti-MHV three-point amplitude with two scalars. The ± in (4.0.2)

refers to the fact that we have a complex scalar running in the loop. Thus, there are

two possible helicity configurations, each of which gives rise to the same integrand.

On general grounds, four-dimensional cuts alone suffice to reconstruct the full am-

plitudes in supersymmetric theories at one loop [17, 21]. However, in theories not

protected by supersymmetry, there are additional rational terms which cannot be de-

tected by cuts, unless one decides to work in D = 4 − 2ε dimensions and keep higher

orders in ε, so that even rational terms develop discontinuities which can be detected

by the unitarity method. An example of such an amplitude is the one-loop four-gluon

++++ amplitude4 with a complex scalar running in the loop. This amplitude consists

of purely rational terms and it was first computed in [86] using a technique based on

the technology of four-dimensional heterotic string theory. It was subsequently con-

firmed and extended to the case of an arbitrary number of positive helicity gluons in

4We have shown the calculation of this amplitude in D = 4 − 2ε dimensions in § 3.4.
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[93, 94] and to the case when one of the gluons has opposite helicity from the others

[93]. Furthermore, the + + ++ one-loop amplitude was recalculated in [81] by means

of two-particle cuts in D = 4− 2ε dimensions, in [82] where a relationship between one-

loop MHV gluon amplitudes of QCD and those of N = 4 SYM was put forward and in

[83] using the generalised unitarity method in D = 4 − 2ε dimensions. More recently,

there has been a proposal [95] in which it was argued that in a particular regularisation

scheme certain Lorentz-violating counterterms provide these missing rational terms.

We wish to make it clear that we shall in this chapter only work with unitarity cuts

in D = 4 dimensions, thus considering only the cut-constructible part of the n-gluon

MHV amplitude. Hence, all the (cut) loop momenta in this chapter are kept in four

dimensions until the amplitude has been expressed as a linear combination of integral

functions. Only at this stage the dimensional regularisation parameter ε is introduced

to regularise the divergences of the integral functions.

The cut-constructible part of the MHV one-loop amplitudes in pure Yang-Mills

for the special case of adjacent negative-helicity gluons has already been calculated in

[21] using unitarity whereas the general helicity configuration was dealt with in [20]

by means of the MHV diagram method. The rational parts of these amplitudes have

been computed analytically in [22, 35] using the powerful method of on-shell recursion

relations, thus providing the full n-gluon one-loop MHV amplitude in QCD. The purpose

of the following calculation is to show how generalised unitarity correctly reproduces the

cut-constructible parts of the n-gluon amplitudes with less effort than conventional two-

particle cuts or the MHV diagram method. We discuss the adjacent negative-helicity

case in the next section and the general case in section § 4.2

4.1 The MHV Scalar Amplitude: The Adjacent Case

In this section we show how generalised unitarity may be used to compute the n-point

MHV one-loop amplitude in pure Yang-Mills for the case of adjacent negative-helicity

gluons.

Let us consider the triple-cut diagram depicted in Figure 4.1, where we choose all

momenta to be outgoing. There are two such diagrams, which are obtained by flipping

all the internal helicities of the scalar particles running in the loop. Without loss of

generality we set i = 1 and j = 2 throughout this section. Observe that in this case the

range of m is 3 ≤ m ≤ n. Furthermore, in the adjacent case all quadruple cuts vanish

and, hence, no box functions appear in the amplitude.
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Figure 4.1: The three-particle cut diagram contributing to the n-gluon amplitude in the
case of adjacent negative-helicity gluons

The triple cut of an n-point amplitude is obtained by sewing three tree-level ampli-

tudes. Ignoring factors of i and 2π, the product of the tree amplitudes appearing in the

triple cut (4.0.2) is

[m`2][m`3]

[`2`3]
× 〈1`1〉2〈1`3〉2

〈(m+ 1)(m+ 2)〉 . . . 〈n1〉〈1`1〉〈`1`3〉〈`3(m+ 1)〉 ×

〈2`1〉2〈2`2〉2
〈23〉 . . . 〈(m− 2)(m− 1)〉〈(m − 1)`2〉〈`2`1〉〈`12〉

. (4.1.1)

Thus (4.0.2) together with (4.1.1) gives

An
scalar

∣

∣

∣

cut
= 2iAtree

∫

d4`2
∏3

i=1 δ(l
2
i )

(2π)4
〈2 `2〉2 〈`1 2〉 〈1 `1〉 〈1 `3〉2
〈1 2〉3 〈`2 `1〉 〈`1 `3〉 [`2 `3]

× 〈(m− 1)m〉 〈m(m+ 1)〉[m`2] [`3m]

〈(m− 1) `2〉
(4.1.2)

= 2i Atree

∫

d4`2
(2π)4

〈2
∣

∣`2
∣

∣m] 〈1m〉 〈1
∣

∣P`2
∣

∣2〉 〈2
∣

∣P`2
∣

∣1〉 [1 2]3

25 (1 · 2)3 (`1 · `2)2 `21 `22 `23

∣

∣

∣

cut
,

where we have factored out the MHV tree level amplitude and cancelled certain spinor

brackets in the numerator and denominator of (4.1.1). In order to arrive at the last

line of (4.1.2) we have used the fact that the holomorphic spinors of the momenta

appearing in the anti-MHV three-point amplitude are proportional to each other, i.e.

λm ∝ λ`2 ∝ λ`3 . The factor of two accounts for the fact that we have already summed

over the two possible internal helicities. Finally, the delta functions have been replaced

by full propagators and the three-particle phase-space integral has been promoted to an

unrestricted loop integral. The symbol |cut indicates that this replacement is only valid

in the channel defined by a given triple-cut.
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Let us clarify some notations. We define the general external momenta kp as kp := p.

Also, we define

P := qj,m−1, Q := qm+1,i , (4.1.3)

where qpi,pj
:=
∑pj

l=pi
kl. We set i = 1 and j = 2 for the adjacent case.

Converting (4.1.2) into Dirac traces yields the following integrand:

tr+(61 62 6P 6`2) tr+(61 62 6`2 6m) tr+(62 61 6`2 6P )

25 (1 · 2)3 (`1 · `2)2
. (4.1.4)

Thus, the task reduces to computing the three-index tensor integral

Iµνρ(m,P,Q) =

∫

d4`2
(2π)4

`µ2 `
ν
2 `

ρ
2

`21 `
2
2 `

2
3

, (4.1.5)

which may be done by standard PV integral reduction [77]. Details of the calculation

can be found in Appendix D.

The result of the PV reduction has to be inserted into (4.1.4). Doing so yields a

series of terms of which, after some manipulations, only the following two remain:

A1 = − Atree

(t
[2]
1 )2

1

6

[

I2(P
2) − I2(Q

2)
]

(Q2 − P 2)2
(1 2Qm)2 , (4.1.6)

A2 =
Atree

(t
[3]
1 )3

1

3

[

I2(P
2) − I2(Q

2)
]

(Q2 − P 2)3
(1 2Qm)2(1 2mQ) , (4.1.7)

where t
[k]
i := (pi + pi+1 + · · · + pi+k−1)

2 are sums of colour-adjacent momenta and

the I2 functions are the scalar bubble functions as defined in Appendix C. In ob-

taining (4.1.6) and (4.1.7), we made use of the fact that momentum conservation dic-

tates that on the triple-cut (`1 · `2)2 = 4/P 4 and (m · Q) = −(m · P ) = −(1/2)(Q2 −
P 2). Also, in order to make the formulæ more compact, we introduced the notation

(a1 a2 a3 a4) := tr+(6a1 6a2 6a3 6a4), which we will use throughout the rest of the paper.

In (4.1.6) and (4.1.7) the combinations
[

I2(P
2) − I2(Q

2)
]

/((Q2 − P 2)(r)) appear,

which are ε-dependent triangle functions expressed as differences of two bubble func-

tions. For convenience we choose to write them as

T (r)
ε (m,P,Q) :=

1

ε

(−P 2)−ε − (−Q2)−ε

(Q2 − P 2)r
, (4.1.8)

where r is a positive integer and the momenta on which T (r) depends satisfy m+P+Q =

0.
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As mentioned in the introduction to this chapter, we are working in D = 4 dimen-

sions so that we really should take the ε → 0 limit of (4.1.8). For P 2 6= 0 and Q2 6= 0

we define the finite, ε-independent triangle function,

T (r)(m,P,Q) :=
log(Q2/P 2)

(Q2 − P 2)r
. (4.1.9)

In the event of the vanishing of either of the kinematic invariants, (4.1.8) gives rise

to infrared-divergent terms since one of the numerator terms in (4.1.8) vanishes. There

are two possibilities:

• P = k2 with P 2 = 0 ,

• Q = k1 with Q2 = 0 .

Finally, the amplitude takes the following form:

Ascalar
n = Apoles + A1 + A2 , (4.1.10)

where

Apoles = − i

6
Atree

1

ε

[

(−t[2]2 )−ε + (−t[2]n )−ε
]

, (4.1.11)

A1 = −2i

6
Atree

1

(t
[2]
1 )2

n−1
∑

m=4

[

(1 2P m)2
]

T (2)(m,P,Q) ,

A2 = −2i

3
Atree

1

(t
[2]
1 )3

n−1
∑

m=4

[

(1 2P m)2(1 2mP )
]

T (3)(m,P,Q) ,

where we used t
[k]
i := (pi + pi+1 + · · · + pi+k−1)

2 and the triangle functions introduced

in (4.1.9).

Equation (4.1.11)5, which gives the cut-constructible part of the n-point one-loop

scattering amplitudes with two adjacent gluons of negative helicity, agrees with the

amplitudes found in [21] using conventional unitarity and with the amplitude found in

[20] using MHV diagrams.

5We point that in the notation of [20, 21] qm,1 = −P . Also, we dropped an overall, ε-dependent
factor cΓ [21] and did not make the symmetry properties of the amplitude under the exchange of the
gluons 1 ↔ 2 manifest in writing our result, thus explaining a factor of two compared to [20, 21].
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−
+

`1

`2 `3

m2 + 1+

j−

m1 − 1+

m+
2

i−

m1 + 1+

m+
1

Figure 4.2: One of the two possible triple cut diagrams contributing to the n-gluon
amplitude in the general case. The other triple cut diagram is obtained by swapping i
and j through the replacements m1 − 1 → m1 and m2 ↔ m1.

4.2 The MHV Scalar Amplitude: The General Case

The case in which the two negative-helicity gluons are non-adjacent is more involved.

Fortunately, the calculation turns out to be more straightforward than expected, since

some of the algebraic manipulations involved can be related to manipulations appearing

in the MHV diagram calculation of the same amplitudes [20].

As in the adjacent case, our starting expression is (4.0.2). A direct, brute force

calculation yields rather unpleasant four-tensor box integrals. However, we do not

follow this approach as it would spoil our goal to show the simplicity of the generalised

unitarity method. Instead, by using momentum conservation arguments to eliminate `3

from (4.0.2), we arrive at a more elegant and manageable expression for the amplitude

given by

An
scalar

∣

∣

∣

cut
= −2i Atree

〈i j〉4
∑

m1,m2

∫

d4`2
(2π)4

〈j `1〉2〈j `2〉2〈i `1〉2〈i `2〉2
`21 `

2
2 `

2
3 〈`1 `2〉2

× 〈m2 (m2 + 1)〉〈(m1−1)m1〉[`2m1]

〈`1 (m2+1)〉〈(m1−1) `2〉〈m2 `1〉
∣

∣

∣

cut
, (4.2.1)

where in deriving (4.2.1) we made use of the fact that

λ`2 = αλm1 , (4.2.2)

λ`3 = β λm1 ,

λ̃`2 =
1

α
λ̃m1 +

β

α
λ̃`3 ,
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for some complex α and β with λ and λ̃ holomorphic and anti-holomorphic spinors of

negative and positive helicity respectively.

In order to reduce the hexagon integral (4.2.1) to a linear combination of box and

triangle integrals, we notice that multiplying and dividing (4.2.1) by 〈`2m1〉 allows us

to write the integrands6, after applying the Schouten identity twice, as a sum of four

terms

C(m2+1, m1) − C(m2+1, m1−1) − C(m2,m1) + C(m2,m1−1) , (4.2.3)

where

C(a, b) :=
〈j `1〉2〈j `2〉〈i `1〉〈i `2〉2

〈`1 `2〉2〈i j〉4
· 〈i a〉〈j b〉
〈`1 a〉〈`2 b〉

. (4.2.4)

Therefore, we find

An
scalar

∣

∣

∣

cut
= 2i Atree

[
∫

d4`2
(2π)4

1

`21 `
2
2

−
∫

d4`2
(2π)4

1

`21 `
2
3

]

∑

a,b

C(a, b)
∣

∣

∣

cut
, (4.2.5)

where the sum stands for the sum of four terms (with signs) in (4.2.3).

One of the triple cuts contributing to the amplitude may be seen in Figure 4.2 where

we defined P := qm2+1,m1−1 and Q := qm1+1,m2 . Our choice for the momentum flow

explains why we find the C coefficients with a↔ b compared to [20].

Although the calculation carried out in [20] is conceptually different from the one

we are performing here, we can nevertheless make use of formula (B.16) in that paper,

which gives a rather convenient expression for C:

−C(a, b) =
(i j `1 `2)(i j `2 `1)(i j `1 a)(i j b `2)

28(i · j)4(`1 · `2)2(`1 · a)(`2 · b)
(4.2.6)

=
1

28(i · j)4 (H1 + . . .+ H4) ,

where the Hi are given by

H1 :=
(i j b a)(i j `l P )(i j P `1)(i j `1 a)

(`1 · `2)2(a · b)(`1 · a)
(4.2.7)

− (i j b a)(i j P `2)(i j `2 P )(i j `2 b)

(`1 · `2)2(a · b)(`2 · b)
,

6The reader might argue, in view of (4.2.2), that 〈`2m1〉 is zero which entails that we are effectively
multiplying (4.2.1) by 0

0
. However, at this point we are off-shell as we have uplifted the cut integral to

a Feynman integral by replacing on-shell delta functions by full Feynman propagators.
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and

H2 := −(i j a b)(i j b a)(i j P `1)(i j `1 a)

(`1 · `2)(a · b)2(`1 · a)
(4.2.8)

− (i j a b)(i j b a)(i j `2 P )(i j `2 b)

(`1 · `2)(a · b)2(`2 · b)
,

H3 := −(i j a b)2(i j b a)(i j `1 a)

(a · b)3(`1 · a)
(4.2.9)

+
(i j a b)2(i j b a)(ij`2b)

(a · b)3(`2 · b)
,

H4 := −(i j a b)2(i j b a)2(b P `1 a)

4(a · b)4(`1 · a)(`2 · b)
. (4.2.10)

Thus, we produce, in ascending order from H4 to H1, linear box integrals and linear,

two-tensor and three-tensor triangle integrals. We focus first on the triangle integral

contributions.

Substituting for a and b in the expressions for H and keeping only those terms that

actually contribute to the particular triple cut depicted in Figure 4.2 yields combinations

of differences of traces. In order to express our result in a more compact fashion, we

find it useful to define the following quantities:

Aij
m1m2

:=
(i j m1m2+1)

(m1 · (m2+1))
− (i j m1m2)

(m1 ·m2)
, (4.2.11)

Sij
m1m2

:=
(i j m1m2+1)(i j m2+1m1)

(m1 · (m2+1))2
− (i j m1m2)(i j m2m1)

(m1 ·m2)
,

Iij
m1m2

:=
(i j m1m2+1)(i j m2+1m1)

2

(m1 · (m2 + 1))3
− (i j m1m2)(i j m2m1)

2

(m1 ·m2)3
,

which exhibit the following symmetry properties

Aij
m1m2

= −Aji
m1m2

, Sij
m1m2

= Sji
m1m2

. (4.2.12)

The only integrals that survive from (4.2.5) are the ones with the correct triple cut,

i.e. those integrals that have all three propagators that are cut in Figure 4.2. Hence,

many of the triangle integrals can be neglected7 and after the dust has settled we are

7One consequence of these considerations is that the first integral on the right hand side of (4.2.5)
can be ignored altogether.
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left with:

H1 = Aij
m1m2

(i j P `2)(i j `2 P )(i j `2m1)

28(i · j)4(`1 · `2)2(`2 ·m1)
, (4.2.13)

H2 = Sij
m1m2

(i j `2 P )(i j `2m1)

28(i · j)4(`1 · `2)(`2 ·m1)
, (4.2.14)

H3 = Iij
m1m2

(i j `2m1)

28(i · j)4(`2 ·m1)
. (4.2.15)

Before we present the complete amplitude, we wish to inspect the coefficient of the

box function depicted in Figure 4.3 and compare it with the results found in [20] using

MHV diagrams and in [91] using quadruple cuts. The crucial term in the function

C(a, b) that enters the triple cut (4.2.5) of the amplitude and gives rise to a triple cut

of a box function is:

− 1

28(i · j)4H4 =

[

(i j m2m1)
2(i j m1m2)

2

28(i · j)4(m2 ·m1)4

]

(m1 P `1m2)

4(l1 ·m2)(l2 ·m1)
, (4.2.16)

which may be written more compactly as

− 1

28(i · j)4H4 =
1

4

[

bijm1m2

]2 (m1 P `1m2)

(l1 ·m2)(l2 ·m1)
, (4.2.17)

in terms of the coefficient of the box integral function appearing in the one-loop N = 1

MHV amplitude with the same helicity configuration computed in [21]

bijm1m2
:= −1

8

(i j m2m1)(i j m1m2)

(i · j)2 (m1 ·m2)2
. (4.2.18)

for which we find the following:

H4 =

[

(i j m2m1)
2(i j m1m2)

2

28(i · j)4(m2 ·m1)4

]

(m1 P `1m2)

4(l1 ·m2)(l2 ·m1)
, (4.2.19)

Let us observe that (4.2.17) gives rise to a linear two-mass easy box integral whose

PV reduction is given in Appendix C. Inserting the result of the PV reduction into

(4.2.17) reproduces the correct coefficient of the box function. A brief comment is in

order here. In the final result [20] only the finite part B(s, t, P 2, Q2) of the two-mass

easy box function appears (as defined e.g. in eq. (4.7) of [20]). We have checked that

this is indeed the case and is due to the presence of scalar triangle functions in the PV

reduction of Appendix D which precisely cancel the IR divergences of the scalar box

function I4[1] once all triple-cut channels are taken into account.
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+
−

`2

m2 + 1+
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+
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m+
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m1 + 1+

i−

m2 − 1+
+−

`1 +m2

−+

m+
2

`1

Figure 4.3: A quadruple cut diagram contributing to the n-gluon amplitude in the general
case.

We can now present the complete result8 for the one-loop n-gluon MHV amplitude

(4.0.2) reconstructed using the generalised unitarity method:

An
scalar = 2iAtree







i−1
∑

m1=j+1

j−1
∑

m2=i

1

2
[bijm1m2

]2F
(

t[m2−m1]
m1

, t
[m2−m1−1]
m1+1 , P,Q

)

(4.2.20)

+





8

3

i−1
∑

m1=j+1

j−1
∑

m2=i

[

Aij
m1m2

T (3)(m1, P,Q) + (i · j)Ãij
m1m2

T (2)(m1, P,Q)
]

+ 2

i−1
∑

m1=j+1

j−1
∑

m2=i

[

Sij
m1m2

T (2)(m1, P,Q) − I ij
m1m2

T (m1, P,Q)
]

+ (i↔ j)

)}

,

where we have introduced for convenience the following quantities:

Aij
m1m2

:= −2−8(i · j)−4 Aij
m1m2

[

(i j m1Q)(i j Qm1)
2
]

, (4.2.21)

Ãij
m1m2

:= −2−8(i · j)−4 Aij
m1m2

[

(i j Qm1)
2
]

, (4.2.22)

Sij
m1m2

:= 2−8(i · j)−4 Sij
m1m2

[

(i j Qm1)
2
]

, (4.2.23)

8We have already multiplied by a factor of 2 due to the two scalar helicity configurations running in
the loop.
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and

Iij
m1m2

:= 2−8(i · j)−4 Iij
m1m2

[(i j Qm1)] . (4.2.24)

The amplitude (4.2.20) agrees precisely with the result found in [20]. Once again, in

deriving (4.2.20) we did not make use of the symmetry properties of the amplitude

under exchange of the i-th and j-th gluon.

Similarly to the adjacent case, the infrared divergent terms may be extracted from

the cases when either P 2 or Q2 vanishes (see Figure 4.2). The case Q2 = 0 corresponds

to m1 = i−1 and m2 = i, while P 2 = 0 corresponds to m1 = j+1 and m2 = j−1.

Hence,

T (r)(p, P,Q) → (−)r 1

ε

(−t[2]i−1)
−ε

(t
[2]
i−1)

r
, Q2 → 0 , (4.2.25)

T (r)(p, P,Q) → −1

ε

(−t[2]j )−ε

(t
[2]
j )r

, P 2 → 0 . (4.2.26)

Thus, we find the following infrared-divergent terms for Q2 = 0:

− 1

2 ε
· (−t[2]i−1)

−ε4(i · j) (i j i−1 i+1)

((i+1) · (i−1))
(4.2.27)

·
[

8

3
(i · j)2 − 2

(i j i+1 i−1)

((i+1) · (i−1))(i · j) +
(i j i+1 i−1)(i j i−1 i+1)

((i+1) · (i−1))2

]

.

Similarly, we find for P 2 = 0 the following:

− 1

2 ε
· (−t[2]j )−ε4(i · j) (i j j−1 j+1)

((j+1) · (j−1))
(4.2.28)

·
[

8

3
(i · j)2 − 2

(i j j+1 j−1)

((j+1) · (j−1))(i · j) +
(i j j+1 j−1)(i j j−1 j+1)

((j+1) · (j−1))2

]

.

4.3 NMHV Scalar amplitudes

In § 4.1 and § 4.2 we have shown how triple cuts correctly reproduce the cut-constructible

part of the n-gluon one-loop MHV scattering amplitudes in pure Yang-Mills, both for

the adjacent and for the general case. An interesting observation of this calculation

is that we did not have to make use of two particle cuts. Of course, our result is

consistent with two particle cuts since it agrees with the earlier calculation of the same

class of amplitudes in [21] and [20] using conventional unitarity and MHV diagram,

respectively. This is in line with similar observations made in [83] and [91] where certain
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Figure 4.4: The triple-cut diagrams contributing to the n-gluon one-loop NMHV scalar
amplitude An

scalar(1
+, . . . , i−, j−, . . . , k−, . . . n+).

classes of amplitudes where obtained from triple cuts (and quadruple cuts) alone. The

particular examples are NMHV one-loop amplitudes with adjacent negative-helicity

gluons considered in [91] and all four-point one-loop amplitudes in pure Yang-Mills

considered in [83]. Obviously, it would be interesting to investigate these observations

further and understand whether this works for general amplitudes.

A first, important step would be to gain knowledge of the one-loop n-gluon NMHV,

that is amplitudes with three negative helicities. While the purely gluonic 6- , 7- and

n-point one-loop N = 4 NMHV amplitudes were computed in [21, 27, 78, 96] using

generalised unitarity, 6- and n-point one-loop amplitudes involving adjoint fermions and

scalars in N = 4 gauge theory were found in [97, 98]. A different approach was employed

in [99] for the 7-gluon amplitudes in N = 4 NMHV, whereby the authors managed to

exploit the holomorphic anomaly of unitarity cuts to reconstruct the amplitude by
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evaluating the action of a certain differential operator on the cut. Furthermore, the

holomorphic anomaly was also utilised in [100] to compute the six-point one-loop N = 1

split-helicity NMHV amplitude, while the remaining six-point one-loop N = 1 NMHV

amplitudes were calculated in [101]. Generalised unitarity provided the n-gluon one-

loop N = 1 NMHV amplitude in [91] for the case that the three negative-helicity gluons

are adjacent. This latter amplitude has been calculated in pure Yang-Mills in [34] using

an iterative approach. Finally, the coefficients of bubble and triangle integral functions

for non-supersymmetric six-gluon amplitudes were computed in [102].

Let us conclude this section with some remarks on preliminary investigations of the

NMHV case. We have investigated a particular class of non-supersymmetric NMHV

amplitudes, namely An
scalar(1

+, . . . , i−, j−, . . . , k−, . . . n+), i.e. amplitudes where the i-

th and j-th negative-helicity gluons are adjacent and the k-th one is in an arbitrary

position. In order to tackle the problem, we start by identifying all possible triple cuts

contributing to the amplitude, which may be seen in Figure 4.4. The triple cut drawn

at the top-left poses no new problems (we found structures similar to those appearing

in the calculation of the MHV amplitude we investigated earlier). For the remaining

triple cuts an additional difficulty arises, since the tree amplitudes appearing in the

triple cut (4.0.2) may be NMHV. Thus, we cannot employ the Parke-Taylor (2.3.8)

formula for the standard MHV tree amplitudes. By applying manipulations similar to

those used throughout § 4.1 and § 4.2, we mostly obtain three-tensor triangle integrals

although some more complicated three-tensor pentagon integrals still appear9. In a

straightforward application of the CSW rules spurious poles arise and it is necessary

to use improved formulæ for the NMHV tree amplitudes [104] that have only physical

poles.

4.3.1 An Example: Coefficient of Three-Mass Triangle

We recall again that one-loop amplitudes in pure Yang-Mills can be decomposed in

terms of a basis of scalar bubble, triangle and box integral functions together with

additional rational pieces. Whilst rational pieces can be retrieved from the unitarity

approach by imposing the cut loop momentum to live in D = 4 − 2ε dimensions [80],

knowledge of the integral basis reduces to the task of finding the coefficients of this

basis. Particularly straightforward is the computation of the coefficients of the box

integral functions as shown in [78] where a combination of generalised unitarity together

with complex momenta allowed for a purely algebraic computation of the sought-after

coefficients10.

9In dealing with the NMHV tree amplitudes, we heavily used the results of [103–105].
10Basically, the four delta functions completely freeze the loop integration.
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Conversely, coefficients of triangle and bubble integral functions are more challenging

to compute, for cutting all the propagators in a given integral topology does not isolate

a unique integral coefficient as for the box case and integrations or integral reduction

techniques are needed. In [106], a way of finding these coefficients at the integrand level

was proposed, which requires minimal information about the form of the amplitude and

only involves solving some sets of equations. The solutions of these equations are the

coefficients of the integral functions together with some spurious terms which vanish

upon integration over loop momenta. A different approach was proposed in the very

interesting [92] where coefficients for bubble and triangle integral functions were given.

There, the use of double and triple cuts together with a complex parametrisation of

the loop momenta allowed to determine the scalar integral coefficients via the study of

their boundary conditions. It was realised in [107] that the cut-integrations reduce to

contour integrals over a complex variable which allows the integrals to be analytically

computed.

Below, we are interested in the computation of the coefficients of the three-mass

triangle integral function I3m
3 (K2

1 ,K
2
2 ,K

2
3 ) with the momentum invariants K2

i 6= 0.

This class of integral functions appears in the calculation of n-point NMHV amplitudes

and was first computed in [108, 109]

I3m
3 =

i√
∆3

3
∑

j=1

[

Li2

(

−
(

1 + iδj
1 − iδj

))

− Li2

(

−
(

1 − iδj
1 + iδj

))]

+ O(ε) , (4.3.1)

where

δ1 =
K2

1 −K2
2 −K2

3√
∆3

,

δ2 =
K2

2 −K2
1 −K2

3√
∆3

, (4.3.2)

δ3 =
K2

3 −K2
1 −K2

2√
∆3

,

with the Gram determinant of the three-mass integral function I 3m
3 given by

∆3 ≡ −(K2
1 )2 − (K2

2 )2 − (K2
3 )2 + 2K2

1K
2
2 + 2K2

1K
2
3 + 2K2

2K
2
3 . (4.3.3)

By using generalised unitarity and the results of the study on the analytic structure of

the cut integrals given in [107], we present the coefficients of the three-mass triangle

integral functions I3m
3 for the n-point N = 0 NMHV scalar amplitude.

In order to evaluate the three-mass triangle coefficients, we make use of generalised

unitarity and consider the triple cut depicted in Figure 4.5 with the three negative-
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Figure 4.5: The triple-cut diagram contributing to the n-gluon scalar NMHV amplitude
An(1+, . . . , i−, . . . , j−, . . . , k−, . . . , n+).

helicity gluons each sitting at one of the three massive corners

C3 =
∑

i,j,k,±

∫

d4`1 δ(`
2
0) δ(`

2
1) δ(`

2
2)Atree(`0, . . . , j

−, . . . ,−`1)

×Atree(`1, . . . , k
−, . . . ,−`2)Atree(`2, . . . , i

−, . . . ,−`0) , (4.3.4)

where Ki are sum of external colour-adjacent momenta ki taken to be outgoing. Our

starting point is the triple cut (4.3.4) obtained by sewing three MHV tree-level ampli-

tudes

An
scalar

∣

∣

∣

cut
= 2i

∑

i,j,k

∫

d4l0
(2π)4

〈j l1〉2 〈j l0〉2
〈l0 (m2 + 1)〉〈m3 l1〉〈l1 l0〉

〈k l2〉2〈k l1〉2
〈l1 (m3 + 1)〉〈m1 l2〉〈l2 l1〉

(4.3.5)

× 〈i l0〉2〈i l2〉2
〈l2 (m1 + 1)〉〈m2 l0〉〈l0 l2〉

〈m2 (m2 + 1)〉〈m3 (m3 + 1)〉〈m1 (m1 + 1)〉
l20 l

2
1 l

2
2

∏

α6=m1,m2,m3
〈α (α+ 1)〉

∣

∣

∣

cut
,

where the ranges of summation of m1,m2 and m3 are

k + 1 ≤ m1 ≤ i− 1, i+ 1 ≤ m2 ≤ j − 1, j + 1 ≤ m3 ≤ k − 1, . (4.3.6)

In (4.3.5) we sum over the two possible helicity configurations and the delta functions

have been replaced by unrestricted loop momenta.

Following the same strategy as in § 4.2, we multiply numerator and denominator of

(4.3.5) by [l1 l2]
2 and we observe that

〈l0 l1〉 [l1 l2] 〈l2 l0〉 = −〈l0
∣

∣K1 ·K2

∣

∣l0〉 , (4.3.7)

〈l2 l1〉 [l1 l2] = −K2
3 . (4.3.8)
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Thus, (4.3.5) yields

AN=0
n = 4i

∑

m1,m2,m3

∫

d4l0
(2π)4

〈j l1〉2 〈j l0〉2
〈l0 (m2 + 1)〉〈m3 l1〉

〈k l2〉2〈k l1〉2
〈l1 (m3 + 1)〉〈m1 l2〉

× 〈i l0〉2〈i l2〉2
〈l2 (m1 + 1)〉〈m2 l0〉

[l1 l2]
2

∏

α6=m1,m2,m3
〈α (α+ 1)〉

× 〈m2 (m2 + 1)〉〈m3 (m3 + 1)〉〈m1 (m1 + 1)〉
K2

3 l
2
0 l

2
1 l

2
2 〈l0

∣

∣K1 ·K2

∣

∣l0〉
. (4.3.9)

By making use of the Schouten identity on 〈i l0〉 〈m2 (m2 + 1)〉, 〈k l2〉 〈m1 (m1 + 1)〉
and 〈j l1〉 〈m3 (m3 + 1)〉 we obtain a sum of eight terms; however, each term will have

three propagators less than (4.3.5). The first such a term would take the following form

〈j l1〉 〈k l2〉 〈i l0〉 〈j l0〉2
〈l0
∣

∣K1 ·K2

∣

∣l0〉
〈im2〉 〈km1〉 〈j m3〉
〈m3 l1〉 〈m1 l2〉 〈m2 l0〉

. (4.3.10)

We wish to make (4.3.9) a function of a single loop momentum, say l0. We do so by

transforming spinor products in the following manner

〈j l1〉
〈s l1〉

=
〈l0 l2〉 [l2 l1] 〈l1 j〉
〈l0 l2〉 [l2 l1] 〈l1 s〉

=
〈l0
∣

∣K2 ·K3

∣

∣j〉
〈l0
∣

∣K2 ·K3

∣

∣s〉 ≡ 〈l0 j32〉
〈l0 s32〉

, (4.3.11)

〈k l2〉
〈m1 l2〉

=
〈l0 l1〉 [l1 l2] 〈l2 k〉
〈l0 l1〉 [l1 l2] 〈l2 t〉

≡ 〈l0 k32〉
〈l0m32

1 〉 , (4.3.12)

where
∣

∣aij〉 ≡ KjKi

∣

∣a〉 in the notation of [107]. Thus, (4.3.9) can be recast in the more

elegant following form

〈im2〉 〈km1〉 〈j m3〉
〈l0 j32〉 〈l0 k32〉 〈l0 i〉

∏

y∈Y3
〈y l0〉

〈j l0〉2
〈l0
∣

∣K1 ·K2

∣

∣l0〉
, (4.3.13)

where Y3 = {m2,m
32
3 ,m

32
1 }.

By repeatedly applying a generalised version of the Schouten identity

〈λa〉
〈λ b〉 〈λ c〉 =

〈b a〉
〈b c〉 〈λ b〉 +

〈c a〉
〈c b〉 〈λ c〉 , (4.3.14)

we can rewrite (4.3.13) as

〈im2〉 〈km1〉 〈j m3〉
∑

y∈Y3

〈y j32〉 〈y k32〉
∏

z 6=y∈Y3
〈z y〉

〈l0 i〉 〈j l0〉2
〈l0 y〉 〈l0

∣

∣K1 ·K2

∣

∣l0〉
. (4.3.15)
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The sums in (4.3.15) are nothing but sums of canonical forms of the kind found in

[107]. For the triangle integral function they take the following form

〈l0 a〉 〈l0 b〉〈l0 c〉
〈l0|K1 ·K2|l0〉 〈l0 d〉

−→ 〈b|[K1,K2]|d〉 〈c|[K1,K2]|a− ∆3〈b d〉 〈c a〉
2∆3〈b|K1 ·K2|d〉

+
〈d b〉 〈d c〉 〈a|[K1 ,K2]|d〉

2〈b|K1 ·K2|d〉2
, (4.3.16)

where ∆3 is the Gram determinant (4.3.3) of the three-mass integral function I 3m
3 .

Thus, we can recast (4.3.15) as

〈im2〉 〈km1〉 〈j m3〉
∑

y∈Y3

〈y j32〉 〈y k32〉
∏

z 6=y∈Y3
〈z y〉 (4.3.17)

×
{

〈i
∣

∣[K1,K2]
∣

∣y〉 〈j
∣

∣[K1,K2]
∣

∣j〉
2∆3〈y

∣

∣K1 ·K2

∣

∣y〉 +
〈y i〉 〈y j〉 〈j

∣

∣[K1,K2]
∣

∣y〉
2〈y
∣

∣K1 ·K2

∣

∣y〉2

}

.

We wish to introduce the shorthand notation

〈im2〉 〈km1〉 〈j m3〉
∑

[z 6= y ∈ Y3 = m2,m
32
3 ,m

32
1 ] , (4.3.18)

to denote the coefficient (4.3.17).

In a manner similar to the above, we compute the remaining seven terms and we

present the coefficient for the three-mass triangle integral function contributing to the

general n-point N = 0 NMHV amplitude

C3 = 4i
〈k
∣

∣K2 ·K3

∣

∣i〉2
K2

3

∏

α6=m1 ,m2,m3
〈α (α+ 1)〉 (4.3.19)

×
{

〈im2〉 〈km1〉 〈j m3〉
∑

[

z 6= y ∈ Y3 = m2,m
32
3 ,m

32
1

]

− 〈im2〉 〈km1〉 〈j m3,1〉
∑

[

z 6= y ∈ Y3 = m2,m
32
3,1,m

32
1

]

− 〈im2〉 〈km1,1〉 〈j m3〉
∑

[

z 6= y ∈ Y3 = m2,m
32
3 ,m

32
1,1

]

+ 〈im2〉 〈km1,1〉 〈j m3,1〉
∑

[

z 6= y ∈ Y3 = m2,m
32
3,1,m

32
1

]

+ 〈im2,1〉 〈km1〉 〈j m3〉
∑

[

z 6= y ∈ Y3 = m2,1,m
32
3 ,m

32
1

]

+ 〈im2,1〉 〈km1〉 〈j m3,1〉
∑

[

z 6= y ∈ Y3 = m2,1,m
32
3,1,m

32
1

]

+ 〈im2,1〉 〈km1,1〉 〈j m3〉
∑

[

z 6= y ∈ Y3 = m2,1,m
32
3 ,m

32
1,1

]

− 〈im2,1〉 〈km1,1〉 〈j m3,1〉
∑

[

z 6= y ∈ Y3 = m2,1,m
32
3,1,m

32
1,1

]

}

,
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where, with yet another notation, we define mi,1 := (mi + 1) for i = 1, 2, 3.

In [50], a similar calculation was performed providing the coefficient of the three-

mass triangle for scalar NMHV amplitudes. We emphasise that we arrived at (4.3.19)

independently from [50] and few months before it was published.



Chapter 5

Hidden Structures in (S)QED

One of the important realisations of the past decades is that physical observables in

quantum gauge theories are far simpler than what one would expect from Feynman dia-

grams. For instance, the Parke-Taylor formula [65] for the MHV scattering amplitudes

in colour-ordered Yang-Mills theory at tree level resums large numbers of Feynman di-

agrams into a stunning one-line expression. Such intriguing simplicity persists at the

quantum level, culminating perhaps in the higher-loop iterative structures discovered

in the higher-loop expansion of maximally SYM in [38, 39].

The perturbative expansion of supergravity theories is also full of surprises. At tree

level, there are interesting relations between amplitudes in Yang-Mills and in gravity,

starting with the KLT relations [110] and continuing with the recent solution of the

BCF recursion relations [23, 24] for general relativity [29, 30] found in [111], which

expresses amplitudes in maximal supergravity in terms of sums of squares of N = 4

SYM amplitudes. Both KLT formulæ and the relations of [111] have echoes in the

expressions for the one-loop box coefficients [112–115]. Most importantly, there is now

mounting evidence of the remarkable similarities between N = 4 SYM and N = 8

supergravity, leading to the conjecture that the N = 8 theory could be ultraviolet

finite, just like its non-gravitational maximally supersymmetric counterpart. This is

supported both by multi-loop perturbative calculations [116–119], and string theory

and M-theory considerations [120–123].

In describing the remarkable web of regularities and similarities between the per-

turbative expansions of gauge theory and gravity, Quantum Electrodynamics (QED)

has its own place in the story. For example, multi-photon amplitudes in QED (with at

least eight photons) have in common with maximally supersymmetric Yang-Mills and

supergravity the no-triangle (and no-bubble) property. This is the statement that all

66
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one-loop amplitudes can be written as sums of box functions times rational coefficients1.

This property was proved for N = 4 SYM in [17], conjectured for N = 8 supergravity

in [112, 113, 124, 125] and subsequently proved in [126, 127]. Recently is was found

in [128] that a similar statement holds for photon amplitudes in QED. We also men-

tion the interesting connections found in [118] and [126, 128] between the unexpected

cancellations in the one-loop scattering amplitudes, and the large-z behaviour of tree

amplitudes observed in [29, 30, 127, 129, 130]. In unordered theories such as gravity

and QED these cancellations are amplified by the summation over different orderings

of the external particles.

Two more interesting facts are worth mentioning. Firstly, the one-loop MHV and

four-point two-loop photon amplitudes in N = 2 SQED have a uniform degree of tran-

scendentality, i.e. at one and two loops, only terms with total polylogarithmic weight

equal to 2 and 4 appear, respectively [131]. A similar fact has been recently observed

in [132, 133] in the one- and two-loop graviton MHV amplitudes in maximal supergrav-

ity. Furthermore, the N = 2 SQED result for these amplitudes can be obtained from

the corresponding N = 1 SQED result by keeping only terms with maximal transcen-

dentality (and no ratio of kinematic scales), leading to the speculation that maximal

transcendentality [134] could be a feature of all maximally supersymmetric theories.

Moreover, slightly departing from the realm of scattering amplitudes, we would also

like to recall the somewhat puzzling “simplicity” of the three-loop electron anomalous

dimension [135]. Here, numerically large cancellations occur between different diagrams,

a fact which is due to the breaking of gauge symmetry at the diagrammatic level, see

[136] for a prescient and enjoyable discussion of this point.

It is therefore natural to ask to which extent the simplicity found in the perturbative

expansion of amplitudes in supersymmetric Yang-Mills and supergravity persists in

(S)QED. We are fortunate to have a large number of analytic amplitudes at our disposal

to test this. The one-loop four-photon amplitudes for massless and massive fermions

were first computed in [137, 138]. Corrections to light-by-light scattering at two loops

were determined about fifty years later in [139] using the modern unitarity method

[17, 21]. The four-point results of [139] were confirmed in [131] and extended to N = 1

and N = 2 SQED by analysing the tensorial structure of the amplitudes found in

[137, 138]. In [140], analytic expressions for one-loop MHV photon amplitudes for an

arbitrary number of photons were calculated with the help of the off-shell currents found

in [141]. In [142], analytical results for all six-photon QED amplitudes were given whilst

in [143], formulæ for n-point MHV amplitudes in QED, scalar QED and N = 1 SQED

1One-loop photon amplitudes in (S)QED are somewhat special since they are both infrared and
ultraviolet finite. This implies particular relations between the box coefficients, since the infrared
divergences must cancel.
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were obtained, together with the analytical results for the six-point NMHV QED and

N = 1 SQED amplitudes, which confirmed earlier work of [140, 142].

At tree level, the simplest nonvanishing scattering amplitude one encounters in mass-

less QED is the MHV amplitude with n photons and two fermions,2

AMHV(q̄, q, 1+, 2+, . . . , i−, . . . , n+) = i
〈q i〉3〈q̄ i〉
〈q̄ q〉2

n
∏

l=1

〈q̄ q〉
〈q l〉〈l q̄〉 (5.0.1)

= i
〈q i〉3〈q̄ i〉
〈q̄ q〉2

∑

P{1,2,...,n}

〈q̄ q〉
〈q 1〉〈1 2〉 · · · 〈n q̄〉 ,

where the fermion q and the ith photon have negative helicity, and all the other particles

have positive helicity. Equation (5.0.1) shows two important features. Firstly, the MHV

amplitude in QED is given by a compact, one-line expression, see the first line of (5.0.1).

Furthermore, this amplitude can be derived by summing over permutations of colour-

ordered amplitudes in Yang-Mills where the photons are replaced by gluons with the

same helicities.3 This is explicitly shown in the second line of (5.0.1), where each term

in the sum over permutations P{1, 2, . . . , n} is equal to a colour-ordered Yang-Mills

MHV amplitude with n gluons and two fundamental fermions q and q̄.

This observation leads directly to the first result [51] we present in this chapter.

We will discuss how the one-loop MHV amplitude of photons in supersymmetric and

in pure QED can be derived directly by summing over appropriate permutations of the

corresponding result for gluon MHV amplitudes in supersymmetric or pure Yang-Mills

theory. As we mentioned before, one-loop photon amplitudes in (S)QED can be written

in terms of (the finite parts of) box functions for n ≥ 8. We will therefore show that the

box coefficients of the Yang-Mills amplitudes, summed over appropriate permutations

of the external gluons, directly give the box coefficients of the QED amplitudes. We

will also outline the proof of this interesting fact, based on a gedanken MHV diagram

calculation [16, 18, 20, 144, 145].

The second observation we make [51] in this chapter is aimed at uncovering possible

cross-order relations in the perturbative expansion of N = 2 SQED. The first example of

iterative structures was found in planar N = 4 SYM for the four-point MHV amplitudes

in [38]. In a later paper [39], Bern, Dixon and Smirnov (BDS) put forward a conjecture

for the all-loop resummation of the planar n-point MHV amplitudes in N = 4 SYM,

which has been tested up to three loops in the four-point case [39] and up to two loops

in the five-point case [40, 146].

2Recall that there is no tree-level photon amplitude corresponding to the gluon MHV amplitude in
Yang-Mills.

3See [71] for a discussion of this important feature.
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In a remarkable paper [41], Alday and Maldacena succeeded in using the AdS/CFT

correspondence to calculate scattering amplitudes at strong coupling, in particular relat-

ing them to expectation values of lightlike polygonal Wilson loops, and confirming the

BDS ansatz at strong coupling in the four-point case. In a subsequent series of papers,

it was shown that the vacuum expectation value of the same Wilson loops is related to

MHV amplitudes in N = 4 SYM also at weak coupling [42, 43]. Calculations at two

loops of four-sided [44] and five-sided Wilson loops [45] found agreement with the field

theory amplitudes and the BDS ansatz. However, in [147] it was realised that the BDS

ansatz is incomplete at least for a large number of external gluons. More concretely, a

calculation of the lightlike hexagon Wilson loop [47] showed that the BDS ansatz breaks

down, and has to be amended by adding a dual conformal invariant remainder function.

In [46], a direct calculation of the two-loop six-gluon MHV amplitude in N = 4 SYM

confirmed the result of [47, 48]. The remainder function has been studied in detail

numerically for n = 6 points in [46, 48] and more recently in [148] for n = 6, 7, 8.

Motivated by this, we will consider the four-photon MHV amplitude at one and two

loops in maximally supersymmetric N = 2 SQED, and test the possibility that the

two-loop amplitude could be written as a polynomial in the one-loop amplitude. One

important difference compared to Yang-Mills is that in QED the one- and two-loop four-

photon amplitudes are finite. Thus, one lacks the guiding principle of the exponentiation

of infrared divergences, which is central to the all-loop ABDK/BDS ansatz. Despite this,

we find that, quite surprisingly, the two-loop photon MHV amplitudes in maximally

supersymmetric QED is not exactly given but well approximated (in a wide kinematic

region) by a polynomial in the one-loop MHV four-photon amplitude. We will also

discuss the limitations of such an approximate formula.

The rest of the chapter is organised as follows. In § 5.1 we present the relationship

mentioned earlier between the box coefficients of one-loop MHV (S)QED amplitudes

and sums of permutations of box coefficients of the same amplitudes in (S)YM, and

prove it using one-loop MHV diagrams. In § 5.2, after reviewing salient features of

the BDS ansatz, we investigate approximate recursive structures for MHV four-photon

amplitudes in N =2 SQED.

5.1 In Search of the (S)QED-(S)QCD Correspondence

In this section we explore a one-loop connection between massless scalar QED and pure

Yang-Mills amplitudes, as well as a similar one between N = 1 SQED and N = 1 SYM

amplitudes.
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We start by considering the expressions for the scalar QED and N = 1 SQED photon

MHV amplitudes at one loop. These amplitudes were computed in [143], and are given

by

Ascalar/N=1
n (1−, 2−, 3+, · · · , n+) = i

(e
√

2)n

16π2

∑

P{1,2}

∑

P{3,...,n}

dscalar/N=1

(n− 4)!
B1m(s23, s24, s15···n)

+ i
(e
√

2)n

16π2

∑

P{1,2}

∑

P{3,...,n}

n−1
∑

m=5

(−1)mdscalar/N=1

(n−m)!(m− 4)!

×B2me(s135···m, s145···m, s15···m, s2 m+1···n) , (5.1.1)

where

dscalar = −2
〈1 3〉〈1 4〉〈2 3〉〈2 4〉

〈3 4〉2
n
∏

i=5
i6=3,4

〈3 4〉n−4

〈3 i〉〈4 i〉 , (5.1.2)

dN=1 = −〈1 2〉2
n
∏

i=5
i6=3,4

〈3 4〉n−4

〈3 i〉〈4 i〉 . (5.1.3)

Let us explain the notation employed in (5.1.1). Firstly, the sums in (5.1.1) are over

permutations P of the massless states inside the curly brackets. Secondly, the functions

B1m and B2me appearing in (5.1.1) are the finite parts of the one-mass and two-mass

easy scalar box functions F respectively. These are given by [16, 108]

F 1m
(

s, t, P 2
)

= − 1

ε2
[

(−s)−ε + (−t)−ε − (−P 2)−ε
]

+B1m
(

s, t, P
)

, (5.1.4)

F 2me
(

s, t, P,Q) = − 1

ε2
[

(−s)−ε + (−t)−ε − (−P 2)−ε − (−Q2)−ε
]

+B2me
(

s, t, P,Q
)

,

where

B1m
(

s, t, P 2
)

= Li2

(

1 − P 2

t

)

+ Li2

(

1 − P 2

s

)

+
1

2
ln2
( t

s

)

+
π2

6
, (5.1.5)

B2me
(

s, t, P 2, Q2
)

= Li2
(

1 − aP 2
)

+ Li2
(

1 − aQ2
)

− Li2
(

1 − as
)

− Li2
(

1 − at
)

,

with

a :=
P 2 +Q2 − s− t

P 2Q2 − st
, (5.1.6)

and s := (P +p)2, t := (P + q)2, with p+ q+P +Q = 0, where p and q are the massless

legs (sitting at opposite corners, in the two-mass easy boxes), and P and Q the massive

legs (with either P 2 = 0 or Q2 = 0 for the one-mass box). The arguments of the box

functions appearing in (5.1.1) are the kinematic invariants si···j := (ki + · · · + kj)
2.

In Figure 5.1 we provide a representation of the box function appearing in the second
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1−
5+

m+

4+ 2−m+ 1+

n+

3+

Figure 5.1: The two-mass easy box function appearing in (5.1.1). The momenta p = k3

and q = k4 are null, whereas P := k1 + k5 + · · ·+ km and Q := k2 + km+1 + · · ·+ kn are
massive. The one-mass box function in (5.1.1) is obtained by setting m = n, so that the
top right corner becomes massless (and contains only the momentum k2).

line of (5.1.1). The massless legs there correspond to the positive helicity photons 3+

and 4+. The negative-helicity photons 1− and 2− are always part of (different) massive

corners P and Q, which contain m−3 and n−m+1 legs respectively. The combinatorial

coefficients appearing in (5.1.1) correspond to the number of permutations of the positive

helicity photons inside P and Q (which obviously leave the box function invariant).

In (5.1.2) and (5.1.3), we have slightly departed from the expressions for these co-

efficients as originally given in [143]. Specifically, we have multiplied their result for

dscalar by a factor of 2 to account for the fact that we are working with complex scalar

fields. Furthermore, we have rewritten (5.1.2) and (5.1.3) in terms of eikonal factors

S(a, i, b) :=
〈a b〉

〈a i〉〈i b〉 , (5.1.7)

for reasons which will become clear shortly.

Finally, let us stress that the amplitudes given in (5.1.1) are infrared and ultraviolet

finite. Because of Furry’s theorem, they are nonvanishing only for n even.

Having discussed the expressions of the one-loop MHV photon amplitudes in QED

and SQED, we turn to the corresponding amplitudes in Yang-Mills. Here we will always

be considering the coefficient of the single-trace contribution to the amplitude. The

simplest amplitudes are given by the infinite sequence of MHV amplitudes in N = 4

SYM, first derived by Bern, Dixon, Dunbar and Kosower in [17] using unitarity [21]
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and collinear limits, and later confirmed in [16] using one-loop MHV diagrams. At the

planar level, the result for the colour-ordered amplitudes is

AN=4
n = Atree

n Mn , (5.1.8)

where the helicity-blind function Mn is

Mn =

i−1
∑

p=j+1

j−1
∑

q=i+1

F 2me(p, q, P,Q) , (5.1.9)

and

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) : = i

〈i j〉4
〈1 2〉〈2 3〉 · · · 〈n 1〉 , (5.1.10)

is the tree-level amplitude, given by the Parke-Taylor formula [65]. i and j label the

two negative-helicity gluons, each in one of the two opposite massive corners.

The one-loop MHV amplitude in N = 1 SYM was presented in [21] and confirmed

in [18] using MHV diagrams. The contribution to the amplitude of an N = 1 chiral

multiplet running in the loop is given by the following compact formula,

AN=1
n (1+, . . . , i−, . . . , j−, . . . , n+) =

i−1
∑

p=j+1

j−1
∑

q=i+1

[cN=1]ijpq B
2me
(

p, q, P,Q
)

+ · · · ,

(5.1.11)

where

[cN=1]ijpq =
1

2
Atree

n bijpq , (5.1.12)

and

bijpq = 2
〈i p〉〈j q〉〈i q〉〈j p〉

〈i j〉2〈p q〉2 . (5.1.13)

Atree
n is the Parke-Taylor amplitude in (5.1.10). The dots stand for triangle and bubble

functions, which will not be relevant for our discussion.4

Lastly, the one-loop n-point non-supersymmetric Yang-Mills MHV amplitudes were

computed in [20, 21, 84] and confirmed in [49] using generalised unitarity [78], with the

result

Ascalar
n (1+, . . . , i−, . . . , j−, . . . , n+) =

i−1
∑

p=j+1

j−1
∑

q=i+1

[cscalar]ijpq B
2me
(

p, q, P,Q
)

+ · · · ,

(5.1.14)

where

[cscalar]ijpq =
1

2
Atree

n [bijpq]
2 . (5.1.15)

4This is because of the no-triangle property of QED amplitudes [128], which ensures that the bubble
and triangle coefficients vanish.
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As before, the dots in (5.1.14) stand for triangle and bubble functions, as well as for the

rational terms of the amplitude (not linked to cut-constructible terms), which will not

be relevant in the following discussion.

Our goal will be to find a relation between the coefficients dscalar/N=1 of the two-

mass easy box functions in the expression for the MHV photon scattering amplitudes in

(S)QED, given in (5.1.1), and the corresponding coefficients of the same box function,

cscalar/N=1, of the MHV gluon amplitudes in N = 1 and pure Yang-Mills in (5.1.12) and

(5.1.15).

We begin by making the intuitive observation that, in order to be able to match

a gluon amplitude to a target (S)QED amplitude, we need to “unorder” an otherwise

colour-ordered expression. We do so by introducing appropriate sums over permuta-

tions, which we now illustrate.

To begin with a simple example, consider the six-point MHV N = 1 SQED case.

Holding the two massless legs of the box function fixed, we sum over permutations of

the gluons appearing at the massive corners. This amounts to computing

PN=1
2me (Atree

6 ) :=
1

2

∑

P{1,5}

∑

P{2,6}

Atree
6

(

4, {1, 5}, 3, {2, 6}
)

b1234 , (5.1.16)

PN=1
1m (Atree

6 ) :=
1

2

∑

P{1,5,6}

Atree
6

(

{1, 5, 6}, 3, 2, 4
)

b1234 ,

for the two-mass easy and the one-mass part of (5.1.1) respectively. We have calculated

these sums numerically and analytically using standard identities. Our result is

PN=1(Atree
6 ) =

〈1 2〉2
〈6 4〉〈3 6〉〈5 3〉〈4 5〉 . (5.1.17)

Remarkably, this expression exactly matches the result for dN=1 given in (5.1.2). Simi-

larly, replacing bijpq with [bijpq]2 in (5.1.16), yields

Pscalar(Atree
6 ) = 2

〈1 4〉〈1 3〉〈2 4〉〈2 3〉
〈6 4〉〈3 6〉〈5 3〉〈4 5〉〈3 4〉2 , (5.1.18)

which is identical to the expression for dscalar shown in (5.1.3).

We can extend these two simple examples to an arbitrary number of legs. An elegant
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way to perform the sums in (5.1.16) is provided by the “eikonal” identity [71]

∑

P{1,2,...,`}

〈r s〉
〈r 1〉〈1 2〉 · · · 〈` s〉 =

∏̀

i=1
i6=r,s

〈r s〉
〈r i〉〈i s〉 , (5.1.19)

where we take r and s to be two fixed spinors. Equation (5.1.19) relates sums of

permutations of MHV-like terms to products of eikonal factors, and can be proved by

iteratively using the Schouten identity.

By choosing r = 3 and s = 4 in (5.1.19) we have

∑

P1

∑

P2

〈1 2〉4
〈3 2〉〈2 (m + 1)〉 · · · 〈(n− 1)n〉〈n 4〉〈41〉〈15〉 · · · 〈m3〉 (5.1.20)

= 〈1 2〉4
n
∏

i=1
i6=r,s

〈r s〉
〈r i〉〈i s〉

= 〈1 2〉4 〈3 4〉n−4

〈3 1〉〈1 4〉 · · · 〈3n〉〈n 4〉 ,

where P1 := P{2,m + 1, . . . , n} and P2 := P{1, 5, . . . ,m} are permutations of the

massless legs in the massive corners of the box function in Figure 1.

Multiplying (5.1.20) by b1234 we recover the expression for [dN=1]1234 given in (5.1.2).

A similar argument runs for the one-mass box coefficients [dscalar]ijpq, with the only

difference that the sum in the first line of (5.1.20) is over one set of permutations rather

than two.

One can arrive at the same conclusion by performing a one-loop MHV diagram cal-

culation akin to [16, 18, 20] with MHV rules adapted to QED as done at tree level

in [145]. For a one-loop MHV photon amplitude we have to glue two tree-level MHV

vertices with two internal scalar propagators, and perform an appropriate loop inte-

gration [16]. We will not give details of the calculation because we can recycle results

from [16, 18, 20]. The crucial observation is that the only diagrams contributing are

those where all gluons are external and the two internal legs of each MHV vertex are

either scalars or fermions with opposite helicity. This also implies that the two exter-

nal negative-helicity gluons must belong to different MHV vertices. The relevant MHV

QED tree amplitudes can be obtained from the the corresponding MHV tree ampli-

tude in QCD with n − 1 positive helicity gluons, one negative-helicity gluons and two

fermions (scalars) of opposite helicity and summing over the n! permutations of the n

gluons. Writing the QED MHV vertices with two fermions and n gluons in terms of

QCD tree MHV vertices, see the second line of (5.0.1), reduces the calculation to sums
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of permutations of MHV one-loop diagrams for MHV amplitudes in pure Yang-Mills

and N = 1 SYM [18, 20]. It can be seen easily that this reproduces exactly the ob-

servations made earlier in this section on the box coefficients of the one-loop (S)QED

MHV amplitudes. Triangle and box coefficients are guaranteed to vanish because of the

no-triangle property [128].

Finally, we observe that this has implications for the twistor-space localisation prop-

erties of the coefficients, which are inherited from those of the (S)YM amplitudes, i.e.

the coefficients localise on sets of two, possibly intersecting lines in twistor space.

In summary, we have found the intriguing result that the coefficients dscalar/N=1

of the finite boxes in the one-loop photon MHV amplitudes in massless SQED and

non-supersymmetric QED can be derived by summing over appropriate permutations

of coefficients of the same boxes in N = 1 SYM and in pure Yang-Mills. It would

be very interesting to study whether this remarkable structure is present in non-MHV

amplitudes and at higher loops.

5.2 Approximate Iterative Structures in N = 2 SQED

Motivated by the existence of iterative structures for amplitudes in N = 4 SYM, we

have investigated the possible existence of recursive-like structures for MHV amplitudes

in the maximally supersymmetric N = 2 SQED theory.5 Before discussing our results,

let us briefly review the iterative relations in N = 4 SYM [38, 39]. It was shown in

[38] that the two-loop four-point MHV amplitude in N = 4 SYM satisfies an intriguing

cross-order relation,

M(2)
4 (ε) − 1

2

(

M(1)
4 (ε)

)2
= f (2)(ε)M(1)

4 (2ε) + C(2) + O(ε) . (5.2.1)

Here M(L)
n is the helicity-blind function obtained by taking the ratio between the L-

loop MHV amplitude and the corresponding tree amplitude. Furthermore f (2)(ε) =

−(ζ2 + ζ3ε+ ζ4ε
2), and C(2) = −(5/4) ζ4.

In [39], a resummed, exponentiated expression for the scalar function Mn was pro-

posed, and checked explicitly in a three-loop calculation in the four-point case. The

5A similar analysis has been performed in [132, 133] for the four-point MHV amplitude in N = 8
supergravity, and highlighted a remarkably simple structure for the two-loop term in the expansion of
logarithm of the helicity-blind ratio MN=8/Mtree. The functions appearing in the ratio where also
found to have uniform transcendentality.
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BDS conjecture is expressed as [39]

Mn := 1 +
∞
∑

L=1

aLM(L)
n (ε) = exp

[

∞
∑

L=1

aL
(

f (L)(ε)M(1)
n (Lε) +C(L) +E(L)

n (ε)
)]

,

(5.2.2)

where a = [g2N/(8π2)](4πe−γ)ε . Here f (L)(ε) is a set of functions,

f (L)(ε) := f
(L)
0 + f

(L)
1 ε+ f

(L)
2 ε2 , (5.2.3)

one at each loop order, which appear in the exponentiated all-loop expression for the

infrared divergences in generic amplitudes in dimensional regularisation [149] (and gen-

eralise the function f (2) in (5.2.1)).

BDS also suggested a resummed expression for the appropriately defined finite part

of the n-point MHV amplitude,

Fn = eF
BDS
n , (5.2.4)

where

FBDS
n (a) =

1

4
γcusp(a) F (1)

n (0) + C(a) . (5.2.5)

Notice that the entire dependence on kinematics of the BDS ansatz enters through the

finite part of the one-loop box function, F
(1)
n (0).

In analogy with the BDS ansatz, we would like to investigate the existence of cross-

order relations in the four-point amplitude M4(1
−, 2−, 3+, 4+) in N = 2 SQED. To

this end, we consider a decomposition of the two-loop term in the expansion of this

amplitude as

[M(2)
4 ]ansatz = b

[

M(1)
4

]2
+ cM(1)

4 + d , (5.2.6)

where M(1)
4 is the four-point one-loop MHV amplitude, and b, c and d have to be

determined.6

The expressions for photon-photon scattering amplitudes at one and two loops en-

tering (5.2.6) were derived in [131]. At one loop, the light-by-light scattering amplitude

can be written as

M(1) = M(1),S + M(1),F , (5.2.7)

where the contributions on the right-hand side of (5.2.7) denote the scalar electron and

electron loops respectively. In the Standard Model, only the fermion loop contributes.

The one-loop MHV scattering amplitude in N = 1 SQED is given by

M(1)
4 = −4

[

(X − Y )2 + π2
]

, (5.2.8)

6From now on, we will denote as Mn the SQED amplitudes.
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where

X = log
(−t
s

)

, Y = log
(−u
s

)

. (5.2.9)

At one loop, there is no contribution from the gauge multiplet. Thus, (5.2.8) is the

one-loop four-point MHV amplitude in N = 1 and N = 2 SQED.

A few comments are in order here. Firstly, we notice that in the physical region

s > 0 and t, u < 0 the expression (5.2.8) is real. Outside this region, an analytic

continuation is needed as the u- and t-channels develop a discontinuity. Secondly, we

observe in (5.2.8) the absence of any dimensionless ratios of the kinematic scales t2/s2.

Furthermore, all the functions appearing in the expression for M(1)
4 have uniform degree

of transcendentality, equal to 2.

The two-loop expression for the four-point MHV N = 2 SQED amplitude is still

rather compact and simple. It is given by [131]

M(2)
4 = −16Li4(y) + 8Y Li3(x) + 8Y Li3(y) +

16

45
π4 (5.2.10)

− 2

3
X Y π2 − 2

3
Y 3
(

Y − 4X
)

+ iπ
[

16Li3(x) −
4

3
Y π2 − 4

3
Y 2
(

Y − 3X
)

]

+
{

u↔ t
}

,

where X and Y are defined in (5.2.9) and

x := −t/s , y := −u/s = 1 − x . (5.2.11)

As in (5.2.8), also in (5.2.10) there are no terms proportional to ratios of kinematic

scales, and we only have functions with transcendentality equal to 4. Therefore, we

expect the coefficients b, c and d to have transcendentality 0 and 2 and 4, respectively.

The real part of (5.2.10) can be recast in the following suggestive form,

��� [M(2)
4

]

= −16Li4(y) − 16Li4(x) + 8(X + Y )
(

Li3(x) + Li3(y)
)

+ 4X2Y 2 − 4

3
XY π2

− 1

24

[

M(1)
4

]2
− π2

3
M(1)

4 +
2

45
π4 . (5.2.12)

In (5.2.12), we have re-written the result of [131] in a way that already incorporates the

functions M(1)
4 and

[

M(1)
4

]2
appearing in (5.2.6), see the last line of (5.2.12).

In order to find a set of coefficients b, c and d which best fit our proposed ansatz

(5.2.6), we build a system of three equations for some three random values of y and

solve for b, c and d. We then plug the values of these coefficients in (5.2.6) and match it

against the real part of (5.2.10). The result of such algebraic manipulation can be seen
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in Figure 5.2, where (the real part of) (5.2.10) as well as our ansatz are plotted. The

values of b, c and d used in the plot are given by the set of values I for y shown in Table

1 below,

Coefficients I II III IV V V I V II

b -0.0386 -0.038 -0.0387 -0.0417 -0.0412 -0.0415 -0.0412

c -2.567 -2.571 -2.574 -2.812 -2.894 -3.009 -2.877

d -5.784 -5.894 -5.938 -11.46 -14.689 -25.098 -14.489

F (b, c, d)N=2 97.179 187.129 88.452 49.555 1.065 25.554 0.500

Table 5.1: Values of b, c and d for different sets of values for y. The sets I-III include
points away from the boundary y = 0 and y = 1, and the resulting coefficients b, c, d
vary slowly from one set to another, unlike the case of the sets IV -V I, which include
points near the boundary in y space. The set V II is obtained using the least square
method.

where the sets I–V I are7 I = {0.3, 0.4, 0.5}, II = {0.272, 0.342, 0.482}, III = {0.25, 0.35, 0.45},
IV = {0.00001, 0.10001, 0.482}, V = {0.0006, 0.0023, 0.006}, V I = {0.0001, 0.0003, 0.0235},
while the values of (b, c, d) in column V II are obtained applying the least square method.

We have carried out a similar analysis for the four-point MHV amplitude in N = 1

SQED, the expression of which can also be found in [131], and we report the results in

Table 2 below,

Coefficients I II III IV V V I V II

b -0.0356 -0.0356 -0.0356 -0.0277 -0.027 -0.026 -0.0278

c -1.829 -1.828 -1.827 -1.062 -0.113 0.211 -0.719

d -79.04 -78.99 -78.98 -60.99 18.39 32.54 -44.57

F (b, c, d)N=1 756.0 749.7 746.5 99.4 1265.9 1365.6 24.1

Table 5.2: Values of b, c and d for different sets of values for y. The sets of y used are
the same as in the N = 2 theory shown in Table 1.

Introducing

F (b, c, d) :=

∫ 1

0
dy
(

M(2)
4 (y) − [M(2)

4 ]ansatz(y)
)2
, (5.2.13)

and minimising F (b, c, d) gives the “best” values for b, c and d over all of the phase

space.

Let us summarise the outcome of this analysis.

7Since (5.2.10) is symmetric under x → 1 − x, we only choose values for y from half of the phase
space.
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Figure 5.2: In this Figure we plot (the real part of) the right-hand side of (5.2.10),
representing the four-point two-loop MHV amplitude in N = 2 SQED, together with our
ansatz (5.2.6), with y = −u/s given by set I. The two overlapping functions are hardly
distinguishable in this plot.

1. Unlike the case of the BDS ansatz for N = 4 SYM, we find that the coefficients b, c

and d are not (kinematic-independent) constants, but have different values for different

kinematic points.

2. Having derived values of these three coefficients, we plot the two-loop amplitude

as well as our ansatz as functions of the ratio y. These plots are presented in Figure

5.2, and show a very surprising overlap.

3. In order to study more closely the functional forms of the two-loop amplitude

and of our ansatz, in Figure 3 we present a plot of the difference between (5.2.6) and

(5.2.12), which we could consider as the “remainder function” for this amplitude,8

R4(y) := M(2)
4 −

(

b
[

M(1)
4

]2
+ cM(1)

4 + d
)

. (5.2.14)

From Figure 5.3, we see that the two functions agree for a wide range of values of y,

however the difference function has spikes as y → 0 or y → 1. In these limits the

best fit would be given by the second line of (5.2.12) in which case the disagreement

would be proportional to a single power of a logarithm in x or y. The presence of this

divergent behaviour at the extrema of the phase space shows that our ansatz is certainly

incomplete. However, we find it quite remarkable that large deviations only appear at

the boundary of the phase space.

4. We have computed (5.2.13) for both N = 1 and N = 2 SQED and found the

8Notice that this function depends however on the choice of b, c and d we make in the ansatz (5.2.6).
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Figure 5.3: This figure shows a plot of the N = 2 SQED remainder function, constructed
as the difference between the two-loop MHV amplitude in N = 2 SQED and (5.2.6).

values

F (b, c, d)N=2 = 0.5 , F (b, c, d)N=1 = 24.1 . (5.2.15)

This shows that (5.2.6) gives the most accurate approximation of the real part of the

two-loop amplitude in the case of N = 2 SQED.

5. We also observe that the four-point MHV amplitude in N = 2 SQED can be

derived from the N = 1 SQED amplitude by keeping maximally transcendental terms

and deleting contributions which multiply ratios of the kinematics invariants.

In summary, the approximate iterative structures we have explored in this section are

certainly not on the same footing as those in N = 4 SYM found in [38, 39]. Nevertheless,

we find it intriguing that part of the two-loop four-photon MHV amplitude (5.2.10) is

captured by a polynomial in the one-loop amplitude (5.2.8). This is surprising, given

the absence of infrared divergences in these amplitudes. It would be interesting if one

could find exact iterative structures, written in terms of an appropriate QED remainder

function, and explain them in terms of some underlying symmetry of the theory.

It would also be interesting to find a Wilson loop interpretation of MHV scattering

amplitudes in SQED, similarly to that found in N = 4 SYM [41–43]. We give a brief

introduction to the Wilson loop-N = 4 SYM duality in the next chapter, where we

show how to retrieve the collinear behaviour of N = 4 SYM amplitudes from a Wilson

loop calculation.



Chapter 6

An Antipasto of Wilson

Loop-N = 4 SYM Duality

Over the last few years, amplitudes in N = 4 SYM have been extensively and success-

fully studied. One of the reasons for the success lies in the ultraviolet finitess1 of the

amplitudes although they still suffers from IR divergences. Furthermore, it is opportune

to remark that scattering amplitudes in N = 4 SYM are much simpler than the same

counterpart in its cousin theory, namely QCD.

To make the chapter somehow self-consistent, let us review few poignant facts about

amplitudes in N = 4 SYM. At any loop order L, a n-point MHV N = 4 SYM amplitude

[124] takes the following factorised form

A(L)
n = Atree

n M(L)
n , (6.0.1)

where M(L)
n is a helicity-blind function. At one loop, M(1)

n is a sum of two-mass easy

box integral functions F 2me with coefficients equal to one

Mn =

i−1
∑

p=j+1

j−1
∑

q=i+1

F 2me(p, q, P,Q) . (6.0.2)

In [38], inspired by the infrared behaviour of amplitudes in gauge theory [28, 149–

153, 155, 160–162], it was noticed how splitting amplitudes, which encode the limit of

an amplitude as two adjacent momenta become collinear, do enjoy an iterative structure

whereby a two-loop splitting amplitude could be expressed solely in terms of one-loop

1See [170, 171] for a review on the finitess of N = 4.

81
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terms. From this observation, an iteration relation for higher-loop amplitudes in the

’t Hooft limit Nc → ∞ was put forward and demonstrate to hold for a two-loop four-

point amplitude. In a subsequent paper [39], a fascinating iteration conjecture for

computing planar all-loops N = 4 SYM amplitudes at weak coupling was put forward.

The conjecture takes the alluring simple form

M(L)
n = exp

[

∞
∑

L=1

aL
(

f (L)(ε)M(1)
n (Lε) + C(L) +E(L)

n (ε)
)]

, (6.0.3)

where a = [g2N/8π2](4πe−γ)ε and f (L)(ε) is a set of functions

f (L)(ε) := f
(L)
0 + f

(L)
1 ε+ f

(L)
2 ε2 , (6.0.4)

one at each loop order. It is relevant to observe that f
(L)
0 ∼ Γ

(L)
cusp, where Γcusp is the

cusp anomalous dimension2

Γcusp(a) =

∞
∑

L=1

aLΓ(L)
cusp , Γ(1)

cusp = 4 , Γ(2)
cusp = −4ζ2 , (6.0.5)

related to the anomalous dimension Γj of large-spin j twist-two operators [155, 156]

Γj =
1

2
Γcusp(a)lnj +O(j0), j → ∞ , (6.0.6)

for the case of the quark operator.

An all-orders conjecture for the cusp anomalous dimension was put forward in [157]

in the context of integrability. The proposed integral equation agreed with the known

values of Γcusp up to three loops and suggested a four-loop prediction of f
(4)
0 . In [89],

the four-gluon four-loop amplitude in N = 4 SYM was computed and a disagreement

for the value of f
(4)
0 predicted by [157] was found. However, parallel to [89], an improved

integral equation [158] was formulated which found agreement with the results of [89]

and later confirmed by yet another calculation [159] of f
(4)
0 . Importantly, the constants

C(L), f
(L)
0 , f

(L)
1 and f

(L)
2 on the right hand side of (6.0.3) do not depend either on

kinematics or on the number of particles n. On the other hand, the non-iterating

contributions E
(L)
n depend explicitly on n, but vanish as ε→ 0.

On entirely different grounds, the conjecture of [39] was lent more plausibility in

[41]. In this remarkable paper, the authors manage to exploit the AdS/CFT correspon-

dence to compute the four-point amplitude at strong coupling. The computation of the

amplitude is equal (at large N) to the computation of the area of the world-sheet of a

2The name finds its origin due to its appearance in the renormalisation group equation for a Wilson
line for two semi-infinite straight lines meeting at a cusp [153, 154].
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classical string in the boundary of AdS space which in turn is dual to the expectation

value of a Wilson loop made out of four lightlike segments. The external momenta of

the amplitude give the value at the point where these segments join. In [42] and in

[43], it was shown how the one-loop four-point and n-point MHV N = 4 amplitudes

at weak-coupling may be recovered by means of a Wilson loop calculation. The IR

divergent3 part of the amplitude is generated by propagators stretching between adja-

cent segments meeting at a cusp, whereas the finite part find its origins in propagators

stretching between non-adjacent segments.

However, the elation was short-lived. While explicit calculation of up to three loops

in the four-point case [39] and up to two loops in the five-point case [40, 146] have

verified the conjecture, further investigation [47] of the lightlike hexagon Wilson loop

found disagreement with (6.0.3), in that the proposed ansatz would need to be corrected

by a dual conformal invariant remainder function. A direct calculation [72] of the two-

loop six-gluon MHV amplitude in N = 4 SYM purported the results of [47].

In this chapter we wish to compute one-loop splitting amplitudes by considering

Wilson loops whose contour is n-sided lightlike polygons. We find perfect agreement

with the splitting amplitudes previously found in [164–166]. However, a subtlety arises

as the Wilson loop calculation does not provide any information about the polarisation

of the particles involved in the scattering. At one loop, the standard Parke-Taylor tree-

level amplitude, which appears as a prefactor in the N = 4 amplitude, is not generated

by the Wilson loop calculation. Thus, what we really find is the one-loop splitting

amplitude stripped of any helicity information.

In § 6.1 we review the collinear limit of Yang-Mills at tree level and one loop. In § 6.2

we carry out the Wilson loop calculation to obtain the one-loop splitting amplitude.

6.1 Collinear Limit of Gluon Amplitudes

In the limit where two colour adjacent momenta become collinear, a n-point amplitude

can be expressed in terms of a lower amplitude times an universal function, called

splitting amplitude, which depends upon the external states going collinear and the

internal states going on-shell and captures the leading divergence in the collinear limit

of the amplitude. We parameterise the two massless colour-adjacent external momenta

3In the Wilson loop computation, cusps are source of its UV divergence. The UV part, in turn, is
interpreted as the IR divergence of the amplitude. The relation between the infrared divergences of
scattering amplitudes and ultraviolet divergences of Wilson loops is characterised by the appearance of
the cusp anomalous dimension (6.0.5), first studied in QCD in [163].
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pa and pb going collinear as

pa → z` , pb → (1 − z)` , (6.1.1)

where `2 = (pa + pb)
2 → 0 in the collinear limit and z ∈ [0, 1] the momentum fraction.

As `2 → 0, the tree-level amplitude factor as

Atree
n (1, 2, . . . , aλa , bλb , . . . , n)

a‖b→
∑

σ=±

Atree
n−1(1, 2, . . . , (a+ b)σ , . . . , n)Splittree−σ (aλa , bλb) .

(6.1.2)

For the case of gluons4 the splitting amplitudes take the form

Splittree− (a−, b−) = 0 , (6.1.3)

Splittree− (a+, b+) =
1

√

z(1 − z)〈a b〉
, (6.1.4)

Splittree+ (a+, b−) =
(1 − z)2

√

z(1 − z)〈a b〉
, (6.1.5)

Splittree− (a+, b−) = − z2

√

z(1 − z)[a b]
. (6.1.6)

The remaining helicity configurations can be derived from the above using parity argu-

ments.

At one loop, we have similar structures to the ones at tree level. In the same notation

as before, we have5

A1-loop
n (1, . . . , aλa , bλb , . . . , n)

a‖b→
∑

σ

[

Splittree−σ (aλa , bλb)A1-loop
n−1 (1, . . . , (a+ b)σ, . . . , n)

+ Split1-loop
−σ (aλa , bλb)Atree

n−1 (1, . . . , (a+ b)σ, . . . , n)
]

, (6.1.7)

where the sum is over the two possible helicities σ = ± of the fused leg pa + pb. An

expression to all orders in ε of Split1-loop was found both in [165] and in [166]. It takes

the following form,

Split1-loop
−σ (aλa , bλb) = Splittree−σ (aλa , bλb) r

[1]
1 (z) , (6.1.8)

4Using appropriate MHV amplitudes one can find expression for splitting amplitudes for fermions
and scalars.

5For a quick and thorough review of collinear limits see [167] and references therein.
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where

r
[1]
1 (z) =

cΓ
ε2

(−sab

µ2

)2[

1 − 2F1

(

1,−ε; 1 − ε;
z − 1

z

)

− 2F1

(

1,−ε; 1 − ε;
z

z − 1

)]

, (6.1.9)

and

cΓ =
Γ(1 + ε)Γ2(1 − ε)

(4π)2−εΓ(1 − 2ε)
. (6.1.10)

Extracting an helicity-dependent factor, which we recall cannot be found by means

of a Wilson loop computation, we can rewrite (6.1.7) as

A1-loop
n (1, . . . , aλa , bλb , . . . , n)

a‖b→ (6.1.11)

Splittree−σ (aλa , bλb)Atree
n−1M1-loop

n−1 + Splittree−σ (aλa , bλb)r
[1]
1 (z)Atree

n−1

= Splittree−σ (aλa , bλb)Atree
n−1

(

M1-loop
n−1 + r

[1]
1 (z)

)

.

By considering a Wilson loop around arbitrary lightlike n-sided polygon, we wish to

calculate the quantity M1-loop
n in the collinear limit, i.e.

M1-loop
n → M1-loop

n−1 + r
[1]
1 (z) . (6.1.12)

6.2 One-Loop Splitting Amplitudes from Light-like Wil-

son Loops

In this section we compute, at order g2 in the coupling, the Wilson loop given by

WC =
1

N
〈0|TrP exp

(

ig

∫

C
dxµAµ(x)

)

|0〉 , (6.2.1)

where Aµ(x) = Aa
µT

a is a gauge field and T a are the SU(Nc) generators in the funda-

mental representation. P is the usual path ordering and C is the integration contour.

Following the reasoning of [43], where it was shown how n-point one-loop MHV am-

plitude can be derived using Wilson loops, we choose our polygon contour to be made

out of n segments, joining at the points kµ
i and such that the on-shell momenta of the

gluons are given by

pi = ki − ki+1 , (6.2.2)

and parameterised as ki(τi) = ki + τ(ki+1 − ki) = ki − τipi, τi ∈ [0, 1].

There are three classes of diagrams which contribute to corrections of a Wilson loop.
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pn

p = p1

P = p2

q = p3

p1‖p2→
pn

p1 + p2

p3

p4

Figure 6.1: A one-loop correction to the Wilson loop, where the gluon stretches between
two non-adjacent segments (left) which, in the collinear limit (right) gives rise to finite

and IR contributions to r
[1]
1 (z) and IR contributions to M1-loop

n−1 .

First, there is the class in which the propagator stretches between points of the same

segment. Using the fact that we have on-shell momenta, p2
i = 0, it is straightforward to

see that this kind of contributions vanish. Second, we have those diagrams in which the

propagator stretches between two adjacent segments meeting at a cusp. This kind of

diagrams generate infrared-divergent terms which involve only two-particle invariants

and take the form

M1-loop
n

∣

∣

∣

IR
= − 1

ε2

n
∑

i=1

(−sii+1

µ2

)−ε
, (6.2.3)

with sii+1 = (pi + pi+1)
2.

Thirdly, there are those Wilson loops in which the propagator connects two non-

adjacent segments and contribute to the finite part of the two-mass easy box integral

function F 2me. In order to evaluate (6.2.1), we make use of the gluon propagator suitably

reguralised in D=4−2ε dimensions which we can write it as

Gµν(x) = −gµν
Γ(1 − εUV)

4π2
(−x2 + iε)−1+εUVπεUV , (6.2.4)

where, in light of footnote 3, we recognise

εUV = −εIR > 0 . (6.2.5)

At this point we wish to stress two important facts:
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a. the ki variables are not the Fourier transformed coordinates in position space; they

still represent momenta. In [41], the same coordinates (6.2.2) are used and they are

interpreted as T-dual coordinates which determine the classical string solutions.

The very same coordinates have also been used in [168, 169] to compute scattering

amplitudes and in [95] in the context of MHV diagrams;

b. the contour C of (6.2.1) is defined in terms of the external gluon momenta whereas

the gluon propagator (6.2.4) is defined in configuration space, not momentum

space.

We begin by considering the third class of diagrams and, for now, only those which

give contributions6 to r
[1]
1 (z), the helicity-blind component of one-loop splitting ampli-

tudes. We choose p1 and p2 to be collinear. A picture of this class of diagrams may be

seen in Figure 6.1. A calculation of this Wilson loop in the non-collinear limit can be

followed in [43] and it yields

−(igµ̃εUV )2
1

2

Γ(1 − εUV )

4π2−εUV
Fε(s, t, P,Q) , (6.2.6)

where Fε(s, t, P,Q) is the following integral7

Fε(s, t, P,Q) =

∫ 1

0
dτpτq

P 2 +Q2 − s− t

[−(P 2 + (s− P 2)τp + (t− P 2)τq + (−s− t+ P 2 +Q2)τpτq)]1+ε
.

(6.2.7)

It is a this point that we wish take the collinear limit. Also, we stress the fact that

we are working to all orders in ε. However, before we proceed further, some notation

is imperative. We define P =
∑q−1

i=p+1(ki − ki+1), with P 2 6= 0 in general, the sum

of momenta between two general massless legs p and q. Momentum conservation is

P + p + q = −Q, which implies that the contour of the integration is closed. Also,

s = (P + p)2 and t = (P + q)2 are the usual Mandelstam variables, with p = p1, q = p3

and P = p2.

In our case limit P 2 = 0 in (6.2.7). Most importantly, we have s = 2 (p1 · p2) =

2 z(1 − z)`2 and t = 2 (p2 · p3) = 2 (1 − z)(` · p3) according to our parameterisation

6This is slightly incorrect but justified in hindsight. As we will see in the course of the chapter,
different Wilson loop diagrams will give contributions to either r

[1]
1 (z) or M1-loop

n−1 . Specifically, only
those Wilson loop diagrams in which the propagator stretches between two legs p, q 6= 1, 2 contribute
to M1-loop

n−1 . The remaining diagrams mainly contribute to r
[1]
1 (z).

7From now, we set ε := −εUV < 0, where ε is the usual infrared regulator.
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(6.1.1). This allows us to rewrite Fε(s, t, P,Q) as

Fε(s, t, P,Q) = (−s)−1−ε 2az`2(−1

ε
)

×
∫ 1

0
dτp

[

(

a
z + (1 + a

1−z ) τp

)−ε

a
z + a

1−z τp
−

τ−ε
p

a
z + a

1−z τp

]

, (6.2.8)

where we have performed the τq integration and a = (` · p3)/`
2. We decide to compute

separately the two contributions to the integral (6.2.8).

The first one yields

−(−s)−1−ε2az`2
z − 1

aε2

{(

(a+ z − z2

1 + a− z

)ε(a+ z − z2

z(1 − z)

)−ε

2F1

[

ε, ε, 1 + ε,
(z − 1)2

1 + a− z

]

)

+

(

( a

1 + a− z

)ε(a

z

)−ε

2F1

[

ε, ε, 1 + ε,
z − 1

z − 1 − a

]

)}

, (6.2.9)

which, in turn, may be brought to the familiar form

− 1

ε2
(−sp1+p2,p3)

−ε +
1

ε2
(−sp2p3)

−ε , (6.2.10)

after using one of the various identities relating hypergeometric functions

2F1

[

c− a, b; c;
A

A− 1

]

= (1 −A)b
2F1[a, b; c;A] . (6.2.11)

On the other hand, the second contribution to (6.2.8) gives

(−s)−ε z

ε(1 − z)(1 − ε)
2F1

[

1, 1 − ε; 2 − ε;
z

z − 1

]

, (6.2.12)

where it is understood that s ≡ sp1p2 .

By applying in succession two hypergeometric identities, namely

2F1[a, b; c;A] =
Γ(c)(Γ(b − a))

Γ(b)Γ(c − a)
(−A)−a

2F1[a, 1 − c+ a; 1 − b+ a;A−1]

+
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−A)−b

2F1[b, 1 − c+ b; 1 − a+ b;A−1] , (6.2.13)

and

2F1[a, b; c;A
−1] = 1 − 2F1[a, a− c; a− b;A] + (−A)−εΓ(1 + ε)Γ(1 − ε) , (6.2.14)
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we manage to bring (6.2.12) to the form

− 1

ε2
(−s)−ε

(

1 − 2F1

[

1,−ε; 1 − ε;
z

z − 1

])

, (6.2.15)

after making use of an identity between Γ-functions, Γ(x) = (x− 1)Γ(x− 1).

There is another Wilson loop diagram similar to Figure 6.1 coming from 3 ↔ n,

1 ↔ 2 and z ↔ 1 − z which, following a similar calculation to the above, gives

− 1

ε2
(−s)−ε

(

1 − 2F1

[

1,−ε; 1 − ε;
z − 1

z

])

+
1

ε2
(−sp1+p2,pn)−ε − 1

ε2
(−sp1pn)−ε . (6.2.16)

Thus, in the collinear limit, the two diagrams yield

− 1

ε2
(−s)−ε

(

2 − 2F1

[

1,−ε; 1 − ε;
z

z − 1

]

− 2F1

[

1,−ε; 1 − ε;
z − 1

z

])

(6.2.17)

− 1

ε2
(−sp1+p2,p3)

−ε +
1

ε2
(−sp2p3)

−ε +
1

ε2
(sp1pn)−ε − 1

ε2
(−sp1+p2,pn)−ε .

The second class of corrections to the Wilson loop may be seen in Figure 6.2. Here,

a propagator stretches between two adjacent legs, both going collinear, case a) or only

one, case b). They give rise to infrared-divergent terms of the form given in (6.2.3).

The contributions coming from this set of diagrams can thus be summarised as

1

ε2
(−s)−ε − 1

ε2
(−sp2p3)

−ε − 1

ε2
(−sp1pn)−ε . (6.2.18)

We observe that the first term of (6.2.18) cancels a similar factor in the first line of

(6.2.17) whilst the second and third term of (6.2.18) cancel respectively the second

and third term in the second line of (6.2.17). The remaining terms of the second line

of (6.2.17) represent infrared-divergent terms belonging to M1-loop
n−1 , which cannot be

derived from a collinear limit of a cusp of M1-loop
n .

The remaining set of Wilson loop diagrams, which are shown in Figure 6.3, give

contributions to the M1-loop
n−1 amplitude. From the calculation in case a), since the

propagator stretching between two massless legs (either adjacent or not) does not involve

legs going collinear, we can factor out the (1, 2) vertex, thus obtaining the usual IR and

finite contributions (see (6.2.3) and (6.2.6) respectively) to the M1-loop
n−1 . With the help of

some algebraic manipulations, it can be shown that case b) gives rise to contributions in

which the propagator stretches between the 1+2 leg to the q legs, thus also contributing

to the M1-loop
n−1 .

Hence, summing all the various contributions, we have shown that the quantity
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a
)

pn

p1

p2

p3

p1‖p2→
pn

p1 + p2

p3

p4

b
)

p1

p2

p3

p4

pn−1

pn

p1

p2

Figure 6.2: A one-loop correction to the Wilson loop, where the gluon stretches be-
tween two lightlike momenta meeting at a cusp both (case a) or only one (case b) going

collinear. This kind of diagrams contributes to r
[1]
1 (z) by providing infrared-divergent

terms of the form given in (6.2.3).

M1-loop
n reduces in the collinear limit to

M1-loop
n

a‖b→ M1-loop
n−1 + r

[1]
1 (z) . (6.2.19)
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a
)

p− 1

p

q

q + 1

p

p1

p2 q

b
)

q 6= n

p1

p2

q 6= 3

p1

p2

Figure 6.3: A one-loop correction to the Wilson loop, where the gluon stretches between
either two adjacent lightlike momenta p, q 6= 1, 2 meeting at a cusp (case a) providing

IR divergences to M1-loop
n−1 or two non-adjacent lightlike momenta with q 6= 3, n (case b)

contributing to the finite part of M1-loop
n−1 .



Chapter 7

Conclusions and Outlook

In the past twenty years or so, the physics community has witnessed and enjoyed ex-

traordinary progress in the understanding of scattering amplitudes. The simplicity of

the Parke-Taylor formula (2.3.8) for MHV tree-amplitudes is indicative of the fact that

gauge theories must be simpler than what one would otherwise be led to think in light

of the number of Feynman diagrams needed to compute a scattering amplitude. In

[10], the localisation properties of scattering amplitudes on lines in twistor space gave

a justification of the simplicity of tree-level MHV amplitudes. Thriving on the seeds

sown in [10], it was shown in [12] how tree-level amplitudes can be computed by gluing

Parke-Taylor MHV amplitudes with scalar propagators. In [23] and proved in [24], on-

shell recursion relations were found which resulted to be instrumental to the discovery

of new analytic expressions for tree-amplitudes.

At NLO, developments have been just as impressive as at tree level. In [16, 18–

20], despite initial skepticism, the CSW rules found in [12] were successfully employed

to compute supersymmetric MHV amplitudes in SYM [16, 18, 19] together with the

cut-constructible part of pure Yang-Mills amplitudes [20]. The latter result was then

confirmed in [49] by means of generalised unitarity, which instructs us to cut the one-

loop amplitude into a product of up to four on-shell amplitudes. An interesting outcome

of [49] was the discovery that two-particle cuts, which in principle are needed to compute

general amplitudes, did not appear in the calculation. The rational parts of the pure

Yang-Mills amplitude was then computed in [22], closing the circle and providing the

full one-loop QCD amplitude.

A short while after the computation of MHV scattering amplitudes was successfully

carried out, a Lagrangian formulation of MHV diagrams was laid [13–15], whereby a

non-local change of variables to the light-cone Yang-Mills Lagrangian generated a kinetic

92
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term describing a scalar propagator connecting negative and positive helicities together

with interaction terms of the infinite sequence of MHV amplitudes.

Quite recently, a deeper understanding of scattering amplitudes in maximally SYM

was initiated by a remarkable and fascinating duality found between polygonal Wilson

loops and MHV scattering amplitudes in N = 4. In [41], a strong coupling calculation

of scattering amplitudes in string theory was mapped to that of a polygon Wilson loop

built out of light-like segments corresponding to the null momenta of the scattered

particles. In [42, 43] and [44, 45, 47, 48], it was shown how the duality holds at weak

coupling for one and two loops scattering amplitudes in N = 4 SYM respectively.

It can be felt as a nuisance the fact that we have neglected gravity altogether in this

thesis. This is not due to the scarcity of results in this field, rather the contrary. There

has been a plethora of studies [112, 113, 119–121, 125, 172–175] which suggests that for

the first time we may have a UV-finite consistent field theory of gravity.

Nevertheless, in spite of all the advancements which we hope we have conveyed in

this thesis, there is still a whole host of problems waiting to be addressed. In the thesis

we have been dealing almost entirely with MHV amplitudes, an already rich and diverse

subject per se. What about NMHV amplitudes? Although a lot of progress has been

done toward this front (see references in § 4.3) in spite of the challenges they offer, we

still lack the knowledge of the general NMHV for QCD. Also, the study and eventual

discovery of iterative structures was relegated to MHV amplitudes in planar N = 4

SYM [38, 39] together with an approximate recursion behaviour for MHV amplitudes

in the maximally supersymmetric N = 2 SQED theory [51]. A computation of two-

loop six-point NMHV amplitudes would be enough to begin testing the existence of an

iteration relation for NMHV amplitudes.

Equally important, can the above Wilson loop duality and the dual superconformal

symmetry [176, 177] discovered in N = 4 SYM shed light on less supersymmetric theo-

ries? Are NMHV amplitudes also related to Wilson loop expectation values? Thinking

positively and considering the pace and quality of research as it now stands, there is

little room for doubt that major discoveries lie ahead of us. One thing we should always

bear in mind though: if we do not try we will never know1.

1Prolegomenon, otherwise known as introduction. Greek, from neuter present passive participle of
prolegein, to say beforehand: pro-, before; legein-, to speak.



Appendix A

Spinor and Dirac Traces

Identities

In this Appendix we set the spinor notation and we recall some useful identities per-

taining to the spinor helicity formalism which were useful in dealing with Dirac traces.

A.1 Spinor Identities

We work in the metric gµν = (1,−1,−1,−1). The epsilon tensors with which we raise

and lower indices are

εαβ = εα̇β̇ = iσ2 =

(

0 1

−1 0

)

, (A.1.1)

with εαβ = εαβ ⇒ εαβε
βγ = −δ γ

α and

σ1 =

(

0 1

1 0

)

,

σ2 =

(

0 −i
i 0

)

,

σ3 =

(

1 0

0 −1

)

, (A.1.2)

the customarily Pauli matrices, grouped together as ~σ.
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We also have σµ
αα̇ = (1, ~σ), giving

Pαα̇ = Pµσ
µ
αα̇

=

(

P0 + P3 P1 − iP2

P1 + iP2 P0 − P3

)

=

(

P 0 − P 3 −P 1 + iP 2

−P 1 − iP 2 P 0 + P 3

)

, (A.1.3)

and σ̄µ α̇α = −σµ αα̇ = εα̇β̇εαβσµ

ββ̇
= (1,−~σ), giving

P α̇α = Pµσ̄
µ α̇α

=

(

P0 − P3 −P1 + iP2

−P1 − iP2 P0 + P3

)

=

(

P 0 + P 3 P 1 − iP 2

P 1 + iP 2 P 0 − P 3

)

. (A.1.4)

For massless particles we can write

pαα̇ = λαλ̃α̇

=

(

λ1

λ2

)

(

λ̃1̇ λ̃2̇

)

=

(

λ1λ̃1̇ λ1λ̃2̇

λ2λ̃1̇ λ2λ̃2̇

)

, (A.1.5)

and

pα̇α = −λ̃α̇λα

= −
(

λ̃1̇

λ̃2̇

)

(

λ1 λ2
)

= −
(

λ̃1̇λ1 λ̃1̇λ2

λ̃2̇λ1 λ̃2̇λ2

)

=

(

λ̃2̇λ2 −λ̃2̇λ1

−λ̃1̇λ2 λ̃1̇λ1

)

, (A.1.6)

which follows from having λα = (εαβλβ)T = −λT
β ε

βα and λ̃α̇ = (λ̃β̇ε
β̇α̇)T = −εα̇β̇λ̃T

β̇
.
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The spinor inner product is defined as

〈λµ〉 = λαµα

=
(

λ1 λ2
)

(

µ1

µ2

)

= εαβλT
βµα , (A.1.7)

and

[λ̃ µ̃] = λ̃α̇µ̃
α̇

=
(

λ̃1̇ λ̃2̇

)

(

µ̃1̇

µ̃2̇

)

= λ̃α̇µ̃
T
β̇
εβ̇α̇ . (A.1.8)

The Schouten identity is very useful when carrying out algebraic manipulations

involving spinors. We recall it below:

〈i j〉〈k l〉 = 〈i k〉〈j l〉 + 〈i l〉〈k j〉 ,
[i j] [k l] = [i k] [j l] + [i l] [k j] . (A.1.9)

A.2 Dirac Traces

To follow, we reproduce some standard formulæ for converting between spinors and

Dirac traces. They are

〈i j〉 [j i] = tr+(k/ik/j) , (A.2.1)

〈i j〉 [j l] 〈l m〉 [mi] = tr+(k/ik/jk/lk/m) , (A.2.2)

〈i j〉 [j l] 〈l m〉 [mn] 〈np〉 [p i] = tr+(k/ik/jk/lk/mk/nk/p) , (A.2.3)

for momenta ki, kj , kl, km, kn, kp and where the + sign indicates the insertion of

(1 + γ5)/2:

tr+(k/ik/j) :=
1

2
tr+((1 + γ5)k/ik/j) . (A.2.4)
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We also have

tr+(k/ik/j) = 2(ki · kj) , (A.2.5)

tr+ (k/ak/bk/ck/d) = 2(ka · kb)(kc · kd) − 2(ka · kc)(kb · kd)

+ 2(ka · kd)(kb · kc) − 2iε(ka, kb, kc, kd) . (A.2.6)

Particularly useful were the following identities

tr+(k/ik/jk/lk/m) = tr+(k/mk/lk/jk/i) = tr+(k/lk/mk/ik/j) , (A.2.7)

tr+(k/ik/jk/lk/m) = 4(ki · kj)(kl · km) − tr+(k/jk/ik/lk/m) , (A.2.8)

(A.2.9)

For more on spinor and Dirac traces, the reader is referred to the evergreen [72].



Appendix B

Feynman Rules for a SU (Nc)

Gauge Theory

In this Appendix we collect the Feynman rules for a non-abelian SU(Nc) gauge theory.

In the below rules it is understood that momentum is conserved at each vertex. We

adhere to the convention as adopted in [178]. First, we show the Feynman rules in

the form they appear in standard textbook with the Feynman-’t Hooft gauge ξ = 1

implemented. Then, for comparison, we present the Feynman rules for massless SU(Nc)

Yang-Mills theory in the same gauge written in the spinor helicity formalism.

B.1 Feynman Rules

Gauge Boson Propagator:

p

a b =
−igµν

p2 + iε
δab

Fermion Propagator:
p

i ̄ =
i(p/+m)

p2 −m2 + iε
δi

̄
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Fermion Vertex:

a, µ

= igγµT a

3-Boson Vertex:

a, µ

c, ρ
b, ν

p1

p3

p2

= −gfabc[gµν(p1−p2)
ρ

+gνρ(p2−p3)
µ

+gρµ(p3−p1)
ν ]

4-Boson Vertex:

b, νa, µ

d, σ
c, ρ

= 2ig2[fabef ecdgµ[ρgσ]ν

+fdaef ebcgµ[νgσ]ρ

+f caef ebdgµ[νgρ]σ]

Ghost Propagator:
p

a b = − iδab

p2

Ghost Vertex:
p

b, µ

a c

= gfabcpµ .
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B.2 Feynman Rules in the Spinor Helicity Formalism

B.2.1 Wavefunctions

In this section we consider all the external states as outgoing. We omit a factor of

exp(ixββ̇λ
βλ̃β̇) which multiplies all the below wavefunctions.

• Scalar:

φ = 1 (B.2.1)

• Fermion i, positive helicity:

ψ+
i = λ̃i α̇ = [i| (B.2.2)

• Fermion i, negative helicity:

ψ−
i = λα

i = 〈i| (B.2.3)

• Anti-fermion j, positive helicity:

ψ̄+
j = λ̃α̇

j = |j] (B.2.4)

• Anti-fermion j, negative helicity:

ψ̄−
j = λj α = |j〉 (B.2.5)

• Vector p = λλ̃, positive helicity:

ε+αα̇ =
√

2
καλ̃α̇

〈κλ〉 =
√

2
|κ〉[λ̃|
〈κλ〉 (B.2.6)

• Vector p = λλ̃, negative helicity:

ε−αα̇ =
√

2
λακ̃α̇

[κ̃ λ̃]
=

√
2
|λ〉[κ̃|
[κ̃ λ̃]

, (B.2.7)

where κ and κ̃ are arbitrary spinors.
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B.2.2 Propagators

• Scalars with kinetic term (∂φ)2/2:

i

p2
(B.2.8)

• Fermions with p = λλ̃ and kinetic term ψ̄iσ̄µ∂µψ:

i

σ̄µpµ
=
ipαα̇

2p2
=
i|λ〉[λ̃|
2p2

(B.2.9)

• Vectors with kinetic term −(∂A)2/4:

−2iεα̇β̇εαβ

p2
(B.2.10)

B.3 Vertices

Fermion Vertex:

β̇β

α̇ α

= ig
√

2 δ β
α δ β̇

α̇

3-Boson Vertex:

α̇α

γ̇γ β̇β

p1

p3

p2

=
−g
2
√

2
[εα̇β̇εαβ(p1−p2)

γ̇γ

+ εβ̇γ̇εβγ(p2−p3)
α̇α

+ εγ̇α̇εγα(p3−p1)
β̇β]

4-Boson Vertex:

β̇βα̇α

δ̇δ
γ̇γ

=
ig2

8
[2εα̇γ̇εαγεβ̇δ̇εβδ

− εα̇δ̇εαδεβ̇γ̇εβγ

− εα̇β̇εαβεγ̇δ̇εγδ] .



Appendix C

Tensor Integrals

In this Appendix we define the one-loop integrals1 which were used in performing the

PV reductions encountered in § 4. Furthermore, we present formulæ for the PV reduc-

tions of all tensor bubble, triangle and box integrals appearing in the same chapter. The

more complicated three-tensor triangle integral is dealt with separately in Appendix D.

C.1 Bubble Integrals

The bubble integral, is defined by

I2[P (`µ)] = −i(4π)2−ε

∫

d4−2ε`

(2π)4−2ε

P (`µ)

`2(`−K)2
, (C.1.1)

where K is the total outgoing momentum at one side of the bubble and, in the rest of

this Appendix, P (`µ) is some polynomial in the loop momentum `µ. Evaluation of the

scalar bubble integral yields

I2[1] = rΓ
(−Q2)−ε

ε(1 − 2ε)
= rΓ

[(

1

ε
+ 2 − ln(−Q2)

)

+ O(ε)

]

, (C.1.2)

where

rΓ =
Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
. (C.1.3)

Thus, we see that the difference of two scalar bubbles gives rise to (4.1.9) to O(ε0).

1We followed the convention as given in [21] throughout this thesis. Notice that, although here the
integrals are not given in a dimensionally regularised manner, there is no difference up to O(ε0) with
the ones found in [21].
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The PV reduction of the linear and two-tensor bubble integrals are given by

I2[`
µ
2 ] = −1

2
I2(P

2)P µ , (C.1.4)

I2[`
µ
2`

ν
2 ] =

1

3
I2(P

2)P µP ν − 1

12
I2(P

2)P 2ηµν . (C.1.5)

C.2 Triangle Integrals

A general tensor triangle integral is defined by

I3[P (`µ)] = i(4π)2−ε

∫

d4−2ε`

(2π)4−2ε

P (`µ)

`2(`−K1)2(`+K3)2
, (C.2.1)

where the Ki are sums of the momenta ki of the external gluons at each vertex. We

found that the linear and two-tensor triangle integrals are given by

I3[`
µ
2 ] = −T (1)P µ , (C.2.2)

I3[`
µ
2`

ν
2 ] =

1

2
T (1)P µP ν − 1

2
P 2T (2) (P µmν + P νmµ) , (C.2.3)

(C.2.4)

where only the contributing terms have been written.

C.3 Box Integrals

The box integral is defined by

I4[P (`µ)] = −i(4π)2−ε

∫

d4−2ε`

(2π)4−2ε

P (`µ)

`2(`−K1)2(`−K1 −K2)2(`+K4)2
. (C.3.1)

For the linear box integral we found

I4[`
µ
1 ] =

(m1 ·m2)P
2I4 − (m1 · P ) [I3 + 2 I4] (m2 · P )

2 [(m1 ·m2)P 2 − 2 (m2 · P )(m1 · P )]
P µ (C.3.2)

+
(m1 ·m2)P

2 [I3 − (m2 · P )I4] + (m1 · P )(m2 · P ) [2 I4(m2 · P ) − I3]

2 [(m1 ·m2)P 2 − 2 (m2 · P )(m1 · P )]
mµ

1 ,

where we are omitting the m2 term since it drops out when inserted in (4.2.17). The

interested reader is referred to the very helpful Appendices I and II of [21] for a more

complete discussion of bubble, triangle and box integrals.



Appendix D

Passarino-Veltman Reduction

In this Appendix we carry out the PV reduction in D = 4 dimensions of the three-index

tensor triangle integral found in § 4.

The three-index tensor integral in D = 4 dimensions

Iµνρ(m1, P,Q) =

∫

d4`2
`µ2 `

ν
2 `

ρ
2

`21 `
2
2 `

2
3

, (D.0.1)

may be decomposed as

Iµνρ = a(P µP νP ρ) + b(P µmνmρ + P νmµmρ + P ρmνmµ) + (D.0.2)

c(P µP νmρ + P µP ρmν + P νP ρmµ) + d(P µηρν + P νηµρ + P ρηµν) +

e(mµηνρ +mνηµρ +mρηνµ) + f(mµmνmρ).

Taking contractions with all possible momenta then yields

•PµPνPρ

I1 =

∫

(`2 · P )3

`21 `
2
2 `

2
3

= aP 6 + 3b[P 2(m · P )2] + 3c[(m · P )P 4] + (D.0.3)

+ 3dP 4 + 3e[(m · P )P 2] + f(m · P )3 ,

•Pµmνmρ

I2 =

∫

(`2 · P )(m · `2)2
`21 `

2
2 `

2
3

= a[P 2(m · P )2] + c(m · P )3 + 2d(m · P )2 , (D.0.4)
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•PµPνmρ

I3 =

∫

(m · `2)(`2 · P )2

`21 `
2
2 `

2
3

= a[(m · P )P 4] + b(m · P )3 + 2c[P 2(m · P )2] + (D.0.5)

3d[P 2(m · P )] + 2e(m · P )2 ,

•Pµηνρ

I4 =

∫

(P · `2)
`21 `

2
3

= aP 4 + 2b[(m · P )2] + 3c[P 2(m · P )] + (D.0.6)

6dP 2 + 6e(m · P ) ,

•mµηνρ

I5 =

∫

(`2 ·m)

`21 `
2
3

= a[(m · P )P 2] + 2c(m · P )2 + 6d(m · P ) , (D.0.7)

•mµmνmρ

I6 =

∫

(`2 ·m)3

`21 `
2
2 `

2
3

= a(m · P )3 . (D.0.8)

The integrals take the following values:

I1 = −1

2
(m · P )2I2(Q

2) − 1

8
P 2I3 (D.0.9)

−1

6
(P ·Q)2I2(Q

2) +
1

24
Q2P 2I2(Q

2)

−1

2
(m · P )(P ·Q)I2(Q

2) +
1

4
(m · P )I2(Q

2)

+
1

8
P 2(P ·Q)I2(Q

2) − 1

8
P 4I2(Q

2) ,

I2 =−1

6
(m ·Q)2I2(Q

2) − 1

8
P 2(m ·Q)I2(Q

2) − 1

8
P 2(m · P )I2(P

2) ,

I3 =
1

2
(m · P )2I2(Q

2) +
1

6
(P ·Q)2I2(Q

2) +
1

2
(m · P )(P ·Q)I2(Q

2)

− 1

24
Q2P 2I2(Q

2) − 1

6
P 4I2(P

2) +
1

24
P 4I2(P

2) ,

I4 = (m · P )I2(Q
2) +

1

2
(P ·Q)I2(Q

2) ,

I5 =
1

2
(m ·Q)I2(Q

2) ,

I6 =
1

6
(m ·Q)2I2(Q

2) − 1

6
(m · P )2I2(P

2) ,

Finally, using Mathematica to carry out the algebraic manipulations, we retrieve the
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coefficients of the expansion (D.0.2)

a =
I2(Q

2) − I2(P
2)

3Q2 − 3P 2
, (D.0.10)

b =
P 4(I2(P

2 − I2(Q
2)

3(P 2 −Q2)3
,

c =
P 2(I2(Q

2) − I2(P
2))

6(P 2 −Q2)2
,

d =
Q2I2(Q

2) − P 2I2(P
2)

12(P 2 −Q2)
,

e =
(Q4 − 2P 2Q2)I2(Q

2) + P 4I2(P
2)

12(P 2 −Q2)2
,

where we chose not to write the f coefficient as one can easily check that the mµmνmρ

term vanishes once inserted into the appropriate Dirac trace formulæ appearing in our

calculations. Incidentally, the f coefficient is the only place where the I3 scalar triangle

function appears.

Thus, (D.0.1) takes the following form:

∫

d4`2
`µ2 `

ν
2 `

ρ
2

`21 `
2
2 `

2
3

=
I2(Q

2) − I2(P
2)

3Q2 − 3P 2
(P µP νP ρ) +

P 4(I2(P
2) − I2(Q

2))

3(P 2 −Q2)3
(P µmνmρ)

+
P 2(I2(Q

2) − I2(P
2))

6(P 2 −Q2)2
(P µP νmρ) +

Q2I2(Q
2) − P 2I2(P

2)

12(P 2 −Q2)
(P µηνρ)

+
(Q4 − 2P 2Q2)I2(Q

2) + P 4I2(P
2)

12(P 2 −Q2)2
(mµηνρ) . (D.0.11)



Appendix E

Twistor Space

In this section we report some of the salient features of twistor space. Without pretend-

ing to be exhaustive on the topic, we refer the interested reader to the original work

[10, 11] and offsprings thereafter.

In order to introduce twistor space, let us consider conformal invariance of N = 4

MHV tree-level amplitudes which we recall are of the form

AMHV = g(λ)δ(4)
(

n
∑

k=1

λkλ̃k

)

(E.0.1)

= ign−2(2π)4
〈ij〉4

∏n
k=1〈k k + 1〉δ

(4)
(

n
∑

k=1

λkλ̃k

)

,

and obey the condition

(

λα
i

∂

∂λα
i

− λ̃α̇
i

∂

∂λ̃α̇
i

)

An(λi, λ̃i.hi) = −2hiAn(λi, λ̃i, hi) . (E.0.2)

Since N = 4 is (super) conformal at tree level, the corresponding tree-level S-matrix

must be annihilated by the conformal group. In terms of spinor variables, the conformal
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generators are

Pαα̇ = λαλ̃α̇ , (E.0.3)

Jαβ =
i

2

(

λα
∂

∂λβ
+ λβ

∂

∂λα

)

, (E.0.4)

J̃α̇β̇ =
i

2

(

λ̃α
∂

∂λ̃β
+ λ̃β

∂

∂λ̃α

)

, (E.0.5)

D =
i

2

(

λα ∂

∂λα
+ λ̃α̇ ∂

∂λ̃α
+ 2
)

, (E.0.6)

Kαα̇ =
∂2

∂λα∂λ̃α̇
, (E.0.7)

where Pαα̇ is the momentum operator, Jαβ and J̃α̇β̇ are the Lorentz operators, D the

dilation operator andKαα̇ the generator of special conformal transformations. By acting

these operators upon a MHV amplitude, we can verify whether the amplitude vanishes

or not. It was shown in [10] how a N = 4 MHV tree-level amplitude indeed gets

annihilated by the conformal group. Rather than showing the details here, we notice how

some generators are represented by differential operators of degree one while others of

degree two with the momentum operator just a multiplication operator. If we introduce

the transformation [11]1

λ̃α̇ → i
∂

∂µα̇
, (E.0.8)

∂

∂λ̃α̇
→ iµα̇ , (E.0.9)

we are able to recast the conformal generators as

Pαα̇ = iλα
∂

∂µα̇
, (E.0.10)

Kαα̇ = iµα̇
∂

∂λα
, (E.0.11)

Jαβ =
i

2

(

λα
∂

∂λβ
+ λβ

∂

∂λα

)

, (E.0.12)

J̃α̇β̇ =
i

2

(

µα̇
∂

∂µβ̇
+ µβ̇

∂

∂µα̇

)

, (E.0.13)

D =
i

2

(

λα ∂

∂λα
− µα̇ ∂

∂µα̇

)

. (E.0.14)

Although we have decided to break the symmetry between λ and λ̃ by choosing to

transform λ̃ rather than λ, we have managed to express the conformal operators in

terms of operators of degree one. Furthermore, the scaling properties of λ and µ have

1There exists a similar transformation for the holomorphic spinor component λ. However, the math-
ematics is more involved as can be inferred by looking at (E.0.1).
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changed from (2.2.9) to

(λ, µ) → (cλ, cµ) , (E.0.15)

while (E.0.2) becomes

(

λα
i

∂

∂λα
i

+ µα̇
i

∂

∂µα̇
i

)

An(λi, µi.hi) = −(2hi + 2)An(λi, µi, hi) , (E.0.16)

for a complex number c. In signature + + −−, one can consider λ and µ to be real

and independent thus parameterising a copy of
� 4 which under the scaling (E.0.15)

reduces to
� � 3. The familiar Fourier transform

f̃(µ) =

∫

d2λ̃

(2π)2
exp(iµα̇λ̃α̇)f(λ̃) , (E.0.17)

allows one to switch from an amplitude A(λi, λ̃i) to an amplitude Ã(λi, µi) when λ

and µ are real. In Minkowski signature however, it is more natural to regard λ and µ

as complex and independent, thus parameterising a copy of � 4 which reduces to ��� 3

under the scaling (E.0.15). The way to proceed would be to consider (E.0.17) as a

contour integral; alternatively, one can make use of the sophisticated machinery of ∂̄

cohomology or sheaf cohomology as adopted in [11]. The four-dimensional spaces
� 4

and � 4 were called twistor spaces by Penrose [11] with coordinates λ and µ whilst
� � 3

and ��� 3 are nowadays called projective twistor spaces.

An interesting geometrical aspect arises by transforming the scattering amplitude

as a function in momentum space to a function in twistor space. Let us observe the fact

that MHV amplitudes are holomorphic and, to this end, let us rewrite (E.0.1) using a

standard position-momentum representation for the delta function of the momentum

conservation as

AMHV = ign−2

∫

d4x exp
(

ixαα̇

n
∑

k=1

λα
k λ̃

α̇
k

)

f(λk) . (E.0.18)

By means of (E.0.8), with some little algebra we can recast (E.0.18) in twistor space
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+

−
−

+

+

+

−

+

+

+

+

−
−

Figure E.1: Pictorial representation in twistor space of a MHV amplitude (left) and
NMHV amplitude (right).

as

ÃMHV(λ, µ) = ign−2AMHV

∫

d4x

n
∏

k=1

∫

d2λ̃k

(2π)2
exp
(

i

n
∑

k=1

µkα̇λ̃
α̇
k

)

× exp
(

ixαα̇

n
∑

k=1

λα
k λ̃

α̇
k

)

(λ)

= ign−2AMHV(λ)

∫

d4x

n
∏

i=1

δ(2)
(

µiα̇ + xαα̇λ
α
j

)

. (E.0.19)

Thus, from the last line of (E.0.19), we evince the remarkable fact that MHV tree-

level amplitudes in twistor space are localised on curves of degree one which are straight

lines in the real case and spheres in the complex case. The localisation properties of

many amplitudes have been thoroughly studied [10, 20, 78, 100, 112, 179–183] and it

has been found that amplitudes with q negative-helicity gluons localise on curves of

degree q − 1. Notice that the cases q = 0, 1 do not exist thus providing a geometrical

interpretation of the vanishing of tree-level amplitudes given in (2.3.10). It has been

conjectured in [10] that a generic n-particle scattering amplitude with q negative-helicity

gluons localise in twistor space on a curve of degree

d = q − 1 + L , (E.0.20)

where L is the number of loops.
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