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Abstract

In this work we develop two new (2+1) and (3+1)-dimensional KdV equations with constant and time-
dependent coefficients. The integrability of each established equation is investigated via using the Painlevé 
test. We also examine the compatibility conditions to ensure the integrability for each model. The Hirota’s 
method is used to derive multiple-soliton solutions for these equations. We establish the dispersion relation 
and the phase shifts for each case.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Constructions of completely integrable equations are flourishing and gaining a mass volume 
of useful studies and promising findings. The existence of Lax pair, solvable by the inverse 
scattering transform method, passing the Painlevé test, having infinitely many symmetries, and 
other properties, are some of the criteria related to the development of the nonlinear integrable 
equations. The field of integrable equations is an active multidisciplinary area of research due to 
the fact that integrable equations describe the real features and reveal the mysterious nature of 
the nonlinearity in science and engineering applications [1–16].
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In recent years, the study of integrable equations has become a hot research area in nonlinear 
mathematical physics and wave propagations. This originates from the fact that these equations 
give qualitative and quantitative features of several scientific aspects of many unrelated phe-
nomena such as plasmas, fluids, lattice vibrations of a crystal at low temperature, propagation 
of waves in shallow water area, traffic flow, soliton propagation in nonlinear transmission lines, 
pulse propagation in optical fibers and wave guides, plasma-laser interaction, convection in pure 
and binary fluids, nonlinear excitations of ultra-cold atoms in Bose-Einstein condensates, large 
amplitude waves (rogue waves), etc. [16–28].

The soliton, and more precisely multiple soliton solutions, are important features of nonlinear 
integrable equations. The existence of multiple soliton solutions often implies the integrability 
of the considered differential equations, but this is not sufficient, and other schemes such as the 
Painlevé test, the Lax pair, and other techniques are necessary to confirm the integrability of 
the equation. Studies of completely integrable equations are flourishing both theoretically and 
experimentally in the literature [1–20]. Integrable models describe the real features of scientific 
and engineering phenomena.

The (2+1)-dimensional KdV equation reads

vt + vxxx + 3(v∂−1
y vx)x = 0, (1)

or equivalently

uty + uxxxy + 3(uyux)x = 0, (2)

obtained by using

v(x, y, t) = uy(x, y, t). (3)

This equation was firstly obtained by Boiti et al. [1] by using the idea of the weak Lax pair. 
Eq. (1) is also called the Boiti—Leon—Manna—Pempinelli equation and has been shown to 
possess Lax pair, an infinite number of conservation laws, integrability properties, and multiple 
soliton solutions. Other solutions have been studied widely by using different methods [1–28]. 
In addition, rich localized excitations of this equation were derived for this equation [10–16]. 
Moreover, this equation will reduce to the standard (1+1)-dimensional KdV equation in the case 
of y = x.

In this work, we aim to extend our work in [2] and develop two new (2+1)-dimensional and 
(3+1)-dimensional KdV equations, with constant coefficients and time dependent coefficients for 
each type. We first introduce a (2+1)-dimensional KdV equation with constant coefficients that 
takes the form

vt + vxxx + α(v∂−1
y vx)x + β(∂−1

y vxx) + γ (∂−1
y vyy) = 0, (4)

where α, β , and γ are constants, by adding the two terms β(∂−1
y vxx), γ (∂−1

y vyy) to Eq. (2). 
Moreover, we introduce the (2+1)-dimensional KdV equation with time-dependent coefficients

vt + f1(t)vxxx + f2(t)(v∂−1
y vx)x + f3(t)(∂

−1
y vxx) + f4(t)(∂

−1
y vyy) = 0, (5)

where fi(t), 1 ≤ i ≤ 4 are time-dependent coefficients. For α = 3, β = 0, and γ = 0, Eq. (4) will 
be reduced to Eq. (1). Similarly, for y = x, Eq. (1) will be reduced to the KdV equation.

It is well known that equations with time-dependent coefficients are more closely related to 
real scientific applications. This type of equations has attracted a lot of research works and has 
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been observed in optical fibers, wave propagations, rogue waves, and many other physical sys-
tems. Over the years, researchers have discovered many powerful methods, such as the inverse 
scattering method, Hirota’s bilinear method, Darbous transformation method, classical Lie sym-
metries, and many others.

Moreover, we introduce a (3+1)-dimensional KdV equation with constant coefficients takes 
the form

vt + vxxx + α(v∂−1
y vx)x + β(∂−1

y vxx) + γ (∂−1
y vyy) + δ(∂−1

y vyz) = 0, (6)

where α, β, γ and δ are constants. Note that this equation is obtained by adding only the term 
∂−1
y vyz) = vz to Eq. (4). We also present another (3+1)-dimensional KdV equation with time-

dependent coefficients as

vt + g1(t)vxxx + g2(t)(v∂−1
y vx)x + g3(t)(∂

−1
y vxx) + g4(t)(∂

−1
y vyy) + g5(t)(∂

−1
y vyz) = 0,

(7)

where gi(t), 1 ≤ i ≤ 5 are time-dependent coefficients. For α = 3, β = 0, γ = 0, and δ = 0, 
Eq. (6) will be reduced to Eq. (1).

First, we first aim to test the two extended equations (4), (5) and similarly (6), (7) via using 
the Painlevé for the integrability of each developed model. Moreover, the second goal is to derive 
multiple soliton solutions for each equation by using the simplified Hirota’s method.

2. The (2+1)-dimensional KdV equation with constant coefficients

The new (2+1)-dimensional KdV equation, with constant coefficients, reads

uty + uxxxy + α(uyux)x + βuxx + γ uyy = 0, (8)

obtained upon using the potential

v(x, y, t) = uy(x, y, t), (9)

in Eq. (4).
In this section, we aim to show that the new (2+1)-dimensional KdV equation (8) is Painlevé 

integrable. Moreover, we will use the simplified Hirota’s algorithm to formally derive multiple 
real and multiple complex soliton solutions.

2.1. Painlevé analysis

To emphasize the integrability of the equation (8), which is assumed to have a solution as a 
Laurent expansion about a singular manifold ψ = ψ(x, y, t) as

u(x, y, t) =
∞∑

k=0

uk(x, y, t)ψk−γ , (10)

where uk(x, y, t), k = 0, 1, 2, ... , are the functions of x, y and t . On substitution of (10) in equa-
tion (8), then equating the most dominant terms we get, γ = 1 and

u0(x, y, t) = ψ(x, y). (11)

Putting this value of γ in (10) yields
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u(x, y, t) ∼= ψxψ
−1 + uk(x, y, t)ψk−1. (12)

Further, using (12) and equation (11) in equation (8), we get characteristic equation for res-
onances with one branch with two resonances at k = −1, 1, 4, and 6. However, as usual, the 
resonance at k = −1 corresponds to the arbitrariness of singular manifold ψ(x, y, t) = 0. The 
next step is to determine the coefficients u2, u3, and u5. After detailed computations, we ob-
served explicit expressions for u2, u3, and u5, and we found that u1, u4, and u6 turn out to be 
arbitrary functions, and thus compatibility conditions, for k = 1, 4, 6 are satisfied identically.

2.2. Multiple soliton solutions

We first substitute

u(x, y, t) = ekix+riy−ωi t , (13)

into the linear terms of (8), where we find the dispersion relation ωi takes the form

ωi = k3
i ri + βk2

i + γ r2
i

ri
, i = 1,2,3. (14)

As a result, the phase variables are given as

θi = kix + riy − k3
i ri + βk2

i + γ r2
i

ri
) t, i = 1,2,3. (15)

To determine the single soliton solution, we use the transformation

u(x, y, t) = 6

α
(ln f (x, y, t))x, (16)

where the auxiliary function f (x, y, t), for the single soliton solution is given by

f (x, y, t) = 1 + eθ1 = 1 + e
k1x+r1y− k3

1 r1+βk2
1+γ r2

1
r1

t
. (17)

Substituting (17) into (16) gives the single soliton solution as

u(x, y, t) = 6k1e
k1x+r1y− k3

1 r1+βk2
1+γ r2

1
r1

t

1 + e
k1x+r1y− k3

1 r1+βk2
1+γ r2

1
r1

t

. (18)

For the two soliton solutions we set the auxiliary function as

f (x, y, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (19)

where the phase variables θi, i = 1, 2, 3 are given earlier in (15), and a12 is the phase shift that 
will be determined. Substituting (19) and (16) in (8) and solving for the phase shift a12, we find

a12 = k1k2r1r2 (3(k1 − k2)(r1 − r2) + 2β) − β(k2
1r2

2 + k2
2r2

1 )

k1k2r1r2 (3(k1 + k2)(r1 + r2) + 2β) − β(k2
1r2

2 + k2
2r2

1 )
, (20)

which can be generalized to

aij = kikj rirj
(
3(ki − kj )(ri − rj ) + 2β

) − β(k2
i r

2
j + k2

j r
2
i )

kikj rirj
(
3(ki + kj )(ri + rj ) + 2β

) − β(k2
i r

2
j + k2

j r
2
i )

,1 ≤ i < j ≤ 3. (21)

Substituting (19)–(20) into (16) gives the two soliton solutions.
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For the three soliton solutions, we set the auxiliary function by

f (x, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3 + a23e
θ2+θ3 + b123e

θ1+θ2+θ3 . (22)

Proceeding as before, we find

b123 = a12a23a13. (23)

The three soliton solutions are obtained by substituting (22) into (16).

3. The (2+1)-dimensional KdV equation with time-dependent coefficients

The new (2+1)-dimensional KdV equation, with time-dependent coefficients takes the form

uty + f1(t)uxxxy + f2(t)(uyux)x + f3(t)uxx + f4(t)uyy = 0, (24)

obtained upon using the potential

v(x, y, t) = uy(x, y, t), (25)

in Eq. (5).
In this section we will investigate the integrability of this equation and to derive multiple 

soliton solutions.

3.1. Painlevé analysis

To determine the compatibility condition to guarantee the integrability of the new KdV equa-
tion (24), which is assumed to have a solution as a Laurent expansion about a singular manifold 
ψ = ψ(x, t) as

u(x, y, t) =
∞∑

k=0

uk(x, y, t)ψk−γ , (26)

where uk(x, y, t)′s (k = 0, 1, 2, ...) are the functions of x, y, and t . Substituting (26) in equation 
(29), then equating the most dominant terms we get, γ = 1 and

u0(x, y, t) = ψx,y. (27)

Putting this value of γ in (26) yields

u(x, y, t) ∼= ψxψ
−1 + uk(x, y, t)ψk−1. (28)

Further, using (28) and equation (27) in equation (24), characteristic equation for resonances has 
been obtained, to get one branch with three resonances at k = −1, 1, 4, and 6. The resonance 
at k = −1 corresponds to the arbitrariness of singular manifold ψ(x, y, t) = 0. The next step 
is to determine the coefficients u2, u3, and u5, from the recursion relation and to verify the 
compatibility conditions for the existence of the free functions u1, u4, and u6. After detailed 
computations, we observed explicit expressions for u2 and u3, and u5. Moreover, we found 
that compatibility condition to ensure integrability requires that f1(t) = f2(t) = f3(t) = f (t), 
and f4(t) = g(t), where f (t) and g(t) remain any differentiable functions. Having these two 
conditions, gives u1, u4, and u6 to be arbitrary functions and this implies that equation (29)
passes the Painlevé test for complete integrability.
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3.2. Multiple soliton solutions

Inserting the compatibility conditions derived earlier in (24) leads to

uty + f (t)uxxxy + f (t)(uyux)x + f (t)uxx + g(t)uyy = 0. (29)

We first substitute

u(x, y, t) = ekix+riy−ωi(t), (30)

into the linear terms of (29), where we find the dispersion relation ωi(t) takes the form

ωi(t) =
∫

f (t)k3
i ri + f (t)k2

i + g(t)r2
i

ri
dt, i = 1,2,3. (31)

As a result, the phase variables are given as

θi = kix + riy − ωi(t), i = 1,2,3. (32)

To determine the single soliton solution, we use the transformation

u(x, y, t) = 6(ln f (x, y, t))x, (33)

where the auxiliary function f (x, y, t), for the single soliton solution is given by

f (x, y, t) = 1 + eθ1 . (34)

Substituting (34) into (33) gives the single soliton solution as

u(x, y, t) = 6k1e
k1x+r1y−ω(t)

1 + ek1x+r1y−ωi(t)
. (35)

For the two soliton solutions we set the auxiliary function as

f (x, y, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (36)

where the phase variables θi, i = 1, 2, 3 are given earlier in (32), and a12 is the phase shift that 
will be determined. Substituting (36) and (33) in (29) and solving for the phase shift a12, we find

a12 = 3k1k2r1r2(k1 − k2)(r1 − r2) − (k1r2 − k2r1)
2

3k1k2r1r2(k1 + k2)(r1 + r2) − (k1r2 − k2r1)2 , (37)

which can be generalized to

aij = 3kikj rir2(ki − kj )(ri − rj ) − (kirj − kj ri)
2

3kikj rirj (ki + kj )(ri + rj ) − (kirj − k2ri)j
,1 ≤ i < j ≤ 3. (38)

Substituting (36)–(37) into (33) gives the two soliton solutions.
For the three soliton solutions, we set the auxiliary function by

f (x, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3 + a23e
θ2+θ3 + b123e

θ1+θ2+θ3 . (39)

Proceeding as before, we find

b123 = a12a23a13. (40)

The three soliton solutions are obtained by substituting (39) into (33).
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4. The (3+1)-dimensional KdV equation with constant coefficients

The new (3+1)-dimensional KdV equation, with constant coefficients reads

uty + uxxxy + α(uyux)x + βuxx + γ uyy + δuzy = 0, (41)

obtained upon using the potential

v(x, y, z, t) = uy(x, y, z, t), (42)

in Eq. (6).
The approach we followed for this equation is identical to the analysis presented earlier for 

the (2+1)-dimensional KdV equation, hence we skip details and only summarize the obtained 
results.

4.1. Painlevé analysis

To emphasize the integrability of the equation (41), we followed the procedure used earlier to 
get a characteristic equation for resonances with one branch with two resonances at k = −1, 1, 4, 
and 6, where we observed explicit expressions for u2, u3, and u5, and we found that u1, u4, and 
u6 turn out to be arbitrary functions.

4.2. Multiple soliton solutions

We first substitute

u(x, y, z, t) = ekix+riy+si z−ωi t , (43)

into the linear terms of (41), where we find the dispersion relation ωi takes the form

ωi = k3
i ri + βk2

i + γ r2
i + δrisi

ri
, i = 1,2,3, (44)

that gives the phase variables as

θi = kix + riy − k3
i ri + βk2

i + γ r2
i + δrisi

ri
t, i = 1,2,3. (45)

To determine the single soliton solution, we use the transformation

u(x, y, z, t) = 6

α
(ln f (x, y, z, t))x, (46)

where the auxiliary function f (x, y, z, t), for the single soliton solution is given by

f (x, y, z, t) = 1 + eθ1 = 1 + e
k1x+r1y− k3

1 r1+βk2
1+γ r2

1 +δr1s1
r1

t
. (47)

Substituting (47) into (46) gives the single soliton solution as

u(x, y, z, t) = 6k1e
k1x+r1y− k3

1 r1+βk2
1+γ r2

1 +δr1s1
r1

t

1 + e
k1x+r1y− k3

1 r1+βk2
1+γ r2

1 +δr1s1
r1

t

. (48)

For the two soliton solutions we obtained the same phase shift as derived earlier in (20).
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5. The (3+1)-dimensional KdV equation with time-dependent coefficients

The new (3+1)-dimensional KdV equation, with time-dependent coefficients takes the form

uty + g1(t)uxxxy + g2(t)(uyux)x + g3(t)uxx + g4(t)uyy + g5(t)uyz = 0, (49)

obtained upon using the potential

v(x, y, z, t) = uy(x, y, z, t), (50)

in Eq. (7).
In this section we will investigate the integrability of this equation and to derive multiple real 

and complex soliton solutions.

5.1. Painlevé analysis

For integrability test, we obtained characteristic equation for resonances three resonances at 
k = −1, 1, 4, and 6. Moreover, we found that compatibility condition to ensure integrability 
requires that g1(t) = g2(t) = g3(t) = f (t), g4(t) = g(t), and g5(t) = h(t), where f (t), g(t) and 
h(t) remain any differentiable functions. Having these three conditions, gives u1, u4, and u6 to 
be arbitrary functions and this implies that equation (51) passes the Painlevé test for complete 
integrability.

5.2. Multiple soliton solutions

Inserting the compatibility conditions derived earlier in (49) leads to

uty + f (t)uxxxy + f (t)(uyux)x + f (t)uxx + g(t)uyy + h(t)uyz = 0. (51)

We first substitute

u(x, y, z, t) = ekix+riy+siz−ωi(t), (52)

into the linear terms of (51), where we find the dispersion relation ωi(t) takes the form

ωi(t) =
∫

f (t)k3
i ri + f (t)k2

i + g(t)r2
i + h(t)risi

ri
dt, i = 1,2,3. (53)

This is the only change. However, the phase shifts remain the same as

aij = 3kikj rir2(ki − kj )(ri − rj ) − (kirj − kj ri)
2

3kikj rirj (ki + kj )(ri + rj ) − (kirj − k2ri)j
,1 ≤ i < j ≤ 3. (54)

6. Concluding remarks

Two new (2+1)-dimensional and (3+1)-dimensional KdV equations, each with constant and 
time-dependent coefficients were developed. The established models were emphasized as inte-
grable equations via using the Painlevé test. The compatibility conditions for constant coefficient 
models, and for time-dependent coefficients equations were investigated to ensure the integra-
bility for these equations. Multiple solitons solutions were formally derived for each of the 
integrable developed models.
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