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Deutsche Zusammenfassung

Einführung

In der heute etablierten Theorie des Standardmodells der Elementarteilchenphysik werden die
Eigenschaften der Elementarteilchen und ihre Wechselwirkung untereinander beschrieben. Es gibt
darin zwei verschiedene Arten von Elementarteilchen, Quarks und Leptonen. Quarks kommen in
der Natur nicht als freie Teilchen vor, sondern nur als gebundene Zustände (Hadronen). Baryonen
sind Teilchen aus drei Quarks, und Teilchen, die aus einem Quark und einem Antiquark bestehen,
werden Mesonen genannt. Zu jedem Teilchen gibt es im Standardmodell ein Antiteilchen mit zwar
entgegengesetzten Quantenzahlen, aber gleicher Masse wie das zugehörige Teilchen.
Einige Mesonen zeigen ein interessantes Verhalten, sie oszillieren, d.h. sie können sich in ihre
Antiteilchen umwandeln und umgekehrt. Man geht davon aus, dass alle neutralen Mesonen,
die nicht ihr eigenes Antiteilchen sind, oszillieren können. Es wird dadurch erkärt, dass die
Masseneigenzustände nicht mit den Eigenzuständen der schwachen Wechselwirkung der Quarks
übereinstimmen. Die Verknüpfung zwischen den Masseneigenzuständen mit den Eigenzuständen
der schwachen Wechselwirkung ist durch die CKM-Matrix gegeben. Die Frequenz ist proportional
zur Massendifferenz der Masseneigenzustände ∆m. Eine Meson-Antimeson Oszillation wurde er-
stmals im Jahre 1956 im K0− K̄0 System [3] experimentell nachgewiesen. Die Massendifferenz im
D0 − D̄0 System wird als sehr klein erwartet und ist dadurch kaum zu messen, da die Teilchen zu
schnell zerfallen. Die erste Evidenz für B-Meson-Oszillationen wurde 1987 von den Experimenten
ARGUS [5] und UA1 [4] beobachtet. Die Oszillationsfrequenz von B0 − B̄0 ist sehr präzise bes-
timmt und der Weltmittelwert liegt bei ∆md = 0.507±0.005 ps−1 [24]. Die Frequenz der Bs − B̄s

Oszillationen wird deutlich größer vorhergesagt und die experimentell bestimmte untere Grenze lag
2005 bei ∆ms > 16.6 ps−1, was die direkte zeitaufgelöste Messung erschwert. Während dem Run II
des CDF-Experiments sollten jedoch genügend Daten gesammelt werden können, um ausreichende
Statistik für die direkte Messung der Oszillationsfrequenz von Bs-Mesonen zu haben. Diese Mes-
sung ist eines der Hauptziele des CDF-Experiments. In der Kollaboration und speziell in unserer
Arbeitsgruppe wurde mittlerweile vieles an Vorarbeit geleistet, was die Messung der Oszillations-
frequenz möglich machen sollte. Darunter fällt eine optimierte Signalselektion durch die Neuronale
Netztechnik, NeuroBayesr, sowie ein verbesserter Flavor-Tagging-Algorithmus, beruhend auf der
gleichen Technik.
Das Ziel dieser Arbeit ist nun die Entwicklung einer Software zur Bestimmung der Bs Oszilla-
tionsfrequenz ∆ms durch Kombination der verfügbaren Ergebnissen mit Hilfe eines ungebinnten
Maximum-Likelihood-Fits.

Das CDF-Experiment

Die verwendeten Daten in dieser Arbeit wurden mit Hilfe des CDF II-Detektors gesammelt. Der
Detektor steht, wie auch das DØ Experiment, am Tevatron Beschleuniger im Fermi National
Accelerator Laboratory (Fermilab) in Batavia bei Chicago (Illinois).

Das Tevatron ist ein kreisförmiger Proton-Antiproton Beschleuniger mit einem Radius von 1
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km und einer Schwerpunktsenergie von 1,96 TeV. An einem der beiden Wechselwirkungspunk-
ten befindet sich der CDF-Detektor. Er ist ein Mehrzweckteilchendetektor und findet für viele
physikalische Fragestellungen Verwendung. Der Detektor, in dessen Zentrum der Wechselwirkungs-
punkt liegt, ist zylindersymmetrisch aufgebaut. Die innersten Komponenten sind die Spurdetek-
toren, der Siliziumvertexdetektor und die Spurkammer COT. Sie dienen zum Nachweis von Spuren
geladener Teilchen. Zusammen mit dem supraleitenden Solenoidmagneten, der die Teilchen auf
eine Kreisbahn ablenkt, kann man den Transversalimpuls bestimmen. Zwischen den Spurkammern
und dem Solenoidmagenten befindet sich der zur Teilchenidentifikation verwendete Flugzeitmesser.
Außerhalb des Magenten befinden sich die elektromagnetischen und hadronischen Kalorimeter, die
die Energien von Teilchen, bzw. Jets bei hohen Energien messen. Das Myonsystem des Detek-
tors umgibt das Ganze mit seinen Spurkammern und Szintillatoren zum Nachweis von Myonen.
Durch hohe Wechselwirkungsraten bei CDF II ist es unmöglich, jedoch auch nicht wünschenswert,
alle resultierenden Ereignisse zu speichern. Um das hohe Datenaufkommen zu reduzieren, ist ein
Filter notwendig, was durch einen mehrstufigen Trigger realisiert ist. Das komplexe System selek-
tiert die Ereignisse und ist auf Hardware- und Softwareebene implementiert. Die für diese Arbeit
relevanten Daten wurden mit dem sogenannten Zweispurtrigger vorselektiert.

Ereignisrekonstruktion und Signalselektion

Nach der Vorselektion durch den Zweispurtrigger und dem Speichern der Daten wird versucht aus
den detektierten Zerfallsprodukten das jeweilige eventuell zugrunde liegende B-Meson zu rekon-
struieren. Die Rekonstruktion eines Bs-Zerfalls in einem exklusiven Endzustand basiert auf der
Spurrekonstruktion der Zerfallsprodukte, wobei man dazu sukzessive die Zerfallvertizes aller Zwis-
chenzustände rekonstruiert. Es wird also im Falle von Bs → Dsπ, Ds → φπ damit begonnen, den
Zerfall Ds → φπ zu rekonstruieren, indem die Kombination der Spuren durch einen Vertexfit
auf die Hypothese überprüft wird, ob die Spuren einen gemeinsamen Ursprung haben und ob die
invariante Masse der Spurkombination der Ruhemasse des Ds-Mesons entspricht. Als nächster
Schritt wird überprüft, ob die Ds-Meson-Kandidaten zusammen mit einer weiteren Spur mit dem
Zerfall eines Bs-Mesons kompatibel sind.

Trotz der Vorselektion durch den Trigger und der Verwerfung einiger Zerfälle als Nicht-Bs-Zerfälle
durch den Rekonstruktionsalgorithmus, erfüllen viele Ereignisse alle Bedingungen und werden als
Signal behandelt, obwohl sie einen anderen Ursprung als einen Bs-Zerfall haben. Einige davon
erfüllen durch zufällige Kombinationen von Spuren die Bedingungen bei anderen wurde eine falsche
Teilchenhypothese angenommen, d.h. Nicht-Bs-Teilchen werden als solche interpretiert. Nach
der Bs-Rekonstruktion enthält der Datensatz immer noch hauptsächlich Untergrundereignisse,
richtig rekonstruierte Bs-Zerfälle machen nur einen relativ kleinen Teil aus. Durch eine Signalse-
lektion mit Hilfe von NeuroBayes können weitere Untergrundereignisse verworfen werden, was
zur Verbesserung der Signalsignifikanz nS√

nS+nB

1 führt. Da die Signalsignifikanz proportional zur

Signifikanz der Messung der Bs-Oszillationsfrequenz ist, hat die Signalselektion einen direkten
Einfluss auf das Ergebniss.

Bestimmung der Oszillationsfrequenz ∆ms

Die Bestimmung der Bs-Oszillationsfrequenz ∆ms erfordert die Kombination einiger relevanter
Ereignisinformationen in einem ungebinnten Maximum-Likelihood-Fit mit ∆ms als Fitparameter.
Die Methode erfordert die Beschreibung der Verteilungen der invarianten Masse m und der Zerfalls-
dauern t von Ereignissen, die im Datensatz enthalten sind. Darüber hinaus muss die Information,
ob sich ein Teilchen umgewandelt hat (ξ = −1) oder nicht (ξ = 1), durch den Taggingalgorithmus
ermittelt werden und für jedes Teilchen zur Verfügung gestellt werden.

1
nS , nB , Anzahl der Signal-, bzw. der Untergrundereignissen
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Die Wahrscheinlichkeitsdichte P (m, t, ξ, σt) berücksichtigt diese Ereignisinformationen und ist
gegeben durch

P (m, t, σt, ξ) = (1 − fB) · PS(m) · PS(t, σt, ξ) + fB · PB(m) · PB(t, ξ)

Der Parameter fB beschreibt den Anteil von Untergrundeignissen von allen Ereignissen im Daten-
satz. PB(t) ist die Parametrisierung der Lebensdauerverteilung der Untergrundereignisse. Der Teil
(1− fB) ·PS(m) + fB ·PB(m) parametrisiert das invariante Massenspektrum der Bs-Kandidaten.
Der Ausdruck PS(t, σt, ξ) beschreibt die Oszillation und die Zerfallsdauerverteilung von Signalereignis-
sen und die Wahrscheinlichkeitsdichte ist gegeben durch

PS(t, ξ) =
1

NS(t, ξ, σt)

(

1 + ξD cos(∆mt)

1 + |ξ|
1

τ
e

t
τ

)

⊗ G(t − t′, σt) · ǫ(t)

wobei NS(t, ξ, σt) für die Normierung verantwortlich ist, D (Dilution) ist ein Maß für die Sicher-
heit der Taggingentscheidung, t ist die gemessene Zerfallszeit und σt die dazugehörige Auflösung.
Die Faltung des Oszillations- und Zerfallsterms mit einer Gauß-Funktion beschreibt die endliche
Auflösung der Zerfallsdauermessung. Die Multiplikation mit der Effizienzfunktion ǫ(t) wird der
eingeschränkten Akzeptanz des Detektors gerecht. Durch eine Parameterschätzung mit Hilfe der
Maximum-Likelihood-Methode wird die Lebensdauer τ oder die Oszillationsfrequenz ∆ms bes-
timmt. Die komplette Likelihood-Funktion hat allerdings pro Zerfallskanal mehr als 50 Param-
eter, die alle bestimmt werden müssen, was durch die Endlichkeit der Anzahl der verfügbaren
Ereignissen nicht in einem Fit geht. Zur Bestimmung der meisten dieser Parameter werden vor
dem ungebinnten Maximum-Likelihood-Fit einige Verteilungen, wie das invariante Massenspek-
trum, die Effizienzverteilung und Lebensdauerverteilungen von Untergründen mittels gebinnten
Fits parametrisiert. Zur Verbesserung der Signifikanz des Ergebnisses werden zur Analyse alle
Zerfallskanäle parallel heran gezogen. Das Framework bietet die Möglichkeit die meisten dieser
Parameter mittels gebinnter Fits für jeden Zerfallskanal einzeln zu bestimmen und dann die Pa-
rameter für den ungebinnten Fit zusammen zu führen und zu bestimmen welcher Parameter für
jeden Kanal individuell oder in allen Kanälen gleich sein soll.

Im Falle limitierter Statistik, d.h. bei einer kleinen verfügbaren Menge an Ereignissen, die zur Bes-
timmung der Oszillationsfrequenz herangezogen werden können, wird der ungebinnte Maximum-
Likelihood-Fit für ∆ms im Allgemeinen nicht konvergieren und es ist schwierig, Grenzen für ∆ms

anzugeben. Anstatt einer direkten Bestimmung der Frequenz, die als freier Fitparameter in der
Likelihood-Funktion vorkommt, gibt es einen alternativen Ansatz. Der Amplitudenscan basiert
auf der Idee einer Fourier-Transformation der Signaloszillationen. Dafür muss im Oszillationsterm
die Amplitude A als zusätzlicher Parameter eingeführt werden.

1 + ξDA cos(∆mt)

1 + |ξ|

Beim Amplitudenscan ist dann die Amplitude A ein freier Fitparameter, während ∆ms fest ist.
Der Fit wird jedoch für verschiedene Werte von ∆ms wiederholt und jeweils die Amplitude A
bestimmt. Für den wahren Wert von ∆ms ist der erwartete Wert für A gleich 1 und A = 0 für
alle anderen Werte der Oszillationsfrequenz.

Der Amplitudenscan (Abbildung 1) ist ein vorläufiges Ergebnis dieser Analyse. Er zeigt eine
Evidenz eines Oszillationssignals bei ∆ms ≈ 18 ps−1, da die Amplitude A mit 1 kompatibel
ist und 0 mit mehr als 3σ ausschließt. Die Sensitivität diser Analyse liegt bei 24.8 ps−1. Für
diesen Amplitudenscan wurden nur die Ereignisse aus einem von sechs Zerfallskanälen heran gezo-
gen. Der Kanal Bs → Dsπ, Ds → φπ ist der wichtigste, denn er enthält ca. 40% der Gesamt-
statistik und hat die beste Signalsignifikanz. Das Ergebnis dieser vorläufigen Analyse ergab eine
Bs-Oszillationsfrequenz von

∆ms = 18.32 ± 0.13 ps−1
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Figure 1: Amplitudenscan des Bs-Oszillationssignals im Zerfallskanal Bs → Dsπ, Ds → φπ.

Zusammenfassung und Ausblick

Die Entwicklung dieses Frameworks zur Ermittlung der Bs-Oszillationsfrequenz ist ein wichtiger
Schritt, um angemessen von vergangenen Arbeiten in unserer Gruppe zu profitieren. Das beinhal-
tet die Optimierung der Signalselektion in den exklusiven Zerfallskanälen des Bs-Mesons, sowie
die Entwicklung eines kombinierten Tagging-Algorithmus mit der doppelten Tagging-Power des
bisherigen. Zusammen mit den jetzt verfügbaren Daten, die einer integrierten Luminosität von
1 fb−1 entsprechen, erlauben die Methoden eine direkte zeitabhängige Messung der Oszillations-
frquenz ∆ms.

Bisher gibt es noch kein Ergebnis von unserer Gruppe mit einem optimal arbeitenden Flavor-
Tagger und mit der vollen Statistik aus allen sechs exklusiven Kanälen. Lediglich ein Amplitu-
denscan mit den Daten aus dem Zerfallskanal Bs → Dsπ, Ds → φπ ist in Abbildung 1 gezeigt.
Eine Evidenz für ein Oszillationssignal bei ∆ms = 18.32 ± 0.13 ps−1 ist durch die Konsistenz der
Amplitude A mit 1 und mit mehr als 3σ Entfernung von 0 gegeben. Die Sensitivität der Messung
liegt bei 24.8 ps−1.

Vor kurzem veröffentlichte die CDF-Kollaboration eine direkte Messung von ∆ms. Das Ergebnis
dieser Analyse ist mit ∆ms = 17.77±0.10(stat)±0.07(syst)ps−1 [34] sehr präzise und gilt mit einer
Signifikanz von mehr als 5σ als sicher. Die Wahrscheinlichkeit, dass eine Untergrundfluktuation
das Signal hervorrief, beträgt nur 8 · 10−8.

Das Ziel in der Zukunft wird sein, die Signifikanz der aktuellen CDF-Messung zu verbessern und
die Oszillationsfrequenz der Bs−B̄s-Oszillationen noch etwas genauer zu bestimmen. Eine weitere
Anwendung ist die Kalibrierung des neuen Tagging-Algorithmus nach der Oszillationsmessung, da
dieser auch für die Messung der CP-Verletzung im Bs-System notwendig ist.
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Introduction

The whole universe as we know is made of only a few different elementary particles. These
particles themselves and combinations of them are manifested as matter. But besides matter, also
antimatter is existing. It was suggested by P. Dirac in 1928 by the development of his relativistic,
quantum mechanical equation for electrons [1], known as the Dirac equation. The experimental
confirmation was done by the discovery of the positron by C.D. Anderson in the year 1932 [2]. Not
only the electron has an antimatter partner, but all elementary particles have their corresponding
antiparticles. The quantum numbers of antiparticles are opposite to the quantum numbers of
matter particles, but they have the same mass. A particle and its antiparticle will annihilate, e.g.
into two photons when they meet.
The currently known elementary particles and their interactions are described in the Standard
Model of particle physics. Quarks and leptons are divided into three generations and virtually all
matter in our world is build up from two of the light quarks and electrons. The particles belonging
to the other generations are not stable and existed only in a short time after the big bang or are
artificially produced in particle accelerators.
Quarks do not exist as free particles, but build up bound states, called hadrons. Baryons like
protons or neutrons are particles made up of three quarks. Particles made up of a quark and an
antiquark are called mesons. Some of these mesons show an interesting behavior, they oscillate, i.e.
they transform themselves into their own antiparticle. This is explained in the Standard Model by
the mass difference ∆m of the two mass eigenstates and by the fact that the flavor eigenstates are
a linear combination of the mass eigenstates. Particle-antiparticle oscillations are expected for all
neutral mesons being not their own antiparticles. The mass difference ∆m is proportional to the
mixing frequency and can be determined by a time resolved measurement, it is a very important
and nontrivial test of the well established Standard Model. The first observation of particle-
antiparticle oscillations was in the K0−K̄0 system in 1956 [3]. The mass difference in the D0−D̄0

system is predicted to be very small, i.e. the oscillation frequency is small compared to the lifetime
and thus hard to measure. In 1987 the first evidence for neutral B meson mixing was observed by
two experiments namely ARGUS [5] and UA1 [4]. Since then the oscillation frequency of B0 − B̄0

is measured very precisely and the world average is ∆md = 0.507 ± 0.005 ps−1 [24]. In case of
Bs−B̄s, (sb̄− s̄b) oscillation, the oscillation frequency is predicted much higher. The experimental
expectation for ∆ms before the CDF measurements in 2005 was ∆ms = 18.3+6.5

−1.5 ps−1and the
experimental lower limit of ∆ms from 2005 is ∆ms > 16.6 ps−1. So the time resolved analysis
and direct measurement of ∆ms is more difficult.
During Run II of the CDF experiment it should be possible to collect enough data for the ∆ms

measurement and was thus one of the main aims of the experiment. A lot of work is done in
the meantime to improve the Bs selection with the help of neural networks [18, 19, 20] and the
development of a powerful tagging algorithm [21]. Final measurement of ∆ms is realized by an
unbinned maximum likelihood fit in mass, lifetime and flavor tagging space of Bs candidates. The
content of this diploma thesis is the development and implementation of parts of a framework
doing the measurement.

This thesis starts with the theoretical introduction in chapter 1 which gives a review over the
relations of CKM matrix, unitarity triangle and meson-antimeson oscillation. Chapter 2 presents

11



12

the CDF experiment placed at Fermilab in Batavia near Chicago (Illinois). The operating mode
of the accelerator Tevatron and the CDF detector is introduced. The analysis outline in chapter
3 contains necessary informations about the input to the fitter framework. The main chapter
4 presents everything about the composition of the fitter framework and the procedure inside.
Chapter 5 deals with the extraction of the mixing frequency ∆ms and presents the result obtained
until now. Finally chapter 6 gives a conclusion and an outlook.



Chapter 1

Theoretical Overview

1.1 The Standard Model

The Standard Model of particle physics is a theory describing fundamental particles and their
interactions.

The world consists of three families of leptons and quarks. Altogether there are six different flavors
of leptons and six different flavors of quarks. They all have spin 1

2 and thus are fermions.

There are three different types of interactions between the particles of the Standard Model. Each
interaction is mediated by an exchange particle called gauge boson. The exchange particle of the
electromagnetic interaction is γ, the ones of the weak interaction are W± and Z0 and the ones of
the strong interaction are eight different gluons.

The quarks take part in the strong and electromagnetic interaction but also in the weak interaction.
The coupling of the charged W± bosons connects fermions of different families. So quarks with
the flavor up, charm and top are able to transmute in a quark with the flavor down, strange or
bottom under emission of a W+ boson. The process is described by the CKM-matrix where the
square of the absolute value of the matrix elements is the transition probability.

1.2 The CKM-Matrix and Unitarity Triangle

The Cabibbo-Kobayashi-Maskawa-Matrix (CKM-Matrix) [7, 8] is a unitary matrix describing the
transformation between quark mass eigenstates and flavor eigenstates. In its most general form it
can be written as

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





This is the most general notation of the CKM-Matrix with three quark generations. Vxx are com-
plex numbers corresponding to 18 free real parameters. The unitarity requirement VCKMV †

CKM =
1 reduces 9 of the 18 free parameters. 5 are eliminated through 5 unobservable arbitrary complex
phases [9]. The remaining 4 parameters can be seen as 3 rotation angles and one complex phase
which is a implication for CP-violation.

A convenient parameterization of the CKM-matrix is the Wolfenstein parameterization [10]. The
CKM-matrix is expanded in a small parameter λ ≈ 0.22. The four free parameters are λ, A, ρ,

13
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and η and can be interpreted geometrically.

VCKM =





1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4)

Some of the Wolfenstein parameters (A = 0.82±0.04, λ = 0.223±0.002) are determined quite well
by measurements of some CKM matrix elements in different experiments [11, 12, 13]. The complex
phase is described by parameters η and ρ. The special case η = 0 denotes a real CKM-matrix and
no CP-violation.

The unitarity constraints of the CKM-matrix give a rise to the equation

VCKMV †
CKM = V †

CKMVCKM = 1

Subsequently follows the constraints V ∗
ikVij = δkj which can be applied on different rows and

columns. The most interesting combinations are the following equations

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 (1.1)

V ∗
tdVud + V ∗

tsVcs + V ∗
tbVcb = 0 (1.2)

These equations can be interpreted geometrically as a triangle in the complex plane. All sides of
the two unitarity triangles described by equations 1.1 and 1.2 are of the same order of magnitude.

Figure 1.1: The unitarity triangle in a standard form (left) and in Wolfenstein parameterization
rescaled by 1/VcdV

∗
cb (right).

The sides of the unitarity triangle (figure 1.1) can also be described by Wolfenstein parameters.
The triangle is rescaled by 1/VcdV

∗
cb so that the coordinates of the unitarity triangle result in (0, 0),

(1, 0) and (ρ̄, η̄), where (ρ̄ and η̄) can be written in Wolfenstein parameters:

ρ̄ =
(

1 − λ2
)

ρ

η̄ =
(

1 − λ2
)

η

The determination of all properties of the unitarity triangle can be done experimentally. It is one of
the most important issues in particle physics to be solved in recent years. Behind the properties of
the unitarity triangle are different factors describing the Standard Model so that the constraining
of the unitarity triangle is a mayor test of the Standard Model. Finding out experimentally that
the unitarity triangle is not closed would be a hint for new physics beyond the Standard Model.
The experimental status of the unitarity triangle is shown in figure 1.2.

1.3 Neutral B-Meson Mixing

Neutral mesons are able to pass into their own antiparticles. In the Standard Model it is connected
to the fact that the mass eigenstates and the eigenstates of weak interaction are not the same but
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Figure 1.2: Experimental status of constraints on the parameters describing the unitarity triangle
without actual CDF measurement of ∆ms [11].
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Figure 1.3: Lowest order Feynman diagrams for pq → p̄q̄ show the interactions during mixing
process.

the eigenstates of weak interaction can be written as a linear combination of the mass eigenstates.
Particle-antiparticle mixing is expected for all neutral mesons which are not their own antiparticle,
i.e. K0K̄0, D0D̄0, B0

dB̄0
d and B0

s B̄0
s . It is observed in all these cases except D̄0.

The particle-antiparticle transformation in first order is shown in two lowest order Feynman di-
agrams for pq → p̄q̄ transitions (figure 1.3). ∆mq can be calculated in first order from these
diagrams. The index q represent either a d or a s quark depend on having B0

s or B0
d mixing.

∆mq =
G2

F

6π2
ηBmBq

f2
Bq

m2
W S(xt)|V ∗

tbVtq|

The two matrix elements V ∗
tbVtq can be written in Wolfenstein parameters showing that a constraint

on ∆mq describes approximately a circle around (1,0) in the (ρ̄, η̄) plane.

V ∗
tbVtq = λ6A2[(1 − ρ̄)2 + η̄2] + O(λ10)

It is useful to determine the fraction of ∆ms and ∆md because the ratio of the prefactors can be
calculated more precisely than separately.

∆ms

∆md
= ξ

mBs

mB0

∣

∣

∣

∣

Vts

Vtd

∣

∣

∣

∣

2

After calculating ∆mq out of the Feynman diagram and connecting with CKM-matrix elements,
the time dependence of the mixing has to be introduced. Beginning with the flavor eigenstates of
B0

s -meson:

|B0
q 〉 =

1√
2

(|BH,q〉 + |BL,q〉)

|B̄0
q 〉 =

1√
2

(|BH,q〉 − |BL,q〉)

|B0
q 〉 and |B̄0

q 〉 are the flavor eigenstates and |BH,q〉 is the heavy and |BL,q〉 the light mass eigenstate.

To know what happens at the time t > 0, the time evolution of the eigenstates has to be done.
A non-relativistic quantum mechanical description is given by the time dependent Schrödinger
equation

H|B〉 = i
∂

∂t
|B〉.

H is given by:

H = M +
i

2
Γ =

(

M11 + i
2Γ11 M12 + i

2Γ12

M∗
12 + i

2Γ∗
12 M∗

22 + i
2Γ∗

22

)

.

Mxx stands for mass and Γxx for decay width.
The time evolution of the flavor eigenstates can be written as:
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|B0
q (t)〉 =

1√
2

(

e−i(m1− i
2Γ1)t|BL,q〉 + e−i(m2− i

2Γ2)t|BH,q〉
)

|B̄0
q (t)〉 =

1√
2

(

e−i(m1− i
2Γ1)t|BL,q〉 − e−i(m2− i

2Γ2)t|BH,q〉
)

The probability for an initially pure B0
q (B̄0

q ) to decay as B̄0
q (B0

q ) is

P = |〈B0
q |B̄0

q (t)〉|2 = |〈B̄0
q |B0

q (t)〉|2 =
1

4

(

e−Γ1t + e−Γ2t + 2e−Γ̄tcos(∆mt)
)

with Γ̄ = Γ1+Γ2

2 , ∆Γ = Γ2−Γ1 and ∆m = m2−m1. The two flavor eigenstates are superpositions
of the two mass eigenstates (short- and long-lived components) having different decay widths Γ1

and Γ2. In case of B0
s the experimental result is given by ∆Γ/Γ̄ = 0.31+0.11

−0.13 [24]. The ratio ∆Γ/Γ̄
is in case of B0

d significantly smaller and can be neglected in the B0
d-mixing analysis [14].

In case of Bs, the mixing probability is given by

P (t) =
1

2
e−Γst

(

cosh

(

∆Γst

2

)

− cos(∆mst)

)

(1.3)

At the beginning of this work, in January 2006, the Bs mixing frequency was not determined
in a direct time dependent measurement yet. There is a world limit ∆ms > 16.6 ps−1 at 95%
confidence level [35] resulting from combination of different measurements. This combination
includes contributions from ALEPH, DELPHI, OPAL, SLD and CDF. The included CDF result
from October 2005 based upon 355 pb−1 reports a limit of ∆ms > 8.6 ps−1 at 95% confidence
level [36]. The experimental status of the unitarity triangle based on these measurements is shown
in figure 1.2.

The intention of this work is the development of a framework for a time dependent measurement
of the Bs mixing frequency ∆ms. Using 1 fb−1 of data, an efficient signal selection [18, 20] and
an efficient b flavor tagger [21] promise a precise measurement of ∆ms with high significance.
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Chapter 2

The CDF Experiment

2.1 The Tevatron

The Tevatron is a proton-antiproton collider with the world’s highest center of mass energy until
LHC will start in 2007. It is located at the Fermi National Accelerator Laboratory (Fermilab)
in Batavia/Illinois. The main accelerator ring has a radius of 1 km and accelerates protons and
antiprotons in opposite direction up to 980 GeV beam energy. The collisions take place at two
interaction points where the experiments DØ and CDF are placed. The data used in this work
are collected with the CDF II detector.

2.1.1 The Accelerator Chain

The accelerator chain is divided in different preaccelerating stages and the final acceleration in
the main ring, the Tevatron. A schematic view can be seen in figure 2.1.

In the first step hydrogen gas is ionized to H− and accelerated to a kinetic energy of 750 keV inside
the Cockroft-Walton device. A linear accelerator (Linac) brings the hydrogen ions subsequently
up to a kinetic energy of 400 MeV. This happens in a distance of 150 m using oscillating RF
fields. At the end of Linac ions are grouped into bunches. At this point the hydrogen is focused
on a carbon foil which wipes off the electrons, that only bare protons are left. After accelerating
protons in a synchrotron, called Booster, to the kinetic energy of 8 GeV, the protons are injected
into the last stage of preacceleration, the Main Injector, a 3 km circumference synchrotron. It is
used for two important tasks, on the one hand for accelerating the protons up to 150 GeV and on
the other hand for creating antiprotons by directing 120 GeV protons on a nickel target. During
that procedure ∼20 antiprotons per 106 protons are produced. To separate these antiprotons from
the background consisting mainly of protons, pions and neutrons, a pulsed magnet and a lithium
lens are used to focus the beam in the Debuncher. These antiprotons have an average kinetic
energy of about 8 GeV with a wide spread around this value. So they have to be cooled down
with stochastic cooling to reduce this spread in the energy spectrum of the antiprotons in the
Accumulator Synchrotron which also stores the antiprotons.

If there are enough antiprotons available, protons and antiprotons are accelerated up to the energy
of 150 GeV in the main injector and are sent into the Tevatron in opposite directions. In the main
accelerator ring both beams are accelerated up to a kinetic energy of 0.98 TeV, so that the maximal
accomplishable center of mass energy is 1.96 TeV. After a period of collisions, called store, the
remaining antiprotons are stored and cooled down in the Recycler, to increase the number of
available antiprotons p̄ for the next store. This is a useful issue because ∼ 75% of the antiprotons
survive a store and the production rate is a limiting factor of the luminosity.

19
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Figure 2.1: The Fermilab accelerator complex

2.2 The CDF II Detector

The CDF II detector (Collider Detector at Fermilab II) is a multi-purpose collider detector [15].
It is designed to detect and measure properties of particles generated during pp̄-collisions.

It consists of a vertexing and tracking system, particle identification, a superconducting solenoid,
calorimeters and muons chambers. These units are arranged in layers cylindrically symmetric with
respect to the beamline as it can be seen in figure 2.2.

2.2.1 The Coordinate System

To simplify the description of the detector, a general right-handed coordinate system is introduced.
The point of origin of that coordinate system is lying in the center of the detector. Two descriptions
of the coordinate system are common. It can be described through Cartesian and polar coordinates.
The positive z direction is along the beam line in the proton direction, the y-axis points vertically
upward and the x-axis points radially outwards in the horizontal plane.
The polar coordinates are φ called azimuth angle, measured from the plane defined by the Tevatron
and is lying in the x-y-plane and θ called polar angle which is measured from positive z-axis, it is
lying in the x-z-plane.

η is another important quantity used instead of θ itself, it is defined by η = −ln(tan(θ/2)) and is
called Pseudorapidity.
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Figure 2.2: Elevation view of one half of the CDF II detector
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2.2.2 The Tracking System

The tracking system is in principle made up of two different trackers. They all have in common
that they can be used to measure momenta and displacement with respect to the primary vertex
of charged particles. The main difference between them is the mode of operation. One part of
the tracking system is the silicon tracker consisting of the Layer00 (L00), the Intermediate Silicon
Layer (ISL) and the Silicon Vertex Detector (SVX II). The other part is the Central Outer Tracker
(COT), a cylindrical drift chamber. The complete tracking system is inside the 1.4 T magnetic field
generated by the superconducting solenoid essential for measuring the momenta of the particles.
The tracking system together with the angle coverage is schematically shown in figure 2.3.
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Figure 2.3: Schematic view of the CDF II tracking system

The complete construction of the silicon tracking system of the detector is shown in figure 2.4.
The detector component closest to the beam line is L00 with a radial range from r=1.6 cm to
r=2.1 cm. It consists of one-sided silicon strip detectors and is mounted directly on the beam pipe.
Outside L00 follows SVX II with a radial range from r=2.45 to r=10.6 cm and an acceptance up to
|η| < 2.0. It consists of three barrels arranged along the z-axis. Each of them has 5 layers made up
of 12 angular segments. Every layer is made up of double-sided silicon strip detectors which allow a
three dimensional track reconstruction because they are rotated by a certain angle. Between SVX
II and COT another part of the silicon tracking system is located. It helps in linking the tracks
measured in both detectors. This part called ISL (Intermediate Silicon Layer) consists of two
components. The central layer is located at r=22 cm and covers |η| < 1.0. The forward/backward
layers are located at r=20 cm and at r=28 cm and cover the region 1.0 < η < 2.0.

The complete silicon tracking system device is especially useful to measure the impact parameter
d0 and the azimuthal angle φ very precisely. Together with the location at small radii high precise
measurements of the secondary vertices of long-lived particles are possible.

The second part of the the tracking system is the COT working in a completely different mode of
operation. It is a cylindrical drift chamber covering the radial range from r=33 cm up to r=143
cm and has an optimal acceptance in the range |η| < 1. The COT is made up of 96 wire layers
grouped into 8 superlayers. 4 of the 8 superlayers are axial i.e. the wires run in z-direction,
the other 4 superlayers are stereo layers with wires tilted by an angle of 2 degrees which allows
measuring the z-coordinate.
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Figure 2.4: Two views of the silicon system of CDF II. The sidewise view with different layers and
the η coverage of SVX (left) and the frontal view (right).

In a drift chamber the particles move through and ionize the gas inside. Electrons drift towards
the sense wires and induce an electric signal read out by an electronic circuit. Thanks to the
large radius, the momentum is measured precisely with the COT. The other important quantity
measured with the COT is the energy loss dE

dx used for particle identification.

2.2.3 The Time Of Flight Detector

The Time Of Flight Detector (TOF) is used to measure the time a particle needs to travel from the
interaction point to the TOF. It is located outside the COT at the radius r=140 cm and consists
of 216 scintillator bars.

To determine the time of flight T = Tmeas− t0 one needs besides Tmeas also the time of interaction
t0 which is obtained by matching a reconstructed COT track to a TOF signal. The use of these
measurements is the identification of the measured particles by determining the mass with respect
to the momentum and the time of flight.

2.2.4 The Calorimeters

Calorimeters are used to measure the kinetic energy of particles. The calorimeter system consists
of different calorimeters like central and end-plug electromagnetic and hadronic calorimeters and
the end-wall hadronic calorimeter. They cover the range between −3.6 < η < 3.6 and 0 < φ < 2π.
The assignment of calorimeters is absorbing the kinetic energy by interaction of crossing particles.
The calorimeters are used to measure energy of high energy electrons, photons and hadronic jets.
They are shown as red and blue areas in figure 2.5.



24 CHAPTER 2. THE CDF EXPERIMENT

Figure 2.5: The calorimeters of CDF II detector

2.2.5 The Muon System

The muon system is located outside the calorimetry system of the detector, shown in figure 2.6.
It consists of different drift chambers and scintillators. There are three drift chambers the central
muon detector, central muon upgrade and intermediated muon detector. In addition there is the
muon extension detector which is a combined drift chamber and scintillator counter. Most of the
particles detected in the muon system, i.e. they are not absorbed in the calorimeters are muons.
Some kaons and pions also survive calorimeters and can produce muon fake rates at the level of
few percent.

Figure 2.6: The muon system of CDF II detector

2.2.6 The Trigger System

Working with collider detectors cause the problem that a huge amount of collision occur every
second and it is not possible to store all of them. So the aim is to make a preselection and store
only interesting ones. At CDF it is done by a three level trigger system. These three trigger levels
decide consecutively whether a event is sent to the next trigger level and is finally stored or not.
This data flow is shown in figure 2.7. The first two trigger levels are implemented in hardware
and use different detector devices while the third trigger level is implemented in software running
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Figure 2.7: Data-flow and data acquisition
of the CDF II trigger system
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Figure 2.8: Detector elements
and the first two trigger levels

on a computer farm. Each trigger has his own criteria and combinations of criteria, called trigger
paths, for deciding. The trigger system reduces the amount of data by a factor of ∼ 20000.

One aim of dividing the trigger system in three different levels is avoiding or at least reducing
dead time by dividing the available data from the detector, shown in figure 2.8. The level one
trigger uses only data from calorimeter, muon chamber and muon scintillators and the central
tracking chamber. These informations are combined in various different ways and are the basis to
make a very fast decision. If the event is accepted by level one trigger, it is passed to the level
two trigger. There the informations are combined in the first stage with data from the CES strip
chambers and the silicon vertex detector. In the second stage data from the calorimeters, track
informations, muon data and SVX data is used to make the decision. At the level three system,
the different sections of data are combined to form a whole event the first time. It acts as a filter
and reduces the number of events that need to be written to disk and it is the first stage of the
event reconstruction.
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Chapter 3

Analysis Outline

3.1 Data Selection

3.1.1 Datasets

The data used for the this thesis have been taken by the CDF II detector between February 2002
and February 2006. The integrated luminosity of almost 1 fb−1 is shared across three datasets,
see table 3.1. The accumulation of the data was done by a trigger called Two Track Trigger.

xbhd0d 1 Feb 2002 - Aug 2004 341 pb−1

xbhd0h 1 Dec 2004 - Sep 2005 397 pb−1

xbhd0i 1 Oct 2005 - Feb 2006 253 pb−1

integrated total luminosity 991 pb−1

Table 3.1: Datasets collected between 2002 and 2006 with the Two Track Trigger and a total
integrated luminosity of almost 1 fb−1.

3.1.2 The Two Track Trigger

All analysis in this work are using data which is collected by using the so called Two Track Trigger
which is defined by a set of trigger paths (see 2.2.6). The trigger requirements of the Two Track
Trigger are given by:

• Level 1: at least two oppositely charged XFT 2 tracks with pt > 2 GeV/c, an aggregate
transversal momentum pt,1+pt,2 > 5.5 GeV and an angle between the tracks with ∆φ < 135◦

• Level 2: at least two SVT 3 tracks matching to XFT tracks (χ2
SV T < 25) with pt > 2 GeV/c

and an impact parameter in the range 100µm < |d0| < 1mm

• Level 3: the SVT tracks match to COT tracks and a confirmation of the pt and impact
parameter requirements; the angle between tracks 2◦ < ∆φ < 90◦ and the decay length in
the r-φ-plane projected on pt (Lxy) greater than 200µm

1CDF internal denotation of the data set
2Extremely Fast Tracker.
3Silicon Vertex Trigger, [17]
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3.1.3 Event reconstruction

The offline event reconstruction is done after collecting data with the two track trigger and storing
it. Tracks are reconstructed out of tracking informations from COT and SVX. The Bs-mesons
are reconstructed using the BottomMods [22] software package. It is highly modular and starts
with selecting appropriate tracks and ends with the reconstruction of higher level objects, like
reconstructed B mesons. At the beginning, tracks with a successful helix fit are refitted with either
a pion or kaon mass hypothesis taking multiple scattering and energy loss into account. They are
stored internally as stable particle candidates. The next step is the reconstruction of unstable
particles in the opposite order as the decays took place. In case of Bs → Dsπ and Ds → K∗K,
starting from stable particles π and K, the unstable particles Ds, K∗ and subsequently Bs are
reconstructed.

3.1.4 Decay Channels

The limiting factor of the Bs mixing measurement is the available statistics. So every available
event should be used for the analysis. Here only the exclusive hadronic decay channels of Bs

mesons are included because of the much better decay time resolution than in the semileptonic
ones. The decay channel Bs → Dsπ, Ds → φπ is the most important one with the largest
branching ratio and the most efficient reconstruction containing almost 40 % of the statistics. All
decay channels used in this work are enumerated in table 3.2.

Bs → Dsπ Ds → φπ
Ds → K∗K
Ds → πππ

Bs → Dsπππ Ds → φπ
Ds → K∗K
Ds → πππ

Table 3.2: The decay channels of Bs mesons used in this work.

3.1.5 Monte Carlo Samples

Obtaining samples of simulated Bs events, two different Monte Carlo generators are used [29]. In
case of BGEN [28] as Monte Carlo generator, each event consists exclusively of a b-hadron without
an opposite b quark or any fragmentation tracks. The PYTHIA generator [27] simulates both,
b-hadrons and the fragmentation tracks. For producing B mesons decays, the event generator
EvtGen program package [31, 30] is used. The detector simulation is done by cdfSim [32] where
the output has the same structure as real data. The following Two Track Trigger simulation is
done by TrigSim++ with the help of svtsim [33]. The reconstruction and selection is done in the
same way as the reconstruction and selection of real data.

These Monte Carlo samples are used for the parameterization of mass1 and decay time2 distribu-
tions of each single component contained in the samples of Bs candidates. The different decays
which have to be taken into account are listed in table 3.3. Besides the Monte Carlo samples listed
in the table, a signal Monte Carlo sample is used for the determination of the lifetime efficiency
curve3 and also for the parameterization of the invariant mass distribution of the signal.

1see section 4.3 Invariant Mass Spectrum
2see section 4.4.3 Lifetime Background Distributions
3see section 4.4.2 The Efficiency Curve
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Bs → Dsπ Bs → Ds3π
Ds → φπ Ds → K∗K Ds → 3π Ds → φπ Ds → K∗K Ds → 3π

ΛB → Λ+
c π− √ √

ΛB → Λ+
c a1

√ √

B0 → Dπ
√

B0 → D3π
√

Bs → DsK
√ √ √

Bs → DsKππ
√ √ √

Bs → DsX
√ √ √ √ √ √

Table 3.3: Overview of Monte Carlo samples that are taken into account for describing the mass
and decay time distribution of the six different exclusively reconstructed Bs decay modes.

3.1.6 Optimization of Signal Selection

Even after the event reconstruction with the BottomMods package, besides real Bs mesons also
background events are left in the dataset. To improve the signal selection, i.e. getting a cleaner
signal peak, a neural network selection is done. The commitment of NeuroBayes r [23] distin-
guishing between signal and background events gave rise to a large improvement of the signal
significance nS√

nS+nB
where nS is the number of signal events and nB the number of background

events inside the signal region defined in the invariant mass range between 5.32 and 5.42 GeV.
Due to the fact that the significance of the mixing signal is proportional to the signal significance,
this improvement has a direct influence to the final result.

S =
nS√

nS + nB

√

ǫD2

2
· e−σ2

t ∆m2
s/2 (3.1)

where S is the size of the expected amplitude of the oscillation signal in terms of its standard
deviations, ǫD2 is the tagging power, introduced in 3.3 and σt is the decay time resolution of the
Bs meson.
More details are described in the works of Andreas Gessler [20], Philipp Mack [19] and Christian
Dörr [18]. They are the ones who optimize the signal selection for the six exclusively reconstructed
Bs decay channels.

3.2 The Bs Decay Time Measurement

The observable decay time is calculated from known quantities resulting from the candidate re-
construction. The time needed to fly from the primary vertex to the decay vertex is the decay
time of a particle. Taking into account the geometrical relations, shown in figure 3.1, the proper
decay time of the Bs meson in its rest frame is

t = Lxy
mB

c · pT (B)

where Lxy is the projection of the decay length in the x-y plane, mB is the Bs hadron mass
for which 5.3675 GeV [24] is taken, c denotes the velocity of light and pt the projection of the
transverse momentum in the x-y plane.

The uncertainty of the decay time can be calculated with the help of error propagation. The
uncertainty of t has two contributions, namely the decay length resolution and the momentum
resolution.

σt =

√

(

mB

cpt
σLxy

)2

+

(

mBLxy

cp2
t

σpt

)2

=

√

(

mB

cpt
σLxy

)2

+

(

t

pt
σpt

)2
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Figure 3.1: Geometrical relations of the Bs decay.

In case of exclusively reconstructed hadronic decays the momentum resolution σpt
is negligible

compared to the Lxy resolution σpxy
. Then the upper expression can be reduced to

σt =
σLxy

mB

cpt

In case of semileptonic decays the resolution of σpt
is dominating because of the missing neutrino

momentum and cannot be neglected.

3.3 Flavor Tagging

For the analysis of Bs oscillations it is essential to know whether the Bs meson has mixed or not.
This has be to found out by comparing the flavor of the Bs meson at the production time and
at the decay time. The flavor of the Bs meson at the decay time is identified by the Bs decay
products. The knowledge about the flavor of the Bs meson at the production time is obtained
from the flavor tagging algorithm.

fragfrag

B0
s

Ds

b

vertex
decay K

b
lepton jet

K
π

primary vertex
B hadron

Figure 3.2: Illustration of a bb̄ production at the primary vertex. The b̄ and a s quark produce
a Bs decaying into a Ds and a π at the same side. At the opposite side, the b quark produces
another B hadron decaying semileptonically.

The tagging algorithms can be classified into two kinds of taggers, the same side (SST) and the
opposite side tagger (OST). The idea of the SST is the identification of the flavor of the studied Bs

meson using information from the fragmentation of the b quark to Bs hadron. Another particle
besides the Bs meson is created at the same side because forming a B̄s meson from a b quark,
a s̄ quark is needed, too. It is created by pulling a ss̄ pair from vacuum. The s quark ends up
in a kaon with high probability and the charge of the kaon contains information about the flavor
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of the Bs meson. The OST tries to determine the flavor of the opposite side b quark. In figure
3.2, the same side is on the right of the primary vertex and in this case the side of the b̄. The
opposite side is on the left of the primary vertex and the side of the b. Both types of taggers can
be used basically always because in most cases an opposite b quark exists. Single b quarks can
be produced by electroweak processes with much lower cross sections that it can be neglected here.

The major difficulty in tagging is that the decisions are not unambiguous in most cases leading
to wrong or no tagging decisions. The quality of the tagger can be expressed by two quantities,
the dilution D and efficiency ǫ. The efficiency ǫ specifies the number of cases whether a tagging
decision is reached or not and it is defined by

ǫ =
NRS + NWS

NRS + NWS + NNT

where NNT is the number of events where the tagger gives no decision. NRS is the number of
right and NWS is the number of wrong decisions.
The dilution specifies the number of correct decisions with respect to the number of wrong deci-
sions. It is defined by

D =
NRS − NWS

NRS + NWS

These two quantities define the tagging power T as

T = ǫD2

It defines the effective statistics of the analysis. The product of the real number of signal events
with T is equivalent for the analysis to the number of signal events with a perfect tagger. It has
influence to the significance, see equation 3.1.

The tagging algorithm used for this analysis is a combined tagger (SST and OST) developed by
Andreas Schmidt [21]. The available flavor informations are combined to one single probability
variable by a neural network algorithm to consider the correlations between the tagging information
sources.

3.4 The Asymmetry Term

The time dependent expression describing the oscillation of a Bs meson into a B̄s and vice versa
has to be determined out of equation 1.3. In this analysis the approximation ∆Γ = 0 is used and
gives rise to P (t) = 1

2e−Γst (1 − cos(∆mst)) for the Bs mixing probability. Experimental result of
∆Γ is consistent with 0 and simplifies thus the expression. The number of mesons having mixed
or not are given by the following expressions

Nunmixed(t) =
N0

2
e−Γst (1 + cos(∆mst))

Nmixed(t) =
N0

2
e−Γst (1 − cos(∆mst))

where Γs is the decay width and N0 the number of Bs mesons produced at t = 0. The asymmetry
term I which is the expression that can be measured, expresses the time dependent difference of
the number of mixed or unmixed events.

I(t) =
Nunmixed(t) − Nmixed(t)

Nunmixed(t) + Nmixed(t)
= cos(∆mst) (3.2)
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Chapter 4

The Fitter Framework

The estimate of the Bs mixing frequency ∆ms requires a sophisticated combination of relevant
event information. The provisioning of data is not the main topic in this thesis but is mentioned
in chapter 3. The extraction of ∆ms is done by an unbinned maximum likelihood fit inside the
fitter framework introduced in this chapter. A general introduction in the maximum likelihood
method is given in appendix C.2.

4.1 Fitting Procedure

The determination of the mixing frequency bases upon the time dependent asymmetry

I(t) =
Nunmixed(t) − Nmixed(t)

Nunmixed(t) + Nmixed(t)
= cos(∆mst)

where the numbers of particles having mixed or not at a certain time are taken into account.
A binned fit is not feasible in case of limited statistics because of the division of data into bins
on the time axis leads to an additional smearing. The large oscillation frequency requires many
bins giving rise to statistical bin-by-bin fluctuations. The solution and practical implementation
is the introduction of the probability density function of the proper decay time and the individual
information for each meson having mixed (ξ = −1) or not (ξ = 1). The expression for this pdf
without normalization is given by

PS(t, ξ) =

(

1 + ξD cos(∆mst)

1 + |ξ|
1

τ
e

t
τ

)

⊗ G(t − t′, σt) · ǫ(t)

where the mixing and lifetime term are convoluted by a Gaussian to take the finite resolution of
the decay time measurement into account. The limited acceptance of the detector is considered by
the multiplication with the efficiency function ǫ(t). This means that besides the mixing description
also the decay time distribution has to be understood and parameterized. The description of the
lifetime space has to distinguish between signal and background. The background fraction is a
defined as fB = nB

nS+nB
where nB is the number of background and nS the number signal events.

It is the same parameter in mass and lifetime space of the Bs meson sample and can be determined
much better in mass space. So the description and understanding of the invariant mass spectrum
is required.

The likelihood function describing mass and lifetime space has about 50 to 60 parameters, depend-
ing on the considered channel. So in case of limited statistics there is no chance to estimate all
these parameters simultaneously and most of them have to be fixed. That is why several binned
maximum likelihood fits are done before to estimate them either to fix them or at least to chose
good starting points.
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Figure 4.1 shows an overview of the described fit procedure. The left column contains the fits in
mass space and the right one the fits in lifetime space. From top to bottom of the flow chart,
the chronological order of the fits is mentioned. The order is considerable because some fits use
information of previous fits. All information extracted from the binned fits flow together in the
unbinned fit where the lifetime τ or the mixing frequency ∆ms of Bs mesons can be determined.

Figure 4.1: Overview of the fit procedure, flowchart which shows the chronological order of the
fits in mass space on the left side and the fits in lifetime space on the right.
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4.2 Software Architecture

The fitter framework is designed in a way that several decay channels can be used simultaneously
for the mixing analysis. It is flexible for adding decay modes easily and be able to change things
relating to one or more modes. The possibility consists to decide which fit parameters should be
shared by only one or more modes without too much effort.

A general overview over the software architecture of the fitter framework is shown in figure 4.2.
Each decay mode is represented inside the framework by its own Mode class containing all infor-

Figure 4.2: Overview of the software architecture of the whole fitting framework.

mation like the data and the method to calculate the likelihood. Also all the binned fits necessary
for reducing the effective number of parameters in the unbinned fit are done inside the mode
classes. The functions taken for the calculation of the likelihood are similar for all modes and are
therefore provided centrally in some namespaces. AbsMode is the base class of all the mode classes
providing a common interface for the Fitter which is the core of the framework. Inside the Fitter
class, the unbinned fit takes place after including the relevant modes. It gets the information from
all involved mode classes and minimizes the negative log-likelihood function bearing in mind that
the parameters are identified by their names, further information about the Fitter can be found in
section 4.5.3. The minimization algorithm from the TMinuit package from “ROOT” [25] is used.

4.3 The Invariant Mass Spectrum

The invariant mass spectrum of Bs mesons (an example is shown in 4.3) contains a sample of
Bs candidates of a special decay mode fulfilling all reconstruction requirements and passing the
preselection cuts. Only some of the candidates are real Bs mesons, the rest is background. The
reconstructed and real Bs mesons form the signal peak described by a Gaussian distribution
with the mean at the position of the Bs mass (≈ 5.36GeV ). The reason why the background
distributions besides the signal have to be considered is the presence of background in the signal
region (5.32-5.42 GeV). Understanding the background distribution is the only way to predict the
fraction of signal to background or the background fraction fB = nB

nS+nB
where nS is the number

of signal events and nB the number of background events in the signal region.
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Three different kinds of background are contained in the sample of Bs meson candidates. The
reasons why the reconstructed tracks end up in the invariant mass spectrum of Bs mesons are
essentially different. The first type of background events are the partially reconstructed Bs mesons
where one or more particles are missed in the reconstruction. They are responsible for a rise
in the lower invariant mass spectrum parameterized by a straight line plus a Gaussian. The
combinatorial background results from random combinations of tracks passing the reconstruction
and the selection cuts. It is spread over the complete invariant mass spectrum and is described by
an exponential function plus a constant. The third type of background events is the reconstruction
of the exclusive final state of a different species of b-hadrons where a wrong particle hypothesis is
assigned to one or more particles in the decay chain. Examples of such particles reconstructed as
Bs mesons are Λb or B0 mesons. These backgrounds are mostly described by a Gaussian or an
asymmetric function like an exponential convoluted with a Gaussian.
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Figure 4.3: Invariant mass spectrum of Bs of the decay channel Bs → Dsπ, Ds → φπ with a cut
on the neural network output at 0.76.

4.3.1 Fitting the Invariant Mass Spectrum

The invariant mass spectrum of the Bs mesons is fitted twice during the fitting procedure. Once the
full spectrum is fitted to determine background shapes and fractions of the different components of
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the spectrum in the complete relevant mass range. The events in the lower and in the upper mass
region and of course the events in the signal region are taken into account. Shapes of components
reaching from the lower region to the upper region or at least to the signal region are determined.
The second fit is done in a narrower range which has to be the same range as the unbinned fit
later because the calculation of the background fraction fB = nB

nS+nB
is done there.

The fit function of the invariant mass distribution is a sum of functions describing several com-
ponents. It is very important to take care of the normalization of the likelihood function if using
the maximum likelihood method. Every single component of the complete likelihood function is
normalized to a special value, usually 1. To derive the complete likelihood function, the weighted
sum of always two of the components is calculated where the weights are the prior probabilities
for each single component. They are always summed up pairwisely that a binary tree structure
emerges. Figure 4.4 shows an example of the tree structure of the mass function. It is the most
general one and is used in the channels Bs → Ds(3)π, Ds → K∗K.

Figure 4.4: Binary tree structure of the function describing the invariant mass spectrum of the
channels Bs → Ds(3)π, Ds → 3π. The fractions are weights of the summands and have values
between 0 and 1 to guaranty the normalization. The analytic expressions of the functions Pxx can
be found in appendix A.

The analytic description of the invariant mass spectrum of the Bs → Dsπ, Ds → φπ channel can
be written as:

P (m) =N · ((1 − fB) · ((1 − fcab) · Pcabibbo(m) + fcab · Psignal(m))

+ fB · ((1 − fcomb) · ((1 − fgaus) · Plin(m) + fgaus · Pgaus(m))

+ fcomb · Pcomb)

It is a typical example although some backgrounds like Λb or B0 are not included because they play
no role in this channel because of small branching ratios. For reasons of simplicity this example is
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chosen. The analytical description of the function shown in figure 4.4 is a much longer expression
abandoned here. Each function Pxx is a normalized function describing one single background or
signal component in mass space. Which function is used for different components can be looked
up in table 4.2. The components for different channels are shown in table 4.1.

Bs → Dsπ, Bs → Dsπππ
Ds → φπ Ds → K∗K Ds → πππ

combinatorial background
√ √ √

Λb
√ √

B0 √ √

partially reconstructed
√ √

partially reconstructed (lin.)
√

partially rec. containing D∗
s

√

partially rec. containing ρ
√

signal
√ √ √

cabibbo suppressed Bs → DsK
√ √ √

Table 4.1: Overview of the components contained in the different channels

mass function lifetime function

combinatorial background Pcomb(m) Pal(t)
Λb Plt(m) Pl(t)
B0 Plt(m) Pl(t)

partially reconstructed b · PG(m) + (1 − b) · Plin(m)
partially reconstructed (lin) Plin(m)
partially rec. containing D∗

s PG(m)
partially rec. containing ρ Plt(m)

signal PG(m) PS(t)
Cabibbo suppressed Plt(m)

Table 4.2: The different functions parameterizing the mass and lifetime distributions are itemized
in this table. The analytic expressions of these functions and their normalizations can be looked
up in appendix A.

Some of these components are determined with the help of an adequate sample of simulated events
because mass distributions of different components are available separately in case of Monte Carlo
samples. Fitting the different distributions separately and fixing the parameters helps to reduce
the number of free parameters in the complete mass fit.

4.4 Lifetime Space

The lifetime distribution of the sample of Bs meson candidates contains in combination with the
tagger the mixing information. So the understanding and modeling of the lifetime distribution
is of fundamental meaning. Therefore knowledge about the lifetime distributions of signal and
background is necessary. For lifetime distributions of different background components, Monte
Carlo samples and the lifetime distribution of the upper side band are taken. The probability
density function describing the signal distribution is a smeared exponential multiplied with an
efficiency function. The lifetime of the Bs meson is a parameter in the probability density function
and can be estimated by fitting the distribution if background and efficiency is fixed before. In
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case of the mixing analysis, the probability density function is extended by the mixing terms and
the rest of the model stays the same.

4.4.1 Probability Density Function

Lifetime

For the measured decay time distribution of a particle, we would expect an exponential distribution
Pl(t) = 1

τ e−
t
τ . But we have to consider some effects following from the finite precision of the

measurement and the limited acceptance of the detector. The finite precision causes a different
probability density distribution of the lifetime described by an exponential convoluted with a
Gaussian Ps(t, σt,i) = 1

τ e−
t
τ ⊗G(t−t′, σt,i). The width of the Gaussian is the decay time resolution

σt. The acceptance of the CDF detector is constituted in the trigger preselection and analysis
cuts and depends on the decay time of the observed Bs meson.
Altogether the distribution of the measured decay time including all occurred effects is modeled
by the following function

PS(t) =
1

τ
e−

t
τ ⊗ G(t − t′, σt,i) · ǫ(t) (4.1)

where ǫ(t) is the acceptance or efficiency function of the detector.
The calculated convolution integral and the normalization of the function 4.1 can be found in A.2.

Mixing

The probability density function describing the time dependent evolution of the B − B̄ oscillation
signal consists of several components. The asymmetry term 3.2 including the cos(∆mt) modulation
of the mixing signal and the tagging decision ξ. The dilution D has also to be take into account to
give consideration to wrong tagger decisions. It is given for each tagged event and expresses the
certainty of the tagging decision. Also the mixing term is smeared by a Gaussian because of the
finite resolution of the decay time measurement. Another component in the probability density
function is the lifetime term describing the decay of Bs mesons.

PS(t, ξ) =
1

NS(t, ξ, σt)

(

1 + ξD cos(∆mt)

1 + |ξ|
1

τ
e

t
τ

)

⊗ G(t − t′, σt) · ǫ(t) (4.2)

The parameterization of the lifetime distribution of the background is a phenomenological descrip-
tion Pbg(t) multiplied by a term taking possible background flavor asymmetries into account. It
is globally described by the dilution-like fit parameter Dbg. The probability density function is
given by

P̃B(t, ξ) =
1 + ξ · Dbg

1 + |ξ| · PB(t) (4.3)

where ξ is the already known tagging decision and Dbg the background dilution.

4.4.2 The Efficiency Curve

The introduction of the efficiency is required due to the limited acceptance of the detector de-
pending on proper decay time. It can be determined by the ratio of the measured decay time
distribution after trigger and cuts and the expected distribution with perfect acceptance.

ǫ(t) =
g(t) after trigger and cuts
∑

i
1
τ e−

t
τ ⊗ G(t − t′, σt,i)

(4.4)



40 CHAPTER 4. THE FITTER FRAMEWORK

The decay time distribution g(t) is obtained by applying the same signal selection on a sample of
simulated signal events where the trigger bias is taken into account. For calculating the denom-
inator of equation 4.4, a sum of the expected distribution over the same simulated signal events
with their individual resolutions σt,i is calculated. The resolutions σt,i are the uncertainties of the
measured decay time in the sample of simulated events.
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Figure 4.5: Example of an efficiency distribution from the channel Bs → Dsπ, Ds → φπ and its
parameterization ǫ(t) together with the three components the function consisting of.

The efficiency distribution (figure 4.5) is described phenomenologically by the function given by

ǫ(t) =

2
∑

j=0

Nǫ,j · e
− t

τj (−βj + t)2 · θ(t − βj). (4.5)

An advantage of this parameterization is the ability of analytical integration of equation 4.1
and 4.2, see A.2. It is necessary for a fast normalization done very often during the fit. The
construction of ǫ(t) as a sum of three similar functions makes the parameterization very flexible
and the analytical integratability is given. But it is also responsible for high correlations between
some fit parameters. So it is very hard for the fit algorithm to find a reasonable minimum.
Adequate starting values are thus necessary for a good fit result. To find such good starting
values, the fit is repeated several times with random starting values and the best fit is taken at
the end. These values are not completely random and are constrained in a reasonable interval and
the following starting values can not differ arbitrarily from the current value estimated by the fit
before.
The method taken for the fit here, is the χ2 fit instead of the maximum likelihood method. In
case of binned maximum likelihood method C.4 implemented in the fit algorithm of ROOT [25],
the entries of bins are expected to be Poisson distributed like the bin contents of a frequency
distribution. But the efficiency distribution is calculated by a quotient and the bin contents can
not be assumed as Poisson distributed.
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4.4.3 Lifetime Background Distributions

Before fitting the complete lifetime distribution of the Bs meson candidates after reconstruc-
tion and preselection, the different background lifetime components have to be determined. The
weighted sum of all background lifetime components together with the signal parameterization is
the description of the complete lifetime distribution.

The lifetime distributions of B0 (figure 4.6), Λb and other physical background shapes are param-
eterized by the following function

Pl(t) = Nl · e−
t
τ ⊗ G(t, µ, σ)

=
1

2τ
· Nl · Erfc

[

σ
τ − t−µ

σ√
2

]

· e 1
2

σ2

τ2 − t−µ
τ (4.6)

It is a phenomenological description for asymmetric distributions where the maximum of the
function can be moved by varying µ. The parameters have no special meaning and τ for example
is not the lifetime of the related particle. The normalization factor Nl is calculated in A.2.
normalization.
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Figure 4.6: Simulated B0 lifetime distribution of channel Bs → Dsπ, Ds → φπ

The lifetime distribution of the combinatorial background (figure 4.7) is parameterized by the
function

Pal(t) =

2
∑

j=1

Aj ·
1

2τj
e

µj−t+
σ2

j
2τj

τj Erfc

[

σ2
j − (−µj + t)τj√

2σjτj

]

. (4.7)

The composition of this function enables the analytical integration (see A.2) but the correlations
of the parameters require the “random fit” used also for the efficiency fit, see section 4.4.2.

All the parameters describing the lifetime distribution of the background are kept fix in the
unbinned lifetime fit in which the signal parameters are estimated.

4.5 The Unbinned Fit

For measuring the Bs mixing frequency, individual information ~x = (m, t, σt, ξ,D) of each event
are used where m is the reconstructed mass of the Bs meson, t is the measured decay time and σt
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Figure 4.7: Lifetime distribution of the upper side band of channel Bs → Dsπ, Ds → φπ

is the resolution of t. The tagging decision ξ and tagging dilution D is the result of the tagging
algorithm, see section 3.3. It is a discrete variable with the values ξ = {−1, 0, 1} for {mixed, no
decision, not mixed} and is given for each event. An unbinned fit is the only way to consider the
individual information of each event.
The unbinned fit can be executed in mass, lifetime space or as a two dimensional fit in mass and
lifetime space. The fraction of background over signal plus background fB is a common parameter
in both spaces. This parameter can only be estimated in mass space because of the similar and
confusable shape of signal and background distribution in lifetime space.

4.5.1 The Likelihood

The likelihood L [26] for given events ~xi is

L ≡
N
∏

i=1

P (~xi) =

N
∏

i=1

P (~xi, S ∪ B)

=

N
∏

i=1

P (~xi, S) + P (~xi, B)

=

N
∏

i=1

P (~xi|S) · P (S) + P (~xi|B) · P (B)

where S denotes signal and B background. P (~x) and P (~x, ...) are probability density distributions
and are therefore normalized to one.

∫

P (~x)d~x =

∫

P (~x|S)d~x =

∫

P (~x|B)d~x = 1

P (S) and P (B) are a priori probabilities that the event ~x is signal or background, so P (S)+P (B) =
1.

fB := P (B) and P (S) = 1 − fB

The factor fB is the already known background fraction fB = nB

nS+nB
.
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In case of an unbinned mass fit, the probability density function P (~x, S) and P (~x,B) are only
mass dependent and the likelihood is given by

P (mi) = (1 − fB) · PS(mi) + fB · PB(mi)

The exact composition of PS(m) and PB(m) is dependent which channel is taken into account
and can be checked up in section 4.3.1.

For an unbinned lifetime fit, the probability density function in lifetime space is constructed
analogous to the probability density function for mass space.

P (ti) = (1 − fB) · PS(ti, σt,i) + fB · PB(ti, σt,i)

PS(t, σt) is given by the equation

PS(t, σt) =
1

τ
e−

t
τ ⊗ G(t − t′, σt) · ǫ(t)

which is already introduced in section 3.2 and details can be seen in A.2. PB(t) is the description
of the lifetime distribution of the background (see section 4.4.3) which is a combination of different
background components. Depending on the channel, besides the combinatorial background Pal(t)
also physical backgrounds have been taken into account. An example for PB(t) is given by equation
4.8 and the background templates which were used can be extracted out of table 4.1. The partially
reconstructed background component is not considered in the description of the lifetime space
because most of the partially reconstructed component is truncated in the narrow mass range.

PB(ti) = (1 − fB0
− fΛ) · Pal(ti) + fB0

· PB0
(ti) + fΛ · PΛ(ti) (4.8)

In case of the mixing analysis, the expressions for PS(t, σt) and PB(t) have to be exchanged with
the expressions including the mixing terms. So they are given by

PS(t, σt, ξ) =
1

NS(t, ξ, σt)

(

1 + ξD cos(∆mt)

1 + |ξ|
1

τ
e

t
τ

)

⊗ G(t − t′, σt) · ǫ(t) (4.9)

PB(t, ξ) =
1 + ξ · Dbg

1 + |ξ| · Pbg(t) (4.10)

as they are already introduced in section 4.4.1.

Usually the unbinned maximum likelihood fit is done simultaneously in mass and lifetime space
because of the additional information introduced by the mass terms. The value of the probabil-
ity density function in mass space multiplied with the lifetime term contains information of the
probability whether the event is signal or background. The likelihood in this case is given by

L =

N
∏

i=1

P (~xi|S) · P (S) + P (~xi|B) · P (B)

=

N
∏

i=1

(1 − fB) · PS(mi) · PS(ti, σt,i, ξ) + fB · PB(mi) · PB(ti, ξ) (4.11)

where PS(t, σt, ξ) and PB(t, ξ) can contain the lifetime expression with or without the mixing
term.

The projection of the likelihood in mass and lifetime space respectively is shown in figure 4.8 and
4.9. The figures show the projections of the likelihood function in mass and lifetime space together
with data of the Bs → Dsπ, Ds → φπ decay channel.
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Figure 4.8: Projection of the likelihood function in mass space fitted to data of the Bs → Dsπ,
Ds → φπ decay channel
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Figure 4.9: Projection of the likelihood in the lifetime space with logarithmic scale. The measured
lifetime of the Bs mesons is 457.21 ± 13.28µm.

4.5.2 Combined Fit

The unbinned fit described in this chapter can be done for each regarded exclusive reconstructed
decay mode. The mass spectra and the lifetime distributions are slightly different for each channel
but some parameters like ∆m or the lifetime τ of the Bs meson are in common in all channels. So
each channel needs to be considered separately and individual fit functions have to be taken in to
account. All binned fits have to be done for each channel and the results have to be provided to the
unbinned fit. To increase statistics and use all available information of the channels, the unbinned
fit has to take into account the data of all channels. It is done by multiplying the likelihoods of
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all channels, see equation 4.12.

L (~x,~a,∆m, τ) =

N
∏

j

Lj (~x,~a,m,∆m, τ,A) (4.12)

M denotes the number of channels. Lj is the likelihood of one channel, L the likelihood of all
channels. ~x are the measured values and ~a are the parameters of channel j. ∆m, τ and m are the
parameters all modes have in common.

4.5.3 Fitter

The realization of such a combined fit requires a sophisticated handling of the fit parameters. Each
mode has its own parameter list with individual and common parameters. By adding up the lists,
the overlaps are taken into account automatically without spending much effort.

The class called “Fitter” is the core of the fitter framework and does the minimization of the
negative log-likelihood function of the unbinned fit.
For doing the unbinned fit, an object of the type “Fitter” needs the information which kind
of fit (mass, lifetime, mass-lifetime,...) has to be done and which modes have to be included.
Inside the Fitter basically two global parameter lists plus one parameter list per channel are
existing. One global list includes only the parameters playing a role in the current kind of fit
(mass parameters in mass fit, lifetime parameters in lifetime fit,...). This list is provided to the
minimizing algorithm and all parameters in this list which are not fixed are varied to minimize
the negative log-likelihood function. The parameters in this list are identified by their index. The
parameter list of each included channel contains the parameters in the sequence needed by the
likelihood. They are identified by their name but they do not have the proper values given by
the minimizing algorithm. The other global list includes all parameters of all modes relating the
indices and names of the parameters. The minimization package used in the Fitter is the TMinuit
class of the ROOT package [25]. It is a well tested algorithm and was originally implemented in
Fortran and is converted to a C++ class. It minimizes a given function by varying the parameters
which are members of the TMinuit parameter list with respect to the given parameter limits.
The values of the parameters in the lists of the likelihood functions have to be updated on the
actual values out of the TMinuit parameter list. In the Fitter it is done by the alignment of
the likelihood parameter lists with the TMinuit parameter list with the help of the global list
containing all parameters.

4.6 Verification of the Fitter Framework

The complexity of the complete fitter framework necessitates a verification whether it is working
properly. An implicit phenomenological test where the well known input is compared to the
fit results. This is done by a Toy Monte Carlo study generating distributions which are fitted
afterwards. The parameters of the input distributions are known and can be compared to the
results estimated by the fits.

4.6.1 Verification

Such Toy Monte Carlo experiments are usually done several times (order of magnitude 1000)
obtaining a statistical significant sample of each estimated parameter. Statistical fluctuations cause
slightly different values for the estimated parameters but the pulls of them should be normally
distributed around 0 with σ = 1. So each bias caused by the fitter framework should be observed
by a look on the pulls. For two important fit parameters (mass and lifetime of Bs mesons) the
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pulls are calculated for each toy experiment. Figure 4.10 and 4.11 show the distributions together
with a fitted Gaussian.

The verification of the framework is done in the Bs → Dsπ, Ds → φπ decay mode, i.e. the
components combinatorial background, partially reconstructed background, cabibbo suppressed
and signal are taken into account in the simulation. About 20000 events are generated, it is
conform with the number of events in data of this channel.
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Figure 4.10: Pulls of cτ of approximately 1300 Toy Monte Carlo experiments.
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Figure 4.11: Distribution of pulls of the mass m parameterized by a Gaussian.

Parameter Mean RMS
cτ −0.024 ± 0.029 1.026 ± 0.022
m −0.067 ± 0.029 1.002 ± 0.025

Table 4.3: Pulls of fit parameters

The pulls are well consistent with unit Gaussian in both cases, see fit parameters in table 4.3.



Chapter 5

Determination of ∆ms

5.1 The Amplitude Scan

The measurement of the mixing frequency ∆ms can be done by performing the unbinned maximum
likelihood fit on a data sample of Bs candidates as it is described in chapter 4. Therefore the
probability density function 4.9 has to be taken for the description of the signal lifetime space and
∆ms is a free fit parameter. In case of low statistics, i.e. a small number of available Bs events,
the unbinned fit will not converge in general, and a derivation of limits for ∆ms will be difficult.
Instead of a direct determination of ∆ms by the fit, an alternative approach, called amplitude scan,
can be chosen. It is based on the idea of performing a Fourier transformation of the oscillation
signal [37]. The term describing the oscillation signal has to be amended by the amplitude A.

1 + ξAD cos(∆mt)

1 + |ξ| (5.1)

The amplitude A is a free parameter in the unbinned maximum likelihood fit when ∆ms is fixed.
Such fits are repeated for different values of ∆ms so that the whole spectrum is be scanned. The
expected value of the amplitude A for the correct assumption of ∆ms is compatible with 1 and
compatible with 0 for all other values of ∆ms.

The analysis provides an easy way to evaluate the sensitivity and a lower limit for ∆ms. The
sensitivity of the analysis is defined as the value of the frequency for which a measured amplitude
A = 0 would imply the exclusion of A = 1 at the desired confidence level. The degree of exclusion
of a given frequency in the scan, for which the measured amplitude and associated uncertainty are
A and σA, is given by [38]

1√
2πσA

∫ 1

−∞
e
− (x−A)2

2σ2
A dx

The exclusion and sensitivity conditions are given as follows for a confidence level of 95%:

A + 1.645 · σA < 1 95% C.L. exclusion condition

1.645 · σA = 1 95% C.L. sensitivity condition

The exclusion limit is defined as the largest frequency value below which all frequencies are ex-
cluded.

47
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5.2 Result

The amplitude scan shown in figure 5.1 is a tentative result of the mixing analysis done by this
fitter framework. Data of the most important decay channel (Bs → Dsπ, Ds → φπ) is used
because it has the best signal significance and it provides about 40% of the statistics compared
to the other five modes. The amplitude scan is also one of the first applications of a preliminary
version of the new combined flavor tagging algorithm [21].
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Figure 5.1: Amplitude scan

The significance curve is the dotted line and leads to a sensitivity of 24.8 ps−1. In a region of
∆ms around 18 ps−1, the amplitude A is consistent with 1 and more than 3 σ away from 0 which
gives evidence for a mixing signal. The projection of the log-likelihood ratio (see figure 5.2) has
its global minimum at ∆ms = 18.32 ps−1. So the value of ∆ms obtained form this analysis is

∆ms = 18.32 ± 0.13 (stat.) ps−1

which can be interpreted as a tentative result.
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Chapter 6

Conclusion and Outlook

The development of the fitter framework is an important task to benefit from previous work in
our group. An improvement of the signal selection was performed for six exclusively reconstructed
Bs decay modes with sophisticated neural network technology (NeuroBayesr[23]). Also the com-
bination of same side and opposite side taggers with the same technology yields a doubling of the
tagging power. These improvements and the now available data corresponding to the integrated
luminosity of 1 fb−1 allow the direct time dependent measurement of the mixing frequency ∆ms of
the Bs−B̄s oscillations. The frequency can be extracted with an unbinned maximum likelihood fit
in mass, lifetime and tagging space of the sample of Bs candidates. Therefore the invariant mass
spectrum and the lifetime distribution have to be understood and parameterized. The probability
density function describing the mass and lifetime distribution of one decay channel has more than
50 parameters which have to be determined. In case of limited statistics, it is not possible to
determine them simultaneously. So several fits in mass and lifetime space have to be executed
to estimate most of the parameters and fix them in the final unbinned fit. To benefit from all
available Bs candidates, a combined fit including different decay modes is done and leads to higher
significance of the measurement.

Up to now, no result with an optimally working tagger and with the statistics of all six exclusive
reconstructed decay modes is prepared. Up to this write-up, an amplitude scan with only one
mode is available as it is shown in section 5.2. Evidence for a mixing signal at 18.32 ± 0.13 ps−1

is given with a significance of more than 3σ and the sensitivity of the measurement is 24.8 ps−1.

Very recently, the CDF collaboration published the direct measurement of ∆ms [34]. The re-
sult under oscillation hypothesis is given by ∆ms = 17.77 ± 0.10 (stat) ± 0.07 (syst) ps−1. The
measurement is already very precise and counts, with a signal significance of more than 5σ, also
as safe and observed. The probability of a background fluctuation producing the signal is still
merely 8 · 10−8. Together with ∆md = (0.507 ± 0.005) ps−1, m(B0) = 5.2794 ± 0.0005 GeV ,

m(Bs) = 5.3696 ± 0.0024 GeV and ξ = 1.21+0.047
−0.035, the absolute ratio

∣

∣

∣

Vtd

Vts

∣

∣

∣ is given by
∣

∣

∣

Vtd

Vts

∣

∣

∣
= 0.2060 ± 0.0007(∆ms)

+0.0081
−0.0060(∆md + theor). The current experimental status of the con-

straints of the unitarity triangle is shown in figure 6.1.

Further steps in the near future are the verification of the framework also for the determination
of ∆ms with toy Monte Carlo simulations as it is already done for the determination of cτ . The
aim and the application for the fitter framework in future is the improvement of the recent official
CDF result in significance and accuracy with the help of the doubled tagging power and a signal
selection with higher signal significance. The second application is the calibration of the new
tagging algorithm which is required for the measurement of CP-violation in the Bs system.

51



52 CHAPTER 6. CONCLUSION AND OUTLOOK

ρ
-1 -0.5 0 0.5 1 1.5 2

η

-1.5

-1

-0.5

0

0.5

1

1.5

α

βγ

ρ
-1 -0.5 0 0.5 1 1.5 2

η

-1.5

-1

-0.5

0

0.5

1

1.5

γ

γ

α

α

dm∆

Kε

Kε

dm∆ & sm∆

cb/VubV

βsin2

 < 0βsol. w/ cos2
(excl. at CL > 0.95)

excluded area has CL > 0.95

excluded at C
L > 0.95

BEAUTY 2006

CKM
f i t t e r

Figure 6.1: Experimental status of constraints on the parameters describing the unitarity triangle
with the actual CDF measurement [34]



Appendix A

Analytic Expressions

A.1 Mass Functions

A Gaussian distribution is taken to describe different mass templates in the Bs invariant mass
spectrum, for example the signal mass distribution.

PG(m) =
1√
2πσ

· e−
(−µ+m)2

2σ2 (A.1)

ADG(m) = −1

2
· Erf

[

µ − m√
2σ

]

(A.2)

The antiderivative is used to normalize the function in the likelihood fit.

Some mass distributions (B0, ΛB) have a shape very similar to a lifetime distribution. So this
function is used to describe mass templates phenomenologically and it has nothing to do with the
lifetime of a particle itself. It is an exponential function convoluted with a Gaussian.

Plt(m) = Nlt
1

2τ
e

σ2

2τ2 −µ−m
τ

(

1 − Erf

[

−µ−m
σ + σ

τ√
2

])

(A.3)

Again the antiderivative is used to normalize the function.

ADlt(m) = − 1

2τ
e

σ2
−2µτ+2τm

2τ2

(

e−
(σ2+(−µ+m)τ)2

2σ2τ2

√

2

π
σ − t

+
(σ2 + (−µ + m)τ)Erf

[

σ2+(−µ+m)τ√
2στ

]

τ

)

(A.4)

The normalization constant is given by

Nlt =
1

ADlt(mhigh) − ADlt(mlow)

The shape of partially reconstructed background in the mass space is parameterized by a straight
line plus a Gaussian. The function of the straight line is defined in A.5.

Plin(m) = 2 · p1 − m

(p1 − p2)
2 (A.5)
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p1 is the position where the line meets the m-axis and p2 is the lowest value of the considered
spectrum. This means that the line is defined through its root and the area below it.

The combinatorial background is also described phenomenologically by an exponential function
plus a constant.

Pcomb(m) = N1 · (1 − f0) · Nexp · e−λ(m−me) + N2 · f0 (A.6)

In consideration of N1 and N2 Pcomb is normalized to one.

N1 =
1

λ
· eλ(me−mlow) − 1

λ
· eλ(me−mhigh)

N2 = mhigh − mlow

A.2 Lifetime Functions

The exponential is smeared by a Gaussian, describing the measured decay time of a particle with
finite resolution and the lifetime τ . The mean of the Gaussian is 0 and each parameter has a
physical meaning. The normalization factor is not specified because this function is multiplied
with the efficiency function before normalizing.

Pτ (t) = e−
t
τ ⊗ G(t, σ)

=

∫

e−
t′

τ · G(t − t′, σ)dt′

=
1

2τ
e

−t+ σ2

2τ
τ Erfc

[

σ2 − tτ√
2στ

]

(A.7)

The sign ⊗ is used as abbreviation for the convolution integral.

The function Pl(t) parameterizes the lifetime distribution of different physical backgrounds. It is
a convolution of an exponential function and a Gaussian with mean µ and is a more general case
than A.7.

Pl(t) = Nl · e−
t
τ ⊗ G(t, µ, σ)

=
1

2τ
· Nl · Erfc

[

σ
τ − t−µ

σ√
2

]

· e 1
2

σ2

τ2 − t−µ
τ (A.8)

The antiderivative of A.8 is given by

ADl(t) =
1

2
e−

t
τ

(

e
t
τ Erf

[−µ + t√
2σt

]

+ e
σ2

t +2µτ

2τ2

(

−1 + Erf

[

σ2
t + µτ − tτ√

2σtτ

]))

(A.9)

and the normalization constant by

Nl =
1

ADl(tmax) − ADl(tmin)
(A.10)

The so called “antilife” function is an phenomenological description of the combinatorial back-
ground in the Bs lifetime spectrum. None of the parameters has a special meaning in this case.
The function is a sum of two equal functions with different parameters.
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Pal(t) =

2
∑

j=1

Aj ·
1

2τj
e

µj−t+
σ2

j
2τj

τj Erfc

[

σ2
j − (−µj + t)τj√

2σjτj

]

(A.11)

Each summand is multiplied with Aj normalizing the function. The two coefficients are given by

A1 =
w

ADal,1(tmax) − ADal,1(tmin)

A2 =
1 − w

ADal,2(tmax) − ADal,2(tmin)

Parameter w weights the two parts of the complete function and ADal,j is the antiderivative of
one summand of the function A.11.

ADal,j(t) =
1

2

(

Erf

[

−µj + t√
2σj

]

− e

σ2
j +2µjτj−2tτj

2τ2
j Erfc

[

σ2
j + (µj − t)τj√

2σjτj

])

(A.12)

The efficiency distribution is parameterized by ǫ(t).

ǫ(t) =
2

∑

j=0

Nǫ,j · e
− t

τj (−βj + t)2 · θ(t − βj) (A.13)

The antiderivative of one summand of the efficiency function is given by A.14 and is used to
normalize the function.

ADeff,j(t) = e−
βj
τ τ(−e

βj−t

τ ((βj − t)2 − 2(βj − t)τj + 2τ2) (A.14)

+ (−2τ2 + e
βj−t

τ ((βj − t)2 − 2(βj − t)τ + 2τ2))θ[βj − t])

Nǫ,j are the normalization constants of the efficiency function.

Nǫ,0 =
w1

ADeff,0(thigh) − ADeff,0(tlow)

Nǫ,1 =
w2

ADeff,1(thigh) − ADeff,1(tlow))

Nǫ,2 =
1 − w1 − w2

ADeff,2(thigh) − ADeff,2(tlow)

The function PS(t) describing the measured lifetime distribution is a product of the smeared
exponential and the efficiency function.

PS(t) = NS · Pτ (t) · ǫ(t) (A.15)

=

2
∑

j=0

PS,j(t) (A.16)

To normalize this function, the antiderivative ADS(t) is used. It is not the antiderivative of the
whole PS(t) function but the antiderivative of

PS,j(t) = NS,j ·
1

2τ
e

−t+ σ2

2τ
τ Erfc

[

σ2 − tτ√
2στ

]

· e−
t

τj (−βj + t)2 · θ(t − βj)
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ADS,j(t) =
1

2
√

πτj(τ + τj)3

(

e
− 1

2 t( t

σ2 + 2
τ
+ 4

τj
)

(

e

t2+ σ4

τ2
j

2σ2 +t( 1
τ
+ 2

τj
)√

π(σ4(τ + τj)
2

+ σ2τj(τ + τj)(−ττj + τ2
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i (τ2
i β2
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+ τ2(2τ2
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√
2e
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τ
+ 1

τj
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σ2 + σ2

τ2 + 2t
τj

)√
πτj(t
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+ τ2(2τ2
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σ2 − tτ√
2στ

]
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(A.17)

and

NS,0 =
w1

ADS,0(thigh) − ADS,0(tlow)

NS,1 =
w2

ADS,1(thigh) − ADS,1(tlow))

NS,2 =
1 − w1 − w2

ADS,2(thigh) − ADS,2(tlow)

A.3 Mixing Functions

The probability density function describing a mixing signal is given by A.18. It is multiplied with
the efficiency function ǫ(t) known from the lifetime description, equation A.13.

PS(t, ξ) =
1

NS(t)
·
(

1 + ξAD cos(∆mt)

1 + |ξ|
1

τ
e−

t
τ

)

⊗ G(t − t′, σt) · ǫ(t) (A.18)

A denotes the amplitude factor, D is the dilution and ξ is the tagging decision (ξ = 1 for not
mixed, ξ = −1 for mixed, ξ = 0 for no decision). For calculating the convolution, the specified
integral is solved between the borders 0 and ∞ because the real lifetime t′ can not be negative.

f(t, ξ) =

(

1 + ξAD cos(∆mt)

1 + |ξ|
1

τ
e−

t
τ

)

⊗ G(t − t′, σt)

=

∫ ∞

0

(

1 + ξAD cos(∆mt)

1 + |ξ|
1

τ
e−

t
τ

)

· G(t − t′, σt)dt′ (A.19)

The solution of the convolution is given in equation A.20, where Re denotes the real part of the
complex expression because here it is easier to use Re[e−i∆mt] instead of cos(∆mt).

f(t, ξ) =
1

2τ(|ξ| + 1)
e−

t−
σ2

t
2τ

τ

(

Erfc

[

σ2
t − tτ√
2σtτ

]

+ ξADe−
1
2 σ2
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t−σ2
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«

Erfc

[

σ2
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2σtτ

+ i
∆mσt√

2

]

])

(A.20)
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To use the likelihood method for fitting, PS(t) has to be normalized analytically because of a much
better performance. Therefore the factor NS has to be calculated.

NS =

∫ ∞

−∞
f(t, ξ) · ǫ(t)dt (A.21)

The integral can be divided in different parts which can be added up after integration. The
efficiency function A.13 can be written in the form

ǫ(t) =
2

∑

j=0

(dj + cjt + bjt
2)e−αjtΘ

(

t +
cj

2bj

)

(A.22)

where αj = 1/τj , bj = Nǫ,j , cj = −2bjβj and dj = ajβ
2
j . The function A.20 can be written as a

sum of two functions
f(t, ξ) = f1(t, ξ) + f2(t, ξ) (A.23)

where

f1(t, ξ) =
1

2τ(|ξ| + 1)
e−

t−
σ2

t
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τ Erfc
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2σtτ
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(A.24)

f2(t, ξ) =
1

2τ(|ξ| + 1)
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(A.25)

This leads to the normalization NS(t, ξ) which is calculated as a sum of Nji(t, ξ)

NS(t, ξ) =
2

∑

j=0

5
∑

i=0

Nji(t, ξ) (A.26)

where j sums over the three components of ǫ(t) and i over the different summands arise from the
product of f(t) and ǫ(t). The Nji are given by

Nj0(t, ξ) =

∫

dje
−αjtf1(t, ξ)dt

Nj1(t, ξ) =

∫

cjte
−αjtf1(t, ξ)dt

Nj2(t, ξ) =

∫

bjt
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∫
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Nj4(t, ξ) =

∫

cjte
−αjtf2(t, ξ)dt

Nj5(t, ξ) =

∫

bjt
2e−αjtf2(t, ξ)dt

The analytical results of all the Nji are given by the following equations.
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(A.27)
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(A.32)

Erfi(z) denotes the complex error function Erfi(z) = −iErf(iz). The evaluation of the error
function Erf(z) with complex argument z is done by an asymptotic series expansion w(iz) =

ez2

Erf(z) with

w(iz) =
1√
πz

(

1 +

∞
∑

m=1

(−1)m (2m − 1)!!

(2z2)m

)

(A.33)

It is an advisable evaluation of Erfi(z) because it is still much faster than numerical integration.
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Appendix B

Compilation of Fit Results

This appendix shows the compilation of some fit results of distributions and their parameterizations
described in chapter 4. The projections of the likelihood in mass and lifetime space of the likelihood
function of the unbinned maximum likelihood fits are shown for each of the Bs → Dsπ channels.
Some plots of the binned fits in mass and lifetime space are shown before.

Binned Fits of the Invariant Mass Spectra

The invariant mass spectra for different decay modes with the parameterization is shown first.
The fit functions which are taken and some explanations can be looked up in section 4.3.1.
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Figure B.1: Invariant mass spectrum of Bs in decay channel Bs → Dsπ, Ds → φπ
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Figure B.2: Invariant mass spectrum of Bs in decay channel Bs → Dsπ, Ds → K∗K
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Figure B.3: Invariant mass spectrum of Bs in decay channel Bs → Dsπ, Ds → 3π

Efficiency Curves

The lifetime efficiency distributions with their parameterizations for different decay channels are
shown. The fit function which is taken is given by equation A.13.
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Figure B.4: Lifetime efficiency curve of the decay mode Bs → Dsπ, Ds → φπ
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Figure B.5: Lifetime efficiency curve of the decay mode Bs → Dsπ, Ds → K∗K
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Figure B.6: Lifetime efficiency curve of the decay mode Bs → Dsπ, Ds → 3π

Lifetime distributions of the Combinatorial Background

The lifetime distributions of the combinatorial background for different decay channels are param-
eterized by the function A.11.
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Figure B.7: Decay time distribution of the combinatorial background in the decay mode Bs →
Dsπ, Ds → φπ

ct [cm]
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

C
an

d
id

at
es

 p
er

 0
.0

01
6 

cm

0

5

10

15

20

25

30

35

40

45
Data

Fit Function

part1

part2

Figure B.8: Decay time distribution of the combinatorial background in the decay mode Bs →
Dsπ, Ds → K∗K
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Figure B.9: Decay time distribution of the combinatorial background in the decay mode Bs →
Dsπ, Ds → 3π

Projections of the Likelihood in Mass and Lifetime Space

The projection of the complete likelihood function in mass space and lifetime space for different
decay channels are presented in the following. The explanation and the used likelihood function
can be found in section 4.5.
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Figure B.13: Logarithmic scaled decay time spectrum of the decay mode Bs → Dsπ, Ds → φπ
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Figure B.14: Logarithmic scaled decay time spectrum of the decay mode Bs → Dsπ, Ds → K∗K
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Figure B.15: Logarithmic scaled decay time spectrum of the decay mode Bs → Dsπ, Ds → 3π



Appendix C

The Maximum Likelihood Method

The major task of this work is the estimation of parameters from measurements with errors.
Therefore the maximum likelihood method [16] is used to estimate parameters of a probability
density distribution.

C.1 Parameter Estimation

The estimation of parameters is a very general issue in science because of the typical situation:
many measurements with errors of the same parameters but always different results. Different
measurements generally do not give exactly the same results because of the finite instrument
resolution and some other stochastic influences like quantum effects or thermal fluctuations. That
is the reason for the statistical nature of experimental measurements. The frequency distribution
of a sample of measured values behaves in case of n → ∞ (n number of measurements) like the
underlying probability density function multiplied with a normalization constant. The goal is to
estimate the parameters of the probability density function in consideration of the errors of the
measured data. It is also desirable that the method accomplishes the following criteria. It should
be consistent (limn→∞ â = a0) if a0 is the truth and â the estimate. It also should be unbiased
in the sense that E[â] = a0, E[â] is the expectation of â. Effectiveness and robustness play an
eminent role, too.

Not all of these criteria can be satisfied simultaneously. The maximum likelihood method for
example, is a very efficient estimation of parameters but is very unstable against choosing a
wrong probability density function. Parameters can be biased and the likelihood method does not
give any information about the fit quality. For achieving that, something like the χ2 has to be
calculated.

C.2 The Principle of the Maximum Likelihood Method

An essential assumption to use the maximum likelihood method is the knowledge about the (mul-
tidimensional) probability density function f (~x|~a) in ~x depending on a set of unknown parameters
~a which have to be estimated. With the set of n measurements ~xi, the likelihood function L(~a) is
defined by

L (~a) = f(~x1|~a) · f(~x2|~a) · ... · f(~xn|~a) =
n

∏

i=1

f(~xi|~a)

L (~a) can be interpreted as the probability to get these measured values ~xi by a given choice

of parameters ~ai. The best choice of parameters ~̂ai is the choice that maximizes the likelihood
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function L (~a) with the constraint that f(~x|~a) is normalized to a constant which is set w.l.o.g.1 to
one:

∫ xmax

xmin
f(~x|~a)dx = 1, independent of ~a.

The maximum of L (~a) can be found by requiring

∂L (~a)

∂ak
= 0 ∀ k

In practice L (~a) tends to very small values causing numerical instabilities because of finite accu-
racy of computers. Furthermore minimization algorithms are more common than maximization
algorithms therefore usually the negative logarithm of the likelihood function is taken instead.

F (~a) = − ln (L (~a))

As the logarithm is a monotonous function, the log-likelihood function has the extremum at the
same place as the likelihood function.

C.3 Error Calculation

Often, especially in case of a large number of measurement n → ∞, the likelihood function
approaches a Gaussian distribution and the negative log-likelihood function F (~a) can be expanded

around its minimum considering ∂F (~a)
∂a = 0 for ~a = ~̂a.

F (a1, a2, ..., aN ) ≈ F (â1, â2, ..., âN ) +
1

2

∑

i,k

∂2F

∂ai · ∂ak
(ai − âi) (ak − âk) + ...

= F (â1, â2, ..., âN ) +
1

2

∑

i,k

Gik (ai − âi) (ak − âk) + ...

V = G−1 with Gik =
∂2F

∂ai · ∂ak

G has the form of a Hessian matrix and V can be interpreted as the covariance matrix in the
asymptotic case, otherwise it is an approximation of the covariance matrix.

Due to the fact that the projection of the likelihood function on a single parameter space be-
haves like a Gaussian around the extremum, the log-likelihood function approaches a parabola.
Subsequently it follows:

1

(σ (â))
2 =

(

∂2F

∂a2

∣

∣

∣

∣

â

)

Where σ is the standard deviation of the approached Gaussian.

But also in the not asymptotic case the errors of each single parameter can be calculated consider-
ing the following. F (â) is the minimum concerning all parameters, then the (asymmetric) errors
of ai are defined:

Fmin (âi + σr) = F (â) +
1

2

Fmin (âi − σl) = F (â) +
1

2

σ is the distance one has to move along the x-axis until the negative log-likelihood function
increased by 1

2 compared to the minimum.

1without loss of generality
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C.4 Binned Maximum Likelihood Fits

In case of many data points a histogram can be a adequate display format for a frequency distribu-
tion of measured data. The spectrum of occurred values is plotted on the x-axis which is divided
in intervals called bins. The y-axis specifies the number of entries in each bin. A necessary task is
to fit a probability distribution f(x|a) on histogram content. The different bin contents are given

by nj with j = 1, 2, ...J and
∑J

j=1 nj = n where n is the total number of entries. The numbers
of entries in each bin are random numbers distributed according a Poisson distribution with the
expectation µj . The probability density function of a Poisson distribution is

P (nj |µj) =
µ

nj

j e−µj

nj !

The expectation µj is determined for each bin by integrating the probability density function over
the width of the bin and subsequent multiplying with n

µj(a) = n

∫

bin j

f(x|a)dx

The negative log-likelihood function is given by

F (a) = −
J

∑

j=1

ln

(

µ
nj

j e−µj

nj !

)

= −
J

∑

j=1

nj lnµj +

J
∑

j=1

njµj +

J
∑

j=1

nj ln(nj !)

For µ >> 1 and µj ≈ nj the Poisson distribution can be approximated by a Gaussian with
the variance σ2

j = µj . This has the advantage of an interpretable value in the minimum of the
log-likelihood function transforming to

F (a) = −
J

∑

j=1

ln

(

1√
2πσj

e

−(nj−µj)2

2σ2
j

)

=
1

2

J
∑

j=1

(nj − µj)
2

µj
+ const.

In this case 2F (a) follows a χ2-distribution with k degrees of freedom, i.e. the number of bins
minus the number of fitted parameters. The value χ2/k should be something around one for a
reasonable fit. It is therefore an expedient information about the quality of the fit.
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