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Transverse momentum dependent (TMD) distribution and fragmentation functions are
described as Fourier transforms of matrix elements containing non-local combinations of
quark and gluon fields. The x and pT dependent TMD functions appear in the parametriza-
tion of light-front correlators including a transverse (space-like) non-locality. The TMD
functions relevant at leading order include spin-spin densities as well as momentum-spin
densities and they are able to describe single-spin and azimuthal asymmetries, such as
Sivers and Collins effects in SIDIS. Their moments involve higher-twist operators evalu-
ated at zero-momentum (gluonic poles). They appear in observables with process-specific
gluonic pole factors such as the sign in SIDIS versus Drell-Yan, which can be traced back
to having TMD’s with non-trivial process-dependent past- or future-pointing gauge links.

To incorporate transverse momentum dependent (TMD) distribution functions (PDF) and
fragmentation functions (FF), in short referred to as TMD’s, the starting point are forward
matrix elements of parton fields, such as the quark-quark correlator

Φij(p|p) =

∫
d4ξ

(2π)4
ei p · ξ 〈P |ψj(0)ψi(ξ)|P 〉, (1)

where a summation over color indices is understood. For a single incoming fermion one would
have Φ ∝ (/p+m). The quark-quark-gluon correlator is defined

ΦµA ij(p− p1, p1|p) =

∫
d4ξ d4η

(2π)8
ei (p−p1) · ξ ei p1 · η 〈P |ψj(0)Aµ(η)ψi(ξ)|P 〉. (2)

The basic idea is to isolate these hadronic (soft) parts in a full diagrammatic approach and
parametrize them in terms of PDFs. This requires high energies in which case the momenta of
different hadrons obey P ·P ′ ∝ Q2, where s ∼ Q2 is the hard scale in the process. In that case
one can for each hadron correlator employ light-like vectors P and n such that P ·n = 1 (for
instance n = P ′/P ·P ′) and make a Sudakov expansion of the parton momenta,

p = xP + pT + (p ·P − xM2)n, (3)

with x = p+ = p ·n. In any contraction with vectors outside the correlator, the component xP
contributes at order Q, the transverse component at order M and the remaining component
contributes at order M2/Q. This allows consecutive integration of the components to obtain
from the fully un-integrated result in Eq. 1 the TMD light-front (LF) correlator

Φij(x, pT ;n) =

∫
dξ ·P d2ξT

(2π)3
ei p · ξ 〈P |ψj(0)ψi(ξ)|P 〉

∣∣∣∣
ξ ·n=0

, (4)
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the collinear light-cone (LC) correlator

Φij(x) =

∫
dξ ·P

2π
ei p · ξ 〈P |ψj(0)ψi(ξ)|P 〉

∣∣∣∣
ξ ·n=ξT=0 or ξ2=0

, (5)

or the local matrix element
Φij = 〈P |ψj(0)ψi(ξ)|P 〉

∣∣
ξ=0

. (6)

The importance of integrating at least the light-cone (minus) component p− = p ·P is that
the expression is at equal time, i.e. time-ordering is not relevant anymore for TMD or collinear
PDFs [1]. For local matrix elements one can calculate the anomalous dimensions, which show
up as the Mellin moments of the splitting functions that govern the scaling behavior of the
collinear correlator Φ(x). We note that the collinear correlator is not simply an integrated
TMD. The dependence on upper limit Φ(x;Q2) =

∫ Q
d2pT Φ(x, pT ) is found from the anomalous

dimensions (splitting functions). One has a αs/p2T behavior of TMD’s that is calculable using
collinear TMD’s and which matches to the intrinsic non-pertubative pT -behavior [2]. We note
that in operator product expansion language, the collinear correlators involve operators of
definite twist, while TMD correlators involve operators of various twist.

In order to determine the importance of a particular correlator in a hard process, one can
do a dimensional analysis to find out when they contribute in an expansion in the inverse
hard scale. Dominant are the ones with lowest canonical dimension obtained by maximizing
contractions with n, for instance for quark or gluon fields the minimal canonical dimensions
dim[ψ(0)/nψ(ξ)] = dim[Fnα(0)Fnβ(ξ)] = 2, while an example for a multi-parton combination
gives dim[ψ(0)/nAαT (η)ψ(ξ)] = 3. Equivalently, one can maximize the number of P ’s in the
parametrization of Φij . Of course one immediately sees that any number of collinear n ·A(η) =
An(η) fields doesn’t matter. Furthermore one must take care of color gauge invariance, for
instance when dealing with the gluon fields and one must include derivatives in color gauge
invariant combinations. With dimension zero there is iDn = i∂n + gAn and with dimension
one there is iDα

T = i∂αT + gAαT . The color gauge-invariant expressions for quark and gluon
distribution functions actually include gauge-link operators,

U[0,ξ] = P exp

(
−i
∫ ξ

0

dζµA
µ(ζ)

)
(7)

connecting the non-local fields,

Φ
[U ]
q ij(x, pT ;n) =

∫
dξ ·P d2ξT

(2π)3
ei p · ξ 〈P |ψj(0)U[0,ξ] ψi(ξ)|P 〉

∣∣∣∣
LF

, (8)

Φ[U,U ′]µν
g (x, pT ) =

∫
d(ξ ·P ) d2ξT

(2π)3
eip · ξ Tr 〈P ,S|Fnµ(0)U[0,ξ] F

nν(ξ)U ′[ξ,0] |P ,S〉
∣∣∣∣
LF

.(9)

For transverse separations, the gauge links involve gauge links running along the minus direc-
tion to ±∞ (dimensionally preferred), which are closed with one or more transverse pieces at
lightcone infinity. The two simplest possibilities are U [±] = Un[0,±∞] U

T
[0T ,ξT ] U

n
[±∞,ξ], leading to

gauge-link dependent quark TMDs Φ
[±]
q (x, pT ). For gluons, the correlator involves color gauge-

invariant traces of field-operators Fnα, which are written in the color-triplet representation,
requiring the inclusion of two gauge-links U[0,ξ] and U ′[ξ,0]. Again the simplest possibilities are
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the past- and future-pointing gauge links U [±], giving even in the simplest case four gluon
TMDs Φ

[±,±]
g (x, pT ).

Using the dimensional analysis to collect the leading contributions in an expansion in the
inverse hard scale, one will need the above quark and gluon TMDs for the description of
azimuthal dependence. Taking the Drell-Yan process as an example, one can look at the cross
section depending on the (small!) transverse momentum qT of the produced lepton pair,

σ(x1, x2, qT ) =

∫
d2p1T d

2p2T δ2(p1T + p2T − qT ) Φ
[−]
1 (x1, p1T )Φ

[−†]

2 (x2, p2T )σ̂(x1, x2, Q), (10)

which involves a convolution of TMDs. What is more important, it is the color flow in the
process, in this case neutralized in initial state, that determines the path in the gauge link in
the TMDs, in this case past-pointing ones. In contrast in semi-inclusive deep inelastic scattering
one finds that the relevant TMD is Φ[+] with a future-pointing gauge link. In a general process
one can find more complex gauge links including besides Wilson line elements also Wilson loops.
In particular when the transverse momentum of more than one hadron is involved, such as e.g.
in the DY case above, it may be impossible to have just a single TMD for a given hadron
because color gets entangled [3, 4].

The correlators including a gauge link can be parametrized in terms of TMD PDFs depending
on x and p2T . For quarks, these include not only the functions that survive upon pT integration,
fq1 (x) = q(x), gq1(x) = ∆q(x) and hq1(x) = δq(x), which are the well-known collinear spin-
spin densities (involving quark and nucleon spin) but also momentum-spin densities such as
the Sivers function f⊥q1T (x, p2T ) (unpolarized quarks in transversely polarized nucleon) and spin-
spin-momentum densities such as g1T (x, p2T ) (longitudinally polarized quarks in a transversely
polarized nucleon).

In many cases, it is convenient to construct moments of TMDs in the same way as one
considers moments of collinear functions. For Φ(x) in Eq. 5 one constructs moments

xNΦ(x) =

∫
dξ ·P

2π
ei p · ξ 〈P |ψ(0) (i∂n)N Un[0,ξ] ψ(ξ)|P 〉

∣∣∣∣
LC

=

∫
dξ ·P

2π
ei p · ξ 〈P |ψ(0)Un[0,ξ] (iDn)N ψ(ξ)|P 〉

∣∣∣∣
LC

. (11)

Integrating over x one finds the connection of the Mellin moments of PDFs with local matrix
elements with specific anomalous dimensions, which via an inverse Mellin transform define the
splitting functions. Similarly one can consider transverse moment weighting starting with the
light-front TMD in Eq. 4,

pαT Φ[±](x, pT ;n) =

∫
dξ ·P d2ξT

(2π)3
ei p · ξ 〈P |ψ(0)Un[0,±∞] U

T
[0T ,ξT ] iD

α
T (±∞)Un[±∞,ξ]ψ(ξ)|P 〉

∣∣∣∣
LF

.

(12)
Integrating over pT gives the lowest transverse moment, which appears in the qT -weighted
result of Eq. 10. This moment involves twist-3 (or higher) collinear multi-parton correlators, in
particular the quark-quark-gluon correlator

ΦnαF (x− x1, x1|x) =

∫
dξ ·P dη ·P

(2π)2
ei (p−p1) · ξ ei p1 · η 〈P |ψ(0)Un[0,η] F

nα(η)Un[η,ξ] ψ(ξ)|P 〉
∣∣∣∣
LC

.

(13)
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In terms of this correlator and the similarly defined correlator ΦαD(x− x1, x1|x) one finds∫
d2pT pαT Φ[U ](x, pT ) = Φ̃α∂ (x) + C

[U ]
G πΦαG(x), (14)

Φ̃α∂ (x) = ΦαD(x)− ΦαA(x) =

∫
dx1 ΦαD(x− x1, x1|x)−

∫
dx1 PV

1

x1
ΦnαF (x− x1, x1|x),

ΦαG(x) = ΦnαF (x, 0|x).

The latter is referred to as a gluonic pole or ETQS-matrix element [5, 6]. They are multiplied
with gluonic pole factors C [U ]

G (e.g. C [±]
G = ±1), that tell us that new functions are involved

with characteristic process dependent behavior [7, 8]. This behavior is for the single transverse
moments also coupled to the behavior under time reversal. While Φ̃α∂ is T-even, ΦαG is T-odd.
Since time reversal is a good symmetry of QCD, the appearance of T-even or T-odd functions in
the parametrization of the correlators is linked to specific observables with this same character.
In particular single spin asymmetries are T-odd observables.

The analogous treatment for fragmentation functions is simpler because the gluonic pole
matrix elements vanish in that case [9, 10]. Nevertheless, there exist T-odd fragmentation
functions, but their QCD operator structure is T-even, similar as the structure of Φ̃α∂ . There is
thus no process dependence, which comes from the factors C [U ]

G multiplying the gluonic poles.
The use of transverse moments in the description of azimuthal asymmetries via transverse

momentum weighting of the cross section can be extended to higher moments involving higher
harmonics such as cos(2ϕ). Also here process dependence may come in from double gluonic pole
matrix elements ΦαβGG, which are twist four operators. This affects studies that involve the quark
TMD h⊥q1T (x, pT ) (Pretzelocity distribution) or the gluon Boer-Mulders function h⊥g1 (x, pT ) (lin-
ear gluon polarization in unpolarized targets).

A largely unexplored territory is that of TMD factorization, the evolution of TMDs [11] and
the possible link to kT-factorization as used for small-x physics [12]. It will be addressed in
some of the other talks in this session.
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