Radiative Scaling Neutrino Mass with A_4 Symmetry and Warm Dark Matter

Subhaditya Bhattacharya¹, Ernest Ma¹, Alexander Natale¹, and Ahmed Rashed^{2,3}

¹ Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

² Department of Physics and Astronomy, University of Mississippi, Oxford, Mississippi 38677, USA

³ Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt

Abstract

In scotogenic model, neutrino mass comes from a one-loop mechanism with dark matter candidate in the loop. An assumption of producing small neutrino mass proportional to small dark matter mass in the model consisting of singlet Majorana fermions N_i with masses of order 10 keV was proposed recently. Neutrino masses are scaled down from them by factors of about 10^{-5} . We study the consequences in the phenomenology of N_i as warm dark matter of implementing the non-Abelian discrete symmetry A_4 for neutrino mixing in the model.

In the scotogenic model [1] the radiative neutrino mass connects with dark matter with considering three neutral fermion singlets N_i and a new scalar doublet (η^+, η^0) are odd under a new Z_2 symmetry. Hence Majorana neutrino masses are generated in one loop through the interaction $h_{ij}(\nu_i\eta^0 - l_i\eta^+)N_j$ as shown in Fig. 1. This mechanism has been called "scotogenic", from the Greek "scotos" meaning darkness. Because of the allowed $(\lambda_5/2)(\Phi^{\dagger}\eta)^2 + H.c.$ interaction, $\eta^0 = (\eta_R + i\eta_I)/\sqrt{2}$ is split so that $m_R \neq m_I$. The diagram of Fig. 1 can be computed exactly [1], i.e.

$$(\mathcal{M}_{\nu})_{ij} = \sum_{k} \frac{h_{ik} h_{jk} M_k}{16\pi^2} \left[\frac{m_R^2}{m_R^2 - M_k^2} \ln \frac{m_R^2}{M_k^2} - \frac{m_I^2}{m_I^2 - M_k^2} \ln \frac{m_I^2}{M_k^2} \right].$$
(1)

Figure 1: One-loop generation of scotogenic Majorana neutrino mass.

The usual assumption for neutrino mass in Eq. (1) is

$$m_I^2 - m_R^2 << m_I^2 + m_R^2 << M_k^2, (2)$$

in which case

$$(\mathcal{M}_{\nu})_{ij} = \frac{\lambda_5 v^2}{8\pi^2} \sum_k \frac{h_{ik} h_{jk}}{M_k} \left[\ln \frac{M_k^2}{m_0^2} - 1 \right], \tag{3}$$

where $m_0^2 = (m_I^2 + m_R^2)/2$ and $m_R^2 - m_I^2 = 2\lambda_5 v^2$ ($v = \langle \phi^0 \rangle$). This scenario is often referred to as the radiative seesaw. There is another interesting scenario, i.e.

$$M_k^2 << m_R^2, \ m_I^2.$$
 (4)

Neutrino masses are then given by [2]

$$(\mathcal{M}_{\nu})_{ij} = \frac{\ln(m_R^2/m_I^2)}{16\pi^2} \sum_k h_{ik} h_{jk} M_k.$$
 (5)

In the above expression neutrino mass is now not inversely proportional to some large scale. In that case, how do we understand the smallness of m_{ν} ? The answer is lepton number. In this model, $(\nu, l)_i$ have lepton number L = 1 and N_k have L = -1, and L is conserved in all interactions except for the Majorana mass terms M_k which break L to $(-1)^L$. We may thus argue that M_k should be small compared to all other mass terms which conserve L. For instance, if $M_k \sim 10$ keV then $m_{\nu} \sim 0.1$ eV is obtained if $h^2 \sim 10^{-3}$ in Eq. (5).

The scotogenic model [1] with large M_k , i.e. Eq. (3), has been extended recently [3] to include the well-known non-Abelian discrete symmetry A_4 [4, 5, 6]. Simpler discrete symmetries, such as Z_2 [7, 8], have been used in the literature to describe the neutrino mixing. In Eq. (5) we let (η^+, η^0) be a singlet under A_4 and both (ν_i, l_i) and N_k to be triplets [9]. In that case,

$$h_{ik} = h\delta_{ik},\tag{6}$$

and

$$\mathcal{M}_{\nu} = \zeta \mathcal{M}_N,\tag{7}$$

where $\zeta = h^2 \ln(m_R^2/m_I^2)/16\pi^2$ is the scale factor. The soft breaking of A_4 which shapes \mathcal{M}_N is then directly transmitted to \mathcal{M}_{ν} .

There are two consequences of the scaling mechanism for neutrino mass. First, quasidegenerate scenario of neutrino mass can be obtained if $M_{1,2,3}$ are in the same order of magnitude. Second, the interactions of $N_{1,2,3}$ with the charged leptons through η^+ depend only on h and the mismatch between the charged-lepton mass matrix and the neutrino mass matrix, i.e. the experimentally determined neutrino mixing matrix $U_{l\nu}$. Hence $\mu \to e\gamma$ is highly suppressed because the leading term of its amplitude is proportional to $\sum_k h_{\mu k} h_{ek}^* = |h|^2 \sum_k U_{\mu k} U_{ek}^* = 0$. Note that A_4 may be replaced by any other flavor symmetry as long as it is possible to have Eq. (8) using the singlet and triplet representations of that symmetry.

 N_k becomes good warm dark-matter candidates [10, 11] if the interactions of N_k with the neutrinos and charged leptons are weaker than the usual weak interaction when η^{\pm} , η_R , η_I are of order 10² GeV, i.e. N_k may be considered "sterile". Since N_k are assumed light in the range of keV, muon decay proceeds at tree level through η^+ exchange, i.e. $\mu \to N_{\mu} e \bar{N}_e$, with the rate

$$\Gamma(\mu \to N_{\mu} e \bar{N}_{e}) = \frac{|h|^{4} m_{\mu}^{5}}{6144 \pi^{3} m_{n^{+}}^{4}}.$$
(8)

Since N_{μ} and \bar{N}_{e} are invisible just as ν_{μ} and $\bar{\nu}_{e}$ are invisible in the dominant decay $\mu \rightarrow \nu_{\mu}e\bar{\nu}_{e}$ (with rate $G_{F}^{2}m_{\mu}^{5}/192\pi^{3}$), this would change the experimental value of G_{F} . Using the experimental uncertainty of 10^{-5} in the determination of G_{F} , we find

$$m_{\eta^+} > 70 \text{ GeV} \tag{9}$$

for $|h|^2 = 10^{-3}$. Whereas the lightest scotino, say N_1 , is absolutely stable, $N_{2,3}$ will decay into N_1 through η_R and η_I . The decay rate of $N_3 \to N_1 \bar{\nu}_1 \nu_3$ is given by

$$\Gamma(N_3 \to N_1 \bar{\nu}_1 \nu_3) = \frac{|h|^4}{256\pi^3 M_3} \left(\frac{1}{m_R^2} + \frac{1}{m_I^2}\right)^2 \times \left(\frac{M_3^6}{96} - \frac{M_1^2 M_3^4}{12} + \frac{M_1^6}{12} - \frac{M_1^8}{96M_3^2} + \frac{M_1^4 M_3^2}{8} \ln \frac{M_3^2}{M_1^2}\right).$$
(10)

Let $M_1 = 10$ keV, $M_3 = 14.85$ keV, $|h|^2 = 10^{-3}$, $m_R = 240$ GeV, $m_I = 150$ GeV, then this rate is 1.0×10^{-46} GeV, corresponding to a lifetime of 2.1×10^{14} y, which is much longer than the age of the Universe of $13.75 \pm 0.11 \times 10^9$ y. The lifetime of N_2 is even longer because $\Delta m_{21}^2 << \Delta m_{31}^2$. Hence both N_2 and N_3 are stable enough to be components of warm dark matter.

Since η^+ may be as light as 70 GeV, it may be observable at the LHC. The inclusive decay of $\eta^{\pm} \rightarrow l^{\pm}N_{1,2,3}$, which is of universal strength. At the LHC, the pair production of $\eta^+\eta^$ will then lead to $l_i^+l_j^-$ final states with equal probability for each flavor combination. This signature together with the large missing energy of $N_{1,2,3}$ may allow it to be observed at the LHC. However, these events also come from W^+W^- production and their subsequent leptonic decays. The cross sections for the signal events are smaller than the dominant $W^+W^$ background even after a large E_T cut. This is because both the signal and background events have similar missing energy distributions, but the W^+W^- production is much larger.

References

- [1] E. Ma, Phys. Rev. **D73**, 077301 (2006).
- [2] E. Ma, Phys. Lett. **B717**, 235 (2012).
- [3] E. Ma, A. Natale, and A. Rashed, Int. J. Mod. Phys. A27, 1250134 (2012).
- [4] E. Ma and G. Rajasekaran, Phys. Rev. **D64**, 113012 (2001).
- [5] E. Ma, Mod. Phys. Lett. A17, 2361 (2002).
- [6] K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. **B552**, 207 (2003).
- [7] A. Rashed and A. Datta, Phys. Rev. D 85, 035019 (2012) [arXiv:1109.2320 [hep-ph]].
- [8] A. Rashed, Nucl. Phys. B 874, 679 (2013) [arXiv:1111.3072 [hep-ph]].
- [9] S. Bhattacharya, E. Ma, A. Natale and A. Rashed, Phys. Rev. D 87, 097301 (2013) [arXiv:1302.6266 [hep-ph]].
- [10] H. J. de Vega and N. G. Sanchez, arXiv:1109.3187 [astro-ph.CO].
- [11] H. J. de Vega, M. C. Falvella, and N. G. Sanchez, arXiv:1203.3562 [astro-ph.CO].