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Abstract

We represent in the universal form restricted one-instanton partition function of supersymmetric Yang–
Mills theory. It is based on the derivation of universal expressions for quantum dimensions (universal 
characters) of Cartan powers of adjoint and some other series of irreps of simple Lie algebras. These formu-
lae also provide a proof of formulae for universal quantum dimensions for low-dimensional representations, 
needed in derivation of universal knot polynomials (i.e. colored Wilson averages of Chern–Simons theory 
on 3d sphere). As a check of the (complicated) formulae for universal quantum dimensions we prove nu-
merically Deligne’s hypothesis on universal characters for symmetric cube of adjoint representation.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

This paper is the next step in realization of program of representation of partition functions 
and observables in gauge theories (and other simple-Lie-algebras-based theories) in universal 
form.

Universal formulae may appear in any theory, based on the simple Lie algebras. Most impor-
tant example is the Chern–Simons theory – see e.g. [1,2] for universal expression for partition 
function and [3,4] for universal knot polynomials (Wilson loops). Universal formulae appear to 
be relevant also for refined Chern–Simons theory [5], non-perturbative gauge/string duality [6]
and Diophantine classification of simple Lie algebras [7,8]. Universality approach reveals [9] de-
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tails of behavior of SU(N) Chern–Simons partition function under N → −N duality, and, more 
generally, under permutations of universal parameters (Vogel’s symmetry).

The main aim of present paper is derivation of universal formula for one-instanton contribu-
tion to partition function of Yang–Mills theory with extended supersymmetry (see Section 5). 
This will be the first appearance of universal formula in four-dimensional Yang–Mills theory. 
Another aim is derivation of formulae for quantum dimensions, used in [3] for calculation of 
universal expressions for some knot polynomials (Wilson averages in Chern–Simons theory).

Both results are based on the derivation (see Sections 2, 3) of new formulae for universal quan-
tum dimensions (sometimes called also universal characters) of some series of irreps, appearing 
in decomposition of powers of adjoint representation. These formulae themselves can be con-
sidered as universal form of some observables – namely, unknot Wilson loops in corresponding 
representations.

The notion of universality in simple Lie algebras was introduced by Vogel in the paper “Uni-
versal Lie Algebra” [10], particularly aimed on creation of the universal model for all simple 
Lie algebras. In this approach different algebras would appear by specializing (homomorphic 
mapping) ring of coefficients of universal Lie algebra into that appropriate to a given simple Lie 
algebra. Ring of coefficients of the universal Lie algebra is the ring of one-variable polynomi-
als over the ring � of antisymmetric three-leg Jacobi diagrams, introduced by Vogel in [10]. It 
appears that one indeed can obtain in this way all simple Lie algebras (and superalgebras). More-
over, as shown in [11], some other algebras, namely Kapranov’s algebra for K3 manifold, can be 
obtained in this way, with appropriate choice of ring of coefficients.

In this way one can try to develop the representation theory of universal Lie algebra, which 
particularly will contain the representation theory of powers of adjoint representation of simple 
Lie algebras. This was done in [10] for square and cube of adjoint representation. They are 
decomposed in universal form into simple modules, under some assumptions. When specialized 
to any simple Lie algebra, this decomposition gives true decomposition for that algebra. Formulae 
of [10] for dimensions, as well as eigenvalues of second and fourth Casimir operators on that 
representations, are first examples of universal expressions.

For example, universal formula for dimension of simple Lie algebra g is:

dim(g) = − (α + 2β + 2γ )(β + 2α + 2γ )(γ + 2α + 2β)

αβγ
(1)

Here α, β, γ are solutions of the cubic equation in ring �(x), i.e. they belong to some cubic 
extension of �(x):

ψ3 − tψ2 + sψ − p = 0 (2)

where t, s, p are certain elements of the ring, i.e. some combinations of Jacobi diagrams. Ac-
cording to Vieta’s formulae one has

t = α + β + γ (3)

s = αβ + βγ + αγ (4)

p = αβγ (5)

where cubic equation’s roots α, β, γ are called universal, or Vogel’s parameters. They are rele-
vant up to the rescaling and permutations [10], so belong to two-dimensional projective plane, 
factorized over permutations of homogeneous parameters α, β, γ , which is called Vogel’s plane.
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Table 1
Vogel’s parameters for simple Lie algebras.

Root system Lie algebra α β γ t = h∨

An sln+1 −2 2 (n + 1) n + 1
Bn so2n+1 −2 4 2n − 3 2n − 1
Cn sp2n −2 1 n + 2 n + 1
Dn so2n −2 4 2n − 4 2n − 2
G2 g2 −2 10/3 8/3 4
F4 f4 −2 5 6 9
E6 e6 −2 6 8 12
E7 e7 −2 8 12 18
E8 e8 −2 12 20 30

Table 2
Vogel’s parameters for simple Lie algebras: lines.

Algebra/Parameters α β γ t Line

slN -2 2 N N α + β = 0
soN -2 4 N − 4 N − 2 2α + β = 0
spN -2 1 N/2 + 2 N/2 + 1 α + 2β = 0
Exc(n) −2 2n + 4 n + 4 3n + 6 γ = 2(α + β)

For exceptional line n = −2/3, 0, 1, 2, 4, 8 for g2, so8, f4, e6, e7, e8, respec-
tively.

When specialized for complex simple Lie algebras, these parameters get values from Vogel’s 
Table 1. The same table in other form Table 2 reveals that not only all orthogonal algebras belong 
to one line in Vogel’s plane, but that the same line contains all symplectic algebras. Another 
similar and unexpected observation is that all exceptional algebras belong to one line, which we 
call exceptional, or Deligne line [12,13].

Parameter α in these tables is chosen to be equal to −2. This always can be done due to the 
scaling invariance.

For simple Lie algebras universal parameters have the following interpretation. Let’s denote 
the eigenvalue of Casimir operator on adjoint representation as 2t . Vogel [10] shows that sym-
metric square of adjoint for all simple Lie algebras has the following decomposition:

S2g = 1 + Y2(α) + Y2(β) + Y2(γ ), (6)

4t − 2α,4t − 2β,4t − 2γ (7)

where second row contains values of the same Casimir operator on representations Y2(α), Y2(β), 
Y2(γ ), respectively. This is actually definition of parameters α, β, γ . One can show that

α + β + γ = t (8)

and these are the same parameters introduced above, specialized for simple Lie algebras. Some 
subtlety in definition of irreducibility is in that one consider irreducibility w.r.t. the semidirect 
product of algebras on outer automorphisms of their Dynkin diagram, see [12–14]. So, rescaling 
of parameters corresponds to rescaling of invariant scalar product in algebra, and permutation of 
parameters is equivalent to permutation of representations Y2(.). Choice α = −2 corresponds to 
normalization of scalar product such that the square of long roots is 2, and parameter t is equal 
to dual Coxeter number h∨.
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Unfortunately, abovementioned assumptions appear to be partially wrong, particularly algebra 
� appears to be not an integer domain [15], so these simple modules actually are not correctly 
defined. Possible options are as following.

First, the structure of algebra � actually is not completely known. Conjecture of [10] is that 
� is generated by special diagrams t and xn, and in that case structure is known almost exactly. 
However, this conjecture is checked only in first few orders in a natural grading according to the 
number of vertexes, and it is perfectly possible that there are other generators in higher orders. If 
so, it may be that new generators appear at the same order when zero divisors relation appears, 
and some redefinition of product operation can lead to new ring which is already an integral 
domain. Unfortunately, these speculations are inaccessible for computer check, yet.

Second, although it is not possible to define simple modules with ring which is not integral 
domain, one can still have universal formulae. In that case they will have an arbitrariness of 
adding polynomials or other functions of universal parameters which are zero for all simple Lie 
algebras, and even on the entire lines of classical algebras, exceptional line and line t = 0, which 
corresponds to the superalgebra D2,1,λ [15].

There is a number of universal formulae purely in the theory of simple Lie algebras: universal 
formulae for dimensions of (series of) representations, appearing in decomposition of powers of 
adjoint representation [16], eigenvalues of higher Casimir operators [15,17], volume of simple 
Lie groups [2,9], quantum dimension of adjoint [18,1], etc.

As mentioned, in the present paper we derive universal quantum dimensions for series of 
representations, namely for those for which Landsberg–Manivel [16] obtain universal dimension 
formulae. Particular cases of that formulae (for the cube of adjoint representation) were used in 
[3] for derivation of universal invariant polynomials for two- and three-strands torus knots. As 
a check of these complicated formulae we prove numerically the particular case of Deligne’s 
hypothesis on universal quantum dimensions, formulated below in Section 4.

Main application, discussed below in Section 5, is the universality of one-instanton partition 
function of supersymmetric Yang–Mills theory.

2. Quantum dimensions of Cartan powers of adjoint

As mentioned, we shall use the theory of simple Lie algebras for calculation of universal 
quantum dimensions. Character of irreducible representation, restricted to the Weyl line (see 
definition below) is called below the universal character of that representation. The Weyl formula 
for these characters gives (see e.g. [19], 13.170):

χλ(xρ) =
∏
μ>0

sinh( x
2 (μ,λ + ρ))

sinh( x
2 (μ,ρ))

(9)

Here ρ is Weyl vector in root space, i.e. the half sum of positive roots; λ is highest weight of 
irreducible representation; in l.h.s. we have the character of that representation, restricted to the 
Weyl line xρ; product is over positive roots μ; (,) denote invariant (Cartan–Killing) scalar product 
in an arbitrary normalization.

The same object is often called quantum dimension and denoted

Dλ ≡ χλ(xρ) (10)

Note also that as an index of Dλ and χλ we shall use also other notations, if they exist, for an 
irreducible representation, instead of its highest weight.



240 R.L. Mkrtchyan / Nuclear Physics B 921 (2017) 236–249
Table 3
(ρ, μ) for all roots with (θ, μ) = 1 for E7.

(ρ,μ) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
II 1 1 1 1 1 1 1 1 1 1
III 1 1 1 1 1 1

From (9) we see that universal character is invariant w.r.t. the simultaneous rescaling of scalar 
product and x variable: x → zx, (, ) → (, )/z. Equivalently, universal formulae for quantum di-
mensions will be invariant w.r.t. the rescaling x → zx, α → α/z, β → β/z, γ → γ /z with an 
arbitrary z. Below we mainly use the normalization when square of long roots are equal 2 (this 
corresponds to α = −2, [16]). One can recover parameter α by replacing β → −2β/α, γ →
−2γ /α, x → −xα/2.

Obviously, non-trivial contribution in (9) give only roots μ with non-zero scalar product 
with λ. First we discuss the case λ = θ , where θ is the highest root of adjoint representation. 
We use the analysis of [16]. With normalization of scalar product such that square of long roots 
is 2, roots with nonzero scalar product with highest weight θ are θ itself, with square 2, and a 
number of roots with scalar product with θ equal to 1. For these roots we need for (9) their scalar 
products with ρ. These roots can be organized into three sequences with unit spacing between 
scalar products of consecutive elements with ρ. These sequences are the following (we assume 
γ ≥ β ≥ 0 and the rank of algebra at least three): first sequence of length t − 2, starting at root μ
with (ρ, μ) = 1 and ending at some root ν with (ρ, ν) = t −2, second sequence, of length γ −2, 
starting at some root μ with (ρ, μ) = β/2 and ending at some root ν with (ρ, ν) = γ + β/2 − 3, 
and finally third sequence, of length β −2, starting at some root μ with (ρ, μ) = γ /2 and ending 
at some root ν with (ρ, ν) = β + γ /2 − 3.

We illustrate this picture for E7 algebra in Table 3.
From this classification of roots one can easily calculate the quantum dimension of adjoint 

representation by Weyl formula (9). One factor is that from highest weight of adjoint, θ :

F(x,α,β, γ ) =
Sinh

[
(2γ+2β+α)x

4

]

Sinh
[

(2γ+2β+3α)x
4

] (11)

Another contribution is from the roots with scalar product with θ , equal to 1. One observe that 
consecutive numerators and denominators in each string in Weyl formula cancel, and remaining 
three border terms are:

B(x,α,β, γ ) = −
Sinh

[
(γ+2β+2α)x

4

]

Sinh
[ γ x

4

]
Sinh

[
(2γ+β+2α)x

4

]

Sinh
[

βx
4

]
Sinh

[
(2γ+2β+3α)x

4

]

Sinh
[

αx
4

] (12)

Altogether we get for quantum dimension:

f (x) = −
Sinh

[
(γ+2β+2α)x

4

]

Sinh
[ γ x

4

]
Sinh

[
(2γ+β+2α)x

4

]

Sinh
[

βx
4

]
Sinh

[
(2γ+2β+α)x

4

]

Sinh
[

αx
4

] (13)

Note that in the final answer Vogel’s parameters enter symmetrically, as it should be for adjoint 
representation.
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Similarly, quantum dimension of n-th Cartan power of adjoint is the product of contribution 
in Weyl formula of highest weight of adjoint representation (F(x, n, α, β, γ ) below) and contri-
bution of other roots (B(x, n, α, β, γ ) below):

χnθ (xρ) = F(x,n,α,β, γ )B(x,n,α,β, γ ) (14)

F(x,n,α,β, γ ) =
Sinh

[
(2γ+2β−(−3+2n)α)x

4

]

Sinh
[

(2γ+2β+3α)x
4

] (15)

B(x,n,α,β, γ ) = (16)

n∏
i=1

Sinh
[

(γ+2β−(−3+i)α)x
4

]

Sinh
[

(γ−(−1+i)α)x
4

]
Sinh

[
(2γ+β−(−3+i)α)x

4

]

Sinh
[

(β−(−1+i)α)x
4

]
Sinh

[
(2γ+2β−(−4+i)α)x

4

]

Sinh
[−iαx

4

]

For n=1 these functions coincide with those for adjoint representation (11), (12), (13):

F(x,1, α,β, γ ) = F(x,α,β, γ ) (17)

B(x,1, α,β, γ ) = B(x,α,β, γ ) (18)

χnθ (xρ)|n=1 = f (x) (19)

For n = 2, 3 in the limit x → 0 we get dimensions of representations Y2(α), Y3(α) coinciding 
with expressions of [10]. For general n in the same limit we obtain dimension formula for Yn(α)

from [16].
Although above classification of roots is valid not for all algebras, final result for characters 

is valid for all simple Lie algebras, as we checked directly. E.g. for G2 we use Weyl formula 
(9) with following G2 data: simple roots α1 and α2, with length squares 2/3 and 2, respectively, 
and scalar product (α1, α2) = −1; remaining positive roots are α1 + α2, 2α1 + α2, 3α1 + α2 and 
3α1 + 2α2, last one being highest root. Substituting this in (9) with λ = n(3α1 + 2α2) we get

Sinh
[

x
2 (n + 1)

]

Sinh
[

x
2

]
Sinh

[
x
2

(
n + 4

3

)]

Sinh
[

2x
3

]
Sinh

[
x
2

(
n + 5

3

)]

Sinh
[

5x
6

] Sinh
[

x
2 (n + 2)

]

Sinh[x]
Sinh

[
x
2 (2n + 3)

]

Sinh
[

3x
2

]

(20)

which coincides with general formula (14) with universal parameters specialized for g2.

3. Quantum dimensions of Cartan powers of adjoint and Y2(β)

Next consider the Cartan product of k copies of adjoint representation and l copies of repre-
sentation Y2(β). We again follow the analysis of [16].

Consider highest root θ of simple Lie algebra, corresponding principal sl2, its centralizer h
and h’s highest root σ , assuming h is simple Lie algebra. See Table ([16], p. 385) for a list 
of corresponding data. According to [16,7], if h is simple, its Vogel’s parameters α′, β ′, γ ′ are 
α′ = α, β ′ = γ − β, γ ′ = β , provided initial parameters are ordered as α < 0, γ ≥ β ≥ 0. Since 
θ, σ are orthogonal, their corresponding Cartan elements Hθ, Hσ create a double grading

gij = {X ∈ g, [Hθ,X] = iX, [Hα̃,X] = jX} (21)



242 R.L. Mkrtchyan / Nuclear Physics B 921 (2017) 236–249
Table 4
(ρ, μ) for roots μ of g1±1 ((r)ed and (g)reen) and g10 (black) for E7.

(ρ,μ) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I r r r r r r r 1 1 g g g g g g g
II r 1 1 1 1 1 1 1 1 g
III 1 1 1 1 1 1

Roots μ with (θ, μ) = 1. Black roots have (σ, μ) = 0, (r)ed roots have (σ, μ) = −1, (g)reen roots 
have (σ, μ) = 1. All entries have multiplicity 1.

Non-zero are g00, g0±1, g±10, g±1±1, g±20, g0±2 spaces. We assume minimal normalization 
of invariant scalar product, i.e. square of long roots =2, which corresponds to Vogel’s parameter 
α = −2.

The highest weight of Y2(β) is θ + σ [16], where σ is the highest weight of subgroup h, so 
the highest weight of Cartan product of k copies of adjoint and l copies of Y2(β) is (k + l)θ + lσ .

For Weyl formula we need g01, g02, g20, g10, g1±1. Last two spaces, or equivalently roots with 
scalar product with highest root of g equal to 1, are already used in previous section for calcula-
tion of quantum dimension of powers of adjoint representation and are presented in Table 3 for 
E7 as an example. Universal parameters of E7 are (α, β, γ ) = (−2, 8, 12).

Now we need refinement of space of roots with unit scalar product with θ according to their 
scalar product with σ . These are shown in the Table 4 for E7, and described for general case 
below. Red and green roots belong to g1,−1 and g1,1, respectively.

The number of both is β , with (β −1) at the beginning (end) of sequence I, plus one additional 
root at the beginning (end) of sequence II.

Now we have all necessary data for Weyl formula. First we write down contributions from 
different parts of three sequences of roots. Red roots give C2(x, k, α, β, γ ), green ones C1(x, k +
2l, α, β, γ ), remaining colored roots give F1−1, F11 respectively. Three sequences of remaining 
black roots give A(x, k + l, α, β, γ ). Next, one-dimensional spaces g20, g02 give rise to F20, F02, 
respectively. Finally, contribution of g01 we denote by B̃(x, l, α, β, γ ). Contribution of g01 and 
g02 together give the quantum dimension of l-th power of adjoint of h. Since we know universal 
parameters of h, we can use calculation of quantum dimension of power of adjoint representation 
in previous section. Particularly, B̃(x, l, α, β, γ ) = B(x, l, α, β, γ − β).

Altogether, the product of all contributions gives desired answer χ(k+l)θ+lσ which we denote 
Z(x, k, l, α, β, γ )

χ(k+l)θ+lσ (xρ) ≡ Z(x, k, l, α,β, γ ) (22)

Contribution of black roots in Table 4 into character (for an arbitrary simple group) is given 
by A(x, n, α, β, γ ) below at n = k + l:

A(x,n,α,β, γ )

=
n∏

i=1

⎛
⎝Sinh

[
(2γ+3α−iα)x

4

]

Sinh
[

(2β+α−iα)x
4

]
Sinh

[
(2γ+β+4α−iα)x

4

]

Sinh
[

(β−iα)x
4

]
Sinh

[
(2β+γ+3α−iα)x

4

]

Sinh
[

(γ+α−iα)x
4

]
⎞
⎠

Contribution of red roots is given by function below at n = k:

C2(x,n,α,β, γ ) =
n∏ Sinh

[
x
4 (−α − 2β + αi)

]

Sinh
[

αix
] (23)
i=1 4
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Contribution of green roots is given by function below at n = k + 2l:

C1(x,n,α,β, γ ) =
n∏

i=1

Sinh
[

(2β+2γ+4α−iα)x
4

]

Sinh
[

(2γ+3α−iα)x
4

] (24)

Contribution of 1-dimensional spaces g20, g02, and remaining colored roots from g11, g1−1:

F(x, k, l, α,β, γ ) = F20F02F11F1,−1 =

=
Sinh

[
(2β+2γ−(−3+2k+2l)α)x

4

]

Sinh
[

(2β+2γ+3α)x
4

]
Sinh

[
(2γ−(−3+2l)α)x

4

]

Sinh
[

(2γ+3α)x
4

]

×
Sinh

[
(β+2γ−(−3+k+2l)α)x

4

]

Sinh
[

(β+2γ+3α)x
4

]
Sinh

[
(β−kα)x

4

]

Sinh
[

βx
4

]

Contribution of g01:

B̃(x, l, α,β, γ ) = B(x, l, α,β, γ − β) =
n∏

i=1

Sinh
[

(2γ−β−(−3+i)α)x
4

]

Sinh
[

(β−(−1+i)α)x
4

]
Sinh

[
(γ+β−(−3+i)α)x

4

]

Sinh
[

(γ−β−(−1+i)α)x
4

]
Sinh

[
(2γ−(−4+i)α)x

4

]

Sinh
[−iαx

4

] (25)

Finally, quantum dimension of Cartan product gkY2(β)l is:

Z(x, k, l, α,β, γ ) =
F(x, k, l, α,β, γ )A(x, k + l, α,β, γ ) × (26)

B̃(x, l, α,β, γ )C1(x, k + 2l, α,β, γ )C2(x, k,α,β, γ ) (27)

In the limit x → 0 one obtains universal formulae for dimensions of corresponding representa-
tion. They coincide with formulae of [16].

Again, we check this expression for algebras, for which derivation is not valid, directly. How-
ever, there is an interesting subtlety. Let’s take again example of rank-two algebra G2. One can 
calculate the quantum dimension for Cartan product of k adjoint representations and p represen-
tations Y2(β) using data for G2 given above:

f (x, k,p) =
Sinh

[
x
2

(
2p+1

3

)]

Sinh
[

x
2

(
1
3

)] Sinh
[

x
2 (k + 1)

]

Sinh
[

x
2 (1)

]
Sinh

[
x
2

(
k + 1 + 2p+1

3

)]

Sinh
[

x
2

(
1 + 1

3

)] × (28)

Sinh
[

x
2

(
k + 1 + 2(2p+1)

3

)]

Sinh
[

x
2

(
1 + 2

3

)]
Sinh

[
x
2

(
k + 1 + 3(2p+1)

3

)]

Sinh
[

x
2

(
1 + 3

3

)]
Sinh

[
x
2

(
2(k + 1) + 3(2p+1)

3

)]

Sinh
[

x
2

(
2 + 3

3

)]

One can easily check coincidence for p = 1:

Z(x, k,1,−2,10/3,8/3) = f (x, k,1) (29)
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However, we encounter zero for p > 1:

Z(x, k,p,−2,10/3,8/3) = 0 (30)

for p > 1 (31)

It is not clear why is it so, but it is in agreement with direct calculations at low orders for 
exceptional line in [14]. Namely, it was found there that for k = 0, p = 2 the corresponding uni-
versal representation J (universal in the sense that there exist universal – on the exceptional line 
– expression for its dimension, see below) is equal to Cartan square of Y2(β) (which is denoted 
there Y ∗) for all exceptional algebras except g2, for which it is equal to zero. Our representation 
with k = 0, p = 2 coincides with J , as can be seen either from decomposition formulae from 
[14], or one can obtain dimension formula (restricting Z(x, 0, 2, α, β, γ ) to exceptional line and 
taking limit x → 0), and then compare the result with dimension formula for J . Parameterizing 
exceptional line by α = λ, β = 1 − λ, γ = 2 and taking the limit we get dimension formula

lim
x→0

Z(x,0,2, λ,1 − λ,2) = (32)

81(−6 + λ)(−4 + λ)(−3 + λ)(2 + λ)(3 + λ)(5 + λ)(−5 + 2λ)(3 + 2λ)

(−1 + λ)2λ2(−1 + 2λ)2(−2 + 3λ)(−1 + 3λ)

which coincides exactly with dimension formula for representation J from [14]. (Similar co-
incidence one can observe with other formulae from [14], see Table 6 in Appendix.) In this 
parametrization g2 corresponds to λ = −2/3, and above expression is zero at that point.

So, phenomenon (30) is an extension of this fact to the whole k ≥ 0, p ≥ 2 region. This and 
other specific features of universal formulae for quantum dimensions deserve further study.

4. Deligne’s hypothesis on quantum dimensions

Introduction of parameters α, β, γ can be considered as some deformation of the scalar objects 
in the theory of (simple) Lie algebras and groups. The reasonable question is what properties of 
initial objects are maintained. Deligne [20] suggested that usual relation between characters of 
representations (i.e. the product of characters of representations is equal to the sum of charac-
ters of representations in decomposition of product of representations) is satisfied by universal 
quantum dimensions at entire Vogel’s plane. This hypothesis would follow from Vogel’s Uni-
versal Lie algebra [10] provided, first, one defines the quantum dimensions in the framework of 
Universal Lie algebra and, second, there exist a homomorphism of Universal Lie algebra into 
complex numbers with an arbitrary parameters α, β, γ . Both conditions are not established yet.

Deligne carried on complete check of the version of his hypothesis restricted to slN line 
[20]. On the entire Vogel’s plane one can check it for the square of adjoint representation. For 
example, the symmetric square of adjoint representation of simple Lie algebra has a universal 
decomposition [15], given above:

S2g = 1 + Y2(α) + Y2(β) + Y2(γ ) (33)

Quantum dimension of representation Y2(α) is given in Section 2:

χY2(α)(xρ) = (34)

− sinh[ xt
2 ]sinh[ x(β−2t)

4 ]sinh[ x(γ−2t)
4 ]sinh[ x(β+t)

4 ]sinh[ x(γ+t)
4 ]sinh[ x(3α−2t)

4 ]
sinh[ xα

4 ]sinh[ xα
2 ]sinh[ xβ

4 ]sinh[ xγ
4 ]sinh[ x(α−β)

4 ]sinh[ x(α−γ )
4 ]

and permutations of this for Y2(β), Y2(γ ).
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Deligne’s hypothesis imply

χS2g(xρ) = χY2(α)(xρ) + χY2(β)(xρ) + χY2(γ )(xρ) + 1 (35)

at an arbitrary universal parameters. Here quantum dimension of symmetric square of adjoint can 
be expressed in terms of quantum dimension of adjoint, i.e. function f (x) (13):

χS2g(xρ) = 1

2

(
f 2(x) + f (2x)

)
(36)

Then relation (35) can be checked directly. Similarly, decomposition of antisymmetric square 
of adjoint:

∧2(g) = g+ X2 (37)

implies relation between quantum dimensions:

1

2

(
f 2(x) − f (2x)

)
= f (x) + DX2 (38)

where quantum dimension of representation X2 is [20]

DX2 =
Sinh

[
(2t−α)x

4

]
Sinh

[
(2t−β)x

4

]
Sinh

[
(2t−γ )x

4

]

Sinh
[

αx
4

]
Sinh

[
βx
4

]
Sinh

[ γ x
4

] × (39)

Sinh
[

(t+α)x
4

]
Sinh

[
(t+β)x

4

]
Sinh

[
(t+γ )x

4

]

Sinh
[

αx
2

]
Sinh

[
βx
2

]
Sinh

[ γ x
2

]
Sinh

[
(t−α)x

2

]
Sinh

[
(t−β)x

2

]
Sinh

[
(t−γ )x

2

]

Sinh
[

(t−α)x
4

]
Sinh

[
(t−β)x

4

]
Sinh

[
(t−γ )x

4

]

Now we would like to check the hypothesis for symmetric cube of adjoint representation.
Decomposition of symmetric cube of adjoint is, according to [10]:

S3g = 2g+ X2 + Y3(α) + Y3(β) + Y3(γ ) + (40)

gY2(β)(α,β, γ ) + gY2(β)(α, γ,β) + gY2(β)(β, γ,α)

where gY2(β)(α, β, γ ) is the Cartan product of adjoint and Y2(β) representations, where we 
explicitly write down its dependence on universal parameters, and last two representations are 
obtained from gY2(β)(α, β, γ ) by permutations of parameters. Note that Z(x, 1, 1, α, β, γ ) is 
symmetric w.r.t. the switch of α and β , so there is no other representations. In Appendix A we 
give a specific examples of this decomposition.

Equation (40) leads to the probable relation between quantum dimensions:

1

6

(
f (x,α,β, γ )3 + 3f (2x,α,β, γ )f (x,α,β, γ ) + 2f (3x,α,β, γ )

)
=

Z(x,3,0, α,β, γ ) + Z(x,3,0, β,α, γ ) + Z(x,3,0, γ,β,α) + (41)

Z(x,1,1, α,β, γ ) + Z(x,1,1, α, γ,β) + Z(x,1,1, β, γ,α) +
+DX2(x,α,β, γ ) + 2f (x,α,β, γ )

which is obliged to be satisfied on the points of Vogel’s table, but Deligne’s hypothesis assumes it 
on entire Vogel’s plane. This is checked with Mathematica up to 17-th order in expansion over x, 
and numerically at a dozens thousands of random points in Vogel’s plane and x line. All this 
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cannot be considered as a rigorous proof, but is convincing enough and can be developed into 
such.

Finally, let’s note that universal quantum dimensions, entering in decomposition of symmet-
ric cube of adjoint representation, i.e. those in r.h.s. of (41), were used in [3] in calculation of 
universal knot polynomials.

5. One-instanton partition function

Universal formulae of present paper can have a number of applications. We would like to 
mention one-instanton contribution into Nekrasov’s partition function for an arbitrary group in 
pure N=2 4d superYang–Mills theory.

It is calculated for an arbitrary gauge group G in [21], see also [22]. It is essentially given (see 
Appendix B of [21]) by σ → 0 limit of character of representation

∞∑
n=1

V (−nθ) ⊗ T ⊗n (42)

of group G ⊗ U(1)2. Here V (−nθ) is an irrep with highest weight nθ , i.e. n-th Cartan power of 
adjoint, T = T1T2, Ti = exp(σεi), i = 1, 2, εi are Nekrasov’s parameters.

Universalization of this expression is possible, if vacuum expectation value of scalar field 
(argument of character) is restricted to Weyl line xρ. Then in formula (42) appears the universal 
character of n-th Cartan power of adjoint given by (14), and we get a universal expression for 
1-instanton contribution:

∞∑
n=1

enσ(ε1+ε2)
Sinh

[
(2γ+2β−(−3+2n)α)x

4

]

Sinh
[

(2γ+2β+3α)x
4

] × (43)

n∏
i=1

Sinh
[

(γ+2β−(−3+i)α)x
4

]

Sinh
[

(γ−(−1+i)α)x
4

]
Sinh

[
(2γ+β−(−3+i)α)x

4

]

Sinh
[

(β−(−1+i)α)x
4

]
Sinh

[
(2γ+2β−(−4+i)α)x

4

]

Sinh
[−iαx

4

]

This observation can be developed in the several directions: one can try to get closed form for 
the sum over n of universal characters in (42), extend this to higher-instanton contributions and 
to complete partition function of (supersymmetric) Yang–Mills theory, and to other (“universal”) 
values of scalar fields.

6. Conclusion

As mentioned, this paper is the next step in realization of program of representation of 
partition functions and observables in gauge theories (and other simple-Lie-algebras-based the-
ories) in universal form. This program is successful for Chern–Simons theory on the 3d sphere 
[1,2], and has led to establishment of exact (i.e. non-perturbative) Chern–Simons/topological 
strings duality for SU(N) gauge groups [6], similar results in refined cases [6], gauge/string 
duality conjecture for exceptional groups [23], universal knot polynomials [3], and other achieve-
ments.

In present paper we derive the universal expressions for universal characters (quantum di-
mensions) of some series of representation of simple Lie algebras, appearing in decomposition 
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of tensor powers of adjoint representation. We partially check these complicated formulae by 
numerical study of particular case of Deligne hypothesis on quantum dimensions.

There is a number of applications of these formulae for abovementioned program. Our ex-
pressions for quantum dimensions themselves are quantum averages for unknot Wilson loops, 
in corresponding representations, in Chern–Simons theory on 3d sphere. Next, some of these 
formulae, namely those for irreps in the decomposition of the cube of adjoint representation are 
already used in [3] for derivation of universal form of knot polynomials (i.e. Wilson averages) 
for some torus knots in the same Chern–Simons theory. In Section 5 we use these formulae for 
derivation of universal form of one-instanton partition function on Weyl line in supersymmetric 
Yang–Mills theory.

We expect further applications of present formulae in gauge theories. Most important would 
be derivation of universal form of perturbative and non-perturbative parts of (supersymmetric) 
Yang–Mills theories on different manifolds and with different matter fields (super)multiplets. 
With the same theories in mind it seems intriguing to discover universality in integrable mod-
els.
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Appendix A. Examples of decompositions of symmetric cube of adjoint

In this Appendix we present Tables 5–7 for decompositions of symmetric cube of adjoint rep-
resentation for specific algebras: sl6, slN, so12, soN, f4 and exceptional line. We see particularly 
appearance of “negative” representations (see data for f4) which actually cancel the same rep-
resentation, appearing in some other term in decomposition, so effectively they don’t appear at 
all.

Table 5
Decomposition of the symmetric cube of adjoint for sl6 and slN .

irrep dim (sl6) Dynkin dim(slN )

2g 2 × 35 2× 10001 2(−1 + N2)

Y3(α) 2695 30003 1
36 (−1 + N)N2(1 + N)2(5 + N)

Y3(β) 175 00200 1
36 (−5 + N)(−1 + N)2N2(1 + N)

Y3(γ ) 1 1

X2 2 × 280 20010+01002 1
2 (−2 + N)(−1 + N)(1 + N)(2 + N)

gY2(β)(α,β, γ ) 3675 11011 1
9 (−3 + N)(3 + N)

(
−1 + N2

)2

gY2(β)(α, γ,β) 405 20002 1
4 (−1 + N)N2(3 + N)

gY2(β)(β, γ,α) 189 01010 1
4 (−3 + N)N2(1 + N)

Sum of dims 7770 1
6 (−1 + N)N2(1 + N)

(
1 + N2

)

Dim of S3g 7770 1
6 (−1 + N)N2(1 + N)

(
1 + N2

)
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Table 6
Decomposition of the symmetric cube of adjoint for f4 and Exc line.

irrep dim (f4) Dynkin Exc line: α = s, β = 1 − s, γ = 2

2g 2×52 2× 1000 − 4(−6+s)(5+s)
(−1+s)s

Y3(α) 12376 3000 − 10(−6+s)(−5+s)(−4+s)(5+s)(−6+5s)

(−1+s)2s3(−1+2s)(−1+3s)

Y3(β) 273 0010 − 10(−6+s)(3+s)(4+s)(5+s)(1+5s)

(−1+s)3s2(−1+2s)(−2+3s)

Y3(γ ) -52 2(−6+s)(5+s)
(−1+s)s

X2 1274 0100 5(−6+s)(−4+s)(3+s)(5+s)

(−1+s)2s2

gY2(β)(α,β, γ ) 10829 1002 − 27(−6+s)(−5+s)(−4+s)(3+s)(4+s)(5+s)

(−1+s)2s2(−2+3s)(−1+3s)

gY2(β), (α, γ,β) 0 0
gY2(β)(β, γ,α) 0 0

Sum of dims 24804
20(−6+s)(5+s)

(
−60−s+s2

)

(−1+s)3s3

Dim of S3g 24804
20(−6+s)(5+s)

(
−60−s+s2

)

(−1+s)3s3

Table 7
Decomposition of the symmetric cube of adjoint for so12 and soN .

irrep dim (so12) Dynkin dim (soN)

2g 2×66 2× 010000 (−1 + N)N

Y3(α) 23100 030000 1
144 (−3 + N)(−2 + N)(−1 + N)(2 + N)(3 + N)(4 + N)

Y3(β) 924 000020+000002 1
720 (−5 + N)(−4 + N)(−3 + N)(−2 + N)(−1 + N)N

Y3(γ ) 0 0

X2 2079 101000 1
8 (−3 + N)(−1 + N)N(2 + N)

gY2(β)(α,β, γ ) 21021 010100 1
80 (−5 + N)(−2 + N)(−1 + N)N(1 + N)(2 + N)

gY2(β), (α, γ,β) 2860 210000 1
8 (−2 + N)(−1 + N)(1 + N)(4 + N)

gY2(β)(β, γ,α) 0

Sum of dims 50116 1
48 (−1 + N)N

(
2 − N + N2

)(
4 − N + N2

)

Dim of S3g 50116 1
48 (−1 + N)N

(
2 − N + N2

)(
4 − N + N2

)
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