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We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons 
formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the 
bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation 
of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same 
value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.
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1. Introduction

Asymptotically flat spacetimes are one of the most intuitive 
classes of systems that exist in gravity. We expect that, for local-
ized matter distributions, the Einstein equations will have solu-
tions asymptotically matching Minkowski space, far away from the 
source. In four dimensions, even outside matter distributions, the 
vacuum Einstein equations can accommodate solutions with non-
zero Riemann curvature, as is seen for example in the case of the 
Schwarzschild black hole. The Riemann curvature there tends to 
the Minkowski flat value of zero at large distances, parameterized 
by the radial coordinate.

The picture in three dimensions, however, is different as grav-
ity is topological in nature. The Riemann tensor here has only six 
independent components, and is linearly related with the Einstein 
tensor. The Einstein equation necessarily gives vacuum solutions 
which are locally Riemann flat. So, if the metric is to be the field 
that describes an isolated mass distribution in three dimensions, 
the information about the mass can only manifest as topological 
properties of the spacetime. Various schemes towards this end ex-
ist. For example, in spacetimes with cosmological constant � = 0, 
conical singularities generated by isolated mass particles have the 
mass encoded in an angular deficit of the azimuthal periodicity in 
the metric, which becomes less than 2π [1]. Also, depending on 
the parameter enumerating angular deficit, one can even get so-
lutions which are angular excesses, though they do not represent 
physical solutions. On the other hand, identification of points along 

* Corresponding author.
E-mail addresses: olivera.miskovic@pucv.cl (O. Miskovic), rodrigo.olea@unab.cl

(R. Olea), roy.debraj@pucv.cl (D. Roy).
http://dx.doi.org/10.1016/j.physletb.2017.02.006
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
the curves of a Killing vector comprising a linear combination of 
Lorentz boosts and a translation along a spatial direction has been 
carried out in flat space leading to flat-space cosmologies [2]. These 
topological identifications were inspired by the ones in AdS3 lead-
ing to the BTZ black hole. In fact, following [3], the whole class 
of solutions in (2 + 1)-dimensional flat space is classified by two 
free, dimensionless, parameters μ and j. With G being the three-
dimensional gravitational constant, the parameter μ = 8GM is re-
lated to mass, while j = 4G J is related to angular momentum.

Due to the existence of these various solutions, all of which 
must return to the 3D Minkowski solution in appropriate limits 
of the parameters describing the respective topological deforma-
tions corresponding to the 3D vacuum, the role of physical proper-
ties of the vacuum itself becomes quite important. We focus here 
on the vacuum energy of 3D Minkowski space. Adopting a field-
theory approach and using an off-shell equivalence between three-
dimensional Einstein–Hilbert gravity and Chern–Simons action for 
Poincaré gauge group, we calculate the mass as the Noether charge 
for spacetime diffeomorphisms, which is on-shell equivalent to 
gauge transformations. We do this for two classes of physically ad-
missible solutions, the conical singularity and flat-space cosmolo-
gies.

Spacetimes whose parameters lie in a negative interval −1 <
μ = −α2 < 0 possess a conical defect of magnitude 2π(1 − |α|). 
These are, in general, spacetimes of a spinning particle.1 The static 
sector of a massive point particle is given by [1]

ds2 = −dt2 + r−β
(

dr2 + r2dθ2
)

, 0 ≤ θ < 2π . (1.1)

1 In AdS3 space, the spinning particles are nothing but the BTZ black hole with 
negative mass [4].
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The value of G is fixed by the usual pre-factor in the Einstein equa-
tion Gμν = 8πG Tμν , where the speed of light has been set to 
unity. To see that this solution is locally flat, it is convenient to 
make a coordinate transformation (r, θ) → (ρ, φ),

ρ = rα

α
, φ = α θ , (1.2)

with α = 2−β
2 , which leads to the transformed flat metric

ds2 = −dt2 + dρ2 + ρ2dφ2, 0 ≤ φ < 2πα . (1.3)

The point to note here is the altered range of the angular coordi-
nate φ, modulated by the parameter α, which describes an angular 
deficit or excess, when α �= 1. For β > 2, α becomes negative and 
the original point r = 0 containing the mass is mapped by (1.2) to 
ρ = ∞, thus destroying the physical picture and asymptotics. In-
deed, Ashtekar et al. [5] noted that the points ρ = ∞ are at a finite
geodesic distance away from any point in the interior. This shows 
the breakdown of asymptotic flatness as the concept of being ‘far 
away’ from an isolated source. On the other hand, for β < 0, or 
in an interval of parameters μ = −α2 < −1, the angular range 
exceeds 2π and instead of a deficit, we have an excess, describ-
ing a hyperbolic geometry similar to lettuce leaves, which is not 
necessarily asymptotically flat. Thus the range of parameters ac-
commodating asymptotical flatness is

0 < α ≤ 1 ⇔ 0 ≤ β < 2 , (1.4)

where α = 1 or β = 0 gives us the 3-dimensional Minkowski 
spacetime. In this range, the deficit angle is related to the mass 
of the particle, m, measured with respect to the Minkowski vac-
uum,2 through β = 8Gm. This deficit angle is always present, at 
any distance from the source including at infinity, and thus the 
spacetime is never asymptotically Minkowskian, unless the mass 
is zero. This is an important distinction from four dimensions as, 
even in the leading order of an asymptotic expansion, the space-
time is not Minkowskian and carries information about the mass.

Investigations of spacetimes with such asymptotics give inter-
esting results. Ashtekar et al. [5] considered generic asymptotically 
flat spacetimes whose boundary behavior matches that of the con-
ical singularity (1.1) and demonstrated that the bound on the range 
of β translated to the Hamiltonian being bounded both from above 
and below. Their starting point was the usual Einstein–Hilbert ac-
tion, adopting a Regge–Teitelboim [6] approach of adding neces-
sary surface terms to the Hamiltonian, which gives the conserved 
quantities. The energy corresponded to a Hamiltonian that gen-
erates time translations only for β < 2, with the value of energy 
being positive and lying in the range [0, 1/4G]. The energy of the 
Minkowski vacuum turns out to be zero.

Later, Marolf et al. in [7] consider a finite, differentiable ac-
tion consisting of the Einstein–Hilbert term in the bulk and the 
Gibbons–Hawking term at the boundary for the same asymptotics 
that leads to a Hamiltonian with the same behavior of energy 
being bounded from both above and below. However, the en-
ergy appears now shifted and found to be negative, lying in the 
range [−1/4G, 0] with the energy of the Minkowski vacuum set 
to −1/4G . Both approaches were in the metric formulation. In 
contrast, Corichi et al. in [8] adopted a first-order Hamiltonian for-
mulation and showed that the results in both references [5] and 
[7] could be reproduced.

On the other hand, Barnich et al. in [3] calculated the vacuum 
energy as the flat limit of the cosmological AdS solutions and they 
found that it coincides with the value of the AdS vacuum.

2 The mass m of the point particle is shifted so that the Minkowski space, μ =
−1, corresponds to m = 0, that is, μ = − (1 − 4Gm)2.
The class of conical singularities described by eq. (1.4) are sup-
plemented by two other classes of spacetimes, depending on other 
choices of the parameters μ and j. As mentioned above, the de-
fect μ = −α2 < 0 corresponds to a space with an angular deficit 
(α2 < 1) or excess (α2 > 1). On the other hand, when μ = α2 > 0, 
these geometries can be interpreted as cosmological spacetimes. 
For completeness, we note that there exist the null orbifold when 
μ = 0 = j, but we will not consider it here. Among the cases we 
consider, the Minkowski space for |α| = 1 and j = 0, is acces-
sible as a limit for conical singularities and angular excesses, or 
discretely from flat space cosmologies. We shall discuss all asymp-
totics with μ �= 0.

In order to clarify the controversy in the literature about the 
value of the vacuum energy of Minkowski space, we adopt a field 
theory approach where we consider an action for 3D flat gravity 
given by a Chern–Simons (CS) form for Poincaré group. The CS ac-
tion naturally comes equipped with a boundary term that is one 
half of the usual Gibbons–Hawking term. This is along the line of 
a similar proposal for the AdS case, discussed earlier in [9–11]. It 
has been recently pointed out in [12] that the addition of half of 
the Gibbons–Hawking term on top of the Einstein–Hilbert action 
has a well defined variational principle in the asymptotically flat 
case.

The CS gravity action has some advantages with respect to the 
Einstein–Hilbert one. For example, it is more suitable for construc-
tion of flat space supergravity through a direct supersymmetriza-
tion of a gauge group [13,14]; high-spin theory in 3D is described 
by the CS action for S L(n, R) × S L(n, R) [15]; spin-3 action in 2D 
can be obtained via reduction of CS flat action with a boundary 
[16]; 3D conformal gravity is a CS theory [17], etc. On the other 
hand, some applications of the CS action in 3D include a tunnel-
ing from flat space to flat space cosmology [18] and logarithmic 
corrections to entropy [19].

2. Poincaré Chern–Simons gravity

General Relativity on a 2 + 1 dimensional manifold M can be 
written as a Chern–Simons gauge theory invariant under local the 
Poincaré group [20]

IC S [A] = k

4π

∫
M

〈
A ∧ dA + 2

3
A ∧ A ∧ A

〉
, (2.1)

where the constant k is called the level of the theory and 〈· · · 〉
is the trace of group generators. The gauge connection 1-form 
A = Aμ(x) dxμ takes values in the Poincaré algebra iso(2,1) as 
A = 1

2 ωAB J AB +e A P A . Here ωAB = ωAB
μ (x) dxμ and e A = e A

μ(x) dxμ

are the gauge field 1-forms – the spin connection and the vielbein, 
respectively. The Greek indices μ, ν, . . . = (t, r, θ) label the space–
time coordinates, and the Latin ones A, B, . . . = 0, 1, 2 are the Lie 
algebra indices. Furthermore, J AB , P A are the iso(2,1) generators 
obeying the 2 + 1 dimensional Poincaré algebra

[ J AB , JC D ] = ηAD J BC − ηAC J B D + ηBC J AD − ηB D J AC ,

[P A, J BC ] = ηAB P C − ηAC P B ,

[P A, P B ] = 0 . (2.2)

We use the signature ηAB = diag (−,+,+). The trace of the above 
generators defines the invariant tensor of the Lie algebra and it 
has the form 〈 J AB P C 〉 = εABC , while 〈 J AB J C D〉 = 0 = 〈P A P B〉. With 
this construction for the gauge connection Aμ , we see the action 
(2.1) transforming to

IC S = k

4π

∫
εABC R AB ∧ eC − k

8π

∫
εABC ωAB ∧ eC , (2.3)
M ∂M
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where R AB = 1
2 R AB

μν dxμdxν = dωAB +ωA
C ∧ωC B . The first term is 

exactly the Einstein–Hilbert action, once we realize that the local-
ized gauge fields ωAB and e A are nothing but the spin connection 
and triad frame fields of first-order gravity,

I E H = 1

16πG

∫
d3x

√−g R = 1

32πG

∫
εABC R AB ∧ eC , (2.4)

identifying the level of the Chern–Simons theory with the gravita-
tional constant G by k = 1

4G .
The second term in (2.3) is a boundary term defined on the 

boundary ∂M. We take a radial Gaussian foliation of the space-
time in the coordinates xμ = (x1, xi) = (r, xi), i = 0, 2,

ds2 = N2(r)dr2 + hij(r, x)dxidx j , (2.5)

so that the boundary is placed at constant radius r = rB . Here, hij
is the induced metric on the boundary.

We work in first-order formulation where the fundamental 
fields are the vielbein e A = e A

μ dxμ and the Lorenz connection 
ωAB = ωAB

μ dxμ . One possible choice of the vielbein in the folia-
tion (2.5), where the Poincaré indices split as A = (1, a), is

e1 = N dr ,

ea = ea
i dxi . (2.6)

The boundary vielbein ea
i is related to the induced metric by hij =

ηab ea
i eb

j , and the extrinsic curvature of the boundary is

Kij = − 1

2N
∂rhi j . (2.7)

The components of ωAB are calculated from de A +ωAB ∧eB = 0, 
leading to

ω1a = K a ,

ωab = ωab
i dxi + ei[a∂reb]

i dr , (2.8)

where K a = K a
i dxi = eaj Ki jdxi is the extrinsic curvature 1-form 

and the antisymmetrization of indices in ei[a∂reb]
i includes the fac-

tor 1
2 . The Lorentz connection corresponds to the spacetime metric, 

ωab(g), on the l.h.s. of the equality, and to the boundary metric, 
ωab(h), on the r.h.s.. The induced metric hij and its inverse hij raise 
and lower the boundary world indices, whereas the boundary viel-
bein ea

i and its inverse ei
a projects the world indices i, j, .. to the 

Lorentz ones a, b, .., and vice versa.
With this notation and using ε1ab = −εab , the boundary term is

− k

8π

∫
∂M

εABC ωAB ∧ eC = k

8π

∫
∂M

εab

(
2ω1a ∧ eb + ωab ∧ e1

)

= k

4π

∫
∂M

d2xε i jεab K a
i eb

j = 1

2
BG H .

(2.9)

Note that e1 = 0 and ωab(g) = ωab(h) on the boundary. The 
Gibbons–Hawking boundary term reads

BG H = − 1

8πG

∫
∂M

d2x
√

−h K , (2.10)

with K = hij Ki j being the trace of the extrinsic curvature.

This calculation shows that the boundary term, which arises 
naturally in Chern–Simons Poincaré gravity, equals one-half of the 
standard Gibbons–Hawking boundary term, and we will use it 
as our boundary piece in the gravitational action. In AdS gravity, 
this anomalous Gibbons–Hawking boundary term [21] has been 
shown to result in a finite action principle and proper values of 
the Noether charges [11,22].

The usual Gibbons–Hawking term provides a well-defined ac-
tion principle for the Dirichlet boundary conditions on the induced 
metric. A change of boundary term has consequence of the bound-
ary conditions, as well. In the next section we address this ques-
tion in asymptotically flat space.

3. Boundary conditions

A suitable set of boundary conditions for the action (2.3) is the 
one for which the variation of the action vanishes when the equa-
tions of motion hold. The variation of the action (2.1), on-shell, 
gives rise to a surface term

δ IC S = k

4π

∫
∂M

〈δA ∧ A〉

= k

8π

∫
∂M

εABC

(
δe A ∧ ωBC − e A ∧ δωBC

)
. (3.1)

In an equivalent form, in an adapted frame (2.6) which implies 
(2.8), we have

δ IC S = k

4π

∫
∂M

εab

(
δea ∧ ω1b − ea ∧ δω1b

)
, (3.2)

for r = Const , in terms of boundary quantities.
Let us analyze the fall-off conditions in the boundary metric for 

a spacetime which behaves asymptotically as a spinning particle 
(μ = −α2 in Eq. (1.1)). The boundary is parametrized by the local 
coordinates xi = (t, θ), such that the induced metric behaves for 
large r as [5,7]

hij =
[

−1 +O(1/r) O(r− β
2 −1)

O(r− β
2 −1) r2−β +O(r1−β)

]
. (3.3)

One possible choice for the boundary zweibein is

e0 = A dt ,

e2 = C

r2
dt + r1− β

2 B dθ , (3.4)

where the functions A(r, x), B(r, x) and C(r, x) are regular in the 
asymptotic region, such that their expansion is

A = 1 +O(1/r) ,

B = 1 +O(1/r) ,

C = O(1) . (3.5)

In addition, the lapse function for large r has the form N = r− β
2 +

O(r− β+1
2 ). The components of Levi-Cività connection ωAB (e) are

ω10 = − r
β
2 A′

A
e0 − χ e2 ,

ω12 = χ e0 − r
β
2

(
B ′

B
+ 2 − β

2r

)
e2 , (3.6)

where the prime denotes radial derivative and we have defined the 
function
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χ = r
β
2 −2

2A

(
C B ′ − BC ′

B
+ (6 − β) C

2r

)
. (3.7)

Asymptotically, the above function behaves as χ = O(r
β
2 −3), what 

implies that ω1a behaves as

ω10 = O(r
β
2 −2) ,

ω12 = −2 − β

2
Bdθ +O(1/r) . (3.8)

On the other hand, the asymptotic form of the boundary frame is

e0 = A dt ,

e2 = r1− β
2 B dθ +O(1/r2) , (3.9)

what yields a finite variation of the action,

δ IC S = − k

4π

2 − β

2

∫
d2x (AδB − BδA) . (3.10)

The action principle is satisfied if A + γ B (with γ = Const .) van-
ishes on the boundary, because then AδB − BδA = 0 on ∂M. This 
condition is fulfilled since, from eq. (3.5), A = B up to the O(1/r)
terms.

4. Noether charge

Let L(φ) be a Lagrangian 3-form describing a configuration 
of fields φ, whose variation is δL = δL

δφ
δφ + d�(φ, ∂φ, δφ), and 

ξ = ξμ∂μ a set of asymptotic Killing vectors. The Noether current 
corresponding to a diffeomorphism generated by the vector field 
ξμ(x) can be written in general as [23]

∗ J = −� − iξ L , (4.1)

where ∗ J = 1
2
√−g εμνλ Jμdxν ∧ dxλ is the Hodge dual of the 

current. For the Chern–Simons action (2.1), the above procedure 
for the connection obeying the Chern–Simons equation of motion 
F = dA + A ∧ A = 0 yields

∗ J = k

4π
d
〈
Aiξ A

〉
. (4.2)

The above formula is a consequence of the fact that the diffeo-
morphisms δxμ = ξμ(x) act on the fields as Lie derivatives, which 
satisfy the differential geometry identity £ξ = iξd +diξ , where iξ is 
the contraction operator and d = dxμ∂μ is the exterior derivative. 
Thus, the Lie derivative acts on the 3-form Lagrangian L as a to-
tal derivative £ξ L = d(iξ L). In consequence, invariance of the action 
I[φ] = ∫

L(φ) under general coordinate transformation implies the 
conservation law d ∗ J = 0. For a given system, the Noether cur-
rent can always be written globally as ∗ J = dQ [ξ ], as discussed in 
Ref. [24], such that one can obtain the Noether charge as a surface 
integral on the spacelike boundary ∂�.

The charge is then expressed as an integral over an appropriate 
asymptotics,

Q [ξ ] = k

4π

∫
∂�

〈
Aiξ A

〉
. (4.3)

It is worthwhile noticing that general coordinate transforma-
tions with parameter ξ become algebraically equal, on-shell, to the 
Poincaré gauge transformations upon field-dependent redefinitions 
of gauge parameters: λAB = ξνωAB

ν and λA = ξνe A
ν for Lorentz 

rotations and translations, respectively. Dependence of λ on the 
gauge fields makes the calculation of the conserved charges asso-
ciated to Poincaré transformations more complicated. A realization 
of off shell equivalence between the two sets of local transforma-
tions involve trivial symmetries [25], which enables one to con-
struct the charge (4.3) starting directly from iso(2,1).

Indeed, a general coordinate transformation acting on the gauge 
connection is given by the identity

£ξ A = Diξ A + iξ F , (4.4)

what makes evident that the gauge transformation is on-shell 
equivalent to a diffeomorphic transformation. Therefore, the
charges are the same. This is no longer true in higher-dimensional 
Chern–Simons theories [26].

In the next section, we employ the equivalence between Chern–
Simons theory and gravity in 2 + 1 dimensions to calculate the 
mass of the solutions in asymptotically flat gravity.

4.1. Conical singularity

Let us study the conical singularity in the spinless case. We re-
call that the metric is given by Eq. (1.1) with α > 0, where the an-
gular variable θ takes values 0 ≤ θ ≤ 2π . The angular deficit, 1 −α, 
is related to a mass sitting at the singularity through α = 1 − 4Gm
and the Minkowski vacuum corresponds to β = 0 when the metric 
becomes identically flat with a full angular range of 2π , as dis-
cussed in (1.4).

We stress that the coordinate r used in the metric (1.1) is not 
the usual radial distance from the center because the perimeter 
at r is not 2π (1 − α) r. To get a locally flat metric (1.3) with the 
angular deficit, we have to change the coordinates as (1.2). On the 
other hand, the ADM form of the metric with N = α2 and Nθ = 0
is realized in the ADM coordinates 

(
t′, r′, θ

) = (t/α, αρ, θ).
In a first-order description of the metric (1.1), we choose the 

triad frame fields

e0 = dt , e1 = r− β
2 dr, e2 = r1− β

2 dθ (4.5)

which, remembering that we have a torsionless and thus Rieman-
nian manifold, fixes the spin-connection through the triad postu-
late as,

ω12 = β − 2

2
dθ. (4.6)

We now employ the CS formulation of 2 + 1 gravity. Using the 
expression for Noether charge corresponding to diffeomorphisms 
(4.3), mass is given as the charge corresponding to the time trans-
lation Killing vector field ξ = ∂t ,

Q [∂t] = k

4π

∫
∂�

〈(
1

2
ωAB J AB + e A P A

)(
1

2
iξω

AB J AB + iξ e A P A

)〉
.

(4.7)

Upon using the Poincaré algebra and the adopted trace 〈 J AB P C 〉 =
0, we finally get

Q [∂t] = k

4π

2π∫
0

1

2
εABC

(
ωAB

θ eC
t + ωAB

t eC
θ

)
dθ

= k (β − 2)

4
. (4.8)

Thus the energy of the vacuum (β = 0) comes out to be

E0 = −k

2
= − 1

8G
. (4.9)
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4.2. Cosmological asymptotically flat metric

In the previous section, we computed the vacuum energy as 
the Noether charge for the conical singularity. Let us confirm that 
the vacuum energy does not depend on the choice of the solution. 
Then, we consider the cosmological asymptotically flat metric [27]
which lies in a different sector of parameter space, μ = α2 and 
j �= 0,

ds2 = − f 2dt2 + dr2

f 2
+ r2(dθ + Nθ dt)2. (4.10)

Here f 2(r) = −μ + j2

r2 and Nθ (r) = j
r2 .

To calculate the Noether charges, we follow a similar approach 
as outlined in the previous section. The triad fields are chosen as

e0 = f dt, e1 = 1

f
dr, e2 = rNθ dt + r dθ, (4.11)

which results in the torsionless spin connection

ω01 = −1

2
r2N ′

θ dθ , ω02 = − rN ′
θ

2 f
dr, ω12 = − f dθ . (4.12)

Using (4.3), this gives corresponding to the killing vector corre-
sponding to time translations ξ t = ∂t a mass

Q [∂t] = 4k GM . (4.13)

The vacuum here is characterized by J = 0 and M = − 1
8G , because 

then the metric becomes Minkowski. This results in the vacuum 
energy

E0 = −k

2
= − 1

8G
, (4.14)

what matches the result (4.9).
To calculate the angular momentum, we just have to use the 

corresponding angular Killing vector ξ = ∂θ in (4.3),

Q [∂θ ] = k

4π

2π∫
0

1

2
εABC

(
ωAB

θ eC
θ + ωAB

θ eC
θ

)
dθ

= 4kG J . (4.15)

Remembering that k = 1
4G leads to

Q [∂t] = M , Q [∂θ ] = J , (4.16)

as expected. We confirmed that the Noether charge formula (4.3)
gives the correct values for the mass, M , and the angular momen-
tum, J , of the black hole and the vacuum energy, E0.

At this point, we emphasize that it is the Chern–Simons form 
of the action which leads to the correct answer for the charges in 
both flat and AdS cases, what leaves no ambiguity in the choice of 
possible boundary terms.

5. Discussion and conclusions

An inequivalent set of boundary conditions which accounts for 
conical defects [1] and flat cosmologies [27] (discussed in Sec-
tion 4.2) in Euclidean sector with the line element

ds2 = hττ (ϕ)dτ 2 + hrr(ϕ)dρ2 + ρ2dϕ2 (5.1)

is given by

δgϕϕ = O(ρ) , δgϕτ = O(1) , δgττ = δgρρ = O(1) ,

δgτϕ = O(1) , δgρτ = O(1/ρ) , δ(gρρ gττ ) = O(1/ρ) .

(5.2)
They are a particular case of the boundary conditions which are 
suitable to treat asymptotically flat Einstein gravity [28] and real-
izes Chiral Gravity in flat space [29]. In Ref. [12] it was shown that 
the only way to have well-defined action principle with this set 
of boundary conditions is to supplement the action with a half of 
the Gibbons–Hawking term. From our point of view, this choice is 
quite natural, as it is dictated by the Chern–Simons formulation for 
iso(2, 1), that is, Eq. (2.3). Therefore, the conserved quantities con-
structed in the previous section can accommodate a large class of 
solutions of flat gravity in three dimensions.

It is worthwhile noticing that these boundary conditions are 
suitable to study 3D asymptotically flat Einstein gravity at null 
infinity, where the asymptotic symmetries are described by the 
Bondi–Metzner–Sachs (BMS) group. In general, BMS boundary con-
ditions have a wave as a solution, and are written in terms of 
the BMS coordinates that include retarded time, radius and an-
gle. A BMS gauge allows to treat the flat case as the limit [3,34] of 
the AdS case [30], which is particularly useful to realize Flat/CFT 
correspondence [31,35]. Furthermore, a 2D dual theory at null in-
finity can be constructed starting from the CS formulation of 3D 
gravity [32].

The construction presented here is inspired by, but differs from, 
the one corresponding to Chern–Simons for AdS group. In three di-
mensions, a single copy of Chern–Simons for S O (2, 2) group gives 
rise to Einstein–Hilbert action with negative cosmological constant 
[36] plus half of the Gibbons–Hawking term [21]. It was shown in 
Ref. [11] that this boundary term renders the variation of the ac-
tion, at the same time, well defined and finite. The surface term in 
the variation of the action adopts the same form as in Eq. (3.2). At 
first glance, it looks like one needs to impose a Neumann bound-
ary condition for the metric (i.e., fixing Kij) for the action to be 
stationary [33]. A posteriori, one can see that adding half of the 
Gibbons–Hawking term is compatible with keeping a conformal 
structure at the boundary, instead of the full boundary metric hij . 
In particular, this can accommodate a holographic interpretation of 
the theory [11]. Indeed, the behavior of the fields in asymptotically 
AdS gravity is such that the extrinsic curvature is proportional to 
the boundary metric at leading order in the expansion. This acci-
dent happens only in the AdS gravity: the absence of a conformal 
data in the boundary metric in asymptotically flat gravity prevents 
a direct definition of holographic quantities in this case.
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