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Abstract

The main work of the thesis is devoted to the study of heavy flavored mesons using a QCD

potential model. Chapter 1 deals with the brief introduction of the theory of Quantum Chro-

modynamics (QCD), potential models and the use of perturbation theory. In Chapter 2, the

improved potential model is introduced and the solution of the non-relativistic Schrödinger’s

equation for a Coulomb-plus-linear potential, V (r) =−4αs
3r +br+ c, Cornell potential has

been conducted. The first-order wave functions are obtained using Dalgarno’s method. We

explicitly consider two quantum mechanical aspects in our improved model: (a) the scale

factor ‘c’ in the potential should not affect the wave function of the system even while

applying the perturbation theory and (b) the choice of perturbative piece of the Hamiltonian

(confinement or linear) should determine the effective radial separation between the quarks

and antiquarks. Therefore for the validation of the quantum mechanical idea, the constant

factor ‘c’ is considered to be zero and a cut-off rP is obtained from the theory. The model

is then tested to calculate the masses, form factors, charge radii, RMS radii of mesons. In

Chapter 3, the Isgur-Wise function and its derivatives of semileptonic decays of heavy-light

mesons in both HQET limit (mQ → ∞) and finite mass limit are calculated. In Chapter

4, the leptonic decay constants of various D and B mesons are studied both in coordinate

and momentum space. The graphical variations of the meson wave functions are compared

with that of the hydrogen atom distributions. The calculated results of Chapters 3 and 4 are



viii

compared with available experimental data and also with the predictions of other models. In

Chapter 5, we outline the method how group theoretical tool of Young Tableau of SU(3)c

is used to find the maximum number of constituent gluons in an experimentally observed

scalar glueball. In Chapter 6, we have summarized our work including its limitations and

the plausible renovation of the model for future study.

The thesis then ends with a detailed list of References consulted during the work and

with the Appendices where calculations are shown.
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1
Introduction

Quantum Chromodynamics (QCD) is a modern theory of the strong force which describes

the interaction between quarks and gluons. This non-abelian gauge field theory of symmetry

group SU(3) has two essential characteristics: one is confinement, which means that the

force between quarks does not vanish as they are separated i.e. quarks and gluons cannot

be identified as isolated particles, they are present only in color-singlet bound hadron states

such as protons. Another important fact is asymptotic freedom. At very high-energy scales

or at the short distance, quarks and gluons interact very weakly i.e. as the energy of the

interactions goes to infinity, the effective coupling between quarks and gluons vanishes. Thus

without interactions at very high energy, the theory can be regarded as a free theory. The
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theoretical physicists well understand the asymptotic behavior of QCD. The perturbation

theory can be used to describe the small interactions between the quarks and gluons. But

the theory fails for the interaction with soft particles where the coupling strength is large.

Though the theory can explain asymptotic freedom, but fails for confinement phenomenon

of quarks. Confinement is thus non-perturbative and requires a non-perturbative approach.

Lattice gauge theory is a non-perturbative regularization of field theory. It was proposed

by Wilson [1] in 1974 which provides a non-perturbative quantization of gauge fields by a

lattice. Lattice QCD clarifies the comparison between the theory and the experimental data.

The significant advantage of it is, in lattice QCD calculations (done on a computer) where

lots of data can be obtained and can be treated as experimental data and then further used to

test the other phenomenological models. One of such model is QCD potential model. At

non-perturbative low energy regime of QCD, lattice QCD gives us the information about the

structure and energy spectrum of mesons. The other way to proceed in the non-perturbative

regime of QCD is the postulation of a QCD inspired quark model using non-relativistic

Schrödinger equation for light and heavy flavored pseudoscalar mesons. The present work of

the thesis is devoted to such a possible model.

1.1 Phenomenological models

The phenomenological model approach is a highly efficient tool to understand the properties

of physical observables like hadrons (mesons and baryons) and glueballs (a bound state of

pure gluons). A great variety of models e.g. the Constituent Quark Models (CQM) [2], light

cone QCD [3] and various effective field theories such as Heavy Quark Effective Theory

(HQET) [4] and Chiral Perturbation Theory (ChPT) [5] besides QCD Sum Rules [6, 7] have

been developed during forty years of QCD.
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In Constituent Quark Model (CQM), the strongly interacting particles, the hadrons

(baryons(qqq) and mesons(qq̄)) are made up of fundamental particles called quarks and

gluon fields. These six quarks (u,d,s,c,b, t) are called flavors. Quark model describes the

hadronic properties of the wave function of a hadron. Among CQM, the non-relativistic

constituent quark models (NRCQM) [8] are successful in describing the mass spectrum of

hadrons, where the constituent quarks are assumed to be non-relativistic and interact through

QCD potential provided by gluons. However, one can introduce relativistic dynamics as well.

The present work of the thesis is dedicated to one of the successful phenomenological

models called potential model.

1.2 Potential models

Depending on the concepts of ‘quark confinement’ and ‘asymptotic freedom’, to find the

phenomenological form of the static potential, a lot of work has been done which are available

in the literature [9–12] for modeling mesons. Among those, in the potential model we follow

a non-relativistic potential of the type

V (r) =
−4αs

3r
+br+ c, (1.1)

where ‘r’ is the inter-quark separation of the bound state, αs is the strong running coupling

constant and the factor 4
3 arises from the SU(3) color factor

CF =
N2

C −1
2NC

, (1.2)

where NC is the number of colors and CF is the casimir operator λ c.λ c =CF , λ c is the

generator of SU(NC) group. For SU(3), NC = 3, therefore, CF = 4
3 .
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The parameter ‘b’ is called confinement parameter. The phenomenological value of ‘b’ is

considered to be ≈ 0.183GeV 2 [13, 14].

This Coulomb-plus-linear non-relativistic confinement potential, called Cornell potential

[10] is an essential ingredient of QCD to study quarkonium physics. It has achieved a lot of

consideration to describe the systems of quark and antiquark bound states in the context of

meson spectroscopy.

In equation (1.1), the Coulomb part of V (r) represents the shorter-range part of the

potential and is due to one gluon exchange contribution which is flavor independent. The

second term of the potential associated with the longer-range part and is responsible for the

confinement of the quarks in the model. In QCD, both the potentials play a decisive role in

the quark dynamics, and their separation is not possible. The third term ‘c’ in the potential

is a phenomenological constant required to be fitted on the spectrum. The term ‘c’ can be

regarded as the free-parameter in the theory.

Fig. 1.1 and 1.2 show the graphical representation of potential (1.1) with αs = 0.39,

b = 0.183GeV 2 [13, 14] and with c = 0 and c = 0.5GeV respectively. In the same graph we

have also shown the variation of Coulomb and linear potential separately with inter-quark

separation r (GeV−1).



1.2 Potential models 5

-4 Αs

3 r

-4 Αs

3 r
+ br

br

0 1 2 3 4 5

-1.5

-1.0

-0.5

0.0

0.5

r HGeV-1L

V
Hr

L

Fig. 1.1 Variation of potential (1.1) and its parts with inter-quark separation r with αs = 0.39,
b = 0.183GeV 2 and c = 0.

br

-4 Αs

3 r
+ c

-4 Αs

3 r
+ br + c

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

r HGeV-1L

V
Hr

L

Fig. 1.2 Variation of potential (1.1) and its parts with inter-quark separation r with αs = 0.39,
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The energy of the potential can obtain by solving the corresponding Schrödinger’s

equation,

Hψ(r) = Eψ(r), (1.3)

where the Hamiltonian operator H acts on the wave function ψ(r) of the bound system.

Hamiltonian,

H =− h̄2

2µ
∇2 +V (r). (1.4)

The exact solution of Schrödinger’s equation is not possible mostly [15]. These exist

only for a few idealized systems e.g. the harmonic oscillator, the hydrogen atom.

To solve real problems, one uses approximation methods. A variety of such methods are

available in the literature which has its area of applicability, e.g. perturbation theory [16, 17],

the variational method [16], and the WKB method [16]. In our present work, we have used

the perturbation theory for our analysis.

For the potential of type (1.1), one of the significant advantages [10] based on the

Coulomb and linear term of the potential is that it naturally leads to two choices for the parent

Hamiltonian. Also, there are no appropriate small parameters so that one of the terms of the

potential can be made perturbative within a perturbation theory.

In perturbation theory, we make small deformation to the Hamiltonian of the system,

H = H0 +H ′, (1.5)
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where H0 is the Hamiltonian of the unperturbed system and H ′ is the perturbed Hamil-

tonian. The approximation method is most suitable when H is close to the unperturbed

Hamiltonian H0, i.e. H ′ is small.

The Schrödinger’s equation corresponding to the unperturbed Hamiltonian is

H0ψ(0)(r) = E0ψ(0)(r). (1.6)

In the method, it is assumed that the Schrödinger’s equation can be solved for H0, i.e.,

the unperturbed eigenfunction ψ(0) and energy eigenvalue E0 are known to us. To obtain the

perturbed eigen function ψ(1) corresponding to Hamiltonian H ′, one can apply the Dalgarno’s

method [18] of perturbation.

The wave functions obtained by using Dalgarno’s method of perturbation are used to find

the various properties of mesons. In this thesis, the study of meson properties include the

masses, Isgur-Wise function of heavy-light mesons and their derivatives. Root Mean Square

(RMS) radii, form factors, charge radii and decay constants are also studied here. The results

are compared with available experimental data and also with the predictions of other models.

1.3 Weak decay of mesons

In the standard model of particle physics, the quark and antiquark of the mesons are bound

together by the strong interaction. Mesons are classified according to their quark/anti-quark

composite and in JPC multiplets too, where J is total angular momentum, parity P is given

by (−1)l+1, where l is the orbital angular momentum, C is charge conjugation (−1)l+s. The

C-parity can also be generalized to the G-parity (−1)I+l+s for the mesons made of quarks
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and their own antiquarks, where I is the isospin quantum number.

The l = 0 states give the pseudoscalar (0−+) and vector (1−−) mesons.

According to the quark and antiquark combination of the mesons, they are classifying

into three categories:

Light-light mesons: both the quark and antiquark are light (u,d or s only). e.g. π(ud̄/dū)

and K(us̄/ds̄) mesons.

Heavy-light mesons: one quark or antiquark is heavy (c,b or t) and the other is light. e.g.

D(cd̄/cū) and B(ub̄/db̄) mesons.

Heavy-heavy mesons: both the quark and antiquark are heavy. e.g. ηc(cc̄), ηb(bb̄)

mesons etc.

Mesons undergo weak transition via charged W± boson. Depending on the decay

products, there are three types of weak decays which are extensively studied in the literature.

They are leptonic decays, semileptonic decays and non-leptonic decays. However, the thesis

does not involve the non-leptonic decay. Leptonic and semileptonic decays are studied here

only. In Table 1.1, we tabulate the three types of weak decays and their product particles.
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Table 1.1 Weak decay of mesons and their products.

Type of weak decay Products Examples
Leptonic decay Leptons only D+ −→ l+ν

π± −→ l±ν
K± −→ l±ν etc.

Semileptonic decay Leptons and hadrons B+ −→ Dl+ν
B− −→ π0l−ν̄
Bc −→ J/ψl+ν etc.

Non-leptonic decay Hadrons only B0 −→ D−π+

B̄0 −→ D+ρ−

B̄ −→ K̄J/ψ etc.

1.3.1 Leptonic decay of mesons

As an illustration in Fig. 1.3, we consider a pure leptonic decay process of D+(cd̄) meson,

which decays to a lepton-neutrino pair via a virtual W boson.

Fig. 1.3 Annihilation of D+, a pure leptonic decay process.

Similar annihilation processes can also occur in π+,K+,Ds and B+ mesons.

For a pseudoscalar P meson, the lowest order decay width is [19]

Γ(P → lν) =
G2

F
8π

f 2
Pm2

l MP

(
1− m2

l

M2
P

)
|Vq1q2 |2, (1.7)

where MP is the mass of P meson, ml is the mass of lepton, | Vq1q2 | is the Cabibbo-

Kobayashi-Maskawa (CKM) matrix element between the constituent quarks q1 and q2 in
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meson P. The standard notation of 3×3 CKM matrix in terms of quark flavor is

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



.

From PDG2016 [2], we can express VCKM as

VCKM =




0.97417±0.00021 0.2248±0.0006 (4.09±0.39)×10−3

0.220±0.005 0.995±0.016 (40.5±1.5)×10−3

(8.2±0.6)×10−3 (40.0±2.7)×10−3 1.009±0.031



.

In equation (1.7), GF is the Fermi coupling constant (≈ 1.166×10−5GeV−2) [2]. The

decay constant fP is the “wave function overlap” of the quark and antiquark of the mesons

(e.g. the overlap of the wave function of c and d̄ in D+ in Fig. 1.3) which is proportional to

the matrix element of the axial current between the P-meson state and the vacuum:

⟨0 | q̄1γµγ5q2 | P(p)⟩= ipµ fp. (1.8)

Particle lifetime, τ = 1
Γ is one of the important characteristics of meson which depends

on the available decay modes or channels, which are subjected to conservation laws for ap-

propriate quantum numbers, coupling strength of the decay process and kinematic constraints.

For particles which are associated with multiple decay modes, the total decay rate (Γtotal)

will be the total value of the rates of the individual modes (Γi),

Γtotal =
n

∑
i=1

Γi. (1.9)
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When the mass of the elementary particle is measured, the total decay rate appears as the

irreducible “width" of the distribution, hence called “decay width".

Another interesting parameter in decay processes is their branching fraction (Bi) which is

the probability of the decay by distinct modes. Thus the branching fraction of mode ‘i’ is

Bi =
Γi

Γtotal
. (1.10)

Measurements of branching fraction and lifetime allow an experimental determination

of the product | Vq1q2 | fP. Once decay constant fP is known to us, one can obtain the

corresponding CKM element. On the other hand, taking the value of |Vq1q2 | assuming CKM

unitarity, one can infer the experimental measurement of the decay constant which can later

be compared with the theory.

Purely leptonic decay processes are considered to be the simplest and cleanest decay

modes of the pseudoscalar charged mesons. The decay amplitude can be written as the prod-

uct of the well-understood leptonic current for the system and a more complicated hadronic

current for the quark transition. The hadronic current, however, cannot be so easily evaluated,

since the quarks in the hadrons are not free and so non-perturbative strong interaction effects

become important in describing the physical states.

Mathematically, the amplitude for a leptonic decay can be written as [20]

A (P → lν) =−i
GF√

2
Vq1q2LµHµ , (1.11)

where the leptonic current Lµ can be defined in terms of the Dirac spinors ul and νν as
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Lµ = ūlγµ(1− γ5)νν (1.12)

and the hadronic current is

Hµ = ⟨0 | q̄1γµ(1− γ5)q2 | P⟩= i fPqµ , (1.13)

which is simple, since the only four vector available to be constructed with the leptonic

current is qµ . Here the momentum transfer q2 = m2 is constant and hence the form factor

which is a function of q2 becomes a constant fP, the decay constant of the meson.

1.3.2 Semileptonic decay of mesons

As an illustration in Fig. 1.4, we consider a semileptonic decay process of B̄0(d̄b) meson,

which decays to a D∗+(cd̄) meson and a lepton-neutrino pair via a virtual W− boson.

Fig. 1.4 Semileptonic decay process for B̄0 → D∗+lν .

Historically, the semileptonic process of nuclear decay opened the era of weak inter-

action physics and presented the physicists with the mystery of the electron’s undetected

partner, the neutrino [21]. In leptonic decays (P → lν), the hadronic current describes the

annihilation of the quark and antiquark in the initial state meson, whereas in semileptonic

decays ( P1 → P2lν), it describes the evolution from the initial to final state hadrons. The

decay, P → lν , in the standard model proceeds via the axial-vector current q̄1γµγ5q2, whereas
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semileptonic decays P1 → P2lν proceed via the vector current q̄1γµq2. Thus the determina-

tion of the CKM matrix element | Vq1q2 | from leptonic and semileptonic decays tests the

V −A structure of the standard model electroweak charged-current interaction [19].

For semileptonic decay of a meson P1 into a meson P2, the amplitude takes the form

[22, 23],

A (P1 → P2l−ν̄) =−i
GF√

2
Vq1q2LµHµ , (1.14)

where the hadronic current is

Hµ = ⟨P2 | q̄1γµ(1− γ5)q2 | P1⟩. (1.15)

This is not calculated in a simple manner as is done in leptonic decay since q2 is different

from event to event. Thus Hµ can be expressed in terms of different form factors, which

isolate the effects of strong interactions on the amplitude.

As an illustration, for the pseudoscalar to pseudoscalar transition

B̄ −→ Dlν̄ , (1.16)

a set of form factors Fi(q2) can be defined as [4]

⟨D̃(p′)|c̄γµb|B̃(p)⟩= F1(q2)

[
(p+ p′)µ − m2

B −m2
D

q2 qµ
]
+F0(q2)

m2
B −m2

D
q2 qµ , (1.17)
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where p and p′ are momentum of B and D mesons respectively and q = p− p′. The form

factors F0(q2) and F1(q2) are subjected to the constraint that at q2 = 0, F0(0) = F1(0).

Again, for the pseudoscalar to vector transition

B̄ −→ D∗lν̄ , (1.18)

a set of form factors V (q2),A0(q2),A1(q2) and A2(q2) can be defined as

⟨D̃∗(p′,ε)|c̄γµ(1− γ5)b|B̃(p)⟩= 2iεµναβ

mB +mD∗
ε∗ν p′α pβV (q2)−

[
(mB +mD∗)ε∗µA1(q2)− ε∗.q

mB +mD∗
(p+ p′)µA2(q2)−2mD∗

ε∗.q
q2 qµA3(q2)

]

−2mD∗
ε∗.q
q2 qµA0(q2),

(1.19)

where ε is the polarization of the D∗ meson.

The form factor A3(q2) is given by the linear combination of A1(q2) and A2(q2) as

A3(q2) =
mB +mD∗

2mD∗
A1(q2)− mB −mD∗

2mD∗
A2(q2). (1.20)

At q2 = 0, A0(0) = A3(0).

In the infinite heavy quark mass limit, mQ → ∞, a new heavy flavor symmetry appears

in the effective Lagrangian of the standard model which provides the model independent

normalization of the weak form factors and the necessity of HQET(Heavy Quark Effective

Theory) [4, 24] enters into the literature. In this heavy quark symmetry, the form factors (two

for pseudoscalar to pseudoscalar transition and four for pseudoscalar to vector transition)



1.4 Heavy Quark Symmetry and Isgur-Wise function 15

of heavy-light mesons in semileptonic decay can be expressed in terms a single form factor

which is termed as Isgur-Wise function [4].

1.4 Heavy Quark Symmetry and Isgur-Wise function

The bound states containing heavy quarks (mQ >> ΛQCD) describing the strong interactions

are easier to understand compared to states containing light quarks only, wherein the standard

model u,d,s are light quarks (q) and c,b, t are heavy quarks (Q). For heavy quarks, the effec-

tive coupling constant (αs) is small. The length scale 1
ΛQCD

∼ 1 Fermi determines the typical

size of hadrons (Rhad). Systems containing both the heavy quarks (QQ̄, e.g. cc̄-charmonium,

bb̄-bottomonium) have size λQ
αs

<< Rhad , where λQ is the Compton wavelength. For systems

which are composed of a heavy quark (Q), where mQ >> ΛQCD, λQ << Rhad and other

light constituents, a new symmetry arises known as Heavy Quark Symmetry [25–31]. In

the limit mQ → ∞, the heavy quark and the system which contains it have the same velocity

and the systems which differ only by the quantum number of their constituent heavy quarks

have the same configuration of the remaining light degrees of freedom. This means for

two bound systems containing two different heavy quarks Q and Q′, when their masses

mQ,m′
Q >> ΛQCD, the configuration of the light degrees do not change if we replace Q ↔ Q′,

where Q and Q′ are moving with same velocities. In heavy quark effective theory limit, the

heavy quark looks like a static color source for the light quarks, which is similar to the atomic

system.

The concept of a new flavor symmetry for hadrons containing a heavy quark was first

introduced by Shuryak in 1980 [32], who later studied many properties of heavy mesons

and baryons with QCD sum rules [6]. But an explicit model independent formulation of

the physical ideas of the spin-flavor symmetry was developed by Nussinov and Wetzel [27],

Voloshin and Shifman [28, 29], Politzer and Wise [30, 31], Isgur and Wise [25, 26] and



1.4 Heavy Quark Symmetry and Isgur-Wise function 16

Grinstein [33], until finally Georgi [24] reformulated the low energy effective Lagrangian for

a heavy quark in a covariant way in a theory called Heavy Quark Effective Theory (HQET).

The heavy quark is covered by a most complicated, strongly interacting cloud of light

quarks and antiquarks by the exchange of soft gluons. This cloud was sometimes called brown

muck by Isgur, and the properties of such systems cannot be calculated from first principles in

a perturbative way. The HQET applies to the hadron system containing only one heavy quark.

The inference of Heavy Quark Symmetry for the semi-leptonic decays of B mesons,

B̄ −→ Dlν̄ and B̄ −→ D∗lν̄ is that, if we consider that b and c quarks are heavy enough to

satisfy the requirements of HQET, then the six real, independent form factors that define

these decays are expressible in terms of Isgur-Wise function ξ (y).

In the heavy quark infinite mass limit (mQ → ∞), (1.17) and (1.19) leads to

F1(q2)≈V (q2)≈ A0(q2)≈ A2(q2)≈ ξ (y)

and F0(q2)≈ A1(q2)≈ 0.
(1.21)

Thus, the HQET predicts that all the form factors that describe these decays are express-

ible in terms of the Isgur-Wise function, ξ (y). This is an important application of the HQET

in non-relativistic quark model (NRQM). In the NRQM, the initial meson is assumed to be at

rest, and after the transition moves with velocity v′. The Isgur-Wise function measures the

overlap of the wave functions of the light degrees of freedom in the initial and final meson

state, where one of the quarks is moving relative to the other and it takes the form

ξ (y) =
∫

| ψ(r) |2 e−imv′rd3r. (1.22)
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The Isgur-Wise functions are normalized to unity i.e. ξ (y = 1) = 1 at zero-recoil point

(v = v′), where y = v.v′, Lorentz boost. The condition ξ (y = 1) = 1 is a resultant of the

conservation of vector current and signify the complete overlap of the wave functions when

v = v′.

The method of application of HQET in NRQM was initiated by Close and Wambach

[34, 35].

Besides quark and antiquark systems, which are extensively studied in literature and

experimentally configured, there are particles like glueballs, pentaquarks and hybrid which

are also the prediction of QCD. The experimental status for these states is however not yet

been confirmed as that of meson and baryon systems.

We will outline briefly the theoretical and experimental status of glueballs which is a part

of our present work.

1.5 Glueballs: an overview

The non-abelian nature of SU(3)-color group allows the existence of purely gluonic bound

states called glueballs. These glueballs are pure QCD bound states and are hadrons without

valence quarks; they are bound state of gluons only. The experimental determination and

understanding properties of these pure glueball states are challenging because these states

can mix with nearby qq̄ resonances. Though the potential model, which is so successful

to describe the bound states of quarks, is a bit controversial to use in case of a bound state

of pure gluons. But from the ongoing efforts on gluon propagator, it has been confirmed

that gluons may have a dynamically generated mass. In the early 80’s, Cornwall arrived

at such dynamical mass mg = (500±200)MeV [36, 37] and the relativistic corrections are
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expanded in the powers of 1
m2

g
[38]. Because gluons have an effective mass, so there is a

chance to use non-relativistic Schrödinger’s equation and hence the potential model to study

the bound state of gluons [37–39]. Theoretically, various models have been constructed to

study the properties and masses of glueballs [40]. In 1976, the MIT bag model was first used

to examine glueball properties, where it was assumed that the gluons are confined inside the

bag [41].

1.5.1 Potential for two-gluon glueball

Here the gluons are described as massive spin-1 particle interacting through one-gluon

exchange and breakable string [37, 39]. At the short distance, the effective coupling between

gluon-gluon becomes weak, and the interaction can be treated perturbatively. The short

distance potential is approximated by one-gluon exchange potential and at long distance,

gluons are confined non-perturbatively via a string potential [37],

Vstr(r) = 2mg

(
1− e−

r
r0

)
, (1.23)

where mg is the mass of gluon, r0 = 0.6Fermi [37] and ‘r’ is the gluon-gluon separation.

The gluon-gluon potential for two-gluon glueball is [39]

V2g(r) =−λ
[{

1
4
+

1
3

S2 +
1

2m2
g
(L.S)

1
r

∂
∂ r

− 1
2m2

g

(
(S.∇)2 − 1

3
S2∇2

)}
e−mr

r
+

(
1− 5

6
S2
)

π
m2 δ 3(r)

]
+Vstr(r),

(1.24)

where

λ =
3g2

4π
(1.25)
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is the adjoint strong coupling constant and S = S1 +S2 is the total spin of the two-gluon

glueball.

The Hamiltonian for two-gluon glueball is

H = 2mg −
1

mg
∇2 +V2g. (1.26)

Another simplest way of modeling a two-gluon glueball is the use of spinless two-body

Salpeter Hamiltonian (semirelativistic) [38],

H0 = 2
√

p2 +agr−3
αs

r
, (1.27)

where, the kinematic part is the kinetic energy of two spinless valence gluons. The

potential includes a Coulomb plus linear form, Cornell shape. The linear term can be treated

as the static energy of flux tube linking the two gluons, where ag is the string tension. The

Coulomb term represents the lowest order approximation of the one-gluon exchange between

two gluons. αs is the effective strong coupling constant (αs < 1). The factor 3 is the color

factor associated with a gluon pair in a color singlet. A relativistic correction can also be

introduced to the Hamiltonian of the system.

1.5.2 Potential for three-gluon glueball

For three-gluon glueball the potential is [42]

V3g = ∑
i< j

[VOGE(ri j)+
1
2

Vstr(ri j)], (1.28)

which is obtained by summing over pairs of two-body potentials, where VOGE is the

one-gluon exchange potential and Vstr is the string potential.
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1.5.3 Experimental status of glueballs

In lattice QCD, it appears that the lowest lying glueballs are C =+ ones. Also, the bound

state of two-gluon glueball has C = +1 [43]. Therefore, it is natural to assume that the

two-gluon glueballs are the lightest. Increasing the number of constituent gluons increases

the mass of glueballs. The production reactions which are associated with glueball pro-

duction are glue rich and glue poor reactions. The glue rich reactions include J/ψ decays,

Pomeron-Pomeron exchange reactions and p− p̄ annihilation. The latter include 2-photon

production and photo production.

The first of glue rich process is radiative J/ψ decay, J/ψ −→ γG (Fig. 1.5(a)). In J/ψ

decay, the cc̄ pair decays via annihilation and the intermediate state must have gluons in it.

The gluons interact and must form glueballs. The similar argument can also be used for p- p̄

annihilation (Fig. 1.5(b)) and γ decays, where quark-antiquark pairs annihilate into gluons,

they interact and may form glueballs. Another glue rich process for glueball production is

central production. In central production, two hadrons pass by each other ‘nearly untouched’

and are scattered diffractively in the forward direction. The valence quarks are exchanged.

The process is often called Pomeron-Pomeron scattering (Fig. 1.5(c)). The absence of

valence quarks in the production process makes the central production a good place to search

for glueballs [44].

The mass of 0++ scalar glueball in bag model [41], for (T E)2 gluons is 0.96 GeV/C2

and for (T M)2 is 1.59 GeV/C2. Flux-tube model was carried out by Isgur and Paton [45, 46]

to calculate the mass of glueball, where the glueball is treated as a closed flux tube. The

mass of lightest scalar glueball 0++ was found to be 1.52 GeV/c2 in the model. Besides

that QCD sum rule predicts the lightest scalar glueball with a mass in the range of 0.3 to

0.6 GeV/c2 [47]. Lattice calculations using a larger lattice and smaller lattice parameters
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(a) Radiative J/ψ decay. (b) p− p̄ annihilation.

(c) Pomeron-Pomeron scatter-
ing.

Fig. 1.5 Processes favoring glueball production.
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yields the mass of scalar glueball to be 1.625± 0.094GeV/c2 [48, 49]. The total decay

width of the scalar glueball was also calculated by authors in the process of decay of scalar

glueball to pairs of pseudoscalar mesons and was found to be under 0.2 GeV/c2. The Particle

Data Group (PDG) data suggest existence of five scalar glueball candidates: f0(500) or

σ , f0(980), f0(1370), f0(1500) and f0(1710) with IJPC = 00++ in the energy region up

to 1.8 GeV [50]. Among them, f0(1500) and f0(1710) appears to be the strongest can-

didates for scalar glueballs since they are produced in radiative J/ψ decay and not seen

on γγ collisions. The state f0(1500) has a mass of 1.505 GeV/c2 and a width of 0.110

GeV/c2 [51]. In 2004, BES II Collaboration [52], suggest the existence of the new resonance

f0(1790). There are several other resonances which are possible candidates of glueballs:

σ(750), i(1440),G(1550),θ(1710),ξ (2220),gT (2050),gT (2300) and gT (2350) [53]. But

no definite conclusions can be obtained concerning the nature of these states. All lattice

simulations and experiments agree that the lightest scalar glueballs have mass in the range

1500-1750 MeV , while the tensor and pseudoscalar glueballs have mass in the range 2000-

2400 MeV [48, 54–57].

There are many new experiments planned, e.g. the PANDA Experiment at GSI in

Germany [58], BES III at BEPC II in Bejing [59], the GlueX Experiment at Jefferson

Laboratory in the USA [60], ALICE at CERN [61, 62], which will provide us more data on

this.

1.6 The work of this thesis

The primary motivation of the thesis is to study meson properties in a non-relativistic quark

model. Certain modifications are suggested to the model which expands its area of applica-

bility.
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In the model, the wave functions are obtained with Coulomb-plus-linear, Cornell potential

(1.1) using Dalgarno’s method of perturbation and relativistic correction is incorporated in a

free Dirac way. The wave function was obtained initially in ref. [63, 64] by considering the

Coulomb potential as the parent and the linear potential as the perturbation. The obtained

wave function was then used to study various static and dynamical properties of heavy

and light flavored mesons such as form factors, decay constants and charge radii, where a

negligible confinement effect (b ∼ 0) and a large value of coupling constant αs (αs ∼ 0.65)

could be incorporated.

Further in ref. [65, 66], the slope and curvature of Isgur-Wise function were studied

by using two loop V-scheme [67, 68]. However, application of V-Scheme was found to be

successful in studying the Isgur-Wise function of D and Ds mesons but was not so successful

in studying the B,Bs and Bc mesons.

The wave functions are also obtained using a different perturbative approach, known

as Variationally Improved Perturbation Theory (VIPT) in ref. [69], where acquired wave

functions are used to find properties of heavy-light mesons, and the results for charge radii

are found to be very small for the Coulomb part of the potential as parent compared to the

linear part of the Cornell potential.

Overall it is to mention that in ref. [65, 66, 70], the properties of the mesons were studied

considering the Coulombic part of the Cornell potential dominant over the linear part. On

the other hand, in ref. [71], the Schrödinger equation is solved by considering the linear part

to be dominant over the Coulombic part of the potential.
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However, it is well known that at short distance Coulomb potential plays a more dominant

role than the linear confinement because while the former is inversely proportional to ‘r’,

the latter is linear. Similarly, for the large distance the confinement takes over the Coulomb

effect. Therefore if the inter-quark separation ‘r’ can be roughly divided into two regions

0 < r < rP for short distance and rP < r < r0 for long distance effectively, where rP is the

point where one of the potentials will dominate over the other. Therefore in the present work

of the thesis we tried to incorporate both the short range and long range effect of the potential

in the construction of total wave function.

Also, it is already mentioned that the constant term ‘c’ in the potential (1.1) is a phe-

nomenological constant, which is needed to reproduce correct results for mesons. This

constant term is found to have a variety of numerical values including +ve [14] and -ve[72–

76]. Though this constant term is believed to behave like an energy scale parameter, it seems

that this term plays a crucial role in the analysis of meson properties. We would like to

criticize this here with few points:

Firstly, for hydrogen atom problem, if such a ‘c’ is added along with the Coulombic

potential (−4αs
3r ), it results only in a shift in energy scale and does not have an effect on

the wave function. However, in the case of Cornell potential, if ‘c’ is considered to be in

the perturbative term along with the linear confinement term (with the Coulombic term in

parent Hamiltonian), it has been found to have a significant effect on the total wave func-

tion [65, 66]. If instead of perturbation, ‘c’ is added to parent Hamiltonian along with the

Coulombic potential (confinement term in perturbed Hamiltonian), the term also shows its

effect.
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Secondly, if we consider the linear potential (br) with a constant term ‘c’, the wave

function is not affected, only there is an energy shift. But adding this constant term to the

Cornell potential either in the perturbed Hamiltonian along with the Coulomb potential

(confinement term in parent Hamiltonian) [71] or in the parent Hamiltonian along with the

confinement term (Coulomb term in the perturbed Hamiltonian), the whole wave function is

disturbed.

But in general, it is expected that a constant term ‘c’ in the potential should not affect the

wave function of the system while applying the perturbation theory. This means a Hamil-

tonian H with such a constant and another H ′ without it should give rise to the same wave

functions, but only the energy eigenvalues are shifted by the constant. Since it is seen that

whether the term ‘c’ is in the parent or perturbed part of the Hamiltonian, it always appears

in the total wave function of the bound state. Thus the scaling factor ‘c’ plays a crucial role

in the analysis of meson properties while applying the Dalgarno’s method of perturbation.

Therefore for the validation of the quantum mechanical idea while using perturbation theory

like Dalgarno’s method in the present work of thesis, we have considered the scaling factor

c = 0 in the potential (1.1).

Considering these two facts, we further improve the wave functions and revisited the

model and various properties of mesons are studied in chapter 2, 3 and 4.

In Chapter 2, we reported the use of Dalgarno’s method considering both Coulomb

potential as the parent (linear potential as perturbation) and linear potential as the parent

(Coulomb potential as perturbation) and obtained the wave functions with c = 0. From

the wave functions, we compute the ground state masses of various heavy-light mesons

(D,Ds,B,Bs and Bc) introducing a cut-off parameter rP. The results for charge radii of heavy
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flavored mesons (D+,D0,Ds and B+,B0,Bs) are reported. The analytical expressions for

form factors in terms of momentum transfer (Q2) are also obtained and studied graphically.

The root-mean-square (RMS) radii of mesons including cc̄ and bb̄ mesons are found.

In Chapter 3, we study the Isgur-Wise function and its derivatives for heavy-light mesons

using both infinite mass limit (HQET) and finite mass limit consideration.

In Chapter 4, the decay constant of mesons are studied in both coordinate and momen-

tum space. To study decay constant in momentum space, we transform the wave function

from coordinate to momentum space by using Fourier transformation. Here we introduce a

new cut-off pP in momentum space. The variation of the wave functions in both coordinate

and momentum space are studied graphically.

In Chapter 5, as a part of glueball physics, we outline the group theoretical method of

Young Tableau of SU(3)c to find the maximum number of constituent gluons in an experi-

mentally observed scalar glueball.

In Chapter 6, we summarize the work in the thesis, presenting our concluding remarks

and the future outlook. We also critically analyze limitations of the work in the chapter.



2
The improved potential model and some

properties of heavy flavored mesons

2.1 Introduction

As mentioned in Chapter 1, the QCD potential model [77] is considered to be very successful

in explaining the static and dynamical properties of heavy-light mesons. Various heavy-light

mesons include in the study are D,Ds,B,Bs and Bc mesons. Some of the important features

of the mesons contain their masses, form factors, charge radii and RMS radii. In this chapter,
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we obtain the analytic expressions of the Schrödinger wave functions for the Cornell potential

(1.1) with c = 0. The first-order perturbed wave functions are obtained using Dalgarno’s

method [16, 18] of perturbation. The wave functions obtained are then used to study the

results for the masses, form factors, charge radii and RMS radii of the heavy-light mesons

(qQ̄ or q̄Q), where Q/Q̄ = c,b are the heavy quarks and q/q̄ = u,d,s are the light quarks.

In this chapter, we have suggested improvements to the perturbative procedure of ref.

[63–66, 69–71] by dividing the inter-quark separation r at a point rP, where in the region

r < rP (short distance), the Coulomb potential is dominant and linear is small and in the

region r > rP (long distance), linear potential is dominant and Coulomb is small.

The exact magnitude of rP has explicit dependence on strong coupling constant αs, the

confinement parameter ‘b’ of the Cornell potential.

In ref.[69], the charge radii of various heavy and light mesons were found to be very

small for the Coulombic potential as parent compared to the linear parent potential, where

Variationally Improved Perturbation Theory (VIPT) [10] was used. In ref.[78], charge radii

of mesons were obtained, where the results for light mesons were found to agree well with

the experimental values, but for heavy flavored B mesons, the results were large compared to

other theoretical models. Similarly, the confinement parameter ‘b’ could not be incorporated

in ref.[63, 78]. In this chapter, we take into account these limitations in the study of bound

states D+,D0,D+
s ,B

+,B0,B0
s in perturbative approach and revisit the charge radii.

The RMS radii of various D and B mesons including cc̄ and bb̄ mesons are also studied

in the chapter, while the results for only charmonium and bottomonium are available in the

literature [79, 80]. RMS radii of mesons are of great interest for understanding the property



2.2 Formalism 29

concerning the average size of the bound state of the mesons. The relation between charge

radii and RMS radii of mesons are also shown in the chapter.

The obtained results are compared with the available experimental data and with the other

theoretical models.

2.2 Formalism

2.2.1 Construction of wave function in the model

The modeling of meson wave function is a challenge since the exact wave function is not

available in QCD mostly. The non-relativistic quark model which has been highly successful

for both the meson states containing heavy and light quarks starting from the origin of de

Rujula, Georgi and Glashow [81] has been improved in different manners. In the model,

series solution of the two-body Schrödinger’s equation for the Cornell potential is obtained

using Dalgarno’s method of perturbation. Though the model is non-relativistic in nature, the

relativistic effect is incorporated in a free Dirac way [82, 83] due to light quarks involved. In

QCD potential model approach, the general form of Fermi-Breit Hamiltonian [84] is

H(r) = Hcon f (r)+Hhyp(r)+HS.O.(r), (2.1)

where

Hcon f (r) =
(
−αs(r)

r
+

3
4

br+
3
4

c
)
(F̄i.F̄j), (2.2)

Hhyp(r) =
αs(r)
mim j

[
8π
3

S̄i.S̄ jδ 3(r)+
1
r3

{
3
r2 (S̄i.r̄)(S̄ j.r̄)− S̄i.S̄ j

}]
(F̄i.F̄j), (2.3)
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HS.O(r) = HS.O(cm)(r)+HS.O(t.p)(r), (2.4)

where

HS.O(cm)(r) =
αs(r)

r3

(
1
mi

+
1

m j

)(
S̄i

mi
+

S̄ j

m j

)
L̄(F̄i.F̄j), (2.5)

HS.O(t.p)(r) =− 1
2r

∂Hcon f

∂ r

(
S̄i

m2
i
+

S̄ j

m2
j

)
L̄. (2.6)

Here S̄i and S̄ j are the spins of the ith and jth quarks/antiquarks separated by a distance r.

However, for the ground state (l = 0), only the contact term proportional to δ 3(r)

contributes and the Hamiltonian takes the simpler form

H =
4αs

3

[
− 1
|r| −

8π
3

S̄i.S̄ j

mim j
δ 3(r)

]
+br+ c. (2.7)

Now for the validation of the quantum mechanical idea as mentioned in Chapter 1, with

c = 0, the spin independent Fermi-Breit Hamiltonian with confinement has the simple form

as equation (1.1),

V (r) =−4αs

3r
+br. (2.8)

This Coulomb-plus-linear potential, called Cornell potential is the basis of the present

model under study. It is established on the two kinds of asymptotic behaviors: ultraviolet at

short distance (Coulomb like) and infrared at large distance (linear confinement term).

The Schrödinger equation is solved perturbatively, where the non-relativistic two body

Schrödinger equation (1.3) of Chapter 1 takes the form
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H|ψ⟩= (H0 +H ′)|ψ⟩= E|ψ⟩, (2.9)

so that the first-order perturbed eigenfunction ψ(1) and eigen energy W (1) can be obtained

using the relation

H0ψ(1)+H ′ψ(0) =W (0)ψ(1)+W (1)ψ(0), (2.10)

where H0 is the free Hamiltonian for two quarks/antiquarks and is defined as

H0 =−∇2

2µ
+V (r) (2.11)

and

W (0) =< ψ(0)|H0|ψ(0) >, (2.12)

W (1) =< ψ(0)|H ′|ψ(0) > . (2.13)

As already mentioned in Chapter 1 that based on the Coulomb part and the linear part

of the potential (2.8), we can make two choices of ‘parent’ Hamiltonian (choice-I and II),

which can be usefully compared [10]:

choice-I: H0 =−∇2

2µ − 4αs
3r as parent and H ′ = br as perturbation and

choice-II: H0 =−∇2

2µ +br as parent and H ′ =−4αs
3r as perturbation.

From choice-I and II, we can find the bounds on r upto which both the choices are valid.
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From choice-I,

| −4αs

3r
|>| br | (2.14)

and from choice-II,

| br |>| −4αs

3r
| . (2.15)

Inequality (2.14) and (2.15) will correspond to a particular point r, say rP, where

rP =
√

4αs
3b such that for the short distance, i.e. r < rP Coulomb part is dominant over

the linear confinement term and for long distance, i.e. r > rP linear part is dominant over

the Coulombic term. Thus the point rP measures the distance at which the potential changes

from being dominantly Coulombic (r < rP) to dominantly linear (r > rP). At potential level,

the continuity at a particular point of r is quite clear as is evident from Fig.1 of ref.[10].

The first-order perturbed wave function for the perturbed potential (br) of choice-I is

(Appendix A)

ψ(1)
I (r) =− 1

2
√

πa3
0

µba0r2e−
r

a0

(
r

a0

)−ε
, (2.16)

where µ is the reduced mass of the meson defined as

µ =
mqmQ

mq +mQ
, (2.17)

mq and mQ are the masses of the light and heavy quark/antiquark respectively and

a0 =

(
4
3

µαs

)−1

. (2.18)

ε is the correction for relativistic effect [82, 83] due to Dirac modification factor,

ε = 1−
√

1−
(

4
3

αs

)2

. (2.19)
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The corresponding eigen function ψ(0)(r) for the unperturbed potential −4αs
3r with rela-

tivistic correction is

ψ(0)
I (r) =

1√
πa3

0

(
r

a0

)−ε
e−

r
a0 . (2.20)

Thus the normalized wave function for choice-I is

ψ total
I (r) = ψ(0)

I (r)+ψ(1)
I (r) =

N√
πa3

0

[
1− 1

2
µba0r2

](
r

a0

)−ε
e−

r
a0 , (2.21)

where the normalization constant is

N =
1

[∫ rP

0
4r2

a3
0

[
1− 1

2 µba0r2
]2( r

a0

)−2ε
e−

2r
a0 dr

] 1
2
. (2.22)

Similarly, considering upto O(r4), the perturbed wave function (Appendix B) for the

perturbed potential
(
−4αs

3r

)
of choice-II is

ψ(1)
II (r) =

1
r

[
A0r0 +A1(r)r+A2(r)r2 +A3(r)r3 +A4(r)r4]Ai[ρ1r+ρ0]

(
r

a0

)−ε
,

where Ai[r] is the Airy function [85, 86] and the co-efficients A0,A1,A2, ... etc. are

appearing from the series solution as occurred in Dalgarno’s method of perturbation, which

are functions of αs, µ , and b:

A0 = 0, (2.23)
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A1 =
−2µ 4αs

3

2ρ1k1 +ρ2
1 k2

, (2.24)

A2 =
−2µW 1

2+4ρ1k1 +ρ2
1 k2

, (2.25)

A3 =
−2µW 0A1

6+6ρ1k1 +ρ2
1 k2

, (2.26)

A4 =
−2µW 0A2 +2µbA1

12+8ρ1k1 +ρ2
1 k2

. (2.27)

The parameters:

ρ1 = (2µb)
1
3 (2.28)

and

ρ0 =−
[

3π(4n−1)
8

] 2
3

. (2.29)

ρ0 is defined as the zero of the Airy function, such that Ai[ρ0] = 0. In our case n = 1 for

ground state of meson and

k =
a1 −b1ρ0

b1ρ1
, (2.30)

where a1 = 0.355 and b1 = 0.258 are the values at the origin for homogeneous Airy

functions [86] and

k1 = 1+
k
r
, (2.31)

k2 =
k2

r2 . (2.32)
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The corresponding unperturbed wave function ψ(0)
II for choice-II with relativistic correc-

tion is

ψ(0)
II (r) =

1
r

Ai[ρ1r+ρ0]

(
r

a0

)−ε
. (2.33)

Thus the total normalized wave function for linear potential as parent and Coulomb

potential as perturbation, considering upto O(r4) with the Dirac modification factor for

relativistic effect is

ψ total
II (r) = ψ(0)

II (r)+ψ(1)
II (r) (2.34)

=
N′

r
[1+A0r0 +A1r1 +A2r2 +A3r3 +A4r4]Ai[ρ1r+ρ0]

(
r

a0

)−ε
, (2.35)

where the normalization constant N′ is

N′ =
1

[∫ r0
rP 4π [1+A0r0 +A1(r)r+A2(r)r2 +A3(r)r3 +A4(r)r4]2 (Ai[ρ1r+ρ0])

2
(

r
a0

)−2ε
dr
] 1

2
. (2.36)

Even though the Airy’s function vanishes exponentially as r →∞ [85] and is normalizable

too, the additional cut-off r0 is used in the integration basically due to the polynomial approx-

imation of the series expansion used in the Dalgarno’s method of perturbation. And this is

independent of the property of the Airy function. The continuity of the wave functions at the

point rP is checked in Appendix C and the sensitivity of the cut-off r0 and the normalizability

of the wave function (2.35) are discussed in Appendix D.

2.2.2 Ground state masses of mesons

The pseudoscalar meson mass (MP) in the ground state [87] can be defined as:
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MP = mq/Q +mq̄/Q̄ + ⟨H⟩ (2.37)

where mq/Q is mass of light (or heavy) quark and mq̄/Q̄ is mass of light (or heavy) anti-

quark constituting the meson bound state.

The expression (2.37) shows that to calculate the masses of mesons one needs to find

⟨H⟩, so that

⟨H⟩= ⟨ p2

2µ
⟩+ ⟨V (r)⟩ (2.38)

= 4π
∫ ∞

0
r2ψ∗(r)Hψ(r)dr (2.39)

= 4π
∫ ∞

0
r2
(

p2

2µ
+V (r)

)
| ψ(r) |2 dr. (2.40)

In the modified approach we redefine the above equation with the cut-off rP as

⟨H⟩= 4π

[∫ rP

0
r2
(

p2

2µ
+V (r)

)
| ψI(r) |2 dr+

∫ r0

rP
r2
(

p2

2µ
+V (r)

)
| ψII(r) |2 dr

]
,

(2.41)

where ψI(r) and ψII(r) are the total wave functions as defined in equations (2.21) and

(2.35) respectively.

2.2.3 Form factor and charge radii

The elastic charge form factor for a charged system of point quarks has the Q2 dependent

form [88]
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F(Q2) =
2

∑
i=1

ei

Qi

∫ ∞

0
4πr | ψ(r) |2 sin(Qir)dr, (2.42)

where Q2 is the four momentum transfer square and ei is the charge of the ith quark/antiquark

and

Qi =
∑ j ̸=i m jQ

∑2
i=1 mi

, (2.43)

where Qi describes how the virtuality Q2 is shared between the quark and antiquark pair

of the meson and mi and m j are the masses of the ith and jth quark/antiquark respectively.

With the improved version of the model, we redefine equation (2.42) as

F(Q2) =
2

∑
i=1

ei

Qi

∫ rP

0
4πr | ψI(r) |2 sin(Qir)dr

+
2

∑
i=1

ei

Qi

∫ r0

rP
4πr | ψII(r) |2 sin(Qir)dr,

(2.44)

F(Q2) = F(Q2) |I +F(Q2) |II . (2.45)

To check the behavior of the form factor with momentum transfer square Q2 we obtain

the analytic expressions for form factors considering the Airy function upto order r1 as shown

in Appendix E and F.
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With Dirac modification factor:

The 1st part of the integration (2.44), F(Q2) |I is solved using ψI(r), the Coulomb potential

as parent and linear as perturbation wave function (2.21) (as shown in Appendix E) with

relativistic correction which gives

F(Q2) |I= N2
2

∑
i=1

ei

[
1

21−2ε γ(2−2ε,rP)(2−2ε)
1

(1+ a2
0Q2

i
4 )

3
2−ε

− µba3
0

23−2ε γ(4−2ε,rP)(4−2ε)
1

(1+ a2
0Q2

i
4 )

5
2−ε

+
µ2b2a6

0
27−2ε γ(6−2ε,rP)(6−2ε)

1

(1+ a2
0Q2

i
4 )

7
2−ε

]
,

(2.46)

where the Incomplete Gamma function γ(s,rP) is defined as

∫ rP

0
ts−1e−tdt = γ(s,rP). (2.47)

From the reality condition of equation (2.19), as we get 0 < ε < 1, hence the form factor

falls with the increasing value of Q2.

Similarly, the 2nd part of integration (2.44), F(Q2) |II is solved using wave function (2.35)

(as shown in Appendix F), which gives

F(Q2) |II= 4πN′2a2ε
0

2

∑
i=1

ei

[ 11

∑
k=1

Fk
1

(Q2
i )

k−2ε
2

]
, (2.48)

where Fk’s are defined in equation (F.5) of Appendix F.

The constraint on equation (2.48) is that for the term with k = 1, ε < 1.
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Without Dirac modification factor:

The 1st part of the integration (2.44) F(Q2) |I with ε = 0 gives

F(Q2) |I= N2
2

∑
i=1

ei

[
γ(2,rP)

1

(1+ a2
0Q2

i
4 )

3
2

− µba3
0

2
γ(4,rP)

1

(1+ a2
0Q2

i
4 )

5
2

+
3µ2b2a6

0
26 γ(6,rP)

1

(1+ a2
0Q2

i
4 )

7
2

]
.

(2.49)

Similarly, with ε = 0, F(Q2) |II is

F(Q2) |II= 4πN′2
2

∑
i=1

ei

[ 11

∑
k=2

F ′
k

1

(Q2
i )

k
2

]
, (2.50)

where F ′
k’s are defined in equation (F.8) of Appendix F.

Including equations (2.46) and (2.48), equations (2.49) and (2.50) are also showing us the

1
Q2 behavior of form factors, which means at large Q2 form factor falls. Thus we conclude

that the parameter ε doesn’t change the qualitative asymptotic behavior of the form factors.

The average charge radii square for the mesons is extracted from the form factors at their

low Q2 behavior using the relation [89],

⟨r2⟩=−6
d2

dQ2 F(Q2)|Q2=0. (2.51)

2.2.4 RMS radii of heavy flavored mesons

The RMS radius [90, 91] of the bound state of quark and antiquark like meson is defined as

⟨r2
rms⟩=

∫ ∞

0
r2 | ψ(r) |2 dr (2.52)
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having radial wave function ψ(r).

With the cut-off parameters rP and r0, we modify the equation (2.52) to

< rrms
2 >=

∫ rP

0
r2 | ψI(r) |2 dr+

∫ r0

rP
r2 | ψII(r) |2 dr. (2.53)

2.2.5 Relation between RMS and charge radius

The charge radii can be measured using the electromagnetic probe, but not the RMS radii

defined as in equation (2.52). The RMS radius is nearly the average < r2 > of the quark wave

function, which presumably may be determined in Quark Gluon Plasma (QGP) experiments

presently studied at LHC [92]. However, a simple approximate relationship between the two

can be found from the following equation

r2
E = ∑

i
ei

[
< ri

2 >+
3

4m2
i

∫
d3 p | Φ(p) |2

(
mi

Ei

)2 f
]

(2.54)

derived by Godfrey and Isgur [93].

Here r2
E is the charge radius, < ri

2 > is the RMS radius, ei is the charge of the ith

quark/antiquark, r1 and r2 are the distances of the two quarks/antiquarks measured from the

centre of mass, m is the mass of the quark and E =
√

p2 +m2. Φ(p) is the quark momentum

distribution. The exponent ‘f’ can be determined in a semi-empirical way.

From equation (2.54) we obtain the inequality

r2
E > ∑

i
ei < ri

2 > . (2.55)
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Making the transformation of the coordinates, we choose one of the quarks/antiquarks

located at the origin. It results in

r2
E > e < r2 > (2.56)

where < r2 > can be interpreted as the standard RMS as defined in equation (2.52) and

e = ∑ei.

2.3 Calculation and results

2.3.1 Values of rP

In Table 2.1, we have recorded the numerical values of the quantities to be calculated (in

Fermi) at charmonium and bottomonium scale.

Table 2.1 rP in Fermi with c = 0 and b = 0.183GeV 2

αs-value rP

(Fermi)
0.39 0.332
(for charmonium scale)
0.22 0.249
(for bottomonium scale)
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2.3.2 Ground state masses of mesons

To calculate the results we have used Mathematica version 7.0.0. The input parame-

ters in the numerical calculations are mu = 0.336GeV , md = 0.336GeV , ms = 0.483GeV ,

mc = 1.55GeV , mb = 4.95GeV and b = 0.183GeV 2 and αs values 0.39 and 0.22 for charmo-

nium and bottomonium scale respectively [94].

With these values, we calculate the masses of various heavy-light mesons using equation

(2.37). The results obtained are then compared with the experimental data [2] and is shown in

Table 2.2. For our calculations, we set the cut-off (r0) in the range of 1 Fermi (5.076 GeV−1)

[95] in getting the results with the wave function ψII(r) .

Table 2.2 Masses of heavy-light mesons in GeV .

αs Meson rP (GeV−1) Mass (MP) (GeV ) Experimental Mass (GeV ) [2]

0.39
D(cū/cd̄)

1.68
2.378 1.869± 0.00009

Ds(cs̄) 2.500 1.968± 0.0001

0.22
B(ub̄/db̄)

1.26
5.798 5.279± 0.00015

Bs(sb̄) 5.902 5.366± 0.00022
Bc(b̄c) 6.810 6.275± 0.001

From Table 2.2, it is clear that our mass predictions are off by more than 500 MeV for

both the open bottom and open charm mesons.

We have also tested the perturbative stability of the results for masses in the present model

in Table 2.3, where it is clearly seen that the contribution of the perturbed wave function is

less than that of the parent wave function.
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Table 2.3 Masses of heavy-light mesons in GeV from parent and total wave function.

Meson Mass (MP) (GeV )
With parent With total
wave function wave function

D(cū/cd̄) 2.250 2.378
Ds(cs̄) 2.348 2.500
B(ub̄/db̄) 5.681 5.798
Bs(sb̄) 5.780 5.902
Bc(b̄c) 6.713 6.810

2.3.3 Form factors

In Fig. 2.1 we study the variation of form factor F(Q2) with Q2 for charged mesons (D+(cd̄),

D+(cs̄) and B+(ub̄)) and in Fig. 2.2 we display the variation of form factor for neutral mesons

(D0(cū), B0(db̄) and B0
s (sb̄)) respectively, using equation (2.44) with Dirac modification

factor.

Fig. 2.1 shows the form factor F(Q2) decreases with the increase of Q2 as it should.
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(a) Variation of form factor F(Q2) with Q2 for D+(cd̄) meson
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(b) Variation of form factor F(Q2) with Q2 for D+(cs̄) meson.
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(c) Variation of form factor F(Q2) with Q2 for B+(ub̄) meson.

Fig. 2.1 Variation of form factor F(Q2) with Q2 for charged mesons.
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(a) Variation of form factor F(Q2) with Q2 for D0(cū) meson.
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(b) Variation of form factor F(Q2) with Q2 for B0(db̄) meson.
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(c) Variation of form factor F(Q2) with Q2 for B0
s (sb̄) meson.

Fig. 2.2 Variation of form factor F(Q2) with Q2 for neutral mesons.
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However, it is seen that while the form factor of the charged mesons decreases with the

increasing value of Q2, but for neutral mesons form factor first increases for slight Q2 than

decreases with the increasing value of momentum transfer square. A similar behavior for

neutral pseudoscalar Kaon is also suggested in ref.[96]. Our study also shows a temporary

rise in form factor does exist for heavy flavored neutral mesons near Q2 ≈ 1GeV 2 (Fig. 2.2).

This is presumably due to the non-dominant behavior of small Q2 over the other parameters

involved. From the graphs, it is evident that the range of validity of the model is not beyond

∼ 2.1GeV 2.

2.3.4 Charge radii

In Table 2.4, we present the results obtained for the charge radii using equation (2.51) for

various D and B mesons in Table 2.4 and compare them with the results of ref. [69, 78] and

with the prediction of other models [89, 97].

Table 2.4 The mean square charge radii of D and B mesons.

Meson
⟨r2⟩ (Fermi2)

Present work Previous Previous [89] [97]

with without work[78] work [69]
Dirac Dirac
modification modification
factor factor

D+(cd̄) 0.260 0.265 0.134 0.011 0.184 0.219
D0(cū) -0.453 -0.463 -0.234 -0.013 -0.304 -0.403
D+

s (cs̄) 0.216 0.222 0.126 0.010 0.124 -
B+(ub̄) 0.536 0.538 2.96 0.060 0.378 -
B0(db̄) -0.266 -0.267 -1.47 -0.030 -0.187 -
B0

s (sb̄) -0.214 -0.215 -1.37 -0.025 -0.119 -

From Table 2.4 we can see that our predicted results for D+(cd̄) and D0(cū) mesons are

in good agreement with those of ref. [97]. The present results for B mesons are found to be

very much improved than earlier analysis of ref. [69]. It is observed that the introduction of
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the Dirac modification factor doesn’t change the results significantly.

From Table 2.4 it is interesting to see that for all the neutral mesons the mean square

charge radius is negative. A well explanation for negative charge radius square of the neutral

meson can be found in ref. [98]. Here let us explain this for neutral D0(cū) meson.

We define a center of mass coordinate for the quark antiquark (Qq̄) bound state of meson,

R =
mQrQ +mq̄rq̄

mQ +mq̄
, (2.57)

where rQ and rq̄ are the heavy (Q) and light anti-quark (q̄) coordinates respectively.

The mean square charge radius of the meson can be written as the deviation from the

center of mass coordinate squared weighted by the quark and antiquark constituents of the

meson, which has the simplified form,

⟨r2⟩D0 =
(QQm2

q̄ +Qq̄m2
Q)⟨δ 2⟩D0

(mQ +mq̄)2 , (2.58)

where QQ and Qq̄ are charge of the quark and anti-quark respectively.

δ = rQ − rq̄ is the relative coordinate.

For D0(cū) meson, mq̄ = mu = m = 0.336GeV

and mQ = mc = 1.55GeV = γm; γ = 4.61.
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Thus from equation (2.58),

⟨r2⟩D0 =
2−2γ2

3+3γ2 ⟨δ
2⟩D0. (2.59)

Since γ = 4.61 and ⟨δ 2⟩D0 > 0, from equation (2.59), it is clear that D0(cū) has a negative

square charge radius.

In D0(cū) meson, a negatively charged light u-antiquark is orbiting around a heavier pos-

itively charged c-quark. Since the mass of c-quark is very large compared to the u-antiquark,

when we probe lightly into the charge distribution, we will see the charge of the light objects

which are in the tail of the distribution orbiting out at large distances.

The same explanation is valid for B0(db̄) and B0
s (sb̄) mesons also, where a light d-quark

is orbiting around a heavier b-antiquark and a light s-quark is orbiting around a heavier

b-antiquark respectively.

The perturbative stability of our results is also checked in the present model as shown in

Table 2.5.

Table 2.5 Mean square charge radii of D and B mesons.

Meson ⟨r2⟩ (Fermi2)
With Parent With Total
wave function wave function

D+(cd̄) 0.233 0.260
D0(cū) -0.406 -0.453
D+

s (cs̄) 0.205 0.216
B+(ub̄) 0.490 0.536
B0(db̄) -0.242 -0.266
B0

s (sb̄) -0.207 -0.214
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2.3.5 RMS radii

We obtain the RMS radii of various mesons using equation (2.53) as shown in Table 2.6.

Table 2.6 RMS radii (rrms) in Fermi.

αs Meson rrms in Fermi rrms in Fermi
with Dirac without Dirac
modification modification
factor factor

0.39

π+(ud̄) 0.989 0.948
K(us̄/ds̄) 0.992 0.950
D(cū/cd̄) 0.998 0.955
D+

s (cs̄) 1.007 0.961
cc̄ 1.046 0.990

0.22
B+

c (b̄c) 1.082 1.061
bb̄ 1.141 1.116

In Table 2.7, we give the different model predictions of rms radii for heavy flavored

mesons available in literature [79, 80] for cc̄ and bb̄.

Table 2.7 RMS radii (rrms) in Fermi from different model prediction.

Meson
rrms(Fermi)

Ref.[79] Ref.[80]
cc̄ 0.4490 0.4530
bb̄ 0.2245 0.2260

From Table 2.6, we see that our values of rms radii for cc̄ and bb̄ are higher than those of

Table 2.7.

2.4 Conclusion

In this chapter, we have used a cut-off rP which is obtained from the theory to predict the

results for masses, charge radii and RMS radii of various heavy flavored mesons. The results

for masses of D mesons are higher than those of experimental results. However, it is to be

mentioned that by changing cut-off parameters rP and r0 the exact value of experimental
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masses could be obtained. To modify the values of rP we need to change the values of the

strong coupling constant (αs). From the Table 2.3 it is seen that the results based on the

unperturbed wave functions are better than those of the total ones. However, it is needed to

be mentioned that these tabulated values are shown to check the perturbative stability of the

results, such that the contribution from the parent part is more than the perturbed term.

We have also studied the graphical behavior of the form factors. Graphs for form factors

of the mesons are shown displaying the variation with momentum transfer square (Q2). From

the graphs, it is seen that the form factors for charged mesons decrease with increasing values

of Q2, but for neutral mesons, a temporary rise in form factor is observed, a feature not

uncommon even for light neutral Kaon [96] also. At the lower scale, Q2 itself ceases to play

the dominant factor of the overall behavior in this particular model.

The mean square charge radii of heavy pseudoscalar mesons have not been measured

experimentally yet. In earlier cases in ref.[78], the model did not show good results for the

charge radii of B mesons, though the model was quite successful in the prediction of results

for light mesons and heavy flavored D mesons. We have improved the results of ref.[69, 78]

by introducing two cut-off parameters rP and r0. In ref.[78], the confinement parameter ‘b’

was taken to be zero due to perturbative constraints. However, with the improved version of

the present work, we overcome such limitation by incorporating the value of confinement

parameter to be b = 0.183GeV 2.

Also by changing the values of strong coupling constant for charmonium and bottomo-

nium scale, the results for RMS radii for bb̄ and cc̄ can be improved.
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The values of cut-off parameters rP, r0 and masses of quarks which are input parameters

are kept fixed for the next chapters of the thesis.



3
Isgur-Wise function of heavy-light mesons

in the potential model

3.1 Introduction

The heavy hadron spectroscopy played a significant role in the foundation of QCD. In last

few years, it has sparked a renewed interest in the subject due to various data available from

the B factories[99], CLEO [100], LHCb [101] and the Tevatron [102]. In more recent times

the discovery of X-Y states [103] as possible charmonium and bottomonium hybrids have
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extended such study of the exotic heavy hadron spectroscopy. The most recent discoveries

of the charmonium pentaquarks [104] have further increased its importance. The simplest

systems of this area are the heavy-light and heavy-heavy hadrons.

In the last few years, the experimental study of heavy-light and heavy-heavy mesons

have renewed the theoretical interest towards HQET (Heavy Quark Effective Theory) and

Isgur-Wise function [105–107].

In this chapter, we will report a study of such heavy flavored mesons in QCD potential

model [77].

3.2 Formalism

3.2.1 Slope and curvature of Isgur-Wise function

Isgur, Wise, Georgi [25, 108] and others[4] showed that in weak semi-leptonic decays of

heavy-light mesons (e.g. B mesons to D or D∗ mesons), in the limit mQ → ∞ all the form

factors that describe these decays are expressible in terms of a single universal function of

velocity transfer. This function is known as the Isgur-Wise function, which is normalized

to unity at zero-recoil. It measures the overlap of the wave functions of the light degrees of

freedom in the initial and final mesons moving with velocities v and v′ respectively.

The Isgur-Wise function is denoted by ξ (Y ), where Y = v.v′ and ξ (Y )|Y=1 = 1 is the

normalization condition at the zero-recoil point ( v = v′ ) [34].

The calculation of Isgur-Wise function is non-perturbative in principle and is performed

earlier [66, 71] for different phenomenological wave functions for mesons. This function
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depends upon the meson wave function and some kinematic factor as

ξ (Y ) =
∫ ∞

0
4πr2|ψ(r)|2cos(pr)dr, (3.1)

where ψ(r) is the wave function for light quark only and

cos(pr) = 1− p2r2

2
+

p4r4

24
+ ..... (3.2)

with p2 = 2µ2(Y −1).

Taking cos(pr) upto O(r4) we get,

ξ (Y ) =
∫ ∞

0
4πr2|ψ(r)|2dr−

[
4πµ2

∫ ∞

0
r4|ψ(r)|2dr

]
(Y −1)+

[
2
3

πµ4
∫ ∞

0
r6|ψ(r)|2dr

]
(Y −1)2.

(3.3)

In an explicit form, the Isgur-Wise function can be written as [4, 25]

ξ (Y ) = 1−ρ2(Y −1)+C(Y −1)2, (3.4)

where ρ2 > 0.

The quantity ρ2 is the slope of the Isgur-Wise function which determines the behavior of

Isgur-Wise function close to zero recoil point (Y = 1) is known as the charge radius:

ρ2 =−∂ξ
∂Y

|Y=1. (3.5)
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The second order derivative is the curvature of the Isgur-Wise function known as convexity

parameter:

C =
1
2

(
∂ 2ξ
∂Y 2

)
|Y=1. (3.6)

Now from equations (3.3) and (3.4),

ρ2 = 4πµ2
∫ ∞

0
r4|ψ(r)|2dr, (3.7)

C =
2
3

πµ4
∫ ∞

0
r6|ψ(r)|2dr (3.8)

and
∫ ∞

0
4πr2|ψ(r)|2dr = 1. (3.9)

In the present work, we improve the equations for ρ2 and C to

ρ2 = 4πµ2

[∫ rP

0
r4|ψI(r)|2dr+

∫ r0

rP
r4|ψII(r)|2dr

]
(3.10)

and

C =
2
3

πµ4

[∫ rP

0
r6|ψI(r)|2dr+

∫ r0

rP
r6|ψII(r)|2dr

]
. (3.11)

Using these modified expressions for slope and curvature of Isgur-Wise function in

equation (3.4), we have computed the results. In equations (3.10) and (3.11), ψI(r) and ψII(r)

are the wave functions as defined in equations (2.21) and (2.35) of Chapter 2 respectively.
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3.3 Calculation and results

In Table 3.1 and 3.3, we find the slope (ρ2 and ρ ′2) and the curvature (C and C′) using

modified equations (3.10) and (3.11) respectively. The input parameters in the numeri-

cal calculations are mu = 0.336GeV , md = 0.336GeV , ms = 0.483GeV , mc = 1.55GeV ,

mb = 4.95GeV and b = 0.183GeV 2 and αs values 0.39 and 0.22 for charmonium and bot-

tomonium scale respectively, which are same with the previous chapter.

The numerical results for ρ2 and C in the Isgur-Wise limit is shown in Table 3.1, where

we consider the mass of active quark/antiquark (in this case b-quark) to be infinitely heavy

(mQ/mQ̄ → ∞). In this infinite heavy quark mass limit, reduced mass µ becomes that of the

light quark/antiquark (mq/m̄q) (in this case u-quark), i.e.

lim
mQ→∞

µ = lim
mQ→∞

mqmQ

mq +mQ
= mq. (3.12)

We have also compared our results with the predictions of other models [109–116].

Table 3.1 Values of ρ2 and C in the present work and other works in the limit mQ → ∞.

ρ2 C
Present work 1.176 0.180
Other work
Le Yaouanc et al. [109] ≥ 0.75 0.47
Rosner [110] 1.66 2.76
Mannel [111] 0.98 0.98
Pole Ansatz [112] 1.42 2.71
Ebert et al. [113] 1.04 1.36
QCD sum rule [114] 0.65 0.47
UKQCD Collaboration [115] 0.83+15+24

−11−22 -
CLEO Collaboration [116] 0.76±0.16±0.08 -

However, in a generalized way we can also check the flavor dependence of the form

factor in heavy meson decays. We calculate the slope (ρ ′2) and curvature (C′) of the form
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factor of semi-leptonic decays in finite mass limit with the flavor dependent correction. In

Table 3.3, we compare our present results with ref. [65, 66], where the reduced masses of

the mesons are obtained in Table 3.2 using equation (2.17). The results in the present work

clearly show an improvement over the ref. [65, 66].

Table 3.2 Reduced mass of heavy-light mesons in GeV .

Meson Reduced mass (µ)
(GeV )

D(cū/cd̄) 0.276
Ds(cs̄) 0.368
B(ub̄/db̄) 0.314
Bs(sb̄) 0.440
Bc(b̄c) 1.180

Table 3.3 Values of slope (ρ ′2) and curvature (C′) of the form factor of heavy meson decays
in the present and earlier work with finite mass correction.

Meson ρ ′2 C′

Present work

D(cū/cd̄) 0.911 0.106
Ds(cs̄) 1.318 0.228
B(ub̄/db̄) 1.110 0.260
Bs(sb̄) 1.722 0.721
Bc(cb̄) 4.646 6.074

Ref.[65, 66]

D(cū/cd̄) 1.136 5.377
Ds(cs̄) 1.083 3.583
B(ub̄/db̄) 128.28 5212
Bs(sb̄) 112.759 4841

Ref.[117] Bc(cb̄) 5.45 31.39

From Table 3.3, a large variations for the values of ρ ′2 and C′ are observed with respect

to Table 3.1. This disparity is also seen from the predictions of ref. [65, 66] specially for

B(ub̄/db̄) and Bs(sb̄) mesons. This is because in Table 3.1, the slope (ρ2) and curvature

(C) of Isgur-Wise function are obtained in infinite heavy quark mass limit (mQ → ∞). But

in Table 3.3, the values slope (ρ ′2) and curvature (C′) of form factors are obtained in finite

mass limit. Also in the present work we have considered the scale factor, c = 0. So, the scale



3.3 Calculation and results 58

parameter doesn’t have any affect in the wave functions of the system, while in ref. [65, 66]

the values were obtained for a non-zero value of ‘c’.

The graphical variation of Isgur-Wise function ξ (Y ) with Y in the Isgur-Wise limit is

shown in Fig.3.1 (using Table 3.1), where the mass of the b-quark is considered to be infinitely

heavy and the reduced mass µ is 0.336GeV (mass of u or d-quark/antiquark). In a similar

way, we draw Fig.3.2 (using Table 3.3) for finite mass and flavor dependent correction. For

comparison the results of ref. [110] and [113] are plotted in the same graphs.

To draw the graphs, we have used equations (3.10) and (3.11) in (3.4). ξ (Y ) is found to

have the expected fall with Y = v.v′. It is seen from the figure that the computed results are

well within the values of the model [110, 113].
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Fig. 3.1 Variation of form factor with Y in the Isgur-Wise limit. The blue and red graph
correspond to the results of quark model in relativistic approach of ref. [113] and non-
relativistic approach of ref. [110] respectively.
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Fig. 3.2 Variation of form factor with Y with finite mass correction. The blue and red
graph correspond to the results of quark model in relativistic approach of ref. [113] and
non-relativistic approach of ref. [110] respectively.

3.4 Conclusion

In this chapter, we have calculated the slope and the convexity parameter of the Isgur-Wise

function considering the scaling factor ‘c’ to be zero by giving equal fitting to both the

Coulomb and linear part of the Cornell potential unlike in the ref. [63, 65, 70, 71, 117–119].

The values of slope and curvature of the Isgur-Wise function calculated in this chapter are

well within the limit of other model values (Table 3.1). Also our calculations provide a

measure of the slope and curvature of the form factors with finite mass corrections. From

our results, we can say that the modifications induced by mass effect are not so significant

for D(cū/cd̄), Ds(cs̄), B(ub̄/db̄), Bs(sb̄) mesons. However, for the mesons where light

quark/antiquark is not so light compared to the heavy quark/antiquark, the finite mass limit

do show a very strong dependence on the spectator quark mass, as for Bc(cb̄) meson (Table

3.3). It presumably suggests that the finite mass correction approach is not effective for

mesons where the constituent light quark/antiquark is not so light compared to the other

heavy quark/antiquark constituent.



4
Leptonic decay constants of heavy-light

mesons in the potential model

4.1 Introduction

The strong interactions between the quark and the antiquark in a meson lead to the de-

termination of the wave function of the bound state. The study of the wave functions of

heavy-flavored mesons like D and B are important not only for studying the properties of

strong interactions between heavy and light quarks but also for investigating the mechanism
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of heavy meson decays. The wave function determines the momentum distributions of the

quark and antiquark in mesons, which is a significant quantity for calculating the amplitude,

form factors and decay constants of heavy meson decays [73, 120–123].

In this chapter, the modified wave functions using a short distance scale rc in analogy

to hydrogen atom are obtained in coordinate space. The decay constants fD, fDs, fB, fBs and

fBc are computed in both coordinate and momentum space and compared with the available

experimental data and other theoretical models. Here we introduce a new cut-off parameter,

pP in momentum space, in addition to rP. We also study the variation of the wave functions

with inter-quark distance r and momentum p.

4.2 Formalism

4.2.1 Definition of decay constant in coordinate space

In the non-relativistic limit, the pseudoscalar decay constant fP and the ground state wave

function at the origin ψ(0) are related by the Van-Royen-Weisskopf formula [124],

fP =

√
12
MP

|ψ(0)|2. (4.1)

With QCD correction factor the decay constant can be written as [125]

fPc =

√
12
MP

|ψ(0)|2C̄2, (4.2)

where

C̄2 = 1− αs

π

[
2− mi −m j

mi +m j
ln

mi

m j

]
, (4.3)
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where MP is the pseudoscalar meson mass obtained in Chapter 2 (Table 2.2).

Equations (4.1) and (4.2) show that we need to obtain wave function at the origin to find

decay constant. But with the Dirac modification factor
(

r
a0

)−ε
, the wave functions (2.21)

and (2.35) at r = 0 develop a singularity. Again with ε = 0, though the wave function at

the origin for (2.21) survives, but for (2.35) the singularity remains. In this case, one has

to regularize the wave function at the origin [126] which has a quantum mechanical origin

in QED. It is well known that the relativistic wave function of the hydrogen atom has such

singularities too. However, such an effect is noticeable only for a tiny region [83],

2mzαr ≤ e−
(

1
1−γ

)
≤ e−

2
z2α2 ∼ 10−

16300
z2 , (4.4)

where z and m are the atomic number and reduced mass of the hydrogen atom respectively,

α is the electromagnetic coupling constant and γ =
√

1− z2α2. In QCD, one replaces m,α

and 1− γ , the hydrogen-like properties by µ, 4
3αs and ε respectively. Here αs is the strong

coupling constant, ε is as defined by equation (2.19) and (2mzαr)(γ−1) changes to
(

r
a0

)−ε
,

which leads to a cut of parameter rc up to which the model can be extrapolated (r ≥ rc).

Using the typical length scale for the relativistic correction term
(

r
a0

)−ε
≤ 1

e , one obtains

rc ∼ a0e−
1
ε . (4.5)

With this cut-off rc, the normalized and regularized wave function corresponding to wave

function (2.21) is

ψ total
I (r′) =

N√
πa3

0

[
1− 1

2
µba0(r′)2

](
r′

a0

)−ε
e−

r′
a0 . (4.6)

Similarly, for (2.35), the corresponding regularized wave function is
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ψ total
II (r′) =

N′

r
[1+A1r′+A2(r′)2 +A3(r′)3 +A4(r′)4]Ai[ρ1r′+ρ0]

(
r′

a0

)−ε
, (4.7)

with

r′ = r+ rc. (4.8)

4.2.2 Definition of decay constant in momentum space

The decay constant in the momentum space [127] can be expressed through the meson wave

function ψ(p) as

fP =

√
12
MP

∫ d3 p

(2π)
3
2

(
Ei +mi

2Ei

) 1
2
(

E j +m j

2E j

) 1
2
(

1+λP
p2

[Ei +mi][E j +m j]

)
ψ(p) (4.9)

with

λP =−1

and

Ei =
√

p2 +m2
i ,

E j =
√

p2 +m2
j .

In the non-relativistic limit p2

m2 << 1.0, the expression (4.9) reduces to the Van-Royen-

Weisskopf formula (4.1) as shown in Appendix G.
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4.2.3 Wave functions in momentum space

The Fourier Transformation of the wave function (2.21) is

ψI(p)total =

√
2

π p2

∫ rP

0
rsin(pr)ψI(r)dr, (4.10)

where the wave function ψI(r) is as defined in equations (2.21).

Similarly, the corresponding wave function in momentum space for (2.35) is

ψII(p)total =

√
2

π p2

∫ r0

rP
rsin(pr)ψII(r)dr, (4.11)

where the wave function ψII(r) is as defined in equation (2.35).

The analytical form of the wave functions (4.10) and (4.11) taking Airy function up to

O(r1) are shown in Appendix H and I respectively.

Now just as we have used a cut-off rP in r-space as mentioned in Chapter 2, here too we

introduce a cut-off parameter pP in p-space. This is done, since in the short range (p < pS),

linear potential is perturbatively compatible while for the long range (pP < p), the Coulomb

potential is.

4.2.4 Determination of cut-off pP in the model

The Fourier Transformation of the Coulomb part of the potential −4αs
3r [128] is

∫
d3r
(
−4αs

3r

)
eipr
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=−16παs

3p2 . (4.12)

On the other hand, the Fourier Transformation of the linear part br cannot be obtained

directly. One introduces a parameter ε by defining a screened potential [128] and follows the

limit ε → 0 as

bre−εr

= b
∂ 2

∂ε2
e−εr

r
. (4.13)

The Fourier Transformation of the above is

b
∂ 2

∂ε2

∫
d3reipr e−εr

r

=− 8πb
(p2 + ε2)2 +

32πbε2

(p2 + ε2)3 . (4.14)

In the limit ε → 0, equation (4.14) reduces to

=−8πb
p4 . (4.15)

From perturbation conditions, we write:

for choice-I: (Coulomb potential as parent and linear potential as perturbation)

| −16παs

3p2 |>| −8πb
p4 | (4.16)

and for choice-II: (linear potential as parent and Coulomb potential as perturbation)
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| −8πb
p4 |>| −16παs

3p2 | . (4.17)

Inequality (4.16) and (4.17) will correspond to a particular point of p, say pP, where

pP =
√

3b
2αs

, such that for p < pP Coulomb part is dominant over the linear confinement term

and for p > pP linear part is dominant over the Coulombic term.

Now with the cut-off parameter pP, equation (4.9) will be modified to

fP =

√
12
MP

∫ pP

0

d3 p

(2π)
3
2

(
Eq +mq

2Eq

) 1
2
(

Eq̄ +mq̄

2Eq̄

) 1
2
(

1+λP
p2

[Eq +mq][Eq̄ +mq̄]

)
ψI(p)+

√
12
MP

∫ p0

pP

d3 p

(2π)
3
2

(
Eq +mq

2Eq

) 1
2
(

Eq̄ +mq̄

2Eq̄

) 1
2
(

1+λP
p2

[Eq +mq][Eq̄ +mq̄]

)
ψII(p)

(4.18)

where ψI(p) and ψII(p) are the wave functions in momentum space as defined in equa-

tions (4.10) and (4.11) respectively.

4.3 Calculation and results

The input parameters in the numerical calculations are mu = 0.336GeV , md = 0.336GeV ,

ms = 0.483GeV , mc = 1.55GeV , mb = 4.95GeV and b = 0.183GeV 2 and αs values 0.39 and

0.22 for charmonium and bottomonium scale respectively.

Values of pP:

In Table 4.1, we have recorded the numerical values of the quantities to be calculated at

charmonium and bottomonium scale.
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Table 4.1 pP in GeV with c = 0 and b = 0.183GeV 2

αs-value pP (GeV )
0.39

0.838
(for charmonium scale)
0.22

1.117
(for bottomonium scale)

Values of rc:

In Table 4.2, we compute the numerical values of small scale rc using (4.5) for various B and

D mesons.

Table 4.2 Values of cut-off rc in GeV−1

Meson rc (GeV−1)
D(cū/cd̄) 0.0073
Ds(cs̄) 0.0055
B(b̄u/b̄d) 1.452×10−9

Bs(b̄s) 1.038×10−9

Bc(b̄c) 3.872×10−10

Decay constants in coordinate space:

We calculate the decay constants of various D and B mesons using equations (4.1) and (4.2)

as shown in Table 4.3 with the regularized wave functions (4.6) and (4.7).
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Table 4.3 Decay constants of D and B mesons using Van-Royen-Weisskopf formula with
regularized wave functions (4.6) and (4.7) and comparison with experimental data and other
theoretical models. All values are in the unit of GeV .

Meson (this work) (this work) Experimental value &
fP fPc Other work

D(cū/cd̄) 0.293 0.274 0.205± 0.085±0.025 [129, 130] (Exp.)
Ds(cs̄) 0.368 0.335 0.254± 0.059 [129, 130] (Exp.)
B(b̄u/b̄d) 0.206 0.203 0.207 ± 0.014[73]

0.189 [131]
Bs(b̄s) 0.239 0.236 0.237± 0.017 [73]

0.218 [131]
Bc(b̄c) 0.410 0.389 0.433 (Rel), 0.562 (NR) [132]

0.470 [87]

Decay constants in momentum space:

The formula given by Godfrey as defined in equation (4.9) is sufficient to incorporate

relativistic effect for decay constant. Therefore, to obtain the results we have considered

ε = 0 in the wave functions (4.10) and (4.11). With cut-offs pP and p0, the results in the

momentum space are as recorded in Table 4.4.

Table 4.4 Decay constants of D and B mesons with cut-off pP and comparison with experi-
mental data and other theoretical models. All values are in the unit of GeV .

Meson (this work) Experimental value &
fP Other work

D(cū/cd̄) 0.107 0.205± 0.085±0.025 [129, 130] (Exp.)
Ds(cs̄) 0.147 0.254± 0.059 [129, 130] (Exp.)
B(b̄u/b̄d) 0.068 0.198± 0.014 [73]

0.189 [131]
Bs(b̄s) 0.076 0.237± 0.017 [73]

0.218 [131]
Bc(b̄c) 0.101 0.433(Rel), 0.562 (NR)[132]

0.470 [87]

The maximum value of p0 in equation (4.18) in obtaining the results of Table 4.4 can be

considered ∼ 1.2GeV demanding the positivity of the decay constant.
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Table 4.3 and 4.4 show that the decay constant of mesons in coordinate space using

equation (4.2) agree well with the data than for the decay constants in the momentum space

using equation (4.18). In momentum space, the results are found to be smaller than those of

experimental data and theoretical values.

Fig. 4.1 and 4.2 show the graphical variation of wave functions ψI(r) (equation (2.21))

and ψII(r) (equation (2.35)) with r respectively.
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Fig. 4.1 The radial wave function ψI(r) for D(cū/cd̄) meson.
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Fig. 4.2 The radial wave function ψII(r) for D(cū/cd̄) meson.

The variation of probability density | rψI(r) |2 and | rψII(r) |2 with r for D(cū/cd̄) meson

are shown in fig. 4.3 and 4.4 respectively.
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Fig. 4.3 The radial probability density | rψI(r) |2 for D(cū/cd̄) meson.

Fig. 4.5 and 4.6 show the graphical variation of wave functions ψI(r) (equation (2.21))

and ψII(r) (equation (2.35)) with r for B(ub̄) meson respectively.
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Fig. 4.4 The radial probability density | rψII(r) |2 for D(cū/cd̄) meson.
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Fig. 4.5 The radial wave function ψI(r) for B(ub̄) meson.

The variation of probability density | rψI(r) |2 and | rψII(r) |2 with r for B(ub̄) meson

are shown in fig. 4.7 and 4.8 respectively.
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Fig. 4.6 The radial wave function ψII(r) for B(ub̄) meson.
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Fig. 4.7 The radial probability density | rψI(r) |2 for B(ub̄) meson.

The graphical representation of the wave functions as well as the radial probability density

with r show similar variation as that of hydrogen atom [133] except that the scaling factors-

‘m’ the reduced mass of hydrogen atom, ‘a’ the atomic Bohr’s radius, ‘α’ the fine structure

constant is replaced by ‘µ’ the reduced mass of the meson, ‘a0’ the QCD analog of Bohr’s
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Fig. 4.8 The radial probability density | rψII(r) |2 for B(ub̄) meson.

radius and ‘αs’ the strong coupling constant respectively.

Respectively in Fig. 4.9 and 4.10, we show the graphical variation of wave functions ψI(p)

(equation(4.10)) and ψII(p) (equation (4.11)) in momentum space with p for D(cū/cd̄).
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Fig. 4.9 Wave function ψI(p) for D(cū/cd̄) meson.
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Fig. 4.10 Wave function ψII(p) for D(cū/cd̄) meson.

Similarly, in Fig. 4.11 and 4.12 we show the graphical variation of wave functions ψI(p)

(equation(4.10)) and ψII(p) (equation (4.11)) with p for B(ub̄) mesons in momentum space

respectively.
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Fig. 4.11 Wave function ψI(p) for B(ub̄) meson.
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Fig. 4.12 Wave function ψII(p) for B(ub̄) meson.

The qualitative features of the heavy flavored meson wave functions (Fig. 4.9 to 4.12) are

similar to those of the model of ref. [73]. One can also study the corresponding probability

density in momentum space.

4.4 Conclusion

In this chapter, the results for decay constants of mesons found using equations (4.1) and (4.2)

are well consistent with those of experimental data and other theoretical models. Whereas

the decay constants of mesons obtained using (4.18) are lower than that of using Van-Royen-

Weisskopf formula, also the values are smaller compared to experimental values and other

theoretical models. Then the addition of the Dirac modification factor to the wave function

will further reduces the results. However, it is seen that the equation (4.9) takes into account

the relativistic effect up to any order of (v
c) or ( p

m) and additional effects are unwarranted.

Thus at phenomenological level it is observed that the equation (4.9) is not appropriate in

the present model to compare with the data. This is done to test the predictive power of the
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model in momentum space (p-space).

Decay constants of heavy-light mesons (e.g. D, Ds mesons) are still not measured with

high accuracy compared to light mesons (e.g. π , K mesons). However, the discrepancies are

reduced to a certain extent by updates from experiments [130, 134–138]. Reliable experi-

mental data for decay constants of D and Ds mesons have been obtained for measurements

done in CLEO [130, 134, 135], Belle [136], BABAR [137], BES III [138] collaborations,

etc. Again, the decay constant fBs for Bs meson cannot be measured experimentally due to

its charge neutrality. Hence it has to be determined from theory. For experimentalists, it has

now become a great challenge to extract the value of decay constant fB of B meson.



5
Constituent gluons in scalar glueballs: a

group theoretical analysis

5.1 Introduction

A glueball is a theoretical compound particle. It is composed entirely of gluons, without

valence quarks. Gluons carry color charge and experience the strong interactions. Therefore

glueballs are viable in QCD. Such states have not been an easy subject to study due to the

lack of phenomenological support and therefore much controversy has been associated with
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their properties. Also glueballs are tough to identify in particle accelerators because they

mix with normal meson states. Glueball is mainly produced in radiative J/ψ decay and

p− p̄ annihilation processes as mentioned in Chapter 1. Theoretical calculations based on

non-perturbative methods like lattice QCD and QCD sum rules concur that the lightest glue-

ball should be a scalar resonance (Jpc = 0++) with a mass range 1600±150 MeV followed

by a tensor (2++) and a pseudoscalar (0−+) glueball in the 2000-2500 MeV mass region

[139, 140]. But unfortunately, no definite answer to the question whether a glueball has been

observed or not can be given yet. It is to be mentioned that although gluons are color octets,

glueballs are color singlets. So a single gluon cannot be a glueball, but a gluelump [141].

The forthcoming experiment FAIR with PANDA as detector [142] is specifically designed to

detect glueballs and hybrid mesons in charmonium spectroscopy. Theoretical calculations

predict that glueballs should occur at energy ranges available with current collider technology.

But due to the difficulties as mentioned, they have so far not been observed and established

with certainty. But still, it is a worthwhile theoretical pursuit.

In this chapter, we report the results for scalar glueballs using Young Tableau which

is used to determine the number of constituent gluons in low-lying scalar glueballs. In

Mathematics [144], a Young tableau is a helpful combination tool in representation theory.

In 1900, Alfred Young, a mathematician at Cambridge University, introduced Young tableau

[143]. By taking the direct product of irreducible representations, the representations of

higher dimensions are obtained. These representations are however reducible. Young tableau

gives a explicit way of reducing it to the direct sum of various irreducible representations

[144, 145]. In quark model, the three quarks: up(u), down(d) and strange (s) belong to the

fundamental representation 3, corresponding to the Young Tableau representation of

flavor SU(3) and the corresponding antiquarks (ū, d̄, s̄) belong to the conjugate representation
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3̄, the corresponding Young Tableau configuration being .

Similarly, the gluons are color octets and their fundamental representation in SU(3)c is 8

and the corresponding Young Tableau configuration is .

The group theoretical tool can only be used for low-lying scalar C =+1 glueballs, since

only for the scalar glueball l = 0 and s = 0; J = 0. Similarly, in case of scalar glueball there

will not be any additional angular momentum multiplicity.

5.2 Formalism

Here we outline the method how group theoretical tool of Young Tableau of SU(3)c can be

used to find the maximum number of constituent gluons in an experimentally observed scalar

glueball.

We show the product result for (8c ×8c) in SU(3)c:

For that we put a’s in the 1st row and b’s in the 2nd row as

⊗ a a

b
= ( a ⊕

a
⊕

a

)⊕ a

b
(5.1)
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= ( a a ⊕ a

a
⊕ a

a

⊕ a

a
⊕

a

a

⊕ a

a

⊕
a

a

⊕

a

a

)⊗ b

(5.2)

From (5.2), we can get rid of the last one containing two a’s in the same column, and

there are also four rows which are forbidden for SU(3) [146, 147]. At this stage, we also

combine any non-distinct diagrams of (5.2) yielding,

= ( a a ⊕ a

a
⊕ a

a

⊕
a

a

)⊗ b (5.3)
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= a a b ⊕ a a

b
⊕ a a

b

⊕ a b

a
⊕ a

a b
⊕ a

a

b

⊕ a b

a

⊕ a

b

a

⊕ a

a

b

⊕ b

a

a

⊕
a

a b

⊕
a

a

b

.

(5.4)

Now dropping the Young Tableaux diagram which have 4 rows,

⊗ a a

b
= a a b ⊕ a a

b
⊕ a a

b

⊕ a b

a
⊕ a

a b
⊕ a

a

b

⊕ a b

a

⊕ a

b

a

⊕ b

a

a

⊕
a

a b

.

(5.5)
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We now use the restriction of admissible (appropriate) sequences [146] to avoid double

counting. The restriction to read these boxes is from right to left, top to bottom. The

sequences of equation (5.5) would correspond to

⊗ a a

b
= baa⊕aab⊕aab⊕baa⊕aba⊕aab⊕baa⊕aba⊕baa⊕aba. (5.6)

Dropping baa which is an inadmissible sequence,

⊗ a a

b
= a a

b
⊕ a a

b

⊕ a

a b

⊕ a

a

b

⊕ a

b

a

⊕
a

a b

= 27+10+ 1̄0+8+8+1

= 1+2(8)+10+ 1̄0+27

(5.7)

(5.7) shows the result for glueball consisting of two gluons. Thus two color-octet gluons

can form a color singlet glueball. It means that if only one glueball is observed, the glueball

must be composed of two gluons. Similarly, from the bound state of three or more gluons the

corresponding representations can be found out.

5.3 Results

In Table 5.1 we show the possible number of color singlet glueballs corresponding to the

maximum number of constituent gluons. The results are obtained for glueballs up to 7
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constituent gluons. The only condition is that each of the glueballs are color singlets. We

have denoted n multiplicity of m dimensional irreducible representation of SU(3)c as n(m),

ie for example 3(10) = 10+10+10 and so on.

Table 5.1 Number of color singlets corresponding to the maximum number of constituent
gluons.

Direct product Direct sum Number of color
singlet glueballs

8c ×8c 1+8+8+10+ 1̄0+ 27 1
8c ×8c ×8c 2 (1)+8(8)+4(10)

+ 4 (1̄0) + 6(2̄7) +4 (35)+64 2
8c ×8c ×8c ×8c 8 (1)+32(8)+22(10)+

18(1̄0)+33(27) + 4( 28) + 30( 35)
+ 12(64)+6 (81) + 125 8

8c ×8c ×8c ×8c ×8c 32(1)+145(8)+117(10)+
83(1̄0)+180(27)+40(28)
+200(35)+94(64)+10(80)
+72(81)+20(125)+8(154)+
216 32

8c ×8c ×8c ×8c ×8c ×8c 145(1)+702(8)+642(10)+
408(1̄0)+999(27)+322(28)
+1260(35)+10(55)+660(64)
+140(80)+630(81)+215(125)
+140(154)+18(162)+30(216)
+10(260)+343 145

8c ×8c ×8c ×8c ×8c ×8c ×8c 702(1)+3598(8)+3603(10)+
2109(1̄0)+5670(27)+7840(35)
+2352(28)+168(55)+4424(64)
+1400(80)+4872(81)+1890(125)
+1568(154)+336(162)+426(216)
+239(260)+41(343)+28(280)
+12(405)+512+273+330 702
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In Table 5.2, we show the correspondence between the observed number of glueballs and

the possible number of constituent gluons in them. For example, if the number of detected

glueballs is 31, the possible number of constituent gluons will be 2, 3, 4 (Table 5.2).

Table 5.2 Possible number of constituent gluons corresponding to the number of scalar
glueballs observed.

Number of scalar Possible number of
glueballs observed constituent gluons
1 2
2-7 2,3
8-31 2,3,4
32-144 2,3,4,5
145-701 2,3,4,5,6
702 2,3,4,5,6,7

The above analysis demonstrates that the Young Tableau calculation gives the possibility

to infer the maximum number of constituent gluons from any number of observed glueballs.

Here we have confined the results for glueballs up to multiplicity of 702.

However, the predictions discussed above do not give any information about the relation-

ship between the number of constituent gluons and the masses of the observed glueballs,

since, in exact SU(3)C symmetry, gluons are massless and the present work doesn’t incorpo-

rate any dynamics.

5.4 Conclusion

In this chapter, we have shown how one can use Young Tableau to infer the number of

constituent gluons from the multiplicity of low-lying glueballs. In lattice QCD calculation,

low-lying C=+1 glueballs are identified with two gluon states [43](or at least with hadrons in
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which two gluon components are widely dominant). The group theoretical approach cannot

make the distinction among the glueballs of different number of constituent gluons. The

only constraint is that the glueballs must have total orbital momentum and total spins of the

constituent gluons be separately 0 so that angular momentum does not have any role in its

spectroscopy. The proposed simple constituent gluon counting rule will hopefully be useful

for the glueballs to be searched in near future.



6
Summary, limitation and future outlook

The work of the thesis is devoted to theoretical and phenomenological studies of heavy

flavored pseudoscalar mesons in a QCD inspired quark model. In the model, the analytic

expression for the non-relativistic Schrödinger wave functions for the Coulomb-plus-linear

potential, V (r) = −4αs
3r + br, called Cornell potential are obtained. The first-order wave

functions are obtained using Dalgarno’s method of perturbation. Relativistic effects are

then incorporated into the wave functions by using standard Dirac modification factor in a

parameter-free way [82, 83]. The model is then used to calculate the masses, form factors,

charge radii, RMS radii, decay constants of heavy flavored mesons, besides Isgur-Wise func-

tion and its derivatives, the convexity parameter and charge radius of heavy-light mesons are
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studied. The results are compared with available experimental data and with the predictions

of other models and also with the earlier work.

Certain improvement to the model has been incorporated in the present work compared

to previous studies [63–66, 69–71, 78, 117–119]. First is based on the Quantum Mechanics

principle that a scale factor ‘c’ in the potential should not affect the wave function of the

system even while applying the perturbation theory, the term ‘c’ is considered to be zero in

the Cornell potential. Another is depending on the perturbative piece of the Hamiltonian

(confinement or linear) the effective radial separation between the quark and antiquark ‘r’ is

divided at the point rP.

These modifications provide a satisfactory explanation of the quantities we obtain in our

model.

In Chapter 2, we obtain the analytical form of the wave functions for the Cornell poten-

tial, considering both Coulomb potential as the parent and linear as the perturbation, and

linear potential as parent and Coulomb as the perturbation. The strong coupling constant αs,

we use the standard values of M̄S scheme- αM̄S(mc) = 0.39 and αM̄S(mc) = 0.22 [94] at the

charmonium and bottomonium mass scales respectively. The values of cut-off parameter

rP are calculated for both the mass scales. The additional cut-off r0 is used in the model

basically due to the polynomial approximation of the series expansion used in the Dalgarno’s

method of perturbation. The cut-off r0 is independent of the property of the Airy function.

The acquired wave functions are then used to calculated the masses, charge radii and

RMS radii of various D and B mesons. The results for masses derived here are found to be in

good agreement with the experimental data, especially for B mesons (Table 2.2). The results
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for charge radii of mesons clearly shows an improvement over the earlier analysis of ref. [69]

and [78] for B mesons. However, the RMS radii calculated in Chapter 1 for cc̄ and bb̄ are

higher than those of other theoretical models compared (Table 2.6) .

In Chapter 3, we have reported the results of Isgur-Wise function calculating its slopes

and curvatures. The Isgur-Wise function of the heavy-light mesons is studied in the infi-

nite heavy quark mass limit and also for the finite mass corrections. From the study, it is

seen that for the mesons where light quark/antiquark is not so light compared to the heavy

quark/antiquark, the finite mass limit does show a very strong dependence on the spectator

quark mass.

In Chapter 4, we study the leptonic decay constants of various D and B mesons. The

decay constants of the mesons are calculated in coordinate space using Van-Royen-Weisskopf

formula (4.1) and (4.2) with the regularized wave functions (4.6) and (4.7) at the origin using

a short distance cut-off (rc) as defined in equation (4.5).

Our calculated results (Table 4.3) were found to be in agreement with the experimental

data and other model values compared. In the chapter, we have also used a different formula

(4.9) as given by Godfrey [127] to study decay constants of the mesons in momentum space.

To use that formula we obtain the wave functions at the momentum space (4.10) and (4.11)

by doing Fourier Transformation of wave functions (2.21) and (2.35) respectively. The

Fourier Transformation of the cut-off rP is also obtained as pP in momentum space. Since

the formula (4.9) is sufficient to incorporate relativistic effect for decay constant, therefore,

to achieve the results we have considered ε = 0 in the wave functions (4.10) and (4.11).

The results obtained using (4.18) are found smaller than those of experimental data and

other theoretical values (Table 4.4). The addition of the Dirac modification factor to the
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wave function will further reduce the results. Moreover, it is to be noted that this relativistic

formula (equation 4.9) in our semi-relativistic approach doesn’t help to compare with the

data available.

To summarize, we have outlined in chapters 2, 3 and 4 of the thesis an improved QCD

quark model and reported several quantities of phenomenological importance in the meson

sector.

Let us now discuss the limitation of this work presented in chapters 2, 3 and 4, which arise

mainly because of the approximations we have used. In the model we have considered the

cut-offs rP and pP in coordinate and momentum space respectively. Another important point

of the analysis is the introduction of the additional cut-off r0 (or p0) used in the wave function

(2.35). It is employed in the integration basically due to the polynomial approximation of

the series expansion used in the Dalgarno’s method of perturbation. It may be taken as the

demerit of the perturbation technique we are using. A possible way to do calculations without

these assumptions will be a part of the further study.

Further in this work, the full relativity could not be considered for heavy-light meson

systems. Though the relativistic effect is introduced through the Dirac modification factor in

this work, there should also have some other significant dynamical effects that have been

studied in various relativistic treatments of the problem [113]. So this can be considered as

one of the limitations of the present version of the work. Further study needed to take into

account such limitation.

Besides the studies of heavy flavored mesons, in Chapter 5, we have studied the group

theoretical tool of Young Tableau to find the possible number of constituents gluons in an
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observed scalar glueball. The present work is based on the pure SU(3)c symmetry of Young

Tableau. The limitation of the work is that it could only predict the number of possible

constituent gluons in a particular glueball multiplicity, not beyond it. The proper gluon

dynamics is to be incorporated to obtain the masses of such multi-gluon systems. This aspect

needs further study.
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A
Wave function for Coulomb potential

(−4αs
3r ) as parent and linear potential (br) as

perturbation

The first-order perturbed eigenfunction ψ(1) and first-order eigenenergy W (1) using quantum

mechanical perturbation theory (Dalgarno’s method) can be obtained using the relation

(2.10),
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(H0 −W (0))ψ(1) = (W (1)−H ′)ψ(0). (A.1)

For Cornell potential (2.8), we consider

H0 =−∇2

2µ
− 4αs

3r
, (A.2)

(taking h̄2 = 1) and

H ′ = br. (A.3)

Putting

A =
4αs

3
, (A.4)

we obtain

H0 =−∇2

2µ
− A

r
, (A.5)

W (0) = E =
µA2

2
(A.6)

and

ψ(0)(r) =
1√
πa3

0

e−
r

a0 , (A.7)

where ψ(0) is the unperturbed wave function in the zeroth order of perturbation and a0 is

given by equation (2.18).

Equation (A.1),

⇒
(
−∇2

2µ
− A

r
−E

)
ψ(1) =

(
W (1)−br

) 1√
πa3

0

e−
r

a0
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⇒
(

∇2 +
2µA

r
−µ2A2

)
ψ(1) = (br−W (1))

2µ√
πa3

0

e−
r

a0

⇒
(

∇2 +
2

a0r
− 1

a2
0

)
ψ(1) = (br−W (1))

2µ√
πa3

0

e−
r

a0 . (A.8)

Let

ψ(1) = (br)R(r), (A.9)

then

(A.8)⇒
(

d2

dr2 +
2
r

d
dr

+
2

a0r
− 1

a2
0

)
(br)R(r) = D(br−W (1))e−

r
a0 , (A.10)

where we put

D =
2µ√
πa3

0

. (A.11)

Now
d
dr

(brR(r)) = bR(r)+br
dR
dr

, (A.12)

d2

dr2 (brR(r)) = 2b
dR
dr

+br
d2R
dr2 (A.13)

Using (A.12) and (A.13) in (A.10) we obtain

br
d2R
dr2 +2b

dR
dr

+
2
r

bR(r)+
2
r

br
dR
dr

+
2

a0r
brR(r)− 1

a2
0

brR(r)

= D(br−W (1))e−
r

a0 .

(A.14)

Putting

R(r) = F(r)e−
r

a0 , (A.15)
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dR
dr

= F ′(r)e−
r

a0 − 1
a0

F(r)e−
r

a0 , (A.16)

d2R
dr2 = F ′′(r)e−

r
a0 − 2

a0
F ′(r)e−

r
a0 +

1
a2

0
F(r)e−

r
a0 , (A.17)

(A.14)⇒ br
{

F ′′(r)− 2
a0

F ′(r)+
1
a2

0
F(r)

}
+2b

{
F ′(r)− 1

a0
F(r)

}
+

2b
r

F(r)

+2bF ′(r)− 2b
a0

F(r)+
2b
a0

F(r)− 1
a2

0
brF(r) = D(br−W (1))

⇒ brF ′′(r)+
{

4b− 2b
a0

r
}

F ′(r)+
{

2b
r
− 2b

a0

}
F(r) = D(br−W (1)). (A.18)

Let

F(r) =
∞

∑
n=0

Anrn, (A.19)

then

F ′(r) =
∞

∑
n=0

nAnrn−1 (A.20)

and

F ′′(r) =
∞

∑
n=0

n(n−1)Anrn−2. (A.21)

(A.18)⇒ br
∞

∑
n=0

n(n−1)Anrn−2 +

{
4b− 2b

a0
r
} ∞

∑
n=0

nAnrn−1 +

{
2b
r
− 2b

a0

} ∞

∑
n=0

Anrn

= D(br−W (1))
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⇒
{

b
∞

∑
n=0

n(n−1)An +4b
∞

∑
n=0

nAn +2b
∞

∑
n=0

An

}
rn−1 −

{
2b
a0

∞

∑
n=0

nAn +
2b
a0

∞

∑
n=0

An

}
rn

= D(br−W (1)).

(A.22)

Equating the co-efficients of r−1 on both sides of the above identity (A.22)

2bA0 = 0,

since b ̸= 0, therefore

⇒ A0 = 0. (A.23)

Equating the co-efficients of r0 on both sides of the identity (A.22),

4bA1 +2bA1 −
2b
a0

A0 =−DW (1)

⇒ A1 =−DW (1)

6b
. (A.24)

Equating the co-efficients of r1 on both sides of the identity (A.22),

2bA2 +8bA2 +2bA2 −
2b
a0

A1 −
2b
a0

A1 = Db.

Using (A.24),

A2 =
D
12

− DW (1)

18ba0
. (A.25)
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Equating the co-efficients of r2 on both sides of the identity (A.22),

6bA3 +12bA3 +2bA3 −
4b
a0

A2 −
2b
a0

A2 = 0. (A.26)

Using (A.25),

A3 =
D

40a0
− DW (1)

60ba2
0
. (A.27)

Equating the co-efficients of r3 on both sides of the identity (A.22),

12bA4 +16bA4 +2bA4 −
2b
a0

3A3 −
2b
a0

A3 = 0.

Using (A.27),

A4 =
D

150a2
0
− DW (1)

225ba3
0
. (A.28)

From (A.19)

F(r) = A0r0 +A1r1 +A2r2 +A3r3 +A4r4 + ... (A.29)

Now from (A.9), (A.15) and (A.29),

ψ(1)(r) = brF(r)e−
r

a0 (A.30)

= br
(
A0r0 +A1r1 +A2r2 +A3r3 +A4r4 + ...

)
e−

r
a0

=
{

A0(br)+A1(br2)+A2(br3)+A3(br4)+A4(br5)+ ...
}

e−
r

a0 . (A.31)

Now applying (A.23), (A.24),(A.25), (A.27), (A.28) to (A.31),
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ψ(1)(r) =
[
−DW

6b
(br2)+

{
D
6

(
1
2
− W

3ba0

)}
(br3)+

{
D

20a0

(
1
2
− W

3ba0

)}
(br4)

+

{
D

75a2
0

(
1
2
− W

3ba0

)}
(br5)

]
e−

r
a0 .

(A.32)

Again from (2.13)

W (1) =
∫

ψ⋆
100H ′ψ100dτ

=
1

πa3
0

∫ ∞

0
(br)r2e−

2r
a0 dr

∫ π

0
Sinθdθ

∫ 2π

0
dφ

=
4π
πa3

0

∫ ∞

0
(br3)e−

2r
a0 dr

=
4
a3

0

[
b

6a4
0

16

]

=
3
2

ba0. (A.33)

Hence
1
2
− W

3ba0
= 0. (A.34)

Therefore, (A.32) reduces to

ψ(1)(r) =
[
−DW

6b
(br2)

]
e−

r
a0
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=− 1

2
√

πa3
0

µba0r2e−
r

a0 . (A.35)

The total wave function is thus

ψ total = ψ(0)+ψ(1)

=
1√
πa3

0

[
1− 1

2
µba0r2

]
e−

r
a0 . (A.36)

Considering relativistic correction factor the equation (A.36) becomes

ψ total(r) =
N√
πa3

0

[
1− 1

2
µba0r2

](
r

a0

)−ε
e−

r
a0 . (A.37)



B
Wave function for linear potential (br) as

parent and Coulomb potential (−4αs
3r ) as

perturbation

For the Cornell potential (2.8), we consider

H0 =−∇2

2µ
+br (B.1)
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and

H ′ =−4αs

3r
. (B.2)

To find the unperturbed wave function corresponding to H0, we employ the radial

Schrödinger’s equation for potential br for ground state,

− 1
2µ

[(
d2

dr2 +
2
r

d
dr

)
+br

]
R(r) = ER(r), (B.3)

where R(r) is the radial wave function. We introduce u(r) = rR(r) and the dimensionless

variable

ρ(r) = (2µb)
1
3 r−

(
2µ
b2

) 1
3

E. (B.4)

The equation (B.3) then reduces to

d2u
dρ2 −ρu = 0. (B.5)

The solution of this second order homogeneous differential equation contains linear

combination of two types of Airy’s functions Ai[r] and Bi[r].

The nature of the Airy’s function reveals that

Ai[r]→ 0 and Bi[r]→ ∞ as r → ∞.

So, it is reasonable to reject the Bi[r] part of the solution.

The unperturbed wave function for ground state is

ψ(0)(r) =
N0

r
Ai[ρ1r+ρ0], (B.6)



107

where N0 is the normalization constant and ρ1 = (2µb)1/3 .

ρ0 is the zero of the Airy function, such that Ai[ρ0] = 0.

ρ0 has the explicit form as mentioned in equation (2.29).

The first order perturbed eigen function ψ(1) is obtained using relation (A.1).

Then taking h̄2 = 1, equation (A.1),

⇒
(
− h̄2

2µ
∇2 +br−E

)
ψ(1) =

(
W (1)+

4αs

3r

)
ψ(0)(r). (B.7)

In terms of the radial wave function the above equation can be expressed as

[(
d2

dr2 +
2
r

d
dr

)
−2µ(br−E)

]
R(r) =−2µ

(
W (1)+

4αs

3r

)
1
r

Ai[ρ]. (B.8)

Let

R(r) =
1
r

F(r)Ai[ρ] =
1
r

F(r)Ai[ρ1r+ρ0], (B.9)

so that
dR
dr

=− 1
r2 F(r)Ai[ρ]+

1
r

F ′(r)Ai[ρ]+
ρ1

r
F(r)Ai′[ρ], (B.10)

d2R
dr2 =

2
r3 F(r)Ai[ρ]− 2

r2 F ′(r)Ai[ρ]− 2ρ
r2 F(r)Ai′[ρ]+

1
r

F ′′Ai[ρ1]+

2ρ1

r
F ′(r)Ai′[ρ]+

ρ2
1
r

F(r)Ai′′[ρ].
(B.11)
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Now we introduce the identity

Ai′[ρ] =
dAi(ρ)

dr
= Z(ρ)Ai(ρ), (B.12)

so that

Ai′′(ρ) = Z2(ρ)Ai(ρ)+Z′(ρ)Ai(ρ). (B.13)

Then the equation (B.8) becomes

F ′′(r)+2ρ1F ′(r)Z(ρ)+ρ2
1 [Z

2(ρ)+Z′(ρ)]F(r)−2µ(br−E)F(r)

=−4αs

3
2µ
r

−2µW (1).
(B.14)

Assuming

Z(ρ) =
k1(r)

r

and

Z2(ρ)+Z′(ρ) =
k2(r)

r2 ,

(B.14)⇒ F ′′(r)+2ρ1F ′(r)
k1(r)

r
+ρ2

1 F(r)
k2(r)

r2 −2µ(br−E)F(r) =−4αs

3
2µ
r

−2µW (1).

(B.15)

Now using (A.19), (A.20) and (A.21), the above equation (B.15) becomes

n(n−1)∑
n

Anrn−2 +2ρ1l ∑
n

Anrn−1 k1

r
+ρ2

1 ∑
n

Anrn k2

r2 −2µ(br−E)∑
n

Anrn

=−4αs

3
2µ
r

−2µW (1)
(B.16)
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⇒
[

n(n−1)∑
n

An +2ρ1n∑
n

Ank1 +ρ2
1 ∑

n
Ank2

]
rn−2 −2µb∑

n
Anrn+1+

2µE ∑
n

Anrn =−4αs

3
2µ
r

−2µW (1).

(B.17)

Now equating the co-efficients of r−2 from the above equation (B.17),

ρ2
1 A0k2 = 0

⇒ A0 = 0. (B.18)

Equating the co-efficients of r−1 of (B.17),

2ρ1A1k1 +ρ2
1 A1k2 =−2µ

4αs

3
,

⇒ A1 =
−2µ 4αs

3

2ρ1k1 +ρ2
1 k2

. (B.19)

Equating the co-efficients of r0 of (B.17),

2A2 +4ρ1A2k1 +ρ2
1 A2k2 +2µEA0 =−2µW (1)

⇒ A2 =
−2µW (1)

2+4ρ1k1 +ρ2
1 k2

. (B.20)

Equating the co-efficients of r1 of (B.17),

6A3 +6ρ1A3k1 +ρ2
1 A3k2 −2µbA0 +2µEA1 = 0
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⇒ A3 =
−2µEA1

6+6ρ1k1 +ρ2
1 k2

. (B.21)

Equating the co-efficients of r2 of (B.17),

12A4 +8ρ1A4k1 +ρ2
1 A4k2 −2µbA1 +2µEA2 = 0

⇒ A4 =
−2µEA2 +2µbA1

12+8ρ1k1 +ρ2
1 k2

. (B.22)

Equating the co-efficients of r3 of (B.17),

20A5 +10ρ1A5k1 +ρ2
1 A5k2 −2µbA2 +2µEA3 = 0

⇒ A5 =
−2µEA3 +2µbA2

20+10ρ1k1 +ρ2
1 k2

. (B.23)

Equating the co-efficients of r4 of (B.17),

30A6 +12ρ1A6k1 +ρ2
1 A6k2 −2µbA3 +2µEA4 = 0

⇒ A6 =
−2µEA4 +2µbA3

30+12ρ1k1 +ρ2
1 k2

. (B.24)

Equating the co-efficients of r5 of (B.17),

42A7 +14ρ1A7k1 +ρ2
1 A7k2 −2µbA4 +2µEA5 = 0

⇒ A7 =
−2µEA5 +2µbA4

42+14ρ1k1 +ρ2
1 k2

. (B.25)
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and so on.

Using (A.29), the perturbed wave function will be

ψ(1)(r) =
1
r
[A0r0 +A1r1 +A2r2 +A3r3 +A4r4 +A5r5 +A6r6 +A7r7 + ...]Ai[ρ1r+ρ0].

(B.26)

Now the total wave function with relativistic correction factor is

ψ total(r) =
N′

r
[1+A0r0 +A1r1 +A2r2 +A3r3 +A4r4 +A5r5 +A6r6 +A7r7 + ...]

Ai[ρ1r+ρ0]

(
r

a0

)−ε
.

(B.27)

The co-efficients A0,A1,A2,A3, ..... are appearing from the series solution of Schrödinger

equation using the Dalgarno’s method of perturbation.



C
Continuity of the wave functions ψI(r) and

ψII(r) at rP

To check the continuity of the wave functions, we first plot the wave function ‘ψI(r) vs r’

in the range 0 < r < rP and then the wave function ‘ψII(r) vs r’ in the range rP < r < r0 as

shown in figures C.1 and C.2 respectively.

A plot of complete wave function ‘ψI(r)+ψII(r) vs r’ is drawn in fig. C.3 to check the

continuity of the wave function at the point ‘rP’.
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Fig. C.1 The wave function ψI(r) for D(cū/cd̄) meson.
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Fig. C.2 The wave function ψII(r) for D(cū/cd̄) meson.

From the fig. C.3, it is evident that there is no break or mismatch of the wave functions

ψI(r) and ψII(r) at the point rP.
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Fig. C.3 The complete wave function ψI(r)+ψII(r) for D(cū/cd̄) meson.



D
Mass of D(cū/cd̄) meson using formula

(2.37) considering various co-effcients of

equation (B.27)

From Table D.1, it can be inferred that the with increase of the cut-off r0 the mass of the me-

son increases slightly at the beginning, then becomes stable with the increase of r0. Similarly,

the change is not so significant with the increase of the number of terms of the wave function
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Table D.1 Mass of D(cū/cd̄) meson in GeV with different order of the terms of wave function
(B.27) and with the different values of upper cut-off r0.

r0 With upto upto upto upto upto upto upto
(GeV−1) Eqn.(B.6) O(r1) O(r2) O(r3) O(r4) O(r5) O(r6) O(r7)
5.076 2.253 2.308 2.313 2.311 2.438 2.256 2.211 2.322
10 2.260 2.368 2.460 2.461 2.604 2.512 2.570 2.547
100 2.260 2.369 2.461 2.463 2.641 2.542 2.623 2.756
Infinity 2.260 2.369 2.461 2.463 2.641 2.542 2.623 2.756

(B.27).

Now, considering the wave function (B.27) upto O(r7) we check the behavior of the

normalization constant with different r0,

N′ =
(∫ r0

rP
4π
[
1+A0r0 +A1(r)r+A2(r)r2 +A3(r)r3 +A4(r)r4 +A5r5 +A6r6 +A7r7

]2

(Ai[ρ1r+ρ0])
2
(

r
a0

)−2ε
dr
)− 1

2
.

(D.1)

Table D.2 Normalization constant with different upper cut-off r0.

r0 (GeV−1) 5.076 8 10 14 18 25 50 100 1000 Infinity
N′ 0.0143 0.0081 0.0076 0.0060 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

The graphical representation of Table D.2 is shown in Fig. D.1.
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Fig. D.1 Normalization constant (D.1) with different r0.

From Fig. D.1, it is clear that the Normalization constant of the wave function B.27

converges with the increase of r0 and becomes stable after a particular value of r0 ≤ 18GeV−1.



E
Form factor F(Q2)I with wave function

(2.21)

F(Q2) |I=
2

∑
i=1

ei

Qi

∫ rP

0
4πr | ψI(r) |2 sin(Qir)dr (E.1)

Using equation (2.21) in equation (E.1) and integrating over r,

F(Q2) |I= N2
2

∑
i=1

ei

Qi

[
22ε

a0
(γ(2−2ε,rP))sin((2−2ε).θi)(1+

a2
0Q2

i
4

)ε−1

+
a5

0
26−2ε µ2b2(γ(6−2ε,rP))sin((6−2ε).θi)(1+

a2
0Q2

i
4

)ε−3

− a2
0

22−2ε µb(γ(4−2ε,rP))sin((4−2ε).θi)(1+
a2

0Q2
i

4
)ε−2

]
,

(E.2)
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where

θi = sin−1




Qi
(

Q2
i +

4
a2

0

) 1
2


 , (E.3)

where only the first term of the following series is considered

sin−1(x)≈ x+
x3

6
+

3x5

40
, (E.4)

with

x =
Qi

(
Q2

i +
4
a2

0

) 1
2

(E.5)

which is true for very low Q2.

We split the sine function of equation (E.2) using

siny = y− y3

3!
+

y5

5!
. (E.6)

Now equation (E.2) becomes

F(Q2) |I= N2
2

∑
i=1

ei

Qi

[
22ε

a0
(γ(2−2ε,rP))

(
(2−2ε)θi −

(2−2ε)3

3!
θ 3

i +
(2−2ε)5

5!
θ 5

i

)
(1+

a2
0Q2

i
4

)ε−1

+
a5

0
26−2ε µ2b2(γ(6−2ε,rP))

(
(6−2ε)θi −

(6−2ε)3

3!
θ 3

i +
(6−2ε)5

5!
θ 5

i

)
(1+

a2
0Q2

i
4

)ε−3

− a2
0

22−2ε µb(γ(4−2ε,rP))

(
(4−2ε)θi −

(4−2ε)3

3!
θ 3

i +
(4−2ε)5

5!
θ 5

i

)
(1+

a2
0Q2

i
4

)ε−2
]
.

(E.7)

Using (E.2) and (E.5) in equation (E.7),

F(Q2) |I= N2
2

∑
i=1

ei

[
22ε

a0
(γ(2−2ε,rP))

(
(2−2ε)Xi −

(2−2ε)3

3!
Q2

i X3
i +

(2−2ε)5

5!
Q4

i X5
i

)
(1+

a2
0Q2

i
4

)ε−1

+
a5

0
26−2ε µ2b2(γ(6−2ε,rP))

(
(6−2ε)Xi −

(6−2ε)3

3!
Q2

i X3
i +

(6−2ε)5

5!
Q4

i X5
i

)
(1+

a2
0Q2

i
4

)ε−3

− a2
0

22−2ε µb(γ(4−2ε,rP))

(
(4−2ε)Xi −

(4−2ε)3

3!
Q2

i X3
i +

(4−2ε)5

5!
Q4

i X5
i

)
(1+

a2
0Q2

i
4

)ε−2
]
,

(E.8)
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where

Xi =

(
Q2

i +
4
a2

0

)− 1
2

. (E.9)

At low Q2 limit, equation (E.8) reduces to equation (2.46) and with ε = 0 to (2.49).



F
Form factor F(Q2)II with wave function

(2.35)

F(Q2) |II=
2

∑
i=1

ei

Qi

∫ r0

rP
4πr | ψII(r) |2 sin(Qir)dr (F.1)
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At low Q2 limit equation (F.1) gives

F(Q2) |II= 4πN′2a2ε
0

2

∑
i=1

ei

[
(a1 −b1ρ0)

2(γ(−2ε,r0)− γ(−2ε,rP))sin((−2ε)φi)

(Q2
i )

1−2ε
2

+
(b1ρ1)

2(γ(2−2ε,r0)− γ(2−2ε,rP))sin((2−2ε)φi)

(Q2
i )

3−2ε
2

−2b1ρ1(a1 −b1ρ0)(γ(1−2ε,r0)− γ(1−2ε,rP))sin((1−2ε)φi)

(Q2
i )

2−2ε
2

−16
3
(a1 −b1ρ0)

2µαs(γ(3−2ε,r0)− γ(3−2ε,rP))sin((3−2ε)φi)

(ρ1k)2(Q2
i )

4−2ε
2

+
16
3
(a1 −b1ρ0)

2µαs2
√

2ρ1(γ(4−2ε,r0)− γ(4−2ε,rP))sin((4−2ε)φi)

(ρ1k)3(Q2
i )

5−2ε
2

−16
3
(b1ρ1)

2µαs(γ(5−2ε,r0)− γ(5−2ε,rP))sin((5−2ε)φi)

(ρ1k)2(Q2
i )

6−2ε
2

+
16
3
(b1ρ1)

2µαs2
√

2ρ1(γ(6−2ε,r0)− γ(6−2ε,rP))sin((6−2ε)φi)

(ρ1k)3(Q2
i )

7−2ε
2

+
32
3

b1ρ1(a1 −b1ρ0)µαs(γ(4−2ε,r0)− γ(4−2ε,rP))sin((4−2ε)φi)

(ρ1k)2(Q2
i )

5−2ε
2

−32
3

b1ρ1(a1 −b1ρ0)2
√

2ρ1µαs(γ(5−2ε,r0)− γ(5−2ε,rP))sin((5−2ε)φi)

(ρ1k)3(Q2
i )

6−2ε
2

−8
3
(a1 −b1ρ0)

2µαs(γ(4−2ε,r0)− γ(4−2ε,rP))sin((4−2ε)φi)

(ρ1k)2(Q2
i )

5−2ε
2

+
8
3
(a1 −b1ρ0)

2µαs2
√

2ρ1(γ(5−2ε,r0)− γ(5−2ε,rP))sin((5−2ε)φi)

(ρ1k)3(Q2
i )

6−2ε
2

+(
8µαs

3
)2 (b1ρ1)

2(γ(8−2ε,r0)− γ(8−2ε,rP))sin((8−2ε)φi)

(ρ1k)4(Q2
i )

9−2ε
2

+(
8µαs

3
)2 8ρ1(b1ρ1)

2(γ(10−2ε,r0)− γ(10−2ε,rP))sin((10−2ε)φi)

(ρ1k)6(Q2
i )

11−2ε
2

−(
8µαs

3
)2 (b1ρ1)

24
√

2ρ1(γ(9−2ε,r0)− γ(9−2ε,rP))sin((9−2ε)φi)

(ρ1k)5(Q2
i )

10−2ε
2

−(
8µαs

3
)2 2b1ρ1(a1 −b1ρ0)(γ(7−2ε,r0)− γ(7−2ε,rP))sin((7−2ε)φi)

(ρ1k)4(Q2
i )

8−2ε
2

−(
8µαs

3
)2 2b1ρ1(a1 −b1ρ0)8ρ1(γ(9−2ε,r0)− γ(9−2ε,rP))sin((9−2ε)φi)

(ρ1k)6(Q2
i )

10−2ε
2

+(
8µαs

3
)2 4b1ρ1(a1 −b1ρ0)2

√
2ρ1(γ(8−2ε,r0)− γ(8−2ε,rP))sin((8−2ε)φi)

(ρ1k)5(Q2
i )

9−2ε
2

]
,

(F.2)

where

φi = sin−1(1),

a1 = 0.355028,
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b1 = 0.258819,

b = 0.183GeV 2,

ρ0 =−3
43

1
3 π

2
3 ,

ρ1 = 0.715309µ
1
3

and k = 1.33586µ
1
3 .

Putting these values in equation (F.2) and using approximations (E.4) and (E.6), the

equation (F.2) reduces to

F(Q2) |II= 4πN′2a2ε
0

2

∑
i=1

ei

[
0.913(γ(−2ε,r0)− γ(−2ε,rP))(−2ε)

1

(Q2
i )

1−2ε
2

−0.353µ
1
3 (γ(1−2ε,r0)− γ(1−2ε,rP))(1−2ε)

1

(Q2
i )

2−2ε
2

+0.0342µ
2
3 (γ(2−2ε,r0)− γ(2−2ε,rP))(2−2ε)

1

(Q2
i )

3−2ε
2

−5.33µαs(γ(3−2ε,r0)− γ(3−2ε,rP))(3−2ε)
1

(Q2
i )

4−2ε
2

+(13.35µ
7
6 +2.06µ

4
3 −2.66µ)αs(γ(4−2ε,r0)− γ(4−2ε,rP))(4−2ε)

1

(Q2
i )

5−2ε
2

+(6.675µ
7
6 −5.17µ

3
2 −0.2µ

5
3 )αs(γ(5−2ε,r0)− γ(5−2ε,rP))(5−2ε)

1

(Q2
i )

6−2ε
2

+0.501µ
11
6 αs(γ(6−2ε,r0)− γ(6−2ε,rP))(6−2ε)

1

(Q2
i )

7−2ε
2

−3.017µ
7
3 α2

s (γ(7−2ε,r0)− γ(7−2ε,rP))(7−2ε)
1

(Q2
i )

8−2ε
2

+(0.292µ
8
3 +15.1µ

5
2 )α2

s (γ(8−2ε,r0)− γ(8−2ε,rP))(8−2ε)
1

(Q2
i )

9−2ε
2

−(1.463µ
17
6 +18.91µ

8
3 )α2

s (γ(9−2ε,r0)− γ(9−2ε,rP))(9−2ε)
1

(Q2
i )

10−2ε
2

+1.83µ3α2
s (γ(10−2ε,r0)− γ(10−2ε,rP))(10−2ε)

1

(Q2
i )

11−2ε
2

]
.

(F.3)
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F(Q2) |II= 4πN′2a2ε
0

2

∑
i=1

ei

[
F1

1

(Q2
i )

1−2ε
2

+F2
1

(Q2
i )

2−2ε
2

+F3
1

(Q2
i )

3−2ε
2

+F4
1

(Q2
i )

4−2ε
2

+F5
1

(Q2
i )

5−2ε
2

+F6
1

(Q2
i )

6−2ε
2

+F7
1

(Q2
i )

7−2ε
2

+F8
1

(Q2
i )

8−2ε
2

+F9
1

(Q2
i )

9−2ε
2

+F10
1

(Q2
i )

10−2ε
2

+F11
1

(Q2
i )

11−2ε
2

]
,

(F.4)

where

F1 = 0.913(γ(−2ε,r0)− γ(−2ε,rP))(−2ε),

F2 =−0.353µ
1
3 (γ(1−2ε,r0)− γ(1−2ε,rP))(1−2ε),

F3 = 0.0342µ
2
3 (γ(2−2ε,r0)− γ(2−2ε,rP))(2−2ε),

F4 =−5.33µαs(γ(3−2ε,r0)− γ(3−2ε,rP))(3−2ε),

F5 = (13.35µ
7
6 +2.06µ

4
3 −2.66µ)αs(γ(4−2ε,r0)− γ(4−2ε,rP))(4−2ε),

F6 = (6.675µ
7
6 −5.17µ

3
2 −0.2µ

5
3 )αs(γ(5−2ε,r0)− γ(5−2ε,rP))(5−2ε),

F7 = 0.501µ
11
6 αs(γ(6−2ε,r0)− γ(6−2ε,rP))(6−2ε),

F8 =−3.017µ
7
3 α2

s (γ(7−2ε,r0)− γ(7−2ε,rP))(7−2ε),

F9 = (0.292µ
8
3 +15.1µ

5
2 )α2

s (γ(8−2ε,r0)− γ(8−2ε,rP))(8−2ε),

F10 =−(1.463µ
17
6 +18.91µ

8
3 )α2

s (γ(9−2ε,r0)− γ(9−2ε,rP))(9−2ε),

F11 = 1.83µ3α2
s (γ(10−2ε,r0)− γ(10−2ε,rP))(10−2ε).

(F.5)

We can express equation (F.4) as defined in (2.48),

F(Q2) |II= 4πN′2a2ε
0

2

∑
i=1

ei

[ 11

∑
k=1

Fk
1

(Q2
i )

k−2ε
2

]
. (F.6)

With ε = 0, the equation (F.6) reduces to (2.50).

F(Q2) |II= 4πN′2
2

∑
i=1

ei

[ 11

∑
k=2

F ′
k

1

(Q2
i )

k
2

]
(F.7)
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where

F ′
2 =−0.353µ

1
3 (γ(1,r0)− γ(1,rP)),

F ′
3 = 2×0.0342µ

2
3 (γ(2,r0)− γ(2,rP)),

F ′
4 =−3×5.33µαs(γ(3,r0)− γ(3,rP)),

F ′
5 = 4× (13.35µ

7
6 +2.06µ

4
3 −2.66µ)αs(γ(4,r0)− γ(4,rP)),

F ′
6 = 5× (6.675µ

7
6 −5.17µ

3
2 −0.2µ

5
3 )αs(γ(5,r0)− γ(5,rP)),

F ′
7 = 6×0.501µ

11
6 αs(γ(6,r0)− γ(6,rP)),

F ′
8 =−7×3.017µ

7
3 α2

s (γ(7,r0)− γ(7,rP)),

F ′
9 = 8× (0.292µ

8
3 +15.1µ

5
2 )α2

s (γ(8,r0)− γ(8,rP)),

F ′
10 =−9× (1.463µ

17
6 +18.91µ

8
3 )α2

s (γ(9,r0)− γ(9,rP)),

F ′
11 = 10×1.83µ3α2

s (γ(10,r0)− γ(10,rP)).

(F.8)

In obtaining (2.46), (2.48), (2.49) and (2.50) we have used the integration1,

∫ ∞

0
xp−1e−axsin(mx)dx =

Γ(p)sin(pθ)
(a2 +m2)

p
2
. (F.9)

The Incomplete Gamma Function used in obtaining (2.48) and (2.50) is

∫ v

u
ts−1e−tdt = γ(s,v)− γ(s,u). (F.10)

1I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Elsevier, 2007).



G
Derivation of equation (4.1) from equation

(4.9)

From equation (4.9), we get

fP =

√
12
MP

∫ d3 p

(2π)
3
2

(
Ei +mi

2Ei

) 1
2
(

E j +m j

2E j

) 1
2
(

1+λP
p2

[Ei +mi][E j +m j]

)
ψ(p). (G.1)

We know from the relativistic formula of energy,
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E2 = p2c2 +m2c4. (G.2)

In the natural unit, c = 1,

E =
√

p2 +m2. (G.3)

In the non-relativistic limit m2 ≫ p2,

E =
√

m2 = m. (G.4)

Now replacing Ei = mi and E j = m j and λP =−1 for the pseudoscalar meson in equation

(G.1),

fP =

√
12
MP

∫ d3 p

(2π)
3
2

(
mi +mi

2mi

) 1
2
(

m j +m j

2m j

) 1
2
(

1+λP
p2

[mi +mi][m j +m j]

)
ψ(p).

(G.5)

Neglecting the last term in the non-relativistic limit p2

m2 → 0, we get

fP =

√
12
MP

∫ d3 p

(2π)
3
2

ψ(p). (G.6)

Again, from the Fourier transform

ψ(r) =
1

(2π)
3
2

∫
ψ(p)eiprd3 p. (G.7)

Putting r = 0 in (G.7),

(2π)
3
2 ψ(0) =

∫
ψ(p)d3 p. (G.8)

Hence from equations (G.6) and (G.8), we obtain equation (4.1),
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fP =

√
12
MP

|ψ(0)|2. (G.9)



H
The wave function (4.10) in momentum

space

ψI(p)total =
2N

√
2a

3
2
0 γ(2,rP)

π(1+a2
0 p2)

3
2

[
1− 12µba3

0

2(1+a2
0 p2)

]
, (H.1)

where N is the normalization constant.

In obtaining (H.1), we have used Incomplete Gamma function

∫ rP

0
ts−1e−tdt = γ(s,rP). (H.2)



I
The wave function (4.11) in momentum

space

ψII(p)total = N′ [(a1 −b1ρ0)(T1 +T2 +T3 +T4 +T5)−b1ρ1(T6 +T7 +T8 +T9 +T10)] ,

(I.1)

where N′ is the normalization constant and the co-efficients T1,T2,T3, .....T10 are

T1 =−32
3

√
2
π

µαs

(ρ1k)2
(γ(4,r0)− γ(4,rP))

p5

(
1− 2

√
10ρ1

ρ1kp

)
, (I.2)
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T2 =−
√

2
π

10µW 1

(ρ1k)2
(γ(5,r0)− γ(5,rP))

p6

(
1− 12

√
(2+4ρ1)

ρ1kp

)
, (I.3)

T3 =

√
2
π

128µ2αsW 0

3(ρ1k)4
(γ(8,r0)− γ(8,rP))

p9

[
1−
(

18
√

(6+6ρ1)+18
√

2ρ1

ρ1kp

)
,

+
360
√

12ρ1(1+ρ1)

(ρ1kp)2

] (I.4)

T4 =

√
2
π

36µ2W 0W 1

(ρ1k)4
(γ(9,r0)− γ(9,rP))

p10

[
1−
(

40
√
(3+2ρ1)+20

√
(2+4ρ1)

ρ1kp

)

+
880
√
(3+2ρ1)(2+4ρ1)

(ρ1kp)2

]
,

(I.5)

T5 =−144
3

√
2
π

µ2bαs

(ρ1k)4
(γ(9,r0)− γ(9,rP))

p10

[
1−
(

20
√

2ρ1 +20
√

(12+8ρ1)

ρ1kp

)

+
440
√

2ρ1(12+8ρ1)

(ρ1kp)2

]
,

(I.6)

T6 =−40
3

√
2
π

µαs

(ρ1k)2
(γ(5,r0)− γ(5,rP))

p6

(
1− 12

√
2ρ1

ρ1kp

)
, (I.7)

T7 =−
√

2
π

12µW 1

(ρ1k)2
(γ(6,r0)− γ(6,rP))

p7

(
1− 14

√
(2+4ρ1)

ρ1kp

)
, (I.8)

T8 =

√
2
π

144µ2αsW 0

3(ρ1k)4
(γ(9,r0)− γ(9,rP))

p10

[
1−
(

20
√

(6+6ρ1)+20
√

2ρ1

ρ1kp

)

+
440
√

12ρ1(1+ρ1)

(ρ1kp)2

]
,

(I.9)

T9 =

√
2
π

40µ2W 0W 1

(ρ1k)4
(γ(10,r0)− γ(10,rP))

p11

[
1−
(

44
√

(3+2ρ1)+22
√
(2+4ρ1)

ρ1kp

)

+
1056

√
(3+2ρ1)(2+4ρ1)

(ρ1kp)2

]
,

(I.10)

T10 =−160
3

√
2
π

µ2bαs

(ρ1k)4
(γ(10,r0)− γ(10,rP))

p11

[
1−
(

22
√

2ρ1 +22
√
(12+8ρ1)

ρ1kp

)

+
528
√

2ρ1(12+8ρ1)

(ρ1kp)2

]
.

(I.11)
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The Incomplete Gamma function as shown in equation (I.12) is used in obtaining the

co-efficients T1,T2,T3, .....T10,

∫ v

u
ts−1e−tdt = γ(s,v)− γ(s,u). (I.12)

In obtaining (H.1) and (I.1) we have used the integration as defined in equation (F.9).


