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Abstract

We investigate the uses of membranes in theoretical physics. Starting
with the bosonic membrane and the formulation of its dynamics we then
move forward in time to the introduction of supersymmetry. Matrix
theory is introduced and a full proof of the continuous spectrum of the
supermembrane is given. After this we deal with various concepts in
M-theory (BPS-states, Matrix Theory, torodial compactifications etc.)
that are of special importance when motivating the algebraic approach
to M-theoretic caluclations. This approach is then dealt with by first
reviewing the prototypical example of the Type IIB R4 amplitude and
then the various issues of microscopic derivations of the corresponding
results through first-principle computations in M-theory. This leads us to
the mathematics of automorphic forms and the main result of this thesis,
a calculation of the p-adic spherical vector in a minimal representation
of SO(4, 4,Z)
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Preface
The thesis now in your hand has undergone several revisions before as-
suming this, its final form. Upon commencing work on this version, in
the late summer of 2002, I set out a number of goals for myself. One
of these goals was to try to write an as self-contained thesis as possible,
the amount of paper in your hand at this very moment is a direct conse-
quence of this goal. Another goal was to create a firm base of knowledge
to stand on in my future research, so I traced back to the very birth
of the membrane, an event taking place in an ancient era shrouded in
mystery and known to some as ’the sixties’. This is where the journey
taking place in this thesis begins. It then spans an interval of some forty
of the lord’s years, a period that saw the birth and death of many excel-
lent attempts in physics (and in membrane theory). Roaming across this
vastness of publications was a very humbling task, as I have come across
many seminal ideas, but also some that make me wonder whether future
generations will say about these times that“Some things that should not
have been forgotten, were lost”.

The early parts of this thesis can best be described as a collection
of reviews, and though I present no new results I have tried to collect
these reviews in a manner which I have found in no other publication
so far. In the latter part it becomes easier to add at least some insight
and new ideas to the presented material as it is both incomplete and
something that I have spent a great deal of time working on myself. I
have also taken the risk of including some of my own thoughts and ideas
in the last chapter in hope of at best awake some interest or at least
amusement.

With these words I leave the prospective reader to walk the path
which I have cut through the wilderness of actions and symmetries, God-
speed.

-Tänk dig hur enkelt det var, kunde han sucka. Tänk dig 1900-

talets lilla universum, en liten hemtrevlig rymd med nȧgra mil-

jarder vintergator, nȧgra miljoner ljusȧr ifrȧn varandra. Man

kunde sitta sȧ trygg vid sitt teleskop och nästan känna hödoften

och höra fȧgelkvittret utifrȧn rymderna . . . - Peter Nilson
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1
Introduction

String theory has been said to be“21th century physics cast into the 20th
century” and the same thing can undoubtedly be said about membrane
theory (or M-theory). The many fundamental questions that have yet
to be answered can best be summed up in the single question “What is
M-theory?”. Being less general we can also ask the question, what is the
membrane? The theory of membranes has been envisaged to describe a
multitude of physical systems, none of which have been completely suc-
cessful or adequately investigated. From electron models to bag-models
onto relativistic surfaces and more recently fundamental degrees of free-
dom the fundamental problems essentially remains the same. This thesis
is an attempt to review all of these attempts to some extent, highlight-
ing the problems and noting the different attempts at solving them. The
thread running through each and every chapter is the desire to gain un-
derstanding about the aforementioned question regarding the true nature
of the membrane and it is this question that drives us through several
decades of physics and a body of material so vast that no one can claim
to have overlooked it all. The content of this thesis rests upon the shoul-
ders of those who have gone before us and to which we should be ever
so grateful. Are we ahead of our times? Are we presumptive in thinking
that we can answer the questions that stand before us? Perhaps we are.
But in science there is no way to go but forward and boldly so. It is our
obligated duty as physicists, scientists, humans and inhabitants of the
ever-expanding entity that is our universe to grab a pick-ax and hack
away at the mountain of unresolved issues1.

1But also to drink loads of coffee and show the world how intellect enables us to
pick up beautiful women in spite of looking like road-kill ourselves.

1
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1.1 History

The history of membranes in theoretical physics is a long and complicated
one. The first real attempt to use membranes to construct a fundamen-
tal theory was [1] where Dirac considered the electron to be a charged
conducting surface, “a bubble in the electromagnetic field”. This the-
ory never really became a hit and it suffers from a multitude of prob-
lems, some that are general membrane-problems that we will study here.
Membranes became popular again with the rising interest in string theory
during the 70’s. The reason for this was quite natural, after all, if one con-
siders extended objects of one dimension why then not consider extended
object of two, three, four and generally d dimensions. The first thorough
analysis of the dynamics of classical and quantum (bosonic) membranes
was done by Collins and Tucker in [2]. This was before string theory was
regarded as a TOE and one of the chief motivations for studying mem-
branes was to describe the dynamics of quarks. In the above mentioned
paper the authors expected to (if the theory was correct) extract the
properties of quark-like constituents directly from the dynamics of the
membrane. This was of course not the case, as with string theory, mem-
brane theory can not describe strong interactions alone. The classical
bosonic membrane has a continuous spectrum and this is a troublesome
fact. It is related to the fact that the membrane potential is such that
states can escape to infinity through thin valleys without rendering the
energy infinite. Luckily this property disappears in the quantum theory.
The Hamiltonian is of such a form that the quantum theory has a dis-
crete spectrum even though the classical theory does not. A small set
of Hamiltonians obey this principle and they were first studied in the
paper [3] and we will later give a proof of this property in the case of
the bosonic membrane. Now since there is only so much you can do with
the bosonic membrane and a theory which can not incorporate fermions
is only so interesting. It was natural to try to formulate a theory with
supersymmetric membranes, supermembranes.

But before we dig into the historical developments concerning the
supermembrane let us mention another, less successful, attempt of for-
mulating a supersymmetric theory of membranes. Before the superme-
mbrane was proved to exist most of the focus was on membranes with
supersymmetry introduced on the worldvolume, i.e. “spinning mem-
branes”. In string theory it is possible to introduce supersymmetry in
this way (it turns out to be equivalent to the target-space supersymmet-
ric string), in membrane theory it is not. The first attempt at such an
action was in [4] and many papers in the area followed this until finally
the no-go theorem for spinning membranes was presented in [5].
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After the paper [6] by Hughes, Liu and Polchinski in 1986, the at-
tention of the physics community shifted from ordinary membranes to
the newborn theory of supermembranes. These we previously thought
not to exist since it was uncertain whether the κ-symmetry of string
theory, upon which the whole supersymmetric formalism relies, could be
generalized to membranes. In [6] it was shown that for 3-branes in six
dimensions it could and in [7] this was extended to more general objects.
A lot of work was put into investigating this new theory and the main
problem became the apparent continuity of its spectrum and whether
this spectrum contained massless states. In [8] it was then proved that
the supermembrane indeed had a continuous spectrum and this lead to
a major decline in the interest for the theory. This result was gotten
through the use of Matrix theory, a brand new way of dealing with mem-
branes through a regularization reshaping the theory into a more man-
ageable (0 + 1)-dimensional SU(N) quantum mechanical theory. That
this was possible was discovered first in [9,10] for the spherical and toro-
dial bosonic membranes, a result subsequently extended to all topologies
and also the supermembrane in [11,12].

The discovery of the supermembrane came only a couple of years after
the period often called “the first superstring revolution”, and the grow-
ing interest in string theory did not help to resolve the issues that faced
physicists working on the membrane. During this time string theory
went through a time of intensive development, eventually leading up to
the year 1994 and “the second superstring revolution”, consisting mainly
of the discovery of dualities relating the different string theories and hint-
ing at a more fundamental theory underlying all these. This theory was
then seen to be the high energy limit of 11-dimensional supergravity and
to contain membranes as a dynamical object. This presented both new
reasons for working on membranes as well as methods to do so. The
question of the spectrum was tackled by asserting that the membrane,
an integral part of M-theory, already described a ’second-quantized’ the-
ory, whereupon the continuous spectrum is not only desired but crucial in
forming the theory that we want M-theory to be. Matrix theory was seen
to fit into the picture in an unprecedented way, as giving all the dynamics
of M-theory in the infinite momentum frame of the light-cone gauge [13].
The perturbative picture has become ever more clear in the years that
have passed and we have gained considerable insight into how the dif-
ferent string theories emerge as asymptotic limits of M-theory. With
the discovery of M-theory the importance of non-perturbative methods
became manifest and some dualities were shown to be such tools. Still
there are a lot of problems that can not be solved be means of duality
transformation of perturbative calculations and this leaves a large part of
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the M-theory picture unreachable from the roads previously laid down.

The year 1997 (modulo a few months) was an exciting one for “non-
perturbative string theorists”. It began with the publishing of [14] that is
an extension of the important paper [15]. It was really the first effort to
make use of the newly discovered dualities when doing calculations in the
same way that perturbative modular invariance has been made use of. By
utilization of the techniques in this paper the authors, and the authors of
the subsequent papers were able to derive exact results (perturbatively as
well as non-perturbatively) in Type IIB and M-theory. An intense effort
was made to push these methods as far as possible, and many papers
were published in the year of 1997 and early 1998 but as with many
other ’booms’ (and this was a small one) interest sank as complications
arose. The main complication in pushing this method to the limit (which
is M-theory) is that the mathematical tools that are needed are simply
not developed yet, so for the few physicist that continued working on this
problem this is where their work lead them, to the mathematical arena
of number theory and more specifically automorphic forms.

The paper [16] was the first in which the outline of the project to
perform microscopic calculations in M-theory was presented. Continuing
this work in the paper [17] a crucial ingredient in the construction of the
invariants giving the M-theory amplitudes was obtained. One last hurdle
remains and steps have been taken [18] to overcome this as well but still
the complete automorphic forms remain to be created.

1.2 Outline

This thesis is split up into three parts. The first part deals with the
general theory of membranes and supermembranes which is essentially
work done in “pre-M” times. We start be reviewing the theory of the
bosonic membrane with special emphasis on the problems that arise in
that theory and how they are resolved. Most of the work done on the
bosonic membrane was done before 1986, the year in which Hughes, Liu
and Polchinski published their paper [6], after which most, if not all,
efforts were focused on the supermembrane. We continue by reviewing
this early work on supermembranes, moving in the time period spanning
from 1986 to the end of that decade. The main focus is, as in the previous
section, on the actions and the problems with these actions. We start by
looking at the early work on spinning membranes and then we give the
proof that spelled the doom for membranes with pure local supersymme-
try on the worldvolume (at least for the time being). After this we move
on to membranes with target space supersymmetry as they were formu-
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lated in [6] and subsequently in [7]. We start by analyzing the dynamics
of the supermembrane in a flat spacetime, we derive κ-symmetry and
analyze the different parts of the action. After this we generalize our su-
persymmetric action to a curved background. We review the work done
in [7], again with special emphasis on κ-symmetry. Next we review the
connection between supermembrane theory and supersymmetric SU(N)
matrix theory. We use this relation to study the spectrum of this theory
and also a simpler toy-model.

The second part is mostly a prelude to the third chapter because it
contains material that is essential to this chapter. But it also bridges
the gap between the two different eras in membrane theory. In addition
to this we include some short, mostly historical, reviews that are not
directly relevant but nonetheless should exist in any thesis dealing with
M-theory. We begin with string theory outlining the birth and uses of it,
how our view on it changed with two big revolutions and how one theory
was split into five and then eventually reunited into one theory again.
We treat the relation between Type IIA string theory and the membrane
briefly in this section as well. The next section deals with discoveries
that were made in the second superstring revolution, we discuss how du-
alities relate the different string theories, showing us glimpses of a larger
framework, and how these dualities require the existence of dynamical
objects known as D-branes. Finally we talk about the moduli space of
M-theory and how dualities are transformations in this moduli space.
The subsequent section is about a very important kind of states in our
theories, namely BPS-states. These are also treated in a more general
manner in appendix 3.3 and for the reader unfamiliar with the concept
of BPS-states in supersymmetric theories it is recommended to at least
briefly flip through this appendix. We talk about the different BPS-states
of M-theory which will become important when we proceed to the next
chapter. We then extend our considerations of dualities in the follow-
ing section, discussing the groups that describe the transformations in
the moduli space and the representation theory of these groups. Finally
we conclude this chapter by a section dealing with the BFSS-conjecture.
This section is included mostly for completeness. We will not use the
material presented here in our following deliberations but this seminal
idea further reveals the role of the supermembrane in M-theory and how
we can proceed to analyze it.

The third part of this thesis deals with a more recent development in
M-theory regarding the mathematics of automorphic forms. Our jour-
ney starts in Type IIB string theory with the paper [14], concerning the
effective R4 action, the emphasis here is on how symmetry under duality
groups can help us in determining exact results (i.e. both perturbative
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and non-perturbative contributions). The work started in this paper
is continued in [19, 20, 21], extended to other levels of compactification,
other quantities and related to M-theory. The following section is dedi-
cated to further study of these techniques within the body of M-theory.
At first we motivate the attempt to carry out a first-principle computa-
tion of exact amplitudes in M-theory and after this we review the actual
attempt, setting out in physics but actually ending up in a little known
area of mathematics [22,23,16]. The third and last section in this chapter
concerns the calculation that comes as a result of the papers reviewed
in the previous section. The nature of this material [17, 24, 18] is very
mathematical and here we make full use of the appendices. We also touch
upon the work performed by Dr. Hegarty and myself.

The final chapter, entitled ’Conclusion’, does not only contain the
conclusions of this work. Therein is also collected the various ideas and
thoughts that have come about in the process of working with this thesis.
There is no thread running through this chapter, instead each section is
related to a section in the previous three chapters. It contains various
thoughts on how to approach problems and interpret results, as these are
seen by a “fresh pair of eyes” (read ’beginner’) in this field of physics.
The first section deals with the bosonic membrane and some ideas re-
garding a new approach to these. This is followed by a section on the
supermembrane, including spinning membranes and matrix theory. Af-
ter this we deal with the use of p-adic numbers in physics and especially
in the ’algebraic approach’ of chapter 4. Finally the last section concerns
chapter 4 of this thesis, and the project which that chapter describes.

There are a number of appendices in this thesis and a substantial part
of the background material has been shifted to these sections in order to
maintain some level of continuity in the previous three chapters. Some of
the material concerns purely physical results, others purely mathematical
results or theories. The first appendix deals with supersymmetry and
supergravity. We make now claim of presenting a wholesome picture of
these vast areas of physics and the appendix merely touches upon the
concepts needed in the main text. The following appendix concerns p-
adic analysis, a large area of mathematics that string theorists have made
use of many times over the years. Finally the last appendix is about
Eisenstein series which are really the main characters in this thesis. The
important definitions and theorems are included here, but as with most
other areas it would be impossible to give a complete review. Hopefully
the reader will find enough background material here to be able to read
the whole thesis since the effort has been to write an as self-contained
thesis as possible.
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1.3 Notation and Conventions

Since this thesis spans over many fields, a clash in notation is inevitable.
I have therefore chosen to use the original notation in as many cases as
possible rather then defining my own in each case. This inevitably leads
a slightly more complex picture here, but helps the reader when going to
original works. A list of symbols from chapter 2 is located at the very
end of this thesis in order to ease the reading of that chapter.
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2
The Supermembrane I: General

Theory and Problems

This chapter covers the general theory of bosonic membranes and super-
membranes. The work presented here was essentially done before the
discovery of M-theory shed new light on the question regarding the role
of membranes in fundamental theories. Special emphasis is put on the
problems that are inherent in the theories that are presented here. Most
of the problems that haunted the supermembrane in pre-M times remain
today, but in the light of M-theory these problems are open for new in-
terpretations. Apart from the original work referred to throughout this
chapter a few previous reviews are worth mentioning, namely [25,26,27]

2.1 The Bosonic Membrane

We will begin by constructing and analyzing an action for a free bosonic
membrane (note that the actions we present here and the analysis we
perform of them could equally well have been done for a general p-brane,
but we restrict our attention to the membrane in order to keep our focus),
a construction that is done in almost complete analogy with the string
theory case. As the membrane propagates in a D-dimensional spacetime
(withD ≥ 3) it traces out a 3-dimensional worldvolume on which we wish
to construct a field theory. As in string theory we define scalar fields,
Xµ, on this worldvolume describing the embedding of the membrane in
spacetime. These fields are functions of the three variables, ξi, (i = 0, 1, 2)
parametrizing the worldvolume. The action is then simply the total

9
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volume

SM = −T3
∫
d3ξ
√
− det ∂iXµ∂jXµ, (2.1)

where the index M on the action indicates that the space has Minkowski
signature (−,+,+,+), and the indices (i, j) runs from 0 to D − 1. The
constant T3 is the tension of the membrane, in “God-given” units which
has dimension (mass) × (length)−2, and it assures us that the action is
dimensionless (we will set this constant to unity in what follows). This
action is immediately recognized as a generalization of the Nambu-Goto
action for the string and was first proposed by Dirac in [1]. There is also
a classically equivalent action that was proposed by Howe and Tucker
in [4], obtained by introducing an “independent” worldvolume metric
gij,

S ′M = −1

2

∫
d3ξ
√−g(gij∂iXµ∂jXµ − 1), (2.2)

where g = det gij. From this action we find the equations of motion to
be

∂i(
√−ggij∂jXµ) = 0, (2.3)

and

gij = ∂iX
µ∂jXµ, (2.4)

i.e. the equation determining gij just says that the worldvolume metric
equals the one induced by the spacetime metric. Substituting this equa-
tion for gij into the action (2.2) we recover the original action (2.1), hence
the classical equivalence. If we instead substitute (2.4) into the equations
of motion (2.3) we obtain the equations of motion coming from the orig-
inal action. These equations will be greatly simplified if we define the
canonical momenta

P i
µ(ξ) =

δL
δ∂iXµ(ξ)

. (2.5)

The equations of motion then become

∂iP
i
µ(ξ) = 0. (2.6)

Now one might think that all we have to do is multiply this with the
canonical velocity Ẋµ, subtract the Lagrangian density and integrate
over the whole worldvolume to derive our Hamiltonian, but unfortunately
things are not quite that simple.

It is a virtue of the action we have chosen that it is invariant under
reparametrizations on the worldvolume

ξi −→ ξ′i(ξ0, ξ1, ξ2). (2.7)
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This will however cause problems for us in our analysis of the action. The
invariance yields primary constraints on the membrane (we leave out the
spacetime index here in favor of elegance)

φ1 = (P 0)2 − (∂1X)2(∂2X)2 + (∂1X · ∂2X)2 ≡ 0,

φ2 = P 0 · ∂1X ≡ 0, (2.8)

φ3 = P 0 · ∂2X ≡ 0,

and an arbitrary linear combination of these should be included in the
Hamiltonian of the membrane dynamics [28,29,30]. Now in actually writ-
ing down the Hamiltonian H, we can proceed in two ways. Either we
could proceed and derive a general Hamiltonian (as in [2]) or we could
pick a gauge and thus rid ourselves of the restraints coming from the
reparametrization invariance [25, 9]. It is a fairly simple calculation to
derive the general Hamiltonian (as we will see below) and so to this end
we don’t really need any particular gauge. But, when we wish to quan-
tize the theory, doing so by means of covariant quantization in a general
parametrization will turn out to be overly complicated. There are es-
sentially three main ways in which we could eliminate the constraints.
We could explicitly give the “coefficient-functions” of the linear combina-
tion of constraints in H or we could globally specify values for ξi on the
worldvolume. The third choice would be to further restrict the canonical
variables in such a way that we fix the gauge without constraining the
dynamics of the membrane. We begin though by, as promised, giving the
Hamiltonian in a general gauge.

From here and on we choose ξ0 as our time-like direction on the world-
volume. We will also refer to P 0

µ as simply Pµ when there is no possibility
of confusion. It is now trivial to check that the free Hamiltonian vanishes

H0 =

∫
dξ1dξ2(Ẋµ · Pµ − L) = 0, (2.9)

and hence the Hamiltonian will just become a linear combination of the
constraints. So with λ, µ and ν being the coefficient functions mentioned
before,

H =

∫
dξ1dξ2 [λ(ξ)φ1 + µ(ξ)φ2 + ν(ξ)φ3] . (2.10)

Choosing specific functions λ, µ and ν corresponds to specifying a par-
ticular parametrization in the action as mentioned before. Now before
we move on we must make sure that these constraints are consistent. To
facilitate this analysis we introduce the Poisson bracket

{f,H} =
∫
dξ1dξ2

[
δf

δX(ξ)

δH

δP (ξ)
− δf

δP (ξ)

δH

δX(ξ)

]
, (2.11)
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and we also remind ourselves of Hamilton’s equation of motion which
now reads

ḟ = {f,H}+ ∂f

∂ξ0
. (2.12)

Now we begin with a dynamical system in which these constraints hold,
but we must also make sure that they remain valid throughout the evo-
lution of the system. This is our consistency condition and hence we see
that

φ̇i = {φi, H} = 0, (2.13)

must be fulfilled on the subset of configuration space where the con-
straints hold. Now since the free Hamiltonian, H0, is identically zero
we see that it is a sufficient condition that the constraints satisfy the
following equation

{φi, φj} = Cijkφk, (2.14)

where the Cijk are some arbitrary functions of the embedding fields Xµ

and the canonical momenta Pµ. This check amounts to a technically
fairly simple calculation, although long and tedious, which is why we do
not give the details of it here. But the result is that the constraints, and
hence the equations of motion, are indeed consistent.

In accordance with Dirac’s theory, to quantize this theory the scalar
fields Xµ and P ν , are now replaced by operators X̂µ and P̂ µ which satisfy
the commutation relations

[X̂µ(ξ0, ξ1, ξ2), P̂ ν(ξ0, ξ1
′
, ξ2

′
)] = 4π2i~gµνδ(ξ1 − ξ1

′
)δ(ξ2 − ξ2

′
),

[X̂µ(ξ0, ξ1, ξ2), X̂ν(ξ0, ξ1
′
, ξ2

′
)] = 0, (2.15)

[P̂ µ(ξ0, ξ1, ξ2), P̂ ν(ξ0, ξ1
′
, ξ2

′
)] = 0.

Here we have assumed that the Hamiltonian and the position and mo-
menta are Hermitian operators. This is done in order to remove any
ordering ambiguities. The constraints (2.9) now also become operators

φ̂1 =
1

~2
P̂ 2 − (̂∂1X)

2

(̂∂2X)
2

+ ((̂∂1X) · (̂∂2X))2,

φ̂2 = (̂∂1X) · P̂ + P̂ · (̂∂1X), (2.16)

φ̂3 = (̂∂2X) · P̂ + P̂ · (̂∂2X),

and are enforced by requiring that the physical states of the theory obey
(in the Heisenberg picture)

φ̂i |p〉 = 0. (2.17)

To actually implement these constraints in a covariant quantization is
however a complicated task, never fully completed. We will not attempt
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to complete it here either since it would contribute only marginally to our
understanding of the membrane. Fixing a parametrization, however, will
facilitate our considerations immensely, and so we turn to the question
of gauge-fixing our theory to the light-cone gauge.

In string theory we can at this point pick a gauge making the equa-
tions of motion linear, which is unfortunately not possible for the mem-
brane. This fact has a fundamental physical interpretation. Even in
our theory of the “free” membrane we will always have interactions; the
membrane is self-interacting and can hence change its topology at any
time. Nevertheless, going to a gauge such as the light-cone gauge will
reveal many facts about membrane dynamics.

To begin reformulating our theory we define the light-cone coordinates

X+ =
1

2
X0 +XD−1, (2.18)

X− = X0 −XD−1, (2.19)

~X = Xa , a = 1, 2 . . . , D − 2, (2.20)

going to the light-cone gauge [9, 10] is then done by setting

X+ = ξ0. (2.21)

Next we denote

g00 = 2Ẋ− + ~̇X2,

g0r = ur = ∂rX
− − ~̇X∂r ~X, (2.22)

grs = ∂r ~X∂s ~X,

where upon the induced metric becomes

gij =




2Ẋ− + ~̇X2 u1 u2
u1 g11 g12
u2 g21 g22


 . (2.23)

And as before

g = det gij = g′(2Ẋ− − ~̇X2 + urg
rsus) = g′ · U, (2.24)

where we have defined
g′ = det grs. (2.25)

The Lagrangian in this gauge becomes

Slc = −
∫
d3ξ
√
g′
√
U, (2.26)
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and we can calculate the canonical momenta

~P =
δL
δ ~̇X

=

√
g′

U
( ~̇X + ∂r ~Xusg

rs), (2.27)

P− =
δL
δẊ− = −

√
g′

U
. (2.28)

The Hamiltonian is given by

H = p−Ẋ− + ~P ~̇X − L =

=

√
g′

U
{Ẋ− + ∂rX

−usg
rs}, (2.29)

this Hamiltonian can then be rewritten as

H =
~P 2 + g′

−2P− , (2.30)

where we note the absence of X−. This actually means that (by the
equations of motion) P− is just a constant. The explanation for the
disapperance of X− is that in writing down this Hamiltonian we have set
all the constraint-terms to zero. After gauge-fixing we are left with the
constraints

Φr = P−∂rX
− + ~P∂r ~X = 0, r = 1, 2, (2.31)

then setting the constraint-terms to zero in H means that we further
gauge-fix the theory in a way that is equivalent to setting ur = 0 which
reduces the symmetries of (2.31) down to only one. This residual sym-
metry we will study shortly but in a slightly more convenient gauge.

One could now, as we outlined for the covariant case, make operators
of these fields and impose canonical commutation relations. We will
however choose a different and more elaborate method of quantization,
but first we must study the symmetry of (2.29).

For the next few paragraphs we drop the factor 1
2
on X+ and we make

the gauge choice [31]
X+ = P+ · ξ0, (2.32)

where P+ is the + component of the total momentum, defined as

P+ =

∫
dξ1dξ2P+. (2.33)

The Hamiltonian becomes

H ′
lc = 2P+P− =

∫
dξ1dξ2

(
PiP

i +
∑

i<j

(XiXj)
2

)
, (2.34)



2.1 The Bosonic Membrane 15

with the remaining constraint

∂1Pi∂2Xi − ∂2Pi∂1Xi = 0 (2.35)

If we define the Poisson bracket with respect to ξ1, ξ2

{X i, Xj}′ = ∂X i

∂ξ1
∂Xj

∂ξ2
− ∂X i

∂ξ2
∂Xj

∂ξ1
, (2.36)

the constraint (2.35) becomes

{P i, X i}′ = 0. (2.37)

It is a trivial calculation to check that the symmetry left by this constraint
is

ξ1 → ξ̃1(ξ1, ξ2),

ξ2 → ξ̃2(ξ1, ξ2),

where

det
∂(ξ̃1, ξ̃2)

∂(ξ1, ξ2)
= 1, (2.38)

is required for the preservation of the Poisson bracket. We also see that
this is exactly the condition that the coordinate transformations preserve
the area of the brane. Thus, fixing our action to light-cone gauge has
reduced the full reparametrization invariance to area-preserving trans-
formations. These transformations (and their infinitesimal counterparts)
were studied in [31] as diffeomorphisms

ξ1 → ξ1 + u1(ξ1, ξ2), (2.39)

ξ2 → ξ2 + u2(ξ1, ξ2), (2.40)

for which the condition (2.38) becomes

∂u1
∂ξ1

+
∂u2
∂ξ2

= 0. (2.41)

The study was limited to the cases of the spherical and torodial mem-
branes but it was shown for these that the infinitesimal transformations,
corresponding to the diffeomorphisms above, form a Lie algebra, dubbed
the algebra of area-preserving diffeomorphisms (or the APD algebra for
short).

Now there is a highly non-trivial relation between the algebra above
and matrix quantum mechanics (here we retain the factor 1

2
in X+ and
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the gauge X+ = ξ0). To see this we first pick a basis, Yα, in which to
expand the fields Xa and the corresponding momenta

Xa =
∑

α

XaαYα, (2.42)

Pa =
∑

α

PaαYα. (2.43)

The Hamiltonian can then be written in terms of these coefficients and

fαβγ =

∫
d2ξYα(∂1Yβ∂2Yγ − ∂1Yγ∂2Yβ), (2.44)

which are the structure-constants of the infinite-dimensional APD Lie
algebra. The relation between this theory and the matrix theory can
now be formulated in terms of a theorem

Theorem 1 For each membrane topology there exists a basis {Yα}∞α=1

of the APD algebra, and a basis {T (N)
a }N2−1

a=1 of SU(N) such that the
structure constants of the latter

f
(N)
abc = [T (N)

a , T
(N)
b ]T (N)

c , (2.45)

obey
lim
N→∞

tr(−f (N)
abc ) = fabc ∀a, b, c. (2.46)

Thus we can now quantize this finite model

HN =
D−1∑

a=1

N2−1∑

m=1

PamPam +
1

2
f (N)
mnof

(N)
mn′o′XanXboXan′Xbo′ , (2.47)

finding (Xa = XamT
(N)
m )

ĤN = −∆(N) − tr
∑

a<b

[Xa, Xb]
2, (2.48)

where the limit (2.46) assures that as N → ∞ we get our quantized,
discrete theory of membranes. This procedure of relating membrane
theory with matrix theory is possible also for the supermembrane. We
will redo this derivation in that case, making up for the slight lack of
explicitness here.

Turning now to the question of the spectrum of our theory. It was long
an outstanding problem whether the membrane had massless states in its
spectrum or not. This question was settled once and for all by Kikkawa
and Yamasaki in [32]. In this paper they calculated the Casimir energy
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of the membrane and on basis of this they saw that for massless states
to exist the dimension of spacetime would have to differ from an integer
value. Hence the bosonic membrane theory does not contain massless
states. We will not address this analysis here, but instead we wish to
address the question of the spectrum being continuous or discrete. The
main result presented here, which concludes this treatise of the bosonic
membrane, is that the quantized membrane does indeed have a discrete
spectrum even though the classical theory does not. The Hamiltonian
falls into a class of systems that have an infinite volume

{(p, q) : p2 + V (q) ≤ E}, (2.49)

but finite partition function. These systems were studied extensively
in [3]. Given the Golden-Thompson inequality

ZQ(t) = tr(e−tH) ≤ Zcl = (2π)−ν
∫
dνpdνqe−t(p

2+V (q)), (2.50)

it was once believed that the opposite statement held firmly as well. This
intuition was proven wrong by Simon in [3]. We gill give our proof for
the Hamiltonian (2.34) and we will perform this in a four-dimensional
spacetime. This will enable us to directly relate H ′

lc to the simplest
Hamiltonian in the class. Let us consider

H = − ∂2

∂x2
− ∂2

∂y2
+ x2y2, (2.51)

(now switching to the notation in [3]), which is equivalent to our mem-
brane Hamiltonian (in this particular dimensionality). The proof (which
is one of many) is now quite simple and rests upon a relation to the
harmonic oscillator. For the harmonic oscillator we have the operator
relation

− d2

dq2
+ ω2q2 ≥ |ω|, (2.52)

which we can refrase, considering y to be a c-number

− d2

dx2
+ x2y2 ≥ |y|. (2.53)

Is is now a simple matter to obtain the relation

− d2

dx2
− d2

dy2
+ x2y2 =

1

2

(
− d2

dx2
+ x2y2

)
+

1

2

(
− d2

dy2
+ x2y2

)
− 1

2
∆

≥ 1

2
(−∆+ |x|+ |y|) = H ′, (2.54)
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where H ′ has a discrete spectrum due to

tr(e−tH
′

) = [1 +O(1)](2π)−2
∫
dxdyd2pe(−tp

2−t|x|−t|y|)

= ct−3[1 +O(1)]. (2.55)

This yields the relation

Z(t) = tr(e−tH) ≤ ct−3, (2.56)

which is a crude approximation that is especially bad at high energies
(small t), but nevertheless suffices. However, this proof does not work
in higher dimensions, but before we discuss a proof that does hold in
any given dimension we wish to give the intuition behind the fact that
the classical theory has a continuous spectrum. If we look closer at the
Hamiltonian (2.34) we see that the potential is such that if all but one
of the scalar fields Xi are sufficiently small the other field can grow very
large without rendering the potential very large. In fact if the d − 3
scalar fields approach zero the left-over field can go off into infinity. This
will look like a string attached to the membrane surface. These valleys
in the membrane potential through which classical states can escape are
made increasingly narrow by quantizing the theory. Because of this, wave
functions fall off to zero the further out they get in the quantized scenario.
In the next section we will see why this very welcome effect is lost in the
supersymmetric case. There is an equivalent and more powerful method
to prove a discrete spectrum. The theorem that is used for this is due to
Fefferman and Phong and it concludes this section. We will not give any
details here refering the reader to [3] for details. The theorem reads

Theorem 2 Let ∆λ
j (λ > 0, j ∈ Zν) be the cube of side λ−1/2 centered at

the point λ−1/2j. Given V ≥ 0 on Rν, let Ñ(λ) be the number of cubes
∆λ
j with maxx∈∆λ

j
V (x) ≤ λ. Let N(λ) be the dimension of the spectral

projection for −∆+ V on the interval (0, λ). Then if V is a polynomial
of degree d on Rν,

Ñ(bλ) ≤ N(λ) ≤ Ñ(aλ), (2.57)

for all λ and suitable constants a, b, where b only depends on ν and a
depends on ν and the degree d.

2.2 Adding Supersymmetry

In this section we wish to formulate a supersymmetric version of the
membrane theory studied so far1. Before doing this we must answer the

1See section A.1 for a short introduction to a simple supersymmetric model.
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important questions of how and where to introduce this symmetry. To
answer the question of where we have essentially two choices. Either we
could formulate a theory with supersymmetry on the worldvolume, i.e.
a spinning membrane, or as a second choice, we may introduce super-
symmetry in targetspace. There is actually a third possibility, namely
introducing supersymmetry both on the worldvolume and in targetspace.
This formalism, called superembeddings, was pioneered in [33] but un-
fortunately it falls outside the scope of this thesis to review this work.
Worldvolume supersymmetric membranes or spinning membranes were
the target of much attention in the mid-eighties, but then a paper pre-
senting a no-go theorem for their existence put a stop to virtually all
research. Here we will review this no-go theorem and also the counter-
proof and try to explain how the counterproof works and why it is not
interesting (see also section 3.1 for the string theory case).

The action (2.2) was introduced by Howe and Tucker in [4] precisely
with the purpose of describing a spinning membrane through a super-
symmetric extension. Their supersymmetric extension of the action is

Sslh =

∫
d3ξeL, (2.58)

where (we drop the spacetime index on the bosonic fields Xµ and the
fermionic fields ψµ for the moment)

L = −1

2
gij∂iX

µ∂jXµ −
1

2
iψ̄γiDiψ +

1

2
iχ̄iγ

jγi∂jXψ −
1

16
ψ̄ψχ̄jγ

iγjχi −
i

8e
εijkχ̄iγjχk +

1

4
iψ̄ψ +

1

2
. (2.59)

In this Lagrangian we have introduced the dreibeins eai (ξ) such that

eai ηabe
b
j = gij, (2.60)

ηab = diag(−,+,+) ,
√−g = det(eai ) ≡ e.

In this action Xµ are of course our familiar bosonic coordinates, ψµ

are our fermionic coordinates which transform as spinors. We have also
introduced the vector-spinor field χµ, which is the Rarita-Schwinger field.
The gamma matrices γ, adjoint spinor ψ̄ and covariant derivative Dµ are
given by

γ0 =

(
0 −1
1 0

)
, γ1 =

(
0 1
1 0

)
, γ2 =

(
1 0
0 −1

)
,

γi = eiaγ
a, (2.61)
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ψ̄ = ψTγ0, (2.62)

Dµψ = ∂µψ +
1

2
γaω

a
i ψ, (2.63)

where the connection field ωai is given by

ωci = −
1

4
εabcedi

(∑

dab

−
∑

abd

−
∑

bda

)
, (2.64)

where ∑

cab

= eiae
j
b(∂jeci − ∂iecj +

1

2
iχ̄iγcχj) (2.65)

Now without going to far into the analysis of (2.58) and the result of [4]
we can see that there exist additional constraints on the supergravity
fields,

εijk(Djχk +
1

2
γjχk) = 0, (2.66)

and as a consequence of this our metric gij is no longer independent.
This in turn means that we can substitute the constraint into the action
(2.58) where upon it gains a term eR (R being the Ricci scalar) which
renders the action inequivalent to (2.2) upon setting the fermionic parts
to zero. Thus we draw the conclusion that the action(2.2) does not allow
a supersymmetrization. One might ask if there are other actions that are
better suited for supersymmetric extensions. As we will see below this is
not the case.

Many actions were proposed in the early eighties that were thought
to solve the problem above, e.g. in [34] Dolan and Tchrakian proposed
the action

SDT = −1

2

∫
d3ξ
√−g

{
tr(A)− 1

2
tr(A2) +

1

2
tr(A)2

}
, (2.67)

where we have defined

Ai
j = gik∂kX

µ∂jX
0ηµ0, (2.68)

so that the action (2.2) becomes

S ′M = −1

2

∫
d3ξ
√−g(tr(A)− 1). (2.69)

Another action was first proposed by Inami and Yahikozawa and later
by Alves and Barcelos-Neto in [35]

SIY = −
∫
d3ξ
√−g[tr(A)]3/2. (2.70)
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These actions are not strictly equivalent to Dirac’s action (2.1) but even
if we only consider physical solutions to the equation for gij we see that
local supersymmetry is still impossible. This fact is due to a theorem
in [5] which states that

If there exists any spinning membrane action there must ex-
ist a linearly realized locally supersymmetric (spinning mem-
brane) extension of . . . [ (2.2) ].

As we have seen above such an extension is not possible due to [4]. There
are assumptions made in this theorem, a ’spinning membrane action’
is defined to be an action with linearly realized local supersymmetry
which reduced to Dirac’s action (2.1) upon elimination of all auxiliary
fields and setting the fermionic parts to zero. However, shortly after the
publication of this no-go theorem a counterexample was published [36].
This counterexample relies not on a flaw in the proof but rather in the
definition of what a “spinning membrane” is. It is the case that we
can have actions with linearly realized supersymmetry before elimination
of all auxiliary fields but after which the supersymmetry becomes non-
linear. In fact these actions become extremely complicated to work with
and it is because of this reason that the paper mentioned above never
sparked much interest. They used the bosonic action (2.70) for their
supersymmetric extension, which becomes

SSIY =

∫
d3ξd2θE−1[(∇αX∇αX)(∇γδX∇γδX)1/2

+
2

3
(∇αX∇γ

αX)(∇βX∇βγX)(∇δλX∇δλX)−1/2], (2.71)

X now being a field in superspace. There is still no way of dealing
with the quantization of an action like this, and its component form is
extremely complicated.

Here we turn instead to membrane actions with targetspace super-
symmetry like many physicists who worked on spinning membranes did
during the late eighties. The pioneering paper in this area of research
was [6], where the authors applied their previous work on partially bro-
ken global supersymmetries to study a three-brane in a six-dimensional
flat space. This result was then extended by Bergshoeff, Sezgin and
Townsend in [7] to any p-dimensional extended object, or p-brane, prop-
agating in a d-dimensional curved background. We will pretty much skip
the first paper and go directly to the more useful generalization (though
still in flat space at first). But before we can do this we need to acquire
some general feeling for the objects involved. First we introduce the
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mapping ZM(ξ) from the worldvolume of the membrane to a superspace

ZM(ξ) = (Xµ, θα), (2.72)

which replaces the scalar fields describing the embedding in the bosonic
action. Now to construct a supersymmetric generalization of the ac-
tion 2.1 we need to find supersymmetric fields to use instead of the scalar
fields. In our flat superspace the generators act as

δXµ = iε̄Γµθ , δθ = ε, (2.73)

on the superspace coordinates, the ε is a constant anticommuting space-
time spinor. The Γµ are spacetime Dirac matrices. If we start from the
one-forms

ΠA = dZMeAM , (2.74)

the most general supersymmetric one-forms we can write down, eAM being
the superspace vielbein. We now see that the pull-back to the worldvol-
ume of these forms is exactly what we are looking for. We have

ΠA → ∗ΠA = dξi∂iZ
MeAM (2.75)

where ΠA is explicitly,

Πµ = dXµ − iθ̄Γµdθ , Πα = dθα, (2.76)

whereupon the pull-back explicitly becomes

Πµ
i = ∂iX

µ − iθ̄Γµ∂iθ , Πα
i = ∂iθ

α, (2.77)

which are easily seen to exhibit explicit invariance under the transforma-
tions (2.73). Now that we have the material to construct a supersymmet-
ric extension of 2.1 we just substitute the scalar fields for our pull-back
fields and get

SSD = −T
∫
d3ξ
√
− det(Πµ

i Π
ν
i ηµν). (2.78)

This does however not give the full picture since we need to eliminate
half of the fermionic degrees of freedom in order to match them with the
bosonic ones. Thus we need to find a fermionic symmetry that allows us
to gauge them away. This symmetry is known as κ-symmetry. It turns
out to require additions to the action (2.78) and this addition, which
will be a Wess-Zumino-type term, will put restrictions on the dimensions
of our spacetime. If we were to consider general p-branes in a general
d-dimensional spacetime these restrictions would give us the well known
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brane-scan which tells us in which dimensions the various branes can live.
Here we restrict ourselves to consider only the membrane. We will actu-
ally derive the desired action in a way opposite the logical structure given
above, beginning with an analysis that gives the Wess-Zumino term and
then finding the κ-symmetry in order to see why this requires additions
to the action.

We begin by defining an exact, Lorentz invariant and supersymmetric
4-form on superspace

h = db, (2.79)

the 3-form b is then also Lorentz invariant and supersymmetric (modulo
a total derivative) and induces a 3-form on the worldvolume through the
mapping ZM(ξ)

∗b =
1

6
dξidξjdξkbijk, (2.80)

which retains the same properties. Then we can use this form (or rather
the coefficients of this form) to construct an action invariant under the
super Poincaré group

SWZ = −T
3

∫
d3ξεijkbijk, (2.81)

εijk being the tensor density totally antisymmetric in its three indices.
Now in order for h to fulfill the conditions we have set out it must be
constructed from the one-forms (2.76) since these are the most general
we can write down in our flat superspace. Furthermore since this term
should combine with our “super-Dirac action” (2.78) it must scale as this
action under constant rescalings of the coordinates. These conditions give
the explicit shape of the form h and furthermore we get conditions on
the matrices (Γijk)αβ (α, β being spinor indices) in order that h does not
vanish. These conditions are the previously mentioned restrictions on the
dimension d of the spacetime. We will not present the complete proof
even for the membrane case here. It suffices to say that the membrane
can exist in 4, 5, 6 and 11 dimensions, the 11-dimensional case being the
one of interest to us here. The explicit form of the pull-back of the 3-form
b turns out to be

bijk =
i

2

(
∂kθ̄Γµνθ

)
(3Πν

jΠ
µ
i −3Πν

j (i∂iθ̄Γ
µθ)+(i∂j θ̄Γ

νθ)(i∂iθ̄Γ
µθ)). (2.82)

So our complete action is of the form

SSM = −T
∫
d3ξ[

√
− det(Πµ

i Π
ν
j ηµν) +

1

3
εijkbijk], (2.83)
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(we have skipped a constant in front of the Wess-Zumino term here which
will be determined to be equal to 1 later because of the κ-symmetry).
Since we have the explicit form of bijk in (2.82) we can now finally write
down the full explicit action of our supermembrane,

SSM = −T
∫
d3ξ[

√
− det(Πµ

i Π
ν
j ηµν) +

i

2
εijkθ̄Γµν∂iθ(Π

µ
jΠ

ν
k +

iΠµ
j θ̄Γ

ν∂kθ −
1

3
(θ̄Γν∂jθ)(θ̄Γ

ν∂kθ))]. (2.84)

As stated earlier we have to find a symmetry that allows us to gauge
away half of the fermionic degrees of freedom in order to match these
with the bosonic ones. We begin by rewriting the action (2.83) in the
form of Howe and Tucker,

S = −T
2

∫
d3ξ[

√−g(gijΠµ
i Π

ν
j ηµν − 1) +

1

3
εijkbijk] (2.85)

Consider now the variation

δXµ = iθ̄Γµδθ , δθ = (1 + Γ)κ(ξ), (2.86)

where κ(ξ) is a parameter depending on on the worldvolume coordinates
and transforms as a spinor in targetspace and a scalar on the worldvol-
ume. Γ is made up of the pull-back fields as,

Γ =
1

6
√−g ε

ijkΠµ
i Π

ν
jΠ

ρ
kΓµνρ. (2.87)

Now we want to investigate this transformation and see it in action, for
the pull-back fields we get that

δΠµ
i = −2iδθ̄Γµ∂iθ , δΠα

i = ∂iδθ
α, (2.88)

and it also follows that

δb =
1

2
ΠµΠνidθ̄ΓµΓνδθ. (2.89)

So now we are in a position to calculate how this transformation acts on
the action 2.85, we will continue to keep the transformation δθ implicit
here since the form of it will be very intuitive. From the above we get

δSSM = 2iT

∫
d3ξδθ̄[

√−ggikΠµ
i Γµ −

1

2
εijkΠµ

i Π
ν
jΓµν ]∂kθ. (2.90)
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Now throughout this calculation we have kept gij independent, but since
we do not wish to vary this field as well, we make use of the field equation
gij = Πµ

i Π
ν
j ηµν , which gives the relation

εijkΠµ
i Π

ν
jΓµν = 2

√−ggklΠµ
l ΓµΓ. (2.91)

Using this relation we can rewrite the variation of the action as

δSSM = i

∫
d3ξδθ̄(1− Γ)(

√−ggijΠµ
i Γµ∂jθ). (2.92)

Thus we see why the particular choice of transformation for θ was made.
Since the matrix Γ can be shown to satisfy Γ2 = 1, the first factor in
the variation above, and likewise in the transformation, is a projection
operator. It projects θ down on a fermionic object with less degrees
of freedom, actually half of the original ones. Furthermore, since the
variation δSSM vanishes, the transformation (2.86) turns out to be a
symmetry. This is a symmetry under a transformation that removes half
of the fermionic deg, thus effectively telling us that these can be gauged
away without restricting the dynamics of the theory.

Since it is a necessary condition for the supermembrane that we have
a matching of the bosonic and fermionic degrees of freedom, and this
demands a fermionic symmetry of the above type we can also see why
we get restrictions on the dimension of spacetime. If we did not have a
Wess-Zumino term in (2.84) we would not get a ’projection type’-term
in (2.92), so the consistency of the action requires a 3-form which in turn
puts restrictions on the dimension d.

Now we wish to reformulate this theory in a curved background. This
will mean increased complexity as we now have to keep spacetime coor-
dinates and tangentspace coordinates apart, but it will also give us im-
portant insights about the supermembrane and it is of course ultimately
the most interesting case. The coordinates ZM are now those of a curved
superspace, and we redefine the worldvolume fields (ΠM

i ) as

EA
i = ∂iZ

MEA
M , (2.93)

where EA
M are now supervielbeins in a curved space, A = (a, α) are

tangent-space indices and M = (µ, α̇) are spacetime indices. In the
Howe-Tucker form of the action (2.85) our new action becomes

S ′SM = −T
2

∫
d3ξ[

√−g(gijEa
i E

b
jηab − 1)− 1

3
εijkEa

i E
b
jE

c
kBabc], (2.94)

where Babc is now the curved spacetime super 3-form. This action is
constructed in complete analogy with the flat spacetime case as we can
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see from (2.94). Now what is really interesting is to see how κ-symmetry
generalizes from the flat case to the curved case, indeed this symmetry
will not hold generally in a curved background. We must put additional
constraints on the spacetime superform H (satisfying H = dB and cor-
responding to h) and the supergravity torsion T C

AB. These constraints
were found in [7], a calculation that we revisit here.

As before we require the action (2.94) to exhibit a local fermionic
symmetry, κ-symmetry

δZMEa
M = 0, (2.95)

δZMEα
M = (1 + Γ)αβκ

β. (2.96)

The variation of the action (2.94) yields

δS ′SM =

∫
d3ξ

[
−√−ggij(δEa

i )E
b
jηab −

1

3
δεijkEa

i E
b
jE

c
kBabc

]
, (2.97)

and by skillful manipulation of the two terms in the above variation
one can in fact prove that the integrand is zero. Thus the action is
κ-symmetric. However this does not hold without restrictions, and the
discovery of these restrictions displayed much of the splendor that resides
in the theory of the 11-dimensional supermembrane. It can be shown that
the constraints that have to hold are

T c
αβ = 2iΓcαβ , T c

aβ = T γ
αβ = 0

Hαβcd = i(Γcd)αβ , Hαabc = Hαβγδ = Hαβγd = 0. (2.98)

These equations follow directly from the Bianchi identities of 11-dimen-
sional supergravity, thus linking the two theories even at this fundamental
level (of course this seemingly miracoulus fact turns out to be not so
miraculous once it is realized that 11-dimensional supergravity is the low-
energy limit of M-theory). We also see what made the 11-dimensional
supermembrane so special, because a connection between the mysterious
11-dimensional supergravity theory and some other theory was much
desired.

Now we are going to return to the case of a trivial background for a
moment. We wish to do for the supermembrane, essentially what we did
for the bosonic membrane. We will pass to a light-cone gauge whereafter
we uncover a relation between the supermembrane and supersymmet-
ric SU(N) matrix models [12, 37, 38]. This will provide astounding new
insights. Some of the newer revalations that has come through this dis-
covery are dealt with in section 3.5.

We begin by defining the light-cone coordinates

X± =
1√
2
(X10 ±X0), (2.99)
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in accordance with the notation in [12]. Then we make the gauge choice

X+ = X+(0) + ξ0, (2.100)

thus reducing the number of bosonic coordinates from eleven to nine. We
also define

Γ± =
1√
2
(Γ10 ± Γ0), (2.101)

and impose
Γ+θ = 0, (2.102)

in order to gauge away half of the fermionic coordinates, leaving 16. Half
of these 16 degrees of freedom will be regarded as momenta leaving eight
to be matched up with the bosonic ones. The original Lagrangian (2.84)
becomes

L = −
√
ḡ∆+ εrs∂rX

aθ̄Γ−Γa∂sθ, (2.103)

where we have defined

ḡrs = grs = ∂r ~X∂s ~X,

g0r = ur = ∂X− + ∂0 ~X∂r ~X + θ̄Γ−∂rθ, (2.104)

g00 = 2∂0X
−(∂0 ~X)2 + 2θ̄Γ−∂0θ,

and

ḡ = det ḡrs , ∆ = −g00 + urḡ
rsus. (2.105)

In order to write down the Hamiltonian in this gauge we calculate the
momenta which become

~P =
∂L
∂ ~̇X

=

√
ḡ

∆
( ~̇X − urḡ

rs∂r ~X),

P− =
∂L
∂Ẋ− =

√
ḡ

∆
, (2.106)

S =
∂L
∂ ˙̄θ

= −
√
ḡ

∆
Γ−θ,

and give rise to the Hamiltonian

H = ~P · ~X + P+ · Ẋ− + S̄θ̇ − L =

=
~P 2 + ḡ

2P+
− εrs∂rX

aθ̄Γ−Γa∂sθ. (2.107)

Before we can proceed and relate this theory with a matrix theory
we must reiterate our deliberations on area-preserving diffeomorphisms,
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this time for the supermembrane. We use a slightly different notation
here. We define the Poisson bracket of two scalar fields A(ξ), B(ξ) (i.e.
functions of the two parameters ξ1, ξ2)

{A(ξ), B(ξ)} = εrs√
ω(ξ)

∂rA(ξ)∂sB(ξ), (2.108)

where ω(ξ) is the determinant of the two-dimensional metric ωrs(ξ) on
the membrane (not the worldvolume). This is a Lie bracket and it can
be shown that the fields Xa(ξ) belong to the Cartan subalgebra of this
Lie algebra. Looking at

{Xa(ξ), Xb(ξ)} = εrs√
ω(ξ)

∂rX
a(ξ)∂sX

b(ξ), (2.109)

we see that this is precisely an area element of the membrane in space-
time, and hence the residual invariance of this bracket is precisely invari-
ance under area-preserving diffeomorphisms (APD).

We are now ready to derive a matrix theory from the supermem-
brane. We begin by expanding our embedding fields Xa(ξ) in a complete
orthonormal set of basis functions

~X(ξ) = ~X0 +
∑

A

~XAYA(ξ), (2.110)

the space of which has the metric

∫
d2ξ
√
ω(ξ)YA(ξ)YB(ξ) = ηAB. (2.111)

We can then express our Lie bracket (2.108) in terms of this new basis

{YA(ξ), YB(ξ)} = fCABYC(ξ), (2.112)

using the completeness relation

∑

A

Y A(ξ)YA(ξ
′) =

1√
ω(ξ)

δ(ξ − ξ′), (2.113)

where the structure constants are

fCAB =

∫
d2ξεrs∂rYA(ξ)∂sYBY

C . (2.114)

Stepping to a matrix theory is now done by regularizing the theory, i.e.
we cut of the infinite set of modes YA by restricting the number of indices
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to a finite value Λ. This will turn our Lie algebra (2.108) into a finite Lie
group, GΛ, on which we impose the consistency condition

lim
Λ→∞

fCAB(GΛ) = fCAB(APD), (2.115)

so that as the dimension, Λ, of the Lie group approaches infinity we
retrieve our original algebra of area-preserving diffeomorphisms. In [11]
it was then found that the Lie group GΛ corresponds to SU(N), with
Λ = N 2 − 1, for a membrane of arbitrary topology (this had previously
been derived for the spherical membrane in [9] and the torodial membrane
in [39,40,41]). The membrane Hamiltonian turns out to regularize to

H =
1

2
PA
a PaA +

1

4
fABEf

E
CDX

A
a X

B
b X

C
a X

D
b −

1

2
ifABCX

A
a θ

BγaθC , (2.116)

where θAα are real SO(9) spinors with 16 components. This is the form
of the Hamiltonian that we will use in our subsequent considerations of
the supermembrane spectrum.

Before we continue let us take a closer look at the limit (2.115). It
seems curious that the APD algebra for topologically inequivalent mem-
branes are approximated by the same group SU(N). This is due to the
fact that the limit will be different in each case. For each new membrane
topology we consider, we have to find a new basis of N ×N -matrices for
SU(N), thus getting a “new” limit. Any basis of SU(N) is equivalent to
all others as long as N is finite, however when N →∞ this equivalence
breaks down.

This brings us to the topic of the supermembrane spectrum which was
studied most extensively in [8]. We will use our newfound relation with
matrix theory in order to analyze the spectrum. What we will find is
that supersymmetry exactly cancels the effect that makes the quantized
bosonic membrane discrete. First we will show how this cancellation
works in a simple supersymmetric extension of the theory (2.51) since
we in this case know for a fact that the bosonic spectrum is discrete.
This example is important since it contains all the essential features of
the supermembrane case. It is equally important to keep this example in
mind in order to not loose track among all the technicalities of the full
supermembrane proof which we will perform directly after the example.

We begin by studying the supersymmetric model with Hamiltonian

Htoy = {Q,Q†} =
(
−∆+ x2y2 x+ iy
x− iy −∆+ x2y2

)
, (2.117)

where

Q = Q† =

(
−xy i∂x + ∂y

i∂x − ∂y xy

)
. (2.118)
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In the bosonic case (2.51) we saw that the Hamiltonian was bounded
from below (2.54) by the groundstate energy (regarding either x or y as
a constant). In the supersymmetric case above, it turns out that there
is no groundstate energy. It vanishes when supersymmetry is turned on
because the off-diagonal terms in (2.117) now affects the system. Thus
the bound Htoy becomes trivial

Htoy ≥ 0, (2.119)

and we can construct states which can escape to infinity without having
to add an infinite amount of energy. To show this we want to create
a wave packet that can be shown explicitly to behave as stated above.
The off-diagonal terms in (2.117) are the ones that make a negative
contribution to the energy and so consequently we want to write down a
function that maximizes their effect. Also, we want to see explicitly how
to push the function to infinity. We make the ansatz

ψt(x, y) = χ(x− t)ψ0(x, y)ξF , (2.120)

where

ξF =
1√
2

(
1
−1

)
, (2.121)

precisely maximizes the negative contribution since

ξTFHtoyξF = H − x, (2.122)

(where H is the Hamiltonian (2.51)). We have the parameter t in (2.120)
and χ(x) is a smooth function with compact support such that χ becomes
zero unless x is of order t. This means that as t increases ψt(x, y) is
pushed in the x-direction and moves to infinity along y = 0 as t→∞. If
we look at the fermionic contribution to the energy expectation value of
ψt we see that it is −tO(1) (as t grows and χ becomes dominant), which
is just what is needed to cancel the energy of the groundstate in a y-
harmonic oscillator. Therefore we choose ψ0(x, y) to be the groundstate
wave function of such an oscillator

ψ0(x, y) =

( |x|
π

) 1
4

e−
1
2
|x|y2 . (2.123)

Now calculating the expectation value as t→∞ we get

lim
t→∞

(ψt, H
ν
toyψt) =

∫
dxχ(x)∗(−∂2x)νχ(x), (2.124)
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which is finite as expected and also tells us that the spectrum of Htoy is
the whole of the positive real line. If we then pick χ such that ‖χ‖ = 1
and

‖(−∂2x − E)χ‖2 < ε

2
, (2.125)

for any given energy eigenvalue E ≥ 0 and arbitrary ε > 0, we see that
as t gets very large and χ becomes dominant in ψt we can write

‖ψt‖ = 1 , ‖(Htoy − E)ψt‖2 < ε. (2.126)

Thus any given E is an energy eigenvalue of Htoy, and as the values of E
extend from zero to infinity we see that we have indeed proven that the
spectrum is continuous.

As we have mentioned before, in the membrane picture this is due
to the fact that the membrane can grow infinitely thin spikes. In the
matrix picture, on the other hand, we see that it is because the potential
is similar to that of (2.117) and wave funtions can escape through the

Figure 2.1: The potential x2y2

valleys with only a finite energy contribution.
In the full supermembrane case we will find a similar scenario. Now

it will be possible for the wave functions to escape to infinity along the
directions that correspond to the generators of the Cartan subalgebra
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belonging to the algebra of the group SU(N). This fact is expressed in
the following theorem [8].

Theorem 3 Let G be a compact Lie group (of finite dimensionality) and
H the associated Hamiltonian operator (2.116). Then for any energy
value E ∈ [0,∞[ and any ε > 0, there exists a G-invariant wave funtion
ψ such that

‖ψ‖ = 1 and ‖(H − E)ψ‖2 < ε. (2.127)

In particular, the spectrum of H is continuous and equal to the interval
[0,∞[.

It is this theorem that we will review the proof of during the rest of this
section (for the group SU(N)).

The first thing we wish to do is give a brief outline of the proof. The
most crucial step in the proof is gauge fixing. The idea is that one of
the matrices, e.g. X9, can always be diagonalized. This will turn the
wave functions on the Hilbert space, H, into reduced wave functions.
Furthermore, the Hamiltonian turns into the reduced Hamiltonian. The
essential feature of this gauge is that the reduced Hamiltonian splits into
four terms that are separately invariant under the Cartan subgroup K.
We now make an ansatz for a wave function, as in the previous toy-model
example, after which we can study the groundstate for each of the terms
in H separately. On the basis of this analysis we can then conclude the
proof.

Looking at the Hamiltonian (2.116) we will in the following regard
this Hamiltonian as regularized in accordance with (2.115). In order to
quantize the theory we impose the canonical commutations relations

[PA
a , X

B
b ] = −δabδAB, (2.128)

{θAα , θBβ } = δαβδAB, (2.129)

where the Clifford algebra (2.129) of the fermionic coordinates will play
a very important role in a little while.

The Hamiltonian (2.116) operates in a Hilbert space, H, which con-
sists of wave functions, ψ(X1, . . . , X9), taking values in a fermionic Fock
space HF . This space carries a representation of the (Clifford) algebra
(2.129), as well as a unitary representation of the gauge group SU(N).
The Hilbert space, H, has a scalar product

(ψ, φ) =

∫ ∏

a,A

dXA
a (ψ(X), ϕ(X))F , (2.130)
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where (·, ·)F is the unique scalar on HF , such that the spoinors θAα are
hermitian operators. The wave functions ψ in H, the space of all physical
states, must then be of finite norm and obey

ψ(UXU−1) = VF (U)ψ(X)∀U ∈ SU(N), (2.131)

i.e. invariance under the gauge group. VF is some unitary representation
of SU(N) in HF .

We now set out to fix a gauge in such a way that the original system
does not gain any additional constraint. We introduce the set p of all
matrices, Z, on the form

Z = i




λ1 0 0 . . . 0
0 λ2 0 . . . 0

0 0 λ3
...

...
...

. . . 0
0 0 . . . 0 λN



, λn ∈ R, (2.132)

with
trZ = 0, λ1 ≥ λ2 ≥ . . . ≥ λN , (2.133)

which satisfies
X = UZU−1,∀X ∈ su(N), (2.134)

U being some element in the group SU(N) and Z a unique element in p.
Also if X is a regular element (has pairwise different eigenvalues) then
the element U is unique up to a multiplication by an element in K. This
means that we have a parametrization of su(N) in terms of elements
Z ∈ p and U ∈ G/K. From this it can be shown that any integrable,
complex valued and SU(N)-invariant function, f(X), satisfies

∫ ∏

A

dXAf(X) = C

∫

p

∏

i

dZ i det zf(Z), (2.135)

where ZIJ is a real, anti-symmetric matrix defined by

zIJ = ZkfkIJ , (2.136)

which, for SU(N), has determinant

det z =
N∏

m<n

(λm − λn)
2. (2.137)

We are thus ready to fix a gauge; to any ψ ∈ H we define

ψ̂(X1, . . . , X9, Z) = (C det z)1/2ψ(X)
∣∣
X9=Z

, (2.138)
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the associated, reduced wave function. These functions contain no less
information then the full wave functions and we can use these to define
the Hilbert space Ĥ. This space consists of all functions ψ̂ (still taking
values in HF ) such that they can be normalized with the scalar product

(ψ̂, ϕ̂) =

∫ ∏

a,A

dXA
a

∫

p

∏

i

dZ i(ψ̂(X,Z), ϕ̂(X,Z))F , (2.139)

and remain invariant under K

ψ̂(UXU−1, Z) = VF (U)ψ̂(X,Z), U ∈ K. (2.140)

To each element in Ĥ there exists a unique element in H, so when we
set out to create a wave packet later on we only have to check that the
reduced wave function has the desired properties.

The final step, before proposing a wave function that can be pushed
to infinity as desired, is to evaluate the reduced Hamiltonian, Ĥ, defined
by

Ĥψ̂ = Ĥψ. (2.141)

To write down this Hamiltonian explicitly we have to calculate the terms
coming from the (PA

9 )2 part. Using the generator corresponding to XA
9

and the symmetry of the light-cone action, it can be shown that the
reduced (PA

9 )2 term becomes

(wTw)IJ L̂IL̂J −
√
det z

(
∂

∂Zk
− wIJfIJk

)
∂

∂Zk

1√
det z

, (2.142)

where we have defined

wIJzJK = δIK , (2.143)

L̂I = fIJK(X
J
a P

K
a −

i

2
θJαθ

K
α ) + ifIJKX

J ∂

∂XK
. (2.144)

The Hamiltonian Ĥ, upon decomposing the coordinates

XA
a → (Z i

a, Y
I
a ) , a = 1, . . . , 8, (2.145)

Zi
a ≡ X i

a , Y I
a ≡ X i

a, (2.146)

splits into four terms

Ĥ = H1 +H2 +H3 +H4. (2.147)
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These terms are explicitly

H1 = −1

2

(
∂

∂Zk

)2

− 1

2

(
∂

∂Zk
a

)2

, (2.148)

H2 = −1

2

(
∂

∂Y I
a

)2

+
1

2
(zT z)IJY

I
a Y

J
a , (2.149)

H3 = −1

2
iθI(zIJγ9 + zaIJγa)θ

J , (2.150)

H4 =
1

4
fAIJfAKLY

I
a Y

J
b Y

K
a Y L

b + fAiJfAKLZ
i
aY

J
b Y

K
a Y L

b +

+
1

2
fAiJfAkLZ

i
aY

J
b (Z

k
aY

L
b − Zk

b Y
L
a ) +

+
1

2
(wTw)IJ L̂IL̂J −

1

2
ifIABY

I
a θ

AY B
a , (2.151)

with
zaIJ = Zk

afkIJ . (2.152)

Now we are ready to propose a construction of the appropriate wave
packet. There are no fundamental differences here from the simple ex-
ample earlier in the section and the reader will find the choice of wave
function completely analogous to that example.

We begin by defining a smooth function χ(Z,Za), Z, Za ∈ k, with
compact support. As in (2.120) the function depends on a parameter t
and Z as

χ(Z − tV, Za), (2.153)

V =




s− 1 0 0 . . . 0
0 s− 2 0 . . . 0

0 0 s− 3
...

...
...

. . . 0
0 0 . . . 0 s−N



, s =

(N + 1)

2
, (2.154)

such that when t → ∞, the wave packet gets pushed to infinity along
the direction specified by V .

We now make the ansatz

ψ̂t(Z,Za, Y
I
a ) = ξ(Z − tV, Za)ϕ0(Z, Y

I
a )ξF (Z,Za), (2.155)

for the wave packet. In what follows we will see that ϕ0 and ξF , which we
choose to be the ground-state wave functions for H2 and H3 respectively,
are separately invariant under K. Consequently, since χ depends only
on Z, V ∈ k, the wave function ψ̂t is in the Hilbert space Ĥ.
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If we define
Ω =

√
zT z, (2.156)

we easily see that (2.149) actually describes an 8(N 2 − N)-harmonic
oscillator. On the basis of this we can immediately write down the wave
function describing the ground-state of H2

ϕ0(Z, Y
I
a ) = π2(N−N

2)(detΩ)2e−
1
2
ΩIJY

I
a Y

J
a . (2.157)

Here we introduce the inner product

(ϕ, ψ)Y ≡
∫ ∏

a,I

Y I
a ϕ

∗ψ, (2.158)

and note the normalization

(ϕ0, ϕ0)Y = 1. (2.159)

We can also give the energy in this ground-state

H2ϕ0 = 4trΩϕ0. (2.160)

Arrival at the ground-state wave function ξF for H3 requires a lengthier
calculation which we will try to compactify here.

The matrices zIJ , z
a
IJ can be diagonalized and their eigenvectors, EI

mn,
define an orthonormal basis in which the θI ’s can be expanded

θI =
∑

m6=n
θmnEI

mn. (2.161)

A general argument will then show that the ground-state energy of H3

looks like

H3ξF = −8
N∑

m<n

ωmnξF , (2.162)

with
ωmn =

√
(λm − λn)2 + (λam − λan)

2, (2.163)

λm and λam being the eigenvalues of Z and Za respectively. The spinor
coefficients θmn we then redefine as

θ̃mn =
1√
2ωmn

(√
ωmn + λm − λn −

(λam − λan)γaγ9√
ωmn + λm − λn

)
θmn, (2.164)

and yet again to chiral spinors by the projection

θ± =
1± γ9

2
θ, (2.165)
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so that the Hamiltonian H3 becomes

H3 =
N∑

m<n

ωmn(θ̃
mn†
+ θ̃mn+ + θ̃mn− θ̃mn†− − 8). (2.166)

The ground-state wave function can consequently be written as

ξF =

(
N∏

m<n

8∏

α′=1

(θ̃mn†− )α′

)
ξ0, (2.167)

where ξ0 satisfying
ωmnξ0 = 0 ∀m < n, (2.168)

is independent of λ and normalized to 1. Furthermore, ξF can be shown
to be K-invariant and satisfy

‖DξF‖F ≤
C

t
, (2.169)

for any number of diffrentiations, D, with respect to λm and λam, and for
a large value on t. This result is in analogy with one for ϕ0 saying that

|(D1ϕ0,D2ϕ0)Y | ≤ CtdimD1+dimD2 , (2.170)

for some choice of operators D1,D2, possibly containing derivatives with
respect to Y I

a and λm, and for suitable C and large t.
From the equality

(H2 +H3)ψ̂t = 8
N∑

m<n

(λm − λn − ωmn)ψ̂t, (2.171)

we see that the energy approaches zero as λm − λn → ∞. Since ϕ0 and
ξF are both normalized to 1, the normalization of ψ̂t depends only on the
normalization of χ. We have

(ψ̂t, ψ̂t) = 〈χ, χ〉 , (2.172)

where

〈χ1, χ2〉 =
∫ ∏

i

Zi
∏

k,a

dZk
aχ

∗
1χ2, (2.173)

form this and the fact that χ has compact support we can draw the
conclusion that

lim
t→∞

‖(H2 +H3)ψ̂t‖ = 0. (2.174)
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Also for H4 we can use the inequalities (2.169) and (2.170), since all
terms in (2.151) have dimension ≤ − 1

2
we conclude that

lim
t→∞

‖H4ψ̂t‖ = 0. (2.175)

Thus we only have to consider H1 and from (2.148) we see that when it
acts on ϕ0 and ξF we can use the relations (2.169) and (2.170) again to
set the contributions to some term of order t−1. It follows then that

lim
t→∞

(ψt, H
νψt) = lim

t→∞
(ψ̂t, H

ν
1 ψ̂t) = 〈χ,Hν

1χ〉 , ν = 0, 1, 2, (2.176)

Thus if we pick an arbitrary energy eigenvalue E and an ε > 0, we can
choose χ such that

〈χ, χ〉 , 〈(H1 − E)χ, (H1 − E)χ〉 < ε

2
, (2.177)

and from the properties of the wave function ψt and its associated reduced
function ψ̂t it follows that

|((H − E)ψt, (H − E)ψt)− 〈(H1 − E)χ, (H1 − E)χ〉 | < ε

2
. (2.178)

Thus for a sufficiently large t we get

‖ψt‖ = 1 , ‖(H − E)ψt‖2 < ε, (2.179)

which finally proves the theorem stated earlier in this section. It should
be emphasized that, even though the review of the proof here contains
many details that one generally does not find in a review, it still leaves
out some details. The reader who whishes to study the proof in full detail
should refer to [8]. In that paper the authors noted that for the case of
the supermembrane “our result does not bode well for its future”, and
the interest in membrane theory dropped drastically after they published
their result. However many years later the continuous spectrum of the
membrane was turned into a virtue in a new and bold interpretation.
This new view of the supermembrane should be reviewed in the light of
M-theory, which is why we have postponed the discussion until section
3.5.



3
The Supermembrane II:

M-theory

This section bridges the gap between the material presented in the pre-
vious chapter, mainly developed before 1990, and the following chap-
ter which contains physics that have only very recently been developed.
Apart from studying the role of the membrane in M-theory we will treat
the different topics that are needed as background material in the forth-
coming chapter and also include some subjects needed in order to main-
tain some level of completeness. Due to the staggering amount of open
problems in M-theory, many of them very fundamental, the field is in a
constant state of diversification. This means that a complete and strin-
gent review of what has been done is virtually inconstructible. This is
of course also the case for the following chapter and therefore we make
no attempt at such a review settling instead for a chapter that is the
mere handmaiden of chapter 4 and also lacks a clear logical structure.
Sometimes concepts will be used before being properly introduced but in
these cases the proper pointers and references are included.

3.1 Five String Theories

String theory first arose as a theory of strong interaction [42,43,44] in the
late sixties. This attempt ultimately failed and the theory was replaced
by quantum chromodynamics. In the beginning of the seventies it was
then conjectured [45,46,47] that string theory should be elevated from a
theory of strong interactions to a theory incorporating all the forces in
nature, including gravity. The work on string theory during the period
from 74 to 84 was largely done by a small group of people, mostly because

39
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the problems that plagued the theory seemed insurmountable at the time.
Then came the period which we now call the first superstring revolution.
The explosion of interest that was set off was mainly due to the discovery
of the conditions for anomaly cancellation in various theories. In [48] it
was shown that as for chiral theories the only anomaly free theory in ten
dimensions was Type IIB supergravity (which we know to be the low-
energy limit of IIB superstring theory). The next anomaly cancellation
was revealed in [49, 50, 51] for Type I strings, that is open strings which
have gauge degrees of freedom added to their endpoints. It can be shown
by considering the field theoretic low-energy effective action that anomaly
cancellation occurs for the gauge groups SO(32) and E8 ×E8 [52]. This
led to the discovery of the two heterotic string theories [53].

Thus the search for a single unified theory of all interactions and
the attempt to unify gravity and quantum mechanics, had led to five(!)
different string theories.

The resolution to this big mystery came after about ten years (notice
that we are skipping a long and important period of theoretical high-
energy physics) in the so called second superstring revolution. The main
themes here were the discoveries of dualities between the different string
theories and the role of D-branes. This hinted toward the existence
of a single theory containing all the others as limits, a master theory,
mysteriously named M-theory, related somehow to eleven dimensions.

Before considering some specific properties of Type II string theory
and moving on to M-theory, let us briefly review the most basic construc-
tion of string theory and its features. The action (2.1) for the bosonic
string is defined by the area of the worldsheet that the string traces out
as is propagates

S =

∫
d2σ det

√
∂iXµ∂jXνηµν , (3.1)

i, j = 1, 2, µ, ν = 0, 1, . . . , D − 1,

which is the Nambu-Goto action of the relativistic string. We also have
a (p = 1) Polyakov type action

S = − 1

4πα′

∫
d2σ
√
ggij∂iX

µ∂jX
νηµν , (3.2)

where gij is a two-dimensional auxiliary metric. Note the absence of a
cosmological term; this will turn out to be very fortunate. Apart from
the ordinary reparametrization invariance this action is Weyl invariant
(unlike the Nambu-Goto action), i.e., symmetric under rescalings of the
metric

gij(σ) −→ e2ω(σ)gij(σ), (3.3)
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and these three symmetries (two reparametrization invariances and one
Weyl) are exactly what we need to gauge-fix away the unphysical degrees
of freedom in gij. When we chose a gauge analogous to the light-cone
gauge in chapter 2 this will eliminate any unphysical degrees of freedom,
and so we can proceed to quantize the theory by imposing equal-time
commutator-relations in the standard way. One problem however, re-
mains in the classical light-cone gauge-fixed theory; Lorentz invariance
is hidden but must still remain a symmetry of the theory and in the
the quantization procedure an anomaly arises. We get conditions for the
preservation of Lorentz invariance. Amon others D = 26, i.e., the dimen-
sion of spacetime must be 26, which is true for both the open and closed
string. The lightest state in bosonic string theory is a tachyon (i.e. it has
negative mass squared) meaning that the vacuum state (the state with
no string) is actually unstable. Whether or not the bosonic string theory
has some stable vacuum is still a matter for research.

Unlike the case in membrane theory, it is possible to formulate a string
theory with worldsheet supersymmetry. Here we wish to construct such a
theory by extending the conformal symmetry of (3.3) to a superconformal
symmetry. We begin by introducing a worldsheet spinor field ψµ into the
bosonic action (in a conformal gauge), extending it to

− 1

2π

∫
d2σ(∂iX

µ∂iXµ − iψ̄µρj∂jψµ), (3.4)

where ψ is a two-component spinor

ψµ =

(
ψµ1
ψµ2

)
, (3.5)

with
ψ̄µ = ψµρ0. (3.6)

The matrices ρi are given by

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
, (3.7)

satisfying
{ρi, ρj} = −2ηij, (3.8)

(ηij being a two-dimensional Minkowski metric). This action has a con-
served supercurrent

Ji =
1

2
ρjρiψ

µ∂jXµ, (3.9)

coming from the supersymmetry transformations

δXµ = ε̄ψµ , δψµ = −iρi∂iXµε. (3.10)
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An alternative formulation of this theory with a more manifest version of
supersymmetry would come from introducing a superspace. This is done
by defining two new coordinates θa, a = 1, 2 which are anti-commuting
and form a Majorana spinor together. A general function on this space,
a superfield, is given by the power series

Y µ(σ, θ) = Xµ(θ) + θ̄ψµ(σ) +
1

2
θ̄θBµ(σ), (3.11)

which is exact due to the anti-commutation relations for θ. Bµ(θ) is
an auxiliary field which allows us to demonstrate that the supersymme-
try algebra closes without the use of field equations. A supersymmetry
transformation in the formerly used notation is now equivalent to a trans-
formation of the superspace coordinates

δθa = [ε̄Q, θa] = εa, (3.12)

δσi = [ε̄Q, σi] = iε̄ρiθ, (3.13)

generated by

Qa =
∂

∂θ̄a
+ i(ρiθ)a∂i, (3.14)

with εa being some infinitesimal parameter. For the superfield Y µ we
then get

δY µ = [ε̄Q, Y µ] = ε̄QY µ, (3.15)

and expanding this according to (3.11) we get back the transformations
(3.10). The next step in order to create supersymmetric field theories
within this formalism is to introduce a superspace covariant derivative

D =
∂

∂θ̄
− iραθ∂α, (3.16)

which produces superfields from superfields under derivation. Using inte-
gration over all of superspace we are now ready to write down an action

S =
i

4π

∫
d2σd2θD̄Y µDYµ, (3.17)

where we have

DY µ = ψµ + θBµ − iραθ∂αX
µ +

i

2
θ̄θρα∂αψ

µ, (3.18)

D̄Y µ = ψ̄µ +Bµθ̄ + i∂αX
µθ̄ρα − i

2
θ̄θ∂αψ̄

µρα. (3.19)

Due to the measure of the fermionic integration only terms quadratic in
θ will survive the integration, thus the action can be written as

− 1

2π

∫
d2σ(∂αX

µ∂αXµ − iψ̄µρα∂αψµ −BµBµ), (3.20)
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varying this action gives us the field equation for B

Bµ = 0, (3.21)

so we can just forget about the term BµBµ in (3.20) and thus we retain
the action (3.4).

The fields living on the string worldsheet naturally have to satisfy a
periodicity condition, i.e. invariance under

σ2 → σ2 + 2π. (3.22)

For our worldsheet spinor fields ψµ(σ1, σ2) this leaves the freedom to
choose sign, i.e.

ψµ(σ1, σ2 + 2π) = +ψµ(σ1, σ2), (3.23)

ψµ(σ1, σ2 + 2π) = −ψµ(σ1, σ2), (3.24)

are equally viable fields. This splits all ψµ into two different sets, the
first called Ramond fields (which we will denote by an R) and the second
Neveu-Schwarz fields (NS) so that in the expansion of the different fields
the sum runs over integers in the R case and half-integers in the NS
case. By enforcing R and NS boundary condition differently on the left-
and right-moving modes of ψµ and ψ̄µ respectively we get four different
sector in the theory, R-R, NS-NS, NS-R and R-NS. One must now enforce
a number of consistency conditions in order to arrive at a sound theory.
These conditions pick out subsets of these sectors containing the states
that form the spectrum of the theory. Since our interest is in membranes
mainly we will not mention much about the Type I and Heterotic string
theories, but the relation between membranes and Type II string theories
is something that we will rely heavily on in the following sections and
therefore a few words about these are in order.

The two Type II theories are tachyon free theories of closed super-
strings in 10 dimensions, Type IIA and IIB corresponding to non-chiral
and chiral theories, respectively. Type IIB string theory and supergravity
have been dealt with in appendix A at the level of detail which is neces-
sary in this thesis. Regarding the Type IIA theory we will use the strong
coupling limit relation to M-theory frequently in what follows so we will
now review the dimensional reduction that yields the IIA supergravity
from the 11D supergravity in order to obtain the relations between the
string theory coupling and the eleventh direction in M-theory. We will
only consider the techniques in the bosonic parts of the two theories since
this is all we need for our further considerations.

The bosonic part of 11-dimensional supergravity is described by

S11 =
1

l9p

∫
d11x

√−g
(
R− l9p

48
(dC)2

)
+

√
2

27 · 32
∫
C ∧ dC ∧ dC, (3.25)
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where lp is the 11-dimensional Planck length, g the metric, R the cor-
responding Ricci scalar and C is the 3-form coupling to the membrane.
Taking the 11-dimensional metric

ds211 = R2
s(dx

s + Aµdx
µ)2 + ds210, (3.26)

and substituting it into (3.25) we obtain

S10 =
1

l9p

∫
d10xRs

√−g
[
R +

(
∂Rs

Rs

)2

+R2
s(dA)

2 + l6p(dC)2

+
l6p
R2
s

(dB)2
]
+

∫
B ∧ dC ∧ dC. (3.27)

Here, Rs is the radius of the eleventh direction xs and Aµ is the U(1)
gauge field that arises in order to maintain consistency under the isom-
etry in the compact direction. The 3-form Cµνρ is split into a 2-form
Bµν = Cµνs and a 3-form Cµνρ. Comparing this to the ordinary Type
IIA supergravity action

SIIA =
1

l8s

∫
d10x

√−g
[
e−2φ

(
R + 4(∂φ)2 − l4s

12
(dB)2

)
−

− l
2
s

4
(dA)2 − l6s

48
(dC)2

]
+

∫
B ∧ dC ∧ dC, (3.28)

we make the identifications

Rs = lsgs,
Rs

l3p
=

1

l2s
, (3.29)

where upon we see that the limit Rs → ∞ taking us from 10 to 11 di-
mensions indeed corresponds to a strong coupling limit. Thus we have
seen that from the 11-dimensional supergravity action, by an appropriate
dimensional reduction, we can obtain the Type IIA supergravity action
describing the dynamics of the massless NS-NS fields gµν (metric), Bµν

(anti-symmetric tensor) and φ (dilaton) as well as the R-R fields Aµ and
Cµνρ (gauge fields). The string can also be obtained from the membrane
in this manner, by a double dimensional reduction [54]. By considering
the bosonic part of (2.94) and identifying the direction ξ3 on the mem-
brane worldvolume with the eleventh direction xs in spacetime and then
considering the background fields independent of xs we retain the super-
string action. The intuitive picture here is that the membrane completely
wraps the direction xs and when this is compactified on a circle of small
radius the membrane becomes a string.
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This short text is by no means meant to act as a source on string
theory. The issues we have discussed here (and not in the appendices) are
merely included in order to achieve a slightly higher level of completeness;
for material on string theory we refer the reader to [55,56].

3.2 Dualities, D-branes and Moduli

Even before the second superstring revolution the notion of duality was
familiar. In string theory it was discovered as early as 1984 that T-duality
transformations related different string theories [57,58]. T-duality is most
easily described for a theory compactified on a circle, for example Type
II string theory, when compactified on a circle of radius R gives Kaluza-
Klein momenta of the form

pKK =
n

R
, n ∈ Z. (3.30)

I addition to these Kaluza-Klein modes the string can wrap, m times,
around the compact direction, and taking also this into account we obtain
the momenta

p =
n

2R
±mR, (3.31)

for left- and right-moving modes respectively. It is evident from this that
the mass-squaredM2 is invariant under R↔ 1

2R
upon also interchanging

n↔ m. This is T-duality, where the inversion of the radius corresponds
to the exchange of windings against Kaluza-Klein momenta. It can also
be shown that the transformation above reverses the chirality of the
left-going (or right-going, depending on definition) modes of the string,
turning a chiral theory into a non-chiral theory and vice versa. Therefore
we conclude that T-duality relates IIA and IIB and that IIA↔ IIB under
R↔ 1

2R
in our particular case. In a similar manner T-duality relates the

heterotic string theories SO(32) and E8 × E8.
The duality we are about to study next led to the profound insights

about string theory that we already encountered in the previous section.
S-duality relates strong and weak coupling, and even before its advent
it had long been known that 11-dimensional supergravity reduced to
10-dimensional non-chiral supergravity (IIA) upon compactifying on a
circle and discarding the Kaluza-Klein modes. But when keeping these
modes and also keeping the radius of compactification finite it was noticed
[59, 60] that the relationship between the string coupling constant and
the radius Rs of the eleventh direction hinted toward an 11-dimensional
theory corresponding to the strong coupling limit of Type IIA string
theory. This we saw already in the previous section by an analysis of
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Type IIA supergravity and 11-dimensional supergravity, the theory to
which this new mysterious theory, namely M-theory, has to reduce in
the low-energy limit. Furthermore, in addition to reducing to Type IIA
string theory when compactified on S1 it can be shown that M-theory
reduces to heterotic E8 × E8 when compactified on the orbifold S1/Z2.

The Type IIB theory turns out to be invariant under this duality.
We will not expand much further on this here, in section A.4, where this
symmetry of Type IIB is used, the formalism needed to check this is
presented.

Finally, for completeness, we state the fact that the Type I string
theory is S-dual to the heterotic SO(32) theory. Thus we have completed
the information needed in order to understand the following popular
picture.

PSfrag replacements

Type IIA

M-Theory

SO(32) Heterotic

E8 × E8 Heterotic

Type I

Type IIB

Figure 3.1: The moduli space of M-theory

Let us summarized:

• T-duality: A perturbative duality that relates different compactifi-
cations and reveals the relations IIA↔ IIB and SO(32)↔ E8×E8.

• S-duality: A non-perturbative duality relating a strongly coupled
region to a weakly coupled one. Relates IIA ↔ M-theory, E8 ×E8

↔ M-theory and Type I ↔ SO(32).

• U-duality: A non-perturbative duality that incorporates both S-
and T-duality [61]. We will examine it more closely in section 3.4.
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We will end this section by considering the inside of the M-theory
star in figure 3.1, but before we do this we need to mention something
about a type of object that will appear often in what follows, D-branes.

We have already stated that IIB string theory is self-dual under S-
duality, furthermore the fundamental string in Type IIB is charged under
the NS-NS field B(1) (see section A.4) and not under the R-R field B(2).
But S-duality mixes these two charges and consequently if IIB is supposed
to be self-dual under S-duality then it must contain objects charged un-
der this R-R field. It does, D-strings, furthermore it contains a whole
menagerie of these D-objects or D-branes. They are BPS-states and non-
perturbative in nature which explains why their relevance was not fully
understood before the second (non-perturbative) superstring revolution.
The study of D-branes in various contexts virtually exploded after the
paper [62] and we will only state a few facts here that are of general or
direct relevance in the forthcoming sections.

D-branes were in fact studied much further back in time, originally
introduced as dynamic hyper-surfaces in spacetime on which open strings
could end [63, 64], but the paper [62] very much revolutionized the way
people thought about them and also revealed a number of new features.

The D-string or D1-brane lives in Type IIB string theory, more gen-
erally we have only Dp-branes with odd p in IIB and with even p in
IIA. They are solitonic objects, the forces in between them cancel which
is why we can compose D-branes into stacks of arbitrary size in order
to obtain states of arbitrary charge. This is, as we will see in section
3.5, of paramount importance in matrix theory. Further facts about D-
branes can be found in sections 3.5 (D0-branes) and A.3 (D-instantons
or D(−1)-branes), as well as spread out through the text.

We have seen how dualities enter into M-theory and relate the dif-
ferent string theories. We have also talked about how this introduces
D-branes in a new way. The string theories are actually asymptotic lim-
its in the moduli space of M-theory (this is why we picture them as cusps
in the M-theory star), dualities transform between these different gs → 0
limits in the moduli space but still only allows us to investigate a set of
moduli with zero measure. The BPS-states that we are about to study
in the next section are states that behave nicely in limits opposite to the
gs → 0 limit and can, because of this, be studied at points away from
the string theoretical points of the moduli space. M-theory is in some
sense a theory in the complete moduli space, but it is believed that there
should be some sort of potential (or procedure) that fixes the moduli
completely.
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3.3 BPS States

In section A.2 of the appendices we give a brief introduction to supermul-
tiplets and BPS-states (the reader unfamiliar with the concept of BPS-
states is well advised to read this section prior to reading this and indeed
the rest of this thesis), while here we wish to extend these considerations
into the realm of M-theory. Much of the chapter following this one is
devoted to the attempt to use the microscopic degrees of freedom in M-
theory in order to do calculations reproducing results previously known
from string theory. But very little is known about these microscopic
degrees of freedom. One of the few ways of studying these is through
11-dimensional supergravity. The central principle in 11-dimensional su-
pergravity, N = 1 supersymmetry, is independent of energy-scale and
should thus be valid even in M-theory, and the states of M-theory should
therefore organize into multiplets of the super-Pioncaré algebra. This al-
gebra contains central charges ZIJ and ZIJKLM (upper-case letter shall
often denote 11-dimensional indices) which are interpreted as the elec-
tric and magnetic charges of various extended M-theory objects. These
objects are the:

• Membrane (M2-brane): The main character of this thesis. It is
charged under the 3-form CIJK .

• 5-brane (M5-brane): Another important object that will come into
play in the amplitudes we consider in the next chapter. It is charged
under the 6-form dual to the 3-form Cijk.

• KK6-brane: The Kaluza-Klein 6-brane (or monopole) will not be
considered here since it is of less importance for our purposes.

• 9-brane: A non-dynamical object that is not charged and which
will not appear in this thesis.

BPS-states are shared between the two energy regimes of M-theory
and 11-dimensional supergravity. Therefore they give us the opportunity
to study M-theoretical objects as solitonic solutions in 11-dimensional
supergravity. These states are also as we know solutions that satisfy non-
renormalization theorems, i.e. are protected from the perils of quantiza-
tion. They are also stable which means that they survive strong-coupling
limits (or equivalently they remain in any compactification of M-theory).
There are three standard solutions that describe extended objects which
satisfy 1

2
-BPS conditions, the membrane, 5-brane and KK6-brane. The

dynamics of membranes we have already studied extensively, the 5-brane
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dynamics are governed by a six-dimensional tensor theory whereas the
KK6-brane is described by a gauged sigma model.

We have already mentioned how the membrane reduces to the Type
IIA string in a double-dimensional reduction of M-theory and table 3.2
completes the picture to the extent that is needed here. It displays the
relevant BPS-states in M-theory and how these reduce depending on
whether they wrap or do not wrap the compact direction. As mentioned

M-Theory Type IIA
Supergraviton (P 11 = 1/R) D0-brane
Wrapped M2-brane String
Unwrapped M2-brane D2-brane
Wrapped M5-brane D4-brane
Unwrapped M5-brane NS 5-brane

Figure 3.2: Object correspondence between Type IIA and M-theory

before these states behave very nicely in the different limits through
which we can enter M-theory, and are therefore ideal for the purpose
of checking dualities and the relations that these infer on the objects in
various string theories. BPS-states in relation to duality and the different
compactifications of M-theory is the subject of the next section.

3.4 Representation Theory of Duality Groups

When we studied dualities in section 3.2 we took a fairly simplistic view
of them, T-duality inverting the radius of compactification in a theory
compactified on S1 and S-duality simply inverting the coupling constant.
In truth dualities act on all of the moduli of a theory thus constituting
a transformation in the full moduli space. These transformations are
described by the action of various groups, duality groups, which we will
study here. For example S-duality acts by matrix multiplication on the
matrix composed of the scalars of Type IIB. We use this and the symme-
try of Type IIB in section A.4 to create an Sl(2,Z) multiplet of strings.
In this section we will be concerned with T-duality to some extent but
mostly U-duality, a symmetry of M-theory that we aim to use in order
to derive amplitudes in the following chapter.

We have previously said that T-duality relates different compactifica-
tions, more precisely it is a perturbative “symmetry” of the compactified
M-theory, meaning that it hold in every order of the perturbation theory.
In section A.4 we saw how the scalar fields φ, C (0) could be written in a
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matrix to realize the symmetry under Sl(2,Z). In the same manner the
NS-NS fields gij and B of Type IIB can be written as

M =

(
g−1 g−1B

−Bg−1 g −Bg−1B

)
, (3.32)

displaying the fact that these fields parametrizes the coset

SO(d, d,R)

SO(d)× SO(d)
. (3.33)

The form of this matrix stems from a fundamental mathematical fact
that also has physical implications. We can decompose our T-duality
group in what is called the Iwasawa decomposition

G = K · A ·N, (3.34)

where K, A and N are maximal compact, Abelian and nilpotent sub-
groups respectively . The matrix M can then be written

M = vTv, (3.35)

where v is the vielbein on the group manifold SO(d, d,R) chosen from
the Iwasawa decomposition as v = 1 · a · n on the basis of fixing the
invariance under K in such a was that we arrive at the correct coset.
When quantized this symmetry must be constrained to the discrete sub-
group SO(d, d,Z), the T-duality group of a torodially compactified string
theory.

Instead of approaching U-duality as the symmetry of M-theory which
contains both the T-duality and S-duality groups as subgroups we wish to
see how it arises from 11-dimensional supergravity. We have previously
stated that supersymmetry is a principle that is expected to hold in the
high energy limit of 11-dimensional supergravity. The super-Poincaré
group decomposes when we compactify on T d, leaving the symmetry
Sl(d + 1,R) as the 11-dimensional unbroken part and gaining an addi-
tional symmetry; R-symmetry. This symmetry turns out to be a maximal
compact subgroup of the global symmetry group Gd+1, the Cremmer-
Julia symmetry group, which contains the symmetries, additional to the
super-Poincaré invariance, of the supergravity theory. These groups and
their maximal compact subgroups are given in table 3.3. We will often
write Gd+1 as Ed+1(d+1). These symmetries can not persist to be contin-
uous in the quantized limit as the charges under the gauge potentials of
the theory become discrete. Thus they have to reduce to discrete sub-
groups of Gd+1; the U-duality groups (table 3.4). They can be seen to
contain both the S-duality and T-duality groups as subgroups.
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d+ 1 Gd+1 Hd+1

1 R+ 1
2 Sl(2,R)× R+ U(1)
3 Sl(2,R)× Sl(3,R) SO(3)× U(1)
4 Sl(5,R) SO(5)
5 SO(5, 5,R) SO(5)× SO(5)
6 E6(6)(R) USp(8)
7 E7(7)(R) SU(8)
8 E8(8)(R) SO(16)

Figure 3.3: The Cremmer-Julia groups and their maximal compact sub-
groups

d+ 1 U-duality
1 1
2 Sl(2,Z) (E2(2)(Z))
3 Sl(2,Z)× Sl(3,Z) (E3(3)(Z))
4 Sl(5,Z) (E4(4)(Z))
5 SO(5, 5,Z) (E5(5)(Z))
6 E6(6)(Z)
7 E7(7)(Z)
8 E8(8)(Z)

Figure 3.4: The U-duality groups

Turning now to the representation theory of these groups, U-duality
is the only symmetry that is thought to be valid throughout the high en-
ergy limit of 11-dimensional supergravity. Thus in dividing the spectrum
into multiplets, irreducible representation, of these symmetry groups we
can expect the content of these to remain the same when passing from
11-dimensional supergravity to M-theory. We will limit our discussion to
BPS-states here since these are the only ones over which we have some
control in high energy and strong coupling limits. Actually , so far, when
we say multiplets of the U-duality group we mean only the irreducible
representations of a much smaller group, the Weyl group, and after cre-
ating these we will see how they can be extended to the whole group.
The Weyl group has a set of generating elements corresponding to

SI : RI ↔ RI+1 (3.36)

T : R1 →
l3p

R2R3

, l3p →
l6p

R1R2R3

, (3.37)
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which act on the vectors in the weight space as Weyl reflections. We
can now derive the fundamental weights dual to the simple roots and
these in turn make up the Dynkin basis of our weight space. From these
weights we can pick out the corresponding irreducible representations, the
fundamental representations. By representing the vectors in the weight
space by monomials in the directions RI , i.e. tensions of various objects,
we can directly realize the action of the elements (3.36) and (3.37). The
orbits1 of each of these weights yields the irreducible representation in
which the fundamental weight is the highest weight. The multiplets
which we will use later on are the string multiplet and the membrane
multiplet, corresponding to the weights T1 = R1

l3p
and T2 = 1

l3p
respectively.

However acting with the Weyl generators alone does not generate the
full multiplet of the U-duality group since we are only studying its Weyl
group in that case. In order to extend these multiplets we need to act
on the highest weight in each multiplet with Borel generators as well
(simply put those generators that are not Weyl generators). In our case
these turn out to be: a generator that interchanges the eleventh direction
with one of the others and generators shifting the gauge potentials of M-
theory by a constant. Proceeding in this manner we see that the string
multiplet consists of not just membranes wrapped around one compact
dimension (RI

l3p
) but also 5-branes wrapped around four dimensions as well

as the higher-dimensional objects of M-theory wrapped in different ways
depending on in which dimensionality we are, i.e. which U-duality group
we are representing. The same argument can be used for the membrane
multiplet (and indeed all the other multiplets) thus yielding the wanted
split of the spectrum. [22] [65] [22]

3.5 The BFSS-Conjecture

Previously (section 2.1 and 2.2) we have seen how matrix theory can be
defined through a regularization of the membrane and supermembrane [9,
10,12]. We saw that matrix theory became a very powerful tool in dealing
with the theory of supermembranes, but this new found tool did however
also help us to prove once and for all that the supermembrane really does
have a continuous spectrum [8]. A continuous spectrum is a devastating
attribute for a classical theory that needs to be first quantized, but a
necessity for a theory that is already a second quantized theory in the

1The group orbit of an element v in the representation space M is defined as
Ov = {w ∈M : ∃γ ∈ G : w = (R(γ))(v)}, i.e. given an element v in the representation
space the orbit is the set of elements which can be reached from v by the action of
the representation of some element γ in G
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sense that it describes multiparticle states. In the paper [13] it was
conjectured that matrix theory, in the large N limit, in fact describes
all of M-theory (in the infinite momentum frame). Here we refer to this
result as the BFSS-conjecture after the authors. We will spend the next
few pages reviewing this original work, the motivations for the conjecture,
and some of the work that has been done since.

But before we can do this we need to state some preliminary facts
about D-branes (section 3.2), relations of these to supersymmetric Yang-
Mills theories and dimensional reductions thereof. By considering the
open string in a fixed D-brane background it can be shown that [64, 66]
the low-energy action for the Dp-brane becomes U(1) SuperYang-Mills
(SYM), dimensionally reduced to p+1 dimensions from ten dimensional
U(1), N = 1 SYM. The action of this theory is given by2

S =
1

g2YM

∫
d10ξ

(
−1

4
FµνF

µν +
i

2
ψ̄Γµ∂µψ

)
, (3.38)

where F µν is the field strength and ψ a 16 component Majorana-Weyl
spinor of SO(1, 9). This fact can be generalized to the case of N par-
allel D-branes (of equal dimension p). In this case we have fields Aµ

ij

corresponding to oriented strings stretching between the ith and the jth
D-brane, with µ being the 10-dimensional spacetime index. The mass of
this field is proportional to the length of the string and thus as the D-
branes gets closer to one another this field becomes massless. It has then
been shown [66] that these fields (in a static gauge on a flat background)
obey the dynamics of a 10-dimensional U(N) SYM, dimensionally re-
duced to p + 1 dimensions, in a low energy limit. This theory is (with
the fields properly rescaled described by the action

S =
1

g2YM

∫
d10ξ(−trFµνF µν + 2itrψ̄ΓµDµψ), (3.39)

Dµ = ∂µ − iAµ, (3.40)

which we dimensionally reduce by considering all of the fields as inde-
pendent of the coordinates p + 1, . . . , 9. The field Aµ now becomes de-
composed into 9− p adjoint scalar fields, Xa, and a (p+ 1)-dimensional
gauge field Aα, the action for which has the bosonic part

S =
1

g2YM

∫
dp+1ξtr(−FαβF αβ − 2(DαX

a)2 + [Xa, Xb]2). (3.41)

2In this discussion of D-branes we set 2πα′ = 1.
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The fields Xa are interpreted as describing fluctuations in the directions
transverse to the D-brane and Aα is a gauge field living on the world-
volume. This action is then indeed the action describing the low-energy
dynamics of our branes in a static gauge (i.e. the p + 1 dimensions of
the worldvolume are directly identified with directions in spacetime) and
a flat background. By considering a state of this system in which the
fermionic fields as well as the field strenghts Fαβ become zero, and fur-
thermore the scalar fields are constant and commuting, we see that Xa

can be diagonalized to yield

Xa =




xa1 0 0 · · · 0
0 xa2 0 · · · 0

0 0 xa3
...

...
...

. . . 0
0 0 · · · 0 xaN



. (3.42)

In this way we see that xan can be associated with the position of the nth
D-brane in the ath transverse direction. The main motivation behind [13]
concerns precisely such a “stack” of D0-branes to which we now devote
some space. The low-energy action of this system is that of N = 1, D =
10, SYM reduced to one dimension, and the vector field Aµ decomposes
into Xa, a = 1, . . . , 9 and A0 which we gauge-fix to zero in the following.
The full Lagrangian of this theory in terms of the nine Hermitian N×N -
matrices, Xa and the 16-component SO(9)3 spinors θ now becomes

L =
1

2g
√
α′
tr

[
ẊaẊa +

1

(2πα′)2

∑

a<b

[Xa, Xb]2 +
1

2πα′
θT iθ̇−

− 1

(2πα′)2
θTΓa[X

a, θ]

]
. (3.43)

As before the matrices Xa can be diagonalized and their elements inter-
preted as the positions of theD0-branes hence giving us the configuration
space (R9)N modulo permutations of the branes (since they are identical).

Previously (section 3.1) we have reviewed T-duality in the context of
string theory, now we wish to do the same for SYM in the case of N D0-
branes. We choose the simple example when the branes move in R8×S1,
that is, we compactify theX9 direction on a circle. The general technique
to study such a system of D-branes is by considering the orbifold R9/Γ,
where Γ is a discrete group, and then constraining the theory in such
a way that it remains invariant under the action of Γ. Intuitively we

3The Clifford algebra SO(9) is generated by the 16× 16-matrices Γa
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see that the strings connecting the N different D0-branes can now wind
around the compact direction X9, since S1 = R/Z this is equivalent to
considering an infinite number of “copies” of the D0-branes. This can
be seen by imagining that the compact direction is broken up, strings
connecting one brane to another by winding n times in the compact
direction are now equivalent to strings connecting the brane to the nth
copy of the other brane. As such the transverse components Xa of the
fields, Aµ

ij describing the connection between the ith and the jth brane,
turn into Xa

mi,nj , describing the connection between the mth copy of the
ith D0-brane and the mth copy of the jth brane. The indices m,n lies in
the infinite set Z and it follows that we gain an infinite number of degrees
of freedom. The resulting theory is essentially a quantum field theory in
a compact space, or equivalently an U(∞) quantum mechanics theory.
Then enforcing the constraints of Γ gives the form of the infinite block
matrices Xa

mi,nj and shows that in the X9 direction we can interpret this
as a matrix representation of the operator

X9 = i∂̂ + A(x̂), (3.44)

which is a gauge covariant derivative that operates on a Fourier expansion

φ(x̂) =
∑

n

φ̂ne
inx̂/R̂9 , (3.45)

R̂9 =
α′

R9

=
1

2πR9

, (3.46)

of the function φ(x̂). For the other transverse directions as well as the
fermionic fields we have that they obey the same relation but without
the homogeneous term A(x̂). Thus we now see that we can encode the
U(∞) matrices in these derivatives, the “N × N × ∞ × ∞” infinity
disappears into the operator and leaves a 1 + 1 (adds x̂ as a degree
of freedom) SYM theory of N × N U(N) matrices on the dual circle.
Therefore we now know the exact relation between the two theories, the
one degree of freedom in the SYM theory on R8 × S1 corresponds to
the 1 + 1 degrees of freedom in the SYM on the dual circle of radius R̂9

exactly through this encoding of the winding modes into Fourier modes
of S1. Subsequently it is possible to show that the Lagrangians of the
two theories are equivalent under this relation. This result is beautiful
in its simplicity and upon compactifying further we get equally beautiful
results until we eventually run into problems. Matrix theory compactified
on a torus works fine, as well as compactifications on 3-tori and 4-tori,
but as for compactification on a 5-torus and higher dimensional tori we
can not resolve the problems in the resulting theory (see [67] for a review
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of this). Now we are ready to leave the D0-branes preliminaries and “get
down to business” with the BFSS-conjecture, for those who wish to go
further into the details of the D-branes and matrix theory there are a
number of good references [68,69].

From section 3.2 we know that M-theory compactified on a circle
S1 becomes Type IIA string theory, consequently there exists a number
of relations between objects in M-theory and objects in Type IIA. The
most important of these, at least for our present considerations, it the
roles of the “uncompactified” partner of the Type IIA D0-brane in M-
theory. The perturbative string states in IIA does not carry a RR-charge
and consequently no momentum in the compactified direction. The D0-
brane does however couple to the RR-gauge field Aµ in IIA (see table 3.3)
which in turn corresponds to the Kaluza-Klein photon of gµ11 (gµν being
the 11-dimensional metric). Subsequently, the D0-brane corresponds to
the supergraviton with momentum in the compactified direction. The
momentum P 11 is given by

P 11 =
1

R
, (3.47)

R being the radius of the compactified direction, there also exists super-
gravitons with larger momentum, P 11 = N/R and these can be shown
to correspond to the stacks of N D0-branes that we dealt with earlier.
The exact formulation of the conjecture in [13],

M-theory formulated in the infinite momentum frame is ex-
actly equivalent to the N → ∞ limit of the supersymmetric
quantum mechanics described by (3.43).

Let us therefore review some of the basics of M-theory in the infinite
momentum frame (IMF).

To pass to the IMF we pick a direction, X11, which we call the lon-
gitudal direction, then we disregard any physical systems except those
where the momenta P 11 are larger than any other relevant quantity in
the system. The two main features of the IMF is now that states with
negative or vanishing momenta P 11 decouples from the theory and the
Lorentz invariance turns into a Super Galilean symmetry in which P 11

plays the role of mass. In our case the choice of longitudal direction X11

will coincide with the direction which we choose to compactify. Thus
the longitudal momentum becomes naturally quantized in units of 1

R
,

we get P 11N
R

and begin to see how an argument for the validity of the
conjecture might look. Taking M-theory (here thought of as the strong
coupling limit of Type IIA) to the IMF is seen to be equivalent to taking
the limit N

R
→ ∞ at the same time as R → ∞. Now we can formulate
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our first concrete evidence in favor of the BFSS-conjecture, for it can
be shown that the matrix theory has exactly the same invariance under
the Super Galilean group as M-theory (or even general Lorentz covariant
11-dimensional theories) in the IMF. Furthermore we have in the large
N limit that we retain the 11-dimensional Lorentz invariance. Also we
see that states in M-theory with large P 11 are made up almost entirely of
(strong coupling partners of) D0-branes, so taking the limit where P 11

becomes infinite seems to support the idea of the D0-branes as the only
dynamical degrees of freedom. The existence of a membrane in matrix
theory is another strong evidence in favor of BFSS but the most im-
portant one, which was pointed out in [13] is that classical interactions
in 11-dimensional supergravity are exactly reproduced by loop effects in
matrix theory. Their example regarded the equivalence of interaction be-
tween a pair of gravitons in the linearized theory of gravity and a 1-loop
calculation for a pair of D0-branes. This evidence has been extended
to other interactions in supergravity but above the level of linear inter-
action there are several complications. Mainly the result in the linear
case rests upon usage of non-renormalization theorems for the loop am-
plitudes, there is evidence that such theorems does not exist for higher
levels.

To discuss these calculations in any kind of detail would be to go to
far into this area. But we have nevertheless presented a large portion
of the evidence in the case for the BFSS-conjecture. Others have been
discovered in the years since [13] for a fairly recent and very comprehen-
sive review see [70]. Among the problems with matrix theory the issue
of compactification and the failure to reproduce higher-order non-linear
effects in supergravity are certainly the greatest. Others exist as well,
and the future for the BFFS-conjecture looks a tad more bleak now than
it did at the time of its birth.
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4
The Supermembrane III: An

Algebraic Approach

The modular invariance on the string worldsheet proved to be an ex-
tremely powerful tool in perturbative string theory. With the discovery
of dualities, exact symmetries of M-theory, the question naturally arises
if these can be used in calculations in the same way as modular invari-
ance? In this chapter we will examine the efforts pursued along this line
of thought in M-theory, starting in string theory and ending up in a little
explored area of mathematics. The later parts of this chapter requires
the use of mathematical tools that are not heard of very often within the
body of physics It would be impossible to go through all the background
mathematics, and therefore some of it has been transferred to appen-
dices. It is recommended to at least briefly look through these prior to
reading this chapter.

4.1 Using Exact Symmetries in M-Theory

We will begin by briefly reviewing the paper [15] upon which the actual
result to be presented in this section is based. In this paper the authors
calculated the corrections to the gravitational classical equations of mo-
tion that are expected since string/M-theory is in a sense an extension of
Einstein’s theory of gravity. Starting from the standard free Lagrangian
L0 of string theory, a new effective action can be constructed by calculat-
ing tree-level scattering amplitudes and adding the contribution of these
to L0. In Type II one does not get any contributions from the ampli-
tudes below the four-point amplitude, these are the same as we would
find in supergravity. Thus the equations of motion are those of Einstein.

59
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However, in the four-point graviton scattering amplitude we will find ad-
ditional interactions due to the exchange of massive string states, and
these contributions will have to be added to the effective action. The
four-point graviton tree amplitude in Type II (both A and B [71]) is
given by

A4 =
κ2

128

Γ(−1
8
s)Γ(−1

8
t)Γ(−1

8
u)

Γ(1 + 1
8
s)Γ(1 + 1

8
t)Γ(1 + 1

8
u))

K(ε(i), k(j))K̃(ε(i), k(j)), (4.1)

where k
(i)
µ are the momenta and ε

(i)
µν = ε

(i)
µ ε

(i)
ν , the polarization tensor. κ

is the gravitational coupling constant and K, K̃, kinematic factors (that
arise from an integration over the fermionic zero modes). The gamma
function expression can be expanded to yield

Γ(−1
8
s)Γ(−1

8
t)Γ(−1

8
u)

Γ(1 + 1
8
s)Γ(1 + 1

8
t)Γ(1 + 1

8
u))

= − 29

stu
− 2ζ(3) + . . . , (4.2)

the first term in this expression gives the scattering amplitude in the
supergravity theory. The leading term in the string theory correction
becomes

∆A = − 1

128
κ22ζ(3)K(ε(i), k(j))K̃(ε(i), k(j)), (4.3)

where the factor KK̃ can be interpreted as coming from a term, Y , in
the effective action which can be written as an integral over fermionic
zero modes

Y =

∫
dψαLdψ

β
R exp[ψ̄αLΓ

µν
αβψ

β
Lψ̄

α′

R Γστα′β′ψ
β′

RRµνστ ], (4.4)

or equivalently by defining tµ1µ2...µ8 satisfying

√
det ΓµνFµν = tµ1µ2...µ8Fµ1µ2 . . . Fµ7µ8 , (4.5)

it can be written as

Y = tµ1µ2...µ8tν1ν2...ν8Rµ1µ2ν1ν2 . . . Rµ7µ8ν7ν8 . (4.6)

When this quantity is added to the ordinary Einstein-Hilbert action

I =

∫ √
g(R + Y ), (4.7)

it yields an effective action that correctly describes scattering amplitudes
in string theory including terms of order R4. It is evident that this new
term will alter the gravitational equations of motion (since generally,
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√
gY , does not vanish) which was the goal of [15]. For our considerations

the importance of this result comes second to the calculation itself since
we will now study a similar calculation, more explicitly, done in the
background of a D-instanton.

The basics of IIB supergravity and the D-instanton solution is briefly
covered in section A.2. In the current section we assume familiarity
with the material presented in the appendix and move right on to the
calculation [14].

From our previous considerations we know that in calculating ampli-
tudes, effects of fermionic zero modes has to be taken into consideration,
the integration over these will produce kinematic factors which in turn
contribute to the effective action. The bosonic zero modes in the su-
pergravity instanton background is just the position of the D-instanton.
The fermionic ones can be obtained by general supersymmetry methods.
In string theory, our primary area of interest, an instanton amplitude as
the one we are currently considering corresponds to a disk worldsheet
(at least to first order), satisfying Dirichlet boundary conditions, with
open string fermionic states, corresponding to the fermionic zero modes,
attached to the boundary, as well as a closed string state, attached to
the interior of the disk.

PSfrag replacements

1
2

s

Ψ

Figure 4.1: Tadpole diagram with closed string stated and fermionic zero
modes coupling to a open string worldsheet.

In this way we can construct any scattering amplitude by adding the
appropriate number of fermionic vertices to the disk diagram (what we
add depends on the closed string state coupling to the interior).
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Our goal now is to study scattering of four external gravitons in this
background, corresponding to a diagram with four disconnected disks
each coupling to an external graviton vertex and four fermionic states.

Figure 4.2: R4 tadpole diagram

The amplitude becomes

A4 = C

∫
d10yd16ε0

4∏

r=1

(
ε̄0γ

µrσrρε0ε̄0γ
νrτrρε0ζ

µrνrkσrr k
τr
r e

i
√
κkr·y

)
, (4.8)

where y is the position of the instanton, parametrizing the bosonic zero
modes as stated earlier. The Grassmann variable ε0 corresponds to the
fermionic zero modes of the spin-1/2 complex Weyl-fermion λ in Type IIB
supergravity. The polarization tensor is ζµrνr and kσrr are the momenta
of the gravitons, overall factors, as well as the coupling constant κ are
contained in C. Choosing a simple frame this integral can be evaluated
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to yield

A4 = Ce2πiτ0
∫
d10yei

∑
r kr·y (4.9)

(
t̂i1j2...i4j4 t̂m1n2...m4n4 −

1

4
εi1j2...i4j4εm1n2...m4n4

)
Rm1n1
i1j1

Rm2n2
i2j2

Rm3n3
i3j3

Rm4n4
i4j4

,

with

εa1a2...a8γ
i1j1
a1a2

. . . γi4j4a7a8
= ti1j1...i4j4 = t̂i1j1...i4j4 +

1

2
εi1j1...i4j4 , (4.10)

εȧ1ȧ2...ȧ8γ
i1j1
ȧ1ȧ2

. . . γi4j4ȧ7ȧ8
= ti1j1...i4j4 = t̂i1j1...i4j4 − 1

2
εi1j1...i4j4 , (4.11)

and the factor e2πiτ is due to boundaries on the worldsheet of the string.(the
spinor ε0 here has been expressed in SU(8) spinor components and the
supergravity field τ is set to τ0 since it is constant in the instanton back-
ground, see section A.2). The term bilinear in the Levi-Cevita tensor
vanishes when the integration is performed, and what remains is the
term bilinear in t̂ and this term is precisely of the same form as in (4.6)
and also turns out to be of the same form as the 1-loop 4-graviton ampli-
tude in the zero instanton sector. These three contributions are collected
to a complete effective R4 action (in the Einstein frame)

SR4 = (α′)−1(aζ(3)τ 3/22 + bτ
−1/2
2 + ce2πiτ + . . .)R4 = (α′)−1f(τ, τ̄)R4,

(4.12)
(R4 here includes the contractions with t̂ and ’. . .’ is a reservation for
possible corrections). The coefficients a, b, c in front of the tree-level,
one-loop and instanton terms respectively depend on the normalization
and are not of great importance for our considerations at the moment,
therefore we do not determine them.

This is where symmetry under Sl(2,Z) (S-duality) comes in. The
amplitude and therefore the function f(τ, τ̄) must be invariant under
Sl(2,Z). Based on what we know of this function other than its symmetry
properties led the authors of [14] to conjecture that the function should
be given by

f(τ, τ̄) =
∑

(p,q)6=(0,0)

τ
3/2
2

|p+ qτ |3 . (4.13)

Expanding this function with the help of a Poisson resummation formula
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etc. leads to the expression

f(τ, τ̄) = 2ζ(3)τ
3/2
2 +

2π2

3
τ
−1/2
2 +

+4π3/2
∑

m,n≥1

(m
n3

)1/2 (
e2πimnτe−2πimnτ̄

)
×

(
1 +

∞∑

k=1

(4πmnτ2)
−k Γ(k − 1/2)

Γ(−k − 1/2)

)
, (4.14)

where we recognize the first two terms as the tree-level and one-loop
term. The third term is a sum over all multiply charged instantons and
anti-instantons, which is as expected since Sl(2,Z) invariance requires
that we sum over all instanton states. Only (multiply charged) single in-
stanton configurations arise since multi-instanton configurations require
more disks to couple to the extra fermionic zero modes, and will thus
only contribute in higher order functions. The function f in (4.13) is in
fact a well known one. It is an Eisenstein series, a non-holomorphic mod-
ular form. The fact that we use such a form and consider it to render an
exact result constitutes the basis for our considerations in the following
section. For now it is sufficient to keep in mind that f is such an object,
we will return to its properties later on.

The important question is how to relate this result to M-theory. In
[19] an exact expression for the R4 term in the effective action of M-
theory compactified on a torus T 2 was suggested. The motivation relies
on, and is very similar to, that in [14]. Let us very briefly review how the
argument goes. The action suggested is (R4 still denotes contractions
with t)

SR4 =
1

3(4π)7l11

∫
d9x
√
−G(9)

(
V −12 f(Ω, Ω̄) +

2π

3
V2

)
R4, (4.15)

where 4π2l211V2 is the volume of the internal torus (l11 being the 11-
dimensional Planck length), G(9) is the nine-dimensional metric and f(Ω, Ω̄)
is the same Eisenstein series as we encountered earlier, although this time
a function of a different variable, to which we will come back shortly. By
compactifying the Type II string theory on a circle, S1, or radius r, to
nine dimensions, the previously obtained result can be written as (now
using the normalization of [19])

SR4 =
1

3 · 28κ210

∫
d9x
√
−g(9)r

[
2ζ(3)τ 22 +

2π2

3

(
1 +

1

r2

)
+ . . .

]
R4,

(4.16)
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which holds equally well in Type IIA as in Type IIB, now related by

rB =
1

rA
, e−φB = rAe

−φA , C(0) = C(1)(= C
(1)
10 ). (4.17)

This can be written in a more condensed manner as

τB = τA, (4.18)

by defining

τA = τA1 + iτA2 = C(1) + irAe
−φA . (4.19)

Taking into account the contribution from D-instanton sectors we arrive
at the familiar result (previously motivated) that all the terms can be
summed up in an Eisenstein series. An interpretation of this result in M-
theory is obtained by noting that the modulus, τB, of nine-dimensional
Type IIB should be equal to the modular parameter, Ω, of the internal
torus of M-theory compactified on T 2 [72]. This implies that the symme-
try under Sl(2,Z) in Type IIB corresponds to a geometrical symmetry in
nine-dimensional M-theory. To realize this we note that in the M-theory
(i.e. 11-dimensional supergravity) frame the metric can be parametrized
as

ds2 = G(10)
m ndxmdxn +R2

11(dx
11 − C(1)

m dxm)2, (4.20)

with G
(10)
mn = R−111 g

A
mn and R11 the radius of the eleventh direction. Com-

pactifying further on a circle of radius R10 leads to

gA1010 = R2
10R11 = G1010R11 , τA2 = R

−3/2
11 , (4.21)

τB2 =
R10

R11
, rB =

1

R10

√
R11

. (4.22)

This leads us to believe that the 11-dimensional metric can be written
such that √

−G(11) =
√
GT
√
−G(9), (4.23)

with

GT =
1

l211

(
R2

10 +R2
11(C

(1))2 −R2
11C

(1)

−R2
11C

(1) R2
11

)
, (4.24)

the metric on the internal two-torus. The complex structure, Ω, of this
torus can now, using the equivalences (4.22), be equated as

Ω = Ω1 + iΩ2 = C(1) + i
R10

R11

= C(0) + ie−φB = τB. (4.25)
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Finally before arguing for the exact term (4.15) we rewrite the term
SR4 , (4.16) in the quantities best suited for Type IIA, IIB and M-theory
respectively

1

3 · 28κ210

∫
d9x
√
−gA(9)rA

[
2ζ(3)(τA2 )

2 +
2π2

3

(
1 +

1

r2A

)
+ . . .

]
R4

1

3 · 28κ210

∫
d9x
√
−gB(9)rB

[
2ζ(3)(τB2 )2 +

2π2

3

(
1 +

1

r2B

)
+ . . .

]
R4

(4.26)

l611
3 · 28κ211

∫
d9x
√
−G(9)2πR11R10

[
2ζ(3)

l311
R3

11

+
2π2

3
+

2π2

3

l311
R2

10R11

+ . . .

]
R4,

where we have used1

κ210 =
k211

2πR11(λA)2
= 26π7α′4, (4.27)

λA being the Type IIA coupling constant. The ellipsis on each line
in equation (4.26) denote non-perturbative contributions expressed as
a power series in e2πiτ

A

, e2πiτ
B

and e2πiΩ respectively (as well as the ex-
ponential of the conjugate moduli). T-duality equates the first two types
of non-perturbative corrections (D0-branes in the Type IIA case and the
familiar D-instanton in IIB) and (4.25) equates these with the third kind.
The last line in (4.26) can in turn be rewritten as

SR4 =
1

3(4π)7l11

∫
d9x
√
−G(9) ×

{
V
−1/2
2

[
2ζ(3)(Ω2)

3/2 +
2π2

3
(Ω2)

−1/2 + . . .

]
+

2π2

3
V2

}
, (4.28)

where we have used

Ω2 =
R10

R11

, V2 =
R10R11

l211
. (4.29)

This expression looks like an expansion of a modular function of Ω (for
large Ω2) and by comparison with the expression (4.15) one can find
strong evidence for the exactness of (4.15). First of all we only find two
perturbative terms in (4.28) just as expected from our previous considera-
tions, adding support to the conjecture that no perturbative corrections

1Although we have set α′ = 1 as usual in these expressions
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arise above one-loop level (this conjecture was proved in [73] for IIB
compactified on T 2). Upon taking the limits rA → ∞ and rB → ∞ one
retains the correct perturbative terms in IIA and IIB respectively and
these are also related by T-duality in the proper way. Also, upon taking
V2 →∞, that is, decompactifying the internal torus, the only term that
survives in (4.28) is the last one, forming

SR4 =
1

18 · (4π)7l311

∫
d11x

√
−G(11)R4, (4.30)

which is finite (for further details on the rather lengthy motivations we
refer the reader to [14,19]).

Thus we now possess strong evidence that (4.15) is indeed the exact
R4 contribution to the effective action. In [19, 20] this is further studied
in compactifications on T 3 which strengthens the arguments. However,
the modular function f , which we now know to be an Eisenstein series,
ESl(2,Z)2;s , is uniquely determined by the fact that it satisfies the eigenvalue
equation

∆εs = s(s− 1)εs , ∆ = 4τ 22∂τ∂τ̄ , (4.31)

and there is another type of solution to this equation, namely cusp forms.
Cusp form solutions satisfy the equation with s ∈ 1/2 + iR. The con-
tribution of these forms will not alter the desired properties and thus
one has to find some principle that rules out the existence of these kinds
of terms in (4.15). In [19] it was conjectured that supersymmetry (and
U-duality) were such principles and this conjecture was proved in [74]
using the formalism due to Berkovits. Thus we can now conclude that
if we trust the evidence that speaks for the exactness of (4.15) then this

expression must also be uniquely given by the Eisenstein series ESl(2,Z)2;s=3/2.

In [19, 20, 21] these matters are studies further in compactifications
down to seven dimensions (in M-theory and IIB). Upon compactifying
further like this a richer structure appears, in addition to non-perturbative
D-instanton corrections (which remain in all kinds of torodial compacti-
fications due to the point-like behavior of the D-instanton) the effective
IIB action receives contribution due to solitonic IIB objects whose world-
volumes wrap around the compact dimensions. These contributions arise
for the first time when we compactify on T 2, in the form of (p, q)-strings2

(wrapped D-strings). The contribution of (p, q)-strings can be calculated
from the (1, 0)-string (the fundamental IIB string) [21] using the sym-
metry under Sl(2,Z). The main principle in [21], which generalizes that
of earlier papers which we have reviewed in this section is that the full

2See section A.4 in the appendices.
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result should be invariant under U-duality. On the basis of this princi-
ple the authors calculate an effective R4 action of IIB string theory on
R8×T 2 which is in agreement with that calculated in [20]. Now keeping
the ε8ε8R

4 term (which we have discarded in previous calculations) and
inferring a parity violating term, ε8t8R

4 (that contribute in IIA) we write
the effective action in the eight-dimensional Einstein frame and with the
normalization of [21] as

SR
4

8 = N8

∫
d8x

√
−g(8)E

[
∆ttt8t8 +

1

4
∆εεε8ε8 +Θε8t8

]
R4. (4.32)

The coefficients ∆tt, ∆εε and Θ in this equation should, upon decompact-
ification of the internal torus, satisfy

lim
V2→∞

∆tt

V2
= lim

V2→∞

∆εε

V2
=
√
τ2f(τ, τ̄) , lim

V2→∞

Θ

V2
= 0, (4.33)

where f(τ, τ̄) is the previously obtained function. The reason for the
dissimilarities in the structure of (4.33) and the actions we have previ-
ously seen is due to the fact that ∆εε now depends on the moduli and
the term ∆εεε8ε8R

4 is therefore no longer a total derivative and can not
be discarded. Also since our previous concern has been only Type IIB
string theory where no parity violating term exists the need for Θ has
only just now arisen. Let us briefly touch upon the calculation and form
of the coefficients ∆tt, ∆εε and Θ.

Upon compactifying on a two-torus we arrive at an action that is
invariant under Sl(2,Z) acting on both the complex structure, U , of the
internal torus, the usual scalar moduli, τ , as well as the T-modulus

T = BN + iV2. (4.34)

The perturbative tree-level result is obtained in a straightforward manner
by compactifying the ten-dimensional result. The one-loop correction is
calculated by evaluating the amplitude yet again, but we will not go into
the details of this calculation here. The resulting perturbative corrections
become

∆pert
tt = 2ζ(3)V2τ

2
2 − 2π log

(
V2|η(T )|4

)
− 2π log

(
U2|η(U)|4

)
,(4.35)

∆pert
εε = 2ζ(3)V2τ

2
2 − 2π log

(
V2|η(T )|4

)
+ 2π log

(
U2|η(U)|4

)
,(4.36)

Θ = 4πIm
[
log η(U)4

]
, (4.37)

expressed in the field of the moduli previously defined. The D-instanton
contribution remains the same, as motivated above, and the (p, q)-string
instanton contribution can be found by imposing invariance under Sl(2,Z)
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while extending the (0, 1)-string instanton contribution to the general
(p, q)-case. The contribution from all (p, q) D-strings to the coefficients
∆tt and ∆εε becomes

Ip,q = −8π
∑

(p,q)=1

Re log

[ ∞∏

n=1

(
1− e2πinT

p,q)
]
, (4.38)

with

Tp,q = (qBR − pBN) + i|p+ qτ |V. (4.39)

No contribution beyond perturbation theory is expected to the parity
violating term Θε8t8R

4. Thus we now have all the constituents of the
exact eight-dimensional R4 term, we write these together as

∆tt = V2
√
τ2f(τ, τ̄)− 2π log V2 − 2π log

(
U2|η(U)|4

)
+ Ip,q,(4.40)

∆εε = V2
√
τ2f(τ, τ̄) + 2π log V2 − 2π log

(
U2|η(U)|4

)
+ Ip,q.(4.41)

The U-duality group in eight dimensions is Sl(3,Z) × Sl(2,Z), where
Sl(2,Z) acts on the complex modulus, U , of the internal torus. Looking
at the expressions (4.40) and (4.41) we see that these are manifestly
invariant under Sl(2,Z) since the log is the order-1 Eisenstein series of
Sl(2,Z) and the other terms are independent of U . The invariance under
Sl(3,Z) is not seen so easily, but it can be shown [21] that upon expanding

the Eisenstein series ESl(3,Z)2;s=3/2 in the proper way, all the constituents

(except the order-1 Sl(2,Z) Eisenstein series) are obtained.
Upon compactifying even further, to seven dimensions, one obtains

the result as an order-5/2 Eisenstein series of Sl(5,Z), the U-duality
group in seven dimensions.

Given this body of evidence it seems reasonable to conjecture that
at any level of compactification the exact R4 amplitude should be given
by an Eisenstein series of the U-duality group. The reason for the grow-
ing complexity of these amplitudes at higher level of compactification is
directly mirrored in this conjecture, as we increase the number of com-
pactified dimensions the number of moduli, upon which the perturbative
and non-perturbative parts can depend, grows as well. With this, the
U-duality group also grows thus rendering the Eisenstein series more and
more complex.

R4 amplitudes are but one example of quantities that can be handled
in this way, more generally any quantity saturating a BPS bound behaves
in the same manner This is due to the fact that they receive contribution
from at most one order in perturbation theory (which should also only
depend on BPS-states), in the R4 case, one-loop. Also non-perturbative
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corrections must keep an appropriate number of supersymmetries unbro-
ken.

Now that we have treated the IIB case in some detail (only once
making real contact with M-theory) we wish to see how far this method
can be pushed. If we could understand precisely how the methods we
have used here manifest themselves in M-theory then perhaps they could
be extended further, allowing us to calculate other exact quantities that
at our current level of understanding are unreachable. This is the subject
of the next section in this chapter.

4.2 Membrane Amplitudes as Automorphic Forms

In the previous section we have studied exact BPS-saturated amplitudes
as automorphic forms in compactifications down to seven dimensions.
We have seen that these amplitudes can be determined on the basis of
U-duality and supersymmetry as Eisenstein series of the corresponding
U-duality group Ed+1(d+1)(Z). In table 3.4 we have listed the U-duality
groups in various dimensions.

These amplitudes should depend on the scalars in the symmetric
space K\Ed+1(d+1)(Z) (see section C.1). So far we have not been in
need of Eisenstein series of other groups then Sl(d,Z), but as we com-
pactify further table 3.4 clearly shows that this need arises. In order to
construct Eisenstein series of the above groups that is a viable amplitude
we have to specify a representation of Ed+1(d+1)(Z) which contains the
perturbative results. In section C.1 we have seen that the one-loop result
could be written as (d 6= 1, 2)

Id = ESO(d,d,Z)
S;1 , (4.42)

and furthermore the tree-level term can be written

EG(Z)
1;s = 2ζ(2s), (4.43)

as an Eisenstein series for any group G in the singlet representation.
Our goal is to find a representation of Ed+1(d+1)(Z) which unifies both
these representations of SO(d, d,Z). We have in fact already encountered
such a representation in section 3.3, the string multiplet of the U-duality
group. This representation is described by the charges corresponding
to wrappings of membranes, 5-branes and KK6-branes around one, four
and five compact dimensions respectively. It would be impossible to give
a thorough introduction to the representation theory of the U-duality
group here (we refer the reader to [22, 23, 75, 76] for further details) and
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therefore the statement above is granted the status of postulate in order
to allow us to proceed with the motivation. With this information at
hand we could proceed and conjecture that the exact non-perturbative
amplitude in any number of dimensions is given by the Eisenstein series

EEd+1(d+1)(Z)
string;3/2 but this would not be valid in the d = 1, 2 case since the

one-loop amplitude also contains the Eisenstein series in the conjugate
spinor representation of SO(d, d,Z) there. So we have to find a represen-
tation of Ed+1(d+1)(Z) that can be decomposed into (among other) the
conjugate spinor representation of SO(d, d,Z). This turns out to be the
membrane multiplet described by charges corresponding to membranes,
5-branes and KK6-branes around zero, three and four compact dimen-
sions respectively. Therefore it seems plausible that the full R4 amplitude
in any dimension should be written as

fR4 = EEd+1(d+1)(Z)
string;3/2 + EEd+1(d+1)(Z)

membrane;1 , (4.44)

where we have discarded any factor in front of the two terms. For d > 2
it can be shown (proved for d = 3, 4 and strongly implicated for d > 4)
that the two series in (4.44) are actually equal to each other, which
fits nicely with the fact that in those dimensionality’s the spinor and
conjugate spinor representations are equally viable for expressing the
one-loop result. Expanding this amplitude at weak coupling reveals the
perturbative and instanton terms as we have seen in previous cases. Since
we aim at interpreting this result as due to objects in M-theory it is useful
to study the amplitude (4.44) at large volume. Doing this we obtain [16]

fR4 =
π2l611
3

+
∑

mi∈Zd+1

l911
[(mi)2]3/2

+ π
∑

m3 6=0

l911√
(m3)2

+

+πl611
∑

m3 6=0

[
l611

(m3)2

]1/2
µ(m3) exp

(
−2π

l311

√
(m3)2 + 2πim3C3

)
×

×
(
1 +O

(
1

l311

))
, (4.45)

where m3 = mijk, C3 = Cijk (the three-form gauge field) and the instan-
ton summation measure is given by

µ(m3) =
∑

n|mijk

n. (4.46)

In this expansion we see the first three terms as perturbative terms (in the
sense that they are not of the same form as the instanton terms) and the
following sum as a sum over membrane instantons, where the membrane
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worldvolume wraps the three-torus T 3 ⊂ T d+1. The last correction could
possibly incorporate instanton contribution from higher dimensional ob-
jects in M-theory (5-branes etc.). Such contribution should occur for
d+1 ≥ 6 but this discussion disregards from such contributions and this
from such compactifications.

There is really very little we can say about (4.45) since we lack a great
deal of understanding about the contributing objects. On the other hand,
if we could derive the coupling (4.44) from first principles in M-theory
then we would know exactly what objects contribute to the different parts
in (4.45) and also how these objects contribute. Before we attempt this
we return to the Type IIB one-loop amplitude in order to get a better
understanding of this in a number theoretical sense.

We have already seen that the one-loop amplitude can be obtained as
an integral of the partition function, Zd,d(g;B; τ), over the fundamental
domain of Sl(2,Z)

Id = 2π

∫

F(Sl(2,Z))

d2τ

τ 22
Zd,d(g;B; τ). (4.47)

The result of this integration is an SO(d, d,Z) Eisenstein series, an auto-
morphic form. This is true also for higher point functions, the only change
is that now we have to insert an Sl(2,Z) invariant function, Φ(τ, τ̄), a
modular form, that incorporates the effects of the extra legs on the loop.
Integrating this modular form against the partition function

I ′d =

∫

F(Sl(2,Z))

dτdτ̄

τ 22
Zd,d(g;B; τ)Φ(τ, τ̄), (4.48)

constitutes a theta lift from from Sl(2,Z) modular forms to SO(d, d,Z)
automorphic forms. With this we get a completely new interpretation
of the partition function Zd,d; it is now a theta correspondence, invariant
under Sl(2,Z) × SO(d, d,Z) and generating lifts from Sl(2,Z) forms to
SO(d, d,Z) forms. It is with this view on amplitude calculations that
we move on to make conjectures about the M-theory case. We wish to
present and motivate the proposal [16] that the coupling (4.44) should
be given by

∫

F
Ξd+1 = EEd+1(d+1)(Z)

string;3/2 + EEd+1(d+1)(Z)
membrane;1 , (4.49)

where the analog of the partition function Zd,d is Ξd+1. In this case, for
reasons that will become apparent in a little while we conjecture that
this function should depend on γab, gij and Cijk and be invariant under
Sl(3,Z)× Ed+1()d+1(Z). Furthermore the integration should be over the
fundamental domain F of Sl(3,Z).
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Based on the expression (4.45) a few assumptions can be justified.
The first is that the membrane gives the “fundamental” degrees of free-
dom in M-theory. This strong claim is in part justified from the fact that
the membrane gives the fundamental degrees of freedom in string theory
upon double dimensional reduction. Certainly the membrane gives the
relevant degrees of freedom in the expression (4.45) albeit modulo the fact
that we have disregarded from the cases where the 5-brane contributes.
Also we are assuming that the only contributing topology is that of the
torus T 3. This also seems to be justified from the fact that the membrane
instantons in (4.45) wrap subtori T 3 of T d+1. As a consequence of this
there should be an Sl(3,Z) modular invariance that restricts the integra-
tion to the fundamental domain of Sl(3,Z). Based on these assumptions
(as well as the, most likely, faulty assumption that only the zero modes
contribute, in analogy with the string theory case) the authors of [16]
proceeded to calculate the amplitude. Based on the work in [77] they
formed the amplitude

A4 = STr(V 1∆V 2∆V 3∆V 4∆), (4.50)

where the V i are the vertex operators that govern the emission of massless
particles from the supermembrane. These vertex operators should of
course also govern the emission of gravitons and the derivation of these
is done in (the light-cone gauge) analogy with the string theory case
and the case of the 11-dimensional superparticle. They incorporate the
vertex operators in both these cases, reducing to the correct superstring
vertex operator upon double dimensional reduction. The propagator
∆ =

∫∞
0
dt exp[−tH] where the Hamiltonian H splits into

H = Hclass +H0 +Hint, (4.51)

a classical part corresponding to the bosonic zero modes, a superharmonic
oscillator part H0 and an interaction part Hint. The amplitude can be
argued to factorize as

A4 =

∫ ∞

0

∫
d11x 〈x|e−tHclass |x〉

∑

N
〈N |(−)FV 1|θ40V

2|θ40V
3|θ40V

4|θ40 |N 〉

×
∑

m

〈〈m||(−)F e−t(H0+Hint)||m〉〉 , (4.52)

where |x〉 and |N 〉 are the bosonic and fermionic zero modes respectively,
||m〉〉 denotes the discrete eigenstates of H0 + Hint. The second factor
in (4.52), the trace over fermionic zero modes, yields the correct tensor
structure, just like in the previous cases (see section 4.1), and the last
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factor can be argued to vanish due to the non-contribution of the non-
zero modes. Thus what remains to be calculated is the classical part
(the first factor). In [16] this is done using Sl(3,Z) modular invariance
techniques. However, parts of the integration remain unconstrained by
the Sl(3,Z) invariance and behaves very badly. We will not dwell on this
calculation here since in the end it yields the summation measure

µ′(m3) =
∑

n|mijk

∑
p|(mijk/n)np2, (4.53)

which obviously is in conflict with the measure predicted by U-duality,
indeed this expression is not even invariant under U-duality. As a conse-
quence of this not even the “perturbative terms” in (4.45) are correctly
reproduced in this amplitude since they are closely related to the sum-
mation measure.

The reasons for the shortcomings of this approach are not fully known,
although it is thought that the assumption of exclusive contribution from
zero modes is one flaw, the apparent lack of manifest (and perhaps also
hidden) invariance under U-duality in (4.52) another. The remedy for
both these flaws regards the nature of the partition function Ξd+1.

To understand what this function should be let us return to the type
IIB case yet again. The partition function Zd,d in this case is a restriction
of a function carrying a larger symmetry, namely the symplectic theta
series

θSp(g)(ΩAB) =
∑

mA∈Zg

e−πm
AΩABm

B

, (4.54)

this series being invariant under the symplectic group Sp(g,Z). Our
partition function turns out to be given by

Zd,d(g;B; τ) = θSp(g)(τ ⊗ (g +B)), (4.55)

where the tensor product ’⊗’ gives an embedding Sl(2) × SO(d, d) ⊂
Sp(2d). This is known as a dual pair in the mathematics literature and
defined by the fact that the centralizer3 of each subgroup is equal to
the centralizer of the other subgroup. Therefore is seems reasonable to
assume that the partition function Ξd+1 which we seek is also a restriction
of some generalization of this theta series. In fact the relevant dual
pairs have already been classified as shown in table 4.3 (compare with
table 3.4). Strictly speaking the last dual pair in this table should not be
included since it is related to a level of compactification where instantons

3The centralizer of a subgroup is the set of elements in the larger group which
commute with all elements in the subgroup.
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d+ 1 = 2 R+ × Sl(3)× Sl(2) ⊂ Sl(5)
d+ 1 = 3 R+ × Sl(3)× Sl(2)× Sl(3) ⊂ E6(6)

d+ 1 = 4 R+ × Sl(3)× Sl(5) ⊂ Sl(8)
d+ 1 = 5 R+ × Sl(3)× SO(5, 5) ⊂ E8(8)

d+ 1 = 6 Sl(3)× E6(6) ⊂ E8(8)

Figure 4.3: Dual pairs related to various level of compactification.

coming from wrapped 5-branes contribute (it is however interesting to
note the absence of R+ in this case, see section 5.4 for an extended
discussion).

Our next objective must therefore be to find theta series of the groups
that embed the dual pairs in table 4.3. As we search the mathematics
literature however, we will find that they do not exist! At least not
explicitly constructed, even though having such objects readily at hand
would be useful not only to physicists but mathematicians as well. If we
could find (or after constructing them ourselves) these theta series, the
process of which is the subject of the following section, we would have to
constrain them to reproduce the correct invariance as is done in (4.55).
Then we would presumably gain a great deal of knowledge about the
nature of the (BPS) membrane and its role in M-theory.

4.3 Calculation of Automorphic Forms

We are about to set out on a journey that will take us deep into the
misty mountains of number theory, on the roads not traveled before by
physicists. Like Gandalf to Frodo a few words of encouragement are in
order for the brave few who intend to carry this ring to the bitter end.

This section concerns a particular method of constructing theta series.
There are essentially three ingredients in this stew, and after introducing
the method by means of a few examples we will examine each part in
excruciating detail. For those who have not come in contact with p-adic
numbers (and analysis on these) before, appendix B is mandatory reading
since the latter parts of this section rely heavily on p-adic analysis.

Before we begin let us be clear on the point that there are still a large
number of unanswered questions in this area (both mathematical and
physical). We will stumble upon them as we go, not paying particular
attention to them until the conclusions 5.4.

The example we chose for introducing the machinery used hereafter
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is the simplest possible one, the Jacobi theta series

θ(τ) = τ
1/4
2

∑

m∈Z
eiπτm

2

= τ
1/4
2

∑

m∈Z
fτ (m), τ ∈ H. (4.56)

This series is manifestly invariant under shifts τ → τ + 2 (the factor

τ
1/4
2 is inserted to cancel the modular weight) and the behavior under
inversion τ → −1/τ follows after Poisson resumming

τ
1/4
2

∑

m∈Z
fτ (m) = τ

1/4
2

∑

p∈Z
f̃τ (p), (4.57)

where

f̃(p) =

∫
dxf(x)e2πipx, (4.58)

yielding

θ(−1

τ
) =

√
iθ(τ). (4.59)

We see now that this series is an Sl(2,Z) (holomorphic) modular form,
but is there a better way of seeing this than testing explicitly. We would
like to find a construction of this series that displays the invariance prop-
erties and is general enough to be applicable in the construction of other
invariants. We will essentially use the results presented in [78,79,17] al-
though discarding much of the mathematical rigor. First we aim to show
that the theta series (4.56) can be written

θ(τ) = 〈δ, ρ(gτ ) · f〉 , (4.60)

where

δ(x) =
∑

m∈Z
δ(x−m), gτ =

1√
τ2

(
1 τ1
0 τ 2

)
, (4.61)

f(x) = e−πx
2

. (4.62)

The inner product 〈·, ·〉 is just an integration
∫
dx and ρ(gτ ) · f is a

representation element (acting on f) from the metaplectic representation4

(of Sl(2,R))

ρ

(
1 t
0 1

)
: φ(x)→ eiπtx

2

φ(x), (4.63)

ρ

(
e−t 0
0 et

)
: φ(x)→ et/2φ(etx), (4.64)

ρ

(
0 −1
1 0

)
: φ(x)→ eiπ/4φ̃(−x). (4.65)

4For more material on the metaplectic representation of Sl(2,Z) see [80]. For
our purposes it is sufficient to know that it fulfills the criterions needed to be called
minimal.
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This representation acts on the Schwartz space of functions5 of which our
function f is an element. Setting t1 = τ1 and et2 =

√
τ2 we can multiply

the first two matrices to obtain
(
e−t2 0
0 et2

)(
1 t1
0 1

)
=

(
e−t2 t1e

−t2

0 et2

)
=

1√
τ2

(
1 τ1
0 τ 2

)
, (4.66)

corresponding to the action

φ(x)→ τ
1/4
2 φ(

√
τ2x)→ τ

1/4
2 eiπτ1x

2

φ(
√
τ2x), (4.67)

which applied to the function f reads

f(x) = e−πx
2 → τ

1/4
2 eiπτx

2

= fτ (x). (4.68)

Thus, inserting the distribution δ,

〈δ, ρ(gτ ) · f〉 =
∫
dx
∑

m∈Z
δ(x−m)τ

1/4
2 eiπτx

2

= τ
1/4
2

∑

m∈Z
eiπτm

2

. (4.69)

Hence we have shown that the construction (4.60) applies to this case.
Before proceeding let us take a closer look at the metaplectic represen-
tation given in this example.

From this representation we can obtain a representation of the Lie
algebra Sl(2,R) by linearizing the first two elements, (4.63) and (4.64),
and then by Weyl reflecting the generator E+ corresponding to the pos-
itive root in order to obtain the generator corresponding to the negative
root

E+ = iπx2, (4.70)

E− =
i

4π
∂2x, (4.71)

H =
1

2
(x∂x + ∂xx). (4.72)

In this case there is only one compact generator (the maximal compact
subgroup is U(1)) namely E+−E− and we see that our function f satisfies
the eigenvalue equation

(E+ − E−)f =
i

2
f, (4.73)

with lowest possible eigenvalue i/2. This is no coincidence as we will see
shortly. Before proceeding to the next example we shall introduce the

5A function, f : R → R, is called a Schwartz function if it, and all its derivatives,
goes to zero, as |x| → ∞, faster than any inverse power of x.
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terminology (for a general Lie group G now) that will be used throughout
the rest of this chapter, and also relate these concepts to the previous
example.

The representation in the previous case was the metaplectic repre-
sentation; but in general it should be a so called minimal representation
of G. For our purposes it is enough to consider such a representation to
be one with the smallest possible representation space (with respect to
dimensionality)6. This representation is not unique in our case, nor is it
unique for any An, but for the other cases we will study here the minimal
representation is the only one of its kind. Most often when we work with
the representation to display something explicitly it is the representation
of the algebra that we will be dealing with. The construction of this
representation is actually quite similar to the one we have seen in the
previous example.

The function f is called a spherical vector, defined by the property of
being invariant under the action of the maximal compact subgroup K of
the groupG. This means that the function f given by (4.62) is not strictly
speaking a spherical vector since then it should be annihilated by the
compact generator E+ −E−. However f is the lowest state admitted by
the representation and in this specific example it functions as a spherical
vector. The invariance of the spherical vector under K means that the
full theta series depends only on variables lying in K\G (in the previous
example up to a phase though).

The distribution δ introduces the invariance property of the theta
series and its relation to the spherical vector is hidden in the previous
example when written in the form (4.61). If we rewrite it instead as an
infinite product over all primes7

δ =
∑

m∈Z
δ(x−m) =

∑

m∈Q
δ(x−m)

∏

p

γp(x), (4.74)

we see a clear relation. In the following the letter ’p’ will always denote
a prime number. The theta series that we will examine are (unlike the
Jacobi theta series that has the trivial summation measure µ(x) = 1)
weighted sums, and we will write the summation as

∑
x µ(x), where µ(x)

is the summation measure. Skipping the delta function
∑

m∈Z
1 =

∑

m∈Q

∏

p

γp(x), (4.75)

6This is of course not the strict mathematical definition of a minimal representa-
tion. It is often defined by the property that its Gelfand-Kirillov dimension is minimal.
See [79] for further details.

7γp(x) is 1 on the p-adic integers and 0 elsewhere. See appendix B for further
material on p-adic analysis.
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we see that this is just an elaborate method of writing ’1’, but it displays
the connection between the distribution and the spherical vector since
γp(x) is invariant under the p-adic Fourier transform, and hence may
be thought of as the p-adic counterpart of the Gaussian. The defining
property of the spherical vector (4.62) is that it is invariant under Fourier
transformation and thus γp(x) is its p-adic counterpart, the p-adic spher-
ical vector. So, given any (real) spherical vector we should be able to
calculate the distribution (or really the summation measure) as an adelic
product over the p-adic spherical vector. In the following example we
will see this principle at work in a more complex case.

The next example is a familiar one, the Eisenstein series of Sl(2,Z)
(see section C.1)

ESl(2,Z)2;s (τ) =
∑

(m,n)6=(0,0)

(
τ2

|m+ nτ |2
)s

, (4.76)

a non-holomorphic modular form8 on the symmetric space U(1)\Sl(2,R).
We are familiar with the action of Sl(2,R) on this space being written
as τ → (aτ + b)/(cτ + d). We consider the representation

ρ

(
a b
c d

)
: φ(x, y)→ φ(ax+ by, cx+ dy), (4.77)

corresponding to

E+ = x∂y, E− = y∂x, H = x∂x − y∂y. (4.78)

However, this representation is not irreducible and any function of (x2 +
y2) is invariant under the action of K in this case. An irreducible repre-
sentation in one variable can be found by Poisson resumming the Eisen-
stein series (4.76) to yield9

ESl(2,Z)2;s (τ) = 2ζ(2s)τ s2 +
2
√
πτ 1−s2 Γ(s− 1/2)ζ(2s− 1)

Γ(s)
+

+
2πs
√
τ2

Γ(s)

∑

N∈Z
µs(N)N s−1/2Ks−1/2(2πτ2N)e2πiτ1N , (4.79)

where we have set N = nm and

µs(N) =
∑

n|N
n−2s+1. (4.80)

8A function, f(τ), τ ∈ H, which (among other things) satisfies f
(
aτ+b
cτ+d

)
= (cτ +

d)kf(τ), where the integers a, b, c, d satisfy ab− cd = 1.
9This was also done in section 4.1 although there the Bessel function K was also

expanded.
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From this expression we can (through a few calculations) read off the
correct representation

ρ̃

(
1 t
0 1

)
: φ(x)→ e−itxφ(x), (4.81)

ρ̃

(
e−t 0
0 et

)
: φ(x)→ e−2(s−1)tφ(e2tx), (4.82)

corresponding to

E+ = ix, E− = i(x∂x + 2− 2s)∂x, H = 2x∂x + 2− 2s, (4.83)

and acting on the spherical vector

fs(x) = xs−1/2Ks−1/2(x), (4.84)

where Ks−1/2(x) is a modified Bessel function10. The representation ele-
ment gτ acts upon fs(x) as

fs(x) = xs−1/2Ks−1/2(x)→
√
τ2x

s−1/2Ks−1/2(τ2x)e
−iτ1x, (4.85)

(where we have rescaled by a factor 2π and dropped the factor in front
of the sum in (4.79)), with the distribution

δs(x) =
∑

N∈Z
µs(N)δ(x−N). (4.86)

We can retrieve the series (4.79) by writing

〈δs(x), ρ(gτ ) · fs(x)〉 =

=

∫
dx
∑

N∈Z
µs(N)δ(x−N)

√
τ2x

s−1/2Ks−1/2(τ2x)e
−iτ1x

=
√
τ2
∑

N∈Z
µs(N)N s−1/2Ks−1/2(τ2N)e−iτ1N , (4.87)

albeit rescaled by a factor 2π and modulo the first two (degenerate)
terms. This method of obtaining the constituents of (4.60) in order to
form a theta series lies close at hand for physicists since the resummation
(4.79) corresponds to a weak coupling expansion of the ten-dimensional
Type IIB R4 coupling11. However in the following we are going to look
at theta series whose form is not known at all, in which case this method

10Note that in this representation we have discarded the first two terms in (4.79).
11See section C.2 for a discussion of this theta series in a different, less physics

related, representation.
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is obviously quite useless and we are forced to obtain general principles
to construct (4.60). To this we return after studying the summation
measure (4.80) in greater detail.

In the case of the Jacobi theta series we saw that the (trivial) summa-
tion measure could be written as an adelic product over p-adic spherical
vectors. In this case we do not have a trivial summation measure though,
but we still expect the relation between the summation measure and the
real spherical vector to hold. The question becomes, what is the p-adic
analogue of modified Bessel functions. It can be shown that (see section
C.2 for a simple proof)

∑

N∈Z
µs(N) =

∑

N∈Q

∏

p

fp;s(N), (4.88)

where

fp;s(x) = γp(x)
1− p−2s+1 |x|2s−1p

1− p−2s+1
, (4.89)

is the p-adic spherical vector12. The question now becomes, how can we
derive this from the real spherical vector (4.84). The answer is that up
until now we could not. This is so since no strict definition of the p-adic
counterpart of the modified Bessel function Ks(x) exists. We define it
to be of the form (4.89) though we do not claim any relation to Bessel
functions other then through its properties as a spherical vector.

The construction that we have just reviewed can easily be generalized
to the Sl(n,Z) case by using the fundamental representation of section
C.1 and Poisson resumming only one direction. The representation (of
the algebra) as well as the real and p-adic spherical vectors are of an
completely analogous form.

In what follows we will mix general considerations with more complex
examples in order to acquire a good understanding for the construction
without resorting to the classical mathematical definition-theorem struc-
ture. We shall begin by studying the minimal representation followed by
the spherical vector and lastly its p-adic counterpart.

The construction of the minimal representation as we have seen it
relies fully on the existence of a unique 5-grading of all simple Lie algebras
(modulo the choice of Cartan subalgebra and system of simple roots

G = G−2 ⊕G−1 ⊕G0 ⊕G1 ⊕G2. (4.90)

Here, G±2 consists of the generators corresponding to the highest and
lowest root E±ω, G±1 contains some of the generators corresponding to

12In [17] this is called a p-adic Bessel function which is misleading. p-adic Bessel
functions certainly exist [81], but the function (4.89) is not related to them unless we
define it to be the modified Bessel function. This seems highly questionable however.
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positive and negative roots respectively (the condition will follow) and
G0 contains the generators of the remaining roots as well as the Car-
tan generators. The representation now follows from the fact that the
subspace G1 ⊕G2 closes as an algebra, to be more specific a Heisenberg
subalgebra

[Eα1 , Eα2 ] = (α1, α2)Eω Eα1 , Eα2 ∈ G1, (4.91)

where (·, ·) is a symplectic form. We choose a polarization by picking the
simple root, β0, to which the affine root connects in the extended Dynkin
diagram (this choice is not unique in the Sl(n) case, we choose the root
α1 at the left-most end of the Dynkin diagram), this root lies in G1. The
positive roots in G1 then split into three different sets depending on their
inner product with β0 We denote these roots as follows

βi : 〈βi, β0〉 = 1, i > 0 (4.92)

γi : 〈γi, β0〉 = −1 (γi = ω − βi), (4.93)

γ0 : 〈γ0, β0〉 = −1 (γ0 = ω − β0), (4.94)

β0 : 〈β0, β0〉 = 2, (4.95)

and choose a representation of the corresponding generators as

Eω = iy, Eγi = ixi, (4.96)

Eβi = y∂i, (4.97)

the dimension of this space will be determined when we turn to exam-
ples13. Thus we have picked a representation for the first two spaces
in

G2 = {Eω},
G1 = {Eβi , Eγi},
G0 = {E−αj , Hαk , Eαj}, (4.98)

G−1 = {−Eβi , E−γi},
G−2 = {E−ω},

and before we turn to the realization of the other generators we display
this choice of polarization for a specific example, SO(4, 4).

SO(4, 4) has the Dynkin diagram invariant under permutations of

13We will not prove that this is a minimal representation here, but the argument
relies on a branching of G into Sl(2)×H where one can pick a (minimal) orbit such
that the quantization of this orbit gives the minimal representation. This corresponds
to the choice of polarization.
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PSfrag replacements

β0α1 α3

α2

Figure 4.4: Dynkin diagram of D4

α1, α2, α3 (triality), the simple roots are given by

α1 = ( 1 −1 0 0 ), (4.99)

α2 = ( 0 0 1 1 ), (4.100)

α3 = ( 0 0 1 −1 ), (4.101)

β0 = ( 0 1 −1 0 ). (4.102)

And we can explicitly calculate

β0 = ( 0 1 −1 0 ), γ0 = ( 1 0 1 0 ), (4.103)

β1 = ( 1 0 −1 0 ), γ1 = ( 0 1 1 0 ), (4.104)

β2 = ( 0 1 0 1 ), γ2 = ( 1 0 0 −1 ), (4.105)

β3 = ( 0 1 0 −1 ), γ3 = ( 1 0 0 1 ), (4.106)

ω = ( 1 1 0 0 ), (4.107)

and write down the elements of the representation

Eβ0 = y∂0, Eγ0 = ix0, (4.108)

Eβ1 = y∂1, Eγ1 = ix1, (4.109)

Eβ2 = y∂2, Eγ2 = ix2, (4.110)

Eβ3 = y∂3, Eγ3 = ix3, (4.111)

Eω = iy. (4.112)

This calculation is as seen very simple and straightforward. It is merely
a question of determining the simple roots and calculating the inner
product to make the split according to the polarization.

Our next objective is to extend this representation to the full algebra,
which is done by Weyl reflections. We need two transformations in order
to generate the full representation. The first, S, maps βi to γi, that in
this representation this maps momenta to positions, i.e. it is a Fourier
transformation

(Sf)(y, x0, . . . , xd−1) =

∫ ∏d−1
i=0 pi

(2πy)d/2
f(y, p0, . . . , pd−1)e

i
y

∑d−1
i=0 pixi . (4.113)
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This transformation, which acts by conjugation, can also be checked to
map αi to α−i and clearly leaves ω invariant. The other generator, A,

G I3 H0

Sl(d) 0 Sl(n− 3)
SO(d, d) x1

∑
i x2ix2i+1 SO(n− 3, n− 3)

E6 det Sl(3)× Sl(3)
E7 Pf Sl(6)
E8 27⊗s3|1 E6

Figure 4.5: Groups and their corresponding cubic form I3 as well as
subgroup H0.

maps β0 → −β0, γ0 → ω and βi → αj (see equation (4.98)), and is given
by

(Af)(y, x0, . . . , xd−1) = e
−iI3
yx0 f(−x0, y, . . . , xd−1), (4.114)

where I3 is a cubic form given for each relevant group in table 4.5.
All other generators are obtained by commutation of the previously

determined ones. One additional fact is important to mention in relation
to the generator A; there is a set of generators that are invariant under the
action of A and they make up a linearly realized subalgebra H0. This
subalgebra is generated by the generators corresponding to the simple
roots not connected to β0 (or the opposite root in the Sl(n) case) in the
Dynkin diagram, the choice of polarization being invariant under this
algebra.

Let us apply this procedure to our SO(4, 4) example, in this case all
simple roots attach to β0 in the Dynkin diagram, and the cubic form is
given by I3 = x1x2x3. By acting with A we get

AEβ1A
−1 = e

−ix1x2x3
yx0 (−x0∂1)e

ix1x2x3
yx0 = −x0∂1 −

ix2x3
y

= Eα1 , (4.115)

AEβ2A
−1 = e

−ix1x2x3
yx0 (−x0∂2)e

ix1x2x3
yx0 = −x0∂2 −

ix1x3
y

= Eα2 , (4.116)

AEβ3A
−1 = e

−ix1x2x3
yx0 (−x0∂3)e

ix1x2x3
yx0 = −x0∂3 −

ix1x2
y

= Eα3 , (4.117)

and then with S, yielding

SEα1S
−1 = x1∂0 + iy∂2∂3 = E−α1 , (4.118)

SEα2S
−1 = x2∂0 + iy∂1∂3 = E−α2 , (4.119)

SEα3S
−1 = x3∂0 + iy∂1∂2 = E−α3 . (4.120)
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By acting with A on Eβ0 and E−αi we produce

AEβ0A
−1 = −x0∂ +

ix1x2x3
y2

= E−β0 , (4.121)

AE−α1A
−1 = x1∂ +

x1
y
(1 + x2∂2 + x3∂3)− ix0∂2∂3 = E−β1 , (4.122)

AE−α2A
−1 = x2∂ +

x2
y
(1 + x1∂1 + x3∂3)− ix0∂3∂1 = E−β2 , (4.123)

AE−α3A
−1 = x3∂ +

x3
y
(1 + x1∂1 + x2∂2)− ix0∂1∂2 = E−β3 , (4.124)

and acting with S gives

SE−β0S
−1 = 3i∂0 + iy∂∂0 − y∂1∂2∂3 +

+ i(x0∂0 + x1∂1 + x2∂2 + x3∂3)∂0 = E−γ0 , (4.125)

SE−β1S
−1 = iy∂1∂ + i(2 + x0∂0 + x1∂1)∂1 −

x2x3
y

∂0 = E−γ1 , (4.126)

SE−β2S
−1 = iy∂2∂ + i(2 + x0∂0 + x2∂2)∂2 −

x1x3
y

∂0 = E−γ2 , (4.127)

SE−β3S
−1 = iy∂3∂ + i(2 + x0∂0 + x3∂3)∂3 −

x1x2
y

∂0 = E−γ3 , (4.128)

finally the generator corresponding to the lowest root, Eω, is created by
acting with A on E−γ0

AE−γ0A
−1 = 3i∂ + iy∂2 +

i

y
+ ix0∂0∂ +

x1x2x3
y2

∂0

+
i

y
(x1x2∂1∂2 + x3x1∂3∂1 + x2x3∂2∂3) +

i(x1∂1 + x2∂2x3∂3)(∂ +
1

y
) + x0∂1∂2∂3. (4.129)

The remaining generators we have to fix by commutation

[Eβ0 , E−β0 ] = −y∂ + x0∂0 = Hβ0 , (4.130)

[Eβ1 , E−β1 ] = −1− x0∂0 + x1∂1 − x2∂2 − x3∂3 = Hβ1 , (4.131)

[Eβ2 , E−β2 ] = −1− x0∂0 − x1∂1 + x2∂2 − x3∂3 = Hβ2 , (4.132)

[Eβ3 , E−β3 ] = −1− x0∂0 − x1∂1 − x2∂2 + x3∂3 = Hβ3 . (4.133)

Thus we have fully worked out the standard minimal representation of
SO(4, 4) in every detail. The complexity that creeps in to some of the
calculations here grows rapidly with more complex algebras, so brute
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force is not the ideal way of going about calculations in this representation
as we will see shortly.

Now we turn our attention to the spherical vector, there is really very
little left to say here about this object, at least in general terms. We have
defined it as a representation element invariant under the maximal com-
pact subgroupK. In our representation this means that f(y, x0, . . . , xd−1)
should solve

(Eα ± E−α)f(y, x0, . . . , xd−1) = 0, (4.134)

(where the sign is chosen such that Eα ± E−α is a compact generator).
We do not have to solve these equations for all roots α, it is enough to
solve them for simple roots since the other equations can be obtained
by commuting the generators corresponding to simple roots. As stated
above, brute force calculations is not preferable in this representation,
even in the SO(4, 4) case we have a system of four rather dull partial
differential equations to solve. Instead of solving these we will use our
previously acquired knowledge from Eisenstein series and 1

2
-BPS ampli-

tudes to find the spherical vector in a representation identical to the one
arising in string theory. This spherical vector will then be mapped to the
representation that we have now become familiar with.

We already know of the embedding SO(d, d,R)×Sl(2,R) ⊂ Sp(2d,R),
the minimal representation of Sp(2d,R) is an irreducible representation
of SO(d, d,R) but we can reduce this to a minimal representation by
considering only functions that are invariant under Sl(2,R). This we
already knew, since enforcing this invariance on

SO(d, d,R)

SO(d)× SO(d)
× Sl(2,R)

U(1)
, (4.135)

corresponds to integrating over the last factor, i.e., calculating a 1
2
-BPS

one-loop amplitude. Taking the partition function

θSp(2d)(g;B; τ) = Vd
∑

mi,ni

e
−π(mi+niτ)gij(m

j+nj τ̄)

τ2
+2iπmiBijm

j

, (4.136)

and performing the integration

θSO(d,d)(g;B) = 2π

∫

F

d2τ

τ 22
θSp(2d)(g;B; τ), (4.137)

produces

θSO(d,d)(g;B) =
2π2

3
Vd + 2Vd

∑

mi 6=0

1

migijmj

+4πVd
∑

(mi,ni)/Sl(2)

e−2π
√

(mij)2+2πimijBij

√
(mij)2

. (4.138)
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The last sum in this expression (the instanton contribution) can be writ-
ten as a sum over rank 2 (r(mij) = 2) anti-symmetric matrices mij

∑

r(mij)=2

µ(mij)
e−2π

√
(mij)2+2πimijBij

√
(mij)2

, (4.139)

which constitute a 2n − 3 dimensional representation (only two rows
in the matrices are non-zero and then we have to remove the diagonal
elements and one element more is fixed by anti-symmetry); this is the
same dimensionality as the minimal representation of SO(d, d). The
spherical vector of this representation can actually be read off from the
above expression by going to the origin of the moduli space14 (i.e. by
setting gij = δij and Bij = 0)

f̃SO(d,d) =
e−2π

√
(mij)2

√
(mij)2

. (4.140)

The summation measure in the above sum is the familiar

µ(mij) =
∑

n|mij

n, (4.141)

which we will mention more about later.
Now we want to translate this spherical vector into the standard min-

imal representation. We will do this in the SO(4, 4) case in order to be
able to express ourselves as explicitly as possible. The trick we use to
do this is to identify an Abelian subalgebra that is generated by shift-
ing Bij by a constant in (4.139). An equivalent algebra can also be
found in the standard minimal representation and by using the explicit
form of the generators in this representation we can find a common eigen-
state. Choosing the generators {Eα3 , Eβ3 , Eγ0 , Eγ1 , Eγ2 , Eω} (on the basis
of them having coefficient 1 in front of α3 in the basis of simple roots),
we label the eigenvalues of these simultaneously diagonalizable genera-
tors i(m43,m24,m14,m23,m13,m12). Their form in the standard minimal
representation hints at the common eigenstate

ψmij = δ(y −m12)δ(x0 −m13)δ(x1 −m14)δ(x2 −m23)e
im24x3
m12 , (4.142)

provided that the following condition holds

m43 = −m
14m23

m12
− m13m24

m12
, (4.143)

14Remember that the moduli lie in a symmetric space K\G, consequently by going
to the origin we retrieve the function which does not change when we “transform”
this space in the larger space G.
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but this is just the r(mij) = 2 condition in the d = 4 case. This state
displays an intertwiner between the two representations (the integration
over all y, xi of the state ψmij becomes a Fourier transformation in x3)

f̃(mij) =

∫
dydx0d

3xiψmijf(y, x0, xi)

=

∫
dx3e

im24x3
m12 f(m12,m13,m14,m23, x3), (4.144)

and more importantly

f(y, x0, xi) =

∫
dm24

y
e
−2πim24x3

y f̃

(
y, x0, x1, x2,m

24,
x1x2 + x0m

24

y

)
.

(4.145)
The computation of this integral (the details of which we refer the reader
to [17]) yields the spherical vector in the standard minimal representation

fSO(4,4) =
4π√
y2 + x20

K0(S
′
1)e

−ix0x1x2x3
y(y2+x20) , (4.146)

where

S ′1 =

√
(y2 + x20 + x21)(y

2 + x20 + x22)(y
2 + x20 + x23)

y2 + x20
. (4.147)

This function could actually be obtained as a solution to the differential
equation that the system of equations reduces to when introducing the
variable S1 which is essentially the method that is used to retrieve the
spherical vector in the exceptional cases in [17].

In the following cases we will be brief since the method has already
been outlined and the long and tedious calculations do nothing to enrich
the discussion. The data and some of the calculations can be found
in [17]. The method used in the SO(4, 4) case can be generalized to
SO(d, d) in a straightforward manner, yielding

fSO(d,d) =

(
y2 + x20 + x21

(y2 + x20)
2 + (y2 + x20)P +Q2

) d−4
2 K d−4

2
(S1)e

−iS2
√
y2 + x20

, (4.148)

where we have introduced the forms

I2 = x21 + P, I3 = x1Q, I4 = x41 + P 2 − 2Q2, (4.149)

with

P =
2d−5∑

j=2

x2j , Q =
d−3∑

i=1

(−)i+1x2ix2i+1, (4.150)
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such that

S1 =

√
(y2 + x20)

3 + (y2 + x20)I2 + (y2 + x20)(I
2
2 − I4)/2 + I23

y2 + x20
, (4.151)

S2 =
x0I3

y(y2 + x20)
. (4.152)

This spherical vector can be written in a more convenient manner

fSO(d,d) =
1

R

( ||(y, x0)||
R

)d−4
K d−4

2

(
||X,∇X

(
I3
R

)
||
)
e
−ix0I3

yR2 , (4.153)

where Kd = x−dKd(x), R = ||(y, x0)||, X = (y, x0, . . . , x2d−5) and ∇X is
the gradient with respect to the coordinates X.

We will now briefly review the simplest of the exceptional cases, E6,
and then end this discussion of the spherical vectors by quoting the results
for E7 and E8.

The method in this and indeed all exceptional cases relies on two
observations, the first is that the compact generator corresponding to β0
performs a rotation in (y, x0) and thus restricts the spherical vector to
depend on y and x0 through y

2+x20 only. The second observation is that
the spherical vector must be invariant under K0, the maximal compact
subgroup of the linearly realized H0 (not G). This allows us to write
down the invariants

I2 = tr(ZTZ), I3 = − det(Z), I4 = tr(ZTZZTZ)), (4.154)

where

Z =




x1 x3 x6
x2 x5 x9
x4 x7 x8


 , (4.155)

and make an ansatz for the spherical vector expressed in these invariants
and y2 + x20. Putting this ansatz to the test with some of the compact
generators further reveals the structure of the solution and allows us to
extend its invariance properties to all of K. We will not go into more
details other than what is stated above. The calculation amounts to
solving differential equations, and the resulting function becomes

fE6 =
K1/2(S1)e

−i x0I3
y(y2+x20)

(y2 + x20)
√
S1

, (4.156)

where S1 is given by (4.151) albeit with our new forms I2, I3 and I4.
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The E7 and E8 cases are solved in complete analogy with the E6 case.
For E7 we define

Z =




0 −x1 x2 −x4 −x6 −x9
0 x3 −x5 −x8 x12

0 x7 x11 −x15
0 −x14 x13

0 x10
0



, (4.157)

and write down the invariants

I2 = −
1

2
tr(Z2), I3 = −PfZ, I4 =

1

2
tr(Z4), (4.158)

the spherical vector becomes

fE7 =
K1(S1)

(y2 + x20)
3/2S1

e
−i x0I3

y(y2+x20) , (4.159)

with S1 as previously defined. For E8 we can define

Z =




0 x5 x8 x10 x12 x15
0 x9 x11 x14 x17

0 x13 x16 x20
0 x19 x23

0 x26
0



, (4.160)

Y1 =




x7
−x6
x4
x3
x2
x1



, Y2 =




x18
x21
x24
−x27
x25
−x22



, (4.161)

giving the invariants

I2 = −tr(Z2)/2 + tr(YiY
T
i ), (4.162)

I3 = PfZ + tr(Y T
1 ZY2), (4.163)

I4 =
1

2
tr(Z4) + tr((YiY

T
i )2)2tr(Y T

i Z
2Yi)

−(trZ)2(trYiY T
i ) +

1

2
εijklmnZijZklY1mY2n, (4.164)
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which we then use to derive the spherical vector

fE8 =
K2(S1)

(y2 + x20)
5/2S2

1

e
−i x0I3

y(y2+x20) . (4.165)

Before proceeding with a discussion of the summation measure let
us conclude our deliberations on the (real) spherical vector with a short
summary.

The spherical vector is defined as an object invariant under the max-
imal compact subgroup K of G, and it ensures that the theta series only
depends on variables lying in the symmetric space K\G. In the stan-
dard minimal representation it can be obtained by solving a system of
partial differential equations corresponding to the action of the simple
roots. The task of deriving the spherical vector in the SO(d, d) case
could be completed by considering a 1

2
-BPS one-loop string theory am-

plitude, reading off the spherical vector and then transforming it to the
standard minimal representation via an intertwiner. For the exceptional
cases we really have to solve the differential equations. However, the fact
that there is a linearly realized subgroup H0 of G and that this subgroup
in turn has a maximal compact subgroup K0 under which the spheri-
cal vector must be invariant, facilitates this task greatly. Here we only
sketched how the solutions were obtained and proceeded to quote them
from [17].

We can now rewrite the solutions in a form well suited for the con-
tinuation of this chapter, in analogy with (4.153) we can write

fEd
=

1

Rs+1
Ks/2

(
||X,∇X

(
I3
R

)
||
)
exp

(
−ix0I3
yR2

)
, (4.166)

with s = 1, 2, 4 for d = 6, 7, 8 respectively and the constituents defined
in analogy with the ones appearing in (4.153).

This, the last, part of this section concerns the last object we have
left to study, the distribution δ. Actually we will reduce our studies, first
to the summation measure µ since the correct delta function and sum
are rather easily determined, and then down to the p-adic counterpart of
the previously acquired spherical vectors. This is because we have seen
strong evidence picking out the adelic product over all primes of the p-
adic spherical vector as the correct summation measure. As explained in
the beginning of this section there are still many unanswered questions
surrounding this area, many of them reside in the particular branch we
are about to study now. We will begin by tracking back to the beginning
of this section to review how the p-adic spherical vector arises there.
Then we will discuss some of the issues in [17] and end by quoting some



92 Chapter 4 The Supermembrane III: An Algebraic Approach

results and technicalities from the calculation [24] and the notoriously
complicated paper [18].

The first example of theta series we used was the Jacobi theta series,
here the summation measure was quite trivial, just ’1’. We were able
to rewrite this summation measure as a product over all primes of the
p-adic Gaussian, γp(x), the real spherical vector being the real Gaussian.
In the example following this we studied Eisenstein series and saw that
the summation measure in that case could be written as

∏

p

1− p−2s+1 |x|2s−1p

1− p−2s+1
. (4.167)

The real spherical vector in this case was given by a modified Bessel func-
tion, and this was the first time we saw its p-adic analog (with respect to
K-invariance). Furthermore we have studied an equivalent representa-
tion in D.2 related to the above one by a Fourier transformation and seen
that the p-adic spherical vectors are also related to one another by p-adic
Fourier transformations. The following example is a more complicated
one, the SO(4, 4) theta series. We studied this (or generally SO(d, d)
theta series) in a ’stringy’ representation and saw that the summation
measure in this representation was very similar to the summation mea-
sure in the previously studied Eisenstein series. In fact it can be written
as an adelic product over the p-adic spherical vector

f̃p = γp(m
ij)

1− p |mij|p
1− p

, (4.168)

and since the ’stringy’ representation is intertwined with the standard
minimal representation by a Fourier transform the p-adic spherical vector
should be obtained by performing a p-adic Fourier transformation. The
expression that should be calculated is a p-adic integral over Qp, the
integrand is a product of gp’s and a quotient containing a max function as
we have seen in a previous example. Finally there is an additive character

ψ
(
x3m24

y

)
that makes this integral a Fourier transformation. Both (one)

γp and the max function depend on the combination x1x2+x0m24

y
, where

m24 is the dummy variable in the integral. The technique used in [24] was
then to simply split the integral into several different cases depending
on the result of the max function, ordering among the p-adic norms
is enforced by multiplying with γp’s of quotients of the variables. For
example

γp

(
m24

x1

)
=

{
1, |m24|p ≤ |x1|p ,
0, |x1|p > |m24|p .

(4.169)
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Thus by multiplying the integrand with such a factor we restrict the
integration region to the disk |m24|p ≤ |x1|p, so with this method the
whole task of integrating becomes reduced to keeping track of integra-
tion regions and calculating integrals within these. After splitting into
cases depending on the result of max we split yet again, this time the
x1x2+x0m24

y
contribution, all expressions with γp’s or p-adic norms, de-

pending on more complex combinations than pure quotients of p-adic
variables can be split up into several cases and then integrated. By pro-
ceeding in this manner we can calculate this integral fully by standard
p-adic techniques in the different regions, the resulting expression has
a high level of complexity and in [24] no apparent simplification was
spotted that would render the expression simple.

A much more elegant (and most likely equivalent) method was used
in [18] to obtain the spherical vector

fp =

{
ψ
(
−x1x2x3

x0

)
|x0|−1p

[
1 + v

(
x, grad

(
x1x2x3
x0

)
x
)]
, v(x) ≥ 0,

0, v(x) < 0.
(4.170)

Here, ψ is the additive character on Qp (see appendix B) and v(x) is the
valuation in Qp (|x|p = p−v(x), see the definition of |x|p in appendix B), x
represents all the variables x0, x1, . . .. The valuation of multiple variables
means the valuation of the variable resulting from max(|x0|p , . . .) (in the
v(x) case), and ’grad’ is the ordinary real gradient, performed as if the
variables were real, then we simply state that the variables and thus the
result is p-adic, this is a ’real glitch’ in an otherwise p-adic calculation.
There are a number of lemmas underlying the calculations in this paper
that we will not go into here. The confident reader may find them in [18].

This result can be extended to SO(d, d), d ≥ 5

fp =





ψ
(
− I3

yx0

)
|x0|−1p max

(
1,
∣∣∣x1x0
∣∣∣
p

)d−4
pd−4Kp(x)−d−4−1

pd−4−1 , Kp(x) ≤ 1

0, Kp(x) > 1,
(4.171)

where

Kp(x) =

∣∣∣∣x, grad
(
I3
x0

)
x

∣∣∣∣
p

. (4.172)

Here I3 is the previously defined cubic form and the |(·, ·, · · · )|p is short-
hand for the max of the p-adic norms of the elements in this ’vector’.

Last but not least we can quote and understand the p-adic spherical
vectors of the main characters in this section, the exceptional groups.
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These functions takes the form

fp =

{
ψ
(
− I3

yx0

)
|x0|−s−1p

psKp(x)−s−1
ps−1 , Kp(x) ≤ 1

0, Kp(x) > 1,
(4.173)

where as before s = 1, 2, 4 for d = 6, 7, 8 respectively.
Ending this section and chapter here might seem abrupt but the dis-

cussion that takes place after these results are more appropriately placed
in the next chapter, Conclusions, where we without further ado point the
reader (section 5.4).



5
Conclusion

In this chapter I have collected some conclusions, speculations and ideas
that have come up during the writing of this work. Some of these conclu-
sions are entirely my own and the same goes for the (wild) speculations
and (far-fetched) ideas. In the cases where my present or future judges
determine me to be not completely off track, I take full credit. In the
cases where the ’track’ is nowhere to be seen and long forgotten, I blame
ignorance of youth.

5.1 The Bosonic Membrane

The biggest problem that the membrane suffers from is probably our
interpretation of it. What, at the first stages of formulation, looks
like a nice theory, just an integral over a manifold, turns out to be a
hideously beautiful theory. Not only do we discover interactions between
the embedding-fieldsXµ, but we also discover that the spectrum becomes
continuous due to the fact that we can add (a finite number of) spikes
to the membrane that go off to infinity in one point. This does not only
affect the spectrum of the theory but also contradicts the most basic
assumptions of all, that the membrane should be a manifold.

One interesting proposal for how to study the membrane self-interact-
ions is the mathematics of cobordisms. Two n-dimensional manifolds
are said to be cobordant if their disjoint union is a manifold, i.e. if the
two manifolds are borders of another n + 1-dimensional manifold. The
strict mathematical definition does put greater restraints on what kind
of manifolds we can deal with, but the technicalities are not of great
importance here. Let us assume for the moment that the membrane
really is a nice-looking manifold, and that we have picked a gauge so

95
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that the timelike direction is identifiable. Then the cobordism between
the two manifolds that is the membrane at two fixed times τ1, τ2, is really
just the worldvolume of the propagation during this time. The topology
of this three-dimensional manifold is not explicitly given, as in the case
of membrane self-interaction it can have an arbitrary number of holes.
Using methods like this it might be possible to study the interactions and
determine for example how our choice of gauge restrains the topology of
the membrane etc. There has been work along similar lines in gravity [82]
where it holds importance for determining if the universe can go through
topology-transitions other than the Big Bang (such as dynamical creation
of Einstein-Rosen bridges).

But, before this formalism could be applied to our microscopic mem-
brane we would have to deal with the question of what happens at the
singular points of our “manifold”. The mathematics of cobordism is quite
complex and there has yet to come any real attempt along these lines in
high-energy physics.

5.2 Membranes, Supersymmetry and Matri-
ces

With the exception of a small attempt at perturbative calculations re-
cently, the interest in bosonic membranes has pretty much died away.
Apart from not containing fermions or being able to describe multi-
particle states (due to the discrete spectrum of the quantized theory)
there has been some indications that the theory may have anomalies.
This would render the quantized theory inconsistent and finalize the
“hammering in” of the last nail in its coffin. Similarly, the so-called
spinning membrane was dealt a major blow several years ago with the
appearance of a no-go theorem concerning its existence. The interesting
thing though, is that after the publication of this theorem a couple of
Lagrangians were presented that evaded its implications. There actually
is a way to get around this no-go theorem, but the models that exempli-
fied this procedure were exceedingly complicated. One might ask oneself
if our inability to formulate spinning membrane models is due to the fact
that no such models exist or if it is due to our lack of understanding for
those kinds of supersymmetric theories.

Another fascinating area to ask questions within is matrix theory.
Matrix theory has become a wonderful looking-glass through which we
have been able to sneak a peak inside M-theory. But there still remains
some concern and questions about the nature of this membrane regular-
ization. Particularly, since we have such limited knowledge about how
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the membrane really behaves, can we be sure that we do not loose infor-
mation when cutting off the basis at a finite number of elements. The
membrane is an object that behaves very strangely. Can we be sure that
all that strangeness is translated over into the matrix theory or are we
simply getting to see the well behaved cousin of membrane theory. To be
more specific, can we really approximate a geometric object that could
be extremely singular with a finite basis? No matter how large an N we
take it still has to be finite whereupon we loose the ability to map the
effects of these singularities in matrix theory.

The limit N → ∞, “des pudels kern” or matrix theory, is another
source for concern. This is a mathematical technicality that we should
have a good understanding of, since the physical predictions relying on
it are immense. For example, it has been proved a long time ago that
the matrix regularization works for the spherical and torodial membrane.
These proofs have since then been extended to any compact Kähler man-
ifold. But a membrane need not be compact! Indeed with spikes going off
to infinity it will be exceedingly non-compact. What actually happens in
the limit turning a rather well-behaved Yang-Mills theory into a theory
of membranes would be very nice to know. Perhaps it would also tell us
more about how the more unpleasant details of the membrane survive in
the matrix regularization.

5.3 p-adic Numbers in Physics

This is not the first time that the mathematical area of p-adic analysis
enters the arena of modern physics It has been used many times before in
different areas of physics. What separates the sometimes less successful
attempts from this one is the motivation. Let us briefly review some of
the uses p-adic numbers have found in physics prior to this occasion.

In the paper [83] Freund and Olson first considered the possibility
of non-archimedean (p-adic) strings. Their conjecture was then out to
the test in [84] where they calculated some amplitudes in this theory.
A key feature in their work is that, in the end, all quantities are real
or complex, the complex parameter, z, which is integrated over in the
ordinary amplitude is turned into a parameter residing in a quadratic
extension of the p-adic field Qp (quadratic extensions have not been dealt
with in appendix B so we refer the reader to e.g. [85] for further details).
They start from the complex (tree-level) 4-point amplitude

A
(∞)
4 (k1k4, k2k4) = κ2

∫
d2|z4|k1k4/2|1− z4|k2k4/2, (5.1)

where k1, . . . , k4 are momenta and κ the string coupling constant, z4
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is, as stated above, a complex variable. The transition to a quadratic
extension, Qp(

√
τ), of Qp (the details of which we do not dwell upon

here) then produces the p-adic string amplitude

A
(p)
4,τ (k1k4, k2k4) = κ2

∫

Qp(
√
τ)

dtρ(p)a (t) |tt̄|−1p ρ
(p)
b (1− t) |(1− t)(1− t̄)|−1p ,

(5.2)
which can be exactly calculated to yield

A
(p)
4,τ = λ2

∏

x=s,t,u

1− p−(x+16)/8

1− p(x+8)/8
. (5.3)

In this expression we have put τ (the number around which the quadratic
extension is formed) equal to p since it turns out to be the interesting
case, λ is the coupling constant times a numerical factor. This result can
now be generalized to N -point functions in a straightforward manner.
The crucial feature here, which makes p-adic strings interesting, is that
these amplitudes can be calculated exactly. A connection with ordinary
string amplitudes can be made by factorizing these [86] into an infinite
product of p-adic amplitudes, thus these constitute an adelic integral.
The motivations behind this branch of string theory is quite simply, sim-
plicity. The prospect of feasible calculations is simply too good to reject,
and although the interest in p-adic strings has cooled substantially in re-
cent years, the connections to ordinary string theory makes it impossible
to completely reduce the status of this theory to that of a toy-model.
The reader is referred to [84, 86, 87, 88, 85] for further material on p-adic
string theory.

Another interesting use for p-adic numbers in physics is that presented
in [89,90]. Here the resulting amplitudes are no longer real/complex but
p-adic, and the motivations is not merely about calculability but stems
from (slightly circumstantial) facts about the spacetime itself. Volovich
argues that since the archimedean principle seems to break down at the
Planck-scale perhaps we should consider the possibility of constructing
a spacetime over a non-archimedean field. The main candidate of fields,
he argues, is the field of p-adic numbers Qp. Volovich takes the ordinary
Veneziano amplitude

A(s, t) =
Γ(−α(s))Γ(−α(t))
Γ(−α(s)− α(t))

, (5.4)

and replaces it with a p-adic amplitude by replacing the momentum
vectors making up the arguments s and t by vectors in a p-adic space
QD
p and the gamma functions by the Morita gamma functions Γp, this



5.4 The Algebraic Approach 99

getting

Ap(s, t) =
Γp(−α(s))Γ(−α(t))
Γp(−α(s)− α(t))

. (5.5)

But the considerations of Volovich does not stop with string theory, in-
deed he suggests a transfer of much of the modern day formalism to a
p-adic spacetime and since their first considerations in the late eighties
this project has gained some support.

So, whereas the p-adic string of Freund et al. is due to a relations
between real and p-adic numbers the conjecture of Volovich et al. is due
to a theoretical observation of the geometry of space and time. Which of
these two approaches (if any) is then the right one? one might ask oneself.
The string with the p-adic worldsheet merely presents a tool for making
calculations that are insurmountable in the real case, there is no actual
claim of the strings being observable phenomena. Volovich on the other
hand makes a very strong claim about the structure of spacetime itself,
and although the foundation upon which he bases is argument seems
stable enough (smoothness breaking down below the Planck length) it
is questionable if one can draw the conclusions that he draws (that the
correct approach is to exchange the base field to a p-adic one).

The way that p-adic numbers surface in the material covered in chap-
ter 4 is very much similar to the way that it appears in Freund’s p-adic
strings. We calculate the instanton measure by means of a p-adic method
in much the same way that we can express a string amplitude in terms
of p-adic string amplitudes. In both p-adic string theory and the al-
gebraic approach to M-theory, p-adic analysis is nothing more than a
mathematical tool, the end result is always real( or complex). We can
use this tool (in any area of physics) on the merits of the theorem due
to Ostrowski saying that there exists no other norms other than the p-
adic and real one. What separates the case presented in this thesis from
that of p-adic string theory is that we have a very poor understanding
of what the corresponding ’real’ technique should be for calculating the
instanton measure, so the use of a p-adic method is not only warranted
but necessary.

5.4 The Algebraic Approach

The algebraic approach described in chapter 4 is far from a “closed chap-
ter”. Many avenues still remain to be explored. Focusing for the moment
on the project outlined in [16] and disregarding from the possible spin-
offs, one notes that it remains yet to be completed. The representation
needed has been known of for many years. The spherical vectors were
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calculated in [17] and the p-adic spherical vectors in [18]. All the build-
ing blocks are at hand and what remains is to assemble them into an
object carrying the desired properties of invariance. There are several
important questions that one might ask oneself before commencing the
completion of this construction. How should we proceed? What can
we, both physically and mathematically, expect? How would we proceed
once we have this object at hand and how can we learn anything from
it?

Presumably one should, to attempt an answer to the first question,
start by taking the p-adic functions from [18] and turn them into summa-
tion measures, thus ridding the subsequent calculations from any p-adic
elements. After this one should probably attempt to perform the inte-
grations which requires the distribution, thus spurring its creation. After
this we would hopefully have our much desired theta series. Although as
is well known , the unwelcome arrival of ’problems’ seldom fail to occur.

What then, can we expect from these theta series. Mathematicaly
it is somewhat unclear, and physically it is completely unknown. Our
lack of understanding for the M-theoretical degrees of freedom coming
into play here is directly mirrored in our lack of predictions regarding
the physical contents of the theta series. As to how we should proceed
once we have these objects at hand we can rely on our old friend num-
ber theory. Resumming and expanding should hopefully enable us to
recognize different parts of the expressions as related to the objects we
do know to exist in M-theory (membranes, 5-branes, KK6-branes, etc.).
Ideally we will also be able to spot both conjectured and unexpected
relationships between these; perhaps forcing us to reconsider our view
on these M-theoretical objects. Very recently there appeared a note [91]
on a subject best described as a spin-off. We have mentioned very little
about the cubic forms in table 4.5 that were utilized in the construction
of the minimal representation. In the note [91] these are used to create
cubic free field theories, a subject and an approach that holds some great
promises for future work.

What would also be interesting is to consider more closely from a
physical point of view; the construction. We have already talked about
the use of p-adic numbers, but we might also benefit from examining the
physical intuition (or lack thereof) lurking behind the scenes. We are
making a conjecture based mainly on a highly non-trivial mathematical
structure, and then we proceed to prove this by, in a construction, making
use of representation theory. This is a long way from Galileo rolling
marbles down a slide.

We conclude this section by expanding some more on the exceptional
dual pair as promised in the text.



5.4 The Algebraic Approach 101

In table 4.3 we included the d + 1 = 6 case and observed that the
relevant dual pair in that case did not include a factor R+. This means
that we get rid of the troublesome integration over the volume-factor.
This yield a manifestly finite integral and thus the need for a cut-off dis-
appears. It is interesting that this case coincides with the level of com-
pactification where 5-brane instantons come into play. With our limited
understanding of the dynamics behind the different terms in (4.45) it is
difficult to say anything about whether or not there is any 5-brane con-
tribution there. It would be great if the theta series corresponding to the
d+1 = 6 case would actually reproduce the full amplitude, in which case
we could perhaps see explicitly the relation between the membrane and
5-brane or the possible containment of the 5-brane dynamics within the
(BPS) membrane degrees of freedom, hinting at the conjectured “funda-
mentality” of these.

Closer speculation and hopefully more concrete results are left for
future work.
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A
Brief Introduction to
Supersymmetry and

Supergravity

This appendix is a very brief introduction to supersymmetry and super-
gravity. We only barely scratch the surface of this vast area of modern
physics here, for more extensive reviews see [92,93,94,95,96] (supersym-
metry), [96] (supergravity).

A.1 The Wess-Zumino Model

Supersymmetry (SUSY) is an extension of special relativity that intro-
duces a symmetry between bosonic and fermionic states. The idea of
such a symmetry first arose in the early 70’s and has since then devel-
oped into one of the main interests of modern theoretical physics to a
stage where we now take it for granted. Nevertheless experiments have
during this time also reached a stage where it is now possible to experi-
mentally verify SUSY (though not at the energy scale in which it appears
in string/M-theory).

We will introduce the concept of supersymmetry by means of an ex-
ample, the Wess-Zumino model in a 4-dimensional spacetime. This is a
theory of two real scalar (actually scalar and pseudoscalar respectively)
fields A and B, a spinor (which we take to be Dirac for now) ψ and two
other real scalar (and pseudoscalar respectively) fields F,G which we will
find to be auxiliary later on. We form the Lagrangian

L0 = −
1

2
∂µA∂

µA− 1

2
∂µB∂

µB − i

2
ψ̄γµ∂µψ +

1

2
F 2 +

1

2
G2, (A.1)
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where γµ are Dirac gamma matrices (in the chiral representation)

γµ = i

(
0 σµ

σ̄µ 0

)
, µ = 0, 1, 2, 3 (A.2)

{
σµ = (

�
, σi)

σ̄µ = (
�
,−σi) , i = 1, 2, 3, (A.3)

and ψ̄ is the Dirac conjugate of ψ, defined by

ψ̄ = ψ†γ0. (A.4)

Now we introduce a transformation that interchanges the bosonic fields
with the fermionic ones (and vice versa), we choose

δA = iε̄aψa, (A.5)

and
δB = iε̄γ5ψ, (A.6)

where
γ5 = γ0γ1γ2γ3, (A.7)

is inserted because B should be a pseudo-scalar. The transformation of
the spinor becomes

δψa = −∂µ(A+ iγ5B)ba(γ
µε)b + ((F + iγ5G)ε)a (A.8)

and consequently

δψ̄ = ε̄γµ∂µ(A+ iγ5B) + ε̄(F + iγ5G). (A.9)

The transformations of the fields F and G become

δF = −iε̄γµ∂µψ, (A.10)

δG = ε̄γ5γµ∂µψ, (A.11)

and this along with the field equations

¤A = 0 , ¤B = 0, (A.12)

γµ∂µψ = 0, (A.13)

F = 0 , G = 0, (A.14)
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implies that F and G are auxiliary fields that take the theory off-shell
when we consider them to be non-zero. However, without the auxiliary
fields the supersymmetry algebra

[δ1, δ2]A = −2i(ε̄2γµε1)∂µA = 2εµPµ, (A.15)

εµ = ε̄2γ
µε1 , Pµ = −i∂µ, (A.16)

would not close without the use of the equations of motion (and also the
off-shell degrees of freedom would not match). Checking the invariance
of the action under the supersymmetry transformations one arrives at
the conclusion that δ is a symmetry if and only if we have

ε̄ψ = ψ̄ε, (A.17)

which is equivalent to saying that the spinor ψ is a Majorana spinor and
not a Dirac spinor. Hence we have to redefine ψ in light of this new fact,
this is a direct consequence of supersymmetry. Equation (A.15) leads us
to define

δ = ε̄aQa, (A.18)

where Qa are the supersymmetry generators, generating supersymmetry
transformations in the same way that Pµ generates translations andMµν

Lorentz rotations. The supersymmetry algebra can now be written as

{Qa, Q̄b} = 2i(γµ)ab∂µ. (A.19)

Interaction- and mass-terms can now be created, but no general method
exists to do this in the formalism we have presented here, one has to
rely on a trial-and-error approach. Because of this and the fact that we
want to find a way to better depict supersymmetry, we introduce the
superspace formalism.

We already know how to work with coordinate representations of Pµ
and Mµν

Pµ = −i∂µ, (A.20)

Mµν = −1

2
(xµ∂ν − xν∂µ), (A.21)

and now we wish to realize the generator Qa in the same way. But since
Qa satisfies anti-commutation relations we need anti-commuting coordi-
nates in order to make this realization work. So we define a superspace
made up by the coordinates (xµ, θa), satisfying

θaθb = −θbθa, (A.22)

θaθa = 0, (A.23)
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where θa is a four-component Majorana spinor (due to the fact that
Qa is a Majorana spinor). In the following we will write the anti-
commuting coordinates θa in terms of its component (two-component)
Weyl spinors θα, θ̄α̇, so the superspace will be made up by the directions
zM = (xµ, θα, θ̄α̇). The supersymmetry generator

Qa =

(
Qα

Q̄α̇

)
, (A.24)

can now be realized as

Qα = ∂α − iσµ
αβ̇
θ̄β̇∂µ, (A.25)

Q̄α̇ = −∂̄α̇ + iθβσµβα̇∂µ, (A.26)

so we see that just as Lorentz rotations and translations, supersymmetry
is now a geometrical transformation in superspace. By switching sign on
the second term in (A.25) and (A.26) we get a different operator that is
still supersymmetric, this is the supersymmetry-covariant derivative

Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ, (A.27)

D̄α̇ = −∂̄α̇ − iθβσµβα̇∂µ. (A.28)

This operator will play an important role when we define superfields
below, and also when defining extended actions (with mass-terms and
interactions etc.). Now we wish to write down a general field in this
space, a superfield. This can be done by expanding in the θ-coordinate,
such a power-series terminates quickly due to the (Grassmann) properties
of θ. Generally we have

Φ(zM) = a(x) + θαλα(x) + θ̄α̇λ̄
′α̇(x) +

1

2
θαθβmαβ(x) +

+
1

2
θ̄α̇θ̄β̇n

α̇β̇(x) +
1

2
θασµ

αβ̇
θ̄β̇vµ(x) +

1

2
θ2θ̄α̇χ̄

′α̇(x) +

+
1

2
θ̄2θαχα(x) +

1

4
θ2θ̄2d(x), (A.29)

(with θ2 = θαθα). It turns out that the complex scalar field Φ(zM) does
not correspond to any irreducible representation of the supersymmetry
algebra and consequantly we need to find some condition that projects
the field Φ into such a representation. It can be shown that there are two
different conditions that we could impose, either we could demand that
the superfield be real, whereupon it is called a vector-superfield. We will
not use this condition here, instead we will demand that our superfield
be chiral, which is the same as saying that it should satisfy

D̄α̇Φ = 0. (A.30)
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This constraint is trivially consistent under supersymmetry since D anti-
commutes with Q. The constraining turns the superfield (A.29) into

Φ̃(zM) = φ(x) + θλ(x) + iθσµθ∂µφ(x) +
1

2
θ2F (x) +

i(θσµθ̄)(θ∂µλ(x)) +
1

2
θ2θ̄2¤θ(x), (A.31)

this can be seen either by expanding the field and imposing the constraint
or by preforming a similarity trnasformation, S, on the field and then
imposing the constraint which now reads

∂

∂θ̄α̇
(SΦ(xM)) = 0. (A.32)

In order to create superspace actions we have to clear up what it means to
integrate over the anti-commuting coordinates. The measure is defined
by ∫

(dθ)aθb = δab , (A.33)
∫

(dθ̄)ȧθḃ = δȧ
ḃ
, (A.34)

∫
dθ = 0, (A.35)

normalized as ∫
d2θθ2 = 1, (A.36)

∫
d2θ̄θ̄2 = 1, (A.37)

thus only terms quadratic in both θ and θ̄ survive the d4xd2θd2θ̄ integra-
tion.

With this in mind we try to write down a superspace action for the
Wess-Zumino model, forming the product Φ̃Φ̃∗ reveals

S = −
∫
d4xd2θd2θ̄Φ̃Φ̃∗ =

=

∫
d4x(−∂φ∂φ∗ + iλσµ∂µλ− FF ∗), (A.38)

after integrating out the θ-dependence. Thus defining

φ =
1√
2
(A+ iB), (A.39)

F =
1√
2
(F + iG), (A.40)

λα
λα̇

= ψ, (A.41)
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we retrive our old component-field action.
As we now have constructed the free Lagrangian in superspace the

other possible terms may be written down. we have a mass-term

Sm = m

∫
d4x(d2θΨ̃2 + h.c.), (A.42)

and an interaction term

Sg =
2g

3!

∫
d4x(d2θΦ̃3 + h.c.), (A.43)

both of which can readily be put in component form with our previous
definitions of the fields φ, F and λ. Also with superspace techniques
the equations of motion for both the free and the coupled theory can be
retrieved. This concludes our little treatise of this simple model and we
refer the reader to the references given in the beginning of this chapter
for further material on supersymmetry.

A.2 Supersymmetry Multiplets and BPS States

The multiplets (irreducible representations of the supersymmetry alge-
bra) of a theory, with N supersymmetry

{QA
α , Q̄

B
α̇ } = 2σµαα̇Pµδ

AB, (A.44)

{QA
α , Q

B
β } = {Q̄A

α̇ , Q̄
B
β̇
} = 0, (A.45)

is created by letting the fermionic creation and annihilation operators,
made up by the supercharges, act on the (Clifford) vacuum. Let us
take the example of massive one-particle states in the rest frame, P =
(−M, 0, 0, 0), of a four-dimensional theory. The supersymmetry algebra
takes the form

{QA
α , Q̄

B
α̇ } = 2Mδαα̇δ

AB, (A.46)

{QA
α , Q

B
β } = {Q̄A

α̇ , Q̄
B
β̇
} = 0, (A.47)

(we have set the central charges to zero here). We can define creation
and annihilation operators by rescaling according to

aAα =
1√
2M

QA
α , (aAα )

† =
1√
2M

Q̄α̇A. (A.48)

These operators satisfy the algebra

{aAα , (aBβ )†} = δβαδ
A
B, (A.49)

{aAα , aBβ } = {(aAα )†, (aBβ )†} = 0. (A.50)
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We build states by acting on the vacuum, |0〉. A general state is given
by

|n〉α1...αnA1...An
=

1√
n
(aA1

α1
)† . . . (aAn

αn )
† |0〉 . (A.51)

Each pair of indices on this state takes 2N values (An runs from 1 to N
and αn denotes which one of the two possible Weyl component spinors
we are refering to) and consequently n must be less than or equal to 2N .
For any n we can choose the indices in

(
2N
n

)
different ways, so from this

we see that the size of the multiplet (or dimension of the representation)
becomes

2N∑

n=0

(
2N

n

)
= 22N . (A.52)

We call this multiplet the fundamental matter multiplet (granted that
|0〉 is a unique vacuum), and it consists of 22N−1 fermionic states and
22N−1 bosonic states.

Looking instead at the massless multiplet (P 2 = 0) we choose the
frame, P = (−E, 0, 0, E), where the supersymmetry algebra reduces to

{QA
α , Q̄

B
α̇ } = 2

(
2E 0
0 0

)
δAB, (A.53)

{QA
α , Q

B
β } = {Q̄A

α̇ , Q̄
B
β̇
} = 0. (A.54)

Since we see from this that QA
2 and Q̄A

2̇
totally anti-commute we set them

to zero and attain only N creation and annihilation operators, given by

aA =
1√
2E

QA
1 , (aA)† =

1√
2E

Q̄1̇A, (A.55)

and satisfying the algebra

{aA, (aB)†} = δAB, (A.56)

{aA, aB} = {(aA)†, (aB)†} = 0. (A.57)

A general state is given by

|n〉A1...An
= (aA1)† . . . (aAn)† |0〉 , (A.58)

and the dimension of this representation (or size of the multiplet),

N∑

n=0

(
N

n

)
= 2N , (A.59)

becomes substantially smaller than in the massive case.
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Finally we come to the case with non-zero central charge which we
again study in the rest frame. The algebra becomes (setting P 2 = −M 2)

{QA
α , Q̄

B
α̇ } = 2Mδαα̇δ

AB, (A.60)

{QA
α , Q

B
β } = εαβZ

AB, (A.61)

{Q̄A
α̇ , Q̄

B
β̇
} = εα̇β̇Z̄

AB. (A.62)

The central charges ZAB (anti-symmetric in the indices A,B) commutes
with all the other generators and can thus be brought into block diagonal
form by a U(N) transformation UA

B

Z̃AB = UA
CU

B
DZ

CD, (A.63)

consequently (for the case where N is even)

Z̃ = ε⊗D, (A.64)

where D is a diagonal N
2
× N

2
-matrix with (real) eigenvalues Zm and

ε is the two-dimensional Levi-Cevita symbol. If we split the indices
A = (a,m), B = (b, n) with a, b = 1, 2, m,n = 1, . . . , N

2
, and perform a

U(N) transformation on the supercharges as well, Q̃A
α = UA

BQ
B
α , we can

rewrite the algebra as

{Q̃am
α , ˜̄Qbn

α̇ } = 2Mδαα̇δ
abδmn, (A.65)

{Q̃am
α , Q̃bn

β } = εαβε
abδmnZn, (A.66)

{ ˜̄Qam
α̇ , ˜̄Qbn

β̇
} = εα̇β̇ε

abδmnZn. (A.67)

We can construct fermionic creation and annihilation operators as linear
combinations of these supersymmetry charges

amα =
1√
2

(
Q̃1m
α + εαβQ̃2m

β

)
, (A.68)

bmα =
1√
2

(
Q̃1m
α − εαβQ̃2m

β

)
, (A.69)

and similarly for the conjugates (amα )
†, (bmα )

†, these operators satisfy the
algebra

{amα , anβ} = {amα , bnβ} = {bmα , bnβ}, (A.70)

{amα , (anβ)†} = δαβδ
mn(2M + Zn), (A.71)

{bmα , (bnβ)†} = δαβδ
mn(2M − Zn). (A.72)
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The unitarity of our theory now requires the right-hand side of these
equations to be non-negative which enforces

M ≥ max

{
Zn
2

}
, (A.73)

this is a so called Bogomolnyi (or BPS) bound. If this equivalence is
saturated (M = 2Z) for some number of eigenvalues Zn then the corre-
sponding creation and annihilation operators vanish. Thus if r eigenval-
ues saturated the bound (with 0 ≤ r ≤ N/2) then 2r of the b-operators
vanish and 2N − 2r creation and annihilation operators remain. In the
maximal case when all of the b-operators vanish (r = N/2) we are left
with a multiplet of the same size as the massless multiplet (but still with
mass) as can easily be seen by setting Z = 2M in the above algebra.

The analysis done in this thesis does however concern amplitudes or
terms in the effective action and not particluar states. Amplitudes (we
interchange the words ’term’ and ’amplitude’ freely here) are said to be
BPS-saturated if they recieve contributions exclusively from BPS states,
in section 4.1 we see explicitly that this is the case for R4 terms in the
effective IIB action. It falls outside the scope of this thesis to discuss the
general details of BPS-saturated amplitudes and the non-renormalization
theorems that these obey, some of these concepts are dealt with in chapter
3 and 4, here we merely state some facts about these amplitudes that are
relevant to the considerations of this thesis.

BPS-saturated amplitudes:

• Obtain perturbative corrections exclusively from BPS-states.

• Obtain perturbative corrections at only one order in the perturba-
tion theory.

• Obtain non-perturbative corrections from instantons preserving the
same amount of supersymmetry as the perturbative ones.

A.3 Instanton Solutions in Type IIB Super-
gravity

We will not pay any attention to the full IIB supergravity theory here,
since the solution we seek [97] is one where only two scalar fields, the
dilaton, φ, and and the Ramon-Ramond scalar, a, as well as the metric,
are non-trivial. The Lagrangian for these fields can be written as

L = R− 1

2
(∂φ)2 − 1

2
e2φ(∂a)2, (A.74)
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(with a metric of signature (−++ . . .+)) or by defining

Fµ1µ2...µ9 = e2φεµµ1µ2...µ9∂µa, (A.75)

as

L̂ = R− 1

2
(∂φ)2 − 1

2(9!)
e−2φFµ1µ2...µ9F

µ1µ2...µ9 . (A.76)

We are interested in the equations of motion in a space with Euclidian
signature. The equations that we obtain from the Euclidian version of
(A.74) are equivalent to those obtained from the Lagrangian

L̃ = R− 1

2
(∂φ)2 +

1

2
e2φ(∂α)2 (A.77)

(with α = ia), furthermore the action derived from this Lagrangian is
equal to the action derived from (A.76) modulo unimportant surface
terms (also note that L̂ does not change form under a Wick rotation).
The Euclidean equations of motion are

Rµν −
1

2
(∂µφ∂νφ− e2φ∂µα∂να) = 0,

∇µ(e
2φ∂µα) = 0, (A.78)

∇2φ− e2φ(∂α)2 = 0.

We now require our solution to be BPS, i.e. preserve half of the super-
symmetries. The condition for this, in the background we have chosen,
turns out to be

dα = ±e−φdφ , gµν = ηµν , (A.79)

which, together with (A.78), implies

∂2(eφ) = 0. (A.80)

This equation has a solution

eφ = (eφ(r=∞) +
c

r8
), (A.81)

which is spherically symmetric and constitutes an instanton. The con-
stant c is related to the R-R electric charge of the instanton

Q(−1) = 2πn, n ∈ Z, (A.82)

by

c =
3|n|
π3/2

. (A.83)
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This solution is now transformed from the Einstein frame (with ds2E =
dx2) to the string frame (with the metric depending on the dilaton), here
the metric is given by

ds2 = eφ/2ds2E = (e(r=∞) +
c

r8
)1/2(dr2 + r2dΩ2

9), (A.84)

where dΩ2
9 is the SO(9)-invariant line element on S9. This metric can be

seen to be invariant under

r −→ (ce−φ(r=∞))1/4
1

r
, (A.85)

and the configuration can thus be interpreted as an Einstein-Rosen bridge
(wormhole) in spacetime. The chargeQ(−1) of the instanton is interpreted
as the charge flowing down the throat of the wormhole. This constitutes
a violation of the conservation of charge in related physical processes.
We shall not comment further on the interpretation of the D-instanton
as a wormhole, instead refering the reader to [97] and references therein.

It is also important to note that a is the non-constant part of the field
C(0) which in our solution can be written as

C(0) = χ+ ia(r), (A.86)

with χ constant. This field is the antisymmetric tensor field of Type IIB
supergravity, it always appears in combination with the dilaton field as

τ ≡ τ1 + iτ2 = C(0) + ie−φ. (A.87)

We will use this notation often in section 4.1.

A.4 Type IIB and (p, q)-strings

We make repeated use of, what we call, (p, q)-strings in chapter 3, these
strings constitue an infinite family of solutions in Type IIB supergravity,
a multiplet of Sl(2,Z) [72].

As in the preceeding section we do not work with the full IIB su-
pergravity action here, since we wish to study solutions that carry a
particular charge we can throw away any of the fields that correspond
to charges not carried by our solution. Subsequently, since our solution
is a string and we know that p-branes carry charges that correspond to
(p+2)-form field strengths, only charges generated by 3-forms will be of
interest. The non-zero fields we write as the covariant action

S =
1

2πκ210

∫
d10x

√
−g(10)B (R +

1

4
tr(∂M∂M−1)− 1

12
HTMH), (A.88)
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where

M = eφ
(
|τ |2 C(0)

C(0) 1

)
, (A.89)

and

H =

(
H(1)

H(2)

)
(A.90)

, is a vector made up by the 3-form field strengths (H = dB) H (1) and
H(2) carrying NS-NS and R-R charge respectively. This classical action
is invariant under Sl(2,R) acting as

M→ ΛMΛT , B → (ΛT )−1B, (A.91)

and since the transformation (ΛT )−1 mixes the NS-NS field B(1) with the
R-R field B(2) we see that it becomes meaningless to talk about solutions
carrying charge under only one of the fields. Thus we study solutions
that carry charges (p, q) where p and q are integers (due to a Dirac
quantization condition) and relatively prime (due to the fact that it can
be shown that integers that are not relatively prime leads to solutions
that are not stable, they will decompose into multiple strings, the number
of which is given by gcd(p, q)). Of the integers p and q at least one should
also be positive since (−p,−q) can be obtained from (p, q) by a reversal
of the orientation x1 → −x1.

The solution we seek can be obtained by extending a macroscopic
string solution [98] of the equations of motion belonging to the theory

S0 =
1

2κ210

∫
d10x

√
−g(10)

(
R− 1

2
(∂φ)2 − 1

12
e−φH2

)
, (A.92)

which is the action consisting of the fields that all supergravity theories
share in ten dimensions (H = dB is a NS-NS field strength, we identify
it with H (1)).

The solution is given by

ds2 = A−3/4
[
−dt2 + (dx1)2

]
+ A1/4dx · x, (A.93)

B01 = e2φ = A−1, (A.94)

with

A = 1 +
Q

3r6
. (A.95)

This is a static string oriented in the x1-direction, we have denoted x =
(x2, x3, . . . , x9), r = x · x and Q is the electric charge that our solution
carries under B. The charge (p, q) in the solution we wish to find is
measured in units of this Q.
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The (p, q)-string solution is now obtained by making the ansatz

Ap,q = 1 +
αp,q
3r6

, (A.96)

where αp,q = ∆
1/2
p,q Q and the new tension of the string becomes Tp,q =

∆
1/2
p,q T , where T is the tension of the former solution. By applying an

Sl(2,R) transformation and imposing the quantization condition we ar-
rive at the solution

ds2 = A−3/4p,q

[
−dt2 + (dx1)2

]
+ A1/2

p,q dx · x, (A.97)

B
(1)
01 = eφ0(p− qC

(0)
0 )∆−1/2

p,q A−1p,q, (A.98)

B
(2)
01 = eφ0(q|τ0|2 − pC

(0)
0 )∆−1/2

p,q A−1p,q, (A.99)

τ =
pC

(0)
0 − q|τ0|2 + ipe−φ0A1/2

p,q

p− qC
(0)
0 + iqe−φ0A1/2

p,q

, (A.100)

with
∆p,q = eφ0(qC

(0)
0 − p)2 + e−phi0q2. (A.101)

The τ0 appearing in these expressions is

lim
r→∞

τ = τ0 = C
(0)
0 + ie−φ0 , (A.102)

the asymptotic value of τ in a region very far from the string. We have
to specify a τ0 to get a complete solution since τ0 is the vacuum in which
the string lives, it can be shown that there are degeneracies for certain
vacua. This fact and the issue of compactification (which leads to the
important result that the scalar moduli of nine-dimensional Type IIB
should be equated with the complex structure of the internal torus of
M-theory on T 2) will not be dealt with here. We refer the reader to [72]
for further details.
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B
The Field of p-adic Numbers

To define the field of real numbers R (from the rationals Q) we form
Cauchy sequences or rational numbers and consider the elements of R to
be equivalence classes of these sequences (see for example [99]). To this
end we need a norm || ||on Q.

Definition 1 A norm is a map

‖ ‖ : K → R+,R+ = {x ∈ R : x ≥ 0}
such that ∀ x, y ∈ K

‖x‖ = 0⇔ x = 0 , ‖xy‖ = ‖x‖ · ‖y‖ , ‖x+ y‖ ≤ ‖x‖+ ‖y‖
And with the help of this norm we define Cauchy sequences as

Definition 2 A sequence (xn) ∈ K is said to be a Cauchy sequence with
respect to a norm ‖ ‖ if

∀ε > 0∃M : m,n ≥M ⇒ ‖xm − xn‖ < ε (B.1)

In the above definitions K is any field but in our considerations it will
be the rationals Q. When Cauchy-completing Q to construct the reals R
the norm is obviously the ordinary absolute value, but it is also possible
to complete the set Q with another norm and thus end up with another
field. Such a norm is the p-adic norm, | |p, which can be defined for any
prime p, and the field is the p-adic numberfield, Qp. To define the p-adic
norm we first make the observation that given a prime p and an x ∈ Q,
there exists unique integers a, b, c, such that

x =
a

b
pn , (a, b) = (a, p) = (b, p) = 1 b > 0.

We then define the p-adic norm as
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Definition 3

|x|p : Q → R+ : |x|p =
{

1
pn

, if x 6= 0

0 , if x = 0

In fact, this norm and our ordinary absolute value (in this context often
denoted by | |∞) are the only non-trivial norms that exist on Q due to
a theorem by Ostrowski. The next step is to define the set Cp of all
Cauchy sequences with respect to our p-adic norm (the prime p is fixed)
and then on this set define an addition and multiplication

Definition 4 On the set

Cp = {(xn) : (xn) is a Cauchy sequence with respect to | |p} (B.2)

we define a multiplication “·” and an addition “+” as

(xn) · (yn) = (xn · yn)
(xn) + (yn) = (xn + yn)

It is trivial to show that the sum and product of two Cauchy sequences
is also a Cauchy sequence (the set Cp and the algebraic structure defined
by the two operations above constitutes a commutative ring with unity).
The final step in the construction of Qp is to define an equivalence relation
on Cp and identify the classes of equivalent sequences with the elements
of Qp

Definition 5 Two Cauchy sequences (xn) and (yn) are said to be equiv-
alent ( (xn) ∼ (yn) ) iff

|xn − yn|p → 0 as n→∞

The set of all such equivalence classes with the above defined operations
constitute a field denoted Qp and called the p-adic numbers

There is an equivalent (and more elegant) way to define Qp albeit less
intuitive. The way to do this is to note that the set off all null-sequences,
Np (i.e. the sequences whose elements tend to zero with respect to | |p),
is a maximal ideal of the ring Cp, the quotient Cp/Np is thus a field,
which is exactly Qp. Another useful set to have is the set Zp of p-adic
integers defined as

Zp = {x ∈ Qp : |x|p ≤ 1} (B.3)

which turns out to be the maximal compact subring of Qp with an in-
clusion Z → Zp (i.e. Z is a subring of Zp) which also generalizes to the
whole field Qp which has an inclusion Q → Qp (the elements of Q are
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the constant sequences, i.e. all entries equal). We can represent a p-adic
number x as a series

x =
∞∑

n=nmin

anp
n , an ∈ {0, 1, 2, . . . , p− 1} , nmin ∈ Z

This way to think of p-adic numbers also explains why this field of num-
bers was introduced in the first place. Writing functions as a series in
irreducible (or “prime”) polynomials (Laurent series) is very useful in
complex analysis, but when we try to do this with rational numbers in
number theory (the irreducible polynomials now corresponding to prime
numbers) we find that the series does not converge with respect to the
ordinary norm. It does however converge with respect to the p-adic norm!

What we want to do next is to perform analysis on Qp and for this
we need a topology, so we take the norm | |p and form neighbourhoods

Definition 6 A neighbourhood of a point a ∈ Qp is defined as

Da(r) = {x ∈ Qp : |x− a|p < r} , r ∈ R+.

These are the basis for open sets in Qp

(the reader not familiar with fundamental analysis and point-set topol-
ogy should note that this is not the most general way of constructing a
topology on a given set, one can do without the norm) It turns out that
the neighbourhoods (and thus all open sets) are also closed, which means
that our topology is totally disconnected meaning that every subset of
Qp with more than two points is disconnected (can be partitioned into
two open sets not sharing any points). Now we have all the tools we need
to construct an analysis, but before we do this we introduce yet another
algebraic structure, the ring of adeles

Definition 7 We define an adele x as an infinite sequence

x = (x∞, x2, x3, . . . , xp, . . .) , x∞ ∈ Q∞ , xp ∈ Qp

where at most a finite number of xp’s are not in Zp

The set A of all adeles form a ring under componentwise addition and
multiplication (i.e. the same as for Qp) and the subset of elements in A
with a multiplicative inverse is called the ideles.

What we want to do now is to construct an integration on the field
of p-adic numbers (as well as the adeles as we will see later). The first
thing to note is that Qp has a, up to normalization, unique Haar measure
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(i.e. a translation invariant measure) that we normalize to that it takes
the value 1 on Zp ∫

Zp

dx = 1

Now the mathematical theory of integration on locally compact fields(in
mathematical literature often called local fields) is rather large and com-
plicated, I will therefore refrain from giving even the briefest introduction
to the subject, instead only mentioning the concepts that are useful to
us. But before we really get down to integration we have to define the
concept of character and write down some of the characters that are
interesting to us.

Definition 8 An additive character ψ on Qp is a mapping

ψ : Qp → C∗ such that ∀x, y ∈ Qp ψ(x+ y) = ψ(x)ψ(y)

where C∗ is the multiplicative group of nonvanishing complex numbers

We can now write down the most general additive character we have in
Qp which is

ψu(x) = ei2π[ux] , u ∈ Qp

where (remembering our way to represent p-adic numbers explained above)
we have that [x] is the “fractional part”

[x] =
−1∑

n=nmin

anp
n

of our series expansion

x =
−1∑

nmin

anp
n +

∞∑

n=0

anp
n , an ∈ {0, 1, 2, . . . , p− 1}

The next type of character we introduce is

Definition 9 A multiplicative character ξ on Qp is a mapping

ξ : Q∗
p → C∗ such that ∀x, y ∈ Qpξ(xy) = ξ(x)ξ(y)

Again we are interested in writing down the most general multiplicative
character which takes the form

ξs(x) = |x|spθ(x)



The Field of p-adic Numbers 121

where θ(x) is a character on the set UZp
of all non-zero elements in Zp

with inverses in Zp (the set of units). Since we always work with explicit
characters further explanation of these general forms of characters is not
useful. More precisely the definitions of the characters above are from
the additive and multiplicative groups of Qp to the multiplicative group
of all non-vanishing complex numbers.

We now turn to integration with the goal of illustrating the method as
well as giving explicit examples of integrals. We have all the ingredients
we need to write down an integral and so (without proof or definition
of the integral since it is analgous to the real Riemann-integral case) we
write down an integral and illustrate the techniques by examples.

Example 1 We start with a trivial example of integration of an addi-
tive character over the p-adic integers just to point out a result that is
important to keep in mind

∫

Zp

ψ1(x)dx =

∫

Zp

ei2π[x]dx =

∫

Zp

(1 + 2πi[x] + (2πi)2
[x]2

2!
+ . . .)dx

but since x is a p-adic integer and hence can be written as x = a0+a1p+
a2p+ . . . it follows that [x] = 0 which gives the result

∫

Zp

e2πi[x]dx = 1

Example 2 Our next example illustrates the technique we use to com-
pute integrals of multiplicative characters. We start by rewriting the
intgral as

∫

Zp

|x|7pdx =

p−1∑

k=0

∫

Ck

|x|7pdx (B.4)

where Ck = {x = a0 + a1p + a2p
2 + . . . ∈ Zp : a0 = k}. Now Ck can be

translated into Cm and so with the translation invariance of the measure
we get that

∫

Ck

1 · dx =

∫

Cm

1 · dx ∀k,m ∈ {0, 1, . . . , p− 1}.

This, together with the fact that Zp =
⋃p−1
k=0Ck gives us that

1 =

∫

Zp

dx =

p−1∑

k=0

∫

Ck

dx = p ·
∫

Ck

dx
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and so ∫

Ck

1 · dx = p−1

Now one forms subsets of each Ck such that Ck =
⋃p−1
k′=0Ck,k′ and Ck,k′

is the subset of all x ∈ Zp such that a0 = k and a1 = k′. In analogy with
the above result we get

∫

Ck,k′

1 · dx = p−2

And finally ∫

Ck1,k2,...,kr

1 · dx = p−r

which is all we need to calculate the integral of any well-behaved function.
Applying this together with the fact that for all x ∈ Ck with k 6= 0 we
jave |x|p = 1 and thereby get

∫

Zp

dx|x|7p =
p−1∑

k=0

∫

Ck

dx|x|7p =
p− 1

p
+

∫

C0

dx|x|7p.

Next we (as above) do the same for C0 and get (for x = C0,k, k 6= 0,
|x|p = p−1)

∫

C0

dx|x|7p =
p−1∑

k=0

∫

C0,k

dx|x|7p =
p− 1

p2
p−7 +

∫

C0,0

dx|x|7p

And for C0,0

∫

C0,0

dx|x|7p =
p−1∑

k=0

∫

C0,0,k

dx|x|7p =
p− 1

p3
p−14 +

∫

C0,0,0

dx|x|7p

Clearly the remaining integral goes to zero as the integration region
shrinks and we are left with a geometric series

∫

Zp

dx|x|7p =
p− 1

p
+
p− 1

p2
p−7 +

p− 1

p3
p−14 + . . .

Which gives us the final result

∫

Zp

dx|x|7p =
p− 1

p

1

1− p−8
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The examples above have been restricted to the integration region Zp

which is not adequate for our purpose. Our next objective is therefore to
extend these methods of integration to the whole of Qp. We now denote
the set of all p-adic numbers of the form x = a−mp−m + a−m+1p

−m+1 +
. . .+ a0+ a1p . . . by K

(−m) and by a similar argument to that in the case
of Ck, K

−m
k now corresponding to Ck, we find that

∫

K−m
dx · 1 = pm

We now see that Qp =
⋃∞
m=−∞K

−m which from our result in Example
2 yields that

∫

Qp

dx|x|7p =
∞∑

m=−∞

∫

K−m
dx|x|7p =

∞∑

m=−∞

p− 1

p

pm+7m

1− p−8

Which diverges just as in the case of real integration since the volume of
Qp is infinite just as the volume of R.

Finally in this chapter we give some integrals that are examples of
the p-adic Fourier transform. These were extremely important in the
calculations that we performed in [24]. The proofs are left to the reader
as an exercise

Example 3 ∫

|x|p≤|R|p
dxψu(x) = |R|p γp(Ru), (B.5)

Example 4

∫

|x|p=|R|p
dx |x|p ψu(x) = |R|p γp(Ru)−

1

p
|R|p γp(Rup), (B.6)

Example 5

∫

|x|p<|R|p
dx |x|p ψu(x) =

1

p
|R|p γp(Rup), (B.7)

Example 6

I =

∫

|x|p≤|R|p
|x|p ψ(ux), (B.8)

For readers wanting do go further than I have done here in the world
of p-adic analysis I recommend [100], [85] and [101]
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C
A Touch of Number Theory

The latter parts of this thesis carries with it a strong smell of number
theory. In this appendix we review some of the background material that
may come in handy while reading.

C.1 Eisenstein Series

Eisenstein series are the main characters of this thesis, this section con-
tains some definitions and results that are, in general, related to physics
and especially to our area of consideration. Let us turn to the general
definition1 definition of an Eisenstein series. The goal is to create an
object that carries some invariance properties, so first we have to specify
under what action our series should be invariant, generally we choose a
group G(Z) defining a symmetric space K\G(R), where K is the maxi-
mal compact subgroup of G. Denoting R some representation of G we
can now write our Eisenstein series as

EG(Z)
R;s (g) =

∑

m∈ΛR\{0}
δ(m ∧m)

[
m · RtR(g) ·m

]−s
, (C.1)

where g is some element in K\G(R) and m is a vector in the integer
lattice ΛR transforming under R. Physical amplitudes, which is what
are trying to encode in these series, depend on scalar fields taking values
in symmetric spaces, like g ∈ K\G(R). Furthermore the vectors m of the
lattice ΛR labels the BPS-states and m · RtR(g) ·m gives their tension

1Actually in the mathematics literature a more general definition is used but we
will not address it here since the definition (C.1) has a much clearer meaning in this
context.
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(or mass squared). The product ∧ is integer valued and has the property
of projecting the symmetric tensor product of the representation R with
itself onto the highest irreducible component. We will not dwell upon the
definition of this product here, it is sufficient to know that m ∧m = 0
imposes the 1/2-BPS condition, the details become much clearer in the
examples to follow.

Let us turn to the first example of Eisenstein series encountered in
chapter 3, the S-symmetric R4 coupling in ten-dimensional Type IIB

ESl(2,Z)2;3/2 =
ζ(3)

l8P

∑

(p,q)=1

1

T 3
p,q

, (C.2)

with

Tp,q =
|p+ qτ |

l2s
, (C.3)

for a general s this series takes the form

ESl(2,Z)2;s =
∑

(m,n)6=0

[
τ2

|m+ nτ |2
]s
. (C.4)

Since this is uncompactified Type IIB the only existing moduli is the
scalar moduli τ ∈ U(1)\Sl(2,R) upon which the amplitude depends. 2
denotes the two-dimensional vector representation of Sl(2) and (m,n)
are vectors in the lattice transforming under Sl(2). Looking at the ex-
pression (C.2) we can now identify all the constituents from the definition
(C.1), the (p, q)-string solution of Type IIB is stable (BPS) if p and q
are relatively prime integers so the sum over (p, q) = 1 enforces the BPS-
condition.

For general s, the Eisenstein series is determined by the fact that it
satisfies the eigenvalue equation

∆U(1)\Sl(2) ESl(2,Z)2;s =
s(s− 1

2
ESl(2,Z)2;s , (C.5)

where

∆U(1)\Sl(2) =
1

2
τ 22 (∂

2
τ1
+ ∂2τ2), (C.6)

however the Eisenstein series does not give the full spectrum of this
Laplacian, cusp forms are also possible solutions. In the Type IIB case
that we are considering at the moment, contribution from cusp forms is
ruled out by proving that s is uniquely determined to be 3/2 (this fixes
the solution of the eigenvalue equation).

The extension of this result to Sl(d,Z) Eisenstein series is relevant
to compactifications of general diffeomorphism invariant theories on T d.
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When compactified the theory acquires an Sl(d,Z) symmetry with re-
spect to the metric under which all amplitudes are invariant. This leads
us to define an Eisenstein series

ESl(d,Z)d;s =
∑̂

mi

[
migijm

j
]−s

, (C.7)

where gij (g = ete, for the veilbein e) is the metric on the internal torus, d
is the fundamental representation of Sl(d,Z) (the hat on the sum denotes
the exclusion of mi = 0). The metric is only defined up to orthogonal
rotations SO(2,R) so the moduli should live in SO(d,R)\Sl(d,R)2 and
our Eisenstein series turns out to satisfy

∆Sl(d) ESl(d,Z)d;s =
s(d− 1)(2s− d)

2d
ESl(d,Z)d;s , (C.8)

where

∆Sl(d) =
1

4
gikgjl

∂

∂gij

∂

∂gkl
− 1

4d

(
gij

∂

∂gij

)2

+
d+ 1

4
gij

∂

∂gij
. (C.9)

This result can be generalized to other, higher dimensional representa-
tions, we will not pursue this line here, nor will we dwell upon the prop-
erties of (C.7) regarding analyticity and large volume behavior, referring
the reader to [23] for further details.

Instead we move on to the case of SO(d, d,Z) Eisenstein series which
arise for example in Type II string theories where we call it T-duality.
In stringtheory however we have objects that transform as spinor rep-
resentations and therefore we have to consider Eisenstein series in these
representations as well. We begin with the vector representation though.
The metric on the internal torus and the background field, Bµν , take
values in the symmetric space

[SO(d,R)× SO(d,R)]\SO(d, d,R)/SO(d, d,Z), (C.10)

and in a suitable gauge we can pick the veilbein e such that the mass
matrix for the BPS states becomes

M(V) = ete =

(
g−1 g−1B

−Bg−1 g −Bg−1B

)
. (C.11)

The mass squared reads

M2(V) = m · ete ·m = m̃ig
ijm̃j +migijm

j, (C.12)

2This is a slight simplification, other symmetries come into play and there is an
explanation in terms of the Iwasawa decomposition of the group G but the explanation
of this falls outside the scope of this thesis.
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where mi and m
i are Kaluza-Klein momenta and winding modes respec-

tively, and
m̃i = mi +Bijm

j. (C.13)

The BPS condition in this case reads

mim
i = 0. (C.14)

The spinor case becomes more complex, the mass matrix is given by
the spinor or conjugate spinor representation of the group element e.
The spinor representation (denoted S) describes charges corresponding
to wrapping numbers along odd cycles of T d and the conjugate spinor
representation (C) to even cycles respectively. We give their mass squared
and the BPS conditions here (up to a power ld−8P in the T-symmetric
Planck length) only for completeness

M2(S) =
1

Vd

[
(m̃i)2 +

1

3!
(m̃ijk)2 +

1

5!
(m̃ijklm)2 + . . .

]
, (C.15)

m̃i = mi +
1

2
mjkiBjk +

1

8
mjklmiBjkBlm + . . . , (C.16)

m̃ijk = mijk +
1

2
mlmijkBlm + . . . (C.17)

m̃ijklm = mijklm + . . . , (C.18)

satisfying the BPS conditions

m[imjkl] = 0, (C.19)

mi[jkmlmn] +mi[jklmmn] = 0, (C.20)

mij[kmlmnpq = 0. (C.21)

And for the conjugate spinor representation

M2(C) =
1

Vd

[
(m̃)2 +

1

2!
(m̃ij)2 +

1

4!
(m̃ijkl)2 + . . .

]
, (C.22)

m̃ = m+
1

2
mijBij +

1

8
mijklBijBkl + . . . , (C.23)

m̃ij = mij +
1

2
mklijBkl + . . . , (C.24)

m̃ijkl = mijkl + . . . , (C.25)

with the BPS conditions

m[ijmkl] +mmijkl = 0, (C.26)

mi[jmklmn] +mmijklmn = 0, (C.27)

mijmklmnpq +mij[klmmnpq] = 0. (C.28)
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The Eisenstein series can now be written

ESO(d,d,Z)
R;s =

∑̂
m
δ(m ∧m)

[
M2(R)

]−s
, (C.29)

with M 2(R) being (C.12), (C.16) and (C.23) for the V, S and C repre-
sentations respectively and δ(m ∧m) summarizing the BPS constraints
in each case. This series satisfies the eigenvalue equation

∆SO(d,d) ESO(d,d,Z)
R;s = ∆(R, s) ESO(d,d,Z)

R;s , (C.30)

where

∆SO(d,d) =
1

4
gikgjl

[
∂

∂gij

∂

∂gkl
+

∂

∂Bij

∂

∂Bkl

]
+

1

2
gij

∂

∂gij
, (C.31)

and the eigenvalues are given by

∆(V, s) = s(s− d+ 1) , ∆(S, s) = ∆(C, s) =
sd(s− d+ 1)

4
.(C.32)

A perfect example of physic where these series come into play is the
calculation of 1/2-BPS one-loop amplitudes in T d-compactified string
theory, a case which we have encountered in chapter 4. These amplitudes
can often be written

Id = 2π

∫

F

d2τ

t22
Zd,d(g;B; τ), (C.33)

where

Zd,d(g;B; τ) = Vd
∑

mi,ni

exp

[
− π

τ2
(mi + τni)(gij +Bij)(m

j + τ̄nj)

]
,

(C.34)
is the partition function of the compactification lattice. It can be shown
that for d = 1, 2 this amplitude can be calculated and rewritten to yield

Id = 2 ESO(d,d,Z)
S;1 + 2 ESO(d,d,Z)

C;1 . (C.35)

Equivalently in the d ≥ 3 case we get

Id = 2
Γ(d

2
− 1)

π
d
2
−2 ESO(d,d,Z)

V; d
2
−1 = 2 ESO(d,d,Z)

S;1 = 2 ESO(d,d,Z)
C;1 . (C.36)

For some dimensionalities these statements are proved and for others
they remain (very well founded) conjectures.

The discussion of Eisenstein series is continued in section 4.2 due to
the close relation between U-duality, exceptional Eisenstein series and
the rest of the material presented in that chapter.



130 Chapter C A Touch of Number Theory

C.2 Additions concerning ESl(2,Z)2;s (τ )

We shall expand upon the Eisenstein series ESl(2,Z)2;s (τ) a bit here. We
begin by proving the relation (4.88). It is easily realized that µs(N) is
multiplicative, i.e. that µs(MN) = µs(M)µs(N) (just calculate for some
MN and s to see this), this along with the fact that N ∈ Z (meaning
that N is a product of prime numbers) means that we only have to prove
(4.88) for N = pk, a power of some prime p. We get

µs(p
k) =

∑

n|pk
n−2s+1 =

k∑

n=0

(pn)−2s+1 =
k∑

n=0

pnt, (C.37)

where we have set t = −2s + 1. Turning our attention to the left-hand
side of (4.88) we see that the only contributing terms are those where
N
∫

Q is a p-adic integer for all p, the set of N ’s satisfying this it Z,
we can also skip the infinite product over p since the only contribution
comes from the prime p whose power we have fixed N to. Thus we can
write

∑

N∈Z

k∑

n=0

pnt =
∑

N∈Z

1− pt
∣∣pk
∣∣−t
p

1− p−t
, (C.38)

implicating
k∑

n=0

pnt =
1− pt(1+k)

1− p−t
, (C.39)

calculating the geometric series on the left-hand side we see that this is
indeed so.

Next we turn to a representation in which to construct this Eisenstein
series which is better suited for those less physically inclined or who sim-
ply have not come in touch with Eisenstein series as physical amplitudes
before.

By taking the intuitive (yet reducible) representation (4.77) and con-
straining it to homogeneous even functions

φ(x, y) = λ2sφ(λx, λy), (C.40)

and setting y = 1 we obtain an irreducible representation

ρ

(
1 t
0 1

)
: φ(x)→ φ(x+ t), (C.41)

ρ

(
e−t 0
0 et

)
: φ(x)→ e−2stφ(e−2tx), (C.42)

ρ

(
0 −1
1 0

)
: φ(x)→ x−2sφ(−1/x), (C.43)



C.2 Additions concerning ESl(2,Z)2;s (τ) 131

in which the spherical vector becomes

fs(x) = (x2 + 1)−s. (C.44)

The action of the representation element corresponding to the group
element gτ on the spherical vector is

(x2 + 1)−s → τ−s2 ((xτ−12 )2 + 1)−s →

→ τ−s2 ((x+ τ1)
2τ−22 + 1)−s =

[
τ2

(x+ τ1)2 + τ 22

]−s
, (C.45)

and from the form of the Eisenstein series 4.76 we see that the summation
measure should be

µs(n) =
∑

n6=0

n−2s. (C.46)

This gives us, according to our construction, the series

∫
dx
∑

m∈Z
µs(n)δ(x−m/n)

[
τ2

(x+ τ1)2 + τ 22

]−s
, (C.47)

an expression in which the observant reader notices that we lack some
of the terms that are in the original Eisenstein series. This is due to
the fact that we loose information when we restrict the functions of the
representation to homogeneous functions and set y = 1. This summation
measure can be gotten from the p-adic spherical vector corresponding to
(C.44) and turns out to be

fp,s(x) = max(1, |x|p)−s. (C.48)

That this is so can be proved by methods similar to those used in the
previous example.
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Notation
The symbols are listed here, first in accordance to the section in which
they first appear and then in the order they appear within the section.
After each description the equation numbers are listed when a strict def-
inition exists.

2 The Supermembrane I: General Theory and Problems

2.1 The Bosonic Membrane

ξi : Worldsheet coordinates

Xµ : Embedding fields

D : Dimension of spacetime

T : Tension of the membrane

gij : Induced worldvolume metric

g : Determinant of induced metric

φi : Classical constraints

{·, ·} : Poisson bracket (2.11)

X+, X− : Light-cone coordinates (2.19)

~X,Xa : Residual coordinates (2.20)

grs : Induced metric w.r.t. ~X (2.22)

ur : First column in full (light-cone) metric gij (2.22)

g′ : Determinant of residual metric (2.25)

{·, ·}′ : Poisson bracket (2.36))

Yα : Basis functions of the bosonic membrane

fαβγ : Structure constants of APD algebra (2.44)

T (N)
a : Basis matrices of SU(N)

f
(N)
abc : Structure constants of SU(N) (2.45)

∆(N) : Differential operator

ZQ(t) : Partition function of quantized Hamiltionian (2.50)

Zcl(t) : Partition function of classical Hamiltionian (2.50)

∆λ
j : Cube in Rν
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2.2 Adding Supersymmetry

ψµ : Worldvolume spinor

χi : Rarita-Schwinger spinor

Di : Covariant derivative (2.63)

γi : Gamma matrices (2.61)

εijk : Totally anti-symmetric tensor

eai : Worldwolume dreibeins

e : Determinant of dreibein eai
ψ̄ : Adjoint spinor

ωai : Connection field (2.64)

ZM : Superspace coordinates (2.72)

θα : Spacetime spinors

Γµ : Spacetime Dirac matrices

ε : Constant anti-commuting spacetime spinor

ΠA : Flat superspace one-forms (2.74)

eAM : Flat superspace veilbein
∗ΠA : Pull-back of ΠA (2.75)

Πµ,Πα : Bosonic and fermionic part of ΠA resp. (2.76)

Πµ
i ,Π

α
i : Bosonic and fermionic part of pullback (2.77)

h : Flat superspace 4-form (2.79)
∗b : Worldvolume 3-form (2.80)

bijk : Worldvolume 3-form coefficients (2.82)

κα(ξ) : Parameter in the local fermionic symmetry

Γ : Matrix, part of projection factor in action (2.87)

EA
i : SUSY invariant worldvolume field in curved spacetime (2.93)

H : Curved superspace 4-form

TC
AB : Supergravity torsion tensor

X± : Supermembrane light-cone coordinates (2.99)

Γ± : Light-cone Dirac matrices (2.101)

grs, ḡrs : Supermembrane induced residual metric (2.104)

ḡ : Determinant of induced residual metric

∆ : Light-cone part of determinant (2.105)

{·, ·} : Poisson bracket (2.108)

ω(ξ) : Metric on the membrane
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YA(ξ) : Basis functions of embedding fields

fCAB : Area-preserving algebra structure constants (2.114)

GΛ : Finite Lie group

ξF : Spinor component of toy-model/membrane wave function

ψ0 : Ground state toy-model/membrane wave-function

χ : Tuning-function of the toy-model/membrane wave function
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