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A b s t r a c t :  Marchenko inversion is used to determine local energy independent 
but channel dependent potential matrices from optimum sets of experimental 
phase shifts. 3SD1 and 3pF2 channels of nucleon-nucleon systems contain in 
their off-diagonal potential matrices explicitly the tensor force for T = 0 and 
1 isospin. We obtain, together with single channels, complete sets of quantita- 
tive nucleon-nucleon potential results which are ready for application in nuclear 
structure and reaction analyses. The historic coupled channels inversion result 
of Newton and Fulton is revisited. 

1 I n v e r s i o n  f o r m a l i s m  

Marchenko's fundamental equation is here generalized to a system of coupled 
integral equations in which two partial waves with orbital angular momentum 
i l  = J - 1 and ts = J + 1 enter. Such a situation occurs for a neutron-proton 
pair in the 3SD1, T = 0 channel and for proton-neutron, proton-proton or 
neutron-neutron pairs in 3pF2, T = 1 channels. The only bound NN system 
is the deuteron in a 3SD1 configuration with EB = 2.2246 MeV binding energy. 

With coupled channel inversion we generalize many features which occur with 
single channel inversions ai~d superficially speaking it requires only to replace the 
input and output kernels by matrix kernels [1, 2]. For the Marchenko equation 
this generalization gives 

A(r,t)+F(r,t)+ A(r,s) F(s,t)ds= O. (1) 

We use boldface letters to signify matrices where their dimensions are either 
obvious or shall get well defined in the applications. The input kernel F(r,  t) is 
a 2×2 matrix with vectors as matrix elements which are functions of (r, t) and 
whose rows and columns are indexed by the orbital angular momentum quantum 
numbers (~1, ~2) ---+ (1, 2). All other quantum numbers, such as S, J and T are 
conserved and are suppressed in the expressions. The input kernel contains in 
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general continuum and Ns bound states 

7 + 
1 

F(~ , t )  = 
-c~'l i----1 

(2) 
With a centripetal barrier reference potential the reference S-matrix becomes a 
unit matrix, S°(k) ---, 1, and the diagonal matrix 

H(kr) := ( (-1)~lhll(kr) 0 ) 
0 (-1)t2hl2(kr) (3) 

contains outgoing Riccati-Hankel functiofts as free 3ost solutions. The asymp- 
totic bound state normalization matrix N(t~i) is determined from physical solu- 
tions and 3ost solutions to the bound state k-value 

~i(r) ~ti (r ) = Y(~i, r) N(~i) 9vt (ai, r). (4) 

The inversion potential matrix is related to the output kernel by 

V(r) = - 2  d A ( r ,  r). (5) 

Inserting (5) into the SchrSdinger equation 

[ ~d  2 r 21 L2 + k 2] k~(k, r ) =  V(r)~(k,  r) (6) 

reproduces the original phase shifts for positive energies and bound state prop- 
erties respectively. 

This last point seems trivial, but in practical applications it is very useful and 
gives a unique possibility t o  verify results in a closed loop with input data.We 
find numerically a consistency to within five or six digits. 

For single channel inversion we developed an algorithm for rational S-matrix 
representations which by dint of its construction assured all symmetries and 
practically any desired accuracy [3, 4]. It is based on Pad@ approximants for the 
exponential function and rational function representation of data [5]. A general- 
ization of this algorithm for coupled channel S-matrices was most essential for 
all our developments and we did not find any alternative working algorithm of 
a similar power [2]. 

1.1 M a r c h e n k o  a l g o r i t h m  for r a t iona l  S - m a t r i c e s  

Rational S-matrices yield finite rank separable input kernels 

F(r,  t) = F 1 ( r ) V . ( t )  

and imply separable output kernels 

A(r, t) = A(r)FH(t) .  

(7) 

(8) 
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Insertion of this ansatz into (1) gives a linear equation for the factor matrix 

A(r) = - F , ( r )  - A(r) f FI,(s)rz(s) ds 

o r  

with 

A(r) [1 + W(r)] = - F i ( r )  

c o  

W(r)  ---- / F,,(s)Fi(s) ds. 
r 

Thereby the potential matrix is readily obtained from 

v(~) = 2 Fi(~) [1 + W(~)] -1 FH(r) 

+ 2 [F,(r) [1 + W(r)] -1 Fi,(r)]  2 

+ 2 F,(r )  [1 + W(r)] -1 F~x(r ). 

Symmetries of S and N imply a symmetric input kernel and thus 

(9) 

(lO) 

(11) 

(12) 

F(r , t)  = FT(t, r) (13) 

o r  

F,(r)F, ( t )  = F~  ( , )r ,  ~ (~). (14) 

Resulting from this, the potential matrix 

V(r) = VT(r) (15) 

is symmetric and agrees with what is needed in the SchrSdinger equation. 
Next we discuss some aspects of the S-matrix input. Technically, there are 

often two possibilities used to factorize bound state poles from the continuum 
S-matrix. They are equivalent in their final results and are known as single- 
and double-pole extractions. We.realized both options in the computer program 
but describe only the prefered option herein. Both methods are described and 
studied with their numerical consequences in [2]. Here we use the rational S- 
matrix with one bound state at EB = (~)2 in partial fraction decomposition, 
with common poles for any strengths matrix $i and ~ ~ t3, viz. 

2 N + 2  
S1 $2 Sn (16) 

$ ( k ) = l +  k_--~a+ k - - - ~ +  E k---(r,~" 
n-----3 

This representation and analyticity of (3) in (2) allows contour integration with 
closure in the upper complex k-plane and gives the closed form input kernel 

N + 2  

r( , . t )  = - ,  ~ :  H(~.r) [S. +,~I.N(~)] H(~.t). (17) 
r~----1 
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With 

it is 

~es {S( ,~)}  = S~ = - ,  N(~)  

N + 2  

F(r,t)  = - ,  E H(rr,~r) Sn H(c~,~t). 
n : 2  

We write this kernel as a product of three matrices 

and distinguish 

and 

F(r, t) = FT(r) A F(t) 

F( r ) - -  ( F l ( r )  0 ) 
o F~(~) = 

h~l (~2,) 0 
: 

h i  1 ( O ' N + 2 / ' )  0 

0 hl~(~2r) 
: 

0 hiz(~rN+2r) 

' s ~ '  o s ~ '  o 
• • • . . . 

: " ' '  S W - t - 2  S 22 " N + 2  
A =  (AaaAa2"~ 0 11 0 .. S z2 

A2aA22] - z  S~ 1 . . .  0 ... 0 
• . • . . • 

0 . 21 $2~ 
, . S ~ +  2 0 . . .  N 4 - 2  

Finally, the potential matrix is given by 

V(r) = 2 FT'(r)X(r)  r ( r ) + 2  [FT(r)X(r) F(r)] 2+2 [FT'(r)X(r)F(r)]  
T 

with 

and 

X(r) = [1 + AM(r)]- IA = [A -1 + M(r ) ] - i  

M(r) = (M/~(r)  
M ~  ( r ) )  

0 
\ v 

=Xr( r )  

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Mdr) = 

f hl(~2s) hl(c~2s) ds . . .  he(~2s) hdaN+2S ) ds 
7" r 

O 0  O 0  

f hi(rrN+2S) ht(rr2s) ds . . .  f hl(aN+2S) h~(~rN+2S) ds 
r I" 

(26) 
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We solve a system of inhomogenous linear equations 

+ A M(r)] (Y1y3 Y4Y2) = AF(r) (27) [1 

for the set {Yi} with which the components of the symmetric potential matrix 
are given by 

{ tT FTY2 (FITy1 FTy4)} (28) V12=V21=2 F~Ty2+F2  Y 3 +  + 

V22 = 2  {2F~Ty4 + (FTy4)2 + (FT¥2) 2 }. 

1.2 Ra t iona l  r e p r e s e n t a t i o n  of  S - m a t r i x  

A Blatt-Biedenharn or eigenchannel decomposition of the coupled S-matrix 

S(k) = sBB(k) = ( S11(k) S,2(k) ~ \$21(k) $22(k ) , ]  = R(k)S(k)RT(k) (29) 

factorizes the S-matrix into three matrices, the rotation matrix 

R(k) := ( c°sc(k'2) -sin c(k2) ) 
sin c(k 2) cos c(k 2) (30) 

and the diagonal eigenchannel matrix 
~ 

: =  ' (31) 

For the rational representation of all matrix elements of S(k), we combine a 
symmetric Pad6 approximant for the exponential function 

e ~ --* pEL/q(z), (32) 

with a rational approximation for the phase functions 51,2(k) and e(k2). L= 4 or 
6 is used in (32) and was found sufficient in all situations which we encountered 
with data. It is important to use an exponential function representation also 
for the trigonometric functions sin z and cos z since the rotation matrix requires 
sin2z + cos 2 z = 1. With a P£de approximant for the exponential function, of 
any order L, this trigonometric relation is identically satisfied. 

We do not know of any other algorithm which contains algebraically the 
possibility to include all symmetries of an S-matrix when the rational functions 
have very high order. A generalization towards higher dimensions is also obvious 
and this may become important for future work on coupled reaction channels. 
A factorization of the rational S-matrix into rational Jost-matrices, which is 



319 

needed for Gelfand-Levitan inversion, is also facilitated with this algorithm [6, 
7, 8]. As numerical advantage, we found it very important that  any determination 
of polynomial roots was only of low order, generally < 20. Pad6 tables for exp z 
are analytic and representations in any form, i.e. partial fractions, are available 
[2, 3, 5]. 

Phase shift functions 61,2(k) and c(k 2) are fitted with standard rational func- 
tion fitting routines to the data  and with a proper ansatz we can always guarantee 
the required functional dependence in any domain. More details to this point 
can be found in [2]. 

Requirements are 

low energy behavior 

high energy behavior 
unitari ty 
symmetry for k --+ - k  
symmetry for k --* -k*  
Levinson's theorem 

$(k) ~ 1 +  O(k 2~+1) 

s(k) 1 + 
[S(k)l = 1 Vkeu 

& ( k ) & ( - k )  = 1 Vk,c 

2 Applications 

There are many good reasons to use rational S-matrix representations for in- 
version with Marchenko or Gelfand-Levitan equations. Therewith, input kernels 
become degenerate, i.e. have a finite rank and are separable, and the fundamen- 
tal integral equations reduce to systems of linear equations. This is an important 
technical advantage and together with the need of interpolation and  extrapola- 
tion of measurements in general, and nucleon-nucleon phase shifts in particular, 
data  are very well described by this class of functions. The resulting inversion 
potentials are sometimes addressed as Bargmann potentials [1]. 

Ill posed problems and inversions are closely related and data preparation is 
an important point here, since therewith we often hit imponderabilities which 
have no unique experimental or theoretical answer [15]. To overcome the ill 
posedness in our case, it requires foremost an extrapolation of phase shifts be- 
yond the pion production ~hreshold in a way to maintain the subthreshold valid- 
ity of the resulting potential for a nonrelativistic quantum mechanics of nuclear 
structure and reactions. This feedback of high energy extrapolations onto low en- 
ergy phenomena becomes evident when we calculate off-shell t-matrices. With 
bremsstrahlung studies we associate some hope to gain experimental control 
about such influences from the domain of relativistic quantum mechanics but 
until now all studies are disappointing [9]. Few nucleon systems are an alterna- 
tive for off-shell t -matr ix  studies and there exists some enthusiasm to follow this 
line with the aim to narrow our extrapolation options [10, 11]. Meson exchange 
potentials show different behaviors towards high energies and are presently of 
little help. Some QCD calculations can be useful if they predict qualitatively e.g. 
a repulsive core for all partial waves and this within a certain radial region [12]. 
The physics behind this brief discussion contains many possibilities for lasting 
controversies and these will be subject elsewhere. 
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Our present inversion goal is an energy independent potential for a nonrela- 
tivistic Schrhdinger equation and thus, from a mathematical point of view, one 
potential which is valid at all energies from 0 --* ~ .  We realize and keep in 
mind that  a Schrhdinger equation is only adequate for physics at energies below 
300 MeV and all relativistic effects are swallowed by the effective nature of the 
potential operator. As a saving grace, experiments show that  inelastic channels 
open very gradually and we expect from this circumstance a smooth decay of 
validity O f our potential well above 400-500 MeV. We interpret inversion poten- 
tials as very useful quantitative effective operator for the low energy physics, i.e. 
E < 300 MeV. 

We use inversion which permits a different potential for any partial wave and 
it is only restricted to belong to the class 

   rlV(r)l any a >  dr for 0. 

Actually our hadronic potentials decay exponentially towards infinity and show 
a 1/r singularity at the origin. In case of proton-proton inversion we use the 
point charge Coulomb potential as reference potential and the inversion equa- 
tions are properly modified [13]. To have a better control of the potential near 
the origin requires a more detailed control of phase shift behavior at high en- 
ergy. We assume a phase shift behavior limk-~oo ~(k) = O(1/k), for mixing angles 
l i m k - ~  e(k 2) = O(1/k 2) or l imk-.~ e(k ~) = constant. The latter options show 
no influence on the potentials [2]. At present we have no arguments for an alter- 
native choice than what is quoted. With several examples and applications we 
will show how insensitive for observables these choices actually are and we are 
unable to define error bands of potentials as limits of physics. 

It is our interpretation of inversion that  it starts with a well understood 
physics, within and beyond the relevant regions which enter as input data, with 
the aim to yield mathematically well behaved quantities (operators) for applied 
physics. For nuclear potentials the applications are nuclear structure and nuclear 
reactions below pion threshold. In general, it will not be possible to state what 
is well behaved since applications may have different options and preferences 
and thus inversion is a tool to tune operators as applications require them. For 
nucleon-nucleon systems this means, that everyone may ultimately generate his 
own potential with his choice of data and boundary conditions. With this work 
we also study rational functions as an option for regularization. 

2.1 3 S D l - c h a n n e l  r e su l t s  

In Fig. 1 are collected eigenchannel phase shifts of the 3SD1 channel from 
the most recent and complete phase shift analyses. The figure contains single 
points as well as curves of phase shift analyses and Paris and Bonn-B po- 
tential phase functions for energy intervals 0 < E < 300 MeV (left side) and 
0 ~ E ~ 1000 MeV (right side). The results show little uncertainty between 
sources with the exception of the mixing angle ¢1 (k 2) of which potential models 
[19, 20, 21] show a consistent behavior contrary to phase shift analyses with 
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Fig. 1. Summary of experimental 3SD~ phase shifts from Virginia [16] (full), Nijmegen 
[22] (dashed), Saclay [18] (triangles), Arndt single energy data [16] (squares with error 
bars), Bugg [17] (triangles with error bars), and OBEP theories Paris [19] (dotted), 
Sonn-B [21] (dash-dotted). 

large differences. Particularly at low energy are Saclay data [18] different from 
other authors. 

The uncertainty of the mixing angle is a long standing and often discussed 
problem and generally it is put equal with an uncertainty of the tensor potential. 
We shall show that  this is insofar not correct as the bound state spectral data, 
i.e. deuteron binding energy and asymptotic normalization constants, are well 
determined and this bound state spectroscopic information determines largely 
the input kernel and thus the coupling potential. More details to this unexpected 
result can be found in the following. 

In Fig. 2 are shown the used phase functions which entered in our calculations 
and whose potential results are shown in Fig. 3. All important deuteron quanti- 
ties are listed in Table 1 with used spectroscopic inputs underlined. The quali- 
tative features of the inversion potential matrix agrees well with known results. 
It comes as a surprise that the coupling potential V12(r), r > 1 fm, is for any of 
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the chosen input phase shifts closely the same. Their agreement with the gen- 
uine Paris and Nijmegen potentials is also visible. At shorter distance, r < 1 fm, 
the coupling potential is dependent from the high energy, E > 300 MeV, phase 
shift extrapolations which we do not tune to any specific behavior but allow low 
energy rational fits to determine them. More details of the tensor potential are 
shown in Fig. 4. This comparison shows that  the regularized Paris tensor force 
is most consistent with the inversion results. 

1 8 0  , i i 

Deuteronphasen aus 

r-~ 120 - Inversionspotentialen 

~ 6 0  

3D 1 

- 6 0  ' ' ' ' 
0 2 0 0  4 0 0  6 0 0  8 0 0  I 0 0 0  

Energie [MeV] 

Fig. 2. Rational function interpolation phase function to data below 300 MeV from 
Virginia [16] (full), Nijmegen-3 [22] (dashed), Paris [19] (dotted), Bonn-S [21] 
(dash-dotted). 

Next, we isolate the bound state term in the input kernel Eq. (2) and perform 
a calculation in which el(k 2) is put identically to zero. Thus, only the deuteron 
bound state was allowed to generate a mixing. Table 2 contains the relevant 
quantities to this calculation which is based on Bonn-B phase shifts. It shows 
that  the D-state probability decreases from 5.86 % to 3.69 % and similarly the 
quadrupole moment. The changes of inversion with c ¢ 0 --+ c = 0 are shown 
in Fig. 5 and any intermediate results are easy to imagine. In future studies we 
hope to learn from this example how to increase the sensitivity for an indepen- 
dent determination of cl(k 2) from experiment which requires first to solve the 
nonlocality problem [23]. 

Deuteron bound state wave functions are not directly accessible to experi- 
ment but are often required in studies of capture or breakup reactions. In Figs. 6 
and 7 wave functions of the inversion potentials are shown. Also shown is the 
variation of the D-state probability 

j~o v2(x ) dx 
PD(r) := f~(v2(x) + w~(x)) dx 

as function of radius in Fig. 6. From this results we conclude that  any variation 
of D-state probability comes from regions with r > 1.25 fin. The momentum 
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Fig. 4. T = 0 tensor potentials from inversion results of Fig. 3. Also shown are Paris 
(PAR) [19] and Nijmegen-3 (NIJ) [22] original potentials. 
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T a b l e  1.  Summary of deuteron observables with references. 

INVERSION EXPERIMENT THEORY 

AHN-91 NIJM-8 BONN-B PARIS value (~)  ReL NIJM-3 BONN-B PARIS 

2 .224600  2 ,924876  2 ,22465  2 .2249  2 .22458900  (22)  a 2 . 2 2 4 5 7 5  2 .22461  2 .2249  

5 . 6 9  6.0 (2 .0)  b 5 .86 4 .99 5 ,77  
6.0 (2.0) c 
<5.0 (1.o) 

0.2788 0 .2859  (3)  e 0.2707 0.278  0 .279  

0.2880 (16) f 
0 ,8473  0 . 8 5 7 4 0 6  ( I )  g ( 0 . 8 4 7 5 )  0 .8514  0 , 8 5 3  

0.8869 0.8802 (20) h (0.8847) 0.8880 (0.8868) 
0.8883 (20) i 
0.8772 (38) J 
0.8813 (24) 
0.8846 (8) i 

0 .02608  0 .0256  (4)  m 0 . 0 2 5 2  0 .0264  0 .02608  
o.o271 (4) c 
0.0268 (v) 
o.o2vl (8) o 
o.o2v2 (4) r 
0.0280 (7) q 
0 . 0 2 6 4 9  (43) r 

1 . 9 7 1 6  1 . 9 6 2 7  ( 3 8 )  s ( 1 . 9 6 7 1 )  1 . 9 6 8 8  (1.9719) 

1.9~70 (6s) 
1.965o (45> 

E b  
P D  6 .27  8 ,53 5.81 

Q d  0 .2870  0 .2708  0 .2827  

# d  0 .8440  0 .8482  0 .8486  

A S 0 . 8 8 6 0  0 . 8 8 4 8  0 . 8 8 6 1  

0 .0264  0 .0252  0 .0264  

r r m  s 1.9748 1.9672 1 .9709 

a Greene G.L. et al., Phys. Rev. Lett. 56(8),819 (1986). 
b Righi S: and Rosa-Clot,  M., Z. Phys. A-Atomic  Nuclei 326, 163 (1987). 
c Ericson T.E.O. and Rosa-Clot  M., Ann. Rev. Nucl. Part.  Sci. 35, 271 (1985). 

Lomon E.L., Ann. Phys. 125, 309 (1980). 
e Bishop D.M. and Cheung L.M., Phys. Rev. A20,  381 (1979). 
] Reid R.V. and Vaida M.L., Phys. Rev. Lett. 34, 1064 (1975). 
g Lindgren I., Alpha- ,  Beta- ,  Gamma-Spectroscopy,  Vol. II, 1620 (1965). 
h Ericson T.E.O.,  Nucl. Phys. A416,  281 (1984). 

Kermode M.W. et al., Z. Phys. A303,  167 (1981). 
J Simon G.G., Schmitt Ch. and Walther V.H., Nucl. Phys. A364,  285 (1981), see h. 
k Berard R.W. et. al., Phys. Lett. 47B, 355 (1973), see h. 
z Noyes N.P., Ann. Phys. Nucl. Sci. 22, 465 (1972), see h. 

m Rodning N.L. and Knutson L.D., Phys. Rev. Lett. 57, 2248 (1986). 
'~ Klarsfeld S., Matorell J. and Sprung L., Nucl. Phys. 10, 165 (1984). 
o Goddard R.P., Knutson L.D. and Tostevin J.A., Phys. Lett. l 1 8 B ,  241 (1982). 
P Borbely I. et al., Phys. Lett. 109B, 262 (1982). 
q Gruebler W. et al., Phys. Lett. 92B, 279 (1980). 

Stephenson K. and Haeberli W., Phys. Rev. Lett. 45, 520 (1980). 
Ericson T.E.O., Nucl. Phys. A416,  281 (1984). 

t Simon G.G., Schmitt Ch. and Walther V.H., Nucl. Phys. A364,  285 (1981). 
Berard R.W. et. al., Phys. Lett. 47B, 355 (1973). 
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Table 2. Deuteron observables based on inversion potentials with (left column), with- 
out (middle column) continuum mixing and with genuine Bonn-B (right column) re- 
sults. Underlined quantities are inputs. 

e -# 0 e = 0 BONN-B 

E b 2 .22461 2 .22461 2 .22461 

PD 5.86 3 . 6 9  4.99 

Qa  0 .2837  0 .2524 0 .2780 

#d 0 .8463 0 .8587 0 .8514  

A s 0 .8860  0 .8860 0 .8860  

q 0 .0264  0 .0264  0 .0264 

r,m , 1 .9708 1 .9663 1 .9688 
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. . . . . . . . .  

, , , , , ,~?~_' '~, ,~,  zlzu Bonn-BS[SD]tPhasen \,,\ ]nversionspotentiale 

,] full: sl ori 
[ dash: ~1=0 

1 2 

Radius [fm] 

Fig. 5. Inversion potentials with (full), without (dashed) continuum mixing. Input 
phases are from Bonn-B. 

space wave functions, Fig. 7, show the expected uncertainty for k > 4 fm -1 and 
there exists no possibility to reduce it even with ideal (low energy) spectral 
information. High energy 7 + d ~ p + n breakup may well be used to sample 
high momentum components k > 4 fm -1 but we don't  anticipate a possibility 
to disentangle complicated mesonic corrections from genuine potential aspects 
in the wave function. 

As last result to the deuteron studies we show effects due to changes/choices 
in the asymptotic normalization constants with the continuum phase functions 
fixed. The results are summarized for the Nijmegen-3 phase shifts in Table 3. It 
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Fig. 6. Coordinate space deuteron wave function based on inversion potentials from 
Fig. 3. PD is scaled by a factor 10. Line convention as in Fig. 2 
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Fig, 7, Momentum space deuteron wave function based on inversion potentials from 
Pig. 3. 
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Table 3. Deuteron observables based on inversion potential to Nijm-3 phase shifts and 
different asymptotic normalizations. Left column As = 0.8860 and y = 0.0264, middle 
column uses the genuine Nijm-3 asymptotic normalization. Right column values are 
from [22]. 

optimal Nijm-3 [Sto92] 

E b 2.224579 2.224576 2~224575 
PD 5.91 5.53 5.66 
Qa 0.2816 0.2705 0.2707 
~u a 0.8460 0.8482 - -  
A s 0.8860 0.8848 - -  
r/ 0.0264 0.0252 0.0252 
rrm ~ 1.9702 1.9672 - -  

shows that  small variations of the normalization matr ix yields significant changes 
in PD and leaves other derived quantities practically unchanged. We conclude 
from this and other calculations that  a very precise D-state  probability cannot 
be found and local potential predictions are expected to give PD = 5.85-4- 0.3%. 

The Nijmegen-3 phase shifts are parametrized via Reid like local potentials 
for proton-proton and proton-neutron data respectively [22]. The data fit is 
limited to subthreshold data  and the potential thus extrapolates freely towards 
higher energies. In our extrapolation we are following the trend in Arndt 's phase 
shifts and find thus different potentials, see Fig. 8. This example shows how 
inversion incorporates high energy phase shifts and how difficult it is for direct 
problem solutions. For further details see [2]. 

2.2 Reproduct ions  

Our implementation for the coupled channel Marchenko inversion proves to give 
excellent reproductions for Yukawa potentials and thereby derived quantities 
within 5-6 digits and, of a similar quality, for the realistic Bonn-R [20] potential. 
Such check procedures show different aspects of inversion. 1.) They show how 
well the whole program works, 2.) it gives many options to see how different 
energy regions of the input phase functions influence the final potential and this 
at what radial region. This is a very interesting subject and it will be discussed 
in more details elsewhere. Some results are contained in [2]. 

First we assume a superposition of Yukawa potentials which support a bound 
state in a deuteron like situation. A potential matr ix 

Vii(r)  = 650 exp - 2 r  170ex p -0 .7 r  
r 0.7r 

VI~ (r) = V21 (r) = -230  exp - r  
r 

V12(r) = 650 e x p - 2 r  
r 
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Fig. 8. Potentials reproducing Nijmegen phases in the deuteron channels inversion 
(full) fitted to Nijm-3 phases shifts E < 300 MeV, original Nijm-3 (dashed). 

Table  4. Reproductions verified with Yukawa and Bonn-R [20] potentials as inputs. 

Yukawa Bonn-R 

Inversion Original A[%] Inversion Origin~ A[%] 

E b 7.009391 7.009636 0.003 2.224534 2.224739 0.009 

PD 2.2078 2.2078 0.000 4.680 4.676 0.085 

Qa 0.14357 0.14357 0.000 0.2662 0.2671 0.338 

#a 0.86713 0.86713 0.000 0.8530 0.8531 0.012 

A s 1.97801 1.97797 0.002 0.8825 0.8825 0.000 

y 0.02797 0.02797 0.000 0.0253 0.0253 0.000 

r,~, 1.56744 1.56739 0.003 1.9619 1.9638 0.097 

is assumed and phase functions are computed for 0 < E < 3 GeV. The differences 
between the input phase shifts and those computed from the inversion potentials 
are < 0.00050 for eigenchannel phase functions and < 0.030 for the mixing angle. 
The potential  reproductions show only the limits of our used numerics with dif- 
ferentia'l equations etc. A realistic potential  is the Bonn-R  potential  and we used 
it during several stages of our developments but not for our final results since 
it has little practical importance.  The latter potential  is parametr ized in coor- 
dinate space, as the Paris potential, and contains some m o m e n t u m  dependence. 
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The reproduction is of similar quality as with the Yukawa case and in Table 4 
we give the deuteron observables for the two studied examples. The reproduc- 
tion shows a comparable good agreement. Reproduction checks are routinely 
performed with all our inversion results. 

2 . 3  N e w t o n  a n d  F u l t o n  r e v i s i t e d  

The first application of quantum inversion to a coupled channel situation of the 
deuteron was made by Newton and Fulton [24]. Their  study gives a striking 
result for the bound state wave function. Due to a repulsive hump in the tensor 
component of the potential, for a radius r < 1 fm, the D-wave shows a node near 
2 fm. This result is quantitatively changed by a new set of parameters, published 
a year later [25], but the qualitative behavior remains unaltered. 

With this background we a t tempt  a new calculation to the example studied 
in [24]. When using all parameters of the quoted paper by Newton and Fulton 
we are able to reproduce their results when: In the phase convention of our 
implementation we take a wrong sign for the mixing angle relative to y. When 
the correct (which we define as ours) phase convention is used, the node in the 
D-wave disappears and the potentials show the expected behavior. These results 
give us confidence to claim that  a sign error slipped into the historic calculations 
of Newton and Fulton. However, a definitive localization of the spot, where the 
error entered, is not possible but we give our arguments and results next. 

In the study of Newton and Fulton enters a rational ansatz for the S-matrix,  
guided by the effective range expansion for the low energy phase shifts, of the 
form 

(33) 

With the parameter  X, the quadrupol moment is fixed, and ¢ and t¢ dwell upon 
the effective range expansion of the S-phase and are given by 

1 1 +  1 -  and ~ = - -  1 -  1 -  , (34) 
¢ = r-~ as / r~ at / 

where at and rt denote triplet scattering length and effective range parameters 
respectively. 

Another parameter d is introduced with the normalization and is used to 
fix the D-state  probability. The used parameters are n = 0.232fm ±1, ¢ = 
0 .944fm-1, X = 1.22fm, d = 2.27 leading to 2.08% D-state  probability and 
a quadrupolmoment of 0.275 fm 2. 

The potential matr ix  is separated in a form 

\ ~ ( ~ )  v~(r) - 2~(~) - 3Wo(r) / 
(35) 
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with V~, Vt, and Vo denoting the central-, tensor-  and spin-orbit  components. 
They are shown in Figs. 11. For our coupled channel Marchenko inversion a 
partial fraction representation of the S-matr ix  is needed. With the definitions 

with 

1 [Sn $12] 
, S n  = $21 (36)  

s l l  := 4x4(k + ,¢)(k + ,~) + k4(k - ,¢)(k - z~) 

Sl~ := 2x~k ~ [(k - z¢)(k - ~ )  - (k + ,¢)(k + ,~)] 

$22 :-- k4(k + z¢)(k + zt~) + 4x4(k - z¢)(k - ,g) 

and 

N = (k - z¢) (k - ,n)(k - X(1 + z)) (k - X(-1  - z)) (k - X(-1  + z)) (k - X(1 - z)) 

We get 

6 Sn (37) 
s(k) = sr°~(k)= 1 + ~ k : ~  

r t = l  

which poles and residues are contained in Table 5. 
To determine the normalization matr ix N we need the asymptotic ampli- 

tudes. While y := A o / A  s = -0.018081 is quoted in [24], the value of A s is not 
explicitly given and is here only indirectly determined. We take A s  = 0.826 from 
the wave function, Fig. 6 in [24], and find good agreement with a value which 
is given by the rms-radius 

A S ~_ 4vrfi~3rr~, = 0.8269 , (38) 

which is not quite the same value gained from the effective range parameters 

2~ 
As = (1 + ~ 2 ) ( 1 -  nr t )  = 0.8752 (39) 

or a value determined from the S-matr ix  

A s = ~ / - 5 r n ( S ~  1) = 0.8753 (40) 

Here enters a caveat. While the first two values are derived from the inversion 
results and the latter are input data, we observe an inconsistency. 

Two situations are studied next. In case (a) we use the wrong sign for the 
mixing angle, while in case (b) the Newton-Fulton parameters arc transformed 
into our correct  phase convention. The results to case (a) are very close to the 
original Newton and  Fulton result. 
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Table  5. Poles and residues for the rational Newton-Fulton S-Matrix. 

n  (sY)  (s2) 

1 0.000 0.232 $I 1 0.0000000000 -0.7661315523 
$I 2 0.0000000000 -0.0138525479 
S~ 2 0.0000000000 -0.0002504702 

2 0.000 0.944 S~ 1 0.0000000000 2.8619074860 
S~ 2 0.0000000000 0.8567417325 
S~ 2 0.0000000000 0.2564745366 

3 1.22 1.22 S~ ~ 0.5518543198 -0.7000042029 
S~ 2 -0.7000042029 -0.5518543198 
S~ 2 -0.5518543198 0.7000042029 

4 -1.22 1.22 S~ 1 -0.5518543198 -0.7000042029 
S~ 2 0.7000042029 -0.5518543198 
S~ 2 0.5518543198 0.7000042029 

5 -1.22 -1.22 S~ 1 -0.1304097275 -0.3478837639 
S~ 2 -0.3478837639 0.1304097275 
S~ 2 0.1304097275 0.3478837639 

6 1.22 -1.22 S~ 1 0.1304097275 -0.3478837639 
S~ 2 0.3478837639 0.1304097275 
S~ 2 -0.1304097275 0.3478837639 

Tab le  6. Deuteron observables of the studied cases. 

case (a) case (b) [Newton-Fulton] 

E b 2.2321397 2.2321399 2.2321394 
PD 1.00 6.77 2.09 
Qd 0.0925 0.2310 0.275 
#d 0.8740 0.8412 - -  
A s 0.8753 0.8753 0.8269 
r] 0.018071 0.018081 -0.018081 
r~m , 1.935 1.947 1.85 

The  D-wave  node appears  again near 2.8 fm and the repulsive h u m p  in the 
tensor potent ia l  is present. Any remaining quant i ta t ive  differences are explained 
with somewha t  different input ,  e.g. we used A s = 0.8753. 

C a s e  (b) gives results which show the expected potent ia l  and bound  state  
wave function.  In Table 6 we compare  cases  (a), (b) and original results. Notice, 
the quad rupo lmomen t  changes in case (b) to a physically bet ter  value and P D  

changes f rom 1.0% to  6.77%. The  lat ter  value is in good agreement  with t oday ' s  
suggested value. 
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2.4 aPF2-channel  results 

An other application shows inversion results for the 3pF~, T = 1 channel based 
on data shown in Fig. 15. 
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Fig. 15. Summary of 3P-F2 channel data. Eigenchannel values are from the sources 
Virginia [16] (full), Nijmegen [22] (dashed), Saclay [18] (triangles), Arndt single energy 
data [16] (squares wit error bars), Bugg [17] (triangles with error bars), and OBEP 
phases from Paris [19] (dotted) and Bonn-B [21] (dash-doted). 

As the data show rather large uncertainties we obtain a band of inversion 
potentials. Even though this channel does not support any bound state, we find 
a very stable coupling potential V12(r) for radii r > 0.8 fm, see Figs. 16 and 17. 
More details about the tensor potential in this channel are shown in Fig. 18, 
where the genuine Paris and Nijmegen-3 tensor potentials are included for com- 
parsison. Our conclusion from these results is that the T -- 1 tensor potential 
is very well defined from existing data and the regularized Paris potential is in 
good agreement with our inversion results for all radii r > 0.6 fro. 

The Nijmegen-3 phase shifts are parametrized via Reid like local potentials 
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Fig. 16. Interpolated phase functions for 3PF2 channel to data below 300 MeV from 
Virginia [16] (full), Nijmegen-3 [22] (dashed), and OBEP Paris [19] (dotted), Bonn-S 
[21] (dash-dotted). 

for proton-proton and proton-neutron data respectively [22]. The data fit is 
limited to subthreshold data and the potential thus extrapolates freely towards 
higher energie s. We are following in our extrapolation more the trend in Arndt 's 
phase shifts and find thus different potentials, see Fig. 19 and 20. This example 
shows, similar to Fig. 8, how inversion incorporates high energy phase shifts 
and how difficult it is for direct problem solutions in the 3pF2 channel [2]. 

2.5 M o m e n t u m  space  p i c t u r e s  

To solve the Lippmann-Schwinger equation for the t -matr ix  it is useful to have 
momentum space potentials 

y f f  , J,T ( b ~o °° 1,t~ "~'q) = Y(k,q)  = z &-~2 j&(kr)V&,~2(r)j~2(qr)r2dr, (41) 

which are double Bessel Fourier transforms of the r-space potentials. Some 
potentials are already parametrized in momentum space [19, 21]. In Figs. 21 
and 22 are shown nonlinear plotts of momentum space potentials for the gen- 
uine Paris potential [19] and its inversion potential partner. These figures have 
0 < k, q < 50 fm -1 as range and are thus reaching far beyond the on-shell mo- 
mentum of 0 < k < 2 fm -1 range. Nevertheless, numerically this is an often used 
range in few body calculations and that  is the reason for our choice for the dis- 
play. The differences between the inversion (left) and genuine (right) potentials 
is the smooth high energy behavior induced by the asymptotic extrapolations of 
our phase shifts. Contrary to inversion produces the Paris potential a not realis- 
tic high energy behavior which signals a very repulsive inner core. The data by 
Arndt [16] and Saclay [18] show a flat high energy behavior of the phase shifts 
and we followed with our extrapolation closely the trend given by data and not 
the original Paris phase shifts. The momentum space potentials imply the same 
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phase shift for 0 < E < 300 MeV for inversion and Paris potentials but they 
differ above 300 MeV. There are now several new accelerator facilities in oper- 
ation which which will investigate just this region and we hope that inversion 
will also turn out to be useful in this energy domain as it is for energies below 
pion threshold. 

Fig. 21. Momentum-space pictures of nonlocal Paris potentials, inversion (left), orig- 
inal (right), in 3SD1 channel. 
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Fig. 22. Momentum-space pictures of nonlocal Paris potentials, inversion (left), orig- 
inal (right), in 3PF2 channel. 
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