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Abstract. For almost twenty years, a search for a Lorentzian version of the well-known
Connes’ distance formula has been undertaken. Several authors have contributed to this search,
providing important milestones, and the time has now come to put those elements together
in order to get a valid and functional formula. This paper presents a historical review of
the construction and the proof of a Lorentzian distance formula suitable for noncommutative
geometry.

1. Introduction and formulation of the Lorentzian distance
Connes’ noncommutative geometry [1, 2] provides at the same time a beautiful mathematical
theory as well as new tools for physical models of unification theory. At a mathematical level,
the topological correspondence between locally compact Hausdorff spaces and commutative
C∗-algebras given by Gel’fand’s theory is brought up to the level of Riemannian manifolds. The
key elements are spectral triples (A,H, D) from which, among others, information concerning
the metric aspect can be recovered using the Riemannian distance formula :

dR(p, q) = sup
f∈A

{ |f(q)− f(p)| : ‖[D, f ]‖ ≤ 1 } · (1)

Applications of noncommutative geometry in mathematical physics take part mainly in particle
physics and quantum field theory. However the physical Lorentzian signature of spacetimes
makes the use of the initial mathematical theory more problematic, especially concerning the
formula (1). Two paths have been followed to solve this problem: the Wick rotation process
which allows the use of all the well-defined tools of Riemannian noncommutative geometry (see
e.g. [3, 4]), but therefore with a loss of causal information, or the adaptation of the theory to
a Lorentzian signature, which is less straightforward and still ongoing, notably with the use of
Krein spaces and Lorentzian spectral triples [5, 6, 7, 8]. In this last context, several authors have
tried to generalize the formula (1) to a Lorentzian distance formula [9, 10, 11, 12, 13, 14, 15, 16].
Each of those authors has significantly contributed to a specific step of the construction of a
final formula. In this paper, we will go through the summary of those different steps and we
present two formulations of a now completely proved Lorentzian distance formula.

The first formulation is at the level of traditional Lorentzian geometry, where the usual
Lorentzian distance d(p, q) between two points, representing the maximal length of the piecewise
C1 future-directed causal curves from p to q [17], is rewritten in a completely path-independent

http://creativecommons.org/licenses/by/3.0
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way, using the information coming from a specific set of test functions. Key elements of the
proof of the following formula will be presented in Section 3.

Theorem 1 (Path-independent formulation).
If (M, g) is a time-oriented Lorentzian manifold (spacetime) which is either:

• globally hyperbolic,

• stably causal such that the usual Lorentzian distance d is continuous and finite,

then for all p, q ∈M :

d(p, q) = inf
{
[f(q)− f(p)]+ : f ∈ S

}
, (2)

where [α]+ = max {0, α} and S is the set of smooth real-valued “steep” functions, i.e. the
set of f ∈ C1(M,R) such that g(∇f,∇f) = g−1(df, df) ≤ −1 and ∇f is past-directed (f is a
future-directed temporal function).

Stable causality is the weakest assumption under which the RHS of (2) makes sense, otherwise
the set of steep functions S is empty [18]. The condition of continuity of the Lorentzian distance
d is necessary since the RHS is upper semi-continuous while the LHS is lower semi-continuous
[15]. Under such an assumption, (M, g) is in fact a causally continuous spacetime in the sense
of [19]. The condition of global hyperbolicity is a particular case where the Lorentzian distance
d is automatically continuous and finite [17].

The second formulation is an algebraic formulation, where every element from traditional
Lorentzian geometry has been replaced by a corresponding element coming from the theory of
spectral triples. This formulation opens the possibility of a generalization to noncommutative
spacetimes. The proof will be presented in Section 4 while the possible technical difficulties for
an application on noncommutative spacetimes will be presented in Section 5.

Theorem 2 (Spectral triple formulation).
If (M, g) is a n-dimensional spin Lorentzian manifold which is either globally hyperbolic or stably
causal such that the Lorentzian distance d is continuous and finite, and if we define:

• The algebra A = C1(M,R) with pointwise multiplication,

• The Hilbert space H = L2(M,S) of square integrable sections of the spinor bundle S over M
(using a positive definite inner product on the spinor bundle),

• The Dirac operator D = −i(ĉ ◦ ∇S) = −ieμaγa∇S
μ associated with the spin connection ∇S,

• The fundamental symmetry J = iγ0 where γ0 is the first flat gamma matrix1,

• If n is even, the chirality operator χ = ±in2+1γ0 · · · γn−1,
then for all p, q ∈M , if n is even:

d(p, q) = inf
f∈A

{
[f(q)− f(p)]+ : ∀φ ∈ H, 〈φ,J ([D, f ] + iχ)φ〉 ≤ 0

}
, (3)

and if n is odd:

d(p, q) = inf
f∈A

{
[f(q)− f(p)]+ : ∀φ ∈ H, 〈φ,J ([D, f ]± 1)φ〉 ≤ 0

}
, (4)

where [α]+ = max {0, α} and 〈·, ·〉 is the positive definite inner product on H.

1 Conventions used in the paper are (−,+,+,+, · · · ) for the signature of the metric and {γa, γb} = 2ηab for the
flat gamma matrices, with γ0 anti-Hermitian and γa Hermitian for a > 0.
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2. Historical construction of the Riemannian and Lorentzian distance formulas
The first apparition of Connes’ distance formula (1) comes from 1989 in [20]. Common
presentations and proofs of the formula are given by [21], [1, Chapter 6] and [22, Chapter 9.3].
The formula has been studied and applied by many authors on several kinds of spaces, as among
others [23, 24, 25, 26, 27, 28, 29].

The way to prove this formula is quite direct. If we consider a connected compact Riemannian
manifold (M, g) and two points p and q on it, we can choose an arbitrary piecewise C1 curve
γ : [0, 1] → M with γ(0) = p and γ(1) = q. Then, for each function f ∈ C∞(M), we have by
using the second fundamental theorem of calculus:

f(q)− f(p) = f(γ(1))− f(γ(0)) =
∫ 1

0

d

dt
f(γ(t)) dt

=

∫ 1

0
df(γ̇(t)) dt =

∫ 1

0
g(∇f, γ̇(t)) dt.

Using the Cauchy–Schwarz inequality, we get:

|f(q)− f(p)| ≤
∫ 1

0
|g(∇f, γ̇(t))| dt ≤

∫ 1

0
|∇f | |γ̇(t)| dt

≤ ‖∇f‖∞
∫ 1

0
|γ̇(t)| dt = ‖∇f‖∞ l(γ), (5)

where l(γ) denotes the length of the curve. So we obtain the following inequality:

dR(p, q) ≥ sup {|f(q)− f(p)| : f ∈ A, ‖∇f‖∞ ≤ 1} · (6)

The condition ‖∇f‖∞ ≤ 1 can be replaced by a weaker condition ess sup ‖∇f‖ ≤ 1 which allows
us to work with the set A ⊂ C(M) of Lipschitz continuous functions on M [30]. Within this
larger set, the equality is easily given by the usual distance as a function of its second argument
f(·) = dR(p, ·). Indeed, dR is Lipschitz continuous with ‖∇dR‖ = 1 except on a set of measure
zero (the point p and the cut locus), and we get the path-independent formula:

dR(p, q) = sup {|f(q)− f(p)| : f ∈ A, ess sup ‖∇f‖ ≤ 1} · (7)

The last step is the translation of this formula into an algebraic formalism. If M is a spin
manifold and D the Dirac operator, we have [22, Chapter 9.3]:

ess sup ‖∇f‖ ≤ 1 ⇐⇒ ‖[D, f ]‖ ≤ 1 (8)

which gives the formula (1).

The construction of the Riemannian distance formula can be clearly divided in three
important steps: the setting of a path-independent inequality (6), the construction of the equality
case (7) and the operatorial (spectral triple) formulation (8). The search for a Lorentzian
equivalent formula went through the same three steps and we summarize here its historical
evolution:

• 1998-2000, G. N. Parfionov and R. R. Zapatrin [9]: First mention of the duality (inversion
supremum-infimum and the inequality signs) in the formula (6) in a Lorentzian context.

• 2002-2003, V. Moretti [10]: Generalization of the formula (7) for globally hyperbolic
spacetimes using a local condition on the gradient ∇f (in a more recent terminology: using
functions that are “steep” almost-everywhere but only inside some specific compact sets)
and an attempt at algebraization using the Laplace-Beltrami-d’Alembert operator and a
net of Hilbert spaces.
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• 2010, N. Franco [12]: Generalization of the formula (7) for globally hyperbolic spacetimes
using a global condition on the gradient ∇f (using functions that are steep almost-
everywhere on the whole spacetime). The global behavior of the test functions is chosen
in order to facilitate a future algebraization. The proof of the equality case is done using
non-Lipschitz continuous causal functions.

• 2012-2013, N. Franco and M. Eckstein [13]: Algebraic formulation of the global condition on
the gradient (steep) for C1 functions, so a Lorentzian generalization of (8). However, this
algebraic formulation is not valid for non-Lipschitz continuous functions as needed for the
general proof in [12], so the proof of the distance formula is limited to spacetimes where the
usual distance function can be suitably approximated by C1 steep functions. A particular
proof for the Minkowskian case is given.

• 2014-2016, A. Rennie and B. E. Whale [14]: Extension of the formula obtained in [12]
for non-globally hyperbolic spacetimes. The correspondence is extended to spacetimes
where the usual Lorentzian distance is finite, while conjecturing that the condition of stable
causality should be necessary if the distance is also continuous. The steep condition is also
proved to be necessary for a formulation in term of test functions.

• 2017, E. Minguzzi [15]: As a consequence of the study of causality under less-regular
differentiability with the smoothing of non-Lipschitz continuous steep functions, a C1 proof
of the formula given in [12] is obtained, with the necessary and sufficient condition that
the spacetime must be stably causal and the usual Lorentzian distance function finite and
continuous. This gives a complete smooth validation of the results presented in [12, 13, 14].
An additional C1 proof of the formula, simplest but under the assumption of a globally
hyperbolic spacetimes, is also presented in [16].

3. The path-independent formulation of the Lorentzian distance
In this Section, we summarize the main arguments of the proof of Theorem 1. The key elements
of the Lorentzian distance formula are:

• The real-valued (continuous or not) causal functions, which are the functions which do not
decrease along every future-directed causal curve.

• The steep functions, which are C1 causal functions which increase sufficiently rapidly along
every future-directed causal curve., i.e. with g(∇f,∇f) ≤ −1 and past-directed gradient.

Unlike the Riemannian distance formula (1), we have to consider real-valued functions instead
of complex ones in order to reach a non-symmetric formula.

At first, we need an inequality which is a Lorentzian generalization of (6). The same two
theorems are used in their existing Lorentzian versions:

• The second fundamental theorem of calculus, valid for absolutely continuous, hence C1,
functions.

• The reverse Cauchy-Schwarz inequality [17]:

If v and w are timelike vectors, then |g(v, w)| ≥
√
−g(v, v)

√
−g(w,w).

Now we consider a time-oriented Lorentzian manifold (M, g) and two points p and q on it
such that p ≺≺ q. We can choose a piecewise C1 future-directed timelike curve γ : [0, 1] → M
with γ(0) = p and γ(1) = q. Then, for each function f ∈ C1(M,R),

f(q)− f(p) =
∫ 1

0

d

dt
f(γ(t)) dt =

∫ 1

0
g(∇f, γ̇(t)) dt. (9)
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Since γ̇(t) is almost everywhere a future-directed timelike vector, if we assume that ∇f is
everywhere timelike with constant past-directed orientation, then the sign of g(∇f, γ̇(t)) is
constant and positive, so we get:

f(q)− f(p) =

∫ 1

0
g(∇f, γ̇(t)) dt =

∫ 1

0
|g(∇f, γ̇(t))| dt

≥
∫ 1

0

√
−g(∇f,∇f)

√
−g(γ̇(t), γ̇(t)) dt

≥ inf
{√

−g(∇f,∇f)
}
l(γ), (10)

which is the Lorentzian counterpart of (5). This result can be extended by continuity to future-
directed causal curves and p � q. Then taking the supremum over all future-directed causal
curves from p to q we get the following path-independent inequality:

d(p, q) ≤ inf
f∈C1(M,R)

{
[f(q)− f(p)]+ : g(∇f,∇f)≤−1,

∇f past-directed

}
· (11)

Note that this result can be extended to non-absolutely continuous functions (hence non-
Lipschitz continuous) as long as we impose that the functions f remain causal. Indeed,
from their monotony, those functions are a.e. differentiable on any future-directed causal curve
γ : [0, 1] → M and instead of (9) we have the inequality f(γ(1)) − f(γ(0)) ≥

∫ 1
0

d
dtf(γ(t)) dt

which leads to the same formulation (10) and to the following formula:

d(p, q) ≤ inf
causal

functions f

{
[f(q)− f(p)]+ : ess sup g(∇f,∇f)≤−1,

∇f past-directed

}
· (12)

Three proofs have been given concerning the equality between the usual Lorentzian distance
and the formulas (11) or (12). Due to the length of those technical proofs, we only present the
main ideas here.

Under the condition of global hyperbolicity, a proof of the equality for the non-smooth
formulation (12) is presented in [12], with the construction of a sequence of a.e. steep continuous
functions converging to the equality and constructed as locally finite sums of distance functions
computed from points located near a suitable Cauchy surface. This particular proof can now
be transformed in a smooth version using the new results from [15], which is explicitly done in
[16], but it is still limited to globally hyperbolic spacetimes due to the use of a Cauchy surface
as main element. The second proof presented in [14] gets rid of the Cauchy surface and instead
uses the construction of a specific achronal surface S such that M = I+(S) ∪ S ∪ I−(S) and
considers the distance f(·) = d(S, ·) to this surface as the equality function. This extends the
proof of the non-smooth formulation (12) to spacetimes with finite Lorentzian distance (where
the distance is also allowed to be non-continuous).

The most recent and general proof can be found in [15] and concerns the smooth formulation
(11). It implies the precedent proofs (at least when the distance is continuous). The necessary
and sufficient conditions are the stable causality of the spacetime and finiteness and continuity
of the Lorentzian distance (which is automatic if the spacetime is globally hyperbolic). The
approach is here completely different and uses the idea that metric properties of spacetimes can
be computed using a causal theory on a space with one extra dimension M̃ = M × R. The
usual Lorentzian distance function can then be traded for a Lorentz-Finsler function defined on
causal tangent vectors of the product space. The final proofs of Theorem 1 is then given by [15,
Theorem 4.11] in the globally hyperbolic case and by [15, Theorem 4.15] in the more general
case of stably causal spacetimes, requiring the additional condition of finiteness and continuity
of the Lorentzian distance.
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4. The algebraic formulation of the Lorentzian distance
In this Section, we present the proof of Theorem 2 and especially the origin of the algebraic
constraint inside (3) and (4). Once more, we will see that the metric information emerges
naturally from the causal information on a space with one extra dimension. So at first we need
to review the causal theory for spectral triples.

We consider a stably causal Lorentzian n-dimensional manifold (M, g) with a spin structure
S with its associated space L2(M,S) of square integrable sections of the spinor bundle over M .
This space is naturally endowed with a indefinite inner product (·, ·) coming from the spin
structure and possesses all the properties of a Krein space [31], but can be turned into a Hilbert
spaceH using an alternative positive-definite inner product 〈·, ·〉 = (·,J ·) and (·, ·) = 〈·,J ·〉. The
operator J is called a fundamental symmetry and can be constructed from the Clifford action
of a timelike vector field [32]. Since stable causality implies the existence of a smooth temporal
function T [18], a (Hermitian) fundamental symmetry is easily given by J = ic(dT ) = iγ0,
where γ0 is the first flat gamma matrix respecting (γ0)2 = −1 (up to a smooth conformal
transformation which leaves the causality invariant). If we consider the Lorentzian Dirac
operator D = −ieμaγa∇S

μ , where e
μ
a stand for the vierbeins2, then this operator is anti-symmetric

for the Krein product, which is equivalent to say that JD is an anti-symmetric operator for the
Hilbert space H. Under the additional assumption of completeness of the manifold M under
spacelike reflexion, JD is a skew-Hermitian operator on H [5].

Then we have the following theorem coming from [13] :

Theorem 3. A function f ∈ C1(M,R) is causal if and only if

∀φ ∈ H, 〈φ,J [D, f ]φ〉 ≤ 0

where 〈·, ·〉 is the positive definite inner product on H.

Two elements are important for the proof of this Theorem. At first, the absolute continuity
of the function f . If the function is absolutely continuous, then the causal property can be fully
characterized by the following conditions on its gradient:

g(∇f,∇f) = gμνf,μf,ν ≤ 0, g(∇f,∇T ) = gμ0f,μ = −f,0 ≤ 0, (13)

where df = f,μdx
μ and x0 = T is orthonormal to the others chosen local coordinates. The second

element is the C1 behavior. Indeed, from the continuity of the derivative, if (13) is false at some
point of M , then it must be false on some neighborhood and this information can be caught by
a suitable specific spinor. From this observation, we can see that the smooth formulation of the
Lorentzian distance equation (2) is important for the algebraic generalization.

From the well-known property [D, f ] = −i c(df) [22], the proof of Theorem 3 relies on the
fact that the matrix:

J [D, f ] = iγ0 (−i) (γaeμaf,μ) = γ0γaeμaf,μ

is pointwise negative semi-definite if and only if (13) is respected. A first and technical proof
of this equivalence is given in [13] using the technique of the characteristic polynomial.3 We
present here another shorter consideration suggested in [33]. We have

J [D, f ] = −f,0 + γ0γieμi f,μ = −f,0 + b

2 We consider here a “pseudo-orthonormal” frame coming from the timelike vector field ∂0 = ∂T with e00 = 1 and
ei0 = e0i = 0 for i = 1, . . . , n− 1.
3 The initial proof was done under the hypothesis of global hyperbolicity but can be extended to simply causal
spacetimes by considering the pseudo-orthonormal frame.
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for i = 1, . . . , n − 1 where the second term b is Hermitian and respects b2 =
∥∥γiγjf,if,j∥∥2. So

the spectrum of b must be
{
±

∥∥gijf,if,j∥∥}. Since the reduced metric gij is positive definite we

get that J [D, f ] = −f,0 + b is negative semi-definite if and only if −f,0 ≤ 0 and gijf,if,j ≤ f2,0,
hence (13).

Theorem 3 is very important in noncommutative geometry since its provides a way to com-
pletely characterize causality at an algebraic level, since the complete set of causal functions is
sufficient to characterize the causal relations for stably causal spacetimes [15, 34]. Consequences
of Theorem 3 on noncommutative spacetimes (almost commutative spacetimes, Moyal space-
time) have already been handled with success [29, 35, 36, 37, 38, 39].

From Theorem 3, we can now easily get the characterization of the steep functions used in
(2). Once more, we consider a product space M̃ = M × R on which we extend the Lorentzian
metric g to g̃ by adding g̃nn = 1 and g̃μn = g̃nμ = 0 for μ = 0, . . . , n−1. We will use the extended
indices ã, μ̃ = 0, . . . , n. We also have to extend the spin structure to the new dimension, giving
an extended Dirac operator D̃. When n is even, this can be done very easily by considering
the chirality operator as an additional gamma matrix γn = ±χ = ±in2+1γ0 · · · γn−1 (with
eμn = ena = 0 and enn = 1). Now we can consider all functions of the form f̃ = f −xn ∈ C1(M̃,R)
where f ∈ C1(M,R), which trivially gives f̃,μ = f,μ and f̃,n = −1.

Then applying Theorem 3 to f̃ gives:

∀φ ∈ H,
〈
φ,J [D̃, f̃ ]φ

〉

=
〈
φ,J

(
−iγãeμ̃ãf,μ̃

)
φ
〉

=
〈
φ,J

(
−iγaeμaf,μ − iγnf̃,n

)
φ
〉

= 〈φ,J ([D, f ]± iχ)φ〉 ≤ 0

which is equivalent to the fact that f̃ is causal on (M̃, g̃), i.e. −f̃,0 = −f,0 ≤ 0 and:

g̃(∇̃f̃ , ∇̃f̃) = g̃μ̃ν̃ f̃,μ̃f̃,ν̃ = gμνf,μf,ν + g̃nnf̃,nf̃,n = g(∇f,∇f) + 1 ≤ 0

which is the exact characterization of a steep function. The choice of +iχ or −iχ is completely
arbitrary and has no influence on the formula, so from (2) we can write:

d(p, q) = inf
f∈C1(M,R)

{
[f(q)− f(p)]+ : ∀φ ∈ H, 〈φ,J ([D, f ] + iχ)φ〉 ≤ 0

}
,

which is valid for manifolds with even dimension n respecting the conditions of Theorem 1. So
the proof of the formula (3) is complete.

This process can also be applied in order to get a valid formula for odd-dimensional manifolds,
but this requires a doubling of the Hilbert space H̃ = H ⊗ C

2 and new gamma matrices
γ̃μ = γμ ⊗ σ1 for μ = 0, . . . , n − 1 and γ̃n = 1 ⊗ σ2 where σi are the Pauli matrices. The
fundamental symmetry becomes J̃ = J ⊗ σ1. The negative semi-definite operator becomes:

J̃ [D̃, f̃ ] =
(
J ⊗ σ1

) (
−ieμaf,μ(γa ⊗ σ1) + i(1⊗ σ2)

)
= J [D, f ]⊗ 1 + J ⊗ σ3.

However, σ3 =
(
1 0
0 −1

)
is diagonal, which means that the constraint:

∀φ̃ = (φ+, φ−) ∈ H̃,
〈
φ̃, J̃ [D̃, f̃ ]φ̃

〉
≤ 0

splits into two inequalities:

∀φ± ∈ H, 〈φ±,J ([D, f ]± 1)φ±〉 ≤ 0.

This gives rise to formula (4) and completes the proof of Theorem 2.
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5. Application on noncommutative spacetimes
Theorem 2 opens the possibility to compute metrical information on noncommutative
spacetimes. The formalism is the one of Lorentzian spectral triples (H,A, D) with a given
fundamental symmetry J with J 2 = 1, J ∗ = J , [J , a] = 0, ∀a ∈ A. The conditions on the

operator D are ∀a ∈ A, [D, a] is bounded, a(1 + (DD∗+D∗D)
2 )−

1
2 is compact and D∗ = −JDJ

(Krein skew-selfadjoint). For an even Lorentzian spectral triple, the Z2-grading χ must respect
χ∗ = χ, χ2 = 1, [χ, a] = 0, χJ = −Jχ and χD = −Dχ. The compactness condition on

a(1+ (DD∗+D∗D)
2 )−

1
2 is not necessary for the metrical information but it is a natural generalization

of the usual compact resolvent condition coming from the Riemannian case.
Then a Lorentzian distance, respecting the usual properties of non-negativity, antisymmetry

and inverse triangle inequality, can be defined between two states ϕ, ψ on A by:

d(ϕ, ψ) = inf
a∈A

{
[ψ(a)− ϕ(a)]+ : ∀φ ∈ H, 〈φ,J ([D, a] + iχ)φ〉 ≤ 0

}
, (14)

where iχ should be replaced by ±1 (both signs) if the Lorentzian spectral triple is odd.
There exist two technical difficulties in applying the formula (14) which we are going to

discuss. However, we will show that in all currently existing examples, those difficulties can be
bypassed.

The first difficulty concerns the fundamental symmetry J . With the minimal set of axioms
presented here concerning J , there is no guarantee that the signature is exactly Lorentzian
(it can correspond to a pseudo-Riemannian manifold in the commutative case) which means
that the Lorentzian distance formula could give no result. The exact set of axioms in order
to guarantee a Lorentzian signature is still an active subject of research, with some existing
but not identical working proposals [6, 7, 8, 36]. Since we want to keep this paper as general
as possible, we will not focus on one particular condition. The existing typical examples of
noncommutative spacetimes, all of which could fit into the Lorentzian spectral triple formalism,
are almost-commutative manifolds (Kaluza-Klein products of a usual Lorentzian manifold and
a discrete noncommutative internal space [35, 37]) and deformations of flat spacetimes (Moyal
spacetime, κ-Minkowski, Lorentzian cylinder, ... [29, 40]). For almost commutative manifolds,
the suitable fundamental symmetry is J = JM⊗1 where JM is a fundamental symmetry for the
based spacetime. For deformations of flat spacetimes, the canonical choice is J = iγ0. So, to
our knowledge, there is no currently existing toy model (noncommutative noncompact complete
Lorentzian spacetime) for which this problem must be taken into consideration, and the question
is reserved for abstract considerations.

The second difficulty concerns the algebra A and the space of states on it. In traditional
noncommutative geometry, A is a pre-C∗-algebra, since it corresponds in the commutative case
to continuous functions vanishing at infinity. For causal considerations (causal functions), this
algebra is too small and one must consider an additional specific unitization of A corresponding
to bounded functions [13]. However, steep functions present in the Lorentzian distance formula
are clearly unbounded and cannot fit into the usual pre-C∗-algebra formalism. One must find a
way to extend the initial pre-C∗-algebra corresponding to the states to unbounded elements and
be sure that (some of) the states are still well-defined and uniquely extended. One particular
way to realize such an extension is presented in [6]. Again, for all currently existing examples,
the problem can be at least partially bypassed. For almost commutative manifolds, all pure
states are product states between well-defined states on the based spacetime (evaluation maps)
and vector states on the discrete algebra. For deformation spaces, the elements of the initial
pre-C∗-algebra of bounded continuous functions are compact operators so all states correspond
to vector states which can be easily and uniquely extended to unbounded functions as long
as their evaluation remain finite, as used in [29]. Once more, this problem is an abstract one
and does not prevent the application of the Lorentzian distance formula to particular models of
noncommutative spacetimes.
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