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Phänomenologie von Neutrinos und mögliche SO(10) Ursprünge von Fermion-
massen und -mischungen

Wichtige, aber bisher unbeantwortete, Fragen in der Neutrinophysik sind die Neutrino-
massenhierarchie, präzise Messung der Mischungsparameter und CP -Verletzung. Ein in
der Literatur detailliert untersuchtes Schema für Mischungsparameter ist Tri-Bimaximale
Mischung. In der vorliegenden Arbeit wird die Wichtigkeit von alternativen Mischungs-
schemata betont, viele von ihnen analysiert, und ihre Vorhersagen mit aktuellen Messdaten
zu Neutrinomischungen konfrontiert. Wo notwendig zeigen wir wie Störungen der Vorher-
sagen erster Ordnung zu einem phänomenologisch akzeptablen Mischungsschema führen.
Des Weiteren erforschen wir die Aussicht die invertierte Hierarchie mit neutrinolosem dop-
peltem Betazerfall zu testen. Ein Ergebnis ist, dass das untere Limit der effektiven Neutri-
nomasse, die relevant für diesen Prozess und somit die Aussicht die invertierte Hierarchie
experimentell auszuschließen ist, sensitiv vom Neutrinomischungswinkel θ12 abhängt. Wei-
terhin beziehen wir Unsicherheiten aus der Kernphysik mit in die Analyse ein. Als näch-
stes analysieren wir die Möglichkeit den Ursprung von Fermionmassen und -mischungen
sowie die Baryonasymmetrie im Rahmen renormierbarer großer vereinheitlichter Theo-
rien basierend auf der Gruppe SO(10) zu erklären und berücksichtigen dabei Effekte des
Renormierungsgruppenlaufens. Modelle mit verschiedenen Higgsdarstellungen werden be-
trachtet. Nachdem die Modellparameter anhand experimenteller Daten eingeschränkt wor-
den sind, präsentieren wir Vorhersagen der Modelle für bisher ungemessene Observablen.
Für die leptonische CP -verletzende Phase geben wir zulässige Bereiche mit 68% Konfidenz
an.

Phenomenology of Neutrinos and Possible SO(10) Origins of Fermion Masses
and Mixings

Important but yet unanswered questions in neutrino physics are the neutrino mass hi-
erarchy, precision determination of mixings and CP violation. A widely studied mixing
scheme upon which many models are based is tri-bimaximal mixing. We emphasize the
importance of alternative mixing schemes and confront their predictions with current data
on neutrino mixings. Where necessary we show how perturbations of the leading order pre-
dictions can result in viable schemes. Further we study the prospects to test the inverted
hierarchy with neutrinoless double beta decay. We find that the lower limit of the effective
neutrino mass relevant for this process and hence the prospects to experimentally exclude
the inverted hierarchy are highly sensitive to the neutrino mixing angle θ12. We further
take into account uncertainties from nuclear physics. Next we analyze the possibility to
explain the origin of fermion masses and mixings as well as the baryon asymmetry within
renormalizable Grand Unified Theories based on SO(10), including effects of renormaliza-
tion group evolution. Models with different Higgs representations are considered. After
constraining the model parameters with experimental data we give the model predictions
for undetermined observables; for the leptonic CP violating phase we also show the ranges
allowed at 68% C.L.
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Chapter 1

Introduction

This thesis is dedicated to the study of the phenomenology of neutrino physics and to the
analysis of a possible SO(10) origin of fermion masses and mixings.
With the unambiguous discovery of neutrino oscillations [1, 2], the field of neutrino

physics brought to us the most firmly established experimental evidence for physics beyond
the Standard Model (SM)1, the SM being restricted here to a renormalizable SU(3)C ×
SU(2)L ×U(1)Y theory without right-handed neutrinos. This discovery gives strong expe-
rimental support to look for a successor or at least an extension of the SM. Furthermore, it
immediately opens up two central interrelated questions: (i) What is the origin of neutrino
masses and mixings? (ii) Is the neutrino a Dirac or a Majorana particle? While the first
question is to a large extent theoretical with experiments providing guidance, the second
question can in principle be decided from experiments searching for neutrinoless double
beta (0νββ) decay [5]. Generally, the potential impact of data from neutrino physics ex-
periments is very high. This is very much due to the special properties of neutrinos as
compared to the other SM particles. Firstly, as mentioned above, there is the possibility
of being Majorana particles. Secondly, the mixings in the lepton sector are very different
from those already known in the quark sector. While in the quark sector the off-diagonal
elements of the Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix are very small, in the
corresponding Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix, important for
neutrino experiments, all entries are of the same order of magnitude. Finally, the scale of
neutrino masses is at least six orders of magnitude below that of charged leptons, which
also distinguishes leptons from quarks. Therefore one can expect data from neutrino ex-
periments to be especially important in constraining the possibilities to extend the SM and
in giving hints which paths of theoretical research may turn out to be very fruitful.
A straightforward extension of the SM in order to incorporate neutrino masses is the

inclusion of right-handed neutrinos, which must be SM singlets. This again opens up an
intriguing possibility: through a mechanism known as thermal leptogenesis (see sec. 6.4
for details) the lightest of these new particles can produce the observed baryon asymmetry
and thus answer the question of the origin of matter. Taken together, this is more than

1Dark Matter [3] being the other one, which can however also have an origin outside of particle physics [4].
In this thesis we will not be concerned with Dark Matter.
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CHAPTER 1. INTRODUCTION

enough motivation to study the phenomenology of neutrinos.
The current main open questions in neutrino physics are the neutrino mass hierarchy

and precision determination of mixings. Here we will be concerned with both of them.
From the theory side, the most widely studied mixing scheme is tri-bimaximal (TBM)

mixing [6], which was first proposed as a purely phenomenological description of neutrino
mixing data. Since then the quest for a theory explaining neutrino mixings was often
tackled with flavor symmetry models [7], which try to reproduce the corresponding TBM
form of the mass matrix. There are, however, many other possibilities to explain the
observed data. It was shown that mass matrices that are significantly different from the
mass matrix yielding TBM mixing are phenomenologically viable [8]. Hence, one should
certainly ask the question as to whether there indeed exists some hidden flavor symmetry
or whether the nearly observed TBM mixing is purely accidental. In particular, we will
explore a plethora of alternatives to TBM and confront the predictions of these possibilities
with current data on neutrino mixings.
One way to address the question of neutrino mass hierarchy is neutrinoless double beta

(0νββ) decay [5]. This process violates lepton number by two units and hence would verify
the Majorana nature of neutrinos [9]. The (as yet unobserved) 0νββ decay rate depends on
a number of known and unknown neutrino parameters. Among the unknown parameters
the neutrino mass hierarchy (i.e., the sign of the atmospheric mass-squared difference) is
of particular interest. Neutrinoless double beta decay offers the fascinating possibility to
rule out the inverted neutrino mass hierarchy. However, in practice this crucially depends
on theoretical calculations of nuclear matrix elements for 0νββ decay and on the precise
knowledge of the solar neutrino mixing angle (θ12). In this thesis we focus on the particle
physics aspects of 0νββ decay by precisely analyzing the latter dependence, but we also
take into account uncertainties coming from nuclear matrix element calculations.
The fact that the prospects to exclude the inverted hierarchy with 0νββ decay exper-

iments depend on θ12 gives a nice connection to the lepton mixing schemes that were
described above and that are analyzed in this thesis. However, our world consists of lep-
tons and quarks and one should wonder whether there is a connection between these two
particle species. Grand Unified Theories (GUTs) [10] provide a compelling framework to
establish and analyze possible relations between quarks and leptons. By reducing the num-
ber of multiplets to which observed particles are assigned it is possible to relate different
parameters from the Yukawa sector, which are otherwise unrelated in the SM. Besides
being suitable to establish relations between quarks and leptons, Grand Unified Theories
can give an explanation for charge quantization [10], which is not understandable within
the SM. Furthermore, in GUTs it is possible to relate the three SM gauge couplings to
each other and thus unify all particle interactions. This motivation is further strengthened
by the observed approximate unification of SM gauge couplings at a common high energy
scale MGUT ∼ 1015 ÷ 1016 GeV. The fact that lepton number violation is a generic predic-
tion of GUTs makes – in view of 0νββ decay– the Grand Unification paradigm even more
attractive. Specifically, through either observing 0νββ decay or setting new limits on the
process it is possible to constrain or exclude several GUT scenarios.
Among different Grand Unified Theories, models based on SO(10) symmetry are particu-
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larly interesting. SO(10) GUTs have the advantage that all SM fermions of one generation
plus a right-handed neutrino neatly fit into one 16-dimensional representation of SO(10),
giving strong relations between Yukawa couplings of quarks and leptons. In addition, one
can argue that SO(10) GUTs predict the existence of right-handed neutrinos. Furthermore,
through the seesaw mechanism [11] SO(10) explains in an elegant way why neutrinos are
so light. Although there is no direct experimental hint (like proton decay) for a Grand
Unified Theory, considering the list of arguments in favor of GUTs in general and SO(10)
in particular we will analyze renormalizable GUTs based on SO(10) in the second part of
this thesis.
The thesis is organized as follows. In the first part we are concerned with the phe-

nomenology of neutrino physics. In particular, in chapter 2 we analyze many alternative
scenarios to tri-bimaximal mixing and plot the allowed ranges for neutrino mixing angles in
comparison with data. We also suggest a new scenario, ”hexagonal mixing”, not previously
discussed in the literature. This scenario has later been shown to be derivable from a flavor
symmetry [12]. Two of the schemes we considered, ”hexagonal” and ”bimaximal” mixing,
display a high amount of symmetry but require moderate perturbations in order to bring
them into compliance with the data, and we have examined the various ways for doing so.
In chapter 3 we analyze the prospects of ruling out the inverted neutrino mass hierarchy
with neutrinoless double beta decay experiments and emphasize the strong dependence on
the value of the solar neutrino mixing angle. We give the required half-lives to exclude
(and touch) the inverted hierarchy regime for all double beta decay isotopes with a Q-value
above 2 MeV. The nuclear matrix elements from 6 different groups and, if available, their
errors are used and compared. We carefully put the calculations on equal footing in what
regards various convention issues. We also use our compilation of matrix elements to give
the attainable values of the effective mass for a given half-life value. Note that chapters 2
and 3 have already been published together with coauthors as refs. [13] and [14], respec-
tively, and are updated here due to the recent discovery of the non-zero reactor mixing
angle (θ13) [15–17], more precise data on the other mixing parameters now available, and
new limits on 0νββ decay [18, 19]. Further work we performed on the phenomenology of
neutrinos can be found in ref. [20]. Since it does not reflect the central theme it was not
included in this thesis.
The second part of this thesis is concerned with numerical fits of fermion masses and

mixings within renormalizable SO(10) theories. Models with 10H + 126H , 126H + 120H ,
and 10H + 126H + 120H Higgs representations are analyzed in the case of type I seesaw
dominance. Available literature heavily focuses on supersymmetric GUTs; in this thesis
both supersymmetric as well as non-supersymmetric versions of the models are considered.
For supersymmetric models we use three different values of tan β (50, 38, 10). To compare
the models with data we include detailed 1-loop renormalization group evolution (RGE)
in our analysis. Previous studies use input values for their analysis that have been evolved
to high energies with some generic assumptions and then perform the fits at the scale of
unification, MGUT. Evolving observables from low energies to high energies depends on
model details, e.g., the seesaw scale or the Yukawa coupling matrix of neutrinos above
the seesaw scale. Hence, studies that perform the analysis at MGUT suffer from inherent

3



CHAPTER 1. INTRODUCTION

systematic uncertainties. We avoid these by including RGE into our fitting procedure. In
addition we take into account effects from non-degenerate seesaw scales by integrating out
heavy neutrinos one by one during RGE at their respective energy scale.
Performing RGE ourselves allows us to consider both possibilities, normal or inverted, for

the neutrino mass hierarchy. This is only sensibly possible when including RGE into the
analysis, since for the inverted hierarchy neutrino parameters are known to evolve sizably
between high and low energies. This explains the strong focus on the normal hierarchy
in the literature. By including RGE into our fitting procedure we can show that some
models work only with the normal hierarchy and hence will be ruled out if the neutrino
mass spectrum turns out to be inverted.
Observables commonly considered when analyzing GUTs are fermion masses and mix-

ings. As a novel feature of our analysis we check the ability of the models to additionally
reproduce the experimentally observed baryon asymmetry of the universe through ther-
mal leptogenesis, also including flavor effects. A further novelty presented in this thesis
is that we additionally constrain the non-supersymmetric models by fitting the mass of
the Higgs boson (assuming recent discoveries of a new resonance at the Large Hadron
Collider [21, 22] are indeed produced by a Higgs boson), which introduces severe tensions
for all models under consideration. Finally, we give the predictions for as yet unmeasured
quantities, namely the effective mass 〈mν〉 relevant for neutrinoless double beta decay, the
leptonic CP violating phase, δlCP , the mass of the lightest neutrino, and the masses of
the heavy neutrinos. Experiments in the near future will decide whether the atmospheric
neutrino mixing angle corresponds to maximal mixing (i.e., θ23 = 45◦) or not. In addi-
tion the next question to be answered in neutrino physics is the value of δlCP . Therefore
we check whether fits to observables described above really fix these quantities to a tight
interval or whether the models are compatible with a broad range of values. For δlCP we
provide confidence intervals, compare those derived with and without inclusion of RGE
and find that the results are very different. Thus we stress the importance of including
RGE especially when investigating model predictions.
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Part I

Phenomenology of Neutrino Physics
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Chapter 2

Alternatives to Tri-bimaximal Mixing

2.1 Introduction

The text in this chapter corresponds in large parts to the one in ref. [13] that has been
published together with coauthors as C. H. Albright, A. Dueck, and W. Rodejohann,
“Possible Alternatives to Tri-bimaximal Mixing”, Eur. Phys. J. C 70 (2010) 1099–1110. It
is updated here due to more precise data on neutrino mixing angles available now. Updates
concern tbl. 2.1 and figs. 2.1–2.6.

The first discoveries of neutrino oscillations arose from observations of the depletions of
atmospheric muon-neutrinos [1] and solar electron-neutrinos [2], relative to their expected
predictions. In efforts to understand these findings, many theorists adopted top-down
approaches in attempts to construct models which would explain the data. For this purpose,
various forms of the neutrino and charged lepton mass matrices were postulated, some
applied directly to the light left-handed neutrino mass matrix, while other more ambitious
efforts invoked the seesaw mechanism partly using also the framework of grand unified
models. Examples to constrain the mass matrices involved the assignment of texture
zeros, the use of a vertical family symmetry group, and/or the selection of a horizontal flavor
symmetry, usually of a continuous type such as U(1), SU(2) or SU(3). The more complete
models and their predictions differed by the choice of family and flavor symmetries, and the
fermion and Higgs representation assignments made in the construction of the unknown
Yukawa interactions needed to extend the Standard Model.

As the oscillation data became more accurate with refinements in the atmospheric [23,24]
and solar [25–27] neutrino experiments and introduction of land-based reactor [28–30] and
long baseline neutrino [31, 32] experiments, bottom-up approaches to construct models
became more feasible. Among the first to realize the mixing data were pointing to a
rather simple construction were Harrison, Perkins and Scott [6], who coined the phrase
”tri-bimaximal mixing”. In this scheme the atmospheric neutrino mixing angle (θ23) is
maximal (45◦), the reactor neutrino mixing angle (θ13) vanishes, while the solar neutrino
mixing angle is θ12 ≃ 35.3◦, such that sin2 θ12 =

1
3
. With this tri-bimaximal mixing (TBM)

texture in mind, many models have been constructed based on the discrete symmetry
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CHAPTER 2. ALTERNATIVES TO TRI-BIMAXIMAL MIXING

groups such as S3, A4, S4, T
′, etc., with a vast majority using A4 (see refs. [7,33] for reviews

on flavor symmetries, in particular A4, and ref. [34] for a classification of all existing (50+)
type I seesaw, type II seesaw and non-seesaw A4 models). After the recent discovery of θ13
being non-zero [15–17], the leading order prediction of the tri-bimaximal mixing pattern
(θ13 = 0) is definitely excluded. Thus, with new data available our study presented in this
chapter is even more relevant than at the time when it was originally conducted [13].

It is fair to say that TBM dominates the theoretical literature in flavor model building1.
We remind the reader that attempts to explain the mixing data based on grand unified
models using continuous flavor symmetry groups were also reasonably successful in ex-
plaining the mixing data (see ref. [35] for a list of 13 valid SO(10) models in agreement
with current data). This raises the issue whether there indeed exists some hidden flavor
symmetry, such as A4, or whether the nearly observed TBM mixing is accidental in nature.
Ref. [35] tried to attack this issue from the point of perturbing the neutrino mass matrix
mTBM

ν corresponding to TBM. It was argued that when relative corrections to the mass
matrix entries are applied, the value of |Ue3| can be crucial to distinguish TBM from grand
unified theories. A very recent paper [8] has shown that mass matrices which are signif-
icantly different from mTBM

ν are also allowed. It is thus important not to focus solely on
one particular mixing scheme, such as TBM, but to look for other options as well. In any
case, it is apparent that very accurate experimental determinations of the neutrino mixing
parameters will be required in order to pin down the source of the flavor mixing.

In the spirit of the above considerations, we point out in this chapter the existence of a
plethora of alternatives to TBM and explore a number of other possibilities for the neutrino
mixing matrix. We wish to stress that many of the mixing scenarios that we describe are
allowed by the current data equally well. Some of them have been obtained in models
with the flavor symmetry specified at the outset, and very often the choice of symmetry
group is motivated by geometrical considerations. Good examples here are the two golden
ratio possibilities for the solar neutrino mixing angle. Among the other examples we give
is trimaximal mixing, where only the second column of the tri-bimaximal mixing matrix
with equal flavor contributions is postulated. Variations of this theme make the invariant
assumption for the first or third column or one of the three rows. Yet another hypothesis
involves quark-lepton complementarity where the quark and neutrino mixing matrices are
related. Obviously, one should try to disentangle the huge number of proposed flavor
models in order to sort out the correct one, or at least rule out many of the incorrect
ones [36–38].

We should also mention that it is not unlikely that corrections to mixing schemes may
apply. Radiative corrections, effects of charged lepton rotations, soft breaking, or “NLO”
effects of the underlying flavor models are possibilities. The magnitude of the corrections
relies heavily on the models which realize the respective scenarios, and depend on a number
of unknown parameters, such as neutrino masses or CP phases. Let us mention, however,
that radiative corrections are small for a normal hierarchy of neutrino masses, and that

1The original suggestion of tri-bimaximal mixing was a purely phenomenological Ansatz and only later
shown to be obtainable in dedicated flavor models.

8



2.2. LEPTON MIXING SCHEMES

charged lepton rotations play no role if the symmetry basis coincides with the charged
lepton mass basis. In principle one could perform for each scenario to be discussed in the
following a dedicated analysis of perturbations in analogy, e.g., to the model-independent
study for TBM in ref. [39], or to studies for concrete models in refs. [40–43]. In the present
thesis we neglect the study of these aspects, and rather focus on pointing out the existence of
a variety of alternatives to TBM, their possible physics motivation, and the “unperturbed”
predictions of the scenarios. In principle, for each scenario considered, one can use the
bottom-up approach to determine the neutrino mass matrix and presumably to construct
a model based on some discrete flavor symmetry which yields the desired mixing. This is
well illustrated, for instance, in the case of tri-bimaximal mixing for which an extensive
literature exists in which models based on one of the discrete symmetries mentioned above
have been proposed.

2.2 Lepton Mixing Schemes

We begin with the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix, which in
general is given by

U = U †
ℓ Uν , (2.1)

where Uℓ (Uν) stems from diagonalization of the charged lepton (neutrino) mass matrix.
The standard form of the PMNS matrix is

U =





c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13
s12 s23 − c12 c23 s13 e

iδ −c12 s23 − s12 c23 s13 e
iδ c23 c13



P , (2.2)

where cij = cos θij , sij = sin θij with δ the unknown CP -violating Dirac phase. The two
equally unknown Majorana phases appear in P = diag(1, eiα, eiβ). While the phases are
currently unconstrained, the present best-fit values of the mixing angles and their 1σ and
3σ ranges [44] are presented in tbl. 2.1 (other groups obtain very similar results [45, 46]).
The above parameterization of U is obtained by three consecutive rotations:

U = R23(θ23) R̃13(θ13; δ)R12(θ12) , where, e.g., (2.3)

R12(θ12) =





c12 s12 0
−s12 c12 0
0 0 1



 , R̃13(θ13; δ) =





c13 0 s13 e
−iδ

0 1 0
−s13 e

iδ 0 c13



 . (2.4)

The most popular mixing scenario approximating the current data is the tri-bimaximal
one [6, 47–49]:

UTBM =











√

2
3

√

1
3

0

−
√

1
6

√

1
3

−
√

1
2

−
√

1
6

√

1
3

√

1
2











, (2.5)
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CHAPTER 2. ALTERNATIVES TO TRI-BIMAXIMAL MIXING

Parameter Best-fit±1σ 3σ range

sin2 θ12 0.30± 0.013 0.27 → 0.34

sin2 θ23 0.41+0.037
−0.025 0.34 → 0.67

sin2 θ13 0.023± 0.0023 0.016 → 0.030

Table 2.1: Mixing angles and their 1σ and 3σ ranges [44].

corresponding to2

sin2 θ12 =
1

3
, sin2 θ23 =

1

2
, |Ue3| = 0 . (2.6)

The overwhelming majority of the plethora of models (see [7, 33, 34] for a list of refer-
ences) invokes the symmetry group A4. One reason is that A4 is rather economical: it is
the smallest discrete group containing a three dimensional irreducible representation (IR).
Furthermore, in the flavor basis it can be generated by two generators3 S and T , one of
which is diagonal and leaves the charged lepton mass matrix diagonal, while the other one
leaves mTBM

ν invariant [7], where

mTBM
ν =





A B B
· 1

2
(A+ B +D) 1

2
(A+ B −D)

· · 1
2
(A+ B −D)



 (2.7)

is the most general neutrino mass matrix leading to TBM. A geometrical motivation is
provided by noting that A4 is the symmetry group of the regular tetrahedron, and the
angle between two faces is 2θTBM, where sin2 θTBM = 1

3
. Models can be constructed in

such a way that the Yukawa couplings, and hence the mass matrices, are invariant under
certain group elements, which are generated by S and T , which in turn are connected to
the symmetry of the geometrical object the group describes. In this way the connection
between geometry and flavor physics can arise.
Tri-bimaximal mixing is a variant of the more general µ–τ symmetry, which leaves solar

neutrino mixing unconstrained:

Uµ–τ =









cos θ12 sin θ12 0

− sin θ12√
2

cos θ12√
2

−
√

1
2

− sin θ12√
2

cos θ12√
2

√

1
2









, (2.8)

corresponding to

sin2 θ23 =
1

2
, |Ue3| = 0 . (2.9)

2To obtain this form of U , it is necessary to insert θ23 = −π/4 in the standard parameterization (2.2) of
the PMNS matrix. Compared to θ23 = +π/4, the difference is unphysical, of course. In the following we
will use θ23 = −π/4 whenever we speak about maximal atmospheric mixing.

3Some groups require 3 generators.
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2.2. LEPTON MIXING SCHEMES

From a theoretical point of view, θ12 is unconstrained by µ–τ symmetry and hence can be
expected to be a number of order one. This is indeed in good agreement with data. A
simple Z2 or S2 exchange symmetry acting on the neutrino mass matrix suffices to gener-
ate µ–τ symmetry. In fact, any symmetry having Z2 or S2 as a subgroup can be used, for
instance, D4 [50, 51].

We now turn to other mixing scenarios which serve as alternatives to the tri-bimaximal
one. First consider trimaximal mixing and its variants [52–57] (see also [58]). Here a given
row or column of U takes the same form as for tri-bimaximal mixing. The term“trimaximal”
was originally used for the case of the second column of the PMNS matrix being identical
to the TBM case. The analogous possibilities for the other rows and columns go under the
same banner “trimaximal”. The notation is such that if the ith column (row) of U has the
same form as for TBM, then the scenario is called TMi (TM

i). In case this applies to the
first column of U , the condition is:

TM1 :





|Ue1|2
|Uµ1|2
|Uτ1|2



 =





2/3
1/6
1/6



 . (2.10)

The implications of this Ansatz are [57]

sin2 θ12 =
1

3

1− 3 |Ue3|2
1− |Ue3|2

≃ 1

3

(

1− 2 |Ue3|2
)

(2.11)

and

cos δ tan 2θ23 = − 1− 5 |Ue3|2
2
√
2 |Ue3|

√

1− 3 |Ue3|2
≃ −1

2
√
2 |Ue3|

(

1− 7

2
|Ue3|2

)

. (2.12)

For the second column the originally-named trimaximal condition is

TM2 :





|Ue2|2
|Uµ2|2
|Uτ2|2



 =





1/3
1/3
1/3



 , (2.13)

leading to [52,53,57]

sin2 θ12 =
1

3

1

1− |Ue3|2
≥ 1

3
(2.14)

and

cos δ tan 2θ23 =
2 cos θ13 cot 2θ13
√

2− 3 sin2 θ13
=

1− 2 |Ue3|2
|Ue3|

√

2− 3 |Ue3|2
(2.15)

≃ 1√
2

1

|Ue3|

(

1− 5

4
|Ue3|2

)

. (2.16)
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CHAPTER 2. ALTERNATIVES TO TRI-BIMAXIMAL MIXING

If we would insist that the third column of UTBM remains invariant instead, i.e., |Ue3|2 = 0,
|Uµ3|2 = |Uτ3|2 = 1

2
, then θ13 = 0, θ23 = π/4, while θ12 is a free parameter and δ is arbitrary.

This case (TM3 in our notation) is nothing other than µ–τ symmetry.
It was argued [55,56] that models based on flavor symmetries which have A4 as a subgroup

should be possible for TM2. For TM1 and TM3, these groups are S4 and S3, respectively.
Models based on flavor symmetry groups ∆(27) [52,53] and S3 [54] have been constructed
for the trimaximal scenario TM2.
Now consider the case where one of the rows of the tri-bimaximal mixing matrix remains

invariant [57]. We start with the case of the first row in UTBM remaining invariant, denoting
this by TM1,

TM1 :
(

|Ue1|2 , |Ue2|2 , |Ue3|2
)

=

(

2

3
,
1

3
, 0

)

. (2.17)

Here θ23 is a free parameter, while sin2 θ12 =
1
3
, as well as θ13 = δ = 0.

If we consider only the second or third row invariant, we can again correlate all four
mixing parameters. Starting with the second row, i.e.,

TM2 :
(

|Uµ1|2 , |Uµ2|2 , |Uµ3|2
)

=

(

1

6
,
1

3
,
1

2

)

, (2.18)

one immediately finds from |Uµ3|2 = 1
2
:

sin2 θ23 =
1

2 (1− |Ue3|2)
≃ 1

2

(

1 + |Ue3|2
)

≥ 1

2
, (2.19)

with atmospheric neutrino mixing on the “dark side” (θ23 ≥ π/4). The second correlation
among the mixing parameters is

sin2 θ12 ≃
1

3
− 2

√
2

3
|Ue3| cos δ +

1

3
|Ue3|2 cos 2δ . (2.20)

On the other hand, with the third row remaining invariant,

TM3 :
(

|Uτ1|2 , |Uτ2|2 , |Uτ3|2
)

=

(

1

6
,
1

3
,
1

2

)

, (2.21)

the atmospheric neutrino mixing is now predicted on the “bright side,” (θ23 ≤ π/4):

sin2 θ23 =
1− 2 |Ue3|2
2 (1− |Ue3|2)

≃ 1

2

(

1− |Ue3|2
)

≤ 1

2
, (2.22)

while the solar neutrino mixing is correlated with |Ue3| and δ according to

sin2 θ12 ≃
1

3
+

2
√
2

3
|Ue3| cos δ +

1

3
|Ue3|2 cos 2δ . (2.23)
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2.2. LEPTON MIXING SCHEMES

We also note the recently proposed tetramaximal mixing scheme (T4M) [59]. Its name
stems from the fact that it can be obtained by four consecutive rotations, each having a
maximal angle of π/4, and properly chosen phases associated with the rotations:

Utetra = R23(π/4; π/2)R13(π/4; 0)R12(π/4; 0)R13(π/4; π) . (2.24)

The notation of the rotation matrices is defined in eqn. (2.3). The definite predictions are4

δ = π/2, sin2 θ23 =
1

2
, sin2 θ12 = (

5

2
+
√
2)−1 ≃ 0.255 , (2.25)

|Ue3|2 =
1

4
(
7

4
−

√
2) sin2 θ12 =

1

4
(
3

2
−
√
2) ≃ 0.021 . (2.26)

Another interesting possible property of U is that it might be symmetric: U = UT . One
can show that there follows one constraint on the mixing parameters [60]:

|Ue3| =
sin θ12 sin θ23

√

1− sin2 δ cos2 θ12 cos2 θ23 + cos δ cos θ12 cos θ23
. (2.27)

Scenarios in which this happens at lowest order, for instance, reflect “Quark-Lepton Uni-
versality” [61]. Here it is proposed that down quarks and charged leptons are diagonalized
by the same matrix V and that the down quark mass matrix is hermitian. Furthermore,
mD = mup = mT

up, and MR is also diagonalized by V , where mD (MR) is the Dirac (Ma-
jorana) mass matrix in the type I seesaw mechanism. With these assumptions it follows
that the PMNS matrix is symmetric. In general, U is symmetric if Uℓ = S U †

ν , where S is
a symmetric and unitary matrix. Moreover, if m∗

ν and (symmetric) mℓ are diagonalized by
the same matrix, again the PMNS matrix is symmetric.

Several proposed mixing matrices single out the solar mixing angle for special treatment.
In the case of bimaximal mixing (BM), sin2 θ12 = 1/2, with the same atmospheric and
reactor neutrino mixing angles as in the case of tri-bimaximal mixing or µ–τ symmetry.
Hence the mixing matrix has the form [62–66]

UBM =







1√
2

1√
2

0

−1
2

1
2

− 1√
2

−1
2

1
2

1√
2






, (2.28)

In [67] it has been shown that for instance one can use the discrete symmetry S3 to construct
such a mixing matrix. While the value sin2 θ12 =

1
2
is ruled out by close to 10σ, this mixing

scenario has recently been revived in the form of a model based on S4 [68]. Here the two

4By multiplying a fifth maximal rotation R12(π/4; 2π/3) to the right of Utetra one could obtain“quintamax-
imal mixing”, which has more complicated predictions: sin2 θ12 = (3+

√
2)/(10 + 4

√
2) ≃ 0.282, |Ue3|2 =

(3− 2
√
2)/8 ≃ 0.021, sin2 θ23 = 1

2
and JCP = (3

√
2− 2)/256 ≃ 0.0088. Here JCP = Im{Ue1 Uµ2 U

∗
e2 U

∗
µ1}

is the usual measure for CP violation.
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CHAPTER 2. ALTERNATIVES TO TRI-BIMAXIMAL MIXING

generators of the group are chosen such that one is diagonal and the other one leaves mBM
ν

invariant, where mBM
ν is the most general mass matrix leading to bimaximal mixing, which

is obtained from eqn. (2.7) by removing B. Bimaximal mixing can be corrected by charged
lepton corrections, leading to QLC scenarios (see below).
Another possibility proposed here is “hexagonal mixing” (HM), where θ12 = π/6, or

sin2 θ12 = 1/4. In this case, again with maximal atmospheric and vanishing reactor neutrino
mixings, the mixing matrix is given by

UHM =







√
3
2

1
2

0

− 1
2
√
2

√
3

2
√
2

− 1√
2

− 1
2
√
2

√
3

2
√
2

1√
2






. (2.29)

Here D12 is an appropriate discrete flavor symmetry. The angle θ12 = π/6 is obviously
the external angle of the dodecagon, whose symmetry group is D12. One can also use D6,
where the external angle is π/3. Both BM and HM require corrections to bring them into
agreement with current global fits. A strategy to do this is given in sec. 2.3. Note that
this requires a larger correction for bimaximal mixing than for hexagonal mixing, where
the necessary correction is moderate.
There are two proposals which link solar neutrino mixing with the golden ratio angle

ϕ = (1 +
√
5)/2:

ϕ1 : cot θ12 = ϕ ⇒ sin2 θ12 =
1

1 + ϕ2
≃ 0.276 , (2.30)

ϕ2 : cos θ12 =
ϕ

2
⇒ sin2 θ12 =

1

4
(3− ϕ) ≃ 0.345 . (2.31)

The observation that the first relation is allowed has been made in refs. [69, 70]. Inter-
estingly, the first relation may be obtained with the choice of A5 as the flavor symmetry
group, as noted in ref. [71]. This follows since A5 is isomorphic to the symmetry group of
the icosahedron whose 12 vertices separated by edge-length 2 have Cartesian coordinates
specified by (0,±1,±ϕ), (±1,±ϕ, 0) and (±ϕ, 0,±1). Indeed, one can write the generators
of one of the three-dimensional IRs of A5 in terms of ϕ [71]. One could in principle assign
the values sin2 θ23 =

1
2
and Ue3 = 0 to the two golden ratio relations.

The second golden ratio relation was proposed first in [72]. In ref. [73] a model based on
the discrete flavor symmetry D10 has been applied to obtain this angle. Believe it or not,
cos θ12 =

ϕ
2
implies nothing other than θ12 = π/5, and therefore arguments similar to those

given above for hexagonal mixing apply: the angle π/5 is the external angle of a decagon
and D10 is its rotational symmetry group.

The final class of alternative mixing scenarios we consider deals with Quark-Lepton
Complementarity (QLC), which can be used to relate the quark and lepton mixing matrices.
The most naive form relates the solar neutrino mixing angle, θ12, to the quark Cabibbo
angle, θq12, by [74,75]

QLC0 : θ12 =
π

4
− θq12 ⇒ sin2 θ12 ≃ 0.280 . (2.32)
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2.2. LEPTON MIXING SCHEMES

One may assume a similar relation for the 23-sector, θ23 = π
4
− θq23, leading to sin2 θ23 ≃

0.459.
These QLC relations can be approximately obtained by multiplying a bimaximal matrix,

see eqn. (2.28), with the CKM (or a CKM-like) matrix. For definiteness, we stick to the
CKM matrix in what follows. It is given in the Wolfenstein parametrization [76] by

V =









1− 1
2
λ2 λ Aλ3 (ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3 (1− ρ+ iη) −Aλ2 1









+O(λ4). (2.33)

In analogy to the PMNS matrix it is a product of two unitary matrices, V = V †
up Vdown,

where Vup (Vdown) is associated with the diagonalization of the up- (down-) quark mass
matrix. As reported in [77, 78] the best-fit values and the 1σ, 2σ and 3σ ranges of the
parameters λ,A, ρ̄, η̄ are

λ = sin θC = 0.2272+0.0010, 0.0020, 0.0030
−0.0010, 0.0020, 0.0030 , (2.34)

A = 0.809+0.014, 0.029, 0.044
−0.014, 0.028, 0.042 , (2.35)

ρ̄ = 0.197+0.026, 0.050, 0.074
−0.030, 0.087, 0.133 , (2.36)

η̄ = 0.339+0.019, 0.047, 0.075
−0.018, 0.037, 0.057 , (2.37)

where ρ̄ = ρ (1− λ2/2) and η̄ = η (1− λ2/2). From the relation U = V † UBM one finds5

QLC1 : sin2 θ12 ≃
1

2
− λ√

2
cosφ+O(λ3) , |Ue3| ≃

λ√
2
+O(λ3) , (2.38)

sin2 θ23 ≃
1

2
− λ2

4
(1 + 4A cos(φ− ω)) +O(λ4) , (2.39)

(2.40)

where λ is the sine of the leading 12-entry in V , i.e., the sine of the Cabibbo angle. The
phases φ and ω are not related to the phase in the CKM matrix but are relative phases [79]
between Uℓ = V and UBM, with φ corresponding to the Dirac phase in neutrino oscillations.
With the Jarlskog invariant serving as the measure of leptonic CP violation,

JCP = Im{Ue1 Uµ2 U
∗
e2 U

∗
µ1} ≃ λ

4
√
2
sinφ+O(λ3) , (2.41)

numerically one finds |Ue3| ≃ 0.160, sin2 θ12 >∼ 0.339, and |JCP | <∼ 0.0274, since φ <∼ π/4.25
for sin2 θ12 to be in its allowed 3σ range.

5Sometimes a Georgi-Jarlskog factor of 1

3
appears in model realizations of QLC, in which case the results

to be presented can be obtained approximately by replacing λ with λ/3.
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Scenario sin2 θ12 sin2 θ23 sin2 θ13

min max min max min max

TBM 0.333 0.500 0.000
µ − τ − 0.500 0.000
TM1 0.296 0.333 ** −

TM2 0.333 0.352 ** −

TM3 − 0.500 0.000
TM1 0.333 − 0.000
TM2 ** 0.500 0.528 −

TM3 ** 0.472 0.500 −

T4M 0.255 0.500 0.021
U=UT 0.000 0.389 0.000 0.504 0.0343 0.053
BM 0.500 0.500 0.000
HM 0.250 0.500 0.000
ϕ1 0.276 0.500 0.000
ϕ2 0.345 0.500 0.000
QLC0 0.280 0.459 −

QLC1 0.331 0.670 0.442 0.534 0.023 0.029
QLC2 0.276 0.726 0.462 0.540 0.0005 0.0016

Table 2.2: Predictions for sin2 θ12, sin2 θ23, and sin2 θ13 = |Ue3|2 for the different mixing
scenarios considered. The appearance of the symbol − indicates a free parameter of the
model, while the symbol ** indicates a prediction which depends upon the unknown phase
δ. The min and max values listed are determined from the presently allowed 3σ range for
|Ue3|.

To obtain this scenario in a seesaw framework6, an approach somewhat similar to that
for Quark-Lepton Universality discussed above is possible [74,75]: diagonalization of mν is
achieved via mν = U∗

BM mdiag
ν U †

BM and produces exact bimaximal mixing. The Uℓ matrix
diagonalizing the charged lepton mass matrix mℓ corresponds to the CKM matrix V . With
mℓ = mT

down, wheremdown is the down-quark mass matrix, it follows that the up-quark mass
matrix mup is real and diagonal. It is assumed to correspond to the Dirac mass matrix in
the type I seesaw formula, and this in turn fixes MR.
Then there is the second QLC scenario, in which the PMNS matrix is given by U∗

BM V †.
One finds

QLC2 : sin2 θ12 ≃
1

2
− λ cosφ+O(λ3) , |Ue3| ≃

Aλ2

√
2

+O(λ3) , (2.42)

sin2 θ23 ≃
1

2
+

Aλ2

√
2

cosφ′ +O(λ3) , (2.43)

6Seesaw realizations of QLC scenarios are studied in detail in [80–83].
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where λ is the 12-entry, and Aλ2 the 23-entry of V . Again the phases φ and φ′ are unrelated
to the phase in the CKM matrix. Note that there is now a correlation between leptonic
CP violation and quark CKM mixing:

JCP ≃ Aλ2

4
√
2
sinφ′ +O(λ4) . (2.44)

Here the type I seesaw realization goes as follows [75]: diagonalization of mν is achieved
via mν = U∗

ν m
diag
ν U †

ν and Uν is related to V (in the sense that Uν = V †). The charged
leptons are diagonalized by Uℓ = UT

BM. This in turn can be achieved when Vup = V †,

therefore Vdown must be the unit matrix. With the definition of MR = V ∗
R Mdiag

R V †
R, where

VR = V ∗
up, we have mup = mD = Vup m

diag
up V , and since Vup = V † the neutrino mass matrix

mν = −mT
D M−1

R mD is diagonalized by the CKM matrix. Note that QLC1, QLC2 and
Quark-Lepton Universality require that the eigenvalues of the fermion mass matrices differ
even though some of the mixing angles are the same. Such mass matrices may, e.g., be
“form diagonalizable”ones [84], which means that the mixing matrix which diagonalizes the
mass matrix is independent of the values of the eigenvalues (such as for bimaximal or TBM).

We summarize the numerical values of all scenarios considered here in tbl. 2.2. For some
of the scenarios, all three mixing angles are predicted, while in others one or two of the
mixing parameters remain free parameters (indicated by the symbol −) and are not de-
termined by the models in question. Where possible, minimum and maximum values of
the mixing parameters are determined by adopting the present experimental 3σ range for
the mixing element |Ue3|, and in the cases of the QLC1 and QLC2 models, also for the
Wolfenstein parameters. For four of the models, one of the mixing angles is constrained by
the other mixing parameters, cf. eqns. (2.12), (2.15), (2.20), and (2.23), but the actual nu-
merical value relies on one knowing the presently unconstrained phase δ. Such constrained
predictions are indicated by the symbol ** in tbl. 2.2.
In figs. 2.1, 2.2 and 2.3 we plot the ranges or values of the three mixing variables, sin2 θ12,

sin2 θ23, and |Ue3|, respectively that can be obtained for each of the scenarios by varying, if
necessary, the other variables over their present 3σ experimental range. The experimentally
allowed best-fit values, 1σ and 3σ ranges of the variables are indicated by solid or broken
horizontal lines as shown in the figures. Two-dimensional plots are given in figs. 2.4, 2.5, and
2.6 as functions of sin2 θ12 vs. |Ue3|, sin2 θ23 vs. |Ue3|, and sin2 θ23 vs. sin2 θ12, respectively.
The correlations between those observables can be crucial to distinguish scenarios with
similar predictions.
When we performed this analysis for the first time [13] most of the models covered the

then allowed ranges of the mixing angles, with the notable exceptions of the bimaximal and
hexagonal mixing models, BM and HM. For these models, one needs to make perturbations
on the zeroth order results given in tbl. 2.2. We present in sec. 2.3 a simple procedure to
perturb the hexagonal and bimaximal mixing matrices, as well as the relevant procedure
for the quark-lepton complementarity models, in order to bring their results into better
agreement with the data. With the very precise measurement [15–17] of the then unknown
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Figure 2.1: Predictions for sin2 θ12 of the mixing scenarios discussed in the text. For some
of the scenarios sin2 θ12 depends on the other mixing parameters. Varying them in their
experimentally allowed 3σ ranges gives the plotted ranges of sin2 θ12.
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Figure 2.2: Same as fig. 2.1, but now for sin2 θ23.
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Figure 2.3: Same as fig. 2.1, but now for |Ue3|.
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Figure 2.4: Correlations between sin2 θ12 and |Ue3| constrained by the experimental 3σ
ranges of the mixing parameters. For scenarios where sin2 θ12 depends also on the un-
known Dirac phase δ the whole area inside the corresponding lines is possible, while in
the case of TM1,2 only parameter combinations lying on the dashed (blue) and continuous
(brown) lines, respectively, are allowed. TM2 and TM3 are here indistinguishable. We
show the experimental ranges that were allowed when we performed this analysis for the
first time [13] (denoted by ”old”) as well as the currently allowed ranges.
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Figure 2.5: Same as fig. 2.4, but now for sin2 θ23. Like sin2 θ12 in the TM1,2 scenarios, in
the TM2,3 scenarios (magenta and black line, respectively) sin2 θ23 depends only on |Ue3|
and not on the Dirac phase δ.
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reactor mixing angle, θ13, most scenarios are in trouble, with the notable exceptions of
QLC1, TM

2, and TM3, albeit one can hold up that TM2,3 profit from not making any
prediction on θ13. T

4M, in excellent agreement with the recent determination of θ13, suffers
from deviations of its prediction on θ12 by more than 3σ. For models not in agreement
with data one can adobt the procedure of perturbing their leading order mixing matrices,
as done for models HM and BM in sec. 2.3.

2.3 Perturbing Hexagonal and Bimaximal Mixing

We begin by discussing the hexagonal mixing Ansatz, defined by

θℓ12 =
π

6
= 30◦ ⇒ sin2 θℓ12 =

1

4
, (2.45)

together with maximal θℓ23 and θℓ13 = 0. From now on we denote lepton (quark) mixing
angles with a superscript ℓ (q). For this scenario the unperturbed mixing matrix in the
lepton mass basis reads

UHM =











√

3
4

1
2

0

− 1
2
√
2

√

3
8

−
√

1
2

− 1
2
√
2

√

3
8

√

1
2











P , (2.46)

where the Majorana phases are contained in P = diag(1, eiα, eiβ). The mass matrix in the
charged lepton basis is given by m0

ν = U∗ mdiag
ν U † and has the texture

m0
ν =











A B B

· 1
2
(A+

√

8
3
B +D) 1

2
(A+

√

8
3
B −D)

· · 1
2
(A+

√

8
3
B +D)











, (2.47)

where the masses and Majorana phases are contained in

A−
√

2

3
B = m1 , A+

√
6B = m2 e

−2iα , D = m3 e
−2iβ . (2.48)

We can also write

m0
ν =

m1

4







3 −
√

3
2

−
√

3
2

· 1
2

1
2

· · 1
2






+

m2 e
−2iα

4




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1
√

3
2

√

3
2

· 3
2

3
2

· · 3
2






+

m3 e
−2iβ

2





0 0 0
· 1 −1
· · 1





(2.49)

= m1 Φ1 Φ
T
1 +m2 e

−2iα Φ2 Φ
T
2 +m3 e

−2iβ Φ3Φ
T
3 ,(2.50)
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where Φ1,2,3 are the columns of the mixing matrix. In this limit the ee element ofm0
ν , whose

magnitude governs the rate of neutrinoless double beta decay vanishes when the Majorana
phase is such that e−2iα = −1 and in addition the relation m1 = 1

3
m2, or m2

1 = ∆m2
⊙/8

holds.
Independent of the source of perturbation, the most general way to describe deviations

from hexagonal mixing is [85] (see also [86, 87])

U = R23(−π/4)Uǫ R12(π/6) , where Uǫ = R23(ǫ
ℓ
23) R̃13(ǫ

ℓ
13; δ

ℓ)R12(ǫ
ℓ
12) . (2.51)

Note that the order of the small rotations in Uǫ is chosen such that it corresponds to
the order of rotations in the usual description of a mixing matrix. This “triminimal” [85]
parametrization implies that each small parameter is responsible for only one observable7.
The observables are obtained from eqn. (2.51) as follows:

sin2 θℓ12 =
1

4

(

cos ǫℓ12 +
√
3 sin ǫℓ12

)2

≃ 1

4

(

1 + 2
√
3 ǫℓ12 + 3 (ǫℓ12)

2
)

, (2.52)

sin2 θℓ23 =
1

2
− cos ǫℓ23 sin ǫℓ23 ≃

1

2
− ǫℓ23 , (2.53)

Ue3 = sin ǫℓ13 e
−iδℓ . (2.54)

Note that Ue3 agrees with its form in the usual parametrization and that the deviation
from maximal atmospheric mixing is to very good precision given by ǫℓ23. Regarding solar
neutrino mixing, the values sin2 θℓ12 of 0.318, 0.302, 0.337, 0.27, 0.38 and 1

3
are obtained for

ǫℓ12 = 0.076, 0.058, 0.096, 0.023, 0.141, and 0.092.
In the same way we can perturb the bimaximal mixing matrix, given by eqn. (2.28). The

triminimally perturbed bimaximal mixing matrix can be written as

U = R23(−π/4)Uǫ R12(π/4) , (2.55)

with Uǫ the same as in eqn. (2.51). The observables are obtained as

sin2 θℓ12 =

(

1

2
+ sin ǫℓ12 cos ǫ

ℓ
12

)

≃ 1

2
+ ǫℓ12 , (2.56)

sin2 θℓ23 =

(

1

2
− sin ǫℓ23 cos ǫ

ℓ
23

)

≃ 1

2
− ǫℓ23 , (2.57)

Ue3 = sin ǫℓ13 e
−iδℓ . (2.58)

(2.59)

Compared to the hexagonal mixing scenario, the values sin2 θℓ12 of 0.318, 0.302, 0.337, 0.27,
0.38 and 1

3
are obtained for ǫℓ12 = −0.186,−0.204,−0.166,−0.239,−0.121, and −0.170.

7A similar strategy may be applied to tetra-maximal mixing, where θ12 lies slightly below the current 3σ
range.
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Returning to hexagonal mixing, one may discuss a related parametrization for the CKM
matrix in the spirit of QLC. Namely, with the requirement that the 12-mixing angles of
the quark and lepton sector add up to 45 degrees, it follows automatically that

(θq12)
0 = 15◦ =

π

12
⇒ sin(θq12)

0 =

√
3− 1

2
√
2

= 0.2588 , (2.60)

Note that at zeroth order θℓ12 = 2θq12. There are models in the literature leading to this
angle (θq12)

0 [88,89]. In the spirit of triminimality, we can describe the necessary but small
deviations of this scheme with

V = R23(ǫ
q
23) R̃13(ǫ

q
13; δ

q)R12(ǫ
q
12)R12(π/12) . (2.61)

The sine of the 12-mixing angle is given by

sin θq12 =
1

2

√

2−
√
3 cos 2ǫq12 + sin 2ǫq12 ≃

√
3− 1

2
√
2

(

1 + (2 +
√
3) ǫq12

)

. (2.62)

Note that the last expression is equivalent to sin θq12 ≃ sin(θq12)
0+ǫq12 cos(θq12)

0. Numerically
we have sin θq12 ≃ 0.2588 + 0.9659 ǫq12, so that ǫq12 can be almost directly identified with the

deviation of the sine of Cabibbo angle from
√
3−1
2
√
2
. In order to bring sin θq12 into the observed

1σ or 3σ range given in eqn. (2.34) one requires

ǫq12 = −0.0326+0.00102,0.00308
−0.00102,0.00308 . (2.63)

Note that here ǫq12 is negative, while ǫ
ℓ
12 (see eqn. (2.52)) is positive. Choosing the tempting

value ǫℓ12 = −ǫq12 gives sin2 θℓ12 ≃ 0.279.
We finish by noting an interesting observation made in ref. [90]: taking the golden ratio

relation ϕ1 (tan θℓ12 = 1/ϕ) at face value, and assuming QLC (θℓ12 + θq12 = π/4) gives

tan θq12 = tan(π/4− θℓ12) =
1− 1/ϕ

1 + 1/ϕ
=

1

ϕ3
, (2.64)

or sin θq12 ≃ 0.2298. Hence, the golden ratio may appear in the quark sector as well.

2.4 Conclusions

With more refined neutrino mixing data available, it is clear that TBM gives a reasonably
accurate lowest order approximation to the PMNS mixing matrix. With this in mind,
many authors have constructed top-down models based on some discrete flavor symmetry
group which yield TBM mixing as a natural consequence. Of the possible choices, the A4

group appears to be the most favored choice based on its simplicity.
We have argued in this chapter, however, that other possible approximations to the

mixing matrix exist such as trimaximal mixing or its variants, tetramaximal mixing, a
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symmetric mixing matrix, bimaximal and hexagonal mixings, and mixings based on the
golden ratio angle or quark-lepton complementarity. Many of these scenarios have already
been discussed in the literature, but we have compiled this list in order to make easy
comparisons of their predictions. For those requiring perturbations to bring them into
better agreement with the data, we have illustrated how triminimal perturbations of the
bimaximal, and hexagonal mixings or quark-lepton complementarity, for example, can
accomplish this. For each one of the starting mixing matrix assumptions, one can then use
a bottom-up approach to determine the appropriate neutrino mass matrix from which a
suitable discrete flavor symmetry will presumably reproduce the observed mixing matrix.
The theoretical literature focusses heavily on TBM, and it would be dangerous to avoid

looking for and studying alternatives. We hope that the analysis performed in this chapter
contributes to the required attention on alternatives.
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Chapter 3

Neutrinoless Double Beta Decay, the
Inverted Hierarchy and Precision
Determination of θ12

3.1 Introduction

The text in this chapter corresponds in large parts to the one in ref. [14] that has been
published together with coauthors as A. Dueck, W. Rodejohann, and K. Zuber, “Neutrino-
less Double Beta Decay, the Inverted Hierarchy and Precision Determination of theta(12)”,
Phys. Rev. D 83 (2011) 113010. It is updated here due to more precise data on neutrino
mixing angles and new limits on neutrinoless double beta decay available now.
Neutrinoless double beta decay (0νββ) is a (as yet unobserved) process of fundamental

importance for particle physics [5, 91–94]. In 0νββ decay a nucleus with mass number A
and atomic number Z decays into a nucleus of mass number A and atomic number Z + 2
thereby emitting two electrons [93, 95]:

(A,Z) → (A,Z + 2) + 2e− . (3.1)

The initial state has lepton number L = 0 and baryon number B = A, whereas the final
state has lepton number L = 2 and baryon number B = A. Hence, this process violates
lepton number, an accidental symmetry in the Standard Model (SM), by two units. While
lepton and baryon number are not conserved at the quantum level even within the SM [93],
B−L is a conserved quantity in the SM also at the quantum level. In many Grand Unified
Theories (GUTs) [10] B − L is part of the gauge symmetry and broken spontaneously
at some energy scale. Hence, with 0νββ decay experiments one also probes fundamental
theories at very high energies. We will investigate several GUTs based on SO(10) in part II
of this thesis.
Let us now discuss phenomenological aspects of 0νββ decay. In the best motivated

interpretation [96] of this process, light Majorana neutrinos, whose mixing is observed in
neutrino oscillation experiments, are exchanged in the process, while all other mechanisms

25



CHAPTER 3. NEUTRINOLESS DOUBLE BETA DECAY

W

νi

νi

W

dL

dL

uL

e−
L

e−
L

uL

Uei

q

Uei

Figure 3.1: Feynman diagram for neutrinoless double beta decay in the standard interpre-
tation [93].

which can lead to 0νββ decay play a negligible role. The corresponding Feynman diagram
at the quark level is shown in fig. 3.1. In this chapter we will stick to this interpretation of
0νββ decay (for other potential mechanisms, see ref. [93] and references therein). In this
interpretation the particle physics quantity which is probed is the ”effective mass”

〈mν〉 =
∣

∣U2
e1 m1 + U2

e2 m2 e
iα + U2

e3 m3 e
iβ
∣

∣ . (3.2)

Here Ue1 = cos θ12 cos θ13, Ue2 = sin θ12 cos θ13 and U2
e3 = 1 − U2

e1 − U2
e2. The current

knowledge of these mixing angles is given in tbl. 3.1. The lifetime of 0νββ decay is inversely
proportional to the effective mass-squared.
Apart from verifying the Majorana nature of neutrinos, the effective mass depends on

a number of known and unknown neutrino parameters, and testing or cross-checking the
values of these parameters is obviously an immensely important task. Among the unknown
neutrino parameters the neutrino mass ordering (the sign of the atmospheric mass-squared
difference) is of particular interest. It is indeed an exciting possibility to rule out the
inverted ordering (IH) with 0νββ. This is possible because the lower limit of the effective
mass is non-zero in this case [97, 98]. Actually, if at the time when the inverted hierarchy
regime is under test at double beta decay experiments the mass ordering is known to be
inverted (by an oscillation experiment [99–102] or by a galactic supernova explosion), then
testing the inverted hierarchy means testing directly the Majorana nature of neutrinos. If
the mass ordering is not known, the experiments can rule out the inverted hierarchy if in
addition the Majorana nature of neutrinos is assumed. However, this happens in the vast
majority of models and scenarios leading to neutrino mass, and is also natural from an
effective field theory point of view.
In any case, a natural scale for the effective mass provided by particle physics is the min-

imal value of the effective mass in the inverted hierarchy, and should be the intermediate-
or long-term aim of double beta experiments.
We stress in this chapter that the lower limit of the effective mass is a sensitive function

of the solar neutrino mixing angle θ12. When we first performed our analysis [14] the then
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Parameter Best-fit+1σ
−1σ 3σ

sin2 θ12 0.30± 0.013 0.27-0.34

sin2 θ13 0.023± 0.0023 0.016 → 0.030

∆m2
A [10−3 eV2] 2.47+0.069

−0.067 2.27-2.69

∆m2
⊙ [10−5 eV2] 7.50±0.185 7.00-8.09

Table 3.1: Neutrino mixing parameters: best-fit values as well as 1σ and 3σ ranges [44].

allowed 3σ range of θ12 introduced an uncertainty of a factor of 2 on the lower limit of
〈mν〉. With now more precise data available (see tbl. 3.1), this impact has reduced to a
factor of 1.43, but our arguments pointed out at earlier time still apply. In realistic, i.e.,
background dominated, experiments the achievable half-life reach is proportional to

T 0ν
1/2 ∝ a× ǫ×

√

M × t

B ×∆E
, (3.3)

where a is the isotopical abundance of the double beta emitter, M the used mass, t the
measuring time, ǫ the detection efficiency, ∆E the energy resolution at the peak position
and B the background index typically given in counts/keV/kg/yr. Hence, an uncertainty
of 1.43 (2) in the effective mass corresponds to a factor of 1.432 ≃ 2 (4) in terms of lifetime
reach and a factor of 1.434 ≃ 4.2 (16) uncertainty in the above combination of experimental
parameters. We stated in brackets the impact of uncertainty in θ12 as it was when we first
pointed out this issue, although even a factor of 4.2 is still a rather high uncertainty when
it comes to evaluating the physics potential of 0νββ decay experiments.
In this chapter we aim to stress this fact and to illustrate its consequences. We quantify

the requirements to test the inverted hierarchy in terms of necessary half-life reach. We
consider all 0νββ-isotopes with a Q-value above 2 MeV and compile the nuclear matrix
element calculations from six different groups. That is, we study the isotopes 48Ca, 76Ge,
82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, 136Xe, and 150Nd, as well as nuclear matrix
element calculations applying QRPA [103,104], Nuclear Shell Model [105], the Interacting
Boson Model [106], the Generating Coordinate Method [107], and the projected-Hartree-
Fock-Bogoliubov model [108]. Particular care is taken to put the calculations on equal
footing in what regards various convention issues, such as the axial vector coupling gA and
the nuclear radius appearing in the phase space factor. We present the results for different
values of θ12, in order to show its impact.
We are taking the point of view that the spread of nuclear matrix elements and lifetimes

obtained in our analysis is a fair estimate of the true allowed range. Though experimental
approaches to reduce the uncertainty [109], and statistical approaches to better estimate
the theoretical uncertainties (see, e.g., ref. [110]), have started, at the current stage the
collection of available results and the use of their spread is the most pragmatic procedure.
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Nevertheless, our main conclusions are independent of this and quite straightforward:
a precision determination of the solar neutrino mixing angle is crucial to determine the
physics potential of, and requirements for, neutrinoless double beta decay experiments.
Some proposals for solar neutrino experiments which can pin down θ12 more precisely can
be found in the literature [111–114]. Large-scale long baseline reactor neutrino experiments
have also been proposed [115–118], but to our knowledge still await detailed study by
experimentalists. The main focus of future precision neutrino oscillation physics is put
on mass ordering, the other mixing angles and CP violation in facilities such as super-,
beta-beams or neutrino factories. Recently, with the discovery of θ13 being relatively large
[15–17], there is also increased interest in using reactor neutrinos at intermediate baselines
[99–101] or accelerator neutrinos at long baselines [102] to determine the mass hierarchy
and CP violating phase. Given the impact of θ12 on neutrinoless double beta decay that we
discuss here, we hope to provide additional motivation for studies and proposals in order
to determine θ12 as precisely as possible1. At least we encourage to seriously determine
and optimize the potential of future experiments in what regards the achievable precision
of θ12.
Using our compilation of matrix element calculations, we also present results for the

necessary half-life in order to touch the inverted hierarchy regime. Finally, we investigate
which limits on the effective mass can be achieved for a given half-life, and what the current
limits are. These points are independent of the value of θ12.
We find that the isotope 100Mo tends to be interesting, in the sense that with the same

lifetime it can slightly more easily rule out the inverted hierarchy, or achieve the better
limit on the effective mass. This may be helpful for experiments considering various alter-
native isotopes to study.

3.2 Effective Neutrino Mass and Experimental Values

of Neutrino Oscillation Parameters

In general, the decay rate of 0νββ decay factorizes in a kinematical, nuclear physics and
particle physics part:

Γ0ν = Gkin |Mnucl|2 Xpart . (3.4)

The observation of the decay would establish the nature of the neutrino as a Majorana
particle [9], independent on whether indeed light Majorana neutrinos are exchanged in the
diagram leading to 0νββ. However, the most natural interpretation is indeed that this
is the case, because we know that neutrinos have a non-vanishing rest mass, and in the
vast majority of models they are Majorana particles. The particle physics parameter in

1The additional physics potential of precision solar neutrino or θ12 experiments is, e.g., solving the metal-
icity problem of the Sun [119], probing the transition region of the electron neutrino survival probability
in the Sun’s interior [120], or distinguishing theoretical approaches to lepton mixing such as tri-bimaximal
mixing from alternative models [13], e.g., as treated in chapter 2.
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〈mν〉IHmin [eV]

sin2 θ12 minimal maximal

0.270 0.0196 0.0240
0.318 0.0154 0.0189
0.380 0.0100 0.0123

Table 3.2: Lower limit of the effective electron neutrino mass in the case of an inverted
hierarchy for different values of sin2 θ12. The minimal and maximal values are obtained by
varying ∆m2

A, ∆m2
⊙ and sin2 θ13 in their allowed 3σ ranges.

the decay width eqn. (3.4) is therefore Xpart ∝ 〈mν〉2, where 〈mν〉 is the effective electron
neutrino mass defined as

〈mν〉 =
∣

∣c212 c
2
13 m1 + s212 c

2
13 m2 e

iα + s213 m3 e
iβ
∣

∣ , (3.5)

where cij = cos θij, sij = sin θij, and α, β are the two Majorana phases. It depends on the
three neutrino mass eigenstates mi and the first row of the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix. The effective mass, 〈mν〉, can span a wide range due to
the unknown Majorana phases, the unknown total neutrino mass scale, and the unknown
mass ordering. We are interested here mostly in the case of the inverted hierarchy (IH),
which corresponds to m2 > m1 > m3. In this case the maximum and minimum values of
〈mν〉 are given by (see, e.g., refs. [97, 98, 121])

〈mν〉IHmax =
√

m2
3 +∆m2

A c212c
2
13 +

√

m2
3 +∆m2

⊙ +∆m2
A s212c

2
13 +m3s

2
13 , (3.6)

and

〈mν〉IHmin =
√

m2
3 +∆m2

A c212c
2
13 −

√

m2
3 +∆m2

⊙ +∆m2
A s212c

2
13 −m3s

2
13 , (3.7)

respectively. Here, ∆m2
⊙ = m2

2 −m2
1 is the solar and ∆m2

A = |m2
3 −m2

1| the atmospheric
mass-squared difference. The values we use for the mixing parameters are shown in tbl. 3.1.
Unless the smallest massm3 is larger than about 0.05 eV, the effective mass does basically

not depend on its value, and increases linearly withm3 afterwards. In the case ofm3
<∼ 0.05

eV, one finds

〈mν〉IHmax ≃ c213

√

∆m2
A , (3.8)

and

〈mν〉IHmin ≃ c213

√

∆m2
A cos 2θ12 =

(

1− |Ue3|2
)

√

∆m2
A

(

1− 2 sin2 θ12
)

, (3.9)

respectively. The maximal value is obtained for α = 0 and the minimal value for α = π/2.
Since θ12 is non-maximal, the minimal value of 〈mν〉 is non-zero, which is in contrast to the
normal mass ordering, in which the effective mass can vanish. By obtaining experimentally
an upper limit on the effective mass below 〈mν〉IHmin, we can rule out the inverted ordering.
If we would know by independent evidence that the ordering is inverted (i.e., from a long
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Figure 3.2: The effective electron neutrino mass in the case of an inverted hierarchy is
shown as a function of (a) sin2 θ12 and (b) ∆m2

A with best-fit values and 3σ ranges for the
other oscillation parameters. On the right side of the plots the corresponding half-life for
76Ge is shown assuming three different nuclear matrix elements: M ′0ν = 2.81 (red dashed
axis), M ′0ν = 5 (blue dotted axis), and M ′0ν = 7.24 (black solid axis).

baseline experiment, or observation of a galactic supernova), then obtaining such an upper
limit would even mean that the Majorana nature of neutrinos would have been ruled out.

From a more pragmatic point of view, particle physics provides a scale for limits on the
effective mass, which should be the sensitivity goals of the experimental program. These
values are 〈mν〉IHmax and 〈mν〉IHmin given in eqn. (3.8) and (3.9), respectively. In fig. 3.2 we
show the effective mass for the best-fit and the 3σ ranges of the oscillation parameters
as a function of sin2 θ12 and ∆m2

A. It is clear that the dependence of the lower limit on
sin2 θ12 is very strong. In the currently allowed 3σ range the range of θ12 quantifies to a
factor of 2 uncertainty for 〈mν〉IHmin, which translates into a factor 22 = 4 in lifetime reach
for an experiment. We illustrate this in the plots by translating 〈mν〉 into the half-life for
76Ge for three representative values of the nuclear matrix elements (see sec. 3.3.1). Tbl. 3.2
shows the numerical values of the effective electron neutrino mass in the case of an inverted
hierarchy for different values of the solar neutrino parameter sin2 θ12. The uncertainty in
the other parameters |Ue3| and ∆m2

A is by far not as significant, it amounts in total to a
factor less than 25 %. An extensive program to test ∆m2

A and |Ue3| is underway (see, e.g.,
ref. [122]) and will have decreased this uncertainty considerably by the time the 0νββ-
experiments of the required sensitivity are running. The maximal value of the effective
mass does not depend on θ12, and hence its value is uncertain by less than 25 %.

3.3 Half-life Sensitivities and the Inverted Hierarchy

We have seen above that in order to rule out the inverted ordering, and to evaluate the
physics potential of future experiments, the value of θ12 is of crucial importance. We will
now attempt to quantify the impact of θ12 in terms of experimentally required half-life.
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Isotope G0ν [10−14 yrs−1] Q [keV] nat. abund. [%]

48Ca 6.35 4273.7 0.187
76Ge 0.623 2039.1 7.8
82Se 2.70 2995.5 9.2
96Zr 5.63 3347.7 2.8

100Mo 4.36 3035.0 9.6
110Pd 1.40 2004.0 11.8
116Cd 4.62 2809.1 7.6
124Sn 2.55 2287.7 5.6
130Te 4.09 2530.3 34.5
136Xe 4.31 2461.9 8.9
150Nd 19.2 3367.3 5.6

Table 3.3: G0ν for different isotopes using r0 = 1.2 fm. Values taken from tbl. 6 of
ref. [104] (G0ν

1 in their notation) and scaled to gA = 1.25 (G0ν of 110Pd taken from tbl. IV of
ref. [108]). Also shown is the Q-value for the ground-state-to-ground-state transition which
is calculated using isotope masses from ref. [123] and the natural abundance in percent.
Note that there is a misprint in ref. [104], which quotes G0ν for 100Mo as 11.3×10−14 yrs−1.

Towards this end, we will have to care with the available calculations of the nuclear matrix
elements (NMEs). We have scanned the literature and extracted the NME values for five
different calculational approaches of six different groups. If given by the respective authors,
we include the error estimates in the calculations for our results. In order to compare them
in a proper way, we carefully try to put the NMEs on equal footing, because details of
conventions are often different in different publications. We then consider all 11 potential
0νββ-isotopes with a Q-value above 2 MeV. We discuss the necessary half-lifes to rule out
and to touch the inverted hierarchy, putting particular emphasis on the θ12-dependence if
necessary. Finally, using our compilation we also give the limits on 〈mν〉 as a function of
future half-life limits for the 11 interesting isotopes. Using the published half-life limits of
different isotopes, we also give the current limits on the effective mass.

3.3.1 Nuclear Matrix Elements and the Half-life

The 0νββ decay half-life is given according to eqn. (3.4) by2 [124]

(T 0ν
1/2)

−1 = G0ν
∣

∣M0ν
∣

∣

2
(〈mν〉

me

)2

, (3.10)

where G0ν is the phase space factor, M0ν the NME, me the electron mass, and the effective
electron neutrino mass 〈mν〉 as given in eqn. (3.5). It is known that the conversion of a
lifetime into an effective mass, in particular when different NMEs are compared, should

2Note that sometimes the factor 1/m2
e is carried into the definition of G0ν .

31



CHAPTER 3. NEUTRINOLESS DOUBLE BETA DECAY

 0

 2

 4

 6

 8

 10

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd

Isotope

NSM
QRPA (Tue)

QRPA (Jy)
IBM
IBM

GCM
PHFB

Pseudo-SU(3)

M
′0
ν

Figure 3.3: NMEs calculated in different frameworks. We have scaled the cited values to
r0 = 1.2 fm and gA = 1.25 (see eqn. (3.12)) to make them directly comparable. The exact
values are given in tbl. 3.4.

be performed carefully [125, 126]. The nuclear physics parameters, for instance the axial-
vector coupling gA lying in the range 1 <∼ gA <∼ 1.25, should strictly speaking introduce
an uncertainty in the value of M0ν only. However, it is convention to include gA in the
phase space factor as well. In addition, the nuclear radius RA = r0A

1/3 (A being the
atomic number) appears in G0ν , and there are differences in the normalization of RA with
r0, which should be taken into account. This leads to the small complication that NMEs
calculated with different values for gA and r0 cannot be directly compared with each other,
since they have different phase space factors and hence seemingly equal (by their value)
matrix elements will lead to different decay half-lifes [125] (see also the appendix of [127]).
We will outline these issues in more detail in what follows.

The phase space factor is through convention proportional to g4A/R
2
A [104],

G0ν ∝ g4A
R2

A

, (3.11)

with RA = r0A
1/3 being the nuclear radius and 1 . gA . 1.25 the axial-vector coupling.

The dependence on RA stems from the desire to make the NMEs dimensionless. Therefore
in the definition of the NMEs there is a factor of RA which is compensated for by the factor
1/R2

A in G0ν . To resolve the issue of comparing matrix elements calculated using different
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NSM [105] Tü [128,129] Jy [130] IBM [106] GCM [107] PHFB [108]
Isotope (UCOM) (CCM) (UCOM) (Jastrow) (UCOM) (mixed)

48Ca 0.85 - - - 2.37 -
76Ge 2.81 4.44 - 7.24 4.195 - 5.355 4.636 - 5.465 4.6 -
82Se 2.64 3.85 - 6.46 2.942 - 3.722 3.805 - 4.412 4.22 -
96Zr - 1.56 - 2.31 2.764 - 3.117 2.530 5.65 2.24 - 3.46
100Mo - 3.17 - 6.07 3.103 - 3.931 3.732 - 4.217 5.08 4.71 - 7.77
110Pd - - - 3.623 - 5.33 - 8.91
116Cd - 2.51 - 4.52 2.996 - 3.935 2.782 4.72 -
124Sn 2.62 - - - 4.81 -
130Te 2.65 3.19 - 5.50 3.483 - 4.221 3.372 - 4.059 5.13 2.99 - 5.12
136Xe 2.19 1.71 - 3.53 2.38 - 2.802 3.352 4.2 -
150Nd - 3.45 - 2.321 - 2.888 1.71 1.98 - 3.7

Table 3.4: NMEs calculated in different frameworks. The method used to take into account
short-range correlations is indicated in brackets. We have scaled the cited values to r0 = 1.2
fm and gA = 1.25 (see eqn. (3.12)) to make them directly comparable. If ranges instead
of single NME values are given then they arise due to intrinsic model details varied in the
respective publications. This table is graphically represented in fig. 3.3, the pseudo-SU(3)
NME for 150Nd plotted there is 1.00 [131].

values of gA, some – but not all – authors define

M ′0ν =
( gA
1.25

)2

M0ν , (3.12)

thereby carrying the gA dependence from G0ν to M ′0ν , i.e.,

G0ν(M0ν)2 = G0ν
1.25(M

′0ν)2, (3.13)

with G0ν
1.25 = G0ν(gA = 1.25). This means that these NMEs share a common G0ν factor –

that of gA = 1.25. Still one has to be careful when comparing NMEs from different groups,
since different authors take different values for r0, usually r0 = 1.1 fm (e.g., refs. [128,129])
or r0 = 1.2 fm (e.g., refs. [105, 106, 130]). The NMEs are proportional to r0 and therefore
when comparing two different matrix elementsM0ν

1 , M0ν
2 , which have been calculated using

r0,1 and r0,2, respectively, one has to rescale M0ν
2 by r0,1/r0,2 or M

0ν
1 by r0,2/r0,1. Otherwise

one introduces an error of (r0,1/r0,2)
2 ≃ 1.19 in terms of half-life (see eqn. (3.10)). A

compilation of gA, r0 and G0ν values used in different works can be found in ref. [126].
In addition, it is often overlooked that there are differences between independent phase

space factor calculations, which can be as high as ∼13% (see the appendix of [127]). For
instance, ref. [128] uses phase space factors from [132], while ref. [130] uses the ones from
[104]. There, G0ν for the isotope 136Xe is given as 49.7 × 10−15 yrs−1 and 43.1 × 10−15

yrs−1, respectively (we scaled them to gA = 1.25 and r0 = 1.2 fm to make them directly
comparable). To perform a consistent comparison between different NME calculations we
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will take the numerical values for the phase space factors from ref. [104] when calculating
the necessary half-life sensitivities and take carefully into account all of the above mentioned
difficulties3. Tbl. 3.3 shows the phase space factors used in our calculations. All 0νββ-
isotopes with a Q-value above 2 MeV are given. We have chosen the value r0 = 1.2 fm
throughout our analysis. Also given in the table is the natural abundance of the isotope
in percent.

The convention issues mentioned so far are of course different from the intrinsic uncer-
tainty stemming from the nuclear physics itself. We will not get into detail here, and refer
to existing reviews available in the literature [5,104]. A program to reduce the uncertainty
by independent experimental cross checks has been launched [109], but it is unclear whether
the results will be available and conclusive for all interesting isotopes at the time when the
decisions on the experimental parameters have to be taken.

An important point here are short-range correlations (SRC) since the contribution to
NMEs stems mainly from physics of internucleon distances r ≤ (2− 3) fm [133]. There are
different proposals how to treat SRC, namely via a Jastrow-like function [5, 134], Unitary
Correlation Operator Method (UCOM) [135], or Coupled Cluster Method (CCM) [128,
136–138]. For instance, the authors of ref. [130] argue that UCOM should be preferred
over Jastrow while the authors of [128] prefer CCM.

In this thesis we use the NME values calculated with UCOM or CCM SRC in the NSM,
QRPA, and GCM frameworks; the NME values in the IBM framework are calculated with
Jastrow SRC. In the case of the PHFB model the authors used a statistical estimate of
the theoretical uncertainty by calculating NMEs with three different types of SRC, four
different parametrizations of the effective two-body interaction and taking the mean and
the standard deviation. We used the NMEs derived in this manner and therefore no
particular SRC method can be assigned to them.

With a chosen SRC method, some groups discuss additional sources of error which arise,
such as the set of single-particle states, the number of possible wave function configurations,
or other model details. These errors are given in some publications, and we include them in
our analysis. The NME values and ranges which we have compiled and which will be used
in this chapter are tabulated in tbl. 3.4 and plotted in fig. 3.3. The values are scaled to
r0 = 1.2 fm and gA = 1.25 so that they are directly comparable. The original NME values
can be found in column 3 of tbl. 8 of ref. [105] (NSM), column 6 of tbl. III of ref. [128] and
column 4 of tbl. II of ref. [129] (QRPA, Tübingen group), column 6 of tbl. 1 of ref. [130]
(QRPA, Jyväskylä group), columns 2 and 3 of tbl. VI of ref. [106] (IBM), column 5 of
tbl. I of ref. [107] (GCM), and column 3 of tbl. IV of ref. [108] (PHFB). Regarding IBM,
the isotopes for which a range is given are calculated in ref. [106] with two sets of single-
particle energies, one extracted from experiment (“experimental”), the other from a specific
model (“theoretical”). Their span defines the given range. The IBM values without a range
are unpublished “experimental” NMEs kindly provided by Francesco Iachello. As only few
calculations for 150Nd are available, we also include the result from ref. [131], which applied
the pseudo-SU(3) Ansatz for the calculation, which is suitable for deformed nuclei such as

3Note that there is a misprint for the phase space factor of 100Mo in ref. [104].
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150Nd. It gives by far the lowest NME.

3.3.2 Ruling out the Inverted Hierarchy
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Figure 3.4: Required half-life sensitivities to exclude the inverted hierarchy for different
values of θ12. For each value of sin2 θ12 the other parameters (∆m2

A, ∆m2
⊙, sin

2 θ13) are
varied in their 3σ ranges. The lower right plot tries to combine the other three: the lines
correspond to the combined uncertainties of the nuclear physics and the oscillation parame-
ters. The small horizontal lines show expected half-life sensitivities at 90% C.L. of running
and planned 0νββ experiments. The expected limits are from the following experiments:
GERDA and MAJORANA (76Ge, equal sensitivity expectations for both experiments);
SuperNEMO (82Se), CUORE (130Te); EXO (136Xe, dashed lines); KamLAND (136Xe, solid
lines); SNO+ (150Nd). When two sensitivity expectations are given for one experiment
they correspond to near and far time goals.
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Isotope Experiment T 0ν
1/2/yrs

76Ge GERDA 2.0× 1026

(+MAJORANA) 6.0× 1027
82Se SuperNEMO 2.0× 1026
130Te CUORE 6.5× 1026
136Xe EXO 6.4× 1025

8.0× 1026
136Xe KamLAND 4.0× 1026

1.0× 1027
150Nd SNO+ 4.5× 1024

3.0× 1025

Table 3.5: Expected half-life sensitivities for some 0νββ experiments [139]. When two
values are given they correspond to near and far time expectations with different detector
masses.

Having compiled the NMEs in a form which makes it possible to compare them with each
other, we can now give the necessary half-lifes in order to rule out the inverted hierarchy.
Recall that the value 〈mν〉IHmin given in eqn. (3.9) has to be reached for this, and that a
strong dependence on θ12 is present.

In fig. 3.4 we plot the necessary half-lifes to rule out the inverted hierarchy for all 11
isotopes with Q-value above 2 MeV. We display the situation for different values of θ12.
The full range, leaving θ12 free within the range 0.27 ≤ sin2 θ12 ≤ 0.38, is also displayed.
For convenience, we give the numerical values for necessary T 0ν

1/2 in tbl. A.1, which can be

found in appendix A. For each value of sin2 θ12 the other parameters (∆m2
A, ∆m2

⊙, sin
2 θ13)

are varied in their 3σ ranges such that in Table A.1 one has a somewhat more optimistic
and more pessimistic prediction for the 0νββ decay half-life. Recall that the dependence
on the oscillation parameters other than θ12 is rather weak (less than 25 %) and will be
strongly reduced in the future.

One can compare the necessary half-lifes with the foreseen sensitivities of up-coming
experiments. We refer here to the compilation from ref. [139], which listed confirmed
sensitivities of the currently “most developed” experiments. Table 3.5 gives the numbers,
staged experiments have two values. We have included those sensitivities in our plots.
To give an example on the interpretation of the plots, with the final sensitivity GERDA
and Majorana (6 × 1027 yrs) could rule out the inverted hierarchy if sin2 θ12 = 0.27 for
all NMEs except for the NSM. Several experiments are currently taking data and EXO
and KamLAND have already their first publications [18, 19] (see tbl. 3.6 for their current
half-life limits).

Another way to display the interplay of nuclear physics, θ12 and 0νββ is shown in fig. 3.5:
assuming for four interesting isotopes a certain half-life limit, we show for which NME
values the inverted hierarchy is ruled out. For instance, for 76Ge and a half-life of 5× 1027
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Figure 3.5: Assuming the case of an inverted neutrino mass hierarchy and a measurement
of a 0νββ decay signal, this plot shows the minimal NMEs for which the inverted hierarchy
can be ruled out. For the mixing parameters ∆m2

A, ∆m2
⊙, and sin2 θ13 best-fit values are

taken. The ranges of the NME calculations are also displayed in the figures.

yrs, we can rule out the inverted hierarchy if the matrix element is larger than about 5 if
sin2 θ12 = 0.32. For a half-life of 1 × 1027 yrs, the NME has to be larger than about 12,
hence not too realistic. Nevertheless, the ranges of the NME calculations are also displayed
in the figures.

Fig. 3.6 shows the required half-life to touch the inverted hierarchy. This half-life (cor-
responding to the value 〈mν〉IHmax given in eqn. (3.8)) does not depend on θ12. The other
parameters, ∆m2

A, ∆m2
⊙ and θ13 are varied in their current 3σ range. The numerical values

are given in tbl. A.2 in the appendix. For instance, the combined GERDA and Majorana
results, as well as CUORE, could touch the inverted hierarchy for all available NMEs.

From the figures and tables presented in this section, one identifies 100Mo as the somewhat
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Figure 3.6: Required half-life sensitivities to touch the inverted hierarchy. The mixing
parameters are varied in their 3σ ranges. The small horizontal lines show expected half-life
sensitivities as in fig. 3.4.

most interesting isotope. With our compilation of NMEs, the required lifetimes to reach
and/or exclude the inverted hierarchy tends to be generally lowest for this 0νββ-candidate.
If the very low pseudo-SU(3) NME for 150Nd would be omitted, then this isotope would even
more favorable than 100Mo. These tentative conclusions may be helpful for experiments
which have alternatives in the isotopes to investigate, such as LUCIFER [140] (currently
considering 82Se or 100Mo or 116Cd), MOON [141] (82Se or 100Mo), or SuperNEMO [142]
(82Se, 150Nd or others).

3.3.3 Current and Future Limits on the Effective Mass

In tbl. 3.6 we show the current limits on the half-life of 0νββ, obtained in a variety of
experiments4. Using the largest and smallest NME from our compilation, we give the
range of the current limit of 〈mν〉 for the particular isotope.

Finally, we give the limit on the effective mass as a function of achieved half-life for the
11 isotopes under investigation. This is shown in fig. 3.7. We have given four different
half-life values. With a half-life sensitivities of about 5× 1025 yrs the first isotopes start to
touch the inverted hierarchy. Without specifying the value of θ12, no isotope can rule out
the inverted hierarchy unless sensitivities above 1027 yrs are reached. Entering the inverted
hierarchy regime requires sensitivities above 1026 yrs.

4Part of the Heidelberg-Moscow collaboration has claimed observation [152] of 0νββ corresponding to a
half-life of 2.23× 1025 yrs, and a 95% C.L. range of (0.8− 18.3)× 1025 yrs. This would correspond to a
range of the effective mass of (0.19− 0.49) eV, and (0.066− 0.82) eV, respectively.
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M ′0ν 〈mν〉 [eV]
Isotope T 0ν

1/2/yrs Experiment min max min max

48Ca 5.8 ×1022 CANDLES [143] 0.85 2.37 3.55 9.91
76Ge 1.9 ×1025 HDM [144] 2.81 7.24 0.21 0.53
82Se 3.2 ×1023 NEMO-3 [145] 2.64 6.46 0.85 2.08
96Zr 9.2 ×1021 NEMO-3 [146] 1.56 5.65 3.97 14.39
100Mo 1.0 ×1024 NEMO-3 [145] 3.10 7.77 0.31 0.79
116Cd 1.7 ×1023 SOLOTVINO [147] 2.51 4.72 1.22 2.30
130Te 2.8 ×1024 CUORICINO [148] 2.65 5.50 0.27 0.57
136Xe 5.0 ×1023 DAMA [149] 1.71 4.20 0.83 2.04
136Xe 1.6 ×1025 EXO-200 [19] 1.71 4.20 0.15 0.36
136Xe 1.9 ×1025 KamLAND-Zen [18] 1.71 4.20 0.13 0.33
136Xe 3.4 ×1025 KamLAND-Zen + EXO-200 [18] 1.71 4.20 0.10 0.25
150Nd 1.8 ×1022 NEMO-3 [150] 1.71 3.70 2.35 8.65

Table 3.6: Experimental 0νββ decay half-life limits at 90 % C.L. Columns 4 and 5 show
the minimal and maximal NMEs from our compilation (see tbl. 3.4), and columns 6 and 7
the corresponding upper limits on the effective electron neutrino mass 〈mν〉. Similar limits
on 76Ge to the ones in [144] have been obtained by the IGEX experiment [151].

3.4 Experimental Aspects

A large variety of different upcoming experiments exists in various stages of realization.
They are in order of increasing isotope mass CANDLES [153] (48Ca), GERDA [154] and
MAJORANA [155] (76Ge), LUCIFER [140] (82Se or 100Mo or 116Cd), SuperNEMO [142]
(82Se or 150Nd), MOON [141] (82Se or 100Mo), COBRA [156] (116Cd) , CUORE [157] (130Te),
EXO [158], XMASS [159], KamLAND-Zen [160] and NEXT [161] (136Xe), DCBA [162] and
SNO+ [163] (150Nd).
As discussed before not for all proposals the final decision on the selected isotope is

already made. From the discussion of the previous sections it would of course be desirable
to rule out the inverted scenario and thus tune the experimental parameters and hence the
sensitivity to do so. The obtainable half-life can be estimated to be

T 0ν
1/2 =

NA ln 2

nσ

(

a× ǫ

W

)

M × t (3.14)

in a background-free scenario and

T 0ν
1/2 =

NA ln 2

nσ

(

a× ǫ

W

)

√

M × t

B ×∆E
(3.15)

in case of a background limited search [92], where nσ is the number of standard deviations
corresponding to the desired confidence level, W the molecular weight of the source mate-
rial, and the other parameters as in eqn. (3.3). Notice, only in the background-free scenario
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Figure 3.7: Limits on the effective mass which can be set assuming different half-lifes for
the 11 isotopes under investigation. The orange double-dashed horizontal lines show the
upper and lower lines of the inverted hierarchy when the mixing parameters are varied in
their 3σ range (see fig. 3.2). Thereby the horizontal line at 0.02 eV (0.01 eV) corresponds
to the lower line of the IH for sin2 θ12 = 0.27 (sin2 θ12 = 0.38).

the half-life sensitivity scales linearly with the measuring time. To be more conservative
and realistic we assume a background limited case.

As shown in fig. 3.2a, the minimal effective Majorana mass which has to be explored
shows a factor of 1.435 difference due to the current uncertainty in the mixing angle θ12,
depending on whether the actual value of θ12 comes off at the high or low end of its currently
allowed range. Thus, this implies a factor of 4.2 difference in the combination of measuring
time, energy resolution, background index and detector mass. From the experimental
point of view such a big potential factor causes a significant challenge and work, as half-

5Note that the range of sin2 θ12 in fig. 3.2a is larger than the currently allowed 3σ range.
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life measurements well beyond 1026 yrs itself are already non-trivial. Therefore it would
be extremely desirable to reduce the uncertainty on θ12 in future solar experiments like
SNO+ [111].

As an example consider a 1 ton Ge-experiment, enriched to 90 % in 76Ge. Furthermore,
consider a full detection efficiency, an energy resolution (FWHM) of 3 keV at peak position,
the best one of all considered double beta experiments, and 10 years of running time. For
an optimistic combination of the other mixing parameters (upper rows in tbls. A.1 and
A.2) such an experiment could touch the IH at 2σ C.L. even using the less favorable NME
if a background level of 5.5 × 10−3 counts/keV/kg/yr could be achieved. This should be
feasible as already for GERDA phase II the aim is to achieve 10−3 counts/keV/kg/yr.
Ruling out the complete IH for small θ12 would require 2.4 × 10−4 counts/keV/kg/yr.
For large θ12 it is not possible to exclude the IH (assuming the smallest NME) with the
considered experimental parameters. Excluding the IH would require a half-life sensitivity
of 3.5 × 1028 yrs (Tab. A.1). But even considering a background-free case and therefore
using eqn. (3.14), one obtains a 2σ half-life limit of only 2.47×1028 yrs. By using eqn. (3.15)
one could formally calculate a necessary background of 1.6 × 10−5 counts/keV/kg/yr to
exclude a half-life of 3.5×1028 yrs with the stated experimental set-up. But this background
corresponds to only about 0.5 total background counts during the whole operational period
of 10 years which has to be compared to 1.4 expected counts from the 0νββ decay with a
half-life of 3.5 × 1028 yrs. Hence, the experiment cannot be considered to be background
dominated and thus eqn. (3.15) is not applicable.

As another example, consider a large scale experiment like SNO+ using 150Nd, enriched
to 60%. With a total mass of 760 kg of natural Nd, 10 years of running time and an energy
resolution of about 300 keV (the resolution depends on the percentage of Nd-loading of
the scintillator, here a resolution of 3.5%/

√
E was assumed) it would require a background

of 6.1 × 10−4 counts/keV/kg/yr to touch the IH at 2σ C.L. To exclude IH a background
as small as 2.7 × 10−5 counts/keV/kg/yr (for small θ12) or 1.9 × 10−6 counts/keV/kg/yr
(for large θ12) would be required (note that due to the presence of the 2νββ mode in
conjunction with the energy resolution of only 300 keV this low background is very hard
to reach and one has to scale up the other parameters of the experiment to fully cover the
IH). Nevertheless, one can check that the background levels we have estimated here still
correspond to a background dominated case.

3.5 Conclusions

The main focus of the present chapter was put on testing the inverted neutrino mass
hierarchy with neutrinoless double beta decay experiments. The maximal and (non-zero)
minimal values of the effective mass are natural sensitivity goals for the experimental
program.

We have stressed that the mixing parameter θ12, the solar neutrino mixing angle, intro-
duces an uncertainty of a factor of 1.43 on the minimal value of the effective mass. This
implies an uncertainty of a factor of 1.432 ≃ 2 on the lifetime and 1.434 ≃ 4.2 on the com-
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bination of isotope mass, background level, energy resolution and measuring time. Given
the long-standing problem of nuclear matrix element calculations we have taken a prag-
matic point of view: to quantify the necessary half-lifes to test and/or rule out the inverted
hierarchy we have attempted to collect as many theoretical calculations as possible, and
included their errors if available. The nuclear matrix elements we have compiled have been
put on equal footing in what regards convention issues. We have used our compilation of
NMEs to give the current limits on the effective mass of different isotopes, and to give
the limits on the effective mass as a function of reached half-life. The isotope 100Mo tends
to look interesting, in the sense that with the same lifetime limit stronger constraints on
the effective mass than for the other isotopes can be reached, an observation potentially
interesting for upcoming experiments without a final decision on which isotope to use.
We finish by stressing once more that a precision determination of the solar neutrino

mixing angle θ12 is of crucial importance to evaluate the physics potential of neutrinoless
double beta decay experiments. A better knowledge of this parameter is desirable, and we
hope to provide here additional motivation for further studies.
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Chapter 4

Introduction to Fermion Masses in
SO(10) Models

The origin of fermion masses and mixings is a long-standing question in elementary particle
physics. Among different frameworks to address this problem, theories unifying strong and
electroweak interactions as well as – partly or completely – quarks and leptons offer very
attractive solutions. Particularly intriguing are models based on SO(10) symmetry.
In SO(10) all SM particles of one generation plus a right-handed neutrino are assigned

to a single 16-dimensional representation. The masses of the particles arise from Yukawa
interactions of two 16s with suitable Higgs fields when the Higgs develops a vacuum ex-
pectation value (VEV). Since [10, 164]

16⊗ 16 = 10S ⊕ 126S ⊕ 120A, (4.1)

the Higgs fields of renormalizable SO(10) models can belong to 10, 126, or 120 dimensional
representations (denoted henceforth by 10H , 126H , and 120H , respectively) yielding the
Yukawa part of the Lagrangian,

LY = 16 (Y1010H + Y126126H + Y120120H) 16. (4.2)

After spontaneous symmetry breaking the fermions obtain the masses [10, 165]

Mu = vu10Y10 + vu126Y126 + vu120Y120 ,

Md = vd10Y10 + vd126Y126 + vd120Y120 ,

MD = vu10Y10 − 3vu126Y126 + vD120Y120 ,

Ml = vd10Y10 − 3vd126Y126 + vl120Y120 ,

MR = vR126Y126 ,

ML = vL126Y126 ,

(4.3)

where Mu,Md,MD,Ml,MR,ML are the up-quark, down-quark, Dirac neutrino, charged
lepton, right-handed Majorana neutrino (type I seesaw), and left-handed Majorana neu-
trino (type II seesaw) mass matrices, and Y10, Y126, and Y120 are the Yukawa coupling
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matrices between the 16 fermions and the Higgs in the 10, 126, and 120 representations,
respectively. Y10 and Y126 are symmetric whereas Y120 is anti-symmetric. v

u/d/D/l/R/L
10/126/120 rep-

resents the part of the VEV (or combination of VEVs) of the Higgs fields that is important
for the respective particle. Eqn. (4.3) holds at the scale of SO(10) symmetry breakdown,
henceforth referred to as MGUT. We will consider supersymmetric (SUSY) as well as non-
supersymmetric SO(10) models. In non-SUSY SO(10) the 10H can be chosen real, but one
can argue that this will not lead to a viable particle spectrum [166]. Taking the 10H to be
complex, its real and imaginary parts can couple separately to the fermionic 16 and will
lead to two independent Yukawa matrices. To avoid this complication in the case of non-
SUSY SO(10) we impose an additional Peccei–Quinn U(1) symmetry [167] as described
in refs. [166, 168]. Then eqn. (4.3) is valid both in the case of non-SUSY as well as SUSY
SO(10).
The effective mass matrix of light neutrinos is given by [11]

mν = ML −MT
DM

−1
R MD = mII

ν +mI
ν , (4.4)

with type I & II seesaw contributions as indicated in above equation.
As obvious from eqn. (4.3) in SO(10) all fermion mass matrices are related since they

are all combinations of the same Yukawa matrices. Albeit a nice feature, there are still lots
of parameters in the Yukawas making the models not very predictive and the process of
fermion mass generation somewhat arbitrary and messy.
Another possibility to constrain fermion mass matrices is to make additional assumptions,

e.g., one can impose texture zeros [169–176], zero determinant [177,178], vanishing minors
[179–182], vanishing trace [183–185], and many more, see, e.g., ref. [186]. One can also make
assumptions on the mixing matrices, e.g., tri-bimaximal mixing [6], or other relations as
reviewed in chapter 2 (ref. [13]).
Combining flavor symmetries with GUTs leads to too many constraints and phenomeno-

logically not viable models. In order to increase predictivity, a promising way is to combine
above mentioned two possibilities, namely using a GUT framework like SO(10) and ap-
plying additional constraints to the Yukawa matrices. In refs. [187–189] texture zeros on
fermion mass matrices are imposed using the framework of SO(10). While an interesting
option, from the viewpoint of SO(10) it appears unlikely to find symmetries in the mass
matrices. After all they receive contributions from different Yukawa matrices weighted by
a priori undetermined VEVs. More natural from the SO(10) perspective would be to find
symmetries in the Yukawa matrices [191]. Hence, in addition to fitting the ”naked”SO(10)
models, we also want to analyze the possibility of different texture zeros in Y10, Y126, and
Y120 and check the textures for phenomenological viability.
We fit fermion masses and mixings at low energy (MZ) as well as the baryon asymmetry

of the universe subject to constraints from SO(10) (eqn. (4.3)). In this regard we consider
several classes of SO(10) models, differing in the choice of Higgs representations. A minimal
model with only one Higgs field is phenomenologically not viable since all fermions are then
proportional to the same Yukawa matrix and are hence diagonal in the same basis, resulting
in no mixing between up- and down-quarks or between charged leptons and neutrinos. A
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126H field is required for neutrino mass generation. We consider models that additionally
contain either a 10H , or a 120H , or both a 10H and a 120H . Further we analyse both
supersymmetric versions of the models as well as models without SUSY.
The SO(10) relations in eqn. (4.3) as well as the additionally imposed texture zeros

are valid at MGUT = 2 × 1016 GeV. Fermion masses and mixings are measured at much
lower energies, e.g., at MZ ≈ 91.19 GeV. To fit the parameters of a model to the data
at MGUT, one has to use renormalization group evolution (RGE) to obtain the values of
the observables at MGUT. Therefore one necessarily needs certain model details as input,
such as the as yet undetermined lightest neutrino mass and the masses Mi of the right-
handed neutrinos, which in general are free parameters of a model and start to contribute
to the β-functions for energies above Mi (see the appendix). Earlier studies either did not
include renormalization effects at all [187,189], or faced this issue by evolving experimental
values to MGUT while neglecting model details (either themselves or by using published
data at various energy scales [192–194]). They then fitted the data at the energy scale
µ = MGUT [168,188,191,195], without being concerned with RGE anymore. Other studies
used charged lepton masses evolved to MGUT, while at the same time using low-energy
values for neutrino parameters for their fits at MGUT [168,191,195].
When using observables evolved to MGUT to make a fit using relations from eqn. (4.3)

one runs into the following problem: on the one hand, to evolve observables from MZ to
MGUT certain high-energy model details (such as the seesaw scale) have to be known, since
they have an impact on the running of observables (this has been demonstrated long ago,
e.g., for the mb/mτ ratio [196]). On the other hand, exactly these model details are varied
while the fit is performed.
An additional issue which is commonly neglected are effects coming from non-degenerate

seesaw scales (i.e., non-degenerate right-handed neutrinos, νRi
). Treating non-degenerate

νRi
correctly, i.e. integrating them out during RG evolution one by one at µ = Mi(Mi)

(as opposed to integrating out all at once at a common seesaw scale), can have sizable
effects on neutrino parameters as has been demonstrated in ref. [197]. For our analysis we
apply the method described in ref. [197] and integrate out νRi

at appropriate energies. This
produces several effective field theories (EFT) during RGE – one EFT per heavy degree of
freedom which is integrated out.
Besides yielding more trustworthy results, a more precise analysis that takes into account

RGE also leads to more reliable predictions of experimentally undetermined observables
like the effective neutrino mass governing neutrinoless double beta decay (see chapter 3)
or the leptonic CP violating phase δlCP .
Furthermore, our analysis differs from previous studies in that we also consider the baryon

asymmetry YB, which is usually not done within the context of SO(10). We assume that
the baryon asymmetry is generated through thermal leptogenesis and also include flavor
effects in our analysis (see sec. 6.4 for details). Ref. [198] checks an SO(10) inspired model
for compatibility with the experimentally measured value of YB, assuming it is generated
through thermal leptogenesis. Furthermore, in ref. [198] RGE is only accounted for using
a generic multiplicative factor. In contrast, we will include YB as an observable in our fits
of real SO(10) models including full RGE, which to the best of our knowledge has not
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been done before. Since thermal leptogenesis takes place at temperatures corresponding to
the mass of the lightest right-handed neutrino, one needs to know the value of the relevant
parameters at this energy scale to make accurate statements. Finally, the correct treatment
of RGE allows us to consider the Higgs mass in the analysis of non-SUSY models, as will
be described in sec. 6.2.
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Chapter 5

Model Details and Previous Work

We now simplify the notation and rewrite eqn. (4.3) [168,195]:

Yu = r(H + sF + ituG) ,

Yd = H + F + iG ,

YD = r(H − 3sF + itD G) ,

Yl = H − 3F + itl G ,

MR = r−1
R F ,

(5.1)

where Yi are the mass matrices Mi from eqn. (4.3) divided by the VEVs v or vu/d of the
Standard Model (SM) or Minimal Supersymmetric Standard Model (MSSM), respectively.
H, F , G correspond to Y10, Y126, and Y120, respectively, i.e., H and F are symmetric and
G is anti-symmetric. s, tu, tD, tl are complex parameters, whereas r, rR can be chosen real
without loss of generality [168]. We have omitted the type II seesaw term (compare to
eqn. (4.3)) since we assume that the type I seesaw term dominates.
We now define the different models which we want to test for viability using experimental

data on fermion masses and mixings. The first differentiation between the models concerns
their Higgs content. We consider two minimal setups with 10H +126H or 120H +126H and
a setup with 10H + 126H + 120H . We refer to the 10H + 126H setup as ”M1” (”MS”) and
to the 10H +126H +120H setup as ”F1” (”FS”) in case we consider the non-SUSY (SUSY)
versions of the models (M stands for ”minimal”, F for ”full”). The non-SUSY 120H +126H
setup was argued based on an analytical two generation approximation to be an attractive
minimal model to describe fermion masses and mixings [166]. We analyze this non-SUSY
setup numerically in the full three generation case and will refer to this model as ”M2”. A
further model corresponds to model M1 with an imposed texture. We denote this model
by MT. The models we considered are summarized in tbl. 5.1. More details on the models
is given in the following sections.
The Higgs representations mentioned above are not enough to break SO(10) down to the

SM. Therefore further Higgs representations are necessary. In case of non-SUSY models
a minimal choice would be to add one 45H [199] and in case of SUSY models one 210H
[200,201]. Furthermore, in SUSY models one needs additionally a 126H which keeps SUSY
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Higgs content SUSY non-SUSY free parameters

one of 10H , 120H , or 126H no mixing –

10H + 120H no type I seesaw –

10H + 126H MS M1 19

10H + 126H + texture – MT 15

120H + 126H – M2 19

10H + 120H + 126H FS F1 18

Table 5.1: Brief overview of models we considered, names given to them in the text and
the number of free parameters in the models. Models with only one Higgs representation
cannot produce mixing and models without 126H do not have type I seesaw.

from being broken by D terms [201]. We will not analyze the details of different viable
breaking chains. In principle one would have to use appropriate RGEs between the scales
of intermediate symmetries and the SO(10) breaking scale MGUT. Instead we assume that
intermediate symmetries are close to MGUT and the running of parameters between these
scales and MGUT is not affected sizably. Hence, the relevant information for our analysis is
the Higgs content given in tbl. 5.1 and eqns. (4.3) or (5.1) together with the beta-functions
of the SM or MSSM as given in the appendix.
Gauge coupling unification crucially depends on the breaking chain and the values of

intermediate scales. E.g., in the minimal non-SUSY model based on 10H + 126H , it has
been shown [199,202] that with Higgs VEVs of 45H and 126H of ∼ 1011 GeV gauge coupling
unification can be achieved. In contrast, for the SUSY version of the minimal model it
has been shown [203] that reproducing known values of neutrino mass squared differences
requires intermediate scales, which in case of supersymmetric theories is excluded by gauge
coupling unification constraints. Nevertheless we will also do a fit of the minimal SUSY
SO(10) GUT to have the possibility to compare the results of the program we developed
with results obtained by other authors.
Since we do not analyze the details of SO(10) breaking we will not check the unification of

gauge couplings but will set the values of SM gauge couplings at MGUT to such values that
they coincide with the experimental values at MZ after renormalization group evolution.

5.1 Minimal Model with 10H + 126H (M1, MS)

In this model we do not have a 120H , hence Y120 = 0 in eqn. (4.3). To count the number
of free parameters we use a basis in which H is real and diagonal, which leaves us with 19
real parameters: 3 in H, 12 in F (complex symmetric), and 4 in r (real), s (complex), and
rR (real) (assuming type I seesaw dominance).
There is a plethora of literature about the supersymmetric version of this model [168,203–
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220], which is often referred to as the ”Minimal Supersymmetric Grand Unified Theory”
(MSGUT). A limited amount of literature analyzing the non-supersymmetric version also
exists [166, 168, 198, 199, 202, 221]. All authors analyzing the fermion spectrum neglect
details of the RGE which affect the running of observables between MZ and MGUT, as
described in chapter 4.

5.2 Alternative Minimal (non-SUSY)Model with 120H+

126H (M2)

Due to absence of 10H we have H = 0 in this model. Going to a basis with real diagonal
F (3 parameters), we have 6 real parameters in G and 10 in r, s, tu, tl, tD, rR, altogether 19
parameters (neglecting type II seesaw).

This model is analytically analyzed in ref. [166] in the case of only two fermion generations
(second and third) and argued to be viable and predictive. A numerical three generation
analysis finds the model to be unable to fit fermion masses and mixings [168]. To provide
further evidence for this result we perform a fit of this model. In addition to the normal
neutrino mass hierarchy considered in ref. [168] we also try to fit the inverted hierarchy.
Further, we include full RGE into our analysis, which has not been done in the previous
study.

5.3 Model with ”full” Higgs Content 10H + 126H + 120H
(F1, FS)

Without additional constraints, we would have the maximal number of parameters in this
model. One can considerably reduce the number of parameters by assuming all parameters
to be real. This can be motivated or derived from an underlying parity symmetry [222] or
spontaneous CP violation [223]. If CP is violated spontaneously solely by purely imaginary
VEVs of the 120H this corresponds to taking all parameters in eqn. (5.1) to be real. We
will use the model with this reduced number of parameters and refer to it as ”F1” in the
non-supersymmetric case and as ”FS” in the supersymmetric case. In a basis with real
diagonal H (3 parameters) we count 6 parameters in F , 3 in G, and 6 in r, s, tu, tl, tD, rR,
altogether 18 parameters. So in spite of introducing 120H in addition to 10H and 126H ,
through the additional constraints this model has one parameter less than the ”minimal”
one. Therefore some authors refer to the SUSY version of this model as the ”New Minimal
Supersymmetric GUT” (NMSGUT) [224].

As in the minimal model there is a large amount of literature coping with the ability of
the SUSY version of this model to reproduce the fermion spectrum and mixing [168, 191,
195, 212, 217, 222–232]. Without invoking supersymmetry, this model is analyzed only in
ref. [168].
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5.4 Models with Imposed Textures

As outlined in the introduction, one can reduce the number of free parameters within
a model by making additional assumptions on the form of the SO(10) Yukawa coupling
matrices. We want to briefly demonstrate here the effect of applying texture zeros. To be
definite, let us consider a texture with zeros in the (1,1) and (1,3) elements and apply this
texture to H and F in eqn. (5.1), i.e.,

H,F ∼





0 · 0
· · ·
0 · ·



 (5.2)

Since H and F are symmetric, the zero in the (1,3) element implies a zero in the (3,1)
element as well. This texture imposes four real constraints on each of the matrices H and
F . In case of model M1 from sec. 5.1, where the elements of H and F are complex, the
(1,1) element and the (1,3) element each have two real parameters. Since we can choose a
basis where, e.g., H, is diagonal, only the constraints imposed on F reduce the number of
parameters. Hence, imposing the texture in eqn. (5.2) on model M1 reduces the number
of parameters of the model from 19 to 15.
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Chapter 6

Details of the Fitting Procedure

We fit the models to experimental values of the masses of quarks and charged leptons,
mass-squared differences of neutrinos, and mixing angles of quarks (including δCKM) and
leptons, as well as the baryon asymmetry of the universe YB (see sec. 6.4). The quark and
charged lepton masses are taken at MZ from ref. [193]. Since the masses of charged leptons
are measured with a very high accuracy which goes beyond our 1-loop RGE analysis and
since furthermore such precise values make a numerical fit very challenging we assume an
uncertainty of 5 % for these observables when fitting the models to the data. Only in case
of the minimal non-SUSY model without RG evolution where we can do the fit in the
charged lepton basis we take the best-fit values of the charged leptons as direct input for
the fit. For the neutrino observables we neglect the running below MZ and take the values
from ref. [44]1.
To check our numerical algorithm we also make fits without RGE as in ref. [168]. There-

fore we take their experimental values of observables at µ =MGUT, but update the neutrino
observables to which the models are fitted. We also include the leptonic mixing angle θl13
in our analysis, for which only an upper bound existed when the results of ref. [168] were
published. Note that we symmetrized the error bars whenever they were not symmetric
around the best-fit value to simplify the fitting procedure. This will not have a large effect
on the fits, since strongly non-symmetric errors are present only for the light quark masses
where the uncertainty is large anyway. Finally, we try separate fits for both a normal
hierarchy (NH) and an inverted hierarchy (IH) of the neutrino masses (see sec. 6.1). We
collect the values of observables underlying our analysis in tbls. 6.1, 6.2 and 6.3. To fit the
model parameters to the observables we minimize

χ2 =
n

∑

i=1

(

ytheoi (x)− yexpi

σexp
i

)2

(6.1)

numerically with respect to x = (x1, ..., xm), where yexpi are observables measured exper-
imentally with uncertainty σexp

i , and ytheoi (x) is the corresponding theoretical prediction
given the vector x of model parameters. We will later also look at χ2 as a function of the

1See also refs. [45] and [46].
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Observable Exp. value

md [GeV] 0.0029 ± 0.001215
ms [GeV] 0.055 ± 0.0155
mb [GeV] 2.89 ± 0.09
mu [GeV] 0.00127 ± 0.00046
mc [GeV] 0.619 ± 0.084
mt [GeV] 171.7 ± 3.0
sin θq12 0.2246 ± 0.0011
sin θq23 0.042 ± 0.0013
sin θq13 0.0035 ± 0.0003
δCKM 1.2153 ± 0.0576
λ 0.521 ± 0.01

Observable Exp. value

∆m2
⊙ [GeV2] (7.5 ± 0.185) ×10−23

∆m2
31 (NH) [GeV2] (2.47 ± 0.0685) ×10−21

∆m2
31 (IH) [GeV2] (−2.355 ± 0.0540) ×10−21

sin2 θl12 0.30 ± 0.013

sin2 θ
l,(NH & IH1)
23 0.41 ± 0.031

sin2 θ
l,(IH2)
23 0.59 ± 0.022

sin2 θl13 0.023 ± 0.0023
me [MeV] 0.48657 ± 0.02433
mµ [GeV] 0.10272 ± 0.00514
mτ [GeV] 1.74624 ± 0.08731

YB 8.75× 10−11 ± 2.3× 10−12

Table 6.1: Experimental values of observables at µ = MZ used for our fits. The quark and
charged lepton masses are taken from ref. [193], quark mixing parameters from ref. [168],
neutrino mixing parameters from ref. [44] (table 1, second column), the baryon asymmetry
from ref. [233]. A 5% uncertainty is assumed fot the charged leptons, as explained in
the text. The value of the Higgs quartic coupling λ is derived from the measurements of
ATLAS [21] and CMS [22] as explained in sec. 6.2. Note that in our convention the Higgs
self-interaction term in the Lagrangian is −λ

4
(φ†φ)2.

leptonic Dirac-like CP violating phase, δlCP , or the atmospheric mixing angle, sin2 θ23. To
derive such a function, one can add a term (Otheo(x)−O∗)2/(0.01O∗)2 to the definition of
χ2, where O∗ is the desired value of the observable O, e.g., δlCP , and the denominator is a
very small artificial uncertainty to let the minimization algorithm converge to a minimum
with the desired value of O. If O itself was part of the definition of χ2 in eqn. (6.1), than
its term with the experimental uncertainty is removed from there. After performing the
minimization of the so defined χ2(O) function, one evaluates with the parameters obtained
from that fit, χ2 as given in eqn. (6.1), i.e. without the contribution of the artificial er-
ror, but including the contribution of the real experimental uncertainty. This method was
previously used in refs. [168,203,223].

For the minimization we use the downhill simplex algorithm [234, 235]. We use its im-
plementation from the GNU Scientific Library [236], which also provides useful functions
for numerical matrix diagonalization and for solving differential equations numerically.

Let us stress a general caveat of numerical minimization. The problem at hand is non-
linear and multidimensional – therefore many local minima exist. With numerical algo-
rithms it is impossible to determine whether a minimum is a global minimum of the function
under consideration. A standard procedure to increase the confidence that a global mini-
mum out of the many local ones has been found is to start the minimization many times
with different initial parameters and to choose the lowest out of the many local minima
that will be found. Furthermore one can perturb a minimum and restart the minimization
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Obs. Value [GeV]

md 0.00114 ± 0.000495
ms 0.022 ± 0.0065
mb 1.0 ± 0.04

Obs. Value [GeV]

mu 0.00048 ± 0.000185
mc 0.235 ± 0.0345
mt 74.0 ± 3.85

Obs. Value [GeV]

me × 103 0.46965 ± 0.02348
mµ 0.09915 ± 0.00496
mτ 1.68558 ± 0.08428

Table 6.2: Experimental values of observables at µ = MGUT [168] used for non-SUSY fits
without RGE. For mixing parameters as well as neutrino mass squared differences the same
values as in tbl. 6.1 are used.

from the perturbed point [235, 236]. These steps can be repeated many times until no
improvement of the minimum is found any more. Still, this gives no guarantee that the
absolute minimum has been found and lower minima might exist in the parameter space.
This is a generic property of numerical minimization.

6.1 Normal vs. Inverted Neutrino Mass Hierarchy

In the neutrino sector the absolute mass scale is experimentally not yet determined. At
present, only the solar mass-squared difference ∆m2

21 and the absolute value of the atmo-
spheric mass-squared difference |∆m2

31| are known [44],

∆m2
21 = 7.5± 0.185× 10−5 eV2

∆m2
31 = 2.47± 0.0685× 10−3 eV2 (NH)

∆m2
31 = −2.355± 0.0540× 10−3 eV2 (IH) ,

where NH (normal hierarchy) and IH (inverted hierarchy) refer to two currently viable
situations with m1 < m2 ≪ m3 and m3 ≪ m2 < m1, respectively. Note that for the
IH case we derived ∆m2

31 from the values of ∆m2
32 and ∆m2

21 given in ref. [44]. We do
this conversion because our program always calculates ∆m2

31, no matter which hierarchy
is fitted. Further we symmetrized the uncertainties, as explained before.
Besides the different signs and values of ∆m2

31, also the neutrino mixing parameters have
different preferred values depending on which mass hierarchy is assumed [44–46]. This
hierarchy dependence is mostly pronounced for sin2 θ23. Here, the best-fit value of sin2 θ23
depends on further aspects of the analysis, including the experiments that were considered.
Comparing refs. [44–46] we notice that there currently exist two different equally valid best-
fit values and corresponding 1σ regions for sin2 θ23. We take the values to which the models
will be fitted from ref. [44] and distinguish the following cases in our analysis:

sin2 θ23 = 0.41± 0.031 NH

sin2 θ23 = 0.41± 0.031 IH1 (6.2)

sin2 θ23 = 0.59± 0.022 IH2 .
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Observable tan β = 50 tan β = 38 tan β = 10

mu/mc 0.0027 ± 0.0006 0.0027 ± 0.0006 0.0027 ± 0.0006
md/ms 0.051 ± 0.007 0.051 ± 0.007 0.051 ± 0.007
mc/mt 0.0023 ± 0.0002 0.0024 ± 0.0002 0.0025 ± 0.0002
ms/mb 0.016 ± 0.002 0.017 ± 0.002 0.019 ± 0.002
me/mµ 0.0048 ± 0.0002 0.0048 ± 0.0002 0.0048 ± 0.0002
mµ/mτ 0.05 ± 0.002 0.054 ± 0.002 0.059 ± 0.002
mb/mτ 0.73 ± 0.04 0.73 ± 0.04 0.73 ± 0.03
sin θq12 0.227 ± 0.001 0.227 ± 0.001 0.227 ± 0.001
sin θq23 0.0371 ± 0.0013 0.0386 ± 0.0014 0.04 ± 0.0014
sin θq13 0.0033 ± 0.0007 0.0035 ± 0.0007 0.0036 ± 0.0007
δCKM 0.9828 ± 0.1784 0.9828 ± 0.1784 0.9828 ± 0.1787

∆m2
⊙/∆m2

A 0.03036 ± 0.0011 0.03036 ± 0.0011 0.03036 ± 0.0011
mt 94.7 ± 9.4 94.7 ± 9.4 92.2 ± 8.7

Table 6.3: Experimental values of observables at µ = MGUT [168] used for SUSY fits with-
out RGE. The ratio of solar to atmospheric neutrino mass-squared difference is calculated
from their values at µ = MZ as given in tbl. 6.1. The top quark mass mt at µ = MGUT is
taken from ref. [193]. For the neutrino mixing angles as well as ∆m2

31 the values at µ = MZ

as given in tbl. 6.1 are used.

The quality of fits with the inverted neutrino mass hierarchy had the same quality for
both IH1 and IH2. Hence, we will stick in our discussion of results in chapter 8 to the case
IH2.

6.2 Higgs Mass and Quartic Coupling

Although the Higgs boson mass mH does not enter the SO(10) relations in eqn. (4.3)
there is interplay between mH and the fermion observables during renormalization group
evolution. In RGE in the non-supersymmetric case the Higgs quartic coupling λ appears
which in the SM is related to mH by2

λ =
2

v2
m2

H . (6.3)

Recently, ATLAS and CMS experiments at the Large Hadron Collider (LHC) have observed
a new particle which is in good agreement with a Standard Model Higgs boson with the
mass [21, 22]

mH = 126.0± 0.4 (stat)± 0.4 (sys) GeV (ATLAS)

mH = 125.3± 0.4 (stat)± 0.5 (sys) GeV (CMS) .
(6.4)

2In our convention the Higgs self-interaction term in the Lagrangian is −λ
4
(φ†φ)2
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For our analysis we take a conservative estimate of the true Higgs mass, since there is no
official combined analysis available presently. Our 1 σ interval shall overlap exactly the 1 σ
intervals of the ATLAS and CMS experiments and we take the central value of this range
as best-fit point, i.e. we take for our fits

mH = 125.6± 1.2 GeV . (6.5)

The standard error propagation formula applied to eqn. (6.3) then yields

λ = 0.521± 0.010 . (6.6)

Note that for fits at MGUT, i.e. without RG evolution, we do not take into account the
Higgs mass, since in that case there is no restriction on λ from the other observables.

Supersymmetric Case

Above the supersymmetry breaking scale MSUSY supersymmetry fixes λ to be3 [237]

λ(µ ≥ MSUSY) =
1

4

(

3

5
g21 + g22

)

(µ) . (6.7)

Below MSUSY the Higgs mass gets radiative corrections, the leading one given in a rough
approximation (within the MSSM) by [237]

m2
H = M2

Z +
3 g22 m

4
t (µt)

8π2M2
W

ln

(

M2
SUSY

m2
t (µt)

)

, (6.8)

with µt =
√
mt MSUSY and all SUSY particles are assumed to have masses around MSUSY

in this approximation. By varying MSUSY one can reproduce the measured value of mH

as given in eqns. (6.4) and (6.5). Solving eqn. (6.8) for MSUSY yields MSUSY ≈ 1 TeV.
Since our main goal is to fit fermion masses and mixings within the SO(10) framework and
not performing a detailed analysis of the MSSM, we do not specify MSUSY or the specific
SUSY spectrum. Hence, we will not try to fit mH in the supersymmetric models. For
implications of mH ≈ 125 GeV and other LHC results for the MSSM we refer to existing
literature [238–247].

6.3 Renormalization Group Evolution

The relations in eqn. (5.1) have to be obeyed at MGUT. Therefore, for a given set of SO(10)
parameters in order to calculate the model predictions for the observables one has to use
RGEs and evolve the parameters down to the energy scale at which the observables are
known. In addition one has to integrate out heavy degrees of freedom during this process
at their mass scale. In our case this applies to the right-handed neutrinos (νR), as their

3We apply GUT normalization to the U(1)Y charge.
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masses usually lie somewhere between 1010 GeV and MGUT. After integrating out a degree
of freedom one ends up with an effective field theory (EFT) and has to match coefficients
of effective operators with parameters from the full theory. Since νR are not degenerate in
general, one has to integrate out several times and thus has to use different EFTs during
the evolution from MGUT to MZ . This formalism is nicely described in refs. [197,248]. We
use the 1-loop β-functions as presented in ref. [248] for the SM and MSSM, respectively (see
also [249]). The beta-functions are also presented in appendix C for reference. We shall
mention that we do not integrate out the top-quark below µ = mt(mt), since the energy
scales mt and MZ are quite close. Furthermore we assume MSUSY = MZ , i.e. we use the
beta-functions of the MSSM for the evolution of parameters down to MZ in case of SUSY
models, since this is just a small effect as long as the SUSY breaking scale is not too far
away from MZ . We expect models being able to fit experimental data with MSUSY = MZ

to be equally well suited to fit the data with MSUSY = 500 GeV or 1 TeV. Finally, since we
do not specify the SUSY spectrum, we also do not consider SUSY threshold effects, which
can have an impact for large tan β [168,194,250–255].

6.4 Baryon Asymmetry YB

The aim of this section is to discuss how we calculate the baryon asymmetry YB, including
RG evolution effects. We assume the baryon asymmetry is produced through thermal
leptogenesis. Therefore, we start with a presentation of (flavored) leptogenesis and all
relevant formulae that will be needed later based on the presentation given in ref. [233].
We will explain our method to calculate YB at the end of this section.

During the evolution of the universe the right-handed neutrinos can decay out of equi-
librium and given presence of CP violation produce a lepton asymmetry which is then
transferred to a baryon asymmetry through sphaleron processes [256,257]. For hierarchical
masses only the decay of the lightest right-handed neutrino contributes to the asymmetry.

The baryon asymmetry is defined by [233]

YB =
nB − nB̄

s
, (6.9)

where nB, nB̄, and s are the number densities of baryons, antibaryons, and entropy den-
sity, respectively. Experimentally, the baryon asymmetry can be inferred from Big Bang
Nucleosynthesis (BBN) [258], Cosmic Microwave Background (CMB) anisotropies [259],
and from the Sloan Digital Sky Survey [260]. One finds [233]

YB = (8.75± 0.23)× 10−11 . (6.10)

Assuming the reheating temperature TR is smaller than the temperature of electroweak
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phase transition TEWPT
4, the theoretical prediction gives [233]

YB =
12

37

∑

α

Yα (SM) ,

YB =
10

31

∑

α

Yα (MSSM) ,
(6.11)

where the prefactors in eqn. (6.11) account for how much of the lepton asymmetry is
transferred to a baryon asymmetry through sphaleron processes. TheB/3−Lα asymmetries
read

Yα = 4× 10−3 ǫαα ηα , (6.12)

with CP asymmetry5

ǫαα =
1

8π (YνY
†
ν )11

∑

j

Im
{

(YνY
†
ν )j1(Yν)jα(Y

∗
ν )1α

}

g (xj)

+
1

8π (YνY
†
ν )11

∑

j

Im
{

(YνY
†
ν )1j(Yν)jα(Y

∗
ν )1α

} 1

1− xj

,
(6.13)

where
xj ≡ M2

j /M
2
1 ,

Mi the masses of right-handed neutrinos, and, within the SM [261],

g(x) =
√
x

[

1

1− x
+ 1− (1 + x) ln

(

1 + x

x

)]

x≫1−→ − 3

2
√
x
− 5

6x3/2
+ ... . (6.14)

Note that the second term in eqn. (6.13) is suppressed by a factor 1/
√
x compared to the

first factor.
In the MSSM, in addition to decaying to lepton + Higgs, the right-handed neutrinos can

also decay to a slepton + Higgsino. To leading order in 1/x the sum of the asymmetries
to leptons and to sleptons is twice as large as the SM asymmetry [261]:

g(x) = −
√
x

(

2

x− 1
+ ln [1 + 1/x]

)

x≫1−→ − 3√
x
− 3

2x3/2
+ ... . (6.15)

In the limit M2,3 ≪ M1 eqn. (6.13) can also be expressed in terms of the light neutrino
mass matrix mν [233]:

ǫαα = − 3M1

8πv2u(YνY
†
ν )11

Im
{

(Yν)1α(m
∗
νY

T
ν )α1

}

. (6.16)

4In case TR > TEWPT, the prefactors in eqn. (6.11) change to 28

79
(SM) and 8

23
(MSSM) [233], an effect

smaller than 10%.
5The relation between our notation and ref. [233] is Yν = λT.
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This is a convenient expression when treating RGE and non-degenerate right-handed
neutrinos correctly. Since ǫαα has to be calculated at energies µ = M1, when both heavier
neutrinos have already been integrated out, s.t. their effect is accounted for only through
an effective dimension 5 operator leading to the masses of light neutrinos, mν . Hence, at
µ = M1 eqn. (6.13) cannot be applied. On the other hand, if M1 . 10M2, eqn. (6.16) is
not accurate anymore, since then contributions from the second term in eqn. (6.13) are not
generally negligible. In such a case one can evolve to µ = M1 without integrating out N3,2

and apply eqn. (6.13) to calculate the CP asymmetry.
Finally, the washout factor ηα is given by [233]

ηα =

[

( |Aαα| m̃αα

2.1m∗

)−1

+

(

m∗
2 |Aαα| m̃αα

)−1.16
]−1

(m̃ > m∗) ,

ηα =
|Aαα| m̃αα

2.5m∗

m̃

m∗
(m̃ < m∗) ,

(6.17)

with [233,262]6

m̃ ≡
∑

α

m̃αα ≡
∑

α

v2u (Yν)1α (Y
†
ν )α1

2M1

=
v2u

2M1

(YνY
†
ν )11 , (6.18)

m∗ ≡
8 π5/2√g∗

3
√
5

v2u
MPl

≃ 1.07× 10−3 eV , (6.19)

and the matrix A given by [233]

A =





−151/179 20/179 20/179
25/358 −344/537 14/537
25/358 14/537 −344/537



 . (6.20)

With the formulae given above we can now calculate the baryon asymmetry YB, but first
one needs to evolve the GUT scale parameters of the model under consideration to the
energy scale M1 where leptogenesis takes place. During RG evolution, νR3 and νR2 are
integrated out. Hence, one can only apply eqn. (6.16). On the other hand, if M1 ≃ M2,
eqn. (6.16) is very unprecise, since it neglects the second term in eqn. (6.13), which is not
suppressed in this case. To circumvent this issue and still keep the fitting procedure simple,
when calculating YB we evolve the parameters to M1 without integrating out right-handed
neutrinos and always apply eqn. (6.13). We made a numerical check in the hierarchical
case M1 ≪ M2 ≪ M3 and the deviation of the two methods described above turns out to
be only 1%.

6In our notation v = 246 GeV which amounts to a factor of 1

2
in eqns. (6.18) and (6.19) for m̃ and m∗

in comparison to a notation with v = 246√
2
GeV = 174 GeV. Since the washout factor ηα, eqn. (6.17),

depends only on the ratio of m̃ and m∗, its definition is not affected by this convention.
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Chapter 7

Numerical Methods

In this section we give some details about the methods employed to find the best-fit pa-
rameters. For this purpose we want to first describe the methods and issues in an abstract
way and then describe with a more explicit example our implementation.
The program to minimize χ2 in eqn. (6.1) is written in C++. Within the program GNU

Scientific Library (GSL) [236] is used for numerical minimization, matrix diagonalization,
numerical solution of differential equations (RGEs), and random number generation. With
this functionality GSL provides the basic building blocks needed to a) calculate χ2 as a
function of model parameters x = (x1, ..., xm) and b) minimize χ2 with respect to x. Fur-
thermore, we use the Message Passing Interface (MPI) [263]1 to parallelize computations.
The computations are performed on the computer cluster of the Max-Planck-Institut für
Kernphysik, Heidelberg, where up to 1700 CPU cores can be used.
Since GSL does not contain an algorithm to diagonalize complex symmetric matrices

rather than complex hermitian or real symmetric matrices, we decompose complex sym-
metric n× n matrices into real symmetric 2n× 2n matrices as described in [264] and use
the GSL function for diagonalization of real symmetric matrices to calculate eigenvalues
and eigenvectors of complex symmetric matrices.
As already mentioned in the introduction to chapter 6 our χ2 function is highly non-linear

and thus possesses many local minima. Since there is no way to numerically ascertain
that one has found a global minimum, we apply a standard procedure to at least get a
high degree of belief that a local minimum that has been found numerically is also the
global minimum. Therefore we start the minimization algorithm many times with different
(random) initial parameters and choose the lowest out of the many local minima that will
be found. Furthermore we perturb a minimum and restart the minimization from the
perturbed point [235,236]. These steps are repeated until no improvement of the minimum
is found any more. Still, this gives no guarantee that the absolute minimum has been found
and lower minima might exist in the parameter space.
Our implementation of the described procedure for finding the global minimum is such

that the program supports different modes. In the ”threshold mode” the minimization

1A brief introduction to the most relevant MPI functions is ”A User’s Guide To MPI” by Peter S. Pacheco,
available online at ftp://math.usfca.edu/pub/MPI/mpi.guide.ps.
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starts from randomly chosen initial parameters. Thereby only such initial parameters are
considered as valid ones, which yield a χ2 value below some specified threshold. In the ”pert
mode” a previously found local minimum is randomly perturbed (the size of perturbations
can be specified) and the resulting parameter vector is taken as the starting point for the
next minimization. In this mode it is often useful to take initial parameters from a previous
fit with a slightly different setup, if one does not have already parameters corresponding to a
good local minimum. E.g., fits including renormalization group evolution can be performed
taking the best-fit parameters of the same model without RGE as initial parameters (with
maybe random perturbations applied, if one wants to make several fits simultaneously).
Those parameters should already be much closer to the minimum than randomly chosen
parameters. This speeds up the minimization since RGE slows down the evaluation of χ2

and hence the whole minimization by a factor of ∼ 103. Therefore looking for the ”first
local minimum” in the ”threshold mode”would be an additional lengthy exercise which can
be avoided.

Another mode automatically restarts a fit after a minimum has been found and repeats
the fit in ”pert mode” several times with perturbations of different magnitude applied to
the best parameter vector found so far. This decreases the required manual interaction.

7.1 Choosing the Seed of a Random Number Gener-

ator

The initial parameters are generated with the help of a random number generator (RNG)
provided by GSL. A random number generator needs an initial input number called seed
from which it produces a series of quasi-random numbers [265]. Certainly, if the seed is
not random then the produced series will not be random in the sense that two series of
quasi-random numbers produced by a RNG initialized with the same seed will be equal to
each other.

For many purposes the current timestamp of the system (on UNIX systems the number
of seconds passed since Jan 1st, 1970 0:00 UTC) serves as a suitable seed. In our case
usually several hundreds of fits are started in a ”set” simultaneously. Taking the system
timestamp as seed of a RNG would result in all fits which are started at the same second
to have the same seed and hence the same series of random numbers and finally the same
initial parameters. One way out is to add the job ID of each fit to the timestamp, since the
job ID is unique within a set of jobs. On the other hand, sometimes it is necessary to start
several sets of jobs simultaneously (due to limitations of the computer cluster). Then, for
each job within one set there is another job within all other sets with the same ID, which
reintroduces the problem of equal seeds. Even if two sets of jobs are not started within
the same second, hence having different timestamps, there still will be some fraction of
jobs with overlapping seeds, as long as the time difference between the start of two sets in
seconds is not at least as large as the number of jobs within the set with the larger amount
of jobs. E.g., let job 2 of set 1 have some seed s1 = t + 2, with t the timestamp, whereas
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uint32_t hash32shift(uint32_t key){

key = ~key + (key << 15); // key = (key << 15) - key - 1

key = key ^ (key >> 12);

key = key + (key << 2);

key = key ^ (key >> 4);

key = key * 2057; // key = (key + (key << 3)) + (key << 11)

key = key ^ (key >> 16);

return key;

}

Listing 7.1: Hash function used in random seed generation [266].

job 1 of set 2, started one second later, will have the seed s2 = (t + 1) + 1 = t + 2 = s1.
This illustrates that we shall try to find a method to generate a random seed2.

In ref. [267] some methods are suggested how to choose a random seed, all of which can
be summarized under the title ”genuine source of randomness”, like radioactive sources,
user interactions, or behaviour of changing information on the system like number of vir-
tual memory pages, network status, or timing of hard disk drives. For practical reasons
we choose to derive a seed from measuring time differences. It is possible to let the pro-
gram ”sleep” for some milliseconds by invoking a system function (e.g., usleep() on UNIX
systems). What helps us here is that the exact timelag between invoking usleep() and
continuation of the program is to some extent random, since it depends on what exactly
is going on on the system at the time when usleep() is invoked. The randomness is further
increased, if one measures the time lag in µs rather than ms. At this point, if two processes
measure a time lag with the same argument given to usleep(), their results are likely to be
different.

Fits that are started together in a set can communicate using MPI functions. Therefore
it is enough for one process in each set to perform the time measurement which is then
communicated to the other processes. Every process then adds its unique ID to the time
measurement to produce a number unique within the set.

Still, one should further reduce the probabililty of two or several processes getting the
same seed, since even if two processes within two different sets measure different time
delays, having many processes in each set which add their respective IDs to those time
delays can still result in overlapping seeds as explained in the previous paragraph.

Now one could simply repeat this procedure and add up the results. The problem is
that two processes having different measurements of the time lag in each single iteration
may still have the same sum of time delays (”5 + 9 = 6+ 8”). The probability distribution
of the sum of many independent identically distributed random variables converges to
a Gaussian distribution due to the central limit theorem3. The standard deviation of the

2Even if one can randomly choose a seed one still needs a RNG since methods to generate random seeds
are orders of magnitude more expensive (in terms of computation time) than generating quasi-random
numbers from a seed.

3See standard textbooks on statistics.
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unsigned long int calcNewSeed(){

unsigned long int seed = 0;

if(myid == 0){

seed = hash32shift(time(NULL));

for(int i=0; i<5; i++){

uint32_t usechash = hash32shift(getUSec());

seed = hash32shift(seed + usechash);

usleep(3000); // sleep 3 ms ( 3000 us )

}

}

MPI_Bcast(&seed, 1, MPI_UNSIGNED_LONG, 0, MPI_COMM_WORLD);

seed = hash32shift(seed + myid);

return seed;

}

Listing 7.2: Seed calculation using time delay measurements and hash function from
listing 7.1.

resulting Gaussian distribution scales as the square root of the number of random variables
that are summed. Therefore, to avoid a high probability of equal seeds after summation
one would need to make many independent time measurements.
Although not a problem as long as one does not need to calculate many seeds, a solution

to this issue is provided through the use of hash functions [268]. A hash function maps
one number from a set to a number (the ”hash”) of another set (usually a set of integers).
An important requirement to a hash function is that even very similar input numbers (say,
5 and 7) should nevertheless be hashed to very different hashes [266] (e.g., 5 → 1679,
7 → 976634). We exploit this property by hashing each time measurement with a 32
bit hash function provided as ’hash32shift()’ in ref. [266] and reprinted in listing 7.1 for
reference. Then each ’root-process’ can make a second time measurement and hash its
result again. Afterwards the two hashes are added. Two sums of hashes calculated by
two different processes performing the steps described above will only be equal, if both
processes get the same results from every single time measurement performed. With the
help of formulae one can express it like that: Even if

∆t1 +∆t2 = ∆t3 +∆t4 (7.1)

we still have
h(∆t1) + h(∆t2) 6= h(∆t3) + h(∆t4) , (7.2)

with a very high probability4 as long as ∆t1 6= ∆t3,4, with h being the hash function.

4The probability of two different numbers having the same hash is 2−32 ≃ 2.3× 10−10 if the hash function
maps to a 32 bit integer.
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main(<params>): mode choice

Iterative call of GSL

minimization function

Setting up FitParams

object from <params>

Calling program with 

command line 

parameters <params>

Setup of GSL minimization

object ("gsl_fsolver") from

FitParams

Exit

- results

- repmin

- plot

- ...

Figure 7.1: Flow chart of our minimization program. A detailed description of each step
is given in the text.

Now we can efficiently reduce the probability of two equal seeds by simply adding not
only the hashes of two time delay measurements, but some more. After performing n
such sums the probability of two equal seeds reduces roughly as pn (for not too large
n), with p being the probability for two processes to measure the same time delay. In
our implementation (see listing 7.2) we use 5 iterations, which is certainly enough for our
purposes. Furthermore, for p ∼ 0.01, pn ∼ 10−10, which already saturates our 32 bit hash
function (see footnote 4).

7.2 Technical Details of the Minimization Program

We now continue to describe the subsequent steps our program performs to get to the
solution of the minimization problem. The program flow is illustrated in fig. 7.1. The
program is invoked with several command line parameters specifying the model to be
fitted and details to be considered in the fit such as fitting an inverted or normal hierarchy
for neutrinos, using RGE or not, fitting the baryon asymmetry or not, and in case of IH in
the neutrino sector whether the small or the large value of sin2 θ23 shall be used during the
fit, since experimental data currently allows two solutions (see sec. 6.1). Command line
parameters also specify details about how to choose initial parameters (e.g., randomly or
from a file). From these parameters an object ”FitParams” is created which is passed over
to several functions initializing a GSL library object (GSL minimizer) in order to perform
the minimization. The GSL minimizer contains, among other information, a pointer to the
function which is to be minimized (i.e. our χ2 function, eqn. (6.1)), a pointer to the vector
of model parameters (see eqn. (5.1)), and a pointer to further (optional) parameters which
are needed by the function that shall be minimized. In the next step a GSL function is
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invoked iteratively which upon each iteration tries to find a vector of parameters for which
the value of χ2 is lower than the current one. The GSL minimization function thereby uses
the information stored in the GSL minimizer object to calculate χ2 for different parameter
vectors. When the function converges to a (probably local) minimum, the program stores
the corresponding parameters and value of χ2 at that minimum and exits.
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Chapter 8

Results

In this section we present and discuss the results of our analysis. We quantify the deviation
of model predictions by stating the pulls of all the observables considered. The pull of a
model with respect to an observable yi is defined as

pull(yi) =
ytheoi (x)− yexpi

σexp
i

, (8.1)

with the variables as defined in eqn. (6.1) on page 53. The pull measures the deviation
of theoretical predictions (or best-fit values) from experimentally measured values in units
of uncertainty of the observable. Its sign shows whether the theoretical prediction is too
small or too large.

Different Sets of Observables

We will present the results of fits including RG evolution where the input values are taken
at µ = MZ as well as the results of fits made at the GUT scale. Our full set of observables
to which the models are fitted are the masses of quarks and charged leptons, mass-squared
differences of neutrinos, mixing angles of quarks and leptons, the CP phase δCKM in the
CKM matrix, the baryon asymmetry YB and the Higgs quartic coupling λ. The full set of
observables is used only in non-SUSY models with full RG analysis. λ is generally not fitted
in SUSY models and in non-SUSY models without RG analysis (see sec. 6.2 for details).
Fits including YB are made only together with full RG evolution. Hence the number of
observables taken into account for the fits varies between 18 and 20. Numerical input
values can be found in chapter 6. There we also pointed out that in case of the inverted
neutrino mass hierarchy currently two numerically different best-fit solutions exist for the
value of sin2 θ23. Since good fits could be achieved for both possibilities, we restrict the
discussion of our results to the case where sin2 θIH23 > 0.5. For the normal hierarchy, the
experimental best-fit value is sin2 θIH23 = 0.41 < 0.5. We now proceed with the discussion
of each model.
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Model tan β Comment χ2

M1 – no RGE, no YB 1.103
– RGE, no YB 22.97
– RGE, YB 23.46

MT – no RGE, no YB 11.76
– RGE, no YB 49.55

MS 50 no RGE, no YB 9.411
50 RGE, no YB 3.294
50 RGE, YB 3.347

38 no RGE, no YB 9.715
38 RGE, no YB 3.016
38 RGE, YB 3.150

10 no RGE, no YB 10.45
10 RGE, no YB 2.889
10 RGE, YB 3.096

Table 8.1: Fit results for models M1, MT, and MS with normal neutrino mass hierarchy.
We differentiate between fits to observables at the GUT scale (”no RGE”) which also do not
include the baryon asymmetry YB as an observable and fits to observables at MZ (”RGE”).
The latter further subdivide into fits with or without YB as an observable to which the
models are fitted. For the fits of M1 and MT including RGE the Higgs quartic coupling
has also been fitted, as described in sec. 6.2.

8.1 Minimal Model with 10H + 126H

Before making our own analysis we checked the best-fit parameters for the non-SUSY
version of this model (M1 in our convention) presented in ref. [168] for the fit at the GUT
scale and in case of normal neutrino mass hierarchy. From the best-fit model parameters
published in ref. [168] for model M1 we get δCKM = 1.928 which is off a lot from the value
stated in ref. [168] of δCKM = 69.5262 ◦ = 1.213 rad. We checked this value using the REAP
package [248]. Our fit of model M1 gives χ2 = 1.1, with now δCKM = 1.219, in very good
agreement with experimental data. The somewhat better fit in ref. [168] with χ2 ≈ 0.7 is
due to new and more precise data in the neutrino sector which underlies our analysis and
the inclusion of the leptonic mixing angle θl13 in our fits. The SUSY model MS with normal
neutrino mass hierarchy has also been analyzed before (without RG evolution) [168, 203],
albeit with older data underlying the analyses. The results lie in the range between χ2 = 3.7
and χ2 = 5.1 in case of type I seesaw dominance. Our fits yield χ2 = 9.41, 9.72, and 10.45
for tan β = 50, 38, and 10, respectively. The results are summarized in tbl. 8.1 and the
best-fit values of observables and corresponding pulls, to be discussed below, are compiled
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M1, no RGE M1, no YB M1, YB

Observable best-fit pull best-fit pull best-fit pull

md 0.00067 -0.9458 0.00298 0.0621 0.00300 0.0831
ms 0.02406 0.3172 0.06887 0.8951 0.06970 0.9485
mb 1.00309 0.0772 2.89370 0.0411 2.90899 0.2110
mu 0.00048 0.0072 0.00131 0.0977 0.00130 0.0722
mc 0.24243 0.2153 0.70754 1.0541 0.70401 1.0120
mt 73.69305 -0.0797 161.41161 -3.4295 161.45551 -3.4148

sin θq12 0.22462 0.0227 0.22476 0.1433 0.22471 0.1012
sin θq23 0.04204 0.0304 0.04170 -0.2291 0.04157 -0.3312
sin θq13 0.00350 0.0091 0.00342 -0.2520 0.00344 -0.1872
δCKM 1.21930 0.0699 1.25285 0.6525 1.24018 0.4325
∆m2

⊙ 7.5033e-23 0.0180 7.5301e-23 0.1626 7.5377e-23 0.2038
∆m2

A 2.4686e-21 -0.0204 2.4573e-21 -0.1858 2.4534e-21 -0.2419
sin2 θl12 0.30039 0.0303 0.29864 -0.1044 0.30012 0.0090
sin2 θl23 0.40631 -0.1189 0.34571 -2.0739 0.33558 -2.4006
sin2 θl13 0.02262 -0.1652 0.01847 -1.9678 0.01907 -1.7085
me 4.697e-4 — 0.00049 0.0704 0.00049 0.0942
mµ 9.914e-2 — 0.10143 -0.2508 0.10199 -0.1427
mτ 1.686 — 1.73804 -0.0939 1.69996 -0.5301
YB — — — — 8.7463e-11 -0.0161
λ — — 0.52731 0.6307 0.52729 0.6293

χ2 1.103 22.97 23.47

Table 8.2: Observables and pulls for model M1 (minimial non-SUSY) with and without
considering RGE. Note that the fit without RGE was performed in the charged lepton
basis, s.t. those observables are input parameters and do not have a pull. Masses are given
in GeV, mass-squared differences in GeV2.

in tbls. 8.2–8.4.

With inverted neutrino mass hierarchy it was impossible to produce a good fit of this
model, with χ2 > 200 (400) in case of SUSY (non-SUSY) models. Within SUSY versions
of such models this observation has already been made by other authors [203]. But that
work did not include RGE during the fitting procedure and hence neglected running of
neutrino parameters which can be sizable in the inverted hierarchy case. Therefore, our
conclusion is more stringent. Since with the inverted hierarchy it is impossible to fit the
data, we present only results for the normal neutrino mass hierarchy.

For the fits including RG evolution we see that for the minimal models in the non-
supersymmetric case including the full RG analysis worsens the fit considerably while
doing the same for the SUSY model gives a better result than fitting without RG evolution
(tbl. 8.1). In case of non-SUSY models there is a big additional constraint when fitting
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Figure 8.1: Running of λ for the best-fit parameters of model M1 with normal neutrino
mass hierarchy, RG evolution and inclusion of YB. The kink between µ = 1012 GeV and
µ = 1013 GeV results from integrating out the heaviest neutrino. There is no further such
kink at energies where the other heavy neutrinos are integrated out, since their contribution
to the running of λ is negligible compared to the contribution of the top-quark.

with RG evolution, since in that case we also consider the Higgs mass (see sec. 6.2). We
also performed a fit of model M1 without including the Higgs mass. As expected from
the pull of the top-quark (see discussion below), the fit improves to χ2 = 13.2(8.3) in case
YB was fitted (not fitted). Still, both non-SUSY and SUSY models can fit the data, the
SUSY models being in better agreement. For the SUSY model we see no preferred value
of tan β from our fits. Concerning the baryon asymmetry YB, the quality of all fits stays
the same when YB is included in the analysis. Its absolute impact on the value of χ2 is
∆χ2

YB
≡ χ2

YB
− χ2

no YB
∼ 0.5 for the non-SUSY case and ∆χ2

YB
∼ 0.05, 0.14, 0.2 for the

SUSY case with tan β = 50, 38, 10, respectively. There seems to be a tendency of higher
impact of YB on the fit quality of SUSY fits with lower values of tan β.

Let us now discuss the different contributions to χ2. We show the best-fit values of
observables and their corresponding pulls in tbls. 8.2, 8.3 and 8.4. In case of non-SUSY
fits without RGE one observes that the dominating contribution to χ2 is due to the pull
of the down-quark’s mass. In case of the SUSY fit without RGE we fit mass ratios instead
of masses. There the dominating contribution is the md/ms ratio (not shown). In case of
non-SUSY fits the main contribution to χ2 comes from the mass of the top-quark (∼ 3.4σ)
followed by the pulls of sin2 θl23 and sin2 θl13. The tension in the fit of the top-quark mass
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MS, no YB

tan β = 50 tan β = 38 tan β = 10

Observable best-fit pull best-fit pull best-fit pull

md 0.00087 -1.6714 0.00090 -1.6449 0.00091 -1.6381
ms 0.04512 -0.6371 0.04711 -0.5089 0.04870 -0.4063
mb 2.87626 -0.1526 2.88217 -0.0870 2.88499 -0.0557
mu 0.00127 0.0018 0.00127 0.0068 0.00127 0.0064
mc 0.62848 0.1129 0.62738 0.0997 0.62854 0.1135
mt 171.45308 -0.0823 171.52203 -0.0593 171.53886 -0.0537

sin θq12 0.22460 -0.0040 0.22460 -0.0018 0.22460 -0.0009
sin θq23 0.04191 -0.0675 0.04193 -0.0565 0.04193 -0.0543
sin θq13 0.00351 0.0241 0.00351 0.0322 0.00351 0.0314
δCKM 1.21318 -0.0364 1.21398 -0.0225 1.21409 -0.0205
∆m2

⊙ 7.5004e-23 0.0021 7.5002e-23 0.0013 7.5002e-23 0.0009
∆m2

A 2.4699e-21 -0.0022 2.4699e-21 -0.0013 2.4699e-21 -0.0010
sin2 θl12 0.30015 0.0112 0.30007 0.0053 0.30004 0.0028
sin2 θl23 0.40960 -0.0129 0.40977 -0.0073 0.40987 -0.0043
sin2 θl13 0.02299 -0.0045 0.02297 -0.0138 0.02297 -0.0123
me 0.00049 0.0702 0.00049 0.0660 0.00049 0.0605
mµ 0.10315 0.0839 0.10306 0.0665 0.10298 0.0513
mτ 1.76204 0.1809 1.75740 0.1278 1.75528 0.1035

χ2 3.294 3.016 2.889

Table 8.3: Observables and pulls for model MS (minimial SUSY) with RGE, without fitting
YB, for different values of tan β. Masses are given in GeV, mass-squared differences in Gev2.

is easily understood from the relatively light Higgs mass (and hence low quartic coupling
λ). Namely, the beta-function governing the evolution of the Higgs quartic coupling λ, as
given in appendix C.1, reads

16π2 βλ = 6λ2 − 3λ

(

3g22 +
3

5
g21

)

+ 3 g42 +
3

2

(

3

5
g21 + g22

)2

+ 4λ Tr
[

Y †
e Ye + Y †

ν Yν + 3Y †
d Yd + 3Y †

uYu

]

− 8 Tr
[

Y †
e Ye Y

†
e Ye + Y †

ν Yν Y
†
ν Yν + 3Y †

d Yd Y
†
d Yd + 3Y †

uYu Y
†
uYu

]

,

where Yi are the Yukawa matrices of quarks and leptons and gi the SM gauge couplings.
The dominating contribution here is the top-quark Yukawa coupling yt within Yu which

is of order one (we neglect Yν since it does not change the argument). Therefore, the first
trace in this expression evaluates to ∼3y2t and the second to ∼3y4t . Then we can identify the
three leading terms of βλ: 6 λ2, 12λ y2t , and −24 y4t . Hence, setting yt ∼ 1, for not too large
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λ (λ . 2) the second trace in above expression will dominate. Since it has a negative sign
it lets λ (and hence mH) decrease with increasing energy. Or, since we evolve from MGUT

to MZ , λ increases for lower energies. I.e., the large top-quark Yukawa coupling needed to
get the correct top-quark mass favors a larger Higgs mass than (possibly) experimentally
established. Or the other way around, to reproduce mH as stated in sec. 6.2 one needs a
smaller top-quark mass. This ultimately results in relatively large pulls for the top-quark
mass in fits with RG evolution.
Note, however, that there is no consensus in the community on the measurement of the

top-quark mass via kinematic reconstruction [269]. The top-quark mass determination
at the Tevatron is based on the final state of the decay products. Another possibility
is to reconstruct the top-quark mass from the total cross section in the top-quark pair
production. This method is more rigorous from a theoretical perspective and yields a
smaller top-quark mass 168.9 ± 3.5 GeV1 [270] than the world average and it has larger
error bars.
The evolution of λ with energy for the best-fit parameters of model M1 with normal

neutrino mass hierarchy, RG evolution and inclusion of YB is shown in fig. 8.1. Notice
the kink between µ = 1012 GeV and µ = 1013 GeV which results from integrating out
the heaviest neutrino with a mass of M3 = 3.6 × 1012 GeV (see sec. 8.4). There is no
further such kink at energies where the other heavy neutrinos are integrated out, since
their contribution to the running of λ is negligible compared to the contribution of the
top-quark.
The results of the minimal model with 10H + 126H are summarized in tbl. 8.1 and the

corresponding best-fit values and pulls can be found in tbls. 8.2–8.4. We present our
parameters corresponding to the best-fit values in appendix B.
In sec. 5.4 we have shown how the number of free parameters can be reduced by imposing

textures onto the Yukawa matrices. To illustrate that such a procedure can also produce
viable models, we performed a fit to model M1 with the texture imposed as described in
sec. 5.4. The results of the fit are contained in tbl. 8.1 together with the results of models
M1 and MS and are denoted there by MT. While the fit without RGE is acceptable,
including RGE into the fit poses tension to such a model, with now in addition to the
top-quark mass also the strange-quark mass and the reactor mixing angle sin2 θ13 cannot
be fitted and have deviations of 3 ÷ 4σ to their experimental best-fit values. Therefore
we will not discuss the model in more detail, but we note that after all this model has 4
parameters less than M1, which by itself does not provide a perfect fit once RGE and the
Higgs mass are included into the fit.

8.2 Alternative Minimal Model with 126H + 120H

This model was analyzed only in the non-SUSY version (as it was originally proposed to be
attractive in that case [166]) and we find that it is unable to reproduce fermion masses and

1Note that this is the pole-mass mt(mt) while the value given in tbl. 6.1 is the mass at MZ in the MS
scheme.
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MS, YB

tan β = 50 tan β = 38 tan β = 10

Observable best-fit pull best-fit pull best-fit pull

md 0.00085 -1.6892 0.00082 -1.7093 0.00080 -1.7247
ms 0.04577 -0.5956 0.05002 -0.3214 0.05281 -0.1414
mb 2.87840 -0.1289 2.88338 -0.0736 2.88683 -0.0352
mu 0.00127 0.0104 0.00127 0.0034 0.00127 0.0100
mc 0.63609 0.2034 0.63954 0.2445 0.63828 0.2295
mt 171.42259 -0.0925 171.45737 -0.0809 171.52678 -0.0577

sin θq12 0.22459 -0.0123 0.22459 -0.0123 0.22459 -0.0105
sin θq23 0.04181 -0.1462 0.04181 -0.1476 0.04181 -0.1455
sin θq13 0.00351 0.0455 0.00351 0.0291 0.00351 0.0370
δCKM 1.21008 -0.0901 1.20950 -0.1002 1.21020 -0.0881
∆m2

⊙ 7.5004e-23 0.0020 7.5002e-23 0.0010 7.5005e-23 0.0026
∆m2

A 2.4698e-21 -0.0025 2.4699e-21 -0.0016 2.4698e-21 -0.0036
sin2 θl12 0.30014 0.0107 0.30006 0.0046 0.30013 0.0097
sin2 θl23 0.40950 -0.0160 0.40963 -0.0120 0.40928 -0.0234
sin2 θl13 0.02297 -0.0142 0.02301 0.0058 0.02296 -0.0194
me 0.00049 0.1140 0.00049 0.1098 0.00049 0.1068
mµ 0.10303 0.0607 0.10285 0.0251 0.10265 -0.0132
mτ 1.75961 0.1531 1.75372 0.0857 1.74951 0.0375
YB 8.7499e-11 -0.0005 8.7498e-11 -0.0009 8.7497e-11 -0.0014

χ2 3.347 3.150 3.096

Table 8.4: Observables and pulls for model MS (minimial SUSY) with RGE, including YB,
for different values of tan β. Masses are given in GeV, mass-squared differences in Gev2.

mixings. Although this result has been obtained previously [168], the authors of ref. [168]
considered only the normal hierarchy and further did not include a detailed RGE, but
fitted some idealized data set at MGUT. In this thesis we used full RGE to arrive at our
results, thus our conclusion is much stronger. Further, we also checked and excluded the
possibility of the inverted hierarchy. Our best-fit result has a χ2 value of ∼ 100 in case of
the normal hierarchy. For the inverted hierarchy the fit becomes even worse with χ2 ∼ 700.
Therefore we will not present tables with best-fit values or pulls for this model.

8.3 Model with 10H + 126H + 120H

This class of models, inspite of having one more Higgs representation, through the addi-
tional constraints (see chapter 5) has one parameter less than the minimal models. Nev-
ertheless, it is not only able to fit the data, but reproduces the data even much better
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χ2

Model tan β Comment NH IH

F1 – no RGE, no YB 6.6× 10−5 2.5× 10−4

– RGE, no YB 11.2 13.3
– RGE, YB 11.5 13.3

FS 50 no RGE, no YB 9.0× 10−10 3.9× 10−8

50 RGE, no YB 6.9× 10−6 0.602
50 RGE, YB 0.220 20.5

Table 8.5: Value of χ2 at the best-fit position for the model with 10H + 126H + 120H in
case of normal (NH) and inverted (IH) neutrino mass hierarchy. For IH we present the
solution with sin2 θ23 > 0.5, but both possibilities yield equally good fits. Remarks as in
tbl. 8.1 apply analogously.

than the other models. This is especially the case for the SUSY versions of this model.
Furthermore, these models are also able to fit the data with inverted neutrino mass hier-
archy which differentiates them clearly from the previous models. Since we do not observe
a significant difference in the quality of fits of SUSY models with different values of tan β
we fitted this model only for tan β = 50 and tan β = 10, which again yield very similar
results, as in the case of the 10H +126H model. Therefore we present here only the results
for tan β = 50. Our results are tabulated in tbl. 8.5 and the best-fit values of observables
and their pulls are compiled in tbls. 8.6 and 8.7.

Let us first discuss the fits with normal hierarchy. This setup has been analyzed without
RG evolution in the SUSY case in refs. [168, 195, 223] with χ2 ranging between 0.01 and
0.33. The non-SUSY case has been fitted to data only in ref. [168] and results in χ2 ∼ 10−6.
Again we observe that fitting the non-SUSY version of this model including RG evolution
significantly worsens the fit. As in the 10H + 126H model this is due to fitting the Higgs
mass. Fitting YB yields a χ2 value that is by 0.3 higher than without fitting YB. The
SUSY fits turn out to be even better than the non-SUSY fits. Here, fits at the GUT scale
as well as fits at MZ (without YB) yield χ2 values that are essentially zero. Including YB

puts severe constraints on the setup as χ2 increases to 0.22. We notice that the absolute
increase of χ2 due to inclusion of YB (denoted henceforth by ∆χ2

YB
) is roughly the same

for all setups within the normal neutrino mass hierarchy.

We now turn to the inverted hierarchy. In constrast to the 10H +126H model an inverted
neutrino mass hierarchy is viable here. The SUSY case with inverted hierarchy has been
fitted to data in ref. [223], but RG evolution was not taken into account, which is especially
important for the inverted hierarchy. Their best-fit point has χ2 = 0.011. We are not aware
of any analysis of the non-SUSY case with inverted hierarchy.

In our analysis, in the non-SUSY model the fit quality is approximately the same as
in the normal hierarchy. Again, when fitting with RG evolution inclusion of mH severely
constrains the model. The value of χ2 for fits with RG evolution is slightly higher in case

74



8.3. MODEL WITH 10H + 126H + 120H

F1, NH, no YB F1, NH, YB F1, IH, YB

Observable best-fit pull best-fit pull best-fit pull

md 0.00295 0.0414 0.00314 0.1978 0.00305 0.1213
ms 0.06199 0.4512 0.06195 0.4482 0.06651 0.7427
mb 2.88874 -0.0140 2.89203 0.0225 2.88964 -0.0040
mu 0.00127 0.0003 0.00127 0.0013 0.00127 0.0008
mc 0.62395 0.0590 0.62563 0.0789 0.62383 0.0574
mt 161.94256 -3.2525 161.84354 -3.2855 161.20820 -3.4973

∆m2
⊙ 7.5003e-23 0.0015 7.501e-23 0.0053 7.5e-23 -0.0001

∆m2
A 2.4697e-21 -0.0037 2.4694e-21 -0.0089 -2.3549e-21 0.0019

sin θq12 0.22460 -0.0044 0.22459 -0.0115 0.22460 0.0042
sin θq23 0.04192 -0.0646 0.04190 -0.0795 0.04182 -0.1359
sin θq13 0.00350 -0.0031 0.00350 -0.0061 0.00350 -0.0007
δCKM 1.21402 -0.0217 1.21201 -0.0566 1.21651 0.0215
sin2 θl12 0.30006 0.0048 0.30031 0.0242 0.30000 0.0002
sin2 θl23 0.41029 0.0093 0.41092 0.0295 0.59024 0.0114
sin2 θl13 0.02302 0.0078 0.02300 -0.0021 0.02300 0.0013
me 0.00049 0.0001 0.00049 0.0002 0.00049 0.0005
mµ 0.10232 -0.0777 0.10222 -0.0975 0.10211 -0.1180
mτ 1.74663 0.0045 1.74145 -0.0548 1.74172 -0.0518
YB — — 8.7501e-11 0.0002 8.75e-11 0.0000
λ 0.52745 0.6455 0.52749 0.6493 0.52792 0.6916

χ2 11.2 11.5 13.3

Table 8.6: Observables and pulls for model F1 fitted assuming normal (NH) or inverted
(IH) hierarchy. For the NH case results with and without fitting YB are shown, for the IH
case both fits are indistinguishable at the presented precision and only the results of the
fit including YB are shown. Masses are given in GeV, mass-squared differences in GeV2.

of the inverted hierarchy as compared to the normal hierarchy. The constraint through
fitting YB is nearly vanishing (∆χ2

YB
< 0.001, s.t. it is not seen in tbl. 8.5). For F1 in case

of inverted hierarchy we again, as for M1 with normal hierarchy, performed an additional
fit without including the Higgs mass. As expected from the discussion in sec. 8.1 the pull
of the top-quark diminishes and we get χ2 = 0.67 (YB not fitted; not shown in any table)
to be compared to χ2 = 13.3 in case the Higgs mass is included in the fit.

The situation in the SUSY fits with inverted hierarchy differs more significantly from the
corresponding fits with normal hierarchy. While fits without RG evolution give χ2 ∼ 0,
turning on RG evolution seriously worsens the fit with now χ2 ∼ 0.6. This difference is
not totally surprising, since in case of inverted hierarchy neutrino parameters are known
to evolve sizably between MGUT and MZ and for the fits at MGUT the low-energy values
of neutrino parameters were assumed, which only for the normal hierarchy is a good ap-

75



CHAPTER 8. RESULTS

FS, NH, YB FS, IH, no YB FS, IH, YB

Observable best-fit pull best-fit pull best-fit pull

md 0.00275 -0.1275 0.00305 0.1255 0.00015 -2.2636
ms 0.06071 0.3682 0.04337 -0.7500 0.00194 -3.4231
mb 2.88911 -0.0099 2.88344 -0.0729 2.92904 0.4338
mu 0.00127 0.0007 0.00127 -0.0062 0.00127 0.0007
mc 0.62172 0.0324 0.61551 -0.0416 0.61485 -0.0494
mt 171.52330 -0.0589 171.65509 -0.0150 177.30747 1.8692

∆m2
⊙ 7.4947e-23 -0.0287 7.5e-23 0.0000 7.5e-23 0.0001

∆m2
A 2.472e-21 0.0285 -2.355e-21 -0.0000 -2.3551e-21 -0.0013

sin θq12 0.22460 -0.0005 0.22460 -0.0012 0.22460 -0.0021
sin θq23 0.04194 -0.0462 0.04201 0.0114 0.04201 0.0068
sin θq13 0.00350 -0.0045 0.00350 -0.0015 0.00350 0.0011
δCKM 1.21519 -0.0015 1.21507 -0.0035 1.21480 -0.0082
sin2 θl12 0.29899 -0.0773 0.30000 -0.0000 0.30000 0.0001
sin2 θl23 0.41340 0.1097 0.58972 -0.0129 0.58987 -0.0059
sin2 θl13 0.02342 0.1812 0.02300 0.0011 0.02300 -0.0006
me 0.00049 0.0020 0.00049 -0.0025 0.00049 0.0197
mµ 0.10230 -0.0819 0.10320 0.0937 0.10275 0.0062
mτ 1.75034 0.0470 1.75356 0.0838 1.74032 -0.0678
YB 8.7512e-11 0.0053 — — 8.75e-11 -0.0000

χ2 0.220 0.602 20.5

Table 8.7: Observables and pulls for model FS fitted assuming normal (NH) or inverted
(IH) hierarchy. For the NH case results from fits including YB are shown, for the IH case
both fit results with and without YB are shown. Masses are given in GeV, mass-squared
differences in GeV2.

proximation. What is more surprising is that the quality of the fit diminishes a lot when
including YB into the fit. The down quark mass is fitted 2.3σ the strange-quark mass
3.4σ too small, while the top-quark mass is fitted 1.9σ too large. In contrast, all other
observables are reproduced in perfect agreement with data. One may argue that in terms
of complex phases this model is less flexible than the 10H + 126H model, since H and F
in this model are purely real and the only source of complex phases comes from G, which
is purely imaginary (including its prefactor; see eqn. (5.1)) and has only three parameters,
since it is anti-symmetric. Still, from the SUSY fits of the normal hierarchy and non-SUSY
fits of both hierarchies one would not expect such a dramatic impact of including YB into
the fit in the inverted hierarchy in the SUSY model.

In what concerns the different contributions to χ2, in the ”no RGE” case and for the
SUSY fit of the normal hierarchy also in the ”no YB” case χ2 ∼ 0. The best-fit values
of observables are essentially identical with the experimental values presented in chapter
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6. Therefore we do not tabulate these values separately. In the non-SUSY fits including
RG evolution (but no YB) we have again the dominating contribution from mt with a pull
of ∼ −3.25 (NH) or ∼ −3.5 (IH) corresponding to ∆χ2

mt
∼ 10.6 (NH) or ∆χ2

mt
∼ 12.2

(IH) followed by the pulls of λ and the strange-quark mass ms, 0.65 and 0.45 (NH) or
0.69 and 0.74 (IH), respectively. When also fitting YB, the biggest change in the NH case
concerns the pull of the down-quark mass rising from 0.04 (no YB) to 0.2 (including YB).
This amounts only to a small fraction of ∆χ2

YB
and the rest is distributed on basically

all observables in such a way, that they all stay essentially at the experimental best-fit
position to an accuracy, s.t. all pulls < 0.1σ. For the IH case, as already mentioned,
∆χ2

YB
∼ 0 and there are no big changes in the values of the pulls. In the SUSY case with

normal hierarchy and YB the main contribution to χ2 is the strange-quark mass with a
pull of 0.37 followed by sin2 θl13, md, and sin2 θl23. Fitting the inverted hierarchy without
YB again the pull of the strange-quark mass gives the main contribution to χ2 with now
the pull being −0.75 accounting for nearly the whole value of χ2. Including YB into the fit
introduces severe tensions for the validity of the model, as pointed out above. The best-fit
values of observables and their pulls for the non-SUSY and SUSY version of this model are
summarized in tbls. 8.6 and 8.7, respectively.

8.4 Model Predictions

There are observables which have not yet been measured experimentally but are fixed by
the fits we performed, so they can be understood as predictions of the models we analyzed.
The observables predicted are effective 0νββ mass 〈mν〉 (eqn. (3.5) on page 29), leptonic
CP violation δlCP (eqn. (2.2) on page 9), lightest neutrino mass m0 (m0 = m1 for NH
and m0 = m3 for IH), and masses of heavy neutrinos Mi. We will discuss the non-SUSY
case as well as the SUSY case. In case of SUSY models we will restrict the discussion to
models with tan β = 50, since the results of models with other values of tan β are very
similar and show only small numerical deviations from the models with tan β = 50. One
common effect is that in case of normal hierarchy the masses generally increase in models
with lower values of tan β while in case of inverted hierarchy they decrease. For low-energy
observables, such as 〈mν〉, this is only an effect of a few percent. The numerical values are
tabulated in tbl. 8.9 and will be discussed below.

Further, there is the question whether the atmospheric neutrino mixing angle, θ23, devi-
ates from maximal mixing (i.e., θ23 = 45◦). Its best-fit value already deviates by about 1 σ
from maximal mixing (see tbl. 6.1) and we want to see whether the models considered here
pin down θ23 more precisely than experimental limits. Besides the question of whether the
atmospheric mixing angle is maximal or not one of the next questions to be answered in
neutrino physics is the value of δlCP . Therefore, we investigate how stringent the model
predictions are for δlCP . For both quantities we analyze the behaviour of χ2 as a function of
sin2 θ23 or δlCP , respectively, employing the method described at the beginning of chapter
6. For the still viable models M1, F1, and FS we plot ∆χ2(sin2 θ23) = χ2(sin2 θ23)−χ2|min

in fig. 8.2. As can be seen from fig. 8.2 neither model F1 nor FS restricts the value of θ23
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Figure 8.2: ∆χ2(sin2 θ23) = χ2(sin2 θ23)−χ2|min is shown (a) for models F1 and FS in case
of an inverted neutrino mass hierarchy and (b) for models M1, F1, and FS in case of a
normal hierarchy and the baryon asymmetry YB included into the fit.

sizably beyond its experimental boundaries2, independently of the neutrino mass hierar-
chy. ∆χ2(sin2 θ23) simply increases due to the deviation of sin2 θ23 from the experimental
best-fit value, i.e.,

∆χ2(sin2 θ23) ≃
(

sin2 θ23 − sin2 θ23
σ23

)2

,

where θ23 is the experimental best-fit value of θ23 and σ23 the uncertainty on sin2 θ23. Model
M1 in case of normal hierarchy, however, strongly favors a rather small value, sin2 θ23 =
0.335± 0.015 at 68% C.L. (corresponding to ∆χ2 = 1), with a much steeper ∆χ2(sin2 θ23)
function. Therefore, if after more precise measurements the value of θ23 contracts around
its current experimental best-fit value, model M1 will be strongly disfavored. For other
cases, not shown in fig. 8.2, especially the fits without RGE, the situation is similar to
that of models F1 and FS as presented in fig. 8.2.
A similar analysis was carried out for δlCP with models M1, F1, and FS. The 68%

C.L. intervals are summarized for these models in tbl. 8.8 differentiated by neutrino mass
hierarchy and by the fitting procedure – without RGE or with RGE, whereas the fits
with RGE, again, include the baryon asymmetry YB. For a selection of setups we plot
∆χ2(δlCP ) in fig. 8.3. As can be seen from the ranges presented in tbl. 8.8, first of all there
are big differences in the predicted values of δlCP for one and the same model, depending on
whether RGE and YB are taken into account or not. E.g., for model M1, when the analysis
is done without RGE and without inclusion of YB, within 68% C.L. δlCP is completely
unconstrained. In contrast, the investigation including RGE and YB yields only certain
intervals for δlCP which are allowed at the same C.L.. For model F1 in case of inverted
neutrino mass hierarchy this contrast is most pronounced, with δlCP being unconstrained
in the ”no RGE” setup, while being locked to a rather small interval, δlCP ∈ [4.6; 5.0], in
the ”RGE & YB” setup. In the analysis including RGE also YB was fitted, which strongly

2M1 is not viable in the case of inverted hierarchy, as discussed in sec. 8.1
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Figure 8.3: ∆χ2 as a function of δlCP plotted for models M1 & FS (NH, with RGE, YB

fitted) and model FS (NH, no RGE, YB not fitted).

depends on phases in the Yukawa matrix Yν (see eqn. (6.13) on page 59), whose phases also
influence δlCP . So intuitively, one may think that the tighter limits would always arise when
YB is fitted. But this intuition is proven wrong within model FS with normal hierarchy,
where the limits are tighter in the case without RGE than in the case with RGE and YB,
as can be seen from tbl. 8.8 and fig. 8.3. Still we emphasize the importance of doing a
correct RGE analysis, since numerically, the allowed intervals differ vastly and do not even
overlap. Finally, we note that different setups have different allowed ranges for δlCP and
thus can be distinguished experimentally.
Let us now come to a discussion of the other model predictions, as summerized in tbl. 8.9

and start with model M1. The effective 0νββ mass at the best-fit position in the minimal
model and normal hierarchy is rather small, 〈mν〉 ∼ (0.4± 0.1) meV, to be compared with
the generic expectation in case of NH of 1÷ 4 meV [121]. Such low values are only allowed
for a small range of masses of the lightest neutrino of 2÷10 meV and the model predictions
of the lightest neutrino mass is consistent with this range, m0 ∼ 2÷ 7 meV.
The seesaw scale (M3) in all versions of the minimal model is a few times 1012 GeV

and the two lighter of the heavy neutrinos have masses between 1010 and 1012 GeV. One
might wonder why the seesaw scale is so low. Generically, extending the Standard Model
by singlet right-handed neutrinos one can include a Dirac mass term MD coupling left-
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δlCP

Model Hierarchy no RGE RGE & YB

M1 NH [0; 2π] [1.3; 2.1], [4.0; 4.4], [5.7; 6.2]

F1 NH [1.3; 2.6], [3.7; 4.8] [5.6; 5.9]

F1 IH [0; 2π] [4.6; 5.0]

FS NH [0.0; 0.9], [4.1; 5.2] [3.0; 6.1]

FS IH [0; 2π] [0.5; 0.6], [3.1; 3.3], [3.6; 3.7]

Table 8.8: Allowed ranges for δlCP at 68% C.L. for models M1, F1, and FS. Ranges for
normal and inverted neutrino mass hierarchy are shown. Furthermore, we distinguish
ranges derived from fits without RGE and fits including RGE, where in the second case
also the baryon asymmetry YB has been fitted when deriving the ranges. As can be seen,
the ranges differ sizably for fits with RGE and without RGE and even do not necessarily
overlap.

and right-handed neutrinos and a Majorana mass term MR for the right-handed neutrinos,
which result in the (type I) seesaw formula for the masses of light neutrinos,

mν = −MT
DM

−1
R MD . (8.2)

In the generic argument one assumes the Dirac mass term to be of the order of the top-
quark, MD ∼ 174 GeV and derives the scale of MR from requiring

√

∆m2
A ∼ mν . This

givesMR ∼ (174 GeV)2/
√
2.5× 10−21 GeV = 6×1014 GeV, tantalizingly close to the GUT

scale. One would expect this scenario to be realized especially in SO(10) models, since
here we have a strong correlation between the up-quark mass matrix and MD as can be
seen from eqns. (4.3) and (5.1). Still, there is a decisive difference between Mu and MD,
since the 126H contribution enters into MR with a relative sign and an additional factor
of 3. Hence, through cancellations between Y10 and Y126 terms the Dirac neutrino mass
term MD can easily be an order of magnitude lighter than Mu requiring a corresponding
correction of two orders of magnitude (since MD enters eqn. (8.2) quadratically) in MR.
In the 10H + 126H + 120H model with normal hierarchy the predicted value of 〈mν〉 is

sizably higher. Depending on the setup (with/without RGE or YB) of the fit, 〈mν〉 ∼
0.7 ÷ 0.9 meV (SUSY) and 〈mν〉 ∼ 2.5 ÷ 5.0 meV (non-SUSY). Consequently, any value
≤ 1 eV of neutrino masses is allowed in principle and the different fits cover more or
less the entire range. The seesaw scale in this scenario can be considerably higher than
in the minimal models. In the non-SUSY case with RG evolution it is about 1015 GeV,
whereas in the fit without RG evolution it is about 1013 GeV. In the SUSY case what is
remarkable is that including YB into the fit the seesaw scale diminishes from M3 ∼ 4×1013

to M3 ∼ 4× 1012.
In the 10H + 126H + 120H model with inverted hierarchy in the non-SUSY case, 〈mν〉 ∼

35 meV, independent of the fit details. In the inverted hierarchy, m0 is not related to
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〈mν〉 δlCP m0 M3 M2 M1

Model Comments [meV] [rad] [meV] [GeV] [GeV] [GeV]

M1 no RGE, NH 0.35 0.7 3.03 5.53e12 7.24e11 1.45e10
M1 RGE, no YB, NH 0.49 6.0 2.40 3.57e12 2.02e11 1.17e11
M1 RGE, YB, NH 0.52 5.9 2.38 3.62e12 1.97e11 1.39e11
MS no RGE, NH 0.38 0.3 2.58 4.08e12 7.14e11 1.60e10
MS RGE, YB, NH 0.44 2.8 6.83 1.06e12 5.66e10 1.45e10
MS RGE, YB, NH 0.44 2.5 6.52 1.32e12 2.77e10 2.74e10

F1 no RGE, NH 4.96 1.7 8.8 1.91e13 2.80e12 2.21e10
F1 RGE, no YB, NH 2.87 5.0 1.54 9.92e14 7.30e13 1.18e13
F1 RGE, YB, NH 2.56 5.8 1.27 8.82e14 1.07e14 7.86e12
FS no RGE, NH 0.75 0.5 1.16 1.46e13 5.25e11 5.67e10
FS RGE, no YB, NH 0.78 5.4 3.17 4.23e13 4.92e11 4.88e11
FS RGE, YB, NH 0.89 4.0 7.78 3.71e12 1.66e09 5.88e07

F1 no RGE, IH 35.37 5.4 35.85 2.20e13 4.92e12 9.19e11
F1 RGE, no YB, IH 35.52 4.7 30.24 1.13e13 3.48e12 5.51e11
F1 RGE, YB, IH 35.43 4.8 30.0 1.14e13 3.51e12 5.53e11
FS no RGE, IH 44.21 0.3 6.27 1.21e13 4.18e11 3.51e07
FS RGE, no YB, IH 24.22 3.6 11.97 1.17e13 3.06e11 1.96e03
FS RGE, YB, IH 45.72 0.6 15.11 1.65e10 1.06e10 1.22e09

Table 8.9: Model predictions for effective 0νββ mass 〈mν〉, leptonic CP violation δlCP ,
lightest neutrino mass m0 (m0 = m1 for NH and m0 = m3 for IH), and masses of heavy
neutrinos Mi. For the SUSY models the predictions with tan β = 50 are shown which do
not differ significantly from predictions with other values of tan β.

〈mν〉. In the non-SUSY case the prediction is m0 ∼ 30 meV. The seesaw scale is roughly
1013 GeV. For the SUSY case, 〈mν〉 ∼ 24 ÷ 46 meV and depends on the details of the
fit. We notice that even the largest values predicted for 〈mν〉 are still in agreement with
limits derived from most recent data on 0νββ decay, which in its most stringent form, i.e.,
taking the largest matrix element for 136Xe from sec. 3.3 and the 68% C.L. from ref. [19], is
〈mν〉 < 86 meV. The mass of the lightest neutrino also has a rather wide spread depending
on fit details, m0 ∼ 6÷ 15 meV. The seesaw scale is roughly 1013 GeV for the fits without
RGE or including RGE but without YB, the same as in the non-SUSY case. For fits
including RGE and YB the seesaw scale is extraordinary low, M3 ∼ 1010 GeV.

8.5 Conclusions

In general Grand Unified Theories and in particular models based on SO(10) offer intriguing
frameworks to find an answer to the question of the origin of fermion masses and mixings. In
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this chapter we analyzed renormalizable SO(10) models based on 10H+126H , 120H+126H ,
and 10H + 120H + 126H Higgs representations, assuming type I seesaw dominance. We
looked at non-supersymmetric models as well as supersymmetric models with different
values of tan β. Besides fitting the different models to fermion masses and mixings we also
included the baryon asymmetry YB in our analysis. We performed fits including YB as
well as without YB to determine its impact on the quality of the fit. We assumed that
the baryon asymmetry is produced through thermal leptogenesis and also included flavor
effects, which is a novelty in the context of SO(10) models. In non-SUSY models there
is interference between the RGE of fermion parameters and the RGE of the Higgs quartic
coupling, which is especially important for the top-quark Yukawa coupling. From the Higgs
quartic coupling and the Yukawa couplings of fermions at MGUT, the quartic coupling and
hence the Higgs mass gets determined at low energies as well. Therefore we included the
Higgs mass into our list of observables which constrain non-SUSY models, which has not
been done in the literature so far.

Further, we performed a complete 1-loop RGE during the analysis, which has not been
done in previous studies. In addition, we treated right-handed neutrinos during RGE
correctly and integrated them out one by one at their respective energy scales. Using RGE
in our study allowed us to consider setups with an inverted neutrino mass hierarchy in
addition to the normal neutrino mass hierarchy, which dominates the literature. This has
not been done consistently in previous studies, since in case of the inverted hierarchy the
low-energy neutrino mixing parameters are a bad approximation to the values at the GUT
scale, where previous studies performed their analysis.

Finally, we gave the model predictions for several as yet unmeasured observables. These
are the effective mass 〈mν〉 relevant for neutrinoless double beta decay, the leptonic CP
violating phase, δlCP , the mass of the lightest neutrino, and the masses of the heavy neu-
trinos. For δlCP we analyzed the sensitivity of the models to a deviation of δlCP from its
value at the best-fit point and we derived the allowed ranges corresponding to 67% C.L.
A similar analysis was performed for θ23.

The results of our analysis are as follows. We showed that it is possible to fit the minimal
setups M1 and MS3 (both with 10H + 126H Higgs representations responsible for fermion
mass generation) in the case of the normal neutrino mass hierarchy, while both the non-
SUSY (M1) and the SUSY (MS) cases do not work with the inverted hierarchy. Hence,
they will be excluded if the neutrino mass hierarchy is experimentally found to be inverted.
The alternative minimal model M2 (120H+126H) was excluded firmly for both possibilities
of the neutrino mass hierarchy. In contrast, models F1 and FS (10H + 120H + 126H) have
been shown to be able to reproduce both the normal and inverted hierarchy. Model F1
works equally well for both hierarchies, while within model FS the normal hierarchy is
preferred when including the baryon asymmetry into the fit.

For the non-SUSY models (M1 and F1) we showed that fitting the Higgs mass leads to
severe tensions for the top quark mass, which is more than 3 σ smaller than the experi-

3We remind the reader that model names containing the letter ”S” refer to supersymmetric models, while
those without ”S” refer to non-supersymmetric models.
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mental value4. For model F1 this is the only observable that cannot be fitted close to its
experimental value, while for model M1 also sin2 θl23 deviates significantly, i.e., it is 2.4σ
smaller than its experimental value. Comparing fits with and without baryon asymmetry,
we have seen that in case of normal neutrino mass hierarchy the quality of the fit stays
approximately the same as those without the inclusion of YB – the χ2 values increase by
0.1 ÷ 0.6 – whereas in the case of inverted hierarchy, for model F1 there is essentially no
impact on the value of χ2 while for model FS fitting YB results in χ2 increasing from 0.6
to 20.5.
For the atmospheric mixing angle θ23 we have shown that only model M1 in the case of

normal neutrino mass hierarchy sensitively depends on the value of sin2 θ23 and prefers a
value below the experimental best-fit value.
Concerning model predictions, we have shown that only certain ranges are allowed for

δlCP . Further, those ranges are different for different models and thus models can in principle
be distinguished by a measurement of leptonic CP violation. An import conclusion in this
affair is that predictions of the models depend on whether RGE is included or not. The
allowed ranges for δlCP derived with and without RGE do not even overlap for the same
model. Thus we emphasize again the importance of inclusion of RGE when analyzing
models defined at high energy scales.

8.6 Outlook

We want to give a few comments on which questions remain open and could be addressed
in the future. First of all, the list of models we considered is not exhaustive, so one could
analyze further models and compare analyses done with and without RGE. The models we
considered either could or could not fit the data, irrespective of considering RGE or not.
However, there may well be models where inclusion of RGE makes a difference between
considering a model as viable or not. Since we restricted our analysis to the type I seesaw
case it would be interesting to consider models where either type II seesaw dominates
or where type I and type II seesaw contributions to neutrino mass are of equal order of
magnitude. Further, as we have shown, allowed ranges derived for δlCP strongly depend
on whether one includes RGE or not. In view of future experiments it is desirable to
have reliable predictions of further models for δlCP . In addition, the analysis we have done
for δlCP could also be done for other observables. In particular, for setups with inverted
neutrino mass hierarchy the effective mass 〈mν〉 relevant for neutrinoless double beta decay
would be an interesting observable to analyze, since ongoing 0νββ decay experiments are
probing the inverted hierarchy region while independent experiments in the near future
will determine the neutrino mass hierarchy.
Last but not least the Yukawa sector is the most unsatisfactory part of gauge theories, as

it comes along with a huge number of arbitrary parameters. Hence, another possible subject
of future studies is the possibility to further constrain the Yukawa coupling matrices, e.g., by
applying textures, as outlined in chapter 4 and as we have briefly demonstrated in sec. 5.4

4Note the remarks in sec. 8.1 on possible issues with experimental determination of the top-quark mass.
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and in the current chapter. This will help in unveiling structures in the Yukawa sector
and provide hints to possible fundamental mechanisms governing the Yukawa structure of
SO(10) gauge theories.
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Chapter 9

Conclusions

In this thesis we performed studies concerning the major open questions in the phenomenol-
ogy of neutrino physics, namely the precision determination of mixing parameters and the
determination of the neutrino mass hierarchy. Then, motivated by a conjectured relation
between leptons and quarks, we studied several specific SO(10) GUTs, checked their abil-
ity to fit fermion masses and mixings, the Higgs mass and the baryon asymmetry, and
investigated their implications for as yet undetermined observables.

The first part of this work studied phenomenological aspects of neutrino physics. Since
the literature heavily focuses on the tri-bimaximal mixing scheme, we provided an analysis
of a variety of alternative lepton mixing schemes that are in good agreement with present
data. Especially in light of recent measurements showing that θ13 is not only non-zero but
even relatively large, the tri-bimaximal mixing pattern, which has θ13 = 0 as a first order
approximation, loses its attraction. We also suggested a new alternative mixing scheme,
”hexagonal mixing”, which has later been realized within a flavor symmetry model [12].
Its consequences are not in perfect agreement with experimental data, so that, besides
analyzing the leading order predictions of that scenario (and, in addition, of the ”bimax-
imal” mixing scenario), we showed various possibilities to perturb the leading order and
quantified necessary perturbations. We emphasized that it is dangerous to focus only on
tri-bimaximal mixing and ignore alternatives.

Furthermore, we examined the prospects of testing and possibly excluding the inverted
neutirno mass hierarchy with neutrinoless double beta decay experiments. In this context
we found that within its current 3σ range the solar neutrino mixing angle, θ12, introduces
an uncertainty of a factor of 1.43 on the minimal value of the effective mass, 〈mν〉, relevant
for 0νββ decay. We pointed out that this implies an uncertainty of a factor of 1.432 ≃ 2 on
the lifetime needed to experimentally exclude the inverted hierarchy. This then leads, in a
background dominated experiment, to an uncertainty of a factor of 1.434 ≃ 4.2 on the com-
bination of isotope mass, background level, energy resolution and measuring time, which
together determine the achievable lifetime limit. Since this is a huge factor, we stressed that
a precision determination of θ12 is of crucial importance to evaluate the physics potential of
0νββ decay experiments. The relation between experimentally determined lifetime limits
and 〈mν〉 depends on Nuclear Matrix Elements, which cannot be measured experimentally
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and have a large theoretical uncertainty. Therefore, we have taken a pragmatic approach
in considering NMEs. We have resolved various convention issues with NME calculations
and compiled a list of calculations performed by six different groups for eleven candidate
isotopes. We used this compilation (i) to give the current limits on the effective mass from
different experiments, (ii) the necessary half-life sensitivities of experiments using one of
those isotopes to test and/or exclude the inverted hierarchy, and (iii) to give limits on
〈mν〉 as a function of reached half-life. In that regard we gave both limits from the largest
calculated NME for the particular isotope as well as for the smallest. We found that the
isotope 100Mo sets the strongest limits on 〈mν〉 with the same lifetime limits, which is a
potentially interesting observation for upcoming experiments that have not finally decided
on which isotope to use.

Then, in the second part of the thesis, we conducted an analysis of different Grand Unified
Theories based on SO(10) symmetry. We considered renormalizable SO(10) models based
on 10H + 126H , 120H + 126H , and 10H + 120H + 126H Higgs representations, assuming
type I seesaw dominance. The model with 10H + 120H + 126H Higgs representations was
additionally constrained by assuming that parity is violated spontaneously by the vacuum
expectation value of 120H . We performed an analysis of non-supersymmetric models as
well as supersymmetric models with different values of tan β, and fitted the models to
fermion masses and mixings. In addition we included the baryon asymmetry of the universe,
assuming its production through thermal leptogenesis and including flavor effects, which
is a new aspect of our analysis in the context of SO(10) models. We demonstrated that
thermal leptogenesis including matter effects is a viable explanation for the origin of the
baryon asymmetry.

In contrast to previous work we performed our fits at MZ , the mass of the Z boson, per-
forming renormalization group evolution of all parameters during the fitting procedure, and
integrating out heavy neutrinos at their respective energy scale. This elaborate and com-
putationally expensive procedure allowed us to study the inverted neutrino mass hierarchy,
for which RGE effects are sizable, in addition to the normal hierarchy, which dominates
the literature. For comparison, we also performed fits at the GUT scale using parameters
evolved to MGUT.

In non-SUSY models the RGE of the Higgs quartic coupling, which is related to the
Higgs mass, is influenced by the fermion parameters. From the Higgs quartic coupling
and the Yukawa couplings of fermions at MGUT the quartic coupling and hence the Higgs
mass gets determined at low energies as well. Therefore we included the Higgs mass into
our list of observables that constrain non-SUSY models, which has not been done in the
literature so far. We showed that this constitutes a strong constraint for the non-SUSY
models leading to severe tensions for the top quark mass, which is fitted more than 3σ
below the experimental value.

Models based on 10H + 126H (M1 and MS1) could be fitted to data assuming normal
neutrino mass hierarchy, while both models failed to reproduce the data with the inverted

1Model names containing the letter ”S” refer to supersymmetric models, while those without ”S” refer to
non-supersymmetric models.
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hierarchy and therefore will be excluded if the neutrino mass hierarchy is experimentally
determined to be inverted. The alternative model with only two Higgs representations
(120H+126H), M2, was excluded firmly for both possibilities of the neutrino mass hierarchy.
Finally, we gave predictions for as yet unmeasured observables. These are the effective

mass 〈mν〉 relevant for neutrinoless double beta decay, the leptonic CP violating phase,
δlCP , the mass of the lightest neutrino, and for completeness also the masses of the heavy
neutrinos. For δlCP we analyzed the sensitivity of the models to a deviation of δlCP from its
value at the best-fit point and we derived the allowed ranges corresponding to 67% C.L.
A similar analysis was performed for θ23. Our analysis yields that model M1 sensitively
depends on the value of sin2 θ23 and prefers a value below the experimental best-fit value,
while the other models are not very sensitive to the value of this observable.
For the as yet unmeasured quantity δlCP the allowed ranges derived from the fits of the

models to data strongly depend on whether one includes RGE or not. At 67% C.L. the
ranges do not even overlap for the same model. Therefore it is fair to stress the importance
of including RGE when analyzing model predictions. Another important outcome of our
analysis in view of upcoming experiments aiming to measure δlCP is that different models
are distinguishable by their preferred values for δlCP .
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Appendix A

Nuclear Matrix Elements

Table A.1: Required 0νββ decay half-life sensitivity (in 1027 yrs) in order to exclude the
inverted hierarchy for different values of sin2 θ12. For each value of sin2 θ12 we present two
values/ranges by varying the other parameters which determine the effective mass (∆m2

A,
∆m2

⊙, sin
2 θ13) in their currently allowed 3σ region. Thereby, for each value of sin2 θ12, the

numbers in the first row correspond to the smallest possible half-lifes while the numbers
in the second row correspond to the largest half-lifes. The values calculated using the
pseudo-SU(3) NME for 150Nd from ref. [131] are (in the just described order) 2.34, 3.51,
3.77, 5.68, 8.90, 13.5 (×1027 yrs).

half-life sensitivity to exclude IH [1027 yrs]

Isotope sin2θ12 NSM [105] Tü [128,129] Jy [130] IBM [106] GCM [107] PHFB [108]

48Ca 0.270 9.88 - - - 1.27 -
14.82 - - - 1.91 -

0.318 15.93 - - - 2.05 -
24.00 - - - 3.09 -

0.380 37.62 - - - 4.84 -
56.92 - - - 7.32 -

76Ge 0.270 9.22 1.39 - 3.69 2.54 - 4.13 2.44 - 3.39 3.44 -
13.82 2.08 - 5.53 3.80 - 6.20 3.65 - 5.08 5.16 -

0.318 14.86 2.24 - 5.95 4.09 - 6.67 3.93 - 5.46 5.55 -
22.38 3.37 - 8.96 6.16 - 10.04 5.92 - 8.22 8.35 -

0.380 35.09 5.28 - 14.05 9.66 - 15.74 9.28 - 12.89 13.09 -
53.08 7.99 - 21.26 14.62 - 23.82 14.03 - 19.50 19.81 -
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Table A.1: (continued)

Isotope sin2θ12 NSM Tübingen Jyväskylä IBM GCM PHFB

82Se 0.270 2.41 0.40 - 1.13 1.21 - 1.94 0.86 - 1.16 0.94 -
3.61 0.60 - 1.70 1.82 - 2.91 1.29 - 1.74 1.41 -

0.318 3.88 0.65 - 1.83 1.95 - 3.13 1.39 - 1.87 1.52 -
5.85 0.98 - 2.75 2.94 - 4.71 2.09 - 2.82 2.29 -

0.380 9.17 1.53 - 4.31 4.61 - 7.39 3.28 - 4.42 3.59 -
13.88 2.32 - 6.52 6.98 - 11.17 4.97 - 6.68 5.43 -

96Zr 0.270 - 1.51 - 3.31 0.83 - 1.05 1.26 0.25 0.67 - 1.60
- 2.26 - 4.96 1.24 - 1.58 1.89 0.38 1.01 - 2.41

0.318 - 2.43 - 5.34 1.34 - 1.70 2.03 0.41 1.08 - 2.59
- 3.66 - 8.04 2.01 - 2.56 3.06 0.61 1.63 - 3.90

0.380 - 5.73 - 12.60 3.16 - 4.01 4.79 0.96 2.56 - 6.11
- 8.67 - 19.06 4.77 - 6.07 7.25 1.45 3.87 - 9.24

100Mo 0.270 - 0.28 - 1.03 0.67 - 1.08 0.58 - 0.75 0.40 0.17 - 0.47
- 0.42 - 1.55 1.01 - 1.62 0.88 - 1.12 0.60 0.26 - 0.70

0.318 - 0.46 - 1.66 1.08 - 1.74 0.94 - 1.20 0.65 0.28 - 0.76
- 0.69 - 2.51 1.63 - 2.62 1.42 - 1.81 0.98 0.42 - 1.14

0.380 - 1.08 - 3.93 2.56 - 4.11 2.23 - 2.84 1.53 0.66 - 1.78
- 1.63 - 5.94 3.88 - 6.22 3.37 - 4.30 2.32 0.99 - 2.70

110Pd 0.270 - - - 2.47 - 0.41 - 1.14
- - - 3.70 - 0.61 - 1.71

0.318 - - - 3.98 - 0.66 - 1.84
- - - 5.99 - 0.99 - 2.77

0.380 - - - 9.39 - 1.55 - 4.34
- - - 14.21 - 2.35 - 6.57

116Cd 0.270 - 0.48 - 1.56 0.63 - 1.09 1.27 0.44 -
- 0.72 - 2.34 0.95 - 1.64 1.90 0.66 -

0.318 - 0.78 - 2.51 1.02 - 1.76 2.04 0.71 -
- 1.17 - 3.79 1.54 - 2.66 3.08 1.07 -

0.380 - 1.83 - 5.93 2.41 - 4.16 4.83 1.68 -
- 2.77 - 8.98 3.65 - 6.30 7.30 2.54 -

124Sn 0.270 2.59 - - - 0.77 -
3.88 - - - 1.15 -

0.318 4.18 - - - 1.24 -
6.29 - - - 1.87 -

0.380 9.86 - - - 2.93 -
14.92 - - - 4.43 -
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Table A.1: (continued)

Isotope sin2θ12 NSM Tübingen Jyväskylä IBM GCM PHFB

130Te 0.270 1.58 0.37 - 1.09 0.62 - 0.91 0.67 - 0.97 0.42 0.42 - 1.24
2.37 0.55 - 1.64 0.93 - 1.37 1.01 - 1.46 0.63 0.63 - 1.86

0.318 2.55 0.59 - 1.76 1.00 - 1.47 1.08 - 1.57 0.68 0.68 - 2.00
3.83 0.89 - 2.65 1.51 - 2.22 1.63 - 2.37 1.02 1.03 - 3.01

0.380 6.01 1.40 - 4.16 2.37 - 3.48 2.56 - 3.71 1.60 1.61 - 4.72
9.09 2.11 - 6.29 3.58 - 5.26 3.88 - 5.61 2.43 2.44 - 7.14

136Xe 0.270 2.19 0.84 - 3.59 1.34 - 1.86 0.94 0.60 -
3.29 1.26 - 5.38 2.01 - 2.78 1.40 0.89 -

0.318 3.54 1.36 - 5.78 2.16 - 2.99 1.51 0.96 -
5.33 2.04 - 8.71 3.25 - 4.51 2.27 1.45 -

0.380 8.35 3.21 - 13.65 5.10 - 7.07 3.56 2.27 -
12.63 4.85 - 20.65 7.72 - 10.70 5.39 3.43 -

150Nd 0.270 - 0.20 - 0.28 - 0.44 0.81 0.17 - 0.60
- 0.30 - 0.42 - 0.66 1.21 0.26 - 0.90

0.318 - 0.32 - 0.46 - 0.71 1.30 0.28 - 0.97
- 0.48 - 0.69 - 1.06 1.96 0.42 - 1.46

0.380 - 0.76 - 1.08 - 1.67 3.07 0.66 - 2.29
- 1.14 - 1.63 - 2.52 4.65 0.99 - 3.47

Table A.2: Same as tbl. A.1, but here the required 0νββ decay half-life sensitivity in order
to touch the inverted hierarchy is given. For the pseudo-SU(3) NME for 150Nd we get the
values 0.49, 0.72 (×1027 yrs).

half-life sensitivity to touch IH [1027 yrs]

Isotope NSM [105] Tü [128,129] Jy [130] IBM [106] GCM [107] PHFB [108]

48Ca 2.05 - - - 0.26 -
3.03 - - - 0.39 -

76Ge 1.91 0.29 - 0.77 0.53 - 0.86 0.51 - 0.70 0.71 -
2.82 0.42 - 1.13 0.78 - 1.27 0.75 - 1.04 1.05 -

82Se 0.50 0.08 - 0.24 0.25 - 0.40 0.18 - 0.24 0.20 -
0.74 0.12 - 0.35 0.37 - 0.59 0.26 - 0.36 0.29 -

96Zr - 0.31 - 0.69 0.17 - 0.22 0.26 0.05 0.14 - 0.33
- 0.46 - 1.01 0.25 - 0.32 0.39 0.08 0.21 - 0.49

100Mo - 0.06 - 0.21 0.14 - 0.22 0.12 - 0.16 0.08 0.04 - 0.10
- 0.09 - 0.32 0.21 - 0.33 0.18 - 0.23 0.12 0.05 - 0.14
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Table A.2: (continued)

Isotope NSM Tübingen Jyväskylä IBM GCM PHFB

110Pd - - - 0.51 - 0.08 - 0.24
- - - 0.76 - 0.12 - 0.35

116Cd - 0.10 - 0.32 0.13 - 0.23 0.26 0.09 -
- 0.15 - 0.48 0.19 - 0.33 0.39 0.13 -

124Sn 0.54 - - - 0.16 -
0.79 - - - 0.24 -

130Te 0.33 0.08 - 0.23 0.13 - 0.19 0.14 - 0.20 0.09 0.09 - 0.26
0.48 0.11 - 0.33 0.19 - 0.28 0.21 - 0.30 0.13 0.13 - 0.38

136Xe 0.46 0.17 - 0.74 0.28 - 0.39 0.19 0.12 -
0.67 0.26 - 1.10 0.41 - 0.57 0.29 0.18 -

150Nd - 0.04 - 0.06 - 0.09 0.17 0.04 - 0.13
- 0.06 - 0.09 - 0.13 0.25 0.05 - 0.18
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Appendix B

Best-Fit Parameters

To reproduce our claimed χ2 values as reported in chapter 8 the reader can make use of
our best-fit parameters which we present in the following. The notation is as in eqn. (5.1)
on page 49.

B.1 Minimal Models with 10H + 126H

Since in these models only the normal neutrino mass hierarchy is viable we give the best-fit
parameters only for that case.

M1, no RGE:

r = 68.9624, s = 0.370726 + 0.063044i, rR = 5.242× 10−14

H =

(

1.22387×10−6 0 0
0 5.92428×10−5 0
0 0 6.29473×10−3

)

(B.1)

F =

(

−2.95102×10−6−3.48291×10−6i 1.27484×10−5−7.53714×10−8i 1.07772×10−4+6.02931×10−5i
1.27484×10−5−7.53714×10−8i −1.538×10−4+6.75236×10−5i −2.67281×10−4+2.48978×10−4i
1.07772×10−4+6.02931×10−5i −2.67281×10−4+2.48978×10−4i −7.38503×10−4−1.44559×10−3i

)

.

M1, RGE, Yb:

r = −63.979, s = 0.40957− 0.04238i, rR = 5.68× 10−14

H =

(

1.28602×10−6 0 0
0 6.86819×10−5 0
0 0 6.67018×10−3

)

(B.2)

F =

(

−2.97805×10−6+7.15644×10−6i −1.1859×10−5+1.38959×10−5i −1.52327×10−4+7.61554×10−5i
−1.1859×10−5+1.38959×10−5i −2.1014×10−4−1.0501×10−5i −3.82533×10−4−2.10519×10−4i
−1.52327×10−4+7.61554×10−5i −3.82533×10−4−2.10519×10−4i −6.39929×10−4−7.56101×10−4i

)
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MS, tan β = 50, no RGE:

r = −0.0394977, rR = 2.07005× 10−12, s = 0.347444 + 9.61963× 10−3i

H =
( −1.49207×10−3 0 0

0 −14.0362 0
0 0 −0.0908578

)

(B.3)

F =

(

4.32185×10−3+5.61316×10−3i −0.197135−0.117485i −0.0204746+3.12687×10−3i
−0.197135−0.117485i 0.851729+2.13093i 0.528677−0.504235i

−0.0204746+3.12687×10−3i 0.528677−0.504235i 0.243146−0.0832618i

)

.

MS, tan β = 50, RGE, Yb:

r = 1.87403, s = 0.240062 + 0.104276i, rR = −1.83955× 10−13

H =

(

−3.53365×10−5 0 0
0 −6.21061×10−1 0
0 0 2.86617×10−3

)

(B.4)

F =

(

−2.00425×10−6−5.84654×10−6i 1.82178×10−3+2.24413×10−3i −5.30888×10−4−4.77251×10−4i
1.82178×10−3+2.24413×10−3i −9.88137×10−3+7.39686×10−2i −1.91744×10−2+1.74681×10−2i
−5.30888×10−4−4.77251×10−4i −1.91744×10−2+1.74681×10−2i −9.04751×10−3+4.41955×10−4i

)

MS, tan β = 38, no RGE:

r = −0.0444144, rR = 2.23703× 10−12, s = 0.347775 + 7.69997× 10−3i

H =
( −1.51963×10−3 0 0

0 −12.4872 0
0 0 −0.087355

)

(B.5)

F =

(

4.60689×10−3+5.08851×10−3i −0.18755−0.102547i −0.0185995+3.06334×10−3i
−0.18755−0.102547i 0.751717+1.87754i 0.495974−0.461167i

−0.0185995+3.06334×10−3i 0.495974−0.461167i 0.23599−0.0755543i

)

MS, tan β = 38, Yb:

r = 2.9304, rR = −1.23359× 10−13, s = 0.234158 + 0.116316i

H =

(

−2.28837×10−5 0 0
0 −0.314998 0
0 0 1.75335×10−3

)

(B.6)

F =

(

−3.14214×10−6−2.66257×10−6i 1.16818×10−3+1.29339×10−3i −3.56301×10−4−2.66376×10−4i
1.16818×10−3+1.29339×10−3i 2.07503×10−3+0.0332639i −8.95296×10−3+0.0105406i
−3.56301×10−4−2.66376×10−4i −8.95296×10−3+0.0105406i −5.73547×10−3+6.461×10−4i

)

MS, tan β = 10, no RGE:

r = −0.0419971, rR = 8.18157× 10−12, s = 0.352986 + 9.48929× 10−3i

H =
( −1.91347×10−3 0 0

0 −12.9162 0
0 0 −0.100279

)

(B.7)

F =

(

5.82177×10−3+5.63088×10−3i −0.210036−0.107523i −0.0200288+2.51356×10−3i
−0.210036−0.107523i 0.785625+2.00532i 0.554479−0.479238i

−0.0200288+2.51356×10−3i 0.554479−0.479238i 0.275304−0.0811409i

)
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B.2. MODELS WITH 10H + 126H + 120H

MS, tan β = 10, Yb:

r = 12.8528, rR = −9.26868× 10−14, s = 0.231781 + 0.122565i

H =

(

−5.48738×10−6 0 0
0 −0.0638928 0
0 0 3.98601×10−4

)

(B.8)

F =

(

−1.1422×10−6−2.85981×10−7i 2.79206×10−4+2.88156×10−4i 8.67453×10−5+5.53426×10−5i
2.79206×10−4+2.88156×10−4i 1.39701×10−3+6.04744×10−3i 1.64572×10−3−2.37702×10−3i
8.67453×10−5+5.53426×10−5i 1.64572×10−3−2.37702×10−3i −1.34125×10−3+1.99137×10−4i

)

B.2 Models with 10H + 126H + 120H

B.2.1 Normal Neutrino Mass Hierarchy

F1, no RGE:

r = 67.1992, rR = −2.68132× 10−14, s = −2.0155, tl = 1.09375,

tu = −0.973721, tD = −4.11394

H =

(

−1.44349×10−3 0 0
0 −2.12083×10−4 0
0 0 8.38498×10−6

)

F =

(

−3.52616×10−3 −1.87525×10−5 −3.01471×10−5

−1.87525×10−5 −4.43985×10−4 −2.33814×10−5

−3.01471×10−5 −2.33814×10−5 1.94067×10−6

)

(B.9)

G =

(

0 1.98673×10−3 1.36719×10−4

−1.98673×10−3 0 −1.67619×10−5

−1.36719×10−4 1.67619×10−5 0

)

F1, Yb:

r = 64.0686, rR = 2.21836× 10−16, s = 0.52205, tl = 3.62469,

tu = −0.0599559, tD = −48.4291

H =

(

4.35196×10−6 0 0
0 6.75021×10−3 0
0 0 1.61699×10−4

)

F =

(

−7.11126×10−6 2.90761×10−5 7.12292×10−6

2.90761×10−5 −7.59548×10−4 5.78627×10−4

7.12292×10−6 5.78627×10−4 −2.41147×10−4

)

(B.10)

G =

(

0 −2.37538×10−5 3.60133×10−5

2.37538×10−5 0 2.80901×10−5

−3.60133×10−5 −2.80901×10−5 0

)
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FS, tan β = 50, no RGE:

r = −0.209965, rR = −3.59161× 10−14, s = −3.15082, tl = 164.558

tu = −18.4887, tD = 1.98859

H =
( −0.0246111 0 0

0 2.11922 0
0 0 1.16561×10−3

)

F =

(

−6.79587×10−3 0.0141982 9.32493×10−6

0.0141982 −0.149691 4.06145×10−3

9.32493×10−6 4.06145×10−3 4.49951×10−4

)

(B.11)

G =

(

0 3.58503×10−3 4.93814×10−5

−3.58503×10−3 0 1.87896×10−4

−4.93814×10−5 −1.87896×10−4 0

)

FS, tan β = 50, YB:

r = −2.26196, rR = −2.3532× 10−14, s = 0.529663, tl = −1.14214,

tu = 0.653981, tD = −0.196641

H =
( −5.22948×10−4 0 0

0 −0.316395 0
0 0 −0.0129173

)

F =

(

3.08209×10−4 9.844×10−3 4.37817×10−3

9.844×10−3 −0.293268 1.73134×10−3

4.37817×10−3 1.73134×10−3 −0.0100588

)

(B.12)

G =

(

0 −0.0173859 1.66654×10−3

0.0173859 0 −0.138353
−1.66654×10−3 0.138353 0

)

B.2.2 Inverted Neutrino Mass Hierarchy

F1, no RGE:

r = −71.6954, rR = 1.08602× 10−14, s = 0.710962, tl = −11.9888

tu = −0.049547, tD = 21.5488

H =

(

6.47261×10−3 0 0
0 2.64518×10−4 0
0 0 4.10329×10−5

)

F =

(

−8.37936×10−4 −8.11918×10−4 5.65936×10−6

−8.11918×10−4 −2.65901×10−4 1.47332×10−6

5.65936×10−6 1.47332×10−6 −5.74189×10−5

)

(B.13)

G =

(

0 −9.67226×10−8 −2.30032×10−5

9.67226×10−8 0 −2.9926×10−5

2.30032×10−5 2.9926×10−5 0

)
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F1, YB:

r = 70.5434, rR = 7.01661× 10−18, s = 0.168991, tl = −5.0025

tu = −0.117865, tD = −330.576

H =

(

5.42957×10−6 0 0
0 7.7751×10−3 0
0 0 6.62089×10−5

)

F =

(

−2.29305×10−5 1.13395×10−5 2.01936×10−5

1.13395×10−5 −3.39687×10−4 3.80432×10−4

2.01936×10−5 3.80432×10−4 −2.5007×10−4

)

(B.14)

G =

(

0 −5.36576×10−5 4.07349×10−5

5.36576×10−5 0 1.54679×10−4

−4.07349×10−5 −1.54679×10−4 0

)

FS, tan β = 50, no RGE:

r = 4.05193, rR = 4.5708× 10−14, s = 0.146437, tl = −1.88674

tu = −0.143497, tD = −5.43533× 10−3

H =

(

−5.64699×10−5 0 0
0 −0.111019 0
0 0 −9.28316×10−4

)

F =

(

8.11456×10−7 1.29532×10−4 3.93343×10−5

1.29532×10−4 −0.159366 0.0133342
3.93343×10−5 0.0133342 4.41386×10−3

)

(B.15)

G =

(

0 −3.1015×10−3 −7.83212×10−4

3.1015×10−3 0 1.02167×10−3

7.83212×10−4 −1.02167×10−3 0

)

FS, tan β = 50, no YB:

r = −2.76923, rR = 9.12617× 10−14, s = 0.239831, tl = −1.23885 (B.16)

tu = −0.0166744, tD = 1.12799× 10−6

H =
( 0.327384 0 0

0 −5.97675×10−7 0
0 0 2.39637×10−3

)

F =

(

0.309553 3.84441×10−6 −0.0201878
3.84441×10−6 −3.51744×10−10 1.65759×10−6

−0.0201878 1.65759×10−6 −6.76014×10−3

)

(B.17)

G =

(

0 1.98713×10−3 0.0152033
−1.98713×10−3 0 −1.47992×10−3

−0.0152033 1.47992×10−3 0

)
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FS, tan β = 50, YB:

r = 3.60572× 104, rR = 1.3255× 10−13, s = 0.210408, tl = −16.5989

tu = 0.0303395, tD = −9.12678× 10−6

H =
( −2.39089×10−5 0 0

0 3.55518 0
0 0 9.66883×10−6

)

F =

(

−7.60456×10−5 0.0142587 −4.52065×10−7

0.0142587 0.190489 1.34711×10−4

−4.52065×10−7 1.34711×10−4 −4.66866×10−5

)

(B.18)

G =

(

0 0.0194477 −5.38536×10−5

−0.0194477 0 2.16164×10−3

5.38536×10−5 −2.16164×10−3 0

)
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Appendix C

Beta-Functions for RG Evolution

To calculate the RG evolution of observables, RGEs for all parameters of the model under
consideration have to be solved simultaneously. Here we summarize 1-loop RGEs for the
SM and the MSSM extended by an arbitrary number of right-handed singlet neutrinos.
The notation is as in refs. [197, 248]. In particular, we denote a quantity between the nth
and (n + 1)th mass threshold with a superscript (n). For further details including 2-loop
beta-functions, we refer the reader to [192,248,271–273].

The beta-functions of the gauge couplings are not affected by the additional singlets at
1-loop order. They are given by

16π2 βgA ≡ 16π2 µ
gA
µ

= bA g3A , (C.1)

with (bSU(3)C , bSU(2)L , bU(1)Y) = (−7,−19
6
, 41
10
) in the SM and (−3, 1, 33

5
) in the MSSM. For

the U(1)Y charge we use GUT normalization.
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APPENDIX C. BETA-FUNCTIONS FOR RG EVOLUTION

C.1 Beta-Functions in the Extended SM

The β-functions governing RG evolution in the SM extended by singlet neutrinos are given
by [197,248,274]

16π2
(n)

βκ = −3

2
(Y †

e Ye)
T (n)

κ− 3

2

(n)

κ (Y †
e Ye) +

1

2
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Y †
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(n)
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)T (n)

κ+
1

2
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κ
((n)

Y †
ν

(n)

Yν

)

+ 2 Tr(Y †
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(n)

κ+ 2 Tr
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ν

(n)
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)(n)

κ+ 6 Tr(Y †
uYu)

(n)

κ

+ 6 Tr(Y †
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κ− 3g22
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κ , (C.2a)
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16π2
(n)
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3

2
Y †
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3

2
Y †
d Yd −

17

20
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9

4
g22 − 8 g23

+ Tr

[

Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]}

, (C.2f)

16π2
(n)

βλ = 6λ2 − 3λ

(

3g22 +
3

5
g21

)

+ 3 g42 +
3

2

(

3

5
g21 + g22

)2

+ 4λ Tr

[

Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]

(C.2g)

− 8 Tr

[

Y †
e Ye Y

†
e Ye +

(n)

Y †
ν

(n)

Yν

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd Y

†
d Yd + 3Y †

uYu Y
†
uYu

]

.

Note our convention that the Higgs self-interaction term in the Lagrangian is −λ
4
(φ†φ)2.
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C.2 Beta-Functions in the Extended MSSM

The 1-loop beta-functions of the MSSM extended by heavy singlets are given by [197,248,
275]

16π2
(n)

βκ = (Y †
e Ye)

T (n)

κ+
(n)

κ (Y †
e Ye) +

((n)

Y †
ν

(n)

Yν

)T (n)

κ+
(n)

κ
((n)

Y †
ν

(n)

Yν

)

+ 2Tr
((n)

Y †
ν

(n)

Yν

)(n)

κ+ 6Tr(Y †
uYu)

(n)

κ− 6

5
g21

(n)

κ− 6g22
(n)

κ , (C.3a)
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Y †
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) (n)

M + 2
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((n)

Yν

(n)

Y †
ν

)T
, (C.3b)
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{
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Yν + Y †
e Ye + Tr
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3
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g21 − 3g22

}

, (C.3c)
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(C.3e)
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. (C.3f)
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