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Abstract

Major processes (e.g. presupernova evolution in massive stars, supernova explosions, rp, r,

s processes) taking place in astrophysical environment consists of unstable nuclei and decay

spontaneously. There is a need to determine the accurate value of half-life of these unstable

nuclei. The reliability of the half-life value is one of the key factors to calculate weak inter-

action rates in the stellar environment. Many experimentalists and theorists paid attention

in this direction to perform reliable measurements as well as calculations. Present work is

believed to contribute in this direction, to calculate half-life in more delicate and reliable

manner, by implementing both approaches (experimental and theoretical model). The ex-

perimental part was performed at FEN Faculty, Physics Department Akdeniz University,

Antalya Turkey.

The β decay half-life of 44Sc was measured by photon activation analysis (PAA) and later

calculated by proton neutron quasiparticle random phase approximation (pn-QRPA). As a

result of this experiment, the obtained spectra were analyzed by MAESTRO and ROOT

package. The photonuclear reaction is produced using a clinical linear accelerator (cLINAC)

which generate bremsstrahlung photon beam to activate the desired sample. One aspect

of this analysis is the comparison of measured results by PAA and those calculated by pn-

QRPA. A decent comparison between measured and calculated results with literature value

is established.

Accurate value of phase space factor (PSF) is a prerequisite for the calculation of half-

life. In my second analysis I report a new recipe for the calculaton of PSF. This work is
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being done in collaboration with the Romanian Collaborators (Horia Hulubei Foundation,

Magurele, Romania). To obtain the electron/positron wave function, a code is developed by

solving the Dirac equation with a nuclear potential derived from a realistic proton density

distribution in the nucleus. For the electron capture (EC) process, it is found that the

screening effect has a notable influence on the computed PSF values especially for light

nuclei. Further the calculated PSFs are utilized for calculation of β-decay half-lives for

fp-shell and heavier nuclei of astrophysical interest. This investigation also explores the

improvement in calculated β-decay half-lives, using a given set of nuclear matrix elements,

employing the recently introduced prescription for calculation of phase space factors PSFs.

The role of proton neutron residual interaction for the calculation of beta decay half-life

is also explored. The proton neutron residual interaction is another important feature influ-

encing the calculated β-decay half-lives and is studied in my third part of the work. Pairing

gaps may have effect on calculated half-lives and is being studied in current investigation.

Gamow-Teller (GT) strength distribution may have implications on stellar weak rates and

associated nucleosynthesis in stellar environment. GT strength for β-decay of medium mass

nuclei for supernovae core collapse are calculated. The calculated GT strength distribution,

stellar weak rates employing deformed pn-QRPA formalism in comparison with shell model

and experimentally extracted GT strengths is presented.

It is expected that the current study of β-decay half-life measurement and developed

theoretical techniques may contribute to a reliable estimation of half-life values both under

terrestrial and stellar conditions. Consequently this work may contribute towards a better

understanding of astrophysical processes.
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Chapter 1

Nuclear β-Decay

1.1 Introduction

A very narrow band of stable nuclei appeared on the Z-N plane is shown in Fig. 1.1. Rest

occurred naturally unstable and becomes stable via various decay processes [1]. Such decays

take place in the form of radioactivity by the emission of radiation i.e, α, β and γ radiations

to become stable.

Figure 1.1: β-stable nuclei in Z - N plane [2].

β-decay occurs within those sets of isobars (nuclei without change of mass number A
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Chapter 1 1.1. INTRODUCTION

with the change in Z and N number) whose neighboring nucleus possess smaller masses [3].

One of the manifestations for radioactivity is due to weak interactions and associated decays

occur due to the weak forces. Thus weak interactions are responsible for the β-decay, and

considered to be lengthy decay time compared with the rapid proton capture process. The

nucleonic composition comprised of ”up and down quarks”. Thus weak force allows the

transformation of one type of quark to the other by the conversion of W boson. Which

leads to the production of positron/neutrino or electron/antineutrino pair, familiar as β+

and β−-decay respectively. Majority of the nuclei subjected to the β-decay are supposed

to be very lengthy i.e, of the range of thousands of years. Due to weak interactions these

decays regulates the conversion of one nucleus to the other. The β-decays are believed to

emit strong ionizing radiations.

Isotopes of Fe and Ni comprised of the paramount binding energy per nucleon and thus

are the most stable nuclides. Due to large Coulomb repulsion, binding energy is smaller in

heavy mass nuclei as compared with the lighter ones. The formation of heavy elements in

stellar environment plays key role to understand the nucleosynthesis. In the mid of twentieth

century, stellar nucleosynthesis and supernovae explosion were considered principle source of

these elements [4]. Light elements like hydrogen, helium, deuterium, lithium were produced

in the big bang nucleosynthesis. According to the big bang theory, temperature in the early

universe was so high such that fusion reactions could possible easily. This results in the

formation of following elements: hydrogen, deuterium, helium, lithium and trace amounts

of beryllium. Every nuclear fusion converts hydrogen into helium in stellar core. Fusion

reaction is the only reaction which takes place in stars less massive than Sun. In stars more

massive than Sun but less massive than 8M⊙ further conversion reactions takes place in

successive stages of stellar evolution. In very massive stars this chain of reaction continues

till production of iron. Elements heavier than iron cannot be formed through fusion because

extensive amount of energy is required. Majority of the elements heavier than iron originates

from supernova. In supernova explosion neutron capture reaction takes place leading to form

2



Chapter 1 1.2. NUCLEON DECAY

heavy elements.

Elements heavier than iron formed by neutron capture and decays rapidly to the next

isotope and some unstable elements decay by radioactivity such as,

112Cd48 + 1n0 −→ 113Cd48 neutron capture

113Cd48 + 1n0 −→ 114Cd48 stable isotope

114Cd48 + 1n0 −→ 115Cd48 unstable isotope

115Cd48 −→ 115In49 + e− + ν radioactive decay

Among all these reactions, last one denotes radioactivity. Which plays decisive role for

the understanding of unstable nuclei of an element. Some common decay modes will be

discussed in the following section.

1.2 Nucleon Decay

This decay takes place when parent nucleus emits a nucleon. Among various types of nucleon

decay, α decay is one of the common decays in nature producing spontaneous fission. Other

decay modes for nucleon emission includes neutron, proton emission, among all these decays

neutron emission decay occurs rarely so having specific name as ’exotic decay modes’. The

α decay will be discussed here shortly. In an α decay, a parent nucleus losses an α particle

equals in weight of a helium nucleus, following is the equation explaining α decay,

A
ZP −→ A−4

Z−2D + 4
2α

Where ’P ’ and ’D’ stands for parent and daughter nucleus respectively. Keeping aside

some exceptions, it is quite evident that such phenomenon occurs only in regions of heavy

masses (A ≃ 150), where Q-value for α emission becomes significantly positive [5].

Qα = (mP −mD −mα)c
2 = TD + Tα (1.1)
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Chapter 1 1.3. β-DECAY

Eq. (1.1) shows Q-value or binding energy relation between parent, daughter and emitted

α particle, m stands for mass while T is the kinetic energy for the element. It is evident

while studying α decay cases that penetration ability plays vital role on the decay rate of

the nucleus. However, theoretical observation has been proved in favor of the observations

concluded by Geiger-Nuttal law, which shows the relationship between experimental half-

lives and unstable α nucleus.

logT1/2 = α +
b√
Tα

. (1.2)

One can conclude from above relation that α half-lives are extremely sensitive to the Tα

(kinetic energy of α particle).

1.3 β-Decay

In the era of nuclear physics nuclear β-decay plays vital role for the understanding of nuclear

structural properties. In this section, we briefly describes about β-decay processes, its

various types and associated phenomenon. Nuclear β-decay is a kind of radioactive decay.

In such radioactive decay a fast energetic beta ray in the form of electron or positron

releases from the atomic nucleus. Leading to charge changing transitions for transformation

of one nucleus to another. As a by-product of this decay a neutrino or antineutrino are also

released. The beta particle and antineutrino do not exist in the nucleus prior to the beta

decay. These are created just as a result of such decaying processes.

The nuclear binding energy is related to the probability of an unstable nuclei to a par-

ticular decay mode. The β-decay deals with nucleon in nucleus resulting the conversion of

one nucleus to the other because of weak interaction. This decay has following two types;
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1.3.1 β+-Decay

The β+-decay also known as positron emission. We need to describe the phenomenon about

weak interaction conversion of one nuclei to the other. In which atomic number decreases

by one in the resulting element as compared with the decaying element, with the emission

of a e+ (positron) and an νe (electron neutrino). More evident from Eq. (1.3).

A
ZPN −→ A

Z−1DN+1 + e+ + νe +Qβ+ , (1.3)

and

Qβ+ = M [AZP ]− (M [AZ−1D] + 2mec
2). (1.4)

These decays occur generally in neutron deficient nuclei. Here Qβ+ is the Q-value for

β+-decay. From Eq. (1.3) it is clear that in β+-decay, the conversion of a proton to neutron

along creation of a e+ (positron)and an νe (electron neutrino) takes place. As it is well

known that the mass of neutron is greater than the proton which becomes hurdle for the

β+-decay to occur in isolated proton because of large energy requirements. This decay

can happen only when binding energy of resulting nucleus has larger binding energy than

decaying nucleus. The difference of these energies utilizes for conversion of proton to neutron,

positron, neutrino and their kinetic energies.

1.3.2 β−-Decay

Unlike β+-decay, the nucleus converts into other possessing an increases in atomic number

by one magnitude, with the emission of e− (electron) and ν̄e (electron antineutrino). These

decays mostly occur in proton deficient nuclei. The equation for β−-decay is:

A
ZPN −→ A

Z+1DN−1 + e− + ν̄e +Qβ− (1.5)
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Qβ− is Q-value for this decay. Q-value can be described by the following relation,

Qβ− = M [AZP ]− (M [AZ+1D]) (1.6)

Eq. (1.5) explains β−-decay process. Here A & Z, are atomic mass and atomic number

respectively. This decay occurs due to the interconversion of negatively ionized down quark

to the positively ionized up quark with emission of the W-boson; and W-boson consequently

decays to e− and ν̄e such,

d −→ u+ e− + ν̄e (1.7)

In these decays, the real element changes to a chemically altered element via a phe-

nomenon known with the name of nuclear transmutation. In 1934 Fermi introduced a

theory about β-decay known as Fermi’s golden rule [6].

Figure 1.2: Nuclear β−, β+ and EC decay in the impulse approximation, where only one nucleon takes part
in the weak decay process and the remaining A - 1 nucleons are spectators. The initial and final states Ψi

and Ψf are nuclear A-body states with strong two-nucleon interactions. At the weak-interaction vertices
the anti lepton lines are drawn as going backwards in time. The strength of the point like effective weak
interaction vertex is given by the Fermi constant GF [7].

.
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1.3.3 Electron Capture

For the first time, theory about Electron Capture (EC) process was described by Gian-

Carlo Wick, in (1934) and later developed by Hideki Yukawa and others. There is a strong

possibility of β-decay to take place if mass of parent nucleus is greater than daughter nucleus.

If energy difference of the decaying and resulting nuclei is smaller than 2m0c
2 (where m0 is

the rest mass of e−), then the shell e− (electron) captured by the nucleus might take place

instead of the β+-decay [5]

A
ZPN + e− −→ A

Z−1DN+1 + νe +Qε, (1.8)

and Q-value of the EC decay is given by following relation,

Qε = (MX −MY −B)c2, (1.9)

here B stands for the binding energy of devoured electron (e−), which is usually an ’S’

electron (e−) coming from a tightly bound state (K or L). A secondary procedure happens

just after the EC (like X-ray or Auger electron emission), stimulated due to the vacancy

creation in the atomic shell.

1.4 β-Decay Transition Types

On the basis of J (angular momentum) and S (total spin) of emitted radiation β-decay

could be further classified. Since the momentum conservation (total angular, orbital and

spin angular momentum) is a vital condition for β-decay, it occurs through various quantum

level transition to different values of J (nuclear angular momentum) or S (spin) states, and

familiar with the name of Fermi and Gamow-Teller transitions. Which will be discussed in

the succeeding section. When particles of an element bear (J=0) zero angular momentum,

decay type will known as allowed otherwise forbidden. The rare decay modes are familiar
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Chapter 1 1.4. β-DECAY TRANSITION TYPES

as double β-decay and bound state decay.

1.4.1 Fermi Transitions

The spin (S) of emitted particles S=0 are anti-parallel as a result of β-decay, are called

Fermi decay [8]. Means decay process having zero units of orbital angular momentum with

parallel spin known as allowed Fermi decay. So, no nuclear spin with ∆J = | Ji − Jj | = 0

in Fermi decay. For non-relativistic limit of fermi transitions the nuclear art of the operator

is as follows,

UF = GV

∑
τα±. (1.10)

Here GV stands for weak vector coupling constant and τ± for isospin raising and lowering

operators and α runs for total neutrons & protons of a particular nucleus.

1.4.2 Gamow-Teller Transitions

When spin of emitted particles (as a result of β-decay process) say electron and antineutrino

aligned parallel to one another S=1, in such situation system undergoes GT (Gamow-

Teller) transition. For an allowed Gamow-Teller decay, the negatively charged electron and

antineutrino carry unit 1 value for total angular momentum, hence Ji and Jj should be

coupled through a vector bearing length 1:
−→
Ji =

−→
Jj +

−→
1 . It can be possible only when

∆J = 0 or 1 (except for Ji = 0 and Jj = 0, in such condition only Fermi transition can

take part [8]). For allowed Fermi transitions, the initial and final states followed an allowed

GT (Gamow-Teller) decay have same parity. Following the condition ∆π = (-1)J , here (π)

shows parity of the system. Nuclear part of such transitions could be explained by the

following relation:

UGT = GA

∑
σατα±. (1.11)
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In Gamow-Teller transitions GA is weak axial vector coupling constant, σ denotes pauli

spin matrices while other terms carry ordinary meanings.

1.5 Allowed and Forbidden Transitions

Allowed β-decay transitions are frequent occurring decay among all others. However, one

more possibility while discussing β transitions for condition ∆J > 1 or with the opposite

parities for initial and final states, classified as forbidden transitions. To accomplish parity

transition, the e− and ν must be ejected with odd orbital angular momentum of the nucleus.

Forbidden decays with limit J = 1 are known as First-Forbidden (FF) decays. Like allowed

transitions, Fermi type decays also have, e− and ν spin anti parallel to one another (S=0).

For First Forbidden decays selection rules are ∆J = 0, 1, 2.

Although the mechanism for β-decay is well understood, but it’s very hard to generate

a reasonable quantitative description about β-decay. Solution about quantum many body

problem always be a challenge in almost every branch of physics. However, significant contri-

bution has been made by using the concepts of proton-neutron quasiparticle random phase

approximation (pn-QRPA) model, first introduced by Halbleib and Sorensen [9]. Charge

changing transition like (A, Z) −→ (N ∓ 1, Z ± 1) could introduced with the help of

pn-QRPA model. Details about this model will be discussed in the succeeding chapters.

1.5.1 Half-Lives, Reduced Transition Probabilities and ft Values

The transition probability Tfi for β-decay can be calculated by the well known Fermi’s

golden rule about (time-dependent) perturbation theory. Half-life is correlated to it as

t1/2 =
ln2

Tfi

. (1.12)

The resulting expression is given by
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t1/2 =
k

f0(BF +BGT )
, (1.13)

where the constant ’k’ is [10]

k =
2π3~7ln2
m5

ec
4GF 2

(1.14)

integral for phase space (f0) factor contains lepton kinematics, while BF is Fermi and

BGT is GT (Gamow Teller) reduced transition probabilities. These transition probabilities

could be broken into factors as

BF =
g2V

2Ji + 1
|MF |2, (1.15)

BGT =
g2A

2Ji + 1
|MGT |2. (1.16)

Here in Eqs. (1.15 and 1.16) angular momentum of the initial nuclear state is denoted by

Ji, the term g is devoted for coupling constants while matrix elements are presented by M

quantities. The term f0t1/2 is known by ’ft’ value of an allowed β-decay transition. It relies

significantly on the nuclear structure, which restrained with the reduced matrix elements.

Also it had been symbolized with comparative half-life in literature [11] or by reduced

half-life [12, 13]. The gV = 1.0 factor is estimated value of vector coupling constant for

weak interactions, estimated with the help of standard model’s hypothesis CVC (conserved

vector current). The gA = 1.25 factor stands for axial-vector coupling constant for weak

interactions, and the standard model hypothesis PCAC (partially conserved axial-vector

current) has been employed to estimate its numerical value. In nuclei, the numerical value

of gA is affected by the many-nucleon correlations; a value after reduction 20-30 % is used

sometimes. The free-nucleon value is accurate enough for current applications.

The parity, non-conserving nature in weak interactions has been reflected by the existence
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of both the axial-vector and vector coupling constants in expression for half-life, Eq. (1.13).

The axial-vector and vector parts contains opposite symmetry of space inversion, namely as

(for axial-vector part) A(-r) = +A(r) and (for vector part) V(-r) = -V(r). In case of leptonic

current the contravention about the parity conservation rule is maximal, and amplitudes of

weak interaction from the contribution of leptons contain the following combination as V

- A, a uniform dissection between the contributions from the vector and the axial-vector.

The similar behavior occurs for the hadrons at quark level. In the case of hadronic current

the contribution of axial-vector renormalizes because of colour forces between quarks, and

combination V - (gA/gV ) A = V - 1.25 A is recovered. This structure of weak charged

currents (vector-minus-axial-vector) is sign for the (left-handedness) about the weak inter-

actions. Due to very large length of ft values these are generally demonstrated by logft

values, defined by

logft = log10(f0t1/2[s]). (1.17)

For the demonstration in logarithmic environment it is necessary to express the half-life

(on right-hand side) as dimensionless quantity because of the dimensionless property of f0.

Given the value for logft, the half-life could be defined as

t1/2 = loglogft−logf0s (1.18)

1.5.2 Matrix Elements for Fermi and Gamow-Teller Transitions

In the Eqs. (1.15 and 1.16) the transition probabilities possesses the matrix elements for

Fermi as MF [6] and MGT for the GT (Gamow-Teller) transitions [14]. The nuclear wave

functions for initial and final states in them carried the information about nuclear structure.

In the operator sense, in case of Fermi is just 1 (unit operator) and for GT operator is σ

(Pauli spin) operator. These are the simply scalar and axial-vector operators which could

be established. Theoretically such operators could be extracted just as limiting expressions
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of a proper relativistic treatment. For the representation of the occupation number, the

Fermi and GT (NME) nuclear matrix elements could be written as

MF = (εfJf ∥ 1 ∥ εiJi) = δjijf
∑
ab

MF (ab)(εfJf ∥ [c†ac̃b]0 ∥ εiJi), (1.19)

MGT = (εfJf ∥ σ ∥ εiJi) =
∑
ab

MGT (ab)(εfJf ∥ [c†ac̃b]1 ∥ εiJi), (1.20)

where the reduced single-particle (ME) matrix elements are

MF (ab) = (a ∥ 1 ∥ b) = δabĵa = (nalaja ∥ 1 ∥ nblbjb) = δnanb
δlalbδjajb ĵa, (1.21)

MGT (ab) =
1√
3
(a ∥ σ ∥ b) =

1√
3
(nalaja ∥ σ ∥ nblbjb) =

√
2δnanb

δlalb ĵaĵb(−1)la+ja+
3
2

{
1
2
1
2
1

jbjala

}
.

(1.22)

It could be noted that ’a’ is proton index for β−-decay while ’b’ is a neutron index,

whereas for (EC) electron capture and β+-decay ’a’ acts as neutron index and consequently

’b’ behaves like a proton index. For the single-particle matrix elements the symmetry

properties are as follows

MF (ba) = MF (ab), (1.23)

MGT (ba) = (−1)ja+jb+1MGT (ab). (1.24)

The GT single-particle matrix elements are independent of n for ∆n = 0 and they follows

the selection rule ∆l = 0.
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1.5.3 Phase Space Factors

Half-Life in Eq. 1.13 carries the phase space factor (PSF) as integrated leptonic phase space,

sometimes it is known as Fermi integral. The PSF for both types of β-decay (β±) is,

f∓
0 =

∫ E0

1

F0(±Zf , ϵ)pϵ(E0 − ϵ)2dϵ, (1.25)

Term F0 is known to be Fermi function

ϵ ≡ Ee

mec2
, E0 ≡

Ei − Ef

mec2
, p ≡

√
ϵ2 − 1. (1.26)

with emission of electron and positron the total energy is demonstrated by Ee, while

energies for initial and final nuclear states are Ei and Ef . The PSF for (EC) is

fEC
0 = 2π.(αZi)

3(ϵ0 + E0)
2, (1.27)

where

ϵ0 =
mec

2 − ß

mec2
≈ 1− 1

2
(αZi)

2. (1.28)

The binding energy of electron in an atomic 1s orbital is symbolized by ß while α is a

fine-structure constant, α ≈ 1
137

.

It can be noted that Eq. 1.28 is basically not a good approximation because it assumes the

simple non-relativistic s-electron wave function. The approximation is valid when αZi ≪1,

and occurs for the light nuclei; Zi <40 is a thumb rule.

The additional improvements rises through the finite nuclear size and nuclear charge

screening by the atomic electrons for low decay energies. The PSFs are the functions of

nuclear energy difference (E0) in Eqs. (1.25) and (1.27). The three-body state is the

final state for β±-decay. Its complex kinematics reflects in the intricate E0 reliance of f±,

specifically shown in Eqs. (1.31). In the case of EC the final state is a two-body state, while
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for emitted neutrino, momentum & energy conservation results in definite energy. Which is

depicted in the simple PSF f(EC) with the parabolic dependence on E0. The Fermi function

acts as correction factor which considers the Coulomb interaction between the final nucleus

and the emitted lepton. In β+ and β− decay final state consists of daughter nucleus and

two leptons. Because of the three-body state, thus the momentum and energy for final state

leptons do not uniquely determine by the momentum and energy conservation. The number

dne of e
− in an energy interval (ϵ, ϵ+ dϵ) divided by dϵ as a function of the electron energy

ϵ is given by

dne

dϵ
= F0(±Zf , ϵ)pϵ(E0 − ϵ)2, (1.29)

and is familiar by the shape function for allowed β-decay; and an integrand of Eq. (1.25). In

a β-decay process the maximum energy E0 of an electron is known as endpoint energy. In

β+-decay positive nuclear charge accelerates the incoming negative electrons thus passing

their energy distribution towards larger energies, and oppositely in β−-decay. The Fermi

function F0 in Eq. (1.25) could be rewritten analytically in a nonrelativistic approximation

familiar with the name of Primakoff-Rosen approximation [15]:

F0(Zf , ϵ) ≈
ϵ

p
F PR
0 (Zf ), F

PR
0 (Zf ) =

2παZf

1− e−2παZf
. (1.30)

This approximation, is quite smart unless the Q-value of decay is very small. It directs

to the PSF as

f∓
0 ≈ 1

30
(E5

0 − 10E2
0 + 15E0 − 6)F PR

0 (±Zf ), (1.31)

This expression is very easy to implement by using pocket calculators for the evaluations

of β-decay half-lives.
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Figure 1.3: Number of emitted electrons as a function of the electron energy e for E0 = 6. For β± decay Z
= 20; ’Z = 0’ marks the case with the Fermi function omitted [7]

.

1.5.4 Combined β+ and Electron Capture Decays

In both processes electron capture and β+-decay reduce the nuclear charge number by ’1’.

They could compete and co-exist in the de-excitation of the nuclear state. The combined

effect of these modes could be obtained by the addition of the decay rates Tfi (probability

of transition per unit time)

T+
fi = T β+

fi + TEC
fi . (1.32)

Following Eq. (1.12) leads that the total decay half-life of a combination of β+ and (EC)

transitions, denoted by β+/EC is described by

f0t1/2 = [f+
0 + fEC

0 ]t1/2 =
k

BF +BGT

. (1.33)

For energies E0 > 2 the relation f+
0 ≫ fEC

0 is valid, and half-life of a β+/EC transition

is determined by the β+-decay. Shortly, a full account about all allowed β-decay transitions

is as follows
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f0t1/2 =
k

BF +BGT

, f0 =

{
f−
0 forβ−decay,

f+
0 + fEC

0 forβ+/ECdecay
(1.34)

1.5.5 Decay Q-Values

The Q-value of nuclear β-decay has been introduced in previous sections (the total kinetic

energy (K.E) of the final state leptons). These following useful links connects Q-value to

the energy difference ∆E = Ei-Ef = E0mec
2 of the initial and final nuclear states:

E0 =
Qβ− +mec

2

mec2
, (1.35)

E0 =
Qβ+ +mec

2

mec2
=

QEC −mec
2

mec2
, (1.36)

E0 =
QEC −mec

2

mec2
. (1.37)

The β+ endpoint energy is expressed in terms of QEC = Qβ+ + 2mec
2. An endpoint

energy E0 extracted from Eqs. (1.35), (1.36) and (1.37) could be employed in Eqs. (1.25),

(1.27) or (1.31) for the computation of respective PSFs. A β-decay half-life could be then

computed straightforwardly if the densities of one-body transition (εfJf ∥ [c†ac̃b]0,1 ∥ εiJi)

are known.

1.5.6 Partial and Total Decay Half-lives; Decay Branchings

A nuclear state could undergoes β-decay to more than one final state. The transition

probabilities are additive, as they are in electromagnetic decay. The β-decay probability to

a given final state ’k’ corresponds to a partial decay half-life tk1/2. The total decay half-life

t1/2 is described by
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1

t1/2
=

∑
k

1

tk1/2
(1.38)

The partial half-life (PHL) is acquired from total half-life by employing the branching

probability. It can be obtained from the measured decay branching by using the relation

B(k) = (experimental decay branching to final state ’k’ in %)/100 . The PHL is hence

obtained by dividing the total half-life by the branching probability, i.e.

t
(k)
1/2 =

t1/2
B(k)

(1.39)

1.6 Rare Decay Modes

1.6.1 Bound State β-Decay

The process in which electrons fails to attain the necessary amount of energy (13.6 eV) to

knock out the proton & as a result stay attached with the atom is called bound state β-

decay. Only little number of neutrons decays (almost 4 over a million) hence known as ”two

body decays”, also electron (e−), proton (e+) and antineutrino ν̄e are generated through

this process [16].

The neutron decay energy is carried off by antineutrino in such beta decay process. In

completely ionized atoms just like electrons (e−) to fail from knock out and emitted through

nucleus to the low lying atomic bound states. In case of neutral atoms it is prohibited to

fully filled low lying bound states by (e−) electrons. Bound state β-decay was first estimated

by Daudel, Jean, and Lecoin in 1947 [17] . While Jung et al [18] first observed such incident

in fully ionized atoms for 163Dy66+ in (1992). The neutral atom of 163Dy is stable and

completely ionized 163Dy66+ undergoes β-decay into the L and K shells with a half-life of 47

days. Other probability for completely ionized atom, undergoes greatly accelerated β-decay.

Neutral atom of 187Re undergo β-decay with a half-life of 42 x 109 years, but for completely
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ionized 187Re75+ value shortened from 109 to 32.9 years [19].

1.6.2 Double β-Decay

One type of the β-decay have characteristic of changing two units of charge in decaying

element and known to be as double β-decay. Such process is complex decay and not easy

to study because of very longer half life. The nuclei which could undergo both beta and

double β-decay, the double β-decay process seems impossible to observe. While for nuclei in

which β-decay is forbidden but double β-decay is allowed it can be observed by measuring

half life [20]. Therefore, such decay could be studied only in β stable nuclei. Likewise in

simple beta decay, ’A’ number remains same. Generally in double β-decay two electrons and

two antineutrinos are emitted. If ejected neutrinos are of the nature of own antiparticles

(Majorana particles) this decay specified as neutrinoless double β-decay.
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Photon Activation Analysis

There are many analytical techniques in the field of nuclear physics among all others, ac-

tivation analysis is the only one based on nuclear reaction. Radiations of very high energy

are focused over the material of sample under investigation, and a nucleus in that sample

might absorbed these radiations partially. Therefore as a result of such absorption that

nucleus excited to higher energy state, and decays by emitting a photon or nuclear particle.

In most cases the resulting nucleus is of radioactive nature and hence emission of delayed

radiations takes place. Such radiations could be measured by employing suitable radiation

detectors. With the help of assessment over detected particles count rate and energy, both

types of analysis (quantitative and qualitative) could be performed for the sample material

under investigation. To induce the activation process in the sample target, large number of

neutral particle like (photons or neutrons) and also charged ones including heavy particles,

deuterons, protons and tritons could be employed.

In almost all cases, from the reactors for nuclear research, thermal neutrons are employed

for the activation procedure, and such method provides very high analytical sensitivity. The

photonuclear reaction induced the photon activation in the target nucleus. Such activation

inductions are supposed to be occur at very high energies generally and must be 10 MeV or

above not below than this limit. Elemental data about photonuclear reactions recommend
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the activation energy of 30 MeV about the interfering reactions and analytical sensitiv-

ity. Which is the perfect energy by employing microtrons or high power linear accelerators

(bremsstrahlung sources). The suitable parameters for irradiation are 30 MeV energy of

electron at mean electron beam current of 100-150 µA. By the implementation of appro-

priate spectrometers say, high purity germanium detectors (HPGe) attached with complete

suitable electronics system for the pulse processing, spectrum of emitted photon γ could be

measured.

In 1934 Chadwick and Goldhaber [22] performed the photonuclear experiments for the

first time in the history. By noticing the emission of radionuclides via process of photodisin-

tegration when deuterium was bombarded by high energy γ rays (photons). The analytical

application of photodisintegration makes photonactivation analysis an up to date method

of activation over others like Neutron activation and activation with charged particles. The

very first report over its analytical application with the help of γ induced photoactivation

introduced in 1954 [23]. In the same year betatron application in PAA was also reported by

Basile et al [24]. In the beginning for the radiation counting Geiger Muller (GM) counter

were applicable. With the passage of time scintillation spectrometry replaced the GM

counters usually by scintillator (Thallium activated, sodium iodide crystal) NaI(Tl). These

scintillators are being used now a days for the identification of light elements like Carbon,

Oxygen, Nitrogen and Fluorine etc.

Such spectrometers could be employed for the γ spectrometry and hence this was the

beginning of the instrumental PAA. Since in the early 1960s, there was a dramatic develop-

ment in the field of γ-ray spectroscopy when Ge based detectors along multichannel analyzer

(MCA) were introduced. For the data processing purpose computer based system adjacent

to whole setup was also familiar at that time. Large number of materials were investigated

by the implementation of PAA technique because it is a complementary approach over neu-

tron activation analysis (NAA). The principle devices for the implementation of PAA will

be discussed briefly in the following sections.
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2.1 Radiation Spectroscopy

Before the construction of energy discriminating devices, following the discrete measure-

ments for analytes with the help of neutron detection or gas counters, the dissociation

from the target sample of constituents was very important. After the invention of pho-

ton spectrometers and their availability such gadgets have been applied for the analysis by

activation since many of the resulting nuclide from nuclear activation process ejects distin-

guished spectra of photons including X and γ radiations which could be discriminated very

easily. Therefore analysis of the multielement type became easy and possible.

2.1.1 Photon Spectrometry

Two fundamental principles namely, detection through semiconductor crystals and by scin-

tillators have been in practical use for counting photon. In both mentioned types for detec-

tion, photons are transformed to electric pulses whose heights are dependent quasi linearly

on the absorbed quanta energies, in the range of (5-3000 keV ) in PAA. The next step is then

the amplification of pulses, reshaping and discrimination on the basis of their heights by

employing electronic gadgets. Which will be discussed individually in the following parts.

The processing regarding spectra are processes by a computer system. For summary, the

mandatory parts for the activation analysis of the photon spectrometry are as follows:

1. Detector; Semiconductor crystal, scintillation crystal along photomultiplier, including

voltage supply.

2. Preamplifier; Charge sensitive or voltage, plus power supply.

3. A spectroscopy amplifier; along pileup rejector, baseline restorer and shaping unit of

pulse.

4. ADC; Analog-to-digital converter.

5. Pulse-height analyzer along data storage and data output unit, coupled with the data

dumping device i.e, computer. Some other hardware setups are also required for specified
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procedures only, but this was the basic instrumentation. At present time analog based

electronics is being replaced by the digital systems. Signals are digitized from preamplifier

directly in such systems. And the rest shaping processes for pulse are done with the help of

digital processing algorithms.

2.1.2 Scintillation Detectors

During the fundamental processes like photoelectric effect, compton scattering and pair pro-

duction absorption of radiations with high energies results the production of light flashes

due to generation of secondary electrons. Which is also familiar with the name of radio-

luminescence measured and analyzed by the implementation of suitable detectors attached

to monitor the pulse processing electronics. Hofstadter and McIntyre [25] revealed in their

principle work about theory and practice of inorganic scintillators, that sodium iodide sin-

gle crystal (thallium activated) were most suitable scintillators for the γ detection. Due

to the absorption of γ photons or X rays flashes of light are generated. Such flashes are

creates photoelectrons in a photocathode. The electrons are run toward the photomultiplier

connected with the operating voltage of 1 kV . The emission of secondary electrons are

amplified and further processed to the electronic system of spectrometer. Until now for the

analysis of light elements the scintillation detectors are being used.

2.1.3 Semiconductor Detectors

One of the major advantage of semiconductor detectors over scintillation crystals is their

excellent power of spectral resolution, which is clear from Fig. 2.1. There are many materials

tested regarding the high resolution but single crystal high purity germanium found superior

over all others. Although cooling problem create complications for the handling of such

detectors (mostly liquid nitrogen used) to address the cooling issue. For the first time

development of lithium drifted germanium detectors with the help of drift process, was

performed by different working groups in the early 1960s [27]. The working principle of
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Figure 2.1: NaI(Tl) and Ge spectrum of 133Ba, 137Cs and 60Co [26]
.

semiconductor detectors is comparable to proportional gas counter or ionization chamber.

Radiations are allowed to enters the single crystal generally germanium or silicon electri-

cally isolated attached to an operating voltage. These radiation ejects photon and if these

photons interact with detector material as a result of photoelectric effect and interaction

processes the product electrons generate a great number of pairs of electrons and holes.

Such generation of electron and hole pairs continue till the electrons loses whole of their

energies and becomes unable for the creation of more charge carriers. The resulting pairs

of charges rely exclusively on the incident radiation energy not on its kind. Hence for the

case of scintillation detectors the height of the resulting pulse proportional to the energy of

the incident photon within the detector crystal.

2.2 Basic Instrumentation for Photon Counting Electronics

The fundamental parts for operation control electronic, data acquisition, signal processing

includes detector connected with bias supply, preamplifier, spectroscopy amplifier, analog to

digital converter (ADC) and pulse height analyzer with the single or multichannel operation.
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Regarding the spectrometer performance, the premier cause for the deterioration are the

noise of the electronic system and variability of pulse amplifying units. So, much attention

needs to be paid over this issue. Further, the time in which a system processes only one

signal becomes unable to accept other called dead time causes counting loss must be handled

properly. For fixing the dead time issue there are various techniques at large count rates [28]

but usually best scheme is to avoid to exceed specific count rate which relies over the integral

performance of the spectrometer.

Such analog gadget components are handy and accessible in a number of different ways,

enabling system to customize the particular needs of utility and depending upon available

budget. For example, with basic capabilities low-end amplifiers are available but with

demand from user about count rate or high resolution needs may refer to amplifiers having

Pileup Rejection/ Live Time Correction (PUR/LTC) quality and both Gaussian, triangular

shaping. Likewise ADC either be cheap Wilkinson ADC or speedy Fixed Dead Time (FDT)

according to user’s demand. In recent past Digital Signal Processor (DSP) substitute the

analogue to digital converter (ADC) and amplifier devices with electronics having digital

signal processing. The purpose of these electronic machines is to gather electrons originate

from signal and processing the signals to categorize them on the base of height and energy.

This complete process consist of these following steps. Production of electrons burst as

a result of photon interaction with detector crystal. Bias voltage remove electrons from

crystal. These electrons will generate current which results in the formation of signal pulse.

Size of this signal could be increased with the help of preamplifier. Shape and intensity

of the pulse is enhanced with amplifier. Conversion of pulse intensity into numerical value

is performed by ADC. These numerical values then forwarded to MCA. To visualize and

perform basic analysis of spectrum by using software for spectrum analysis a computer is

also used.
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2.2.1 Nuclear Instrumentation Module

The industry for nuclear electronics has standardized the power supply voltages, signal def-

initions and dimensions of fundamental nuclear instrumentation modules (NIM) started in

1960s. This standardization offers user capacity to exchange modules, flexibility to change

modules, flexility and reshaping or expansion of counting systems, with the change in count-

ing applications and grow.

Figure 2.2: Typical NIM-based electronic setup
.

2.2.2 Preamplifier

Photons (produced as a result of irradiation) interact with detector crystal and as a result

of this interaction created charge is collected by means of preamplifier. In addition it also

provide match in between low impedance for coaxial cable to amplifier and high impedance of

detector, which may be places at large distances from preamplifier. Recent Ge detectors are

furnished with charge sensitive preamplifiers and RC-feedback. Having different operational

modes: voltage, current, charge sensitive. In common practice charge-sensitive preamplifiers

are employed. For increasing the performance preamplifier should be placed at or near the
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detector. A produced output voltage pulse is proportional to input charge in charge-sensitive

preamplifiers. When Coaxial Ge detector is employed for high throughput applications,

transistor reset preamplifier (TRP) is preferred over RC feedback preamplifier. High cost

for TRP is justified with high capacity of energy rate.

The basic role of preamplifier is modify the coupling of detector output to the rest of

spectrometer. More it facilitates with the exact analog conversion of electrons burst, which

produced as a result of radiation energy absorption in the detector, to a pulse which could

be transmitted to the measurement system quite easily. The other job of preamplifier is

about its pulse entrance unit, to reduce the noise sources, which could effect the energy

resolution ability of the spectrometer significantly. In summary it is employed to obtain

precise, reproducible, stable and undisturbed signal as output from the detector system.

2.2.3 Spectroscopy Amplifier

The primary purpose for amplifier is to change the output signal from the preamplifier to

the most suitable form for the subsequent step of analog to digital (ADC) convert signal

input.

Following are the key required features.

1. Amplification: for preamplifier the amplification level kept constant and the output

level of spectroscopy for amplifier could be set as to regulate the energy range for processing.

2. Baseline restoring: For providing a reference level the baseline level of output for each

pulse must be restored to analyze the pulse height and digitization.

3. Pulse shaping: Energy resolution system requires a quasi Gaussian shaped amplifier

output signal with adjustable half width, for various reasons in a standard γ ray spec-

troscopy 4 µs is the ideal option. In order to avoid the interference of sequential pulses with

the previous ones a pileup rejection system is introduced. The subsequent signals behaves

inhibited automatically until the recovery of the output signal to baseline level. In short

linear amplifiers in spectroscopic systems are utilized to transform the signals coming from
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the preamplifier, perfect Gaussian shaped, free of noise signals whose heights should pro-

portional to the energy of photon incident to the detector. Such signals must arise over a

stable and adjustable baseline.

2.2.4 Pulse-Height Analyzer and Analog-To-Digital Converter

In order to follow the radiations spectral distribution a pulse height discriminatory gadget

is needed. These days its two types are being used, named as single channel analyzer (also

known as differential pulse height discriminator), which is employed for the data output

device trigger through signals whose heights fall within the adjustable channel (also known as

window), between two pulse heights level, mostly employing an anti coincidence mechanism.

While working by using Single channel analyzer, the signals from the outside of the channel

are discarded.

The conversion module ADC considered as heart of gamma spectrometer. It changes the

information gather in analog format signal from pulse chain to digital form which can be

saved and proceeded by computer. For every pulse in analog format collected by ADC, a

number is produced which has direct relation with amplitude (height) of that signal.

Figure 2.3: Schematic of analog to digital conversion [29]
.

Such devices are used for light elements (C, N, O, F) analysis for PAA.
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In the case of more than one pulse height needs to be measured a multichannel analyzer

system have to be employed. Which consists on following components;

1. Analog to digital converter (ADC) a device used for the quantizing and digitization

which regulates every incoming signal along specific amplitude channel.

2. A memory device (data storage), to trace the pulses in number falling in each of the

amplitude channels.

3. A device for the display which permits the immediate visual inspection of the data

collected.

4. data output facility which have capability to allow instant processing of data, data

storage of any carrier.

2.2.5 Multichannel Analyzer

Most important unit for experimental measurements is multichannel analyzer MCA. It works

for some necessary functions of accumulating data, to furnish with visual monitor, creating

output in final results form or for later analysis of data. It consists of basically ADC,

memory, display and control logic. It collects information about all ranges voltage pulses

at once and show this data with real time. The ADC counter number is variable and must

be stored for later analysis, information about storage process is described in the following

way: The ADC counter contents is employed as to recognize a counter of MCA. Contents are

increased by ”1” for this counter (or channel). In gamma ray spectroscopy a MCA containing

4096, 8192 or 16384 channels is employed. Every channel has ability to save minimum 106

pulses. Number of counts (or different channels contents) as a function of these channel

numbers are known as pulse height spectrum for both digital or analogue representation.

Acquisition modes for data analysis may be of following types: Pulse Height Analysis (PHA)

Multi-input PHA. In PHA operating mode, series of pulses generated from radiation detector

are applied to the input of MCA. Amplitudes of these pulses are proportional with the

incident radiation energies which are absorbed by detector. A MCA employing multi-input
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PHA permits simultaneous collection and reserving multiple spectra. With the help of

Multiplexer it is generally accomplished and can be employed for applications of low count

rate/low resolution counting. Every input of detector leads to the same ADC, but a separate

unit of memory is chooses by routing bits. For less to medium count rates, multiplexer

facilitate a cheap way to gather data from different detectors at same time.

Figure 2.4: A typical MCA card [29]
.

Modern multichannel are integrated via standard PC, either through universal serial bus

input, plug in card or through external unit connection. The number of channels are of

choice generally starting with 28 to 215 (256 to around 34000). The data range for output

of ADC needs to be adjust accordingly.

2.2.6 High Voltage Power Supply

Power supply component with high voltage provides the mandatory high voltage to detec-

tor. And required voltages to other remaining units of the system. These components are

commonly capable to provide upto 5000 V . Normally HPGe detectors needs about 3000 V .

2.2.7 Digital Signal Processing

Analog amplifiers for shaping and amplification is an old technology today Digital Signal

Processing (DSP) is being applied for high performance based gamma spectrometers. So,

with the use of this technology spectrum shaping functions are performing in digital domain
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rather with analog approach. It filters and proceeds the pulses employing fast speed digital

computations rather than utilization of time varying pulses of voltage in analog region.

Figure 2.5: DSP module (ORTEC)
.

2.3 Pulse-Height Spectrum

For the detection of photons there are three fundamental processes which could be differen-

tiate as,

(I) The photoelectric effect (II) The compton scattering (III) The pair production

Their occurrence probability depends on the incident photon energy for a particular

element. Among all these three processes the photoelectric effect is one of the major interest

while rest are considered as interference sources.

2.3.1 Photoelectric Effect

When photon interact with the atoms of material surface specifically with inner shell atomic

electrons (K and L shells), in consequence photon itself vanishes by transferring its energy
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to the ejected electron with kinetic energy Ee and behaves as free electron.

Ee = ~ν − Eb (2.1)

Here binding energy of the electron is shown by Eb, γ is for incident photon frequency

while ~ presenting Planck’s constant. The emitted electrons energy must be equal to the

difference between the incident photon energy and binding energy of the level from which

the electron was emitted. Vacant position generated by the ejection of free electron is

filled by other valence shell electron. Due to the difference in energy between two shells

Auger electron or X-ray will be ejected. This effect is consider as extensive gamma ray

interaction in low energy (<200 keV ) range. It is quite probable that a fraction of X rays

will absconded from the detector. An important property of photoelectric effect is related

to the monoenergetic photons, which could interact through photo process resulted the

generation of the monoenergetic photoelectrons within the detector volume which results

through various processes inside the detector in the form of discrete and uniform signal for

further processing. Although there is a possibility that the signal might not be generated

only by the single event of the photoelectric effect but also occurs if the total energy of the

incident photon is absorbed by the detector body.

2.3.2 Compton Scattering

In this type of matter interaction a free electron collides with the gamma photon. The

incident photon pass a part of its energy to free electron and scattered in different low

energy angles by the partial loss of energy. Energy of gamma incident photon directly

depends upon its scattering angle and can be described by the following relation,

E
′

γ =
Eγ

1 + Eγ

m0c2
(1− cosθ)

(2.2)

here E
′
γ and Eγ stands for energies after and before the knocking respectively, m0 showing
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mass of free electron while c is speed of light in vacuum with scattering angle θ. So,

rebounding electron’s kinetic energy can be discuss by this relation [30,31].

Ee = Eγ − E
′

γ (2.3)

The lowest and highest energies for scattered photon can be obtained with angle of

scattering as θ = π and 0 respectively. As photon energy grows high the cross section of

compton scattering will decreases. With the increase in the available scattering electrons

the compton scattering cross section is also increased.

The incident photon energy is distributed between the scattered photon and target elec-

tron. Such distribution have not a fix value but relatively ranges in large energy intervals.

Hence, because of the broad energy distribution this process happens, which is the main

reason that detector signals originating by compton scattering could not utilizes for the

photon spectra evaluation.

2.3.3 Pair Production

The production of electron positron pair becomes possible when incoming incident photon

energy exceeds the rest mass of this pair i.e 1022 keV . Such process occurs close to the

nucleus neighborhood in the coulomb field. The incoming ray of photons vanishes after the

production of the pair. The total energy equals the primary photon energy. Also the kinetic

energy of the pair equals to the difference of total minus rest mass energy of the amount 1022

keV . Since the positron is not stable and an annihilation with the emission of two photons

occur between two particles as enters the rest field of the electron. Thus in a detector

interaction through pair process will, thus results in the form of loss of energy equals to the

energy difference between incident photon energy and 1022 keV , in the case of escape of

both annihilation quanta. In the case of single quanta escape the energy difference between

incident photon and 511 keV appears. Signals other than sample measured activity are also

occurs; which developed by external penetration into the shielding of the detector or from
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impurities present within the shielding material. Such signals are known as background

radiations. To maintain the accuracy and avoid the misinterpretations about the pulse

height spectra these background radiations must be known very well.

Initially gamma rays with energies greater than 1022 keV can goes for pair production

[30]. As a result of such interaction incident photon vanishes and production of electron

and positron pair takes place. This pair of particles share the energy of incident photon by

following this relation.

E−
e + E+

e = Eγ − 2m0c
2 (2.4)

in consequence of annihilation of positron with electron two photons with energy of 511

keV are created. Cross section or attenuation coefficient provides the knowledge about

the emission of gamma ray photon from beam undergoing one interaction phenomenon

among the three (photoelectric effect, Compton scattering and pair production) [30]. Linear

attenuation coefficient is the sum of such probabilities for interaction per unit path length

which is denoted as µ;

µ = τ(Photoelectric) + σ(Compton) + κ(PairProduction) (2.5)

In Fig. 2.6 left hand side shows the energy at which chances of occurrence for photo-

electric effect and compton scattering (as function of absorber atomic number) are equal.

Photoelectric effect is dominant over the probability line and towards down or below of this

line for compton scattering. On the other hand right hand side depicts the energy at which

chances of occurrence of compton scattering and pair production are equal.
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Figure 2.6: The importance for these three major phenomenons at different gamma ray energies for different
absorber material has been illustrated [32].

2.4 Principle Devices

2.4.1 Clinical Linear Accelerator

Generally clinical linear accelerators are used for the radiation treatment of patients diag-

nosed with cancer but recent applications uses these cLINACs also for research purposes.

Here in present work and experiment this device is one of the main and key instrument

that has been used for irradiation purpose. The irradiation is interaction between radiation

(energy) and matter as a result of such interaction ionization produced. Thus creation of

such radiation utilizing some reliable gadgets like clinical LINAC is fascinating and provides

a convenient way for research applications [33]. The generation of electron beam which we

can also say as primary beam takes place in a gun known as electron gun with energy of

50 keV . In a cavity of copper these electrons are accelerated after their generation with

radiofrequency (RF) of 3 GHz by peak power of 5 MW in pulse with pulse repetition fre-

quency (PRF) of 200 Hz or 400 Hz. Direction and pivoting of electron beam is attained

with the help of electrostatic and magnetic devices. Upon a heavy tungsten a target beam

is transported using achromatic bending system.
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At the target point beam of electrons is stopped with bremsstrahlung endpoint energy to

generate primary electrons. The photon beam just after a primary collimator with thickness

of 10 cm strike a flattening filter. Presence of collimators and filters made bremsstrahlung en-

ergy distribution quite complicated coming from linac. Emission process for bremsstrahlung

is focused at forward angles. With the help of a package BEAMnrc simulation for photon

energy distribution was performed originating from SLI-25. For flux estimation dose deliver

rate 5 Gy/min [34] leading 5 x 105 using E = 6 MeV were employed. A delicate ionization

chamber placed behind the flattening filter. Different parts of chamber are managed to

handle the flatness and position of the beam. Due to high sensitivity of photon angular

distribution on electron energy, inner and outer segments of ionization chamber’s ratio are

utilized to handle or control the primary electron beam energy. To control shape of photons

beam a diaphragms system in X and Y direction permits to define rectangular fields having

size maximum of 40 x 40 cm2 at nominal distance of SSD = 100 cm. One of most impor-

tant and key part of the cLINAC includes ionization chamber which is responsible for beam

control system. Which restricts the target samples positioning in case of photoactivation

experiments to larger distances more than 20 cm from point-like photon source. Typically

primary electron beam has diameter less than 2 mm. Some components of cLINAC need to

be removed in order to get such closest position otherwise this close position to the target is

not accessible. A classical cLINAC has ability to supply beam of electrons at fixed energies.

Via readjusting operational parameters for cLINAC an alteration can be possible in fixed

pre-defined energy. The utilized cLINAC due to its digital working mode, by means of soft-

ware program reloading actual parameters and pre-defined beams can be restored within

seconds [35]. Time for irradiation is restricted by means of software from a maximum of 300

GY to 55 minutes. It can be possible to extend and shorten the irradiation time by setting

manually restarting the beam.
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2.4.2 High Purity Germanium Detector

In nuclear physics experiments gamma ray spectroscopy is being used with the help of

high purity semiconductor detectors. Due to high efficiency of energy resolution these are

employed to get information where it need to identify the gammas of nearby energy. These

are more efficient in some specific range of energy and performance varies for different

gamma-rays energy range. High energy resolution means gamma-rays associated peaks in

an energy spectrum of interest should be separated or narrow as much as possible. To fulfill

the requirement of high efficiency Ge crystal (in case of using germanium detector) in large

size are employed. Typical size for large size Ge detector incudes cylinders having diameter of

7cm having 8cm length. Most commonly used high efficiency and high purity semiconductor

detector are known as High Purity Germanium (HPGe) detector. Generally such detectors

are used to deal with gamma ray spectroscopy. Germanium detectors are semiconductor

diodes, consisting P-I-N structure means intrinsic region (which is very much sensitive for

ionizing radiation) sandwiched between p and n type regions as shown in Fig. 2.7.

Figure 2.7: Depletion region generates in Ge crystal when applied to reverse biasing. Electron-hole pair are
drawn away from junction resulting depletion of charge carriers [36].

When ionizing radiation induce ionization in semiconductor material, detector start to

collect charges. As a result of the ionization production of electron-hole pair takes place.

For the preparation and fabrication of Ge crystals with high purity, in case of impurities

with accepting property, it will be mildly like p type otherwise n type [30, 37]. These
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impurities are to low so we call it as intrinsic Germanium therefore mostly known as intrinsic

semiconductor. Germanium treat as intrinsic semiconductor in HPGe, there is a huge

vicinity for intrinsic Ge in the center surrounded through n-type and p-type semiconductor

contacts.

Figure 2.8: Electronic block diagram of high resolution γ-ray spectrometry system [36]
.

The PIN diode is employed to reverse biasing, under such biasing diode on the whole

does not conduct. A photon getting into the intrinsic area generates an electron-hole pair.

In present work p-type germanium detector is used and generally it can be made with

boron implantation over germanium crystal. Due to the less band gap in germanium it is

necessary to cool in order to decrease the heat production by charge carriers. Consequently

the noise could effect resolution efficiency badly. To coup up this problem liquid nitrogen as

cooling agent having 770 K temperature is employed. The overall performance of a detector

relies upon on depth of its depletion region, which have inverse relation with concentration of

impurity in detector material [36]. HPGe detector with its experimental setup and associated

set up can be seen in Fig. 2.8
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Chapter 3

The pn-QRPA Theory and Formalism

3.1 Introduction

Present project is based on both approaches theory and experiment for the measurement

and calculations of half life. For the experimental part important instruments and principle

devices has been discussed in the previous chapter. Theoretical work has been performed

within the framework of proton neutron quasiparticle random phase approximation (pn-

QRPA) model which will be described in present chapter. Different microscopic theories

had been presented to grip the real idea about nuclear shape, structure, properties and core

collapse in stellar environment. Two distinctive microscopic theoretical predictions, i.e, the

(pn-QRPA) and nuclear shell-model are being used considerably for the β-decay half-lives,

stellar weak rates and strength distribution calculations. Many from these theories have

been evolved from independent particle model (IPM). In which nucleons are considered as

non-interacting particles shifting in mean field generated by mean of all particles. Nucleons

motion is supposed to occur in proper orbits having shell spaced with quantized energy with

magnitude of ~ω=41A1/3MeV confirming Pauli’s Exclusion Principle. Nuclei having same

proton and neutron number (Z=N) called doubly magic nuclei having fully complete levels,

forming symmetric spherical core without angular momentum. Which means over this core
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all levels are fully empty acting as no residual interaction, resulting no smearing in fermi

surface. Therefore independent particle model (IPM) is so rigid in this respect to ensure the

presence of minimum of one unpaired nucleon in one shell and one hole in the other shell.

Thus shifting of nucleons to unoccupied level from occupied level set up correlations by the

residual interaction, high energy is required for many particle and many hole excitations.

That’s why these excitations belong to very high temperature environment (kT ∼ 1MeV ).

Halbleib and Sorensen first introduced and developed the microscopic theory named as

pn-QRPA which can deal with 1p - - 1h, 2p - - 2h,..., np - - nh configurations. pn-QRPA

proves it self a smart approach for the representation of charge changing transitions. It

believes that due to Gamow-Teller (GT) separable force of spherical basis, allowed beta

transitions take place. For GT strength function calculation, particle-hole (ph) interaction

from GT force were introduced by the Halbleib and Sorensen, while particle-particle (pp)

term has been taken into account by D. Cha [38]. As we know about two types of β decay,

particle-particle (pp) interaction plays crucial role in case of β+ decay [39, 40] and have

minute impact in case of β− decay [41].

Hamiltonian employed in QRPA formalism includes (pp) interaction through addition of

schematic GT interaction. This hamiltonian when introduced for terrestrial conditions and

input parameters yield good terrestrial half-lives. So, calculation in stellar environment for

weak interaction rates and energy losses using this theory has been extended using QRPA

approach and hence one can rely on terrestrial decay rates. This model proves itself more

effective for calculation of those nuclei which lie far from stability at stellar conditions [42].

Study of such nuclei’s is of crucial importance for astrophysical and cosmological research

applications [43].
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3.2 Assumptions and Model Formalism

Theoretical work needs some hypothesis taken from previous work or various theoretical

approaches. For present work following are some assumptions to be considered.

1. In stellar environment very high temperature is considered and matter is in the form

of plasma at this high temperature. Plasma matter consists on ionic particles and as a result

positron and electron pairs produced following the Fermi Dirac (FD) statistics.

2. Only Gamow-Teller transitions are taken into account for present calculations, while

forbidden contributions are assumed to be negligible.

3. For capture and decay rate calculation emission of neutron or proton from excited

state taken under observation.

4. At stellar conditions with density of finite value absorption of neutrinos and anti-

neutrinos is very small so will be considered to be negligible. Therefore these particles can

escape freely with emission of energy.

3.3 Model Description and Parameters

The theory of mean field performs very well for doubly closed shell nuclei. The pairing

correlation concept was considered in HartreeFock-Bogoliubov (HBF) theory for open shell

nuclei. The production of long range field as well as short range pairing forces are dealt

and the estimation of ground level wave function for a nuclei is also done. Short range

pairing forces act as a vacuum for Bogoliubov quasi-particle (q-p) and are of deterministic

structures. Basically these q.p are generalized as fermions. The linear combination of

particle states and holes completely specifies these fermions therefore one can build the

QRPA wave-function. To learn the collective states of a nuclei with open shell the QRPA

provides a very convenient procedure. The Hamiltonian for pn-QRPA model is defined:

HQRPA = Hs.p + V pair + V p.p
GT + V p.h

GT (3.1)
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where Hs.p are single particle Hamiltonian, V pair pairing force, V p.p
GT particle-particle (p.p)

GT force and V p.h
GT particle-hole (p.h) GT force respectively. The (p.p) force in quasi-particle

transitions produce the phonon-correlation terms.

The wave function and associated single particle energy has been calculated by Nilsson

model as well as nuclear deformation [44]. Transformation to deformed axial-symmetric

basis from spherical nucleon basis is performed by following transformation relation

d†mα =
∑
j

Dmα
j c†mj (3.2)

as d† is the deformed operator of particle creation, c† is for creation operator, and Dj
mα

is the transformation matrices with j as angular momentum and its specified z-component

m. Nilsson eigen functions (obtained while Nilsson Hamiltonian diagonalization) could be

described by such transformation matrices. Nilsson eigen states are located by m and

additional quantum number as α [45]. Within the Nilsson basis BCS calculation is done by

considering for proton and neutron systems separately.

The BCS approach has been employed for pairing process, In BCS approximation the

pairing is described with strength. Here ’G’ stands for strength interaction,

V pair = −G
∑

jmj′m′

(−1)L+j−mc†jmc
†
j−m(−1)L

′+j′−m′
cj′−m′cj′m′ (3.3)

the limitations are m,m′ > 0, and orbital angular momentum (L). The energies (ϵmα)

of quasi-particles (q-p) are calculated by the BCS theory.

The basis of (q-p) is described by

α†
mα = umαd

†
mα − vmαdmα, (3.4)

α†
mα = umαd

†
mα − vmαdmα, (3.5)

where reverse state of time, for m is highlighted by m, in Nilsson basis d†mα and dmα are
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the creation or annihilation operators. The creation and annihilation operator for quasi-

particles are α† and α which is used in the Random Phase Approximation equation. While

u and v are stand for amplitudes of occupation.

Figure 3.1: In a nucleus the nucleons distributions among single-particle orbits ; (a) with no pairing correla-
tions (the simplest shell model), (b) with pairing correlations. (c) Ground-state wave function in pn-QRPA.
The line connecting circles, which denotes q-p denotes angular momentum coupling of the proton-neutron
pair. Both pairs have similar Jπ spin-parity [45].

.

In orbits, the comparison of nucleon distributions is shown in the Fig. 3.1 without and

with correlation. Orbits without correlations have three categories (Fig.3.1a), first the

completely filled low occupied, other is near the Fermi energy which is technically half filled

and third empty is the upper-laying orbit. On the other side in the (Fig.3.1b). Nucleons

paired in according to J+ = 0+ while vacuum state is for quasi-particle (Fig.3.1c) shows

wave function for ground state (Fig.3.1b) shows the wave function have no quasi particles

in ground state is four-quasi particle mixture.

For description of charge-changing transitions, phonon creation plays key role in pn-

QRPA model can be define in term of phonon creation, the phonon creation operator is

defined by,
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A†
ω(µ) =

∑
pn

(Xpn
ω (µ)α†

pα
+
n − Y pn

ω (µ)α†
nα

†
p) (3.6)

Where subscripts n and p are used to specify mnαn and mpαp respectively. The phonon

excitation energy (ω) is acquired as eigen-value in RPA equation. We take sum for the total

pairs of proton and the neutron, with projection µ = mp−mn = -1, 0, 1 and mp(n) represents

component of the angular momentum. For q-p state of proton and neutron the creation

operator is denoted by α†
p(n). The ground state level in pn-QRPA model is considered as

vacuum for QRPA phonon, Aω(µ) |QRPA⟩. The well known random phase approximation

equation in the form of matrix representation is given as

 N O

−O∗ −N∗

R

S

 = ω

R

S

 (3.7)

here ω (the excitation energy), plays role of eigen value for QRPA state, R, and S are the

forward and backward going amplitudes respectively. The terms N and O are for matrix

elements of the QRPA given by,

Npn,p′n′ = δ(pn, p′n′)(ϵp + ϵn) + V pp
pn,p′n′(upunup′un′ + vpvnvp′vn′)

+V ph
pn′,p′n′(upvnup′vn′ + vpunvp′un′)

(3.8)

Opn,p′n′ = V pp
pn,p′n′(upunvp′vn′ + vpvnup′u′

n
)− V ph

pn,p′n′(upvnvp′un′ + vpunup′vn′) (3.9)

here the quasi particle energy of states linked with proton and neutron are indicated

by εp (εn). The occupied and unoccupied amplitudes are υk and uk and are calculated

by BCS calculation. The Y (back ward going amplitude) stands responsible for ground

state correlation(GSC). The QRPA matrix is derived from GSC small correction. Where

|Y | << |X| not means that the ground state correlation are not under consideration. For
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the calculation of matrix element of beta transitions the product of uυY and u′υ′X should

be considered. If uυ is greater then u′υ′ then decay will be β+ this doesn’t neglect GSC. The

eigen value equation for RPA can be solved by considering varios projection values of µ for

example µ= −1, 0 and +1. The spectral eigenvalue of µ = −1 and µ = 1 are same while for

the µ = 0 the eigenvalue have two fold degeneracy because of axial symmetry employed in the

Nilsson potential. In Random Phase Approximation two channels of interactions for proton

and neutron are used such as particle-hole (p.h) and particle-particle (p.p) interaction,

symbolized by χ and κ respectively. The χ and κ values may be applied by using optimal

method. In β− decay (p.p) interactions have non significant role [42,46,47] but for β+ decay

(p.p) interactions have significant part [48].

The (p.h) GT force is given by

V p.h
GT = 2χ

∑
µ

(−1)µSµS
+
−µ (3.10)

where

Sµ =
∑

jpmpjnmn

⟨jpmp| t− σµ |jnmn⟩ c+jpmp
cjnmn (3.11)

and the (p.p) GT force is given by

V p.p
GT = −2κ

∑
µ

(−1)+µ+
µP−µ (3.12)

where

P+
µ =

∑
jpmpjnmn

⟨jnmn| (t− σµ)
+ |jpmp⟩ (−1)ln+jn−mnc+jpmp

c+jn−mn
(3.13)

The χ and κ represents interaction constant having positive values with units of MeV . The

-ve sign of particle-particle force (V p.p) shows that particle-particle force is attractive while

(V p.h) the particle-hole force is repulsive. Then matrix elements given in random phase
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approximation separately are described as,

V p.h
pn,p′n′ = +2χfpn(µ)fp′n′(µ) (3.14)

V p.p
pn,p′n′ = −2κfpn(µ)fp′n′(µ) (3.15)

where

fpn(µ) =
∑
jpjn

D
mpαp

jp
Dmnαn

jn
⟨jpmp| t−σµ |jnmn⟩ (3.16)

Which single particle GT transitions of Nilsson basis. For separable force the well RPA

matrix Eq. 3.7 can be rewritten as,

Rpn
ω =

1

ω − ϵpn
[2χ(qpnZ

−
ω + ˜qpnZ

+
ω )− 2κ(qUpnZ

−−
ω + qVpnZ

++
ω )] (3.17)

Spn
ω =

1

ω + ϵpn
[2χ(qpnZ

+
ω + ˜qpnZ

−
ω ) + 2κ(qUpnZ

++
ω + qVpnZ

−−
ω )] (3.18)

where ϵpn = ϵp + ϵn, qpn = fpnupυn, qUpn = fpnupun, q̃pn = fpnυpun, qVpn = fpnυpυn

Z−
ω =

∑
pn

(Rpn
ω qpn − Spn

ω q̃pn) (3.19)

Z+
ω =

∑
pn

(Rpn
ω q̃pn − Spn

ω qpn) (3.20)

Z−−
ω =

∑
pn

(Rpn
ω qUpn + Spn

ω qVpn) (3.21)

Z++
ω =

∑
pn

(Rpn
ω qVpn + Spn

ω qUpn) (3.22)

with insertion of Eq. 3.17 and Eq. 3.18 in Eq. 3.19 and Eq. 3.22 directs the exclusion of

terms Rpn
ω and Spn

ω which depends explicitly on single proton and neutron quasi-particle

pairs separately. Hence, a bunch of equations is obtained for each Z+, Z−, Z−− and Z++,
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that are similar to Eq. 3.7,

Mz = 0 (3.23)

here

M =


χM1 − 1 χM0 −κM5 −κM7

χM0 χM2 − 1 −κM8 −κM6

χM5 χM8 −κM3 − 1 −κM0

χM7 χM6 −κM0 −κM4 − 1

 (3.24)

Z =


Z−

ω

Z+
ω

Z−−
ω

Z++
ω

 (3.25)
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and

M0 = 2
∑
pn

(
qpn ˜qpn
ω − ϵpn

− qpn ˜qpn
ω + ϵpn

)

= 2
∑
pn

(
qUpnq

V
pn

ω − ϵpn
−

qUpnq
V
pn

ω + ϵpn

)

M1 = 2
∑
pn

(
q2pn

ω − ϵpn
−

q̃2pn
ω + ϵpn

)

M2 = 2
∑
pn

(
q̃2pn

ω − ϵpn
−

q2pn
ω + ϵpn

)

M3 = 2
∑
pn

(
qU

2

pn

ω − ϵpn
−

qV
2

pn

ω + ϵpn

)

M4 = 2
∑
pn

(
qV

2

pn

ω − ϵpn
−

qU
2

pn

ω + ϵpn

)

M5 = 2
∑
pn

(
qpnq

U
pn

ω − ϵpn
−

q̃pnq
V
pn

ω + ϵpn

)

M6 = 2
∑
pn

(
q̃pnq

V
pn

ω − ϵpn
−

qpnq
U
pn

ω + ϵpn

)

M7 = 2
∑
pn

(
qpnq

V
pn

ω − ϵpn
−

q̃pnq
U
pn

ω + ϵpn

)

M8 = 2
∑
pn

(
q̃pnq

U
pn

ω − ϵpn
−

qpnq
V
pn

ω + ϵpn

)

(3.26)

Taking determinant of M matrix=0 we get the solution of the Eq. 3.23

|M | = 0 (3.27)

about the Mk (k = 0 to 8 ) is energy dependant function (ω). Now applying the Eq. 3.7

for finding the roots of Eq. 3.27. For (p.p) and no (p.p) force (k ̸= 0) the Eq. 3.27 can be

simplified to obtain the 2nd and 4th order equations in terms of Mk respectively. The detail
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of such relations could be find in [49].

For every value of ω, GT transition amplitudes to Random Phase Approximation eigen-

functions are as follows. N−
ω , N

+
ω , N

−−
ω , and N++

ω are co-determinants of M respectively

at energy ω. With the solution of determinant M w.r.t first row expansion these co-

determinants values could be obtained as,

detM =
(
χM1 − 1

)
N− + χM0N

+ − κM5N
−− − κM7N

++ (3.28)

hence Zω’s ratios are calculated by

Z−
ω

N−
ω

=
Z+

ω

N+
ω

=
Z−−

ω

N−−
ω

=
Z++

ω

N++
ω

(3.29)

The normalization condition for amplitudes of phonon are used to find the absolute values,

∑
pn

[
(
Rpn

ω

)2 − (
Spn
ω

)2
] = 1 (3.30)

by inserting the Zω’s in Eq. 3.17 and Eq. 3.18. The amplitudes for the GT strength transi-

tions from the QRPA g.s is |−⟩ ( for vacuum Nω(µ) |−⟩ = 0). Similarly for single phonon

orbits |ω, µ⟩ = N+
ω (µ) |−⟩ can be calculated easily.

⟨ω, µ| t±σ(µ) |−⟩ = ∓Z±
ω (3.31)

For single phonon states, the excitation energies are ω− (ϵp+ ϵn), ϵp and ϵn are the energies

for proton and neutron orbits respectively in a (q-p) system.

3.4 Quasi-Particle Transitions

From Random Phase Approximation we can calculate the excitation of even-even nuclei at

ground-state Jπ = 0+ for even-even nuclei. The ground-state may be termed as one quasi-

particle state if nucleons are odd in number of parent nuclei. So two types of transitions are
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considered, phonon transition and quasi-particle transition. Such transitions are described

by the equations,

|pcorr⟩ = α†
p |−⟩+

∑
n,ω

α†
nN

†
ω(µ) |−⟩ ⟨−| [α†

nN
†
ω(µ)]

†H31α
†
p |−⟩Ep(n, ω)

|ncorr⟩ = α†
n |−⟩+

∑
p,ω

α†
pN

†
ω(−µ) |−⟩ ⟨−| [α†

pN
†
ω(−µ)]†H31α

†
n |−⟩En(p, ω)

(3.32)

also with

Eα(b, ω) =
1

ϵa − ϵb − ω
(3.33)

The Eq. 3.32 has two parts, first part outline the nucleons quasi particle state while second

part depicts the hamiltonian H31 of phonon coupling which is the mixture of random phase

approximation correlation of quasi-particles [50]. The final relation for amplitudes of GT

transition is given in terms of separable forces and can be represented as

⟨pcorr| t−σµ |ncorr⟩ = qUpn + 2χ[qUpn
∑
ω

((Z−2
ω )Ep(n, ω) + Z+2

ω En(p, ω))

−qVpn
∑
ω

Z−
ω Z

+
ω (Ep(n, ω) + En(p, ω))] + 2κ[qpn

∑
ω

(Z−
ω Z

−−
ω Ep(n, ω)− Z+

ω Z
++
ω En(p, ω)

−q̃pn
∑
ω

Z−
ω Z

++
ω (Ep(n, ω)− Z+

ω Z
++
ω En(p, ω))]

(3.34)

⟨pcorr| t+σµ |ncorr⟩ = qVpn + 2χ[qVpn
∑
ω

(Z+2
ω Ep(n, ω) + Z−2

ω En(p, ω))

−qUpn
∑
ω

Z−
ω Z

+
ω (Ep(n, ω) + En(p, ω))] + 2κ[q̃pn

∑
ω

(Z+
ω Z

++
ω Ep(n, ω)

−Z−
ω Z

−−
ω En(p, ω))− qpn

∑
ω

Z+
ω Z

−−
ω Ep(n, ω))− Z−

ω Z
++
ω En(p, ω))]

(3.35)

and

⟨ncorr| t±σ−µ |pcorr⟩ = (−1)µ ⟨pcorr| t∓σµ |ncorr⟩ (3.36)
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The phonon and (q-p) odd-neutron parent nuclear transitions are given in Fig. 3.2.

Figure 3.2: For parent nucleus containing odd nucleon, an example of (q-p) and QRPA phonon transitions.
The (q-p) are represented by cross and phonons by an oval symbol with two crosses in it. (a) Transitions
from the even-proton odd-neutron parent nucleus to the odd-proton even-neutron daughter nucleus. (b)
Transitions from the ground-state of an odd.odd nucleus, which is described by a proton-neutron (q-p) pair
state, to a two-proton (q-p) state in the even-even daughter nucleus [45].

The (q-p) transition scheme considering the 1st order correlation could be extended for

the parent nuclei having odd number of proton and neutron [42, 50]. Schematically it has

been shown in the Fig. 3.2. The ground-state is to be consider as proton-neutron quasi-

particle pair state having small energy. The GT transitions of quasi-particle in the even-

even daughter nucleus leads to quasi-particle state of two protons or two neutrons. The two
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quasi-particle states are generated via phonon correlations in the 1st order perturbation.

|pncorr⟩ = α+
p α

+
n |−⟩+ 1

2

∑
p′1p

′
2ω

α+
p′1
α+
p′2
N+

ω (−µ) |−⟩ ⟨−| [α+
p′1
α+
p′2
N+

ω (−µ)]+

H31α
+
p α

+
n |−⟩Epn(p

′
1p

′
2, ω) +

1

2

∑
n′
1n

′
2ω

α+
n′
1
α+
n′
2
N+

ω (µ) |−⟩ ⟨−| [α+
n′
1
α+
n′
2
N+

ω (µ)]
+

H31α
+
p α

+
n |−⟩Epn(n

′
1n

′
2, ω)

(3.37)

|p1p2corr⟩ = α+
p1α

+
p2 |−⟩+

∑
p′n′ω

α+
p′α

+
n′N

+
ω (µ) |−⟩ ⟨−| [α+

p′α
+
n′N

+
ω (µ)]

+

H31α
+
p1α

+
p2 |−⟩Ep1p2(p

′n′, ω)

(3.38)

|n1n2corr⟩ = α+
n1α

+
n2 |−⟩+

∑
p′n′ω

α+
p′α

+
n′N

+
ω (−µ) |−⟩ ⟨−| [α+

p′α
+
n′N

+
ω (−µ)]+

H31α
+
n1α

+
n2 |−⟩En1n2(p

′n′, ω)

(3.39)

where

Eab(cd, ω) =
1

(ϵa + ϵb)− (ϵc + ϵd + ω)
(3.40)

The amplitude of GT transition can be rewritten for single (q-p) level as,

⟨p1p2corr| t±σµ |pncorr⟩ = δ(p1, p) ⟨p2corr| t±σµ |ncorr⟩ − δ(p2, p)

⟨p1corr| t±σµ |ncorr⟩
(3.41)

⟨n1n2corr| t±σ−µ |pncorr⟩ = δ(n2, n) ⟨n1corr| t±σ−µ |pcorr⟩ − δ(n1, n)

⟨n2corr| t±σ−µ |pcorr⟩
(3.42)

The (q-p) amplitude from Eqs. 3.34, 3.35, and 3.36 is obtained by neglecting second order
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in the phonon correlation terms. It is possible for parent nuclei having odd nucleons in

phonon excitation of Quasi-particle Random Phase Approximation. The quasi pair remains

in same orbit of the single quasi acts as spectator.

Ea(b, ω) =
1

(ϵa − ϵb − ω)
(3.43)

this switches the pole from the real axis of energy variable ω.

3.5 Extension of the pn-QRPA model

It is part of common knowledge about scattering of GT strength over large range between

initial and final states, hence complete picture understanding about initial and final structure

about nuclear level is crucial. The extension in pn-QRPA model is necessary for detail study

of nuclear structural properties in stellar environment. The parent excited levels can be

constructed same as the (q-p) levels of phonon correlation.

With single nucleon the low level excited states are attainable. The characterization of

the occupation of two similar nucleons in ground state is same as that in quasi-particle

description [49]. The configuration of initial and final states must be known for distribution

of GT strength of final nuclear levels. After that for computation of weak rates the extension

for pn-QRPA is required. This enhancement is worth for the calculation and simulations

in astrophysical problems in stellar reinforcement and elaborating the inside mystery of

stellar entities. In the inner core structure nuclei are not necessary to be reside in ground

state, due to the high temperature, high pressure and high density conditions, nucleons

reside in highly excited states, where the transitions take place. Under following sections

the transition amplitude is described between the collective to single quasi-particle states.
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3.5.1 Even Even Nuclei

If a nuclei consist of even even number of nucleons it means excited states will be populated

by two protons and two neutrons quasi particle levels given in Eqs. 3.38 and 3.39. The

even even parent nuclear states have transition only into odd-odd daughter nuclei. The

transitional amplitude and correlated conversion of quasi-particle state is given as

⟨pfnf
c | t±σ−µ |pi1pi2c⟩ = −δ(pf , pi2) ⟨nf

c | t±σ−µ |pi1c⟩+ δ(pf , pi1) ⟨nf
c | t±σ−µ |pi2c⟩ (3.44)

⟨pfnf
c | t±σµ |ni

1n
i
2c⟩ = +δ(nf , ni

2) ⟨pfc | t±σµ |ni
1c⟩ − δ(nf , ni

1) ⟨pfc | t±σµ |ni
2c⟩ (3.45)

where, the spherical component of spin operators are µ = −1, 0, 1.

3.5.2 Odd A Nuclei

In nuclei consisting odd number of nucleons low lying states are attainable. Where quasi-

particles transit from lower to higher energy levels. For 3-protons and 2-neutrons, the

odd-proton and even-neutron state is attainable, when the quasi-particles are lifted from

lowest energy state to higher state. These levels are expressed by 1p-2n levels or 3p levels,

related to a proton or neutron excitation..

|p1p2p3corr⟩ = α+
p1
α+
p2
α+
p3
|−⟩+ 1

2

∑
p′1p

′
2n

′ω

α+
p′1
α+
p′2
α+
n′N

+
ω (µ) |−⟩

⟨−| [α+
p′1
α+
p′2
α+
n′N

+
ω (µ)]

+H31α
+
p1
α+
p2
α+
p3 |−⟩Ep1p2p3(p

′
1p

′
2n

′, ω)

(3.46)
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|p1n1n2corr⟩ = α+
p1
α+
n1
α+
n2
|−⟩+ 1

2

∑
p′1p

′
2n

′ω

α+
p′1
α+
p′2
α+
n′N

+
ω (−µ) |−⟩

⟨−| [α+
p′1
α+
p′2
α+
n′N

+
ω (−µ)]+H31α

+
p1
α+
n1
α+
n2
|−⟩Ep1n1n1(p

′
1p

′
2n

′, ω) +
1

6∑
n′
1n

′
2n

′
3ω

α+
n′
1
α+
n′
2
α+
n′
3
N+

ω (µ) |−⟩ ⟨−| [α+
n′
1
α+
n′
2
α+
n′
3
N+

ω (µ)]
+

H31α
+
p1
α+
n1
α+
n2
|−⟩Ep1n1n2(n

′
1n

′
2n

′
3, ω)

(3.47)

having energy in denominators for first order perturbation,

Eabc(def, ω) =
1

(ϵa + ϵb + ϵc)− (ϵd + ϵe + ϵf + ω)
(3.48)

The excited levels in a nucleus containing even number of protons and odd number of

neutrons are established as following

(i) With the excitation of odd number of neutron from the ground state to higher (excited

state) energy levels.

(ii) By 3n levels, linked with excitation of neutron,

(iii) In 2n levels, linked to the excitation of proton.

The relation for multi quasi particle transitions and their reduction to correlated (c) one

quasi particle state as:

⟨pf1n
f
1n

f
2c| t±σµ |ni

1n
i
2n

i
3c⟩ = δ(nf

1 , n
i
2)δ(n

f
2 , n

i
3) ⟨p

f
1c| t±σµ |ni

1c⟩

−δ(nf
1 , n

i
1)δ(n

f
2 , n

i
3) ⟨p

f
1c| t±σµ |ni

2c⟩

+δ(nf
1 , n

i
1)δ(n

f
2 , n

i
2) ⟨p

f
1c| t±σµ |ni

3c⟩

(3.49)
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⟨pf1n
f
1n

f
2c| t±σ−µ |pi1pi2ni

1c⟩ = δ(pf1 , p
i
2)[δ(n

f
1 , n

i
1) ⟨n

f
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−δ(nf
2 , n

i
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f
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f
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f
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f
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(3.50)

⟨pf1p
f
2p

f
3c| t±σµ |pi1pi1ni

1c⟩ = δ(pf2 , p
i
1)δ(p

f
3 , p

i
2) ⟨p

f
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1c⟩
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f
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f
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f
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2) ⟨p

f
3c| t±σµ |ni

1c⟩

(3.51)

3.5.3 Odd-Odd Nuclei

The nucleus containing odd number of the neutrons and also odd number of the protons

are represented in quasi particle transformation with the help of using two (q-p) states of

neutron and proton pair states and four quasi-particle states of two nucleons. The two

quasi-particle states reduction into correlated (c) one quasi-particle state are illustrated as

⟨pf1p
f
2c| t±σµ |pini

c⟩ = δ(pf1 , p
i) ⟨pf2c| t±σµ |ni

c⟩ − δ(pf2 , p
i) ⟨pf1c| t±σµ |ni

c⟩ (3.52)

⟨nf
1n

f
2c| t±σ−µ |pini

c⟩ = δ(nf
2 , n

i) ⟨nf
1c| t±σ−µ |pic⟩ − δ(nf

1 , n
i) ⟨nf

2c| t±σ−µ |pic⟩ (3.53)
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the four quasi-particle states can be simplified as following

⟨pf1p
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(3.57)

for all the available amplitudes of (q-p) transition anti symmetrization of single (q-p) levels

are:

pf4 > pf3 > pf2 > pf1 ,
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nf
4 > nf

3 > nf
2 > nf

1 ,

pi4 > pi3 > pi2 > pi1,

ni
4 > ni

3 > ni
2 > ni

1.

phonon excitation for GT strength for each excited state are also determined. Where it

is assumed that quasi-particle’s in parent nucleus remain in the same quasi-particle states.

This extended model of pn-QRPA provides a proper way to calculate the allowed GT

strength distribution for any nuclide. These GT strength are considered to have a decisive

role in weak interaction reactions, which are then employed as key parameters in the stellar

simulations codes.

3.6 Calculation of Stellar β-Decay and Positron Capture Rates

Present model provides us a smart choice to calculate the stellar β-decay and positron

capture rates comparable with experimental data at stellar temperature and densities [44].

The stellar weak interaction rates from ith orbit of parent nuclide to daughter nuclide

jth orbit is specified by

λbd/pc = ln2
fij(T, ρ, Ef )

(ft)ij
(3.58)

where λbd/pc specifies the stellar β-decay and positron capture rates in stellar environment,

(ft)ij is connected to the reduced transition probability (B)ij by

(ft)ij =
C

Bij

(3.59)

where C is a compound constant given as

C =
2ln2~7π3

g2vm
5
ec

4
(3.60)
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and (B)ij can be defined as

Bij = B(F )ij + (gA/gV )
2B(GT )ij (3.61)

B(GT ) and B(F ) are denoting the reduced transition probabilities for Gamow-Teller and

Fermi transitions, respectively. The B(F ) and B(GT ) are explained by

B(F )ij =
1

2Ji + 1
|< f ∥ Σkt

k
± ∥ i >|2 (3.62)

B(GT )ij =
1

2Ji + 1
|< f ∥ Σkt

k
±σ⃗

k ∥ i >|2 (3.63)

here σ⃗k stands for the spin operator and tk± illustrates isospin raising and lowering oper-

ator. The phase space (f) integral was taken over total energy. Adopting natural units (~

= c = me = 1), for positron capture (PC) it is specified by

fij =

∫ ωm

1

ω
√
ω2 − 1(ωm − ω)2F (−Z, ω)(1−G+)dω (3.64)

for the positron emission,

fij =

∫ ∞

ω1

ω
√
ω2 − 1(ωm − ω)2(ωm − ω)2F1(−Z, ω) + (ω2 − 1)F2(−Z, ω)(1−G+)dω (3.65)

In above equations the total kinetic energy of electron is represented by ω while ωl stands

for the energy of rest mass of electron and represents the threshold energy of positron

capture.

The total beta decay energy is ωm, it is noted that if ωm exceeds -1 then ωl = 1, but if

ωm=1 of less then 1 then ωl = |ωm|.

ωm = mp −md + Ei − Ej (3.66)
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Here mp and Ei are mass of parent nucleus and excitation energies of parent nuclei and

md is mass of daughter nucleus and Ej is their excitation energies. In Eq. 3.64 the G± is

distribution function for positron and electron, respectively

G+ =
1

exp(
E + 2 + Ef

kT
) + 1

(3.67)

G− =
1

exp(
E − Ef

kT
) + 1

(3.68)

Here Ef , T and k are the Fermi energy, temperature and Boltzman constant respectively

and also consider the term E = (ω − 1).

Now calculating the number density of ē correlated with proton and nuclei is given by

ρYe =
m3

ec
3

π2NA~3

∫ ∞

0

(G− −G+)p
2dp (3.69)

where ρ is baryon density, Ye electron to baryon ratio, and NA is Avogadro number,

p =
√
ω2 − 1 is the electron or positron momentum. Eqs. 3.69 was employed for an iterative

computation of Fermi energies at given temperature and Ye values. At thermal equilibrium

in the stellar environment the occupation probability for ith state is given by

Pi =
exp(−Ei/kT )∑

i=1

exp(−Ei/kT )
(3.70)

where Ei is the excitation energy of the ith state. Finally, for β decay and positron

capture rates per unit time are,

λbd/pc =
∑
ij

Piλij (3.71)

For initial and final states sum is taken over all levels to achieve the desired convergence

of computed total weak rates in stellar environment.
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Analysis of β-Decay Half-life of 44Sc

4.1 Introduction

Accurate measurements and reliable calculations of beta decay half-lives are prerequisites

for a better understanding of the nucleosynthesis processes.

In the field of nuclear physics being basic, prime and salient tool of nucleosynthesis

half-life has been focused and studied since last century to achieve better results with less

uncertainty. The concept of half-life was first introduced by Ernest Rutherford [53]. The

history of half-life includes investigation with the help of theoratical models [54–56] as well

as various experiments [57–59]. The motivation of present study is to investigate, analyze

and test the accuracy of half-life results by using both techniques (theoretical model and

experiment). We employed the proton-neutron quasiparticle random phase approximation

(pn-QRPA) model for theoretical approach. The theory of pn-QRPA is used for microscopic

calculation in the field of nuclear astrophysics. By employing the framework of pn-QRPA

one becomes able to analyze energy transitions state by state, nuclear matrix elements

(NME), branching ratio and partial half-life about a particular nuclei. Similarly, for mea-

surements of half-life various activation processes like charged particle activation (CPA),

neutron activation etc were employed. One advantageous approach among these techniques
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is photon activation approach (PAA). Photon activation process is used for experimental

part of present work, and done at FEN Faculty Physics department Akdeniz University,

Antalya, Turkey. The idea was to compare the measured half life using PAA with the

calculated half life using pn-QRPA model.

In order to perform the needful we selected the Z=21 element scandium (44Sc). The 44Sc

was chosen because of its distinctive role and applications in medical field [60,61]. Previous

study reveals one of its key role about pre-clinical positron emission tomography (PET) for

large variety of radiotracers with comparatively low clearance like fragments or monocolonal

antibodies and nanobodies of interest for molecular imaging [62]. 44Sc is one of the few

positron emitters that can be obtained with the help of radionuclide generator system,

thus avoiding the need of employing a cyclotron [63]. In the disease diagnosis, therapeutic

assessment responses, therapy and dosimetry evaluation 44Sc in combination with its isotopic

element 47Sc generates matchless employment in the field of medicine [64,65].

The detailed description of results by PAA and theoretical model (pn-QRPA) will be

discussed in the succeeding sections. In this work the successful demonstration of clinical

linear accelerator (cLINAC) about practical application other than medical field has also

been depicted.

4.2 Measurement of β-Decay Half-life

There are three kinds of half-lives under consideration in the field of research and everyday

life. These three types include physical, biological and effective half-life. Among these three

categories physical is the most important among all others. The time period required to

lose one half level by radioactivity from its original value because of radioactive decay is

referred to as physical half-life. It is denoted by Tphys or generally T1/2. By default, the

term T1/2 refers to physical half-life in this work. Only β-decay half-lives will be discussed

in this thesis. Knowledge about β decay is very important for element creation in stellar
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environment. Investigation about β-decay makes situation complex because in this decay

an large number of levels could populate in the daughter nucleus. Investigations based

on theoretical and experimental field is being done in this dissertation. There are many

methods for the extraction of half-lives from measured raw data but efficient one is chosen

in this work which I discussed below.

4.2.1 Experiment

A photon source needs to activate or excite nuclei of target element in our experiment. In

this work clinical linear accelerator SLI-25 fabricated by Philips Medical Systems has been

utilized for the activation of photons. A stable and decent performance of cLINAC with

clinical conditions was used basic research in physics. Details about technical documentation

of accelerator can be seen in [35]. Fig. 4.1 shows cLINAC used in present experiment.

Figure 4.1: Philips SLI-25 clinical linear electron accelerator of Elekta TM Synergy.

Irradiation of target sample was performed with the help of cLINAC. It can also be known

as origin of photons production. These photons have been generated with the help of an

electron gun using energy of 50 keV . These produced photons accelerated just after their

injection into the linac’s copper cavity. This acceleration has been performed by wave of
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radio-frequency with 3 GHz, S-band. Copper cavity in SLI-25 was designed for traveling of

wave. Power supply was introduced by magnetron with the nominal power of 2.5 MW at 4

MeV (low energy) and 5 MW at 25 MeV (high energy).

For experiment, the sample target was placed 58 cm distant from a target high-Z ele-

ment (in present case tungsten). This tungsten works as an electron stopper. Generated

bremsstrahlung photons were flattened and collimated with the help of several filters, yield-

ing a uniform focused beam of photons without position dependance. Whole scheme is

displayed in Fig. 4.2. All cLINAC follows a standard feature of collimation and focusing.

Irradiation time for target sample in present experiment was 35 minutes.

Figure 4.2: The diagrammatic view for creation of photon beam for the cLINAC employed in present
experiment.

After sample irradiation using cLINAC it was shifted to Nuclear Physics laboratory,

Physics Department of Akdeniz University, which was equipped with high purity Germa-

nium detector(HPGe). It was an electrically cooled, p-type, coaxial detector. This detector

was covered by a lead layer of 10 cm thick with inner surface shielded with 0.2 cm copper

foil for reduction of Pb X-rays. The HPGe detector used in present study had 40% rela-
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tive efficiency and resolution of 768 eV FWHM at 122 keV and 1.85 keV FWHM at 1332

keV (MAESTRO 2012). Standard point sources consists on the following isotopes 22Na,

54Mn, 57Co, 60Co, 109Cd, 133Ba, 137Cs and were employed for energy calibrations. These

point source were provided by Nuclear Research and Training Center (IAEA 1364-43-2).

A soil sample in addition with these point sources (supplied by Turkish Atomic Energy

Authority (TAEK) containing the naturally radioactive isotopes 40K, 226Ra and 232Th) was

also utilized for calibration. During spectrum analysis only strong peaks of γ-rays has been

analyzed. The HPGe detector was attached to standard Nuclear Instrumentation Module

(NIM) equipment, containing an analog-to-digital converter (ADC), ORTEC pre-amplifier,

spectroscopy amplifier, bias supply and computer, respectively. Data acquisition was per-

formed using MAESTRO32 software (MAESTRO, 2012). At uniform intervals of time the

same spectra were recorded automatically. Initially time intervals were set short for ∼ 3s.

These short intervals were selected to analyze the short lived isotopes, while the later ones

became longer ∼ 20 min when focusing on longer lived isotopes. Once the γ-ray computa-

tion for the sample was finished, spectrum for natural background was also recorded. Data

evaluation procedure and experimental approach performed in present study was similar to

that described in [57].

4.3 Calculation of Half-life

To achieve the target regarding theoratical pridiction of beta decay haf life we employed a

deformed basis within the framework of pn-QRPA model involving the Nilsson+BCS formal-

ism. Additionally we consolidate multi-shell single-particle states incorporating a schematic

interaction [41, 49, 54]. To investigate 44Sc having important applications in medical field,

pn-QRPA has been employed. With the help of this microscopic theory we calculated half-

life for 44Sc odd-odd nuclei.

We originated with spherical basis (a†jk, ajk), including j as its total angular momentum
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Figure 4.3: HPGe detector setup used in this work.

and the associated z-component as k. The spherical basis follows the interconversion to the

deformed (axial-symmetric) basis (d†kα, dkα) employing the equation of transformation

d†kα = ΣjK
kα
j a†jk. (4.1)

The prevailed transformation matrix from set of Nilsson eigenfunctions in Eq. 4.1 is

shown by symbol K, and α (removing k, which shows the Nilsson eigenstates) depicts the

additional quantum numbers. We utilized BCS calculation for the neutron (n) & proton (p)

systems independently. We took constant pairing force possessing strength of V (Vn, Vp for

the neutrons and the protons, respectively),

F pair = −V
∑
jkj

′
k
′

(−1)l+j−ka†jka
†
j−k

(−1)l
′
+j

′−k
′

aj′−kaj′k′ ,

(4.2)

where the sum over k and k
′
was restricted to k, k

′
> 0 and orbital angular momentum is

denoted by l. The BCS calculation provides occupation amplitudes ukα, vkα (which attains
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the following relation, u2
kα+v2kα=1) and (q-p) energies εkα. Later we added a quasiparticle

basis (c†kα, ckα) by introducing a Bogoliubov transformation

c†kα = ukαd
†
kα − vkαdk̄αc

†
k̄α

= ukαd
†
k̄α

+ vkαdkα. (4.3)

Here k̄ is the time reversed state of k and c/c† stands for the (q-p) annihilation/creation

operators which is eventually included our RPA equation. Creation operators of QRPA

phonons was instigated applying the following relation

C†
ω(µ) =

∑
pn

[Rpn
ω (µ)c†pc

†
n − Spn

ω (µ)cncp]. (4.4)

Indices n and p in Eq. 4.4 stands for mnαn and mpαp, respectively, and discriminate

between neutron and proton single-(quasi)-particle states. Rpn
ω and Spn

ω are amplitudes for

forward and backward going, respectively, and are in fact the eigenfunctions for the RPA

matrix equation. ω represents the corresponding energy eigenvalues of the eigenstates.

For RPA calculation we examine the (p.h) GT force with the help of following relation

F p.h = +2χ
1∑

µ=−1

(−1)µSµS
†
−µ (4.5)

Sµ =
∑

jpmpjnmn

< jpmp | τ−σµ | jnmn > c†jpmp
cjnmn . (4.6)

The corresponding (p.p) GT force was calculated employing

F p.p = −2κ
1∑

µ=−1

(−1)µZ†
µZ−µ. (4.7)
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with

Z+
µ =

∑
jpmpjnmn

< jnmn|(τ−σµ)
+|jpmp >

(−1)ln+jn−mnc+jpmp
c+jn−mn

,

(4.8)

In Eqs. 4.6 and 4.8, τ± denotes isospin raising (lowering) operator. The τ+ (τ−) operator

added for conversion of proton (neutron) to neutron (proton), σ is for pauli matrix and all

remaining symbols have ordinary meanings.

Initially Nilsson model [66] was introduced for calculation of single particle energies and

wave functions. Nuclear deformation was taken considered within the framework of Nilsson

model. Pairing correlations were tackled employing the BCS approach. We considered

proton-neutron residual interaction in two routes namely particle particle (attractive) and

particle hole (repulsive) interactions. A reasonable choice for GT force parameters (χ and

κ) may lead to smart and decent comparison of measured half-lives with the calculated

ones (e.g. Refs. [41, 54]). In present section we used same range values for the strength

parameters as reported in Ref. [67]. The value of χ = 61.20/A (MeV ) and κ = 4.85/A

(MeV ) [67] is used in the present work. The chosen values of χ and κ presents the 1/A

dependence as suggested in previous references [68–71].

The partial half-lives to daughter excited states (Ef ) can be calculated using the formula

tpar1/2 =
K

(gA/gV )2fA(Z,A,E)BGT (Ef ) + fV (Z,A,E)BF (Ef )
(4.9)

In Eq. (4.9) K is a compound constant taken 6143s from [51], E = Q − Ef (where Q

is the amount of energy released by the nuclear reaction), gA and gV stands for axial and

vector coupling constants, fA (fV ) is the Fermi integral function for axial vector (vector)

transitions and BF and BGT are the reduced transition probabilities for the Fermi and

Gamow-Teller (GT) transitions, respectively. In the form of matrix elements the reduced
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transition probabilities can be expressed as

BGT =
1

2Ii + 1
|< f ∥ MGT ∥ i >|2 (4.10)

and

BF =
1

2Ii + 1
|< f ∥ MF ∥ i >|2, (4.11)

MGT stands for GT transition operator in Eq. (4.10) given by

MGT =
∑
k

τ±(k)σ(k). (4.12)

The sum is carried for all nucleons present in the nucleus. For this work we only carried

calculations for τ+ σ transitions. MF is the corresponding operator for Fermi transitions in

Eq. (4.11). Spin for parent state is denoted by Ii in these expressions.

The deformation parameter β2 is another significant parameter in nuclear model (pn-

QRPA) containing deformed basis states. For the calculation of β2 we employ the following

formula, instead of using values reported by different theoretical models

β2 =
125(Q2)

1.44(A)2/3(Z)
. (4.13)

The electric quadrupole moment, Q2, is taken from Ref. [72]. Q-values are taken from the

NUBASE2016 data [73]. Pairing gaps computation has been calculated by employing two

different empirical formulae rather than former trivial formulation. So, for the calculation of

pairing gaps, in units of MeV , first formula as a function of neutron separation energies (Sn)

and other as function of proton separation energies (Sp) has been shown in Eqs. (4.14 - 4.15)

respectively,

∆pp =
1

4
(−1)Z+1[Sp(A+ 1, Z + 1)− 2Sp(A,Z) + Sp(A− 1, Z − 1)] (4.14)
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∆nn =
1

4
(−1)A−Z+1[Sn(A+ 1, Z)− 2Sn(A,Z) + Sn(A− 1, Z)] (4.15)

The β-decay half-life of a nucleus could obtained by summing up all transition probabil-

ities to states in the daughter nucleus with excitation energies lying within the Qβ window

T1/2 = (
∑

0≤Ef≤Qβ

1

tpar1/2

)−1. (4.16)

Ef in Eq. (4.16) represents daughter energy states and tpar1/2 are the partial half-lives

introduced in Eq. (4.9).

4.4 Comparison between Measured and Calculated Results

We focused significantly on half-life (experiment and calculation) and measuring gamma ray

energy transitions for 44Sc. These transitions were produced at bremsstrahlung energy of 18

MeV measured with the help of HPGe detector. In this section the comparison between the

results for γ-ray energy calibrations from measured and those from NUDAT [74] data sheets

will be presented. Simultaneously the measured and calculated data results for half-life

comparison will be discussed.

For data analysis best option was chosen to unify two dissimilar programs. First is the

use of standard gf3 RadWare code written by David Radford [75] of the Physics Division at

Oak Ridge National Laboratory. Second is the ROOT [76] package having comprehensive

library structure, developed by CERN. These programs were employed to check the gamma

ray energy peak value for 44Sc and its half-lives during its decay activity. The used functions

for fitting procedure is shown in Fig. 4.4 on the strongest peak 1157 keV . The corresponding

gamma spectrum for 44Sc has been shown in Fig. 4.5.

Instantly before counting the selected sample, set of calibration sources was counted. Af-

ter completing the sample counting, an equivalently long natural background spectrum was
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Figure 4.4: The functions used for fitting procedure during the analysis.

recorded. Once the background spectrum recording was finished, the experiment followed a

second measurement about the calibration source. A linear series fit function was used for

before and after calibrations. The error propapagation from calibration were counted using

following relation:

σ2
E =

n∑
i

(
∂E

∂ci
)2σ2

ci
+ 2

n∑
i

n∑
j>i

corijσiσj(
∂E

∂ci
)(
∂E

∂cj
) + (

∂E

∂ch
)2σ2

ch (4.17)

In Eq. (4.17) E was calibration polynomial, as E =
∑n

i cich
i, calibration parameter is

shown by ’c’ while fitting parameters error presented with σci , σch for centroid errors and

corij for correlation matrix element.

Two combinations of calibration for before and after counting performed to obtain final

results were [77],

σ2
E =

σ2
Ebef

+ σ2
Eaft

+ (Ēbef − Ē)2 + (Ēaft − Ē)2

2
(4.18)

Ē =
Ēbef + Ēaft

2
(4.19)
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Figure 4.5: 44Sc spectrum without any subtraction which was irradiated for three days of counting. Labeled
peaks were based on energy calibration.

Energies for before and after calibration and associated errors were denoted by Ēbef , Ēaft,

σEbef
and σEaft

, respectively.

Table 4.1: Comparison of γ-ray energies obtained in the present measurement by average the results of
before and after calibration with values found in the literature (NUDAT)

Element ENU (keV) σNU E(keV) σE
44Sc 1157.02 0.015 1157.114 0.05782
44Sc 271.24 0.01 271.263 0.01105

In Table. 4.1, comparison between average energy and combined variance with literature

values is shown. Cited results were taken from nuclear data sheets publications and NUDAT

[74]. A comparison between present results and literature demonstrates that particular peaks

in the spectrum (shown in Fig. 4.5) depicts the presence of 44Sc. In this spectrum only

prominent peaks for 44Sc were labeled while rest were either sum of escape or background
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peaks. Analysis for only significant peaks of 44Sc spectrum specially at 1157 keV and

271 keV was done. Results of this work were in agreement with the NUDAT error bars.

Precision regarding gamma-ray energies and errors were quite satisfactory and accuracy

concerning the half-life results are in good precision with the literature value. One major

cause for the differences of measured energy values concerns with the energy resolution of

HPGe detector. The energy resolution of the HPGe detector employed in present study was

1.85 keV at 1.33 MeV . These factors can cause unfavorable effects on the measured data

of the peak of interest, and plays significant role for the creation of ambiguity. To calculate

the half-life value, we integrated the activity concentration within the time-intervals of same

length:

C(T ) =

∫ T+∆T

T−∆T

A(t)dt = C0e
−λT

(
eλ∆T − e−λ∆T

)
(4.20)

where C0 = A0/λ and T is counting time. Because ∆T and λ are constants, this function

only depends on T .

Through this way, one can solve the correlation problem between two successive spectra.

The independent spectra has been measured using same ∆T time intervals. A new counting

restarted automatically on the completion of previous one. Fig. 4.6 shows the evolution of

the spectra between ∆T time interval for the peak at 271 keV energy of isomeric transition

decay set (from 271 keV level) of 44Sc and Fig. 4.7 show the evolution of the spectra between

∆T time interval for the peak at 1157 keV energy of positron decay set (from ground state)

of 44Sc.

Using the logarithmic form of the Eq. (4.20), a linear function was obtained:

ln(C(T )) = A− λT (4.21)

After the fitting procedure, calculation of the measured half-life value applying the equa-

tion T1/2 = ln2/λ was performed.
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Figure 4.6: Evolution of the spectra between ∆T time interval for the peak 271 keV of isomeric transition
decay set (from 271 keV level) of 44Sc.

Present results for half-life and associated error of 44Sc in comparison with literature

statistics is shown in Table. 4.2 It can be seen that results for small half-life and errors are

in decent comparison with the literature values [74,78].

Table 4.2: Measured half-life for this work (TW) with associated error in comparison with literature
(NUDAT) half-life, error and calculated half-life using half-life

Decay Set T1/2 NU[hour] T1/2 TW[hour] σNU σTW
44Sc(IT) 58.61 59.81 0.1 2.2
44Sc(ε) 3.97 3.95 0.04 0.04

Table 4.3: Measured half-life for this work (TW) in comparison with literature (NUDAT) and calculated
half-life using pn-QRPA

Decay Set T1/2 NU[hour] T1/2 PAA[hour] T1/2 pn-QRPA[hour]
44Sc 3.97 3.95 3.91

We fitted transitions for 44Sc positron decay from the ground state and value of 3.95±
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Figure 4.7: Evolution of the spectra between ∆T time interval for the peak 1157 keV of positron decay set
(from ground state) of 44Sc.

0.04 hours as measured value of half-life has been obtained while its literature value is

3.97± 0.04 hours. On the other hand, half-life value of 44Sc isomeric transition from 271

keV level was not in good precision with the literature value. Reason for this might be due

to long half-life and as a result of this reason, weak statistic. Because of the same reason,

we could not determine properly the half-life value using 1157 keV peak for 44Sc positron

decay from the level 271 keV . Nevertheless, if one takes into account that our sample was

not isotopically pure leading to the pollution of the counts by all decays, this might be

reasonable basis.

As seen from present results given in Table 4.1 and Table 4.2, although the photon

activation method was used, the values were satisfactory and comparable. In Table. 4.3

measured and calculated half-life results in comparison with literature value for 44Sc are

shown. Both approaches (PAA and pn-QRPA) present decent comparison with the value
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from literature (NUDAT).

4.5 Summary

In present work the spectra for half-life of 44Sc obtained by photon activation approach

(PAA) was analyzed by MAESTRO and ROOT packages. The photonuclear reaction was

produced using a cLINAC which generated bremsstrahlung photon beam to activate the

desired sample. One novelty of this work was the comparison of measured results by (PAA)

with those calculated from pn-QRPA model. The other uniqueness was the successful im-

plementation of medical cLINAC for research purpose in the field of nuclear physics. In

the measurement part for 44Sc, 18 MeV as end point energy was implemented which is

bigger than neutron and proton separation energies. Crucial part of the experiment was

the measurement of sample spectrum, its calibration and analysis. Present results were

calibrated carefully to achieve reliable results. These results demonstrate quite satisfactory

comparison with the literature as well as calculated data.
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Implications of pn-QRPA Model

Parameters on β-Decay Half-lives

5.1 Implications of Pairing Correlations on Terrestrial Half-lives

The β-decay properties are useful tools to better understand the overall picture of nuclear

structure [6]. Research on unstable nuclei reveals that β-decay plays a pivotal role among

decay channels [79]. In the field of nuclear astrophysics β-decay properties of neutron

deficient nuclei are involved in astrophysical rp-process and are required as input parameters

for associated numerical simulations [80].

The β+-decay, at times also referred to as positron decay (in which a proton inside a

nucleus is converted into a neutron), is a very important decay mode for neutron defi-

cient nuclei. Various nuclear models have been used in the past to study the properties of

β-decay. Special mention are those calculations based on gross theory [81], quasiparticle

random phase approximation (QRPA) approaches [41,44,54,79,82–87] and shell model [88].

The gross theory adopts a statistical approach to provide an estimation about the β-decay

properties. On the other hand, the shell model and QRPA approaches are microscopic in

nature. Implementation of shell model has the obvious constraint of number of basis states
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which creeps in as soon as one started to study heavy nuclei. Shell model results might

be accurate only for light cases [79]. The QRPA approach leads to precise and schematic

information about β-decay properties [82]. Using this method one can reproduce experi-

mental available data for β-decay half-lives in a reliable and efficient manner. Previously the

finite-range droplet model (FRDM) and folded-Yukawa single-particle potential was used to

study nuclear properties of around 9000 nuclei ranging from 16O to 339136 using the QRPA

approach [89]. In past research it was reported that β-decay half-lives were significantly

affected by the proton-neutron pairing interaction [79,82,90].

The calculation and analysis of the half-lives of β+-decay for even-even medium mass

neutron deficient nuclei with atomic number in the range Z = 24− 34 far from β stability

line has been performed in present investigation. Execution of calculation using the proton-

neutron QRPA (pn-QRPA) base model in a multi-shell single-particle deformed space with

schematic and separable Gamow-Teller (GT) potential was done. In current calculation, the

proton-neutron pairing interaction was neglected and considered only the neutron-neutron

and proton-proton pairing interactions. It can be notice from results that a reasonable choice

of the particle-particle (p.p) and particle-hole (p.h) GT strength parameters may lead to

accurate and reliable calculations of β+-decay half-lives without going into the need of

invoking proton-neutron pairing interaction in the Hartree-Fock-Bogoliubov equation. The

calculated half-lives were later compared with measured data [73], FRDM calculation [89]

and the recent extended QRPA (EQRPA) calculation [79].

For present study the pn-QRPA model was employed in a deformed basis using the Nils-

son+BCS formalism. Further incorporated multi-shell single-particle states and included a

schematic interaction [41, 49, 54]. Using this base model half-lives were calculated for neu-

tron deficient even-even nuclei of nuclear β-decay possessing neutron number N in the range

of 18 to 36. The formalism and parameters were same as discussed in previous section.

Further investigations about pairing gaps effect the calculated β-decay half-lives. For the

calculation of pairing gap, in units of MeV , two different empirical formulae were used. The
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first formula was a function of neutron (Sn) and proton (Sp) separation energies (referred

to as Emp− 1 throughout this manuscript) and shown in Eqs. (5.1 - 5.2)

∆pp =
1

4
(−1)Z+1[Sp(A+ 1, Z + 1)− 2Sp(A,Z) + Sp(A− 1, Z − 1)] (5.1)

∆nn =
1

4
(−1)A−Z+1[Sn(A+ 1, Z)− 2Sn(A,Z) + Sn(A− 1, Z)] (5.2)

The second formula for calculation of pairing gaps was the traditionally used mass de-

pendent recipe and same for protons and neutrons (this formula was referred as Emp − 2

throughout this section) and given as

∆pp = ∆nn = 12/
√
A (5.3)

5.1.1 Terrestrial Half-lives Calculation for fp-Shell Nuclei

The extended QRPA (EQRPA) model, with and without proton-neutron (p-n) pairing, using

two body interaction with charge-dependent Bonn forces, was employed for calculation of

β+/EC-decay half-lives of some medium mass neutron deficient even-even isotopes of Cr,

Fe, Ni, Zn, Ge and Se [79]. The pn-QRPA model was used for calculations of β-decay

half-lives for selected Cr, Fe, Ni, Zn, Ge and Se isotopes as chosen in Ref. [79]. These nuclei

were important constituents of stellar core of massive stars. All selected nuclei were even-

even, medium mass, fp-shell nuclei which plays key role in rp-process. This model could be

employed for β-decay half-lives calculation for any arbitrary nucleus and not necessarily for

even-even nuclei.

Fig. 5.1 illustrates how the calculated half-life values vary with the pairing gaps using

the Emp − 1 scheme in present model. Calculated half-lives for the three test nuclei were

shown on y-axis.

The values of ∆pp and ∆nn were also shown. The ∆pp values shown on x-axis whereas
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∆nn values, calculated using Eq. (5.1) and (5.2) has been shown on top right corner.

Similarly, half-life dependence on pairing gap values using Emp− 2 approach has shown

in Fig. 5.2. The values of pairing interactions ∆pp = ∆nn were presented along x-axis while

calculated half-lives along y-axis. In order to provide a direct comparison with data shown

in Ref. [41] and Fig. 5.2 of present work on the y-axis (in the bottom panel) the ratio of

calculated to experimental half-life was presented. It may be noted from Fig. 5.1 and Fig. 5.2

that calculated half-life changes with pairing gap values significantly, specially if differ from

each other. It can also seen that the variation of calculated half-lives on pairing gaps was

rather smooth using the Emp − 2 scheme. Further in Fig. 5.2 (below) and its comparison

with Fig. 2 of Ref. [92] and Fig. 3 of Ref. [41]. One can notice different values of calculated

half-lives for the same values of pairing gaps using the same nuclear model. This difference

was attributed to significantly different values of model parameters. It could to be noted that

in previous calculations deformation parameter β2 was calculated using [72] and Q-values

from [93]. For cases with no experimental Q-values the corresponding parameters were

calculated from [94]. Ref. [41] used the above mentioned references as well as an additional

reference [95], for the calculation of these parameters. The latest values for these parameters

were used for this work. Our code allows one to vary the model space for calculation of

β-decay half-lives from 1~ω to 7~ω. In current calculation the model space was chosen

as 6~ω. It was suspected that previous calculations used a model space of 5~ω for the

calcium isotopes. Two additional key model parameters were the (p.p) and (p.h) strength

parameters (κ and χ, respectively). The selection choice of these GT force parameters can

be seen from [41,92] for previous calculations. The model parameters significantly effect the

calculated half-life values. The change in model parameters resulted in different calculated

values of β-decay half-lives as compared with previous calculations.

Both increasing and decreasing trend can noted for calculated pn-QRPA half-lives with

increasing values of ∆nn and ∆pp in previous calculations. This trend was also witnessed in

Fig. 5.1 and Fig. 5.2.
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Table 5.1: Measured [73] and pn-QRPA calculated half-lives using the Emp − 1 and Emp − 2 schemes.
Half-lives are stated in units of s and pairing gaps in units of MeV .

Nucleus T
[EXP ]
1/2 T

[pn−QRPA(Emp−1)]
1/2 T

[pn−QRPA(Emp−2)]
1/2 ∆

(Emp−1)
pp ∆

(Emp−1)
nn ∆

(Emp−2)
nn,pp

38Ca 0.4437 0.3071 0.3080 1.95824 1.48363 1.94665
52Ca 4.6000 4.4830 4.8265 2.41773 1.00030 1.66410
123Ag 0.3000 0.1712 0.1933 1.32743 0.85250 1.08200

Table 5.1 depicts the comparison of the measured and calculated half-lives for the three

nuclei 38,52Ca and 123Ag employing Emp−1 and Emp−2 approaches. The values of pairing

gaps were also given.

5.1.2 Pairing Gaps Effect on GT Strength, Terrestrial Half-lives

Next, the impact of changing pairing strength parameters on calculated GT strength distri-

butions was investigated. Fig. 5.3 depicts calculated Gamow-Teller strength distributions

for 46Cr, 50Fe and 54Ni using the two schemes.

It was noted that calculated GT strength distribution changes appreciably for 46Cr and

remains more or less, same for 50Fe and 54Ni using the two different values of pairing gaps.

Similarly Fig. 5.4 displays the corresponding result for 62Zn, 66Ge and 70Se. The calculated

strength distributions do change appreciably with change in values of ∆pp(∆nn) (albeit less

for the case of 70Se).

Table 5.2 shows the value of calculated total strength (in arbitrary units) and centroid

values (in units of MeV ) of the calculated GT strength distributions using different values

of pairing gaps ∆
(Emp−1)
nn , ∆

(Emp−1)
pp and ∆

(Emp−2)
nn,pp using Emp − 1 and Emp − 2 formulae

for all the nuclei considered in present investigation. It was clear from Table 5.2 that the

pn-QRPA calculated Gamow-Teller strength distribution was a sensitive function of pairing

strength parameter. The Sp (Sn) dependent value of pairing strength (Emp− 1) results for

calculated half-lives were in good comparison with the measured data.

Table 5.3 presents the performance of pn-QRPA model calculation. Shown were this work
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Table 5.2: Comparison between pn-QRPA calculated Gamow-Teller strength distributions using different

values of pairing gaps: ∆
(Emp−1)
nn , ∆

(Emp−1)
pp and ∆

(Emp−2)
nn,pp . Shown were the calculated pairing gaps (in

MeV ), total Gamow-Teller strength, centroid values and cut off energy (inMeV ) using the pn-QRPA(Emp−
1) and pn-QRPA(Emp− 2) scheme for selected nuclei.

Nucleus ∆
(Emp−1)
nn ∆

(Emp−1)
pp ∆

(Emp−2)
nn,pp

∑
GTEmp−1

∑
GTEmp−2 ĒEmp−1 ĒEmp−2 Ecutoff

42Cr 1.78 1.97 1.85 11.6 4.58 7.40 5.69 13.8
44Cr 2.07 1.78 1.81 1.66 1.69 0.45 0.45 13.9
46Cr 2.24 1.94 1.77 1.63 1.72 0.43 0.43 8.0
46Fe 3.04 1.79 1.77 10.7 10.9 6.43 7.03 13.5
48Fe 1.79 1.67 1.73 2.42 0.78 1.51 4.59 13.5
50Fe 1.86 1.51 1.70 26.6 26.6 4.37 4.22 8.1
48Ni 1.87 0.66 1.73 40.3 14.0 8.18 9.93 15.6
50Ni 2.09 1.86 1.70 10.4 2.89 6.98 5.39 12.7
52Ni 2.02 1.69 1.66 7.97 5.23 3.92 2.92 11.0
54Ni 1.48 1.64 1.62 1.71 1.71 0.002 0.002 11.0
56Zn 1.71 1.35 1.60 14.4 3.56 9.94 7.03 12.3
58Zn 1.90 1.23 1.58 11.3 25.1 5.30 4.68 9.2
60Zn 1.71 1.64 1.55 1.83 2.78 2.83 2.17 4.5
62Zn 1.60 1.37 1.52 0.98 0.51 1.10 0.06 1.6
60Ge 1.97 1.41 1.55 14.4 4.00 9.30 8.19 12.2
62Ge 1.30 1.21 1.52 13.7 10.7 6.90 7.25 10.0
64Ge 1.90 1.88 1.50 0.58 0.50 1.55 1.58 4.5
66Ge 1.76 3.47 1.48 0.58 0.66 1.05 1.26 2.0
64Se 1.60 1.42 1.50 15.9 14.3 6.87 7.20 12.7
66Se 1.55 1.44 1.48 14.7 6.57 4.36 3.15 10.6
68Se 1.94 2.08 1.46 3.85 8.99 3.18 0.57 4.7
70Se 1.88 1.73 1.43 0.99 1.05 1.24 1.19 2.4

pn-QRPA calculated half-lives along with previous half-life calculations and measured half-

lives for selected even-even nuclei. The Q values and experimental half-lives were taken from

Ref. [73]. Column IV and Column V presents calculated half-lives using the Emp − 1 and

Emp− 2 formulae for pairing strength. The last three columns display previous theoretical

results. Column VI shows the calculated half-lives using the FRDM model [89] whereas

the last two columns show the recent results by using the EQRPA model [79]. Here both

EQRPA results with and without the inclusion of proton-neutron pairing correlations were

shown. All entries were given in units of s. Comparison between measured data and pn-

QRPA(Emp−1) shows decent agreement.
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Table 5.3: Comparison between experimental [73], pn-QRPA(Emp−1), pn-QRPA(Emp−2), FRDM model [89]
and EQRPA model (with and without pn pairing) [79] calculated half-lives. Qβ values were taken from
Ref. [73] and given in units of MeV . All half-lives were given in units of s.

Nucleus Qβ T
[EXP ]
1/2 T

[pn−QRPA(Emp−1)]
1/2 T

[pn−QRPA(Emp−2)]
1/2 T

[FRDM ]
1/2 T

[EQRPA(no−pn)]
1/2 T

[EQRPA(with−pn)]
1/2

42Cr 13.7 0.013 0.013 0.013 0.045 0.013 0.012
44Cr 10.5 0.042 0.038 0.037 0.118 0.056 0.038
46Cr 7.60 0.224 0.218 0.209 0.671 0.404 0.375
46Fe 13.5 0.013 0.012 0.012 0.018 0.014 0.011
48Fe 10.9 0.045 0.042 1.123 0.059 0.037 0.034
50Fe 8.14 0.152 0.135 0.119 0.542 0.301 0.301
48Ni 15.6 0.003 0.003 0.003 0.005 0.005 0.002
50Ni 12.9 0.018 0.018 0.018 0.017 0.018 0.016
52Ni 10.5 0.041 0.039 0.039 0.077 0.056 0.052
54Ni 8.79 0.114 0.102 0.102 0.646 0.329 0.299
56Zn 12.7 0.032 0.029 0.285 0.083 0.025 0.021
58Zn 9.37 0.086 0.048 0.043 0.597 0.192 0.162
60Zn 4.17 142.8 142.5 37.33 >100 268.3 60.29
62Zn 1.62 33094 32101 7399 >100 39372 31372
60Ge 12.2 0.030 0.025 0.245 0.082 0.494 0.424
62Ge 10.1 0.129 0.117 0.081 0.868 0.125 0.102
64Ge 4.52 63.70 48.62 50.16 80.88 752.2 665.6
66Ge 2.12 8136 7452 9557 >100 25125 23144
64Se 12.7 0.030 0.028 0.030 0.097 0.022 0.020
66Se 10.7 0.030 0.031 0.033 0.648 0.073 0.065
68Se 4.71 35.50 35.06 0.759 42.32 17.69 17.68
70Se 2.41 2466 2041 1865 >100 3388 3387
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Noticeable differences in calculated pn-QRPA half-lives (using the Emp−1 and Emp−2

formulae) were seen for four cases. For the cases of 48Fe, 56Zn, 60Ge and 68Se the Emp− 2

calculated half-lives found considerably bigger than those calculated using the Emp − 1

formula. The reason may be traced back to Table 5.2 where it was noted that total calculated

GT strength using the Emp − 1 formula was appreciably bigger than the corresponding

strength using the Emp− 2 formula. Bigger total strength translates to bigger decay rates

and correspondingly smaller half-lives. For the nucleus 68Se the Emp − 2 calculated half-

lives were appreciably smaller than those calculated using the Emp − 1 formula. It could

noted, from Table 5.2, that for 68Se the Emp − 2 formula places the centroid of the GT

distribution at considerably lower daughter excitation energies than those using the Emp−1

formula. This in turn translates to smaller corresponding half-lives. In addition the Emp−1

formula calculated total GT strength was also much smaller than those calculated using the

Emp− 2 formula. The possible reasons for significant effects of pairing gaps on calculated

GT strength distributions and consequently on calculated half-lives for 48Fe, 56Zn, 60Ge

and 68Se was explored. It can be noticed that for all four cases the first 1+ states in

daughter nuclei were calculated at relatively higher values. For the case of 46,48,50Fe the

first 1+ states were calculated at 0.36, 0.90 and 0.65 MeV , respectively, in daughter. For

56,58,60,62Zn the GT transitions occurred at 1.72, 0.00, 0.07 and 0.00 MeV , respectively. The

lowest 1+ states in daughter 60,62,64,66Ga were calculated at 1.32, 0.58, 0.70 and 0.04 MeV ,

respectively. For the selenium nuclei 64,66,68,70Se present model calculated lowest lying 1+

transitions at 0.65, 0.36. 0.92 and 0.08 MeV , respectively. It may be concluded that in

cases where present model calculates high-lying 1+ states in daughter nuclei the pairing gaps

had noticeable effects on calculated GT strength distributions and hence on calculated half-

lives. The ground state of daughter (odd-odd) nucleus was assumed to be a proton-neutron

q-p, pair state of smallest energy. In the current pn-QRPA model, the low-lying states in

an odd-odd nucleus were expressed in the q-p picture by proton-neutron pair states (two

q-p states) or by states which were obtained by adding two-proton or two-neutron q-p’s
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(four q-p states) [49]. The two q-p states and four q-p states can be reduced into phonon-

correlated one q-p states by the recipe prescribed in Ref. [49]. The phonon-correlated one

q-p states were proton/neutron q-p state including contribution from terms representing

correlations of RPA phonons admixed by the phonon q-p coupling Hamiltonian (obtained

from the separable (p.h) and (p.p) forces by the Bogoliubov transformation). GT transitions

of phonon excitations of each excited state were also taken into account. Here it was assumed

that the q-p in the parent nucleus remained in the same q-p orbits. It was possible that for

these four cases the pairing interaction forces, the phonon-correlated one q-p states/phonon

excitations to relatively high-lying excited states. It was evident that β-decay half-lives

obtained as a result of present Emp− 1 scheme were in excellent agreement with measured

half-lives. Better agreement with measured data than the previous calculations of Ref. [79]

(using the EQRPA model) and Ref. [89] (using the FRDM model) was achieved.

5.2 Summary

In this portion the calculated β+-decay terrestrial half-lives using the pn-QRPA model

for neutron deficient fp-shell nuclei was investigated. The β-decay properties of chosen

nuclei had a key role to play in the nucleosynthesis problem. It was concluded that the

pn-QRPA model, in a multi-shell single-particle deformed space with schematic interaction

and smart choice of interaction constants κ for particle-particle and χ for particle-hole

parameters, results in accurate prediction of β-decay half-lives. It was shown that pairing

gaps strength alter the calculated GT strength distributions and effect the calculated half-

life values. It was further demonstrated that Emp−1 formula for calculation of pairing gaps

resulted in better prediction of calculated half-life values than by using Emp − 2 scheme.

Present calculated β+-decay half-lives were in excellent agreement with the measured one

and showed marked improvement over the former calculations. Because of the available

large model space (up to 7~ω ) present model can calculate the half-lives for any arbitrary
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heavy nucleus. It was expected that the current investigation would lead to a better and

reliable calculation of β-decay properties of unstable nuclei.

5.3 Newly Calculated Phase Space Factor

The phase space factors (PSF) for β-decay were calculated since long time ago [96, 97]

and were considered to be evaluated with sufficient accuracy. However, in those works the

distortion of the electron wave functions (w.f.) by the Coulomb field of the nucleus was

taken into account through Fermi functions which were expressed in terms of approximate

radial solutions of the Dirac equation at the nuclear surface. Also, other corrections were

introduced in the calculations in approximate ways. Thus, the screening effect on the β

spectrum included by various recipes, for example by replacing the V(Z) potential with

a momentum dependent screening (for low energy positrons) [97] and by modifying the

electron radial w.f. [98,99]. Also, the finite size of the nucleus (FNS) was taken into account

by adding to the Fermi functions obtained in the ”point-nucleus” approximation, corrections

that depend on the β particle energy and nuclear charge Z [100, 101]. Also, for the nuclear

radius, older formula was used [97,102]. For the EC process the electron bound-state radial

w.f. were also obtained as approximate solution of the Dirac equation evaluated at the

nuclear surface. They could improved by including exchange and overlap corrections, which

were obtained within a relativistic HF approach.

In this work recalculation of the computation of the PSF involved in the positron decay

and electron capture (EC) processes for light and heavy nuclei of experimental interest

will be performed. The Dirac equation was solved numerically with a Coulomb potential

derived from a realistic proton distribution in the nucleus which includes the FNS correction.

The numerical procedure follows the power series method described in Ref. [103] and was

similar to that described in Refs. [104,105]. The screening effect was introduced by using a

screened Coulomb potential, obtained by multiplying the Coulomb potential by a function
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ϕ(x), solution of the Thomas-Fermi equation obtained by the Majorana method [106]. The

accuracy imposed in present numerical algorithms used to solve the Dirac equation which

always exceeds the convergence criteria given in previous references. Also, a more efficient

procedure to identify without ambiguity the electron bound states were developed.

5.3.1 For β+/Electron Capture-Decay

In order to make comparison between the actual PSF values found in literature and this

study, the same PSF were computed with the approach described in Ref. [97] and using

the same Q-values. For positron decays present work results were in close agreement with

the previous results, while for the EC process relevant differences were noticed. For these

processes it was found that the screening effect shows notable influence on the computed PSF

values for light nuclei. Further, re-computation of the same PSF values using up-dated Q-

values, reported recently in literature [107], which for several light nuclei differ significantly

from the older ones. As an example, the maximum β-particle energy (referred to as W0

throughout this section) stated in Table 2 of [108]. These W0 values differ considerably

from those given in [107, 109]. One reason for this big difference could be that Wilkinson

and Macefield, in order to compare their calculation with those performed earlier by Towner

and Hardy [110], restricted their phase space to only pure Fermi transitions. In other words,

the Gamow-Teller window was not accessed in phase space calculation of [108]. Thus, in

this paper, new PSF values were computed with a more accurate method and using updated

Q-values, for a large number of nuclei of experimental interest. Present calculations can be

useful for more reliable computation of the beta-decay rates of nuclei far from the stability

line, as well as for better understanding of the stellar evolution.

A nucleus with atomic mass A and charge Z decays for an allowed β-branch was given

by:
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λ0 = g2/2π3

∫ W0

1

pW (W0 −W )2S0(Z,W )dW, (5.4)

where g stands for the weak interaction coupling constant, p for the momentum of β-

particle, W =
√
p2 + 1 shows the total energy of β-particle and W0 shows the maximum β

particle energy. W0 = Q − 1, in β+-decay (Q was the mass difference between initial and

final states of neutral atoms). Eq. (5.4) was written in natural units ( ~ = m = c = 1 ) so

that the unit of momentum is mc, the unit of energy was mc2, and the unit of time was ~

/mc2. The shape factors S0(Z,W ) for allowed transitions which appear in Eq. (5.4) could

defined as:

S0(Z,W ) = λ1(Z,W )|M0,1|2, (5.5)

where M0,1 shows the nuclear matrix elements and the Fermi functions λ1(Z,W ). Thus,

for calculating the β+-decay rates one needs to calculate the nuclear matrix elements and

the PSF, that can be defined as:

FBP =

∫ W0

1

pW (W0 −W )2λ1(W )dW. (5.6)

For the allowed β-decays the Fermi functions are expressed as:

λ1(Z,W ) =
g2−1 + f 2

1

2p2
, (5.7)

where g−1(Z,W ) and f1(Z,W ) are the large and the small radial components of the positron

radial wave functions evaluated at the nuclear radius R which can be obtained by solving

the Dirac equation:
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(
d

dr
+

κ

r

)
gκ(W, r) = (W + V + 1)fκ(W, r) (5.8)(

d

dr
+

κ

r

)
fκ(W, r) = −(W + V − 1)gκ(W, r)

where V denotes the central potential for the positron and κ = (l − j)(2j + 1) for the

relativistic quantum number. It can be noted that Eq. (5.8) was written in natural units.

An important step in the PSF calculation for β+ decay was the method of obtaining

the positron continuum radial functions. For this, a new method (code) of solving the

Dirac equation was developed, which was adapted from the method used previously for the

computation of PSF for double beta decay (DBD) process [111,112].

By solving Eq. (5.8) in a nuclear potential V (r), derived from a realistic proton density

distribution in the nucleus. This was done by solving the Schrodinger equation for a Woods-

Saxon potential. In this case,

V (Z, r) = α~c
∫

ρe(r⃗′)

| r⃗ − r⃗′ |
dr⃗′, (5.9)

In the case of the β+ process, the potential used to obtain the electron w.f. was,

rVβ+(Z, r) = (rV (Z, r) + 1)× ϕ(r)− 1 (5.10)

to taken into account the fact that β-decay releases a final negative ion with charge -1,

V (Z, r) was positive. In present approach, the solution of the Thomas-Fermi equation as

an universal function, giving an effective screening was considered. Here the product α~c

= 1, for atomic units. The asymptotic potential between a positron and an ionized atom

was rVβ+ = −1. In this case, the charge number Z = Z0 − 1 corresponds to the daughter

nucleus, Z0 being the charge number of the parent nucleus. Asymptotically ϕ(r) tends to 0.

For β+-decays, it can be noticed that previous PSF results computed with approximate
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methods [108, 110] for sixteen nuclei of astrophysical interest. Table 5.4 displays the PSF

values for these nuclei calculated with present new method (TW) and for comparison, the

values taken from [108,110]. Also the PSF values computed by us using the recipe described

in [97].

Table 5.4: Calculated phase space of β+-decay (BP) compared with previous calculations. The value of
maximum β-decay energy was taken from [108] for pure Fermi transitions. The last two columns show
present calculated results.

Nucleus W0 [108] FBP [110] FBP [108] FBP [TW] FBP [97]
(MeV)

10C 0.8884 2.361 2.361 2.325 2.326
14O 1.8098 43.398 43.378 42.822 42.814
18Ne 2.383 136.83 136.83 135.19 135.08
22Mg 3.109 427.02 426.88 422.19 421.51
26Al 3.211 483.84 483.68 478.3 477.43
26Si 3.817 1036.8 1035.9 1025.51 1023.059
30S 4.439 1990.2 1987.8 1969.24 1963.9
34Cl 4.468 2014.7 2013.4 1993.13 1987.4
34Ar 5.021 3388.3 3383.8 3351.58 3339.85
38K 5.028 3346.9 3344.9 3312.82 3300.54
38Ca 5.620 5515.9 5510.3 5457.95 5449
42Sc 5.409 4533.5 4531.7 4490.19 4462.21
42Ti 5.964 7025.4 7024.1 6934.9 6853.74
46V 6.032 7285.9 7284.2 7186.04 7091.9

50Mn 6.609 10818 10810 10492.76 10262
54Co 7.227 15956 15951 14988.470 14412.5

One can see that the agreement between TW results and the other results was in general

under 1%, except the last two (heavy) nuclei where the differences reach ∼3%. Table 5.5

displays this work computed PSF with the new method for few heavy nuclei for which

previous calculation results were not found. For comparison, the computed PSF values

were same as in the recipe adopted from [97]. W0-values were taken from [113], for both sets

of calculations. One can notice a rather good agreement between the two sets of results, with

differences generally, a few percent. There was one exception, 105Ag where the difference

was large (∼ a factor 10). This was a case where W0-value was very small (0.325 MeV),

and this might make present numerical routine inaccurate at such small values. However,

89



Chapter 5 Calculated Half-Life

this discrepancy may not be so significant, as long as the calculated PSF value was small

enough to have little contribution to the corresponding beta-decay rates.

Table 5.5: Calculated phase space of β+-decay (BP) for heavy nuclei compared with the ones calculated by
using recipe of [97].

Nucleus W0 [113] FBP [TW ] FBP [97]
(Mev)

52Fe 1.3525 8.3403 8.4132
56Ni 1.1109 3.4439 3.5250
62Zn 0.5974 0.2344 0.2438
66Ga 4.153 1125.6442 1132.5483
76Br 3.9409 835.1982 843.3343
81Rb 1.2161 4.3222 6.8878
88Y 2.6006 120.2644 121.8624
90Nb 5.0893 2503.0555 2533.7049
102Cd 1.565 11.2214 11.5267
103In 5.0005 2100.3727 2136.0153
105Ag 0.325 0.0102 0.1127
107Sb 6.837 8528.5047 8931.8197
113Sb 2.8891 168.1487 172.0209
113Te 5.048 2124.1816 2165.2927
115I 4.7029 1517.2376 1549.2409
116I 6.7547 7913.1790 8272.0244

116Xe 3.235 352.3565 361.4082
120Ba 3.98 678.0918 705.0294
120Xe 0.5587 0.1047 0.1108
126Cs 3.7731 542.4653 563.8184
182Re 0.1836 0.0002 0.0003
205Bi 1.6835 12.3984 13.4576

Table 5.6 shows state-by-state transitions for the two cases. Shown were also the adopted

NMEs using the pn-QRPA model, the calculated PSFs (separately for both EC and β+-

decay reactions), partial half-lives (PHL), Q-values and branching ratios I(β+/EC) . The

branching ratio ’I’ for each transition was calculated using the formula

I =
T1/2

tf
× 100(%), (5.11)

where T1/2 for the total β-decay half-life and tf for the calculated partial half-life of the

corresponding transition.
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The entries in the first two columns of Table 5.6 were model dependent. The excited

states in daughter nuclei (shown in the first column) and NMEs (presented in the second

column) were calculated using the pn-QRPA model. The computed excited states satisfied

the selection criteria for allowed transitions within the chosen model. A different nuclear

model can change the entries in the first two columns and as stated earlier, was not the

focus of current study. Q-values were presented in column III and column VI of Table 5.6

using following relation

QEC = mp −md − Ex, (5.12)

and

QBP = mp −md − Ex − 2mec
2. (5.13)

Here mp and md denotes masses of parent and daughter nuclei, respectively whereas

Ex for the calculated energy levels in the daughter nucleus. It can be noted that present

recipe results in a systematic smaller values of calculated PSF for the EC reaction which in

turn lead to systematically bigger values of calculated PHL. For the nucleus 56Ni we noted

calculation of much smaller PSF for EC decay to daughter energies using our recipe. The

PSFs calculated from (GM) recipe was on average within 3 % smaller. This in turn led to

a 4 % larger calculated half-life value for 56Ni using our recipe.

Electron capture was always an alternate decay mode for radioactive isotopes that do not

have sufficient energy to decay by positron emission. This was a process which competes

with positron decay. In order for EC leading to a vacancy in say, the K-shell to occur, the

atomic mass difference between initial and final states, Q, must be greater than the binding

energy of a K-shell electron in the daughter atom, ϵK . The energy carried off by the neutrino

given by
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Table 5.6: State-by-state comparison of calculated PSF (for β+/EC-decay) using recipe of [97] and current
prescription (TW). Shown also were the daughter energy levels, nuclear matrix elements NME, Q values,
partial half-lives (PHL) for β+/EC-decay and branching ratio I(β+/EC) of the selected nuclei.

52Fe

Ex NME QEC F
(GM)
EC F

(TW )
EC Qβ+ F

(GM)

β+ F
(TW )

β+ PHL(GM) PHL(TW ) I
(GM)

(β+/EC)
I
(TW )

(β+/EC)

(MeV) (MeV) [97] (MeV) [97] [97] [97]
0.000 0.02768 2.3733 1.22206 1.20150 1.3512 8.41032 8.31627 1.501E+04 1.519E+04 85.701 85.713
0.004 0.00170 2.3693 1.21794 1.19744 1.3472 8.30402 8.21074 2.466E+05 2.496E+05 5.2160 5.2160
0.196 0.00325 2.1773 1.02771 1.01077 1.1552 4.29193 4.24688 2.313E+05 2.340E+05 5.5620 5.5640
0.291 0.00134 2.0823 0.94007 0.92425 1.0602 2.98166 2.94390 7.605E+05 7.710E+05 1.6920 1.6890
0.720 0.00253 1.6533 0.59198 0.58175 0.6312 0.33565 0.32942 1.707E+06 1.738E+06 0.7540 0.7490
0.939 0.00087 1.4343 0.44543 0.43734 0.4122 5.69E-02 5.53E-02 9.208E+06 9.390E+06 0.1400 0.1390
1.011 0.00350 1.3623 0.40124 0.39435 0.3402 2.53E-02 2.47E-02 2.679E+06 2.727E+06 0.4800 0.4780
1.362 0.00255 1.0113 0.22076 0.21663 -0.0107 - - 7.108E+06 7.244E+06 0.1810 0.1800
1.467 0.00052 0.9063 0.17691 0.17374 -0.1157 - - 4.367E+07 4.447E+07 0.0290 0.0290
1.685 0.00017 0.6883 1.01706E-01 9.97773E-02 -0.3371 - - 2.352E+08 2.397E+08 0.0050 0.0050
1.754 0.00009 0.6193 8.22094E-02 8.06130E-02 -0.4027 - - 5.318E+08 5.424E+08 0.0020 0.0020
1.821 0.00972 0.5523 6.54251E-02 6.39581E-02 -0.4697 - - 6.293E+06 6.437E+06 0.2040 0.2020
2.119 0.00282 0.2543 1.35835E-02 1.32041E-02 -0.7677 - - 1.045E+08 1.075E+08 0.0120 0.0120
2.143 0.00572 0.2303 1.10469E-02 1.07735E-02 -0.7917 - - 6.338E+07 6.499E+07 0.0200 0.0200

Table 5.7: Same as Table 5.6 but for 56Ni depicting highest PD among all selected cases

Ex NME QEC F
(GM)
EC F

(TW )
EC Qβ+ F

(GM)

β+ F
(TW )

β+ PHL(GM) PHL(TW ) I
(GM)

(β+/EC)
I
(TW )

(β+/EC)

(MeV) (MeV) [97] (MeV) [97] [97] [97]
56Ni
1.196 0.00038 0.9357 0.24313 0.23335 -0.0862 - - 4.315E+07 4.496E+07 0.986 0.988
1.247 0.00019 0.8847 0.21729 0.20842 -0.1372 - - 9.852E+07 1.027E+08 0.432 0.432
1.252 0.00034 0.8797 0.21476 0.20605 -0.1422 - - 5.550E+07 5.785E+07 0.767 0.768
1.288 0.00009 0.8437 0.19721 0.18939 -0.1782 - - 2.137E+08 2.225E+08 0.199 0.200
1.289 0.00009 0.8427 0.19676 0.18894 -0.1792 - - 2.315E+08 2.411E+08 0.184 0.184
1.299 0.00008 0.8327 0.19227 0.18444 -0.1892 - - 2.690E+08 2.804E+08 0.158 0.158
1.309 0.00001 0.8227 0.18754 0.18000 -0.1992 - - 1.739E+09 1.812E+09 0.024 0.024
1.313 0.00002 0.8187 0.18593 0.17824 -0.2032 - - 1.226E+09 1.278E+09 0.035 0.035
1.318 0.00001 0.8137 0.18344 0.17605 -0.2082 - - 1.764E+09 1.838E+09 0.024 0.024
1.363 0.00000 0.7687 0.16374 0.15695 -0.2532 - - 4.349E+10 4.537E+10 0.001 0.001
1.363 0.00000 0.7687 0.16372 0.15695 -0.2532 - - 2.361E+10 2.463E+10 0.002 0.002
1.373 0.00000 0.7587 0.15927 0.15285 -0.2632 - - 7.543E+10 7.860E+10 0.001 0.001
1.471 0.00000 0.6607 0.12034 0.11558 -0.3612 - - 1.514E+10 1.577E+10 0.003 0.003
1.482 0.00001 0.6497 0.11645 0.11172 -0.3722 - - 3.315E+09 3.455E+09 0.013 0.013
1.503 0.00001 0.6287 0.10904 0.10454 -0.3932 - - 3.722E+09 3.883E+09 0.011 0.011
1.711 0.07180 0.4207 4.82788E-02 4.62700E-02 -0.6012 - - 1.154E+06 1.204E+06 36.85 36.85
1.742 0.13730 0.3897 4.13076E-02 3.95910E-02 -0.6322 - - 7.058E+05 7.364E+05 60.30 60.30

qK = Q− ϵK (5.14)

If the energy requirement Q > ϵK was satisfied EC from the K-shell was more probable

than that from any other shell because of the greater density at the nucleus of the K-shell

electrons. The total K-shell capture rate can be expressed as
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λ0
EC,K = λ0

KBK , (5.15)

where

λ0
K =

g2|M0,1|2

4π2
q2Kg

2
K , (5.16)

where g2 stands for a constant (with dimension of time−1), the M’s for specific combinations

of nuclear matrix elements, gK for the large component of the bound-state radial w.f. of the

captured K-shell electron (evaluated at the nuclear surface RA), qK was the neutrino energy

in units of mc2 and BK was the ”exchange” correction factor for the K-shell. In analogy

with Eq. (5.15), the L-shell total capture rate will be

λ0
EC,Li

= λ0
Li
BLi

, (5.17)

where Li denotes a particular L-subshell. The contribution of L1 pertaining to the 2s1/2

orbital was the most important, so for present calculations only the contribution of this sub-

shell has been taken into account. The expressions for λ0
L1

can be obtained from Eq. (5.16)

by the replacement of qK , gK by qL1 , gL1 . EC from the M, N and higher shells may be

defined in a similar fashion, but they have negligible contributions in comparison with the

K and L shells. Hence for an allowed transition, the PSF expression of EC can be written

in this approximation as follows

FK,L1

EC =
π

2

(
q2Kg

2
KBK + q2L1

g2L1
BL1

)
. (5.18)

For the qK/L1 quantities the following expressions were used:
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qK/L1 = WEC − ϵK/L1 (5.19)

Where, WEC was the Q-value of the β+-decay in mec
2 units, ϵi were the binding energies

of the 1s1/2 and 2s1/2 electron orbitals of the parent nucleus, gi stands for the radial densities

on the nuclear surface. Bi ≈ 1 represent the values of the exchange correction. These were

due to an imperfect overlap of the initial and final atomic states caused by the one unit

charge difference [114]. In current method these exchange corrections were considered to

be unity, for the investigated nuclei, the estimated error in doing that was under 1%. The

relation W0 = WEC − 1 holds.

The wave function were normalized such that

∫ ∞

0

[g2n,κ(r) + f 2
n,κ(r)]dr = 1. (5.20)

For simplicity, solutions of the Dirac equations gn,κ and fn,κ that were divided by the radial

distance r were considered. An asymptotic solution was obtained by means of the WKB

approximation and by considering that the potential V was negligibly small:

fn,κ
gn,κ

=
c~

ϵ+mec2

(
g′n,κ
gn,κ

+
κ

r

)
(5.21)

where

g′n,κ
gn,κ

= −1

2
µ′µ−1 − µ (5.22)

with

µ =

[
ϵ+mec

2

~2c2
(V − ϵ+mec

2) +
κ2

r2

]1/2
. (5.23)

In this calculation the number node n=0 and n=1 were used for the orbital 1s1/2 and 2s1/2
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respectively, κ being -1. Numerically the eigenvalues of the discrete spectrum were obtained

by matching two numerical solutions of the Dirac equation: the inverse solution that starts

from the asymptotic conditions and the direct one that starts at r=0.

For the EC processes, the potential used to obtain the electron w.f. reads

rVEC(Z, r) = rV (Z, r)ϕ(r) (5.24)

and the charge number Z = Z0 corresponds to the parent nucleus V (Z, r) was negative.

The numerical solutions of the Dirac equation were obtained within the power series

method of Ref. [103], by using similar numerical algorithm as that of Refs. [104, 105]. The

method provide numerical solutions of the Dirac equation for central fields. The radial w.f.

was expanded as in an infinite power series that depends on the radial increment and the

potential values. The w.f. was calculated step by step in the mesh points. The increment

and the number of terms in the series expansion determine the accuracy of the solutions. In

present calculations, the increment interval was 10−4 fm and at least 100 terms were taken

into account in the series expansion.

These values exceed the convergence criteria of Ref. [104]. To renormalize the numerical

solutions this work made use of the fact that at very large distances the behavior of the wave

function must resemble to that of the Coulomb function. Therefore, the amplitudes and

the phase shifts can be extracted by comparing the numerical solution with the analytical

one. For discrete states, the asymptotic behavior of the w.f. gives a guess for the inverse

solutions. The eigenvalue was obtained when the direct solutions and the inverse ones match

together. Present work constructed an adequate procedure to find the bound states of the

electron up to an accuracy of 0.3 keV , or lower by searching solutions up to 130 keV binding

energies.

In this range of energies, all the possible bound state energies were considered. This

study calculates the solutions starting outward from r = 0 and inward from a very large

value of the radius r. The bound states should be obtained when both solutions were equal
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in an intermediate point, for the two components of the wave function. The radial wave

functions fn,κ and gn,κ that had same number of nodes n =0 or 1 were selected.

For the PSF computation, all integrals in Eq. (5.8) were performed accurately with

Gauss-Legendre quadrature in 32 points. Present investigation also calculated the PSF for

EC process using Eq. (5.18) but employing essentially the formalism adopted by Ref. [96].

Here, the electron radial density (and density ratios) as given in Table 2 of [96] was used.

Further present calculation used values of exchange corrections for the various shells which

were slightly different than unity and given in Table 1 of [96]. Binding energies were also

taken from same reference.

Table 5.8 present this work results for EC for the same set of nuclei. The Q-values

for positron decay were taken from Ref. [108] for nuclei marked with ⋆. For the rest of

nuclei the Q-values were taken from Ref. [113]. Together with the PSF values for EC, the

electron densities, gK,L1 , their ratios and the binding energies ϵ for the orbitals 1s1/2 and

2s1/2 were also given in Table 5.8. Comparison of the results was performed between the

new method (TW) and those calculated using the recipe of Ref. [96]. For these transitions

the differences between the two sets of results were significantly larger than for the positron

decays, ranging from a few percent to about a mammoth 35%. Which attribute these

differences in the calculated PSF values mainly due to electron densities gK , whose values

calculated with the ”old”’ and ”new”’ methods differ significantly from each other. The

influence of the screening effect on the PSF values was also checked. It was found that while

for the positron decays this effect was very small for the EC transitions there were some

differences between the ”‘screened”’ and ”‘un-screened” PSF values. For small values of Z

the results without screening give PSF values that were 10-15% larger than those listed in

Table 5.8. For heavier nuclei, these differences are only up to 2-3%. The screening effect

in PSF calculation was more important for light nuclei and lead to a decrease in the PSF

values up to 15%. Finally, Table 5.9 displays PSF values for EC transitions, re-computed

with up-dated Q-values taken from Ref. [107].
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Table 5.8: Calculated phase space factors FEC for electron capture (assuming exchange corrections to be
equal to 1). The value of maximum β-decay energy was taken from [108] for pure Fermi transitions. The
electron densities, their ratios, and the binding energies ϵ were also provided for the orbitals 1s1/2 and 2s1/2,
including those given in [96]. Binding energies were given in units of keV .

Nucleus Qβ+ g2K g2K g2L1
/g2K g2L1

/g2K ϵK ϵK ϵL1 ϵL1 FK,L1

EC FK,L1

EC

(MeV) [96] [TW] [96] [TW] [96] [TW] [96] [TW] [TW] [96]
10C⋆ 1.9104 0.00031 0.00031 0.04930 0.02867 0.18790 0.62660 0.12600 0.01176 0.00703 0.00640
14O⋆ 2.83186 0.00075 0.00065 0.05640 0.04420 0.40160 1.03733 0.02440 0.03251 0.03297 0.03786
18Ne⋆ 3.405 0.00151 0.00118 0.05840 0.05794 0.68540 1.48302 0.03400 0.06659 0.08713 0.11005
22Mg⋆ 4.131 0.00268 0.00199 0.06660 0.06811 1.07210 2.11143 0.06330 0.15721 0.218 0.29060
26Al⋆ 4.2331 0.00344 0.00251 0.06990 0.07265 1.30500 2.40715 0.08940 0.14631 0.27558 0.39270
26Si⋆ 4.839 0.00435 0.00312 0.07290 0.07661 1.55960 2.74689 0.11770 0.18077 0.47240 0.65060
30S⋆ 5.461 0.00664 0.00467 0.07810 0.08342 2.14550 3.49498 0.18930 0.25934 0.90680 1.27140
34Cl⋆ 5.4908 0.00807 0.00563 0.08040 0.08628 2.47200 3.91749 0.22920 0.30899 1.10727 1.56600
34Ar⋆ 6.043 0.00970 0.00675 0.08240 0.08862 2.82240 4.33190 0.27020 0.36199 1.61130 2.28490
38K⋆ 6.05 0.01156 0.00802 0.08440 0.09079 3.20600 4.77984 0.32630 0.41921 1.92311 2.73480
38Ca⋆ 6.642 0.01367 0.00947 0.08620 0.09259 3.60740 5.25087 0.37710 0.48351 2.74237 3.90650
42Sc⋆ 6.4311 0.01600 0.01113 0.08790 0.09430 4.03810 5.73657 0.43780 0.54865 3.02434 4.28930
42Ti⋆ 6.986 0.01870 0.01300 0.08960 0.09579 4.49280 6.25222 0.50040 0.62068 4.17496 5.92320
46V⋆ 7.0543 0.02170 0.01512 0.09100 0.09699 4.96640 6.78377 0.56370 0.69826 4.95575 7.02120
50Mn⋆ 7.6311 0.02870 0.02016 0.09380 0.09920 5.98920 7.92722 0.69460 0.86703 7.74617 10.9103
52Fe 2.374 0.0328 0.0232 0.0950 0.0987 7.1120 8.5130 0.8461 0.958 0.859 1.2033
54Co⋆ 8.2498 0.03730 0.02651 0.09620 0.10077 7.11200 9.14731 0.84610 1.05584 11.91799 16.6144
56Ni 2.136 0.0423 0.0303 0.0974 0.1013 8.3328 9.7882 1.0081 1.158 0.907 1.2580
62Zn 1.626 0.0538 0.0390 0.0995 0.1025 9.6586 11.157 1.1936 1.380 0.675 0.9261
66Ga 5.175 0.0604 0.0410 0.1006 0.1029 10.3671 11.875 1.2977 1.498 7.80 10.613
76Br 4.963 0.0935 0.0704 0.1035 0.1048 13.4737 15.000 1.7820 2.021 11.45 15.162
81Rb 2.23815 0.1149 0.0883 0.1063 0.1080 15.1997 16.690 2.0651 2.263 9.069 11.744
88Y 3.6226 0.1402 0.1091 0.1080 0.1174 17.0384 18.450 2.3725 2.438 9.528 12.114
90Nb 6.111 0.170 0.1344 0.1098 0.1059 18.9856 20.421 2.6977 2.994 33.17 41.975
102Cd 2.587 0.319 0.2663 0.1159 0.1102 26.7112 28.044 4.0180 4.351 11.66 14.019
103In 6.050 0.348 0.2930 0.1168 0.1116 27.9399 29.232 4.2375 4.548 71.05 84.541
105Ag 1.345 0.293 0.2423 0.1150 0.1086 25.5140 26.864 3.8058 4.161 2.816 3.4256
107Sb 7.920 0.413 0.3526 0.1187 0.1096 30.4912 31.726 4.6983 5.095 146.5 172.43
113Sb 3.913 0.413 0.3516 0.1187 0.1096 30.4912 31.726 4.6983 5.095 35.38 41.804
113Te 6.070 0.449 0.3844 0.1196 0.1113 31.8138 33.041 4.9392 5.314 93.70 109.93
115I 5.729 0.488 0.4121 0.1205 0.1124 33.1694 34.345 5.1881 5.542 91.54 106.40
116I 7.780 0.488 0.4215 0.1205 0.1124 33.1694 34.345 5.1881 5.542 169.3 196.75
116Xe 4.450 0.529 0.4609 0.1215 0.1123 34.5644 35.705 5.4528 5.822 60.15 69.410
120Ba 5.00 0.623 0.5496 0.1234 0.1130 37.4406 38.514 5.9888 6.375 90.65 103.51
120Xe 1.617 0.529 0.4599 0.1215 0.1123 34.5644 35.705 5.4528 5.821 7.72 8.9482
126Cs 4.824 0.574 0.501 0.1224 0.112 35.9846 37.111 5.7143 6.128 76.88 88.697
182Re 2.800 2.69 2.593 0.1448 0.128 71.6764 72.491 12.5267 13.26 22.86 24.152
205Bi 2.708 4.88 4.837 0.1561 0.138 90.5259 91.373 16.2370 17.25 228.17 233.83
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Table 5.9: Calculated phase space factors FEC for electron capture, with Q-values from [107].

Nucleus QEC [107] FEC [TW] FEC [96] FBP [TW] FBP [97]
(MeV)

10C 3.64613 0.07318 2.33265 226.780 226.834
14O 5.14131 0.21794 0.12483 1644.76 1643.41
18Ne 4.44215 0.27831 0.18733 677.970 677.912
22Mg 4.77904 0.61616 0.39020 995.887 995.685
26Al 4.00231 0.62642 0.35240 343.398 343.658
26Si 5.06645 0.51788 0.71694 1339.344 1339.30
30S 6.13834 1.14585 1.61931 3805.276 3803.16
34Cl 5.48869 1.10642 1.57889 1994.797 1995.09
34Ar 6.05858 1.61963 2.31915 3410.133 3409.96
38K 5.91093 1.83565 2.64042 2917.839 2918.62
38Ca 6.73867 2.82284 4.07367 5924.355 5929.26
42Sc 6.42269 3.01643 4.33609 4470.946 4471.87
42Ti 7.01275 4.20702 6.05196 7100.190 7130.06
46V 7.04865 4.94781 7.11022 7175.692 7209.06

50Mn 7.63042 7.74479 11.0705 10516.941 10744.5
52Fe 2.37330 0.8584 1.22082 14942.286 15765.2
54Co 8.24017 11.89015 16.8306 8.354 8.43206
56Ni 2.13175 0.9029 1.27259 3.444 3.49486
62Zn 1.61859 0.6687 0.93259 0.234 0.24131
66Ga 5.17225 7.7902 10.7797 1125.644 1131.60
76Br 4.96024 11.439 15.4388 835.295 841.531
81Rb 2.23696 2.9044 3.84415 4.321 4.41092
88Y 3.62067 9.5180 12.3759 120.264 121.864
90Nb 6.10809 33.141 42.9337 2502.372 2526.00
102Cd 2.58562 11.652 14.4027 11.221 11.5468
103In 6.01928 70.333 15.7203 2099.402 2133.61
105Ag 1.34679 2.8233 3.53114 0.01027 1.12362
107Sb 7.85483 144.059 174.745 8528.505 8918.59
113Sb 3.90909 35.311 42.9919 168.122 172.036
113Te 6.06682 93.601 113.234 2124.182 2162.53
115I 5.72192 91.3148 109.531 1509.977 1547.75
116I 7.77260 168.959 202.635 7930.046 8250.78

116Xe 4.44315 59.963 71.4659 354.467 361.241
120Ba 4.99761 90.562 106.993 685.518 703.098
120Xe 1.57992 7.3638 8.82085 0.105 0.11187
126Cs 4.79256 75.871 90.4835 542.400 555.411
182Re 2.79851 131.273 145.184 16.123 17.2282
205Bi 2.70412 227.499 247.263 12.415 13.4798

5.3.2 For β−-Decay

Table 5.10 shows the state by-state calculation of PHL for 100Sr (largest PD=3.82 %) and

152Nd (PD=2.04 %). The values of Qβ− (calculated PSF, NME and branching ratios Iβ−)

98



Chapter 5 Calculated Half-Life

were also given in this Table. An overall agreement between our calculated PSF values and

those using the (GM) recipe in the case of both analyzed nuclei was observed.
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Figure 5.1: Dependence of pn-QRPA calculated half-lives on pairing gaps using the Emp−1 scheme for the
three cases analyzed in previous works [41,92]. The pairing gaps are given in units of MeV .
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Figure 5.3: Calculated GT strength distributions for 46Cr, 50Fe and 54Ni using pn-QRPA(Emp−1) and
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Table 5.10: State-by-state comparison of calculated PSF (for β-decay) using recipe of [97] and current
prescription (TW). Shown also were the daughter energy levels, nuclear matrix elements NME, Q values,
partial half-lives (PHL) and branching ratio I(β−) for β

−-decay of the selected nuclei.

100Sr

Ex(MeV) NME Qβ− (MeV) F
(GM)
β− [97] F

(TW )
β− PHL(GM) [97] PHL(TW ) I

(GM)
(β−) [97] I

(TW )
(β−)

0.13300 0.01473 7.50300 86906.3 72966.7 3.12798E+00 3.72554E+00 7.2730 6.3720
0.35700 0.00115 7.14579 69557.1 64334.6 4.99967E+01 5.40553E+01 0.4550 0.4390
0.86400 0.00510 6.63935 49775.9 47317.7 1.57827E+01 1.66026E+01 1.4410 1.4300
1.00300 0.00322 6.50023 45212.0 43184.3 2.75281E+01 2.88207E+01 0.8260 0.8240
1.06300 0.00429 6.44024 43349.3 41485.6 2.15140E+01 2.24805E+01 1.0570 1.0560
1.10400 0.00278 6.39893 42102.4 40346.8 3.42401E+01 3.57299E+01 0.6640 0.6640
1.35000 0.26502 6.15278 35247.6 33999.4 4.28548E-01 4.44280E-01 53.084 53.434
1.41900 0.01521 6.08400 33499.6 32359.0 7.85740E+00 8.13437E+00 2.8950 2.9180
1.62000 0.00002 5.88283 28778.0 27883.9 7.89102E+03 8.14407E+03 0.0030 0.0030
1.64200 0.00000 5.86112 28301.8 27429.7 2.05672E+05 2.12210E+05 0.0000 0.0000
1.66900 0.00080 5.83372 27709.5 26864.9 1.81631E+02 1.87341E+02 0.1250 0.1270
2.03600 0.03084 5.46720 20688.6 20109.3 6.27339E+00 6.45412E+00 3.6260 3.6780
2.19100 0.00096 5.31207 18180.4 17678.5 2.30158E+02 2.36693E+02 0.0990 0.1000
2.21100 0.00002 5.29152 17867.1 17374.4 1.26201E+04 1.29779E+04 0.0020 0.0020
2.21700 0.00126 5.28623 17787.1 17296.8 1.79065E+02 1.84140E+02 0.1270 0.1290
2.33500 0.01496 5.16812 16074.2 15633.6 1.66481E+01 1.71173E+01 1.3660 1.3870
2.40500 0.00704 5.09834 15125.2 14712.6 3.75885E+01 3.86428E+01 0.6050 0.6140
2.48600 0.05959 5.01712 14077.3 13695.1 4.77186E+00 4.90505E+00 4.7670 4.8400
2.55600 0.00015 4.94728 13222.8 12865.6 2.04511E+03 2.10190E+03 0.0110 0.0110
2.59700 0.00001 4.90586 12735.9 12392.7 3.58668E+04 3.68600E+04 0.0010 0.0010
2.71000 0.00051 4.79275 11477.9 11170.8 6.88307E+02 7.07229E+02 0.0330 0.0340
2.73300 0.04131 4.76967 11233.8 10933.7 8.62714E+00 8.86390E+00 2.6370 2.6780
2.92100 0.00092 4.58202 9397.47 9150.19 4.64906E+02 4.77470E+02 0.0490 0.0500
3.04900 0.00007 4.45378 8285.68 8069.38 7.37202E+03 7.56963E+03 0.0030 0.0030
3.19200 0.00721 4.31146 7176.38 6990.87 7.73167E+01 7.93683E+01 0.2940 0.2990
3.29000 0.00845 4.21307 6480.88 6314.67 7.30755E+01 7.49989E+01 0.3110 0.3170
3.29600 0.01583 4.20677 6438.24 6273.21 3.92753E+01 4.03085E+01 0.5790 0.5890
3.36400 0.00058 4.13861 5990.84 5838.16 1.15661E+03 1.18685E+03 0.0200 0.0200
3.43900 0.00029 4.06433 5531.71 5391.47 2.52582E+03 2.59152E+03 0.0090 0.0090
3.45000 0.01045 4.05281 5463.09 5324.69 7.01033E+01 7.19255E+01 0.3250 0.3300
3.47100 0.00612 4.03206 5341.13 5205.96 1.22440E+02 1.25619E+02 0.1860 0.1890
3.49600 0.00482 4.00734 5198.67 5067.29 1.59594E+02 1.63732E+02 0.1430 0.1450
3.56900 0.00134 3.93407 4794.07 4673.52 6.24537E+02 6.40647E+02 0.0360 0.0370
3.68200 0.11627 3.82086 4218.21 4112.92 8.16217E+00 8.37111E+00 2.7870 2.8360
3.88800 0.00006 3.61534 3313.42 3232.01 2.10528E+04 2.15831E+04 0.0010 0.0010
4.05100 0.01897 3.45234 2711.28 2645.88 7.78203E+01 7.97437E+01 0.2920 0.2980
4.08800 0.37148 3.41515 2586.91 2524.78 4.16561E+00 4.26810E+00 5.4610 5.5620
4.12800 0.20740 3.37510 2458.04 2399.32 7.85229E+00 8.04448E+00 2.8970 2.9510
4.16900 0.00354 3.33446 2332.50 2277.04 4.84389E+02 4.96188E+02 0.0470 0.0480
4.22200 0.00034 3.28135 2176.15 2124.70 5.47159E+03 5.60410E+03 0.0040 0.0040
4.30800 0.00556 3.19476 1939.11 1893.63 3.71131E+02 3.80044E+02 0.0610 0.0620
4.31100 0.00722 3.19210 1932.17 1886.87 2.87049E+02 2.93941E+02 0.0790 0.0810
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100Sr

Ex(MeV) NME Qβ− (MeV) F
(GM)
β− [97] F

(TW )
β− PHL(GM) [97] PHL(TW ) I

(GM)
(β−) [97] I

(TW )
(β−)

4.40800 0.00101 3.09502 1691.86 1652.46 2.33941E+03 2.39520E+03 0.010 0.010
4.43400 0.00003 3.06860 1630.72 1592.78 8.24004E+04 8.43631E+04 0.000 0.000
4.53600 0.00007 2.96655 1410.81 1378.03 4.15176E+04 4.25053E+04 0.001 0.001
4.56000 0.00318 2.94261 1362.77 1331.13 9.23619E+02 9.45568E+02 0.025 0.025
4.62800 0.00284 2.87494 1233.96 1205.44 1.14035E+03 1.16733E+03 0.020 0.020
4.63100 0.03599 2.87213 1228.83 1200.43 9.05090E+01 9.26499E+01 0.251 0.256
4.68800 0.00938 2.81463 1127.45 1101.55 3.78490E+02 3.87390E+02 0.060 0.061
4.70300 0.01517 2.79959 1102.05 1076.78 2.39492E+02 2.45112E+02 0.095 0.097
4.78400 0.00317 2.71946 974.255 952.119 1.29597E+03 1.32610E+03 0.018 0.018
4.86000 0.33212 2.64278 863.180 843.718 1.39636E+01 1.42857E+01 1.629 1.662
4.87900 0.15890 2.62366 837.107 818.264 3.00956E+01 3.07887E+01 0.756 0.771
4.98800 0.04141 2.51538 700.916 685.342 1.37918E+02 1.41052E+02 0.165 0.168
4.99400 0.00028 2.50876 693.199 677.809 2.02785E+04 2.07390E+04 0.001 0.001
5.02400 0.00000 2.47918 659.521 644.946 2.18678E+06 2.23620E+06 0.000 0.000
5.02400 0.00000 2.47907 659.398 644.827 3.04674E+06 3.11559E+06 0.000 0.000
5.07300 0.00072 2.42998 606.361 593.032 9.17207E+03 9.37823E+03 0.002 0.003
5.07800 0.06105 2.41548 601.620 588.399 1.08997E+02 1.11446E+02 0.209 0.213
5.08800 0.00814 2.41543 591.359 578.371 8.31303E+02 8.49970E+02 0.027 0.028
5.14500 0.00755 2.35801 534.741 523.045 9.90972E+02 1.01313E+03 0.023 0.023
5.18900 0.00337 2.31408 494.418 483.653 2.40044E+03 2.45387E+03 0.009 0.010
5.22000 0.02056 2.28304 467.396 457.267 4.16606E+02 4.25834E+02 0.055 0.056
5.24100 0.01309 2.26217 449.896 440.172 6.79596E+02 6.94608E+02 0.033 0.034
5.31000 0.00883 2.19284 395.410 386.919 1.14639E+03 1.17155E+03 0.020 0.020
5.32100 0.00091 2.18167 387.143 378.840 1.14066E+04 1.16566E+04 0.002 0.002
5.33200 0.00363 2.17111 379.456 371.325 2.90418E+03 2.96777E+03 0.008 0.008
5.38200 0.19989 2.12061 344.315 336.988 5.81626E+01 5.94271E+01 0.391 0.399
5.42200 0.29697 2.08095 318.556 311.801 4.23152E+01 4.32320E+01 0.538 0.549
5.43600 0.00100 2.06672 309.690 303.131 1.28840E+04 1.31628E+04 0.002 0.002
5.44100 0.01497 2.06191 306.737 300.243 8.71971E+02 8.90832E+02 0.026 0.027
5.47800 0.02798 2.02462 284.592 278.578 5.02652E+02 5.13504E+02 0.045 0.046
5.51600 0.00603 1.98731 263.713 258.144 2.51817E+03 2.57250E+03 0.009 0.009
5.58100 0.00030 1.92248 230.309 225.470 5.86286E+04 5.98869E+04 0.000 0.000
5.58200 0.00028 1.92101 229.593 224.770 6.27505E+04 6.40971E+04 0.000 0.000
5.68100 0.00107 1.82168 185.048 181.209 2.02077E+04 2.06358E+04 0.001 0.001
5.68800 0.00137 1.81513 182.369 178.592 1.60203E+04 1.63591E+04 0.001 0.001
5.77800 0.00050 1.72493 148.469 145.430 5.40763E+04 5.52065E+04 0.000 0.000
5.83100 0.34429 1.67201 131.012 128.381 8.87476E+01 9.05664E+01 0.256 0.262
6.01400 0.87770 1.48870 82.5496 80.9479 5.52508E+01 5.63440E+01 0.412 0.421
6.03600 0.00558 1.46719 77.9438 76.4297 9.19758E+03 9.37979E+03 0.002 0.003
6.08500 0.00058 1.41812 68.1847 66.8508 1.01248E+05 1.03268E+05 0.000 0.000
6.21900 0.65507 1.28368 46.2444 45.3545 1.32146E+02 1.34739E+02 0.172 0.176
6.31900 0.15270 1.18405 33.8740 33.2233 7.73910E+02 6.90755E+06 0.029 0.030
6.33400 0.00002 1.16928 32.2838 31.6656 6.77527E+06 6.90755E+06 0.000 0.000
6.42900 0.01233 1.07429 23.3854 22.9594 1.38889E+04 1.41466E+04 0.002 0.002
6.51300 0.01217 0.98992 17.1872 16.8828 1.91431E+04 1.94883E+04 0.001 0.001
6.51600 0.00006 0.98675 16.9821 16.6819 3.95940E+06 4.03065E+06 0.000 0.000
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100Sr

Ex(MeV) NME Qβ− (MeV) F
(GM)
β− [97] F

(TW )
β− PHL(GM) [97] PHL(TW ) I

(GM)
(β−)

[97]

I
(TW )
(β−)

6.57300 0.00003 0.93005 13.6192 13.3789 9.25172E+06 9.41784E+06 0.000 0.000
6.58400 0.00331 0.91930 13.0440 12.8128 9.25986E+04 9.42691E+04 0.000 0.000
6.70900 0.00618 0.79391 7.61027 7.47817 8.50784E+04 8.65813E+04 0.000 0.000
6.72200 0.11568 0.78109 7.17285 7.04917 4.82458E+03 4.90923E+03 0.005 0.005
6.77000 0.01393 0.73306 5.70097 5.60592 5.04157E+04 5.12705E+04 0.000 0.000
6.89500 0.03451 0.60845 2.93440 2.88738 3.95262E+04 4.01699E+04 0.001 0.001
7.08500 0.00065 0.41782 0.80160 0.78904 7.62566E+06 7.74711E+06 0.000 0.000
7.10800 0.28661 0.39513 0.66388 0.65345 2.10383E+04 2.13742E+04 0.000 0.001
7.25000 0.05443 0.25270 0.15179 0.14949 4.84551E+05 4.92007E+05 0.000 0.000
7.30300 0.00180 0.19970 7.12037E-02 7.01109E-02 3.12973E+07 3.17851E+07 0.000 0.000
7.34900 0.20453 0.15433 3.14666E-02 3.09831E-03 6.21998E+05 6.31705E+05 0.000 0.000
7.43700 0.00053 6.55474E-02 2.22245E-03 2.19039E-03 3.40802E+09 3.45789E+09 0.000 0.000
7.50100 0.00000 2.44828E-03 1.11208E-07 1.39749E-07 1.78361E+18 1.41935E+18 0.000 0.000
152Nd
0.00700 0.00023 1.10500 64.4753 63.0324 2.69504E+05 2.75673E+05 3.206 3.201
0.04300 0.00018 1.06233 57.1811 55.9198 3.98034E+05 4.07012E+05 2.170 2.168
0.04800 0.00034 1.05678 56.0922 54.8558 2.12257E+05 2.17040E+05 4.070 4.066
0.08500 0.00021 1.01958 49.1965 48.1182 3.85716E+05 3.94359E+05 2.240 2.238
0.16100 0.00075 0.94396 37.1767 36.3803 1.42898E+05 1.46027E+05 6.046 6.043
0.16100 0.00142 0.94376 37.1486 36.3528 7.57971E+04 7.74564E+04 11.39 11.39
0.17200 0.00001 0.93269 35.5966 34.8310 9.15658E+06 9.35783E+06 0.094 0.094
0.17500 0.00053 0.93033 35.2726 34.5135 2.13186E+05 2.17876E+05 4.052 4.050
0.19900 0.00037 0.90628 32.0940 31.3982 3.39245E+05 3.46763E+05 2.547 2.545
0.22900 0.00042 0.87600 28.4051 27.7849 3.34891E+05 3.42366E+05 2.580 2.578
0.27400 0.00278 0.83105 23.5294 23.0191 6.12332E+04 6.25907E+04 14.10 14.09
0.32400 0.00006 0.78073 18.8524 18.4532 3.53330E+06 3.60975E+06 0.245 0.244
0.32500 0.00058 0.77950 18.7474 18.3506 3.70394E+05 3.78405E+05 2.332 2.332
0.33100 0.00025 0.77444 18.3211 17.9336 8.65513E+05 8.84212E+05 0.998 0.998
0.33300 0.00003 0.77208 18.1243 17.7411 7.84943E+06 8.01899E+06 0.110 0.110
0.33400 0.00036 0.77115 18.0476 17.6660 6.17153E+05 6.30484E+05 1.400 1.400
0.33500 0.00000 0.77037 17.9829 17.6027 8.69619E+08 8.88405E+08 0.001 0.001
0.34200 0.00008 0.76308 17.3901 17.0228 2.78870E+06 2.84887E+06 0.310 0.310
0.35000 0.00121 0.75540 16.7806 16.4280 1.97513E+05 2.01752E+05 4.374 4.374
0.36800 0.00002 0.73716 15.3978 15.0799 1.05188E+07 1.07405E+07 0.082 0.082
0.37400 0.00000 0.73059 14.9209 14.6152 1.47159E+08 1.50237E+08 0.006 0.006
0.39700 0.00000 0.70821 13.3799 13.1094 2.66595E+08 2.72097E+08 0.003 0.003
0.40200 0.00000 0.70320 13.0521 12.7882 3.55337E+09 3.62670E+09 0.000 0.000
0.45200 0.00003 0.65259 10.0639 9.85865 1.33142E+07 1.35914E+07 0.065 0.065
0.47600 0.00005 0.62948 8.88352 8.70489 9.68863E+06 9.88744E+06 0.089 0.089
0.48800 0.00349 0.61732 8.30575 8.13928 1.38175E+05 1.41001E+05 6.252 6.259
0.51100 0.00796 0.59432 7.29006 7.14343 6.90199E+04 7.04367E+04 12.51 12.53
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152Nd

Ex(MeV) NME Qβ− (MeV) F
(GM)
β− [97] F

(TW )
β− PHL(GM) [97] PHL(TW ) I

(GM)
(β−) [97] I

(TW )
(β−)

0.54600 0.00061 0.55945 5.92805 5.80563 1.10052E+06 1.12373E+06 0.785 0.785
0.55500 0.00137 0.54988 5.58944 5.47456 5.23679E+05 5.34669E+05 1.650 1.651
0.60100 0.00004 0.50426 4.16753 4.08228 2.47689E+07 2.52862E+07 0.035 0.035
0.60200 0.00299 0.50322 4.13846 4.05387 3.23348E+05 3.30095E+05 2.672 2.673
0.64600 0.00150 0.45851 3.02789 2.97763 8.84107E+05 9.02058E+05 0.977 0.978
0.65000 0.00629 0.45524 2.95622 2.89755 2.15336E+05 2.19696E+05 4.012 4.017
0.69600 0.00589 0.40853 2.06216 2.02139 3.29366E+05 3.36009E+05 2.623 2.626
0.72000 0.00739 0.38524 1.69907 1.66403 3.18926E+05 3.25589E+05 2.709 2.710
0.74100 0.00000 0.36417 1.41219 1.38322 1.21197E+09 1.23735E+09 0.001 0.001
0.74700 0.00029 0.35817 1.33734 1.31027 1.02657E+07 1.04794E+07 0.084 0.084
0.76400 0.00047 0.34126 1.14121 1.11921 7.42169E+06 7.57038E+06 0.116 0.117
0.78500 0.00071 0.31972 0.92353 0.90484 6.12158E+06 6.24805E+06 0.141 0.141
0.80600 0.00082 0.29870 0.74084 0.72553 6.59923E+06 6.73842E+06 0.131 0.131
0.81200 0.00282 0.29257 0.69283 0.67836 2.04836E+06 2.09207E+06 0.422 0.422
0.82100 0.00469 0.28442 0.63250 0.61922 1.34848E+06 1.37739E+06 0.641 0.641
0.85100 0.01661 0.25449 0.44274 0.43351 5.44359E+05 5.55942E+05 1.587 1.587
0.91700 0.00059 0.18846 0.17078 0.16689 3.99157E+07 4.08462E+07 0.022 0.022
0.92400 0.00261 0.18069 0.14965 0.14621 1.02513E+07 1.04925E+07 0.084 0.084
0.96800 0.00007 0.13735 6.3563E-02 6.1968E-02 9.47034E+08 9.71424E+08 0.001 0.001
0.96800 0.00093 0.13673 6.2679E-02 6.1101E-02 6.89166E+07 7.06975E+07 0.013 0.012
1.00300 0.00039 1.0210E-01 2.5429E-02 2.4708E-02 4.00310E+08 4.11999E+08 0.002 0.002
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5.4 β-Decay Half-life Calculation

Results for β-decay half-lives based on a new recipe for calculation of phase space factors re-

cently introduced in previous section and [115] will be presented in this section. This section

includes half-life results for fp-shell and heavier nuclei of experimental and astrophysical

interests. The investigation of the kinematics of some β-decay half-lives was presented, and

new phase space factor values were compared with those obtained with previous theoretical

approximations.

The β-decay half-lives in agreement with experimental results was a challenging problem

for nuclear theorists [41, 54, 85, 87, 116]. Theoretically, the half-life formulas for β-decay

can be expressed as a product of nuclear matrix elements (NMEs), involving the nuclear

structure of the decaying parent and of the daughter nuclei, and the phase space factors

(PSFs) which taken into account the distortion of the electron wave function by the nuclear

Coulomb field. Hence, for a precise calculation of the β-decay half-lives, an accurate compu-

tation of both these quantities was needed. The largest uncertainties come from the NME

computation. In literature one can find different calculations of the NMEs for β-decays, re-

alized for different types of transitions and final states, and with different theoretical models

(e.g. based on gross theory [81], QRPA approaches [44,54,79,82–87] and shell model [88]).

Comparing present results with previous similar calculations employing approximate elec-

tron wave functions, several notable differences was noticed, especially for heavier nuclei

52 ≤ A ≤ 205 [115]. The new calculation can easily be extended to any arbitrarily heavy

nuclei. To include β-decay reactions, new PSF calculations (of positron decay and EC reac-

tions) were extended here. In order to complete the calculation of β-decay half-lives, the set

of NMEs was calculated using the proton-neutron quasi-particle random phase approxima-

tion model in deformed basis. A schematic separable potential both in particle-particle and

particle-hole channels was considered. Other nuclear models and a set of improved input

parameters may result in a better calculation of NMEs. Both Gamow-Teller and Fermi

transitions to ground and excited states was calculated, for medium and heavy nuclei of

108



Chapter 5 Calculated Half-Life

interest.

5.4.1 Parameters used for Calculation

β-decay half-lives could calculate as a sum over all transition probabilities to the daughter

nucleus states through excitation energies lying within the Qβ value

T1/2 = (
∑

0≤Ef≤Qβ

1/tf )
−1, (5.25)

where the partial half-lives (PHL), tf , can be calculated using

tf =
C

(gA/gv)2FA(Z,A,E)BGT (Ef ) + FV (Z,A,E)BF (Ef )
. (5.26)

In Eq. (5.26) value of C was taken as 6143 s [51], gA, gv were axial-vector and vector

coupling constants of the weak interaction, respectively, having gA/gv= -1.2694 [52], while

Ef was the final state energy. E = Qβ − Ef where Qβ was the window accessible to either

β+-, β−- or EC decay. FA/V were the PSFs. BGT and BF the reduced transition probabilities

for Gamow-Teller and Fermi transitions, respectively, and expressed as

BF (Ef ) =
1

2Ii + 1
|< f ∥ MF ∥ i >|2, (5.27)

BGT (Ef ) =
1

2Ii + 1
|< f ∥ MGT ∥ i >|2 (5.28)

In Eq. (5.27) and Eq. (5.28), Ii denotes the spin of the parent state, MF and MGT

for the Fermi and Gamow-Teller transition operators, respectively. Detailed calculation

of the NMEs within the proton-neutron quasi-particle random phase approximation (pn-

QRPA) formalism may be found in Refs. [41, 54]. In this section the NMEs calculation

performed using the pn-QRPA model. The Nilsson model [66] was used to calculate single

particle energies and wave functions which taken into account the nuclear deformation.
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Pairing correlations were tackled using the BCS approach. The proton-neutron residual

interaction was considered in two channels, namely the particle-particle and the particle-

hole interactions. Separable forms were chosen for these interactions and were characterized

by interaction constants χ for particle-particle and κ for particle-hole interactions. Here, the

same range for χ and κ was used and discussed in [41, 54]. Deformation parameter values

β2 for all cases were taken from Ref. [117]. For pairing gaps a global approach ∆n = ∆p =

12/
√
A [MeV] was employed. A large model space up to 7~ω was incorporated in pn-QRPA

to perform half-lives calculations for heavy nuclei considered in present work.

5.4.2 Comparison between Measured and Calculated Half-lives

Half-lives were computed using Eq. (5.25) and Eq. (5.26). The NMEs were calculated using

Eq. (5.27) (for Fermi transitions) and Eq. (5.28) (for GT transitions) within the pn-QRPA

formalism. For the PSFs calculation two different recipes were used in present section. One

was newly calculation recipe [115] and the other one was the conventional computation using

the prescription of Gove and Martin (GM) [97]. It stated again that the same set of NMEs

were used in both types of half-life calculations.

Table 5.11 presents a comparison between the measured and calculated half-lives for

β+/EC-decay of twenty medium and heavy nuclei of interest. Entries in third column were

calculated using the pn-QRPA method for the NMEs, while the PSFs were calculated with

the method from Ref. [97] and denoted by (GM). The fourth column shows the calculated

half-lives using new recipe of PSF [115] and labeled (TW ) (this work). Most of the nuclei

shown in this table were the same as those presented in previous section and [115]. All

half-lives was given in units of seconds. Q-values for the reaction were taken from [107].

It can seen from Table 5.11 that the newly calculated half-lives were systematically larger

than those computed using the PSFs of (GM) [97]. The last column displays the percentage

deviation (PD) of the two calculated half-lives. The PD between the two computed half-lives

was calculated using the formula
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Table 5.11: Comparison of measured, calculated half-lives and percentage deviation (PD) for positron decay
of selected nuclei.

Nucleus T
(EXP )
1/2 (s) [107] T

(GM)
1/2 (s) [97] T

(TW )
1/2 (s) PD (%)

52Fe 2.98E+04 1.29E+04 1.30E+04 0.77
56Ni 5.25E+05 4.26E+05 4.44E+05 4.05
62Zn 3.31E+04 9.80E+03 1.01E+04 2.97
76Br 5.83E+04 1.62E+04 1.66E+04 2.41
81Rb 1.65E+04 5.00E+03 5.12E+03 2.34
88Y 9.21E+06 1.25E+07 1.27E+07 1.57
90Nb 5.26E+04 4.25E+04 4.32E+04 1.62
102Cd 3.30E+02 2.35E+02 2.42E+02 2.89
105Ag 3.57E+06 2.45E+04 2.52E+04 2.78
107Sb 4.00E+00 3.92E+00 4.04E+00 2.97
113Sb 4.00E+02 2.42E+02 2.47E+02 2.02
113Te 1.02E+02 9.55E+01 9.77E+01 2.25
115I 3.48E+02 9.98E+01 1.02E+02 2.16
116I 2.91E+00 9.49E-01 9.73E-01 2.47

116Xe 5.90E+01 2.01E+01 2.05E+01 1.95
120Ba 2.40E+01 1.73E+01 1.76E+01 1.70
120Xe 2.76E+03 1.58E+03 1.61E+03 1.86
126Cs 9.84E+01 5.35E+02 5.42E+02 1.29
182Re 2.30E+05 3.67E+05 3.80E+05 3.42
205Bi 1.32E+06 1.47E+06 1.52E+06 3.46

PD =
T

(TW )
1/2 − T

(GM)
1/2

T
(TW )
1/2

× 100(%) (5.29)

Table 5.11 shows that the PD increases to a maximum value of 4.05 % for the 56Ni

nucleus. In Table 5.11 the biggest PD for β+/EC-decay half-lives were recorded for the

nucleus 56Ni whereas the smallest difference was noted for 52Fe.

Table 5.12 shows the comparison of measured and calculated half-lives for β−-decay cases.

The Q-values were taken from [107].
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Table 5.12: Same as Table. 5.6 but for β−-decaying nuclei.

Nucleus TEXP
1/2 (s) [107] T

(GM)
1/2 (s) [97] T

(TW )
1/2 (s) PD (%)

98Sr 6.53E-01 4.45E-01 4.57E-01 2.63
100Sr 2.02E-01 2.28E-01 2.37E-01 3.82
100Zr 7.10E+00 8.04E+00 8.25E+00 2.55
102Zr 2.90E+00 8.45E+00 8.73E+00 3.21
102Mo 6.78E+02 1.90E+02 1.94E+02 2.06
104Mo 6.00E+00 5.93E+00 6.08E+00 2.47
106Mo 8.73E+00 6.35E+00 6.53E+00 2.76
108Ru 2.73E+02 5.61E+02 5.74E+02 2.26
110Ru 1.20E+01 6.27E+01 6.46E+01 2.94
112Ru 1.75E+00 6.27E+00 6.47E+00 3.09
112Pd 7.57E+04 3.89E+04 4.00E+04 2.75
114Pd 1.45E+02 1.00E+02 1.03E+02 2.91
116Pd 1.18E+01 4.53E+01 4.67E+01 3.00
138Xe 8.44E+02 4.69E+02 4.84E+02 3.10
140Xe 1.36E+01 1.36E+00 1.40E+00 2.86
142Ba 6.36E+02 7.97E+02 8.19E+02 2.69
144Ba 1.15E+01 2.44E+01 2.51E+01 2.79
146Ce 8.11E+02 4.74E+01 4.85E+01 2.27
148Ce 5.60E+01 7.93E+01 8.13E+01 2.46
152Nd 6.84E+02 8.64E+03 8.82E+03 2.04
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The difference between the two calculated half-lives as well as their mutual comparison

with the experimental data, was done intuitively in a graphical way in Fig. 5.5 for few

selected β+ decay cases. We display the ratio between the experimental half-lives and the

theoretical ones, R = T
(exp)
1/2 /T

(X)
1/2 , where (X) stands for the calculation recipe, (GM) or

(TW ). With solid lines the ratios calculated with (TW ) recipe were represented, while with

dotted lines the conventional (GM) computations were displayed. We note that systemat-

ically our half-lives were larger that the GM , improving the agreement with the measured

data for most of the cases. From Fig. 5.5 it can be remarked that the (TW ) ratios were in

general closer to the value 1 than the (GM) ones. This effect was highlighted in Fig. 5.5 by

the link between the dotted line and the solid line. In Fig. 5.6, the ratios corresponding to

β− decays were displayed in the same manner as in Fig. 5.5. It was noted that no appreciable

improvement brought in calculation of β− decay half-lives except for a few cases in which

the experimental data were undervalued by calculations, as also evident from Table 5.12.

Overall, we note a good agreement of the new theoretical half-lives with the experimental

ones. It was again remarked that this comparison could have improved further with a more

reliable set of NMEs or choice of better model parameters for the calculation of NMEs (not

the subject of current paper).

The differences between the (GM) and the present results can be explained by the use

of a more rigorous approach in our case for the free states in the PSF computation, but also

were due to the differences between our potential and the one used by (GM). Regarding only

the free states, in the (GM) method the screening correction was introduced empirically,

by modifying the solutions of the Dirac equation with a function evaluated at the nuclear

surface. This function depends on the difference between the effective potential and the

point like nucleus Coulomb interaction. On the other hand, in our calculation the screening

was introduced by considering an effective Coulomb potential. The Dirac equation was

solved numerically for this effective Coulomb potential up to large values of r, where the

wave functions were well approximated by its asymptotic form. Later, the wave functions
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were normalized by comparing their value with the asymptotic forms. This normalization

determines the value of each wave function on the surface of the nucleus. Further, in

the (GM) calculation, the nuclear finite size of the nucleus was simulated by additional

corrections to the Fermi functions, while in our calculation, the effective Coulomb field was

built up from the proton density of the nucleus, as also mentioned before. Regarding the

bound states, the (GM) method uses tabulated values of the energies and of the radial

densities that were obtained by solving the Dirac equation within a more sophisticated

self-consistent Coulomb potential.

Figure 5.5: Ratios R between experimental [107] and calculated half-lives undergoing β+ decay for selected
cases. Full lines: theoretical half-lives calculated within the (TW ) recipe. Dotted lines: theoretical half-lives
calculated with the (GM) recipe of Ref. [97].

5.5 Summary

In present work a new code for computing PSF values for positron decays and EC pro-

cesses was constructed. In this approach positron free and electron bound w.f. by solving
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Figure 5.6: Same as Fig. 5.5 but for selected β− decay cases.

a Dirac equation with a Coulomb-type potential were obtained from a realistic distribution

of protons in the daughter nuclei. The FNS and screening effects were addressed as well

by new recipe. Using the same Q-values, comparison of present work results with previ-

ous calculations where electron/positron w.f. were obtained in an approximate way. For

positron decays the agreement with older results was quite good, while for EC processes

the differences between ”new” and ”old” PSF values was as big as 35%. Further it was

realized that the screening effect was important for EC processes, specially for light nuclei,

having an impact up to 10-15% on the calculated PSF values. Finally, using new method,

re-computed the PSF for all nuclei using up-dated Q-values.

The aim of present work was to investigate the effect of the incorporation of new PSF

values, computed with a more precise and rigorous method, on the theoretical half-lives

for β± and EC decays of unstable nuclei. The newly calculated β-decay half-lives were

systematically larger than those given in the previous calculations. The mean percentage
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deviation was larger for the β− decay (2.73%) as compared to the β+/EC decay rates

(2.35%). For the adopted set of NMEs, in general the half-lives computed with newly PSFs

were closer to the measured ones than the half-lives calculated with PSFs with approximate

method (i.e., using approximate electron wave functions) [97] for free states. Although

the largest uncertainty in the computation of β-decay half-lives comes from the NMEs,

introduction of the newly PSF values may improve the comparison with experiment and

should be taken into account for accurate predictions.

5.6 Gamow-Teller Strength Distributions and Stellar Rates for

76Ge, 82Se

Important information about the Gamow-Teller (GT) strength and associated weak rates

about some important medium heavy nuclei 76Ge, 82Se in stellar environment will be dis-

cussed in present section. The GT strength response in astrophysical environment has

crucial importance for many nuclides. The lepton fraction is one important factor respon-

sible for late evolution phases in stellar core and beginning of the stellar core collapsing of

massive stars towards Type-I and Type-II supernovae [118–120]. The weak interaction rate

controls the said lepton fraction, while key contribution in the weak interaction rates is due

to GT strength distribution. Modern research present improvements in the field of nuclear

structure, transforming the GT strength distribution role. One of these developments state

if iron core exceeds the limit of Chandrasekhar mass then relativistic degenerate pressure

of the electron gas cannot repel against the gravitational force. In return stellar core be-

gins collapsing leading to the start of Type-II supernovae. The SNe Ia were considered

as outbursts of white dwarfs which accrete matter from the binary associates/allies. In

white dwarfs very high Fermi energy of degenerate electron gas, lessens the electron frac-

tion considerably, and in turn it controls the ejection of isotopic identities in result of these

bursts. Strengths of Gamow-Teller transitions have crucial implications in such scenario’s,
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for example nucleosynthesis in O-Ne-Mg white dwarfs [121,122]. The results which will dis-

cussed in this section would concerned on the GT strength for beta decay of medium mass

nuclei and its dynamics on supernovae core collapse. Such weak interaction stellar rates

needs the calculations about GT and Fermi transition strength distribution. Only allowed

GT transitions were taken into account for the above mentioned cases. The calculated GT

strength distribution, stellar weak rates employing deformed pn-QRPA formalism will be

presented in the succeeding section compared with shell model and experimentally extracted

GT strengths.

5.6.1 Parameters used for the Calculation of Gamow-Teller Strength and

Stellar Rates

This section briefs the description about the parameters and model framework employed

for this work calculation in comparison with those done by Ha and Cheoun [123]. Present

work calculations were based on deformed pn-QRPA model which differ in two ways from

deformed pn-QRPA calculations performed by Ha and Cheoun [123]. A deformed Nils-

son single particle basis was considered in present work whereas Ha and Cheoun uses a

deformed, axially symmetric Woods-Saxon potential. The interaction choice was the next

main difference. Ha and Cheoun took the Brueckner G-matrix based on the CD Bonn

potential while this work considered a schematic separable interaction [41, 49, 54, 68]. The

main edge of employing the separable GT forces was that QRPA matrix equation reduces

to an algebraic equation of 4th order, that was much easier to solve in comparison with full

diagonalization of the non-Hermitian matrix of large dimensionality. Solution of algebraic

equation saves order of magnitude in CPU time and allows a microscopic calculation of GT

strength off parent excited states. The model used in present calculations, proton-neutron

(p-n) residual interactions occur as particle-hole (p.h) (characterized by interaction constant

χ) and (p.p) (characterized by interaction constant κ) interactions. The (p.p) interaction

was commonly neglected in previous β−-decay calculations [41, 42, 46, 47]. However it was
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later found to be important, specially for the calculation of β+-decay [41, 48, 54, 92]. The

incorporation of particle-particle force leads to a redistribution of the calculated β strength,

which was commonly shifted toward lower excitation energies [54]. Other variations of the

deformed pn-QRPA formalism also exists in literature. One such example includes residual

spin-isospin forces in the particle-hole and particle-particle channels based on a deformed

Hartree-Fock calculation with density-dependent Skyrme forces [124].

In order to reproduce the GT strength the interaction strength parameters value for χ

and κ were adjusted as 0.01 MeV for χ and 0.0955 MeV for κ in this calculation. A detailed

description of the formalism can be found in [49]. The deformation parameter (β) value was

adopted experimentally for 76Ge (0.26) and 82Se (0.19), extracted by relating the measured

energy of the first 2+ excited state with the quadrupole deformation, was taken from [125].

Q-values were taken from the mass compilation of [107]. Further the results of pn-QRPA

calculated GT strength was multiplied by a quenching factor of f 2
q = (0.55)2 [126] in order

to compare them with experimental data and prior calculations, and to later use them in

for the calculation of astrophysical reaction rates. The total capture/β−-decay rate per unit

time per nucleus was finally given by

λbd(pc) =
∑
ij

Piλ
bd(pc)
ij . (5.30)

GT transitions properties of two even-even (76Ge and 82Se) nuclei playing vital role in

r-process, Germanium (76Ge) and Selenium (82Se) will be discussed in this section. GT

transitions on these particular isotopes have a special mention as per simulation results of

presupernova evolution of heavy mass stars. Weak interactions in presupernova stars were

known to be dominated by allowed Fermi (vector-type) and GT (axial-vector-type) transi-

tions. The calculation of weak interaction rates was very sensitive to the distribution of the

GT± strength function. In the GT+ strength a proton was changed into a neutron whereas

the GT− strength was responsible for transforming a neutron into a proton. The electron-to
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baryon ratio Ye reduces due to the electron capture process and as a result, the nuclear

configuration was moved to more neutron-rich and heavier nuclei [118]. The first-ever ex-

tensive calculation of stellar weak rates was carried by employing the Independent Particle

Model for iron group nuclei [119, 120]. During the supernova and presupernova phases of a

massive star, a reasonable probability of occupation of parent excited states (because of the

prevailing high temperatures and densities) and the total weak interaction rates have a finite

contribution from these excited states. Brink-Axel hypothesis [127] was adopted by former

calculations of stellar weak-interaction rates (e.g. [119, 128]) to approximate the contribu-

tion of partial rates from high-lying excited states. By using this hypothesis it was assumed

that the excited state GT strength distributions were same as the calculated ground-state

distribution. However, there was mounting evidence that the Brink-Axel hypothesis was a

poor approximation to GT strength functions off excited parent states. Nabi and collabo-

rators ( [122, 129–135]) calculated GT strength distributions off parent excited states in a

microscopic fashion for hundreds of nuclei of astrophysical importance and found out that

Brink-Axel hypothesis was a poor approximation for GT of excited states. [136, 137] also

advocated for the failure of Brink-Axel hypothesis in GT transitions. Thus, whenever it

was computationally feasible, one should avoid use of the GT Brink-Axel hypothesis. The

proton neutron quasiparticle random phase approximation (pn-QRPA) theory was an effi-

cient and convenient way to generate the GT transitions [138, 139]. There were two main

advantages of using the pn-QRPA theory. The first big advantage was that the pn-QRPA

model gets rid of the poor Brink’s hypothesis and calculates ground as well as excited state

GT strength distributions in a microscopic fashion. Secondly the model can carry reliable

calculation of stellar weak rates for any arbitrary heavy system of nucleons (as calculations

were performed in a model space of up to seven major oscillator shells).

This section explains the performance in ground and excited states GT calculation for two

nuclei having energetically allowed ββ-channels available. Only few nuclei in nature undergo

allowed ββ-decay which was a two-step second-order weak process. The intermediate β-
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decay state was energetically inaccessible and passed through as a virtual intermediate

state. Earlier Madey and collaborators [140] studied the excitation-energy distributions of

transition strength to 1+ states excited via the (p, n) reaction at 134.4 MeV on targets of 76Ge

and 82Se (along with two heavy isotopes of Te) for excitation energies up to 25 MeV. A better

understanding of the low-lying part of the GT strength distribution (theoretical as well as

experimental) of 76Ge and 82Se was in order to improve the predictions of ββ-decay rates.

Recently Ha and Cheoun [123] employed a deformed pn-QRPA model to calculate ground-

state GT strength distributions of these nuclei. However there was a need to also calculate

excited state GT strength distributions and associated stellar weak rates for these nuclei.

It was decided to chose a deformed pn-QRPA model with schematic separable interaction

to calculate ground and excited-states GT− transitions, β-decay & positron capture rates,

energy rates of emitted neutrons from daughter nuclei and probabilities of β-delayed neutron

emissions for 76Ge and 82Se. All weak interaction rate calculations were performed in stellar

environment.

Farther away from line of stability, with decreasing neutron separation energy, β-delayed

neutron emission occurs as a competitive decay mode to the common γ de-excitation. Thus,

β-delayed neutron emission may strongly affect the prediction of mean γ energies. Infor-

mation on probabilities of β-delayed neutron emission (Pn) was even more scarce than that

for mean energies. Pn values were also of interest in astrophysics since they influence the

final abundance of heavy elements synthesized in the r-process. Despite their importance,

β-delayed neutron emission was often treated in rather crude approximations. A reliable

prediction of Pn values requires particularly accurate information about the shape of the β

strength function, thus underlining the necessity of microscopic calculations [141].

The cumulative GT− strength for ground state of 76Ge was shown in Fig. 5.7. Here

the abscissa represents daughter excitation energy in units of MeV. The GT− strength

has been calculated in the energy interval 0 – 12 MeV. The GT strength calculation by

Ha & Cheoun [123] has also been shown in Fig. 5.7. Excitation-energy distributions of
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Figure 5.7: Present calculated cumulative B(GT−) distribution for the ground state of 76Ge compared with
experimental data [140] and the Ha and Cheoun [123] calculation.

transition strength to 1+ states at 134.4 MeV on various targets (including 76Ge and 82Se)

were measured for excitation energies up to 25 MeV via the (p, n) reaction by Madey and

collaborators [140]. The measured data was also shown in Fig. 5.7 for comparison with

present and former calculations. It was clear from Fig. 5.7 that the two calculations were in

decent agreement with the measured total strength. Table 5.13 shows that the pn-QRPA

model places the GT centroid at 8.66 MeV energy in daughter which was in good agreement

with the measured centroid energy placed at 9.10 MeV. The Ha & Cheoun calculation leads

to a much higher centroid. The pn-QRPA calculated total GT− strength of 16.30 was also in

better comparison with measured strength value of 19.89. Ha & Cheoun calculated strength

was also higher. It could be noted that the Ha & Cheoun calculation did not employ any

quenching factor in their calculation.
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Similarly Fig. 5.8 displays calculated and measured GT− strength for ground state of

82Se. Measured data was taken from the same (p, n) experiment [140]. The experimental

GT− strength was observed between 0 – 12 MeV in daughter. The Ha & Cheoun model

calculates strength in the range 3 – 19 MeV. The pn-QRPA model calculates GT strength

for 82Se between energy range of 0 – 12 MeV as also supported by measurements [140].
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Figure 5.8: Same as Fig. 1 but for 82Se.

Table 5.13 once again shows that present calculated results for GT− strength and centroid

placement agrees well with the measured data. After achieving decent agreement with

experimental data this work has been proceed to calculate weak-interaction mediated rates

for 76Ge and 82Se in stellar environment.
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Table 5.13: Measured and calculated total GT strength and centroid values for 76Ge and 82Se along β-decay
direction. For references see text.

Nucleus Model
∑

B(GT−) Ē− (MeV) Cut off energy(MeV)
EXP 19.89 9.10 11.13

76Ge Ha & Cheoun 2015 24.28 10.20 16.90
This work 16.30 8.66 26.50

EXP 21.91 10.17 12.00
82Se Ha & Cheoun 2015 32.46 11.61 19.19

This work 18.4 9.04 26.60

5.6.2 Results and Disscusion

Fig. 5.9 and Fig. 5.10 depicts (pn-QRPA) calculated (in present project) sum of stellar β-

decay and positron capture rates as a function of stellar temperature at a fixed stellar density

of 109.6 g cm−3 for 76Ge and 82Se, respectively. The ordinate shows weak rates in logarithmic

scale (to base 10) in units of s−1. In these graphs this work calculated rates with contribution

only from parent ground state (shown as (G)) and those with contributions from all 200

parent excited states (shown as (T)) has been demonstrated. The recalculation of weak

rates from the the measured GT distribution [140] and the calculated GT distribution of

Ha & Cheoun [123] has also been done. The later two rates were calculated on the basis of

ground state GT− strength distributions alone. In other words for ”This work(G)”, ”Ha and

Cheoun 2015” and ”EXP” rates shown in the figures, all parent excited state GT strength

functions were taken to be zero (i.e. in Eq. 5.30 summation was performed only on the

parent ground state). It can be seen from Fig. 5.9 that present work rates with only ground

state contribution are in excellent agreement with measured data rates.

This was attributed to the decent comparison of calculated GT distribution (this work)

with the measured GT distribution (see Fig. 5.7). The Ha & Cheoun model calculated rates

were smaller than the rates calculated using the measured data. This was primarily because

of the higher centroid placement in their model. Present work calculated stellar rates, with

contributions from all 200 parent excited states, were enhanced by orders of magnitude as

compared to other three rates because of finite contribution to the total weak rates from
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Figure 5.9: This work calculated β-decay and positron capture rates for 76Ge compared with other calcula-
tions as a function of stellar temperatures for a fixed stellar density ρ = 109.6 g cm−3. For explanation of
legends see text.

excited state GT strength distributions. A more or less similar behavior was witnessed for

the case of 82Se in Fig. 5.10.

After showing dependence of calculated weak rates on stellar temperature, next was their

dependence on stellar density. Fig. 5.11 and Fig. 5.12 show the calculated rates at a fixed

stellar temperature of T9 (K)=10 as the stellar core stiffens from 108.5 – 1011 g cm−3 for

the nuclei 76Ge and 82Se, respectively. Fig. 5.11 shows that the Ha & Cheoun and present

calculated rates (with only ground state contribution) were in excellent agreement with the

experimental rates.

This was because at high densities and temperatures, the electron chemical potential

appreciably exceeds the Q-value, and in this phase, weak rates were largely dictated by

the total GT strength and its centroid energy (the low-lying individual transitions does not
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Figure 5.10: Same as Fig. 5.9 but for 82Se.

matter as much). Table 5.13 shows a decent comparison of calculated and measured data

for 76Ge. Once again calculated rates (this work) with contributions from all parent excited

states were bigger because of finite contribution of excited state GT strength distributions

(missing in the experimental data and other calculations). Fig. 5.12 depicts the density

dependence of calculated rates for the case of 82Se. Here it can be seen that the calculated

rates for 82Se show a similar behavior as for the case of 76Ge. The Ha & Cheoun calculated

rates were smaller compared to the experimental rates. Ha & Cheoun placed the centroid at

roughly 1.5 MeV higher than the centroid placement of the measured data which resulted

in decrement of their calculated rates.

Table 5.14 shows the relative contribution of present calculated stellar positron capture

and β-decay rates to the total calculated rates for the two nuclei. For the case of 76Ge the

calculated β-decay rates were 2 – 4 orders of magnitude bigger than the competing positron
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Figure 5.11: Same as Fig. 5.9 but as a function of stellar density at a fixed temperature of T9(K) = 10.

capture rates at low stellar temperatures (T9(K) ≤ 10). The positron capture rates compete

well with the β-decay rates at T9(K) =10. The positron capture rates were bigger by one

(two) order(s) of magnitude at T9(K) =20 (T9(K) =30). For the case of 82Se once again the

β-decay rates command the total rates at low stellar temperatures. The positron capture

rates were 1–2 orders of magnitude bigger at higher T9 values. At high temperatures(kT >

1 MeV), positrons appear via electron-positron pair creation and their capture rates exceed

the competing β-decay rates.
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Figure 5.12: Same as Fig. 5.11 but for 82Se.

Table 5.14: Ratio of calculated positron capture to β-decay rates as a function of stellar temperature and
density.

Nucleus ρ Ye R(pc/bd)
T9=01 T9=05 T9=10 T9=20 T9=30

8.50 1.28E-03 2.40E-02 1.94E+00 3.90E+01 3.45E+02
76Ge 9.50 2.22E-04 4.78E-02 4.48E+00 1.08E+01 1.47E+02

10.50 2.00E-04 4.19E-02 3.90E-01 8.13E+00 9.25E+01
8.50 7.52E-06 5.95E-03 1.20E-01 9.04E+00 1.79E+02

82Se 9.50 2.40E-07 1.47E-03 3.55E-02 2.77E+00 7.79E+01
10.50 1.82E-07 1.29E-03 3.18E-02 2.19E+00 5.01E+01

127



Chapter 5 Calculated Half-Life

5.7 Summary

Present work calculations showed that at low stellar temperatures (T9(K) ≤ 5), the positron

capture rates on 76Ge and 82Se can easily be neglected in comparison to the competing β-

decay rates. At high stellar temperatures (T9(K) > 10), the positron capture rates command

the total weak rates. The microscopically calculated Pn values, presented in this work, may

influence the final abundance of heavy elements synthesized in the r-process. It was well

known that a smaller lepton fraction disfavors the outward propagation of the post-bounce

shock waves, as more overlying iron core has to be photo-dissociated. The β-decay rates for

medium-heavy nuclei presented in this work, can assist in a more vigorous URCA process

and may lead to cooler presupernova cores consisting of lesser neutron-rich matter than in

presently assumed simulations.
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Summary, Conclusions and Future

Work

6.1 Conclusions and Summary

• The aim of this thesis was to suggest improvements in the theoretical and experimental

regimes about the β-decay half-life calculations. The experimental approach employed in

current investigation produces decent half-life result in comparison with the literature data.

Certain progresses about half-life calculations has been explored with the help of pn-QRPA

theory i.e, reliable calculation of half-life, pairing correlations effect, development of new

code for the calculation of PSFs and then implementing new values of PSFs to check the

effect on the value of calculated half-life in comparison with available literature data as well

as previous results.

• The spectra for half-life of 44Sc obtained by photon activation analysis (PAA) has been

analyzed by MAESTRO and ROOT packages. The photonuclear reaction was produced

using a cLINACs which generate bremsstrahlung photon beam to activate the desired sam-

ple. One novelty of the present work was the comparison of measured results by PAA with

the calculated β-decay half-life using the pn-QRPA model. A decent comparison was ob-
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served between measured, another uniqueness was the successful implementation of medical

cLINACs for research purpose in the field of nuclear physics.

• β+-decay terrestrial half-lives using the pn-QRPA model for neutron deficient fp-shell

nuclei has been investigated. The implications of pairing correlations on the calculation of

terrestrial β decay half-lives for a set of even-even medium mass neutron deficient nuclei

in the range of Z= 24-34 has been investigated with the help of pn-QRPA theory. Two

different empricial formulas for the calculation of pairing gaps were used and the effect of

two pairing gaps on the β-decay half-life were studied. It was concluded that a reasonable

choice of interaction constant parameters in the particle particle and particle hole improved

the beta decay half-life. It was further demonstrated that Emp-1 formula for calculation of

pairing gaps resulted in better prediction of calculated half-life values than by using Emp-2

scheme.

• A new code for computing phase space factor (PSF) values for calculation of beta

decay half-lives was developed in collaboration with Romanian collaborators. In this ap-

proach electron/positron free and bound wave function were constructed by solving a Dirac

equation with a Coulomb-type potential obtained from a realistic distribution of protons in

the daughter nuclei. The impact of newly calculated PSF on computed beta decay half life

was later studied. β± and EC half-lives were calculated using the new recipe and compared

with measured data and previous calculations. It was concluded that the new PSF led

to a better agreement of calculated beta decay half-lives with measured data. The mean

percentage deviation of calculated with experimental half-life at most was found larger for

the β−-decay (2.73%) as compared to the β+/EC decay rates (2.35%).

• The calculation of ground and excited state GT strength distributions for medium-

heavy nuclei, 76Ge and 82Se, using the pn-QRPA model with deformed Nilsson basis states

was performed. These nuclei were selected to study the low-lying part of the GT distribution

and also for calculation of β-decay and positron capture weak interaction rates in stellar

matter. It was concluded that at low stellar temperatures (T9(K) = 5), the positron capture
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rates for 76Ge and 82Se can easily be neglected in comparison to the competing β-decay

rates. At high stellar temperatures (T9(K)> 10), the positron capture rates command the

total weak rates. The microscopically calculated β-delayed neutron emission (Pn) values,

may influence the final abundance of heavy elements synthesized in the r-process. It is well

known that a smaller lepton fraction disfavors the outward propagation of the post-bounce

shock waves, as more overlying iron core has to be photo-dissociated.

6.2 Future Work

In future I plan to study and analyze the following:

The study of effect by various theoretical approaches and experimental methods on the

measured value of nuclear β-decay half-lives such as co-incidence technique along fully dig-

itizing setup for the results analysis will be performed. The investigation circle about the

implications of pairing correlations impact on half-life will be extended to the medium and

heavy masses nuclei. I am interested to check the contribution for β−-decay half-lives by

employing Emp-1 formula for the pairing correlations. The effect and significant improve-

ment by employing newly introduced recipe for phase space factors has been elaborated and

further we hope to investigate the stellar weak rates using the present half-life results.
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