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Abstract. The Alday-Gayotto-Tachikawa (AGT) conjecture relates 4d N “ 2, SUp2q SYM
theories with Nf matter hypermultiplets to 2d CFT. In case of pure 4d N “ 2, SUp2q SYM
there is a corresponding irregular conformal block in 2d CFT. The AGT correspondence may
be extended within a certain limit (the Nekrasov-Shataschvili limit) to the correspondence
between an effective twisted superpotentials of 2d N “ 2 SUSY and the Zamolodchikov’s
“classical” conformal blocks. When narrowed to the pure 4d N “ 2 SYM case its limit is
related to an irregular classical conformal block. It will be shown that according to the triple
correspondence (2dCFT/Gauge/Bethe - c.f. Piatek’s talk) the irregular classical conformal
block yields spectrum of Mathieu operator. The latter can be obtained as a “classical” limit of
the null vector decoupling equation for three-point degenerate irregular block. It will also be
shown that the Mathieu spectrum can be also obtained from the limit of the pure gauge theory
as a solution of the saddle point equation as well as from the Bohr-Sommerfeld quantization of
the Seiberg-Witten theory.

1. Introduction
The Mathieu equation and its solution proved useful in many fields of physics ranging from
solid state physics to astrophysics and cosmology. It appeared as a result of study of the elliptic
membrane oscillations [1]. The equation that describes mathematically this process is a second
order elliptic partial differential equation which splits into two independent ordinary differential
equations termed the Mathieu and the modified Mathieu equation both with real coefficients.
For definiteness let us focus on the former, which assumes the form

ˆ

´
d2

dx2
` 2h2 cos 2x

˙

ψpxq “ λ ψpxq. (1)

λ and h are parameters of the equation to whose we further refer as the spectrum of Mathieu
operator and the coupling constant respectively. The solution of eq. (1) has the following
property

ψpx` πq “ eiπνψpxq.

The parameter ν is termed Floque exponent. It may assume integer and non-integer values. In
what follows we are concerned with the non-integer one. For h ! 1, i.e., in the week coupling
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regime the spectrum of Mathieu operator λ can be developed in terms of h and ν, namely

λ “ ν2 `
h4

2 pν2 ´ 1q
`

`

5ν2 ` 7
˘

h8

32 pν2 ´ 4q pν2 ´ 1q3
`

`

9ν4 ` 58ν2 ` 29
˘

h12

64 pν2 ´ 9q pν2 ´ 4q pν2 ´ 1q5
`O

`

h16
˘

. (2)

The Mathieu equation also emerged in the context of recent studies of interrelationship
between Quantum Integrable Systems (QIS), 2d Conformal Field Theories (2d CFT) and
4d N “ 2 super-Young-Mills field theories (SYM) [2]. As it turned out the Nekrasov partition
function for 4d N “ 2, SUpNq SYM that depend on two regularization parameters ε1, ε2 [3],
when the two parameters tend to zero ε1, ε2 Ñ 0, approaches the exponential with an exponent
having a divergent part proportional to a prepotential (for N “ 2 this is the Seiberg-Witten
prepotential [4]). The latter is uniquely determined by N moduli and their duals as well as a
certain elliptic curve which is topologically equivalent to a genus N ´ 1 Riemann surface [5].
The moduli are related to N ´ 1 periods of the elliptic curve. The latter, in turn, were revealed
to be related to a classical integrable system, namely, N -particle periodic Toda chain [6, 7].
Its quantization corresponds to taking the zero limit in the Nekrasov partition function only
in one parameter ε2, called the Nekrasov-Shataschvili limit (NS limit). The divergent term in
the exponent of thus obtained expression is proportional to the twisted superpotential W for
2d SYM. This twisted superpotential as proposed in ref. [2] plays a role of the Young-Young
function, which is a statement of Bethe gauge correspondence. This can be summarized by the
following diagram:

ZpΛ̂,a, ε1, ε2q
ε2Ñ0
ÝÝÝÝÝÑ
NS limit

exp

"

1

ε2
WpΛ̂{ε1,aq

*

pε1,ε2qÑp0,0q
ÝÝÝÝÝÝÝÝÑ exp

"

1

ε1ε2
FSWpΛ̂,aq

*

. (3)

In particular, for N “ 2, a case we are the most concerned with in what follows, a moduli and
its dual are determined by two periods i.e., 2πa “ ΠpAq, 2πaD “ ΠpBq that take the form of
the action of the classical sine-Gordon model or 2-particle periodic Toda chain

ΠpΓq ”

¿

Γ

P0pϕq dϕ “

¿

Γ

b

2pu´ Λ̂2 cosϕqdϕ, Γ “ A,B.

Its quantization leads to the Schrödinger equation for the sine-Gordon/2p Toda model
ˆ

´
ε21
2

d2

dϕ2
` Λ̂2 cosϕ

˙

ψpϕq “ uψpϕq.

WKB solution to the above equation [8] provides a spectrum which coincides the one in eq. (1)
(see also appendix C of [9] for direct computations)

ΠpΓq
ε1“‘~‘
ÝÝÝÝÑ rΠpΓq ”

¿

Γ

P pϕ, ε1qdϕ, ψWKBpϕq “ exp

"

i
ε1

ż ϕ

P pρ, ε1q dρ

*

.

It also corresponds to the quantization of moduli apaq, which entails the quantization of Seiberg-
Witten curves [10]. The twisted superpotential from middle exponent in eq. (3) is found due to
the duality relation aDpaq “ pBW{Baqpaq.

The spectrum of the Mathieu operator can be also found from the deformed critical colored
Young diagram [10, 9]. It has been shown that the Nekrasov partition function for Nf ě 0
N “ 2 SUpNq SYM can be rewritten as a sum over profiles fa,kpx|ε1, ε2q of the deformed,
colored Young diagrams [11]. For the case in question Nf “ 0, SUp2q it takes the form

ZpΛ̂,a, ε1, ε2q “
ÿ

fa,k

exp

"

´1
4 ´́

ĳ

dxdy f2a,kpx|ε1, ε2qγε1,ε2px´ y; Λ̂qf2a,kpy|ε1, ε2q

*

, (4)
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where k ” tkα,iu, α “ 1, 2; i P N and i ą j ñ kα,j ě kα,i ě 0 are colored partitions (Young
diagrams) with the number of boxes |k| “

ř

kα,i. Making use of the argument in ref. [11] within
the NS limit ε2 Ñ 0, k Ñ 8 and ε2k “ ω ă 8 such that the entire sum in eq. (4) can be
approximated by the path integral over sequences of nonpositive real numbers ωα,i [9]

ZinstpΛ,a, ε1, ε2q „

ż

c0pRď0q2

ź

α,i

dωα,i exp

"

´
1

ε2
Hrρa,ωs

*

, ρa,k :“ fa,k ´ fa,H.

where c0pRď0q
2 is a space of such a sequences. This path integral is dominated by the term that

fulfills the saddle point condition

`

δHrρa,ω˚s
L

δρi
a,ω

˘

δρi
a,ω “ 0 ñ Λ̂4

2
ź

β“1

ź

jě1

xα,i ´ xβ,j ´ ε1
xα,i ´ xβ,j ` ε1

“ ´1,

where xα,i :“ aα ` ε1pi ´ 1q ` ωα,i, ωα,i “ kα,iε2. The iterative solution to the above saddle

point equation [10] yields columns
˚
ωα,i of the critical Young diagram ω˚. The twisted SUp2q

superpotential in terms of columns of the critical colored Young diagram reads

Winst

´

Λ̂,a, ε1

¯

“ Hrρa,ω˚s
´

Λ̂, ε1

¯

“
ÿ

iě1

pΛ̂{ε1q
4iWipa, ε1q

L

i , Wi “ ´

2
ÿ

α“1

i
ÿ

j“1

˚
ωα,j,i .

By means of the Bethe/gauge correspondence

Ek “ xtrφ
kya

ˇ

ˇ

ε2“0
“ 1

2

ż

dxxkf2a,ω˚px|ε1q,

one finds the spectrum for the two particle periodic Toda chain

E1 “ 0, E “ 2E2 “ ε1Λ̂BΛ̂WpΛ̂,a, ε1q “ ε21λ,

with λ being a spectrum of Mathieu operator given in eq. (2).

2. Nonconformal limit of AGT relation and Mathieu equation
Alday, Gaiotto and Tachikawa have discovered the correspondence between fourdimensional
N “ 2, Nf “ 4 SUp2q field theories and the twodimensional Liouville field theory [12]. This
henceforth called AGT correspondence enabled Gaiotto the discovery of entirely new objects
within the twodimensional Conformal Field Theory (2d CFT) [13]. These new states – the
Gaiotto states – turned out to be the non-conformal limit of the AGT correspondence [14]. The
norm of the Gaiotto state with only one parameter Λ corresponds to the Nekrasov partition
function for pure gauge (Nf “ 0) N “ 2 SYM with SUp2q symmetry.

2.1. Quantum irregular conformal block
Let us consider the four-point conformal block on twodimensional Riemann sphere.1 It takes
the form

Fc,∆
”

∆3 ∆2
∆4 ∆1

ı

pxq “ x∆´∆2´∆1F̃c,∆
”

∆3 ∆2
∆4 ∆1

ı

pxq,

1 The extended exposition of the reasoning in this subsection can be found in ref. [14].
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where ∆i, ∆ for i “ 1, . . . , 4 are four external and one intermediate weight respectively. c
denotes the central charge of the Virasoro algebra Vir. The 4pt conformal block has the following
expansion in terms of location x not fixed by SLp2,Cq symmetry

F̃c,∆
”

∆3 ∆2
∆4 ∆1

ı

pxq :“ 1`
ÿ

ně1

xnF pnqc,∆

”

∆3 ∆2
∆4 ∆1

ı

, F pnqc,∆

”

∆3 ∆2
∆4 ∆1

ı

:“
ÿ

I,J$n

γ∆

“

∆3
∆4

‰

I

”

Gc,∆

ıIJ
γ∆

“

∆2
∆1

‰

J
,

where I, J $ n i.e., are partitions of n. Gc,∆ denotes the Gram matrix of scalar products between
vectors in the highest weight representation of Virasoro algebra of generators Li P Vir, L´i “

L:i , LI ” Lk1 ¨ ¨ ¨Lk`pIq , V
pnq
c,∆ “ spantL´I |∆y; I $ nu

”

G
pnq
c,∆

ı

IJ
:“ x∆|LIL´J |∆y ,

”

G
pnq
c,∆

ı

IK

”

G
pnq
c,∆

ıKJ
“ δJK . (5)

The object γI – the vertex vector – takes the form

γ∆

“

∆a
∆b

‰

I
”

`pIq
ź

i“1

¨

˝∆` ki∆b ´∆a `

`pIq
ÿ

iăj

kj

˛

‚, I “ pk1, . . . , k`pIq, 0, . . .q. (6)

According to AGT correspondence the relationship between the parameters of the two theories
for conformal weights parametrized as

∆i “ pQ
2 ` p2

i q{4, ∆ “ pQ2 ` p2q{4 with c “ 1` 6Q2, Q “ b` b´1 (7)

reads

p1
AGT
“ µ1 ´ µ2, p2

AGT
“ ε1 ` ε2 ´ pµ1 ` µ2q{2, p3

AGT
“ ε1 ` ε2 ´ pµ3 ` µ4q{2, p4

AGT
“ µ3 ´ µ4,

p
AGT
“
?
´1a{pε1ε2q, b

AGT
“

a

´ε2{ε1.

Let us consider the so-called mass decoupling limit. This is the case when all the four masses
related to the four external weights by the above relation tend to infinity µi Ñ 8 ñ ∆i Ñ

8, ∆ ă 8 while xµ1µ2µ3µ4 “ Λ̂4. In this case one obtains

γ∆

“

∆a
∆b

‰

I

µa,µb"1
„

ˆ

´
µaµb
ε1ε2

˙

ř

mi

ď

ˆ

´
µaµb
ε1ε2

˙|I|

δI,p1|I|q,

where I “ tkiuiPN “ ti
miuiPN, I $ n and mi is a multiplicity of i in partition I. Noting, that

|I| “ n “
ř

ki “
ř

imi and that `pIq “
ř

mi ď
ř

imi “ |I| we conclude that the above
inequality is saturated provided `pIq “ `maxpIq “ |I|. That is, within this limit only those
vertex vectors contribute that have maximal lengths. The partition with maximal length is
p1|I|q. Within the mass decoupling limit 4pt conformal block takes the form

F̃c,∆
”

∆3 ∆2
∆4 ∆1

ı

pxq
µ1,µ2,µ3,µ4Ñ8
ÝÝÝÝÝÝÝÝÝÝÑ
xµ1µ2µ3µ4“Λ̂4

Fc,∆pΛq :“
ÿ

ně0

Λ4n rGc,∆s
p1nqp1nq , Λ “

Λ̂

ε1ε2
. (8)

Fc,∆pΛq is irregular pure gauge conformal block. This conformal block can be built out of the
Gaiotto states that are defined as

Fc,∆pΛq “ x∆,Λ2 |∆,Λ2 y, |∆,Λ2y :“
ÿ

ně0

Λ2n
ÿ

|I|“n

rGc,∆s
p1nqI L´I |∆y. (9)

The action of the generators that form Vir on the Gaiotto state is

L0|∆,Λ
2y “ p∆` pΛ{2qBΛq|∆,Λ

2y, L1|∆,Λ
2y “ Λ2|∆,Λ2y, Ln|∆,Λ

2y “ 0, n ě 2.

The nonconformal limit of AGT relation relates, therefore, the pure gauge 4d N “ 2 SYM with
SUp2q symmetry to the irregular pure gauge conformal block within 2d CFT.
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2.2. Classical irregular conformal block
The classical limit within the 2d CFT Liouville theory consists of taking the limit b Ñ 0 in
the correlation function or the quantum conformal block in which it can be decomposed. The
dependence of 4pt conformal block on b is clear in parametrization (7). Within this limit

∆, cÑ8, ∆{c “ const. ñ ∆ „ δb´2, c „ 6b´2. (10)

The irregular conformal block within this limit is expected to behave as

Fc,∆pΛq “
ÿ

ně0

˜

Λ̂

ε1b

¸4n

rGc,∆s
p1nqp1nq bÑ0

„ exp

#

1

b2
fδ

˜

Λ̂

ε1

¸+

, (11)

where fδpΛ̂{ε1q is the classical pure gauge irregular block. This behavior is further corroborated
by the leading order analysis in b´1 performed in [15]. Making use of the formula

fδ

˜

Λ̂

ε1

¸

“ lim
bÑ0

b2 logFc,∆

˜

Λ̂

ε1b

¸

“
ÿ

ně1

˜

Λ̂

ε1

¸4n

f
pnq
δ ,

and our Mathematica code we were able to find up to 7 of its coefficients five of which we present
below

f
p1q
δ “

1

2δ
, f

p2q
δ “

5δ ´ 3

16δ3p4δ ` 3q
, f

p3q
δ “

9δ2 ´ 19δ ` 6

48δ5p4δ ` 3qpδ ` 2q
,

f
p4q
δ “

5876δ5 ´ 16489δ4 ´ 22272δ3 ` 17955δ2 ` 9045δ ´ 4050

512δ7pδ ` 2qp4δ ` 3q3p4δ ` 15q
,

f
p5q
δ “

17884δ6 ´ 96187δ5 ´ 156432δ4 ` 388737δ3 ´ 7317δ2 ´ 138348δ ` 34020

1280δ9pδ ` 2qpδ ` 6qp4δ ` 3q3p4δ ` 15q
, . . .

(12)

It was also possible to establish the relation between the twisted superpotential and the classical
irregular block which reads (ε2 Ñ 0, b ”

a

´ε2{ε1 ñ bÑ 0)

fδpΛ̂{ε1q “
1

ε1
WinstpΛ̂, a, ε1q,

1

nε1
Wnpa, ε1q “ ´ f

pnq
δ for δ “

1

4
´

ˆ

a

ε1

˙2

.

3. Mathieu equation from classical limit of null vector decoupling equation
It is possible to obtain the Mathieu equation directly from the 2d CFT without any reference
to the AGT relation. It should be stressed that this is possible due to the discovery of Gaiotto
states within 2d CFT. The Mathieu equation can be obtained by computing the matrix element
of a chiral null field built out of a vertex operator with degenerated weight and inserted between
the two different Gaiotto states and using the null vector decoupling condition. However, the
null vector decoupling condition can be applied to the physical correlation functions with vertex
operators having weights from the Kac table, while we use matrix element of the null field
between the Gaiotto states which is purely chiral object. There is a variant of the null vector
decoupling theorem that applies to the matrix elements with null chiral vertex operator, namely,
the Feigin-Fuchs theorem

Theorem 1 (Feigin-Fuchs). Let i, j, k P t1, 2, 3u be chosen such that j ‰ i, k ‰ i, j ‰ k. Let us
assume that

(i) ∆i “ ∆r,s :“ Q2

4 ´
1
4

`

rb` sb´1
˘2
, r, s P N;
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(ii) the vector |ξiy lies in the singular submodule generated by the null vector |χrsy, i.e.:
|ξiy P Vc,∆rspcq`rs Ă Vc,∆r,spcq.

Then,
xξ1|V

∆3,∆2,∆1
z3, z2, z1 pξ2|z2q|ξ3y “ 0,

iff ∆j “ ∆
`?
´1βj

˘

:“ Q2

4 ´
1
4β

2
j and ∆k “ ∆

`?
´1βk

˘

:“ Q2

4 ´
1
4β

2
k satisfy the fusion rules

βj ´ βk “ pb` qb´1,

where p P t1´ r, 3´ r, . . . , r ´ 1u and q P t1´ s, 3´ s, . . . , s´ 1u.

Thus, the above theorem says that the matrix element with the null field insertion vanishes
provided the weights of states from domain and target space of the null vertex operator fulfill
appropriate fusion rules.

3.1. Null vector decoupling equation
Having Feigin-Fuchs theorem at hand we can proceed to the derivation of the Mathieu equation
through the following construction. First, let us choose the vertex operator to have a weight
∆r,s from the Kac table (see item piq of Feigin-Fuchs theorem 1 for definition of ∆r,s and eq. (7)
for definition of Q) at the second level i.e., rs “ 2. There are two weights from which we take

∆` ” ∆2,1 “ ´
1

2
´

3

4
b2.

The reason for this choice is that this weight is ‘light’, that is, in the classical limit b Ñ 0 it
becomes constant (it is opposite to the ‘heavy’ weight ∆1,2 which diverges to infinity within
this limit). It is expected that in this limit the light field insertions in the physical correlation
function factorize from the heavy ones. The same should be true for the matrix elements with
light field insertions. Hence, the degenerate primary chiral vertex operator takes the form

V∆`pzq ” V`pzq, V`pzq :“ V
∆1∆` ∆̃
8 z 0 p|∆` y b ¨ q : V∆̃ Ñ V∆1 , |∆`y P V∆` .

Now we can take the null field as a second level descendant of V`pzq, namely

χ`pzq “

ˆ

pL´2pzq ´
3

2p2∆` ` 1q
pL 2
´1pzq

˙

V`pzq , pL´kpzq :“
1

2πi

¿

Cz

dwpw ´ zq1´kT pwq.

Moreover, we take the weights ∆1 , ∆̃ to fulfill the following fusion rules

∆pσq :“
Q2

4
´ σ2 ñ ∆̃ “ ∆

ˆ

σ ´
b

4

˙

, ∆1 “ ∆

ˆ

σ `
b

4

˙

.

Hence, according to the Feigin-Fuchs theorem 1 we obtain the null vector decoupling equation

x∆1,Λ2|χ`pzq|∆̃,Λ
2y “ x∆1,Λ2|pL´2pzqV`pzq|∆̃,Λ

2y `
1

b2
x∆1,Λ2|pL2

´1pzqV`pzq|∆̃,Λ
2y “ 0,

which, after the use of Conformal Ward Identities assumes the form

«

1

b2
z2 B

2

Bz2
´

3z

2

B

Bz
` Λ2

ˆ

z `
1

z

˙

`
Λ

4

B

BΛ
`

∆̃`∆1 ´∆`

2

ff

ΨpΛ, zq “ 0, (13a)

ΨpΛ, zq :“ x∆1,Λ2|V`pzq|∆̃,Λ
2y. (13b)
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Making use of the definition of the Gaiotto states (9) we can expand the function ΨpΛ, zq and
examine its structure with respect to z dependence

ΨpΛ, zq “z∆1´∆`´∆̃
ÿ

m,ně0

Λ2pm`nqzm´n
ÿ

|I|“m
|J |“n

“

Gmc,∆1
‰p1mqI

x∆1, I |V`p1q | ∆̃, J y
”

Gn
c,∆̃

ıJp1nq

:“zκΦpΛ, zq, κ ” ∆1 ´∆` ´ ∆̃ . (14)

Let us note that ΦpΛ, zq when separated into the ‘diagonal’ and ‘off-diagonal’ parts in m,n the
former does not depend on z leaving the total z dependence to the latter. Indeed, for

ΦpΛ, zq “ Φpm“nqpΛq ` Φpm‰nqpΛ, zq, (15)

we obtain

Φpm“nqpΛq “
ÿ

ně0

Λ4n
ÿ

I$n

“

Gnc,∆1
‰p1nqI

x∆1|LIV`p1qL´I |∆̃y
”

Gn
c,∆̃

ıI p1nq
,

Φpm‰nqpΛ, zq “
ÿ

m‰n
m,ně0

Λ2pm`nqzm´n
ÿ

I$m
J$n

“

Gmc,∆1
‰p1mq I

x∆1|LIV`p1qL´J |∆̃y
”

Gn
c,∆̃

ıJ p1nq
.

Let us note that ΦpΛ, zq can also be written in the factor form, namely

ΨpΛ, zq “ zκ exp
!

log Φpm“nqpΛq
)

˜

1`
Φpm‰nqpΛ, zq

Φpm“nqpΛq

¸

” zκ eφpΛq ζpΛ, zq. (16)

This observation is crucial for the ‘light’ field factorization phenomenon in the classical limit
which we consider below.

3.2. Classical limit of Null Vector Decoupling Equation
The Null Vector Decoupling equation, after we express ΨpΛ, zq in terms of ΦpΛ, zq as in eq. (14),

assumes the form (recall that Λ “ Λ̂{ε1b)

„

1

b2
z2B2

z `

ˆ

2κ

b2
´

3

2

˙

zBz `
Λ̂

4
BΛ̂

`
κpκ´ 1q

b2
´

3κ

2
`

Λ̂2

b2ε21

ˆ

z `
1

z

˙

`
∆̃`∆1 ´∆`

2



Φ

˜

Λ̂

ε1b
, z

¸

“ 0. (17)

The parameters in the above equations have the following behavior in the classical limit bÑ 0:

σ “ ξ{b ñ ∆1, ∆̃
bÑ0
„

1

b2
δ ∆̃`∆1 ´∆`

bÑ0
„

1

b2
2δ, where δ “

1

4
´ ξ2,

κ
bÑ0
ÝÝÑ

1

2
´ ξ, κ pκ´ 1q

bÑ0
ÝÝÑ ´

ˆ

1

4
´ ξ2

˙

“ ´δ ∆`
bÑ0
ÝÝÑ ´

1

2
.

(18)

The function Φ also depends on b in its first argument. As we have already mentioned in the
beginning of subsection 3.1 it is expected that the physical correlation function that has ‘light’
fields and ‘heavy’ fields, in the classical limit, factorizes into some function that depends on
locations of the ‘light’ fields and exponentially divergent reminder of the ‘heavy’ fields. This
factorization phenomenon, sometimes termed the “Zamolodchikov’s ansatz”, is believed to carry
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over to case of purely chiral objects like the matrix element defining Ψ function in eq. (13b).
Taking into account our earlier observation phrased in eq. (16) the chiral counterpart of the
Zamolodchikov’s ansatz can be formulated as follows

ΦpΛ, zq “ eφpΛq ζpΛ, zq “ z´κ x∆1,Λ2 |V`pzq | ∆̃,Λ
2 y

bÑ0
„ vpΛ̂{ε1, zq exp

"

1

b2
fδpΛ̂{ε1q

*

, (19a)

where

fδpΛ̂{ε1q “ lim
bÑ0

b2φ

˜

Λ̂

ε1b

¸

, vpΛ̂{ε1, zq “ lim
bÑ0

ζ

˜

Λ̂

ε1b
, z

¸

. (19b)

The factorization of matrix element in the form of eq. (19a) has been recently proved up to the
leading order in b´1 in our paper [15]. Using the factorization ansatz (19b) and asymptotic form
of parameters given in eq. (18) the Null Vector Decoupling equation (17) takes its classical form
independent of b

«

z2B2
z ` 2

`

1
2 ´ ξ

˘

zBz `
Λ̂2

ε21

ˆ

z `
1

z

˙

`
Λ̂

4
BΛ̂fδpΛ̂{ε1q

ff

vpΛ̂{ε1, zq “ 0 .

Substituting vpΛ̂{ε1, zq “ zξ ψpΛ̂{ε1, zq and subsequently changing variable z “ e2ix we arrive at
the sought form of classical limit of the Null Vector Decoupling equation, that can be identified
with the Mathieu equation (1)

«

´
d2

dx2
` 8

Λ̂2

ε21
cos 2x` Λ̂ BΛ̂fδpΛ̂{ε1q ´ 4ξ2

ff

ψ
´

Λ̂{ε1, e
2ix

¯

“ 0. (20)

This identification becomes clear when we relate the Mathieu parameters with the parameters
of the above equation,

λ “ ´Λ̂ BΛ̂fδ

´

Λ̂{ε1

¯

` 4ξ2, h “ ˘
2Λ̂

ε1
, ξ “

ν

2
.

Using coefficients of classical irregular pure gauge block expansion found by means of our
Mathematica code and presented in eq. (12) one finds the coincidence with h expansion of
the spectrum of Mathieu operator λ given in eq. (2),

λ “´ Λ̂ BΛ̂

«

ÿ

n“1

´

Λ̂{ε1

¯4n
fnδ

ff

` 4ξ2

“´
4h4

16
f1

1
4
´ ν2

4

´
8h8

256
f2

1
4
´ ν2

4

´
12h12

4096
f3

1
4
´ ν2

4

´ . . .` 4

ˆ

ν2

4

˙

“ ν2 `
h4

2 pν2 ´ 1q
`

`

5ν2 ` 7
˘

h8

32 pν2 ´ 4q pν2 ´ 1q3
`

`

9ν4 ` 58ν2 ` 29
˘

h12

64 pν2 ´ 9q pν2 ´ 4q pν2 ´ 1q5
` . . . .

3.3. Mathieu functions
The direct computations of the limit

vpΛ̂{ε1, zq “ lim
bÑ0

˜

1`
Φpm‰nqpΛ, zq

Φpm“nqpΛq

¸

, z “ e2ix,
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by means of our Mathematica code confirmed its finiteness up to pΛ̂{ε1q
12 order. The result of

the computations up to pΛ̂{ε1q
6 order reads

vpΛ̂{ε1, e
2ixq “ 1`

Λ̂2

ε21

ˆ

e´2ix

2ξ ´ 1
´

e2ix

2ξ ` 1

˙

`
Λ̂4

ε41

ˆ

e4ix

4pξ ` 1qp2ξ ` 1q
`

e´4ix

4pξ ´ 1qp2ξ ´ 1q

˙

Λ̂6

ε61

ˆ

e´2ix
`

4ξ2 ´ 8ξ ` 7
˘

4pξ ´ 1qp2ξ ´ 1q3p2ξ ` 1q
´

e2ix
`

4ξ2 ` 8ξ ` 7
˘

4pξ ` 1qp2ξ ´ 1qp2ξ ` 1q3

`
e´6ix

12pξ ´ 1qp2ξ ´ 3qp2ξ ´ 1q
´

e6ix

12pξ ` 1qp2ξ ` 1qp2ξ ` 3q

˙

`O

˜

Λ̂8

ε81

¸

.

The relationship between v the Mathieu exponential meν is found to be

ψph{2, zq “ eiνxvph{2, zq “ meνpx, hq,

where

meνpx, hq “ eiνx `
h2

4

˜

epν´2qix

ν ´ 1
´

epν`2qix

ν ` 1

¸

`
h4

32

˜

epν`4qix

pν ` 1qpν ` 2q
`

epν´4qix

pν ´ 2qpν ´ 1q

¸

`
h6

128

˜

`

ν2 ´ 4ν ` 7
˘

epν´2qix

pν ´ 2qpν ´ 1q3pν ` 1q
´

`

ν2 ` 4ν ` 7
˘

epν`2qix

pν ´ 1qpν ` 1q3pν ` 2q

`
epν´6qix

3pν ´ 3qpν ´ 2qpν ´ 1q
´

epν`6qix

3pν ` 1qpν ` 2qpν ` 3q

¸

`Oph8q. (21)

Interestingly, the comparison of the above result with the one in literature (NIST Digital Library
of Mathematical Functions http://dlmf.nist.gov/28.15.E3) reveals the discrepancy between the
two formulas at h2 order of h expansion of Mathieu exponential (q ” h2),

meνpz, hq “ eiνz `
q

4

˜

eipν´2qz

ν ´ 1
´
eipν`2qz

ν ` 1

¸

`
q2

32

˜

eipν`4qz

pν ` 1qpν ` 2q
`

eipν´4qz

pν ´ 1qpν ´ 2q
´

2pν2 ` 1q

pν2 ´ 1q2
eiνz

¸

`Opq4q. (22)

We believe that the above formula in eq. (22) taken from NIST Digital Library of Mathematical
Functions is incorrect as it does not obey the formula for the Mathieu sinus function
(http://dlmf.nist.gov/28.12.iii)

seνpx, h
2q “ i

2

`

meνpx, h
2q ´meνp´x, h

2q
˘

.

4. Conclusions and outlook
The study presented above shows that the classical irregular conformal block is related to the
spectrum of the Mathieu operator. Due to the discovery of the Gaiotto states it is possible to
derive the Mathieu equation entirely within 2d CFT, without any reference to AGT relation.
Moreover, taking into account the studies of WKB quantization of Seiber-Witten curves [8, 10] as
it was mentioned in the Introduction we have also found a kind of classical AGT relation between
the classical irregular conformal block and 2d twisted superpotential. This in turn constitutes
the explicit test of the triple correspondence: 2dCFT/N “ 2, SUp2q gauge/2-particle QIS.
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Furthermore, the quantum pure gauge irregular block and its classical counterpart studied here
are merely an examples of much broader branch of possibilities to find a new equations along
with their solutions as there are more irregular blocks for Nf ą 0. As an example let us quote
our last result for Nf “ 2 case. The procedure analogous to the one described above one can
find a generalized Mathieu equation,

„

´
d2

dx2
`

1

2
h2 cos 4x` 4hµ cos 2x



ψ2 “ λ2 ψ
2 ,

along with its spectrum λ2 given by the formula

λ2 “ ν2 ´ 2h
B

Bh
f2δ

`

1
2h, µ, µ

˘

,

where f2δ is Nf “ 2 classical irregular block. This work is in progress.
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