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Abstract

I present calculations of the properties of charmonium and charmed mesons with lattice QCD.

The calculations use improved actions and 2+1 flavors of dynamical quarks. After a review of

the relevant phenomenology, I provide an introduction to lattice techiques including the spe-

cific actions used in this analysis. Details of the computational techniques used are given, and

the reader is guided through the process of extracting physical results from the data. Results

include calculations of the charmonium, Ds, and D mass spectra and the decay constants fDs

and fD.
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Chapter 1

Introduction

Nature appears to be described by four primary forces: strong, electromagnetic, weak, and

gravitational. The Standard Model (SM) is widely regarded as a correct theory of the strong

and electroweak interactions. Within the SM, Quantum Chromodynamics (QCD) describes

the strong interaction, which binds quarks and gluons together into hadrons. QCD is asymp-

totically free, which means that the strong coupling constant, αs, becomes small at the high

energies probed by particle accelerators. In this regime, perturbation theory can be used in

a small-αs expansion to calculate observables. QCD is also confining, which is a statement

of the fact that we do not observe free quarks, or, more precisely, that all observed particles

are colorless. Although the mechanism leading to confinement is not yet well understood, we

know that hadronization corresponds to αs ∼ 1, so perturbation theory may not be used.

In the low-energy regime it is therefore necessary to use a non-perturbative approach. One

non-perturbative approach is given by Lattice QCD, the application of lattice field theory to

QCD.

Lattice QCD was introduced by Kenneth Wilson in 1974 as a tool to investigate confine-

ment [1]. In lattice QCD, the free parameters of QCD are mapped directly onto a discretized

theory. Solving the discrete theory (where possible) is therefore equivalent to solving the con-

tinuum theory. The technique of discretizing space-time has several advantageous properties.

It provides a non-perturbative approach with an implicit ultraviolet cutoff, therefore solving

at the outset any questions of how to regularize results. Also, it is systematically improvable,

which means all sources of error can be estimated and reduced in a systematic way. We can

therefore use this technique to produce definitive results.
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Previous results from lattice QCD used the quenched approximation, in which the ability of

gluons to split into a pair of sea quarks is suppressed. This was an uncontrolled approximation

which led to ∼ 20% errors. We now have better algorithms which allow us to include realistic

sea quark effects. In addition, improved actions provide reduced discretization errors. For

some quantities, the remaining errors are particularly small. These “gold-plated” quantities

allow us to test lattice QCD.

This work explores QCD on a lattice, and gives results for a selection of observables. Our

results are the first to study mesons involving a charm quark which account for all errors.

In particular, we use highly-improved actions, simulate 2+1 dynamical quarks, and provide

chiral extrapolations to the physical light quark mass. I begin with a brief review of QCD

in Chapter 2 and list the phenomenology of charmonium and charmed mesons which will be

calculated in this work. Chapter 3 describes how one can discretize QCD on a lattice, and

introduces how the näıve actions are improved to reduce discretization errors. This chapter

also provides the specific quark and gluon actions we used in this work. The focus of this

work was on extracting results from the lattice calculation, and the sophisticated data-analysis

techniques which are required. An overview of our approach and the required techniques are

described in Chapter 4. A complete walk-though of our fitting procedure, including details of

problems encountered and their solutions, is presented in Chapter 5. Finally, a summary of

our results for the charmonium, Ds, and D systems is given in Chapter 6. I conclude with

some remarks on our findings and comment on the outlook for future research in this field.
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Chapter 2

Phenomenology

The Standard Model (SM) describes particle physics interactions via the group SU(3)c ⊗

SU(2)L⊗U(1)Y . The SU(3)c group describes the color charge of the strong force, which gives

rise to quantum chromodymanics (QCD). The SU(2)L⊗U(1)Y electroweak symmetry breaks,

giving the three weak bosons mass and leaving an unbroken U(1)EM theory which describes

the massless photon of quantum electrodynamics (QED). We observe excellent agreement

between SM predictions and observed phenomena (neglecting gravity), and therefore have

high confidence that the theory correctly describes physics at the energy scales we can probe.

Before we can look for physics beyond the SM, we must first improve our understanding of

the parameters of this theory.

Within the SM, there are three generations of fermions and four types of gauge bosons.

Some fundamental properties of each particle1 are shown in Table 2.1. Each of the three

generations of fermions consists of an up-type quark, and down-type quark, a massive lepton,

and a massless2 neutrino. The weak force, carried by the two W s and the Z, affects all of the

fermions. The electromagnetic force, carried by the photon, only interacts with electrically-

charged particles. The strong force, carried by the eight gluons, only interacts with particles

which have color-charge — the quarks and other gluons.

The SM requires, as inputs, the 9 charged fermion masses (for the 6 quarks and 3 massive

leptons). The strong, electromagnetic, and weak forces provide 3 couplings: αs, αEM, and

1We use the traditional units of high energy physics, in which ~ = 1 = c. In these units, the mass of a
particle is commonly reported in units of energy rather than the more precise energy/c2.

2The Standard Model defines the neutrinos to be massless. We have since discovered neutrino mixing, which
implies the neutrinos do have mass.
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Table 2.1: A summary of the fermions and bosons in the Standard Model. For each particle,
several properties are shown: whether it carries color-charge (C), its electric charge in units of
the positron charge (Q), and its mass in high-energy units (m). The neutrinos have recently
been shown to have non-zero mass, but the SM defines them to be massless.

Fermions Bosons

u

C=yes
Q=+2/3
m=1.5–4 MeV

c

C=yes
Q=+2/3
m=1.15–1.35 GeV

t

C=yes
Q=+2/3
m=175–178 GeV

g

C=yes (2)
Q=0
m=0

Q
u
a
r
k
s

d

C=yes
Q=–1/3
m=4–8 MeV

s

C=yes
Q=–1/3
m=80–130 MeV

b

C=yes
Q=–1/3
m=4.1–4.4 GeV

γ

C=no
Q=0
m=0

e−

C=no
Q=–1
m=0.511 MeV

µ−

C=no
Q=–1
m=106 MeV

τ−

C=no
Q=–1
m=1777 MeV

W±

C=no
Q=±1
m=80.4 GeV

L
e
p
t
o
n
s

νe
C=no
Q=0
m=0

νµ
C=no
Q=0
m=0

ντ
C=no
Q=0
m=0

Z

C=no
Q=0
m=91.2 GeV
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sin2 θW . In addition, the SM leaves 4 free angles in the weak mixing matrix (discussed in

Section 2.3) which must be determined. The remaining required parameters are the masses

of the Z (MZ) and Higgs (m0
h), and the QCD θ parameter, which relates to the topology of

the theory [2]. Our understanding of the SM therefore depends on our knowledge of these 19

parameters, which must be measured experimentally. Because the SM is a theory of quarks

and leptons, it requires measurements of quark properties and interactions to determine its

inputs. However, QCD is confining so we only observe hadrons (color-singlet combinations

of quarks) in experiments. It is therefore necessary to combine experimental input with

theoretical techniques, including the computational method of Lattice QCD, to determine the

fundamental parameters of the theory. In particular, Lattice QCD can be used to determine

bare quark masses, CKM matrix elements, and the strong coupling αs.

Heavy quark physics is of current interest because it can provide information on some

elements of the quark mixing matrix. The expected unitarity of this matrix, which provides

the couplings of the quarks to the W boson, remains to be tested. The matrix is particularly

interesting because it contains a phase which leads to an asymmetry between matter and

antimatter. The asymmetry is one source of baryogenesis, and baryogenesis is a prerequisite

for our existence. On the lattice, there are two techniques for simulating heavy quarks:

nonrelativistically (NRQCD [3, 4]) or by using a relativistic method (called the Fermilab

approach [5]). The two methods are expected to agree quite well for systems involving a

valence bottom quark, though the Fermilab approach is expected to work slightly better for

systems with a valence charm quark, as the charm quark is slightly relativistic. This work

focuses on mesons which contain a charm quark, and therefore uses the Fermilab approach.

We first look at charmonium, as the spectrum provides an easy test of LQCD and allows

us to calibrate our results. We then study the Ds and D systems and examine the spectra

and leptonic decay constants. One could combine our predictions of the decay constants with

measured decay rates to obtain information about |Vcs| and |Vcd|, two elements of the quark

mixing matrix.

5



2.1 The Charmonium System

Charmonium, the bound state of a charm quark and its antiquark, is the strong interaction

equivalent of positronium. Like the hydrogen atom, quarkonium systems provide a rich, yet

simple, structure for us to study. Just as the hydrogen atom has a ground state and various

excited states, the quarkonia have ground and excited states. For the case of the hydrogen

atom, the characteristic scale of these splittings is the Rydberg energy, mec
2α2/2 ≈ 13.6 eV,

which is determined by the electromagnetic force that binds the electrons to the nucleus. In

contrast to the hydrogen atom, quarkonium states are separated not by a few eV, but rather

by the characteristic scale of the strong force: ΛQCD ≈ 300 MeV. Because of the large energy

difference between states, they are typically thought of as different particles, and named as

in Figure 2.1. However, it is important to remember that they all are cc̄ states, just with

different quantum numbers corresponding to radial or orbital excitations.

The fastest decay mode for a hadron proceeds via a pant-leg diagram. For example, the

decay ρ → ππ, shown in Figure 2.2, takes place in a very short time: τ ∼ 4.4 × 10−24 s. For

the lower-lying charmonium states such as the S-wave ηc and J/ψ mesons, decays to a pair of

D mesons is kinematically forbidden. Instead, the ηc (J/ψ) must decay via an OZI-suppressed

channel3 to 2 (3) pions.4 This suppression makes them somewhat “stable” — the lifetime of

the J/ψ is τ ∼ 7.2 × 10−21 s, which is about 1600 times the lifetime of the ρ meson. The

ηc has a somewhat shorter lifetime (τ ∼ 4 × 10−23 s, or about 10 times the lifetime of the ρ

meson) because it decays to two gluons, which removes a factor of αs from the decay. Even the

excited states (ψ′ and η′c) lie somewhat below the DD threshhold (the energy at which decays

to a pair of D mesons are no longer kinematically prohibited) and can therefore be simulated

with reasonable systematics.5 We also expect to be able to obtain reasonable results for the

P -wave states: the hc and the χc triplet. The hc deserves a special mention: it has only been

seen by one experiment [6] (with some evidence for it observed by another [7]), and therefore

3Okubo, Zweig, and Iizuka noted that decays that include hard gluons are suppressed as a result of asymp-
totic freedom.

4Decays to a single pion are not allowed because they would require a singlet gluon. Whether the decays
include an even or odd number of gluons depends on the spin of the decaying meson — a spin-0 meson decays
to an even number of gluons, while a spin-1 meson decays to an odd number of gluons.

5Threshhold effects cause the masses to be pushed down (away from the threshhold). Since our simulations
do not take this into account, we might expect our results for these masses to be slightly high.
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Figure 2.1: The charmonium spectrum, as seen by experiment. The JPC for each particle
is shown, where J is the total angular momentum (in units of ~), P indicates the particle’s
behavior under a parity inversion, and C indicates its behavior under a charge inversion. The
hc has only been observed by one experiment [6] (Ref. [7] also found evidence for its existence),
and awaits confirmation. Also, its JPC has not been confirmed (though it is believed to be
1+−).

q
_

q’

q π

π
ρ

_
q’

Figure 2.2: The pant-leg hadronic decay mode of the ρ. The quarks q and q ′ in the figure
represent the light quarks.
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requires confirmation. In addition, its JP has not been experimentally measured [8].

Note from Figure 2.1 that the charmonium spectrum entails multiple energy scales. The

characteristic scale of the strong interaction, ΛQCD, determines the 2S − 1S splitting, the

splitting between the spin-averaged ψ ′ and η′c states and the spin-averaged J/ψ and ηc states. In

quarkonium, as in the hydrogen atom, there is a spin-orbit coupling leading to a fine structure,

and a spin-spin coupling leading to a hyperfine structure. In contrast to the hydrogen atom,

these fields come from the QCD gauge interaction σµνF
a
µν rather than from the QED equivalent

σµνFµν . As a result, the chromoelectric interaction σ · (D × E) leads to splittings in the χc

states of ∼ 100 MeV, with dependence on the momentum of the quarks. Meanwhile, the

chromomagnetic interaction σ · B leads to J/ψ− ηc and ψ′ − η′c splittings of ∼ 100 MeV, with

dependence inversely proportional to the squared mass. The combination of energy scales

makes the charmonium spectrum a useful testing-ground of our methods. In addition, there

has already been extensive work in understanding quarkonium spectrums through the use of

potential models. This work will serve as a useful guide to our current and future studies of

these particles.

2.2 The Ds and D Systems

After proving our methods on the charmonium system, we will investigate the Ds and D

systems, shown in Figures 2.3 and 2.4, respectively. The Ds and D∗
s states lie below the DK

threshhold at 2362MeV, kinematically forbidding the hadronic pant-leg decay. The Ds and D

therefore decay weakly, giving them long lifetimes τ ∼ 10−12s. The hadronic decay D∗
s → Dsπ

0

is suppressed due to isospin symmetry6, so the dominant decay (94%) is D∗
s → Dsγ. The D∗

has a similar suppression. They therefore have lifetimes τ ∼ 3 × 10−22 s.

While most particles in these spectra are well understood, a notable exception is the

D∗
sJ(2317). The recently-observed D∗

sJ(2317) is a candidate for the JP = 0+ state [9, 10].

Like the Ds and D∗
s , the D∗

sJ(2317) lies below the DK threshhold. It presents a particular

6Isospin is the approximate symmetry resulting from the nearly-identical masses of the u and d quarks.
This symmetry, which is respected by the strong force, requires that the isospin does not change. Because it
is only an approximate symmetry, it only leads to a suppression of isospin-violating processes, not a complete
cancellation of them.
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Figure 2.3: The Ds spectrum as seen by experiment. The JP of each state is shown.

challenge to theory predictions because it is so close to the threshhold, and has a narrow

width. It has been observed to decay via D∗
sJ(2317) → Dsπ

0, with a lifetime τ > 1.4×10−22 s.

By using non-perturbative methods, we can compute the expected mass of the Ds(0
+) state,

and then see whether our results are consistent with the experimentally-observed mass of

2317 MeV. If the measurements are in agreement, then it would provide further evidence

that the D∗
sJ(2317) is indeed the expected 0+ state, and not some exotic system. An obvious

challenge arises due to the fact that the D∗
sJ(2317) lies just below the DK threshhold, which

may cause our prediction of its mass to be slightly high.7

7See Footnote 5.
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Figure 2.4: The D spectrum as seen by experiment. The JP of each state is shown.

2.3 The CKM Matrix

The weak interaction allows quarks to change flavor. The weak force doesn’t act on the quark

mass eigenstates, but rather on “rotated” quark states [11]:







u

d′






,







c

s′






,







t

b′






. (2.1)

For the case of two generations, we define the rotation using a unitary matrix as







d′

s′






= U







d

s






, (2.2)

where

U ≡







cos θc sin θc

− sin θc cos θc






. (2.3)
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We see that the rotation can be represented by a single parameter, θc, known as the Cabibbo

angle. Experimentally, we find sin θc ≈ 0.22.

With the discovery of the third generation of quarks, the unitarity matrix was expanded

by Kobayashi and Maskawa [12]:













d′

s′

b′













=













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

























d

s

b













. (2.4)

With n generations, unitarity allows for n(n− 1)/2 angles and (n− 1)(n− 2)/2 phases.8 For

3 generations, the 3 angles and 1 phase can be chosen as in the Wolfenstein parameterization

[14]:

V =













1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1













+ O(λ4). (2.5)

This is convenient because it organizes the matrix elements in powers of a small parameter,

λ ≡ sin θc. The remaining parameters, A, ρ, and η, are all real numbers of order unity.9

Any two rows or columns of the CKM matrix leads to a unitarity condition.10 For example,

the first and third columns give the condition

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.6)

The unitarity triangle is simply a geometrical representation of this equation in the complex

plane. If it is scaled such that the base is of unit length (forming the line segment from (0, 0)

8 Unitarity requires that the matrix satisfy V † = V −1. An n × n unitary matrix has n2 real parameters.
Of those, 2n change the phase of independent quark states, and do not affect the physics. However, 1 is an
overall phase and leaves the matrix invariant. So the physics requires n2 − (2n − 1) real parameters. Not all
can be angles, though, because an orthogonal n × n matrix has only 1

2
n(n − 1) real parameters. Therefore,

n2 − (2n− 1) − 1

2
n(n− 1) = 1

2
(n− 1)(n− 2) of the parameters must be phases [13, § 12.12].

9The phase η is responsible for CP violation within the Stanard Model. Charge conjugation (C) and parity
(P ) are symmetries under the strong, electromagnetic, and gravitational interactions, but are violated by the
weak interaction. Except in rare cases, however, CP is conserved by the weak interaction. Understanding
these cases is a current focus in particle physics, because the CP violation allowed by the SM is insufficient to
explain the matter-antimatter asymmetry in the observed universe.

10Unitarity requires V † = V −1.
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Figure 2.5: A fit to the apex of the Unitarity Triangle shown in the (ρ̄, η̄) plane. Figure from
http://utfit.roma1.infn.it/ckm-results/CKM fit today.eps.

to (1, 0)) then the apex of the triangle is at (ρ̄, η̄) where ρ̄ = ρ(1 − λ2/2) and η̄ = η(1 − λ2/2)

as seen in Figure 2.5. Different experiments can provide different constraints on the apex of

the unitarity triangle (examples will be given in Section 2.3.2). Assuming the Standard Model

is correct, all experiments should be consistent with a single apex. Therefore, one test of the

Standard Model is the careful analysis of the unitarity triangle [15].

2.3.1 Hadronic Matrix Elements

Unfortunately, experimental information from weak decays can not provide enough informa-

tion to determine the CKM matrix elements. Weak decays depend on two parameters: the

CKM matrix element which embodies the short-distance coupling of quarks to the W bo-

son, and a hadronic matrix element that parameterizes our ignorance about the long-distance

nonperturbative effects of the hadronic process (see Figure 2.6). Experiments can measure

the combined effects of these two parameters, but not the individual parameters. This is

because we only measure hadronic properties, and have no direct way to directly compare

the hadronic and quark processes. An accurate determination of the CKM matrix elements

therefore requires a lattice measurement of the meson decay constants.
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Ds
+

c

s

W+ τ+

ντVcs

Figure 2.6: The quark-level diagram of leptonic D+
s decay. The decay constant fDs parame-

terizes our ignorance about the hadronic input to the decay (represented by the virtual gluons
in the figure), while the vertex depends only on Vcs.

The Ds and D decay weakly to leptons, as shown in Figure 2.6. For a charged pseudoscalar

meson P , the decay constant fP is defined through the matrix element:

〈0|Aµ(0)|P (q)〉 ≡ ifP qµ (2.7)

where q is the momentum of the meson. Here Aµ is the axial-vector current. For the case of

the D+
s , one can measure the leptonic decay rate Γ(D+

s → `+ν`), which is related to the Ds

decay constant through

Γ(D+
s → `+ν`) =

G2
F

8π
|Vcs|2 f2

Ds
mDsm

2
`

(

1 − m2
`

m2
Ds

)2

[1 + O(α)]. (2.8)

The leptonic decay to a τ has the largest branching fraction due to the helicity suppression11

of decays to lighter leptons. For the case of the D+
s , the helicity suppression causes decays

to the τ to be about 10 times more likely than decays to a µ, with decays to the e strongly

suppressed. For the lighter case of the D, the helicity suppression is somewhat less severe:

the relative widths are in the ratio 2.65 : 1 : 2.3 × 10−5 for the τ+ντ , µ
+νµ, and e+νe final

states. Clearly the branching fraction to the electron is too small for precision measurements.

11The Ds has total angular momentum J = 0, and therefore the `+ and ν` must have opposite spin. Because
all neutrinos are left-handed, the `+ must also be left-handed. However, the W only couples to left-handed
particles (right-handed antiparticles), which means it cannot couple to the necessary left-handed `+ except in
a boosted frame. As a result, the probabilities of producing the requisite particles are:

P (R-handed) =
1 − v

2
, P (L-handed) =

1 + v

2
for a fermion (2.9)

P (R-handed) =
1 + v

2
, P (L-handed) =

1 − v

2
for an anti-fermion (2.10)

There is therefore a suppression for decays to light leptons, which would have v ≈ 1.
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Because leptonic decay to a τ is very difficult to detect, experiments typically measure the

decay to the µ instead.

The CLEO collaboration has recently measured [16] the branching fraction12:

B(D+ → µ+νµ) = (4.45 ± 0.67+0.29
−0.36) × 10−4. (2.12)

They combine this with the lifetime τD+ = 1.040 ps and CKM matrix element |Vcd| = 0.225

to find the decay constant

fD+ = (223 ± 16+7
−9) MeV. (2.13)

This improves on the 2004 world average [8] of

fD = (300+180
−150

+80
−40) MeV (2.14)

and the previous CLEO-c measurement [17] of

fD = (202 ± 41 ± 17) MeV. (2.15)

The 2004 world average for the Ds decay constant is

fDs = (267 ± 33) MeV, (2.16)

We will calculate the decay constants fDs and fD on the lattice. In addition, one may com-

bine the lattice calculations of fDs and fD with experimental measurements of the branching

fractions to obtain |Vcs| and |Vcd|.
12The branching fraction is the partial decay width as a fraction of the total decay width:

B ≡ Γi/Γtot. (2.11)
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2.3.2 Current Constraints on the CKM Matrix

Assuming 3-generation unitarity, the magnitudes of the CKM matrix elements are [8]

V =













0.9745(6) 0.224(3) 0.0037(8)

0.224(3) 0.9737(7) 0.0415(25)

0.0094(46) 0.040(3) 0.9991(1)













. (2.17)

Knowledge of the matrix elements requires the combination of theory input and experimental

measurements of specific processes. In particular, the individual elements are determined in

the following ways:

• |Vud| — The usual experiment looks at nuclear β decays that proceed through a vector

current to muon decay. The theoretical uncertainty is small due to isospin symmetry.

• |Vus| — The experimental evidence comes primarily from K → π`ν`. Theoretical con-

straints can take advantage of the SU(3) flavor symmetry.

• |Vub| — One method is to look at the semileptonic decay of B mesons, which contains

the process b → u`ν̄`. Unfortunately, the process b → c`ν̄` gives a background, and

therefore must be well understood. An alternative method is to use exclusive decays,

such as B → π`ν` or B → ρ`ν`, however that method depends on theoretical models.

Either method would benefit from a tighter constraint from theory.

• |Vcd| — This can be determined from deep inelastic scattering of neutrinos incident on

atomic nuclei. The quark-level process νµd→ µ−c is combined with perturbative QCD

to obtain the matrix element. A tighter constraint from theory would be beneficial here.

• |Vcs| — Direct measurements of charm-tagged W decays are used, with the best result

from the ratio of hadronic W decays to leptonic decays. The result may be improved by

taking advantage of our knowledge of the u and c rows of the CKM matrix and applying

3-generation unitarity.

• |Vcb| — Heavy quark effective theory (HQET) takes advantage of the heavy quark sym-

metry of the b and c quarks. One can combine HQET with measurements of the exclusive
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decay B → D
∗
`+ν` (or B → D`+ν`). Alternatively, one can analyze inclusive decays.

• |Vtd| — B −B mixing can be used to determine this matrix element, which appears in

the loop diagram. Large hadronic uncertainties limit the precision of the result.

• |Vts| — Bs−Bs mixing or K−K mixing can be used to determine this matrix element.

Again, large hadronic uncertainties limit the precision of the result.

• |Vtb| — This matrix element is unique in that it can be measured perturbatively (without

hadronic uncertainties). That is because the timescale of t quark decay is shorter than

the hadronization time. The particular process observed is semileptonic decays of t →

b`+ν` as a ratio of all semileptonic decays. Because it is measured as a ratio, and not

directly, the associated error is ∼ 30%.

Lattice calculations can improve our constraints on |Vub| by calculating the process B → π`ν.

Similarly, |Vcd| and |Vcs| can be obtained through lattice calculations of D → π`ν and D →

K`ν, respectively.

One goal of this work is to improve our understanding of |Vcd| and |Vcs| through the study

of decays of charmed mesons. These matrix elements pose an interesting challenge, in part

because the symmetries which allow improved determinations of several of the other elements

do not apply.
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Chapter 3

Lattice Theory

3.1 QCD in the Continuum

Quantum Chromodymanics (QCD), the theory of the strong interactions, describes interac-

tions between two classes of fundamental particles: quarks and gluons. The QCD Lagrangian

is given by

LQCD = ψ(i /D −m)ψ − 1

4
(F aµν)

2 (3.1)

where Dµ ≡ ∂µ − igAaµt
a is the covariant derivative and F a

µν ≡ ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is

the field tensor. Note that the covariant derivative produces a quark-quark-gluon interaction

term.

As explained in Chapter 2, QCD is a theory of quarks and gluons, while we observe

hadrons. We would like to compute hadron masses and meson decay constants to confirm

our understanding of the Standard Model. Although it is concise to write the QCD action,

computations can be very complicated. The complexity arises from the ability of the gluons

to interact with each other. In addition, the theory is confining — there are no free quarks.

The coupling “constant” varies, allowing for asymptotic freedom at high energies. In this

regime, the coupling becomes small enough to use as an expansion parameter in a perturbative

series. At lower energies, however, the coupling constant increases to be of O(1), making the

perturbative expansion converge slowly, if at all.
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3.2 Discretization of Space-Time

We must use a non-perturbative method to calculate low-energy quantities in QCD. One non-

perturbative approach to quantum field theory is to discretize space-time on a lattice. The

finite lattice spacing introduces an ultraviolet cutoff, while the finite lattice size introduces an

infared cutoff. Building this cutoff into our effective field theory gives us a natural protection

from the divergences found in continuum field theories. In addition, solving the resulting

equations on a computer enables accurate calculations without depending on perturbation

theory which would require αs to be a small parameter.

Consider the task of discretizing the QCD action. Let φ represent both the fermion (ψ,ψ)

and boson (Aaµ) degrees of freedom. Then QCD is defined in terms of the path integral

〈0|T{φ(x1) · · ·φ(xn)}|0〉 ≡ 1

Z

∫

Dφ φ(x1) · · ·φ(xn) e
i
R

d4xLQCD (3.2)

Z ≡
∫

Dφ ei
R

d4xLQCD (3.3)

where T denotes a time-ordered product, and Dφ is the measure of integration. A numerical

evaluation of this integral would be impossible because the imaginary exponent causes the

integrand to oscillate wildly. We therefore perform a Wick rotation to imaginary time (t →

τ ≡ it). Here the expectation value does not oscillate. Using the Euclidean metric1 the QCD

action becomes

S =

∫

d4xψ(x)( /D +m)ψ(x) +
1

4g2

∫

d4xF aµνF
a
µν . (3.4)

The Wick rotation comes at the cost of restricting us to the computation of static properties,

such as masses and matrix elements of hadrons. We can’t compute properties that depend on

the Minkowski metric gµν , which includes the parton distribution function in the proton, or

any time-dependent quantity such as jet formation.

We may discretize spacetime by defining our fields ψ(x) to exist only on lattice sites. But

our action requires a derivative, which will necessitate connecting these lattice sites together.

We may move from one position in spacetime to another through the use of a gauge-covariant

1The Euclidean metric defines gµν ≡ diag(1, 1, 1, 1). Therefore we may simplify notation by writing all
Lorentz indices as subscripts. For example, on the lattice it is customary to write /D = γµDµ.
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connection, which we define along an infinitesimal path as

U(x, x+ dx) ≡ �
+ igAµ(x)dxµ. (3.5)

Over a finite interval, such infinitesimals would be multiplied together to get

U(x = x1, x
′ = xn) ≡ U(x1, x2) · U(x2, x3) · · ·U(xn−1, xn)

= (
�

+ igAµ(x1)dxµ) · (
�

+ igAµ(x2)dxµ) · · · (
�

+ igAµ(xn−1)dxµ)

= P exp

[

ig

∫ x′

x
dyµAµ(y)

]

. (3.6)

where P denotes path ordering. QCD is a non-Abelian SU(3) gauge theory with generators

ta. Under the gauge transformation

ψ(x) → eiα
a(x)taψ(x)

ψ(x) → ψ(x)e−iα
a(x)ta

U(x, x′) → eiα
ata(x)U(x, x′)e−iα

ata(x′) (3.7)

terms of the form

ψ(x1)U(x1, x2)U(x2, x3) · · ·U(xN−1, xN )ψ(xN ) (3.8)

are clearly gauge invariant.

Because the lattice has a finite, but small, spacing a, we may define the connection as

Uµ(x) ≡ U(x, x+ µ̂) = exp(iagAµ(x)) (3.9)

where µ̂ is the vector of length a in the µ direction.2 This connection defines the gauge field

on the link, where it is associated with both a site and a direction. Note that the connection

is defined in the positive µ direction only; to connect to a point in the negative µ direction,

2By absorbing the lattice spacing a into the ‘unit’ vector, we make an implicit decision to work in “lattice
units”.
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one must take the adjoint:

U †
µ(x) ≡ U(x+ µ̂, x) = exp(−iagAµ(x)). (3.10)

We can organize our approach to discretizing the QCD action by taking advantage of its

gauge symmetry. According to gauge symmetry, all operators must be gauge invariant — all

color indices must contract. In the continuum, the Wilson loop

UP (y, y) = exp

[

−ie
∮

P
dxµAµ(x)

]

(3.11)

is a nontrivial function of Aµ(x) that is locally gauge invariant [18, §15.3] (for the non-Abelian

case we must take the color-trace to obtain a gauge-invariant quantity). It is possible to write

all gauge-invariant functions of Aµ(x) as combinations of Wilson loops for various choices of

the path P . Our goal should be to find a lattice representation of the Wilson loop, which

could then be used to construct higher-order lattice operators.

The smallest possible Wilson loop is obtained by tracing a path around a single plaquette,

which we define as

Pµν(x) ≡
1

3
<Tr

(

Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x)
)

. (3.12)

For a� 1 we can substitute Eq. (3.9) to find

Pµν =
1

3
<TrP exp

[

−i
∮

2

gA · dx
]

=
1

3
<Tr

[

1 − ig

∮

2

A · dx+
1

2

(

ig

∮

2

A · dx
)2

+ O(A3)

]

. (3.13)

Because a � 1, we can assume A is smooth and use a four-dimensional version of Stokes’

theorem to evaluate the integral as

∮

2

A · dx =

∫ a

0
dxµ

∫ a

0
dxν [∂µAν(x0 + x) − ∂νAµ(x0 + x)]

= a2Fµν(x0) +
a3

2
(Dµ +Dν)Fµν(x0)
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Figure 3.1: A small segment of the hypercubic lattice, showing a site x, a link Uµ(y), and a
plaquette Pµν(z).

+
1

2

(

a4

3
D2
µ + 2

a4

4
DµDν +

a4

3
D2
ν

)

Fµν(x0) + O(a5, A2) (3.14)

and therefore find the plaquette to be

Pµν = 1 − 1

6
a4Tr (gFµν(x0))

2 − 1

6
a5Tr (gFµν(x0)(Dµ +Dν)gFµν(x0)) −O(a6, A2) (3.15)

The mathematical complexity lends itself well to a pictorial representation of the site, link,

and plaquette, as seen in Figure 3.1. When constructing more complicated objects we will

depend heavily on the pictorial notation.

Now that we have obtained a lattice representation of the Wilson loop, we can more easily

attack the problem of discretizing the QCD action. Because the QCD action (Eq. (3.4)) is

separable3 we can treat our discretization of the gauge and fermion parts separately.

3.2.1 Lattice Gauge Action

Wilson’s gauge action is

Sg[P ] = − 1

2g2

∑

p

′
(

1 − 1

2Tr color
�

(

Tr colorPµν(x) + Tr colorP
−1
µν (x)

)

)

(3.16)

3The covariant derivative requires knowledge of the gauge field, but this is accounted for in our link variables.
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where the sum only includes one orientation for each plaquette:

∑

p

′
≡
∑

x

∑

1≤µ<ν≤4

. (3.17)

It is straightforward to show that

Sg[P ] = −1

4

∑

x

a4Tr
(

F aµν(x)F
a
µν(x)

)

+ O(a2), (3.18)

which reduces to the continuum gauge action in the limit a→ 0.

3.2.2 Näıve Fermion Action

A näıve discretization of the continuum fermion action leads to the lattice fermion action:

SLf =
∑

x

a4ψ(x)
(

/D
L

+m
)

ψ(x) + O(a2) (3.19)

where DL is the centered gauge-covariant lattice derivative

DL
µψ(x) ≡ Uµ(x)ψ(x+ µ̂) − U †

µ(x− µ̂)ψ(x − µ̂)

2a
, (3.20)

which is correct to O(a2).

3.3 The Doubling Problem

Unfortunately, the näıve lattice fermion action suffers from an interesting, but serious, pathol-

ogy. The propagator for a fermion of mass m is

C0 =

[

m+
i

a
γµ sin(apµ)

]−1

. (3.21)

Consider them→ 0 limit. Taylor expanding sin(apµ) ⇒ apµ+O((apµ)
3) we see the continuum

Dirac propagator Cc = [ip/]−1 is recovered. But the näıve lattice propagator has poles both at

apµ = 0 and at apµ = π. The duplication of the fermion occurs in each space-time dimension
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µ for a total of 24 = 16 “tastes” of each fermion [19]. The doublers can also be understood as

an extra symmetry under the transformation

ψ(x) → ψ̃(x) ≡ iγ5γµ(−1)xµψ(x) (3.22)

= iγ5γµ exp(ixµπ)ψ(x). (3.23)

The so-called “doubling problem” is an unavoidable consequence of the Nielsen-Ninomiya

theorem [20, 21], which states that there are an equal number of right- and left-handed particles

for every set of quantum numbers [22]. In general, no lattice action can be chiral, undoubled,

and ultralocal.4 One of the three must be sacrificed. Given three conditions, it is clear that

there are three methods for dealing with the problem. Methods which sacrifice the ultralocal

constraint (and instead use a local action) include “domain wall” and “overlap” fermions.

This work considers the other two methods (sacrificing chiral symmetry, and allowing the

doublers).

3.3.1 Wilson Fermions

Wilson proposed [19] to add an irrelevant term, of dimension five, to the fermion Lagrangian:

LW = ψx

(

/D
L

+m− r

2
a(D2

µ)
L
)

ψx (3.24)

where r is an arbitrary value (usually we set r = 1 for simplicity) called the Wilson parameter.

The form of the action given in Eq. (3.24) is called the “mass form”. For reasons of

computational efficiency, lattice calculations split the Wilson term:

− r

2
aψx(D

2
µ)
Lψx ≡ − r

2a

4
∑

µ=1

[

ψx+µ̂Uµ(x)ψx − 2ψxψx + ψx−µ̂U
†
µ(x− µ̂)ψx

]

(3.25)

→ 4r

a
ψxψx −

r

2a

4
∑

µ=1

[

ψx+µ̂Uµ(x)ψx + ψx−µ̂U
†
µ(x− µ̂)ψx

]

. (3.26)

4Ultralocality means the effects fall off to exactly zero over a finite distance [23]. This is a tighter constraint
than locality, which only requires effects to fall off exponentially.
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We add these terms to the QED action to get the Wilson action

SW =
∑

x

a4







ψx

(

m+
4r

a

)

ψx −
1

2a

±4
∑

µ=±1

ψx+µ̂ (r + γµ)Uµ(x)ψx







. (3.27)

In this form, we can clearly that we have not evaded the Nielsen-Ninomiya theorem — the

Wilson action leads to an additive mass renormalization, and therefore violates chiral symme-

try.5 We can obtain a unit coefficient of the ψψ term if we absorb the current coefficient into

the field definition:

a3/2
√
am+ 4r ψ → ψ. (3.32)

We then obtain

SW =
∑

x







ψxψx − κ

±4
∑

µ=±1

ψx+µ̂(r + γµ)Uµ(x)ψx







(3.33)

where κ ≡ (2am + 8r)−1 is the “hopping parameter”. In the continuum limit, the lattice

Lagrangian for massless quarks becomes

2κψγµ∂
µψ + O(a), (3.34)

which tells us that
√

2κψ is the lattice equivalent of the continuum gauge field — in the

hopping-parameter form, the wavefunction rescaling is

ψ → 1√
2κ
ψ. (3.35)

5The chiral transformation is
ψ → e

i

2
γ5θψ. (3.28)

Because {γ5, γµ} = 0 we find

ψ ≡ ψ†γ0 →
“

e
i

2
γ5θψ

”†

γ0 = ψ†e−
i

2
γ5θγ0 = ψe

i

2
γ5θ. (3.29)

The massless QCD Lagrangian ψ /Dψ therefore transforms under a chiral transformation as

ψ /Dψ → ψe
i

2
γ5θDµγµe

i

2
γ5θψ = ψe

i

2
γ5θe−

i

2
γ5θDµγµψ = ψ /Dψ, (3.30)

i.e., it is invariant. The mass term, on the other hand, transforms as

ψmψ → ψe
i

2
γ5θme

i

2
γ5θψ = ψmeiγ5θψ (3.31)

and is not invariant.
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At tree level, massless quarks correspond to κ = 1
8r . Because of the additive mass renor-

malization, the value of κ will vary from its tree-level value. The “critical” value, κcrit, is

determined nonperturbatively as the value where the pion mass mπ → 0. Bare masses can

then be determined as offsets of κcrit as

am0 =
1

2κ
− 1

2κcrit
. (3.36)

With Wilson’s Lagrangian (and a choice of (D2
µ)
L that includes one-hop differences only),

the propagator becomes

CW (t,p) =

∫ π

−π

dp0

2π

eip0t

m+ i
aγµ sin(apµ) + 2r

a2
sin2

(

1
2apµ

) . (3.37)

In the m → 0 limit we still recover the expected pole at apµ = 0, but the additional pole is

evaded through the sin2(1
2apµ) term. We therefore avoid the doubling problem at the cost of

introducing O(a) errors into our action.

Energy-Momentum Relation

We use Wilson’s method for heavy quarks — it doesn’t work as well for light fermions because

the Wilson term explicitly violates chiral symmetry. For heavy-quark physics, one may expand

the continuum energy-momentum relation about the meson mass:

E =
√

p2 +m2 = m
√

1 + (p/m)2 = m+
p2

2m
− p4

8m3
+ · · · . (3.38)

The above expression is valid for non-relativistic mesons (p2/m2 � 1), but assumes rotational

symmetry. To get an expression that doesn’t depend on this assumption, and incorporates the

rotational symmetry breaking of the lattice, it is helpful to take a Taylor expansion of E(p):

E(p) = E(0) +
1

2!

∑

i,j

∂2E

∂pi∂pj

∣

∣

∣

∣

p=0

pipj +
1

4!

∑

i,j,k,l

∂4E

∂pi∂pj∂pk∂pl

∣

∣

∣

∣

p=0

pipjpkpl + · · · . (3.39)

Here the odd terms vanish since parity requires E to be an even function of the pi.

Furthermore, we split the p4 term into two components, for pairwise contractions of the
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indices, and for the case i = j = k = l. Consider first the i = j = k = l case, which gives

1

4!

∑

i

p4
i

∂4E

∂p4
i

∣

∣

∣

∣

p=0

. (3.40)

Now consider the pairwise case. There are 3 ways to contract the indices, leading to the

expression

3

4!

∑

i6=j
p2
i p

2
j

∂4E

∂p2
i ∂p

2
j

∣

∣

∣

∣

∣

p=0

. (3.41)

Splitting this term with the relation
∑

i6=j =
∑

i,j −
∑

i=j we obtain

3

4!





∑

i,j

p2
i p

2
j −

∑

i

p4
i





∂4E

∂p2
i ∂p

2
j

∣

∣

∣

∣

∣

p=0

. (3.42)

Combining these cases together, and grouping terms by whether they sum over i only, or over

both i and j, we find

3

4!

∑

i,j

p2
i p

2
j

∂4E

∂p2
i ∂p

2
j

∣

∣

∣

∣

∣

p=0

+
1

4!

∑

i

p4
i





∂4E

∂p4
i

∣

∣

∣

∣

p=0

− 3
∂4E

∂p2
i ∂p

2
j

∣

∣

∣

∣

∣

p=0



 . (3.43)

We recognize that
∑

i,j p
2
i p

2
j = (p2)2, and write the dispersion relation in the recognizable

form:

E(p) = M1 +
p2

2M2
− (p2)2

8M3
4

− 1

6
w4

∑

i

p4
i + · · · (3.44)

where the rest mass is

M1 ≡ E(0) (3.45)

and

1

M2
≡ ∂2E

∂p2
i

∣

∣

∣

∣

p=0

(3.46)

defines the kinetic mass.6

6At tree level,
M1a = ln(1 +m0a) (3.47)

and
1

M2a
=

2

m0a(2 +m0a)
+

1

1 +m0a
. (3.48)
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We also have defined another mass and introduced a term to parameterize the violation

of rotational symmetry:

1

M3
4

≡ − ∂4E

∂p2
i ∂p

2
j

∣

∣

∣

∣

∣

p=0

, i 6= j (3.49)

w4 ≡ −1

4

∂4E

∂p4
i

∣

∣

∣

∣

p=0

− 3

4M3
4

. (3.50)

The three masses defined above (M1, M2, and M4) are not necessarily equal on the lattice.

The rest mass, M1, includes a non-physical offset; we use this mass only when computing mass

splittings. We identify the kinetic mass, M2, as the relevant mass, and use it when tuning the

parameters of our calculation. The mass difference M4 −M2 gives some O(a2) discretization

errors. This artifact, along with the rotational symmetry violations parameterized by w4, may

be removed through the use of improved actions.

Fermilab Interpretation for Heavy Quarks

Although we would like to use the Wilson action for heavy quarks, one might worry that

the relevant scale, am, could lead to large discretization effects for m & 1/a. To study this

possibility, it helps to calculate the Wilson quark propagator following Ref. [5]. To evaluate

the integral in Eq. (3.37), first rationalize the denominator. Then, substitute z = eip0signt,

yielding a contour integral over the circle |z| = 1. Applying the residue theorem [24, §54], one

finds

C(t,p) = Z2e
−E|t| γ0signt sinhEa− iγ · sin ap + am0 + 1 − coshEa+ 2

(

sin ap
2

)2

2 sinhEa
(3.51)

where the residue is

Z2(p) =

(

1 +m0a+ 2
(

sin
ap

2

)2
)−1

. (3.52)

The residue can be identified with a normalization of the fermion field. Ignoring the O(p2)

term, one finds

Z2 = (1 +m0a)
−1 = e−M1a. (3.53)

Therefore Z−1/2
2 ψx = eM1a/2ψx has the canonical normalization. In hopping-parameter form,
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the normalization absorbs the
√

2κ of Eq. (3.35) and becomes
√

1 − 6rκψx

It has been shown [5] that taking M2 as the physical mass and using this wavefunction

normalization ensures there will be no (am0)
γ discretization effects for γ > 0.

3.3.2 Staggered Fermions

Susskind, along with Kogut, suggested [25] that we might reduce the number of degrees of

freedom by using a single component of the Dirac spinor on each site of the lattice, rather

than all four components. The simplest construction of this method is through comparison to

the case of the näıve fermion action. We begin by making the association:

ψ(x) = Ω(x)χ(x) ψ(x) = χ(x)Ω†(x) (3.54)

where

Ω(x) ≡
3
∏

µ=0

(γµ)
xµ = γx0

0 γx1

1 γx2

2 γx3

3 . (3.55)

Because the square of any gamma-matrix is
�
, there are only 16 different Ω matrices. We can

therefore rewrite our fermion Lagrangian in the form

ψ(x)(γ ·DL +m)ψ(x) = χ(x)(α(x) ·DL +m)χ(x) (3.56)

where

αµ(x) ≡ Ω†(x)γµΩ(x± µ̂) = (− �
)x0+x1+···+xµ−1 (3.57)

defines a position-dependent change of basis in spinor space. Because α(x) is diagonal at

each point x, the action written in this form is diagonal in spinor space. Therefore the four

spinor components of the χ fields are decoupled! Furthermore, because α(x) = ± �
, these four

components behave identically. We are therefore free to eliminate three of them from our

calculation (thereby reducing the computational complexity by a factor of four). Rather than

computing 16 tastes of fermions, each with four spinor components, we are left with 16 tastes,

each with a single spinor component. The continuum, however, has four spinor components

for each flavor. We therefore group the 16 tastes to form four tastes each with four spinor
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Figure 3.2: Effects of unquenching on several observables. The left panel results from quenched
calculations, the right panel is unquenched. Details of the analysis are given in Ref. [32].

components.

Of course, even four tastes is too many, so an additional trick is required. The effects of the

fermions are consolidated into the determinant of Eq. (3.109). Because the determinant of a

matrix is the product of its eigenvalues, we can approximate the reduction of four tastes to one

by taking the fourth-root of the fermion determinant (for the case of quarks with degenerate

mass (the u and d) we simply take the square root of the determinant).7 Currently we do

not have a mathematical proof that the fourth-root trick leaves us with an ultralocal, or even

exponentially localized, action [30]. A greater concern is that any taste-symmetry violations

in the action mean the reduction of tastes might not be well defined. However, the technique

should be comparable to a theory with four flavors in which two have been quenched [31] so

it is widely believed to be valid. This work is part of a community effort to test the fourth-

root trick for some “gold-plated” quantities (see Section 3.6), and our results have been very

encouraging (see Figure 3.2).

7In practice there are various ways of taking the root [26]: through the Lanczos method [27, §4.3], via a
noisy Metropolis step [28], or by treating it as a polynomial [29].
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Näıve Fermions

The staggered action is implemented on the computer in terms of the χ fields. Those fields

are non-physical, however. When developing new operators, it is helpful to transition back

to the ψ fields through the use of Eqs. (3.54) and (3.55). When this is done, the resulting

fermions are similar to the näıve fermions of Section 3.2.2 (with the distinction that there is

1 taste rather than 16. To distinguish between the two methods of obtaining näıve fermions,

we will continue to refer to the näıve fermions resulting from a staggered action as staggered

fermions, but with the reminder that the staggering has been removed.

3.4 Improvement

Consider discretizing the covariant derivative

Dµψ(x) → DL
µψ(x) ≡ ψx+aµ̂ − ψx−aµ̂

2a
=
Uµ(x) − U †

µ(x− µ̂)

2a
ψ(x) + O(a2). (3.58)

It is evident that truncating an expansion in a (while keeping a finite) introduces discretization

errors. Such errors will introduce lattice effects into our QCD action. These effects can be

reduced by using the smallest lattice spacing possible, or studied by examining the calculated

value of various observables as a function of a. More importantly, these effects can be reduced

through a technique called improvement.

We can understand improvement by thinking of lattice QCD as an effective theory of

continuum QCD. As an effective theory, lattice QCD is not correct at all energy scales, but

rather has a built-in cutoff (a result of the lattice spacing, a). Like other effective theories,

we can better approximate the correct theory by adding additional terms to the action of our

effective theory. The operators we add correspond to interactions; their expectation values

describe the long-distance physics. The coefficients of these terms indicate the strength of

the new interactions, and therefore describe the short-distance physics. Finding which new

operators to add, and their coefficients, is a complex task that is an area of active research.

Symanzik proposed an improvement program [33] which provides a systematic method for

doing this. The primary steps are:
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1. determine all possible terms up to a given (engineering) dimension

2. eliminate redundant operators (terms which do not affect the physics)

3. determine coefficients for the remaining terms (usually from continuum field theory)

Each coefficient must be calculated using lattice perturbation theory. But such calculations

are very difficult, so it is desirable to only do the ones that are absolutely necessary. As an

alternative to this full-scale improvement, Lüscher and Weisz proposed [34, 35] in 1984 that

we improve only on-shell quantities. This on-shell improvement provides a parameterization

that will give correct results for experimentally-observable quantities. It will be instructive

to take a brief tour of the improvements we make to construct the modern gauge, staggered,

and Wilson actions we use in our analysis.

3.4.1 Symanzik Improvement

Even without improvement, lattice QCD has produced many useful results. However, it is

limited in its accuracy due to lattice artifacts, the errors resulting from a finite lattice spacing.

If we are to beat Moore’s law (the observation that computing power doubles roughly every

18 months), we must improve the actions themselves. This section details the construction

of improved Wilson actions, following the approach of Sheikholeslami and Wohlert [36]. We

begin with the determination of all possible terms at each order.

Before beginning, let us outline the requirements for each term. We know that the action

is dimensionless so the Lagrangian must be of dimension four. In addition, it should satisfy

some basic symmetries:

discrete rotational symmetry: all lorentz indices must contract8

gauge symmetry: all color indices must contract

positive under parity: the Lagrangian must be invariant under the transformation

ψ(x) → ψ′(x) = S(P)ψ(Px)
8We only require a discrete rotational symmetry, but can check that continuous rotational symmetry is

restored in the continuum limit by comparing on-axis results to off-axis results
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ψ(x) → ψ
′
(x) = ψ(Px)S(P)−1

Dµ → D′
µ = (P−1)µνDν (3.59)

where S(P) = γτ = S(P)−1 and Pµν = P−1
µν = −(−1)δµτ δµν = diag (−,−,−,+).

positive under charge conjugation: the Lagrangian must be invariant under the trans-

formation

ψ(x) → Cψ
T
(x)

ψ(x) → ψT (x)C (3.60)

where CγTµC
−1 = −γµ and C−1 = −C.

We know from continuum QCD that ψ(x) is of dimension 3/2, so the lowest-dimension

operator is a bilinear of dimension 3; all higher-dimension operators are possible. Let our

dimension 3 bilinear operator be written as

O(x) = ψ(x)Obψ(x) (3.61)

where Ob = Γ must be chosen to satisfy gauge symmetry and be invariant under discrete

rotations. Using the basis

Γ =

{

�
, γµ, σµν ≡ i

2
[γµ, γν ], γ5γµ, γ5

}

(3.62)

we can already restrict Ob to
�

and γ5. Parity requires the equality

ψ(x)Γψ(x) = ψ(Px)γτΓγτψ(Px) (3.63)

so we must have Γ = γτΓγτ , which is satisfied for Γ =
�

but not for Γ = γ5. Considering

charge conjugation symmetry we find

ψ(x)ψ(x) → ψT (x)CCψ
T
(x) = +

(

ψ(x)ψ(x)
)T

= ψ(x)ψ(x) (3.64)
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Table 3.1: Transformation of various operators under parity conjugation.

Operator Transformed operator
� �

(and similarly for δµν)
γµ −(−1)δµτ γµ
σµν (−1)δµτ +δντσµν
γ5γµ (−1)δµτ γ5γµ
γ5 −γ5

so this provides no further constraint. Therefore at dimension 3 the only valid operator is

O0(x) = OL
0 (x) = ψ(x)ψ(x). (3.65)

Here I introduce the notation Oi(x) to refer to the continuum operator, and OL
i (x) to refer to

the discrete representation of that operator. In this case, they are identical.

At dimension 4 we consider operators of the form O(x) = ψ(x)Obψ(x) where Ob = ΓµDµ

is the most general operator that satisfies gauge symmetry and discrete rotations. It will be

helpful (now and for future use) to refer to Table 3.1 to see how various operators transform

under parity. We see that parity restrictions allow only the case Γµ = γµ. Checking charge

conjugation symmetry we find

ψγµDµψ = −ψTγTµDµψ
T

= ψγµDµψ (3.66)

so it is invariant. Therefore at dimension 4 the only valid operator is

O1(x) = ψ(x) /Dψ(x) (3.67)

OL1 (x) = ψ(x)γµD
L
µψ(x) = ψ(x)

∑

µ

(

γµ
Uµ(x)ψ(x + µ̂) − U †

µ(x− µ̂)ψ(x− µ̂)

2a

)

(3.68)

This process can be repeated at dimension 5, where we find the allowed bilinear operators

ΓµνDµν =











δµνDµν = D2

σµνDµν = σµνFµν

. (3.69)

For reasons that will become clear later (in Section 3.4.2) we choose as our basis for dimension
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5 operators the linear combinations:

O2(x) = ψ(x)

(

D2 − 1

2
iσµνFµν

)

ψ(x)

O3(x) =
1

2
iψ(x)σµνFµνψ(x). (3.70)

Improved through O(a), our fermion action is

SF1

L = −a
4

g2
0

∑

x

3
∑

i=0

adimOL
i (x)−4bi(g

2
0 ,ma)O

L
i (x) (3.71)

where the coefficients bi(g
2
0 ,ma) have to be determined order by order in perturbation theory.

Improvement through O(a2) would require operators up to O18(x) (see Appendix F), rather

than truncating the sum at operator O3(x).

3.4.2 On-Shell Improvement

Any time we make a change to the Lagrangian, we might expect it to affect the physics, so

we might ask what effect the addition of new terms will have. We already know that some

changes will not have any effect on physical observables. For example, rescaling a field by a

constant leaves observables invariant. In general, any redefinition of a field that leaves the

path integral invariant may be performed. These field redefinitions may induce additional

terms in the Lagrangian. Any terms in the Lagrangian which can be obtained through a field

redefinition can not effect the physics, and are considered redundant. Such terms can therefore

be added to our Lagrangian with a coefficient chosen for convenience.

Consider, for example, the most general local covariant field redefinition up to O(a) that

leaves the action invariant:

ψ → eεa( /D+m)ψ

ψ → ψeεa( /D+m) (3.72)

where ε, ε are free parameters and a is chosen so that a( /D + m) is small. Performing this

transformation on the näıve lattice action Eq. (3.19) and then expanding (keeping terms to
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O(ε, ε)) yields

ψ( /D +m)ψ → ψeε̄a( /D+m)( /D +m)eεa( /D+m)ψ

= ψ[1 + ε̄a( /D +m)]( /D +m)[1 + εa( /D +m)]ψ

= ψ( /D +m+ a(ε+ ε̄)( /D +m)2 + O(ε2))ψ

= ψ
[

(1 + am(ε+ ε̄))m+ (1 + 2am(ε+ ε̄)) /D + a(ε+ ε̄) /D
2
]

ψ. (3.73)

Note that if we simply rescale the fields and mass under the transformation

√

1 − 2am(ε+ ε̄)ψ → ψ′

√

1 − 2am(ε+ ε̄)ψ → ψ
′

(1 + am(ε+ ε̄))m → m′ (3.74)

then Eq. (3.73) can be written as

mψψ + ψ /Dψ → m′ψ
′
ψ′ + ψ

′
/Dψ′ + a(ε+ ε̄)ψ

′
/D

2
ψ′ (3.75)

to terms of O(a). This new term is redundant, since it corresponds only to a field redefinition

[36].

We may rewrite

/D
2

= γµγνDµDν

=
1

2
({γµ, γν} + [γµ, γν ])

1

2
({Dµ, Dν} + [Dµ, Dν ])

=
1

4
(2δµν − 2iσµν)({Dµ, Dν} + [Dµ, Dν ])

=
1

2
(2D2

µ − iσµνFµν)

= D2
µ −

i

2
σµνFµν ≡ O2 (3.76)

which explains our earlier choice of basis for the operator O2 in Eq. (3.70). Note that the

action of Eq. (3.75) breaks chiral symmetry like the Wilson action, but does so with the
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addition of an extra term. The Fµν term can be approximated on the lattice as

Fµν(x) =
1

4

[

Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x)

+ U †
µ(x− µ̂)U †

ν (x− µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂)

+ Uν(x)U
†
µ(x− µ̂+ ν̂)U †

ν (x− µ̂)Uµ(x− µ̂)

+ U †
ν (x− ν̂)Uµ(x− ν̂)Uν(x+ µ̂− ν̂)U †

µ(x)
]

(3.77)

=

(3.78)

The extension of the näıve fermion action (Eq. (3.19)) to dimension 5 has added both O2

and O3. Because O2 is redundant, its coefficient can be chosen to be any nonzero value to fix

the doubling problem. The O3 operator, however, is not redundant, and its coefficient must be

determined perturbatively (by comparison of lattice and non-lattice short distance physics).

One obtains the Sheikholeslami-Wohlert action

SSW =
∑

x







ψxψx − κ
±4
∑

µ=±1

ψx+µ̂(r + γµ)ψx +
i

2
κcSW

∑

µ,ν

ψxσµνFµν(x)ψx







+ O(a2). (3.79)

This is commonly called the “clover” action because of the shape of the lattice representation

of the Fµν operator (see Eq. (3.78)).

We can now understand more clearly what has been accomplished with the Wilson action

and the clover action. The Wilson term, ψD2ψ added part of a redundant operator, O2.

Because it added only part, it changed the physics (by removing the doublers). The removal of

the doublers was, of course, intentional, but other changes to the physics, such as introducing

O(a) errors, are undesirable. To remove those errors, we must include the other part of

operator O2, which is accomplished through the clover term. Because Wilson’s discretization

of D2 is different from the Sheikholeslami-Wohlert discretization of the σµνFµν term, the

inclusion of both halves of O2 does not re-introduce the doublers.

This process can, of course, be repeated at higher order. This is an area of active research

— a brief introduction is given in Appendix F.
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(a) (b) (c)

Figure 3.3: Lattice Feynman diagrams: (a) Fermion-fermion-gluon vertex; (b) Fermion-
fermion-gluon-gluon vertex, unique to lattice QCD; (c) Tadpole diagram

3.4.3 Tadpole Improvement

One particularly interesting correction to the coefficients comes from tadpole improvement

[37, 38]. In the continuum, the only interaction between quarks and gluons comes from the

term ψ /Dψ, which corresponds to the diagram shown in Figure 3.3a. We map this onto the

analogous lattice operator

Uµ(x) ≡ eiagAµ(x) → 1 + iagAµ(x) −
1

2
a2g2A2

µ(x) + O(a3). (3.80)

On the lattice, all higher-order operators are allowed including, for example, the term ψ /D
2
ψ,

which corresponds to the diagram shown in Figure 3.3b. If the Aµ’s contract with each other,

as shown in Figure 3.3c, they generate an ultraviolet divergence that precisely cancels the a2,

leaving this term suppressed only by g2. The result is that the bare coupling αlat is a poor

choice for an expansion parameter. The corrections to a perturbative expansion will be large

at any order.

Recall that our definition of the link variable did not take these large renormalizations

into account. Our goal is to eliminate the undesirable ultraviolet divergence resulting from

Figure 3.3c. To see how this can be accomplished, imagine if we could treat the ultraviolet

(UV) and infared (IR) parts separately. If one were to integrate out the UV modes, the link

operator would reduce to its IR part

Uµ → u0e
iagAIR

µ ≈ u0(1 + iagAIR
µ ) (3.81)

where the Taylor expansion of the exponential now converges more rapidly. Here the parameter
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0 < u0 < 1 contains the averaged UV contribution, which will deviate from unity due to

tadpole effects. We see, therefore, that we can cancel the UV tadpole contribution by simply

dividing our link operator Uµ by u0. In practice, the value of u0 is measured in a simulation

using, for example, the gauge-invariant definition

u0 ≡
〈

1

3
TrUplaq

〉1/4

(3.82)

where we take advantage of the plaquette as a short-distance quantity to estimate the average

link in a gauge-invariant way. Essentially, we have accomplished a nonperturbative resumming

of the tadpoles.

When constructing a lattice action, it is helpful to think of this resummation by rewriting

Uµ(x) → u0

[

Uµ(x)

u0

]

(3.83)

After we absorb the first factor u0 into the couplings, the second factor [Uµ(x)/u0] leads to

an improved expansion parameter. The factors of u0 absorbed into the couplings depend

on the number of link variables in their corresponding operators. For example, the hopping

parameter absorbs a single power of u0:

κ→ κ̃ = u0κ (3.84)

and the clover term coefficient absorbs three factors9 of u0:

cSW → c̃SW = u3
0cSW. (3.85)

We obtain the tadpole-improved clover action:

SSW =
∑

x







ψxψx − κ̃
±4
∑

µ=±1

ψx+µ̂(r + γµ)ψx +
i

2
κ̃c̃SW

∑

µ,ν

ψxσµνFµν(x)ψx







+ O(αsa, a
2).

(3.86)

9The fourth factor of u0 has already been absorbed into a factor of κ that also accompanies the clover term.
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3.4.4 Classical Improvement of the Staggered Action: The Naik Term

Classical improvement demands that all corrections to the leading term (ψ /Dψ+mψψ) vanish

in the small a expansion to the desired order. Note that if we expand ψ(x) in a Taylor series

ψ(x+ a) = ψ(x) + aψ′(x) +
a2

2!
ψ′′(x) +

a3

3!
ψ′′′(x) + · · · (3.87)

we can expand a centered derivative as

ψ(x+ a) − ψ(x− a)

2a
= ψ′(x) +

a2

6
ψ′′′(x) + · · · . (3.88)

Because we are only considering operators of dimension 3 through 6 (and because the dimen-

sion 3 term is exact) we only need to improve the dimension 4 operator OL
1 (x), which has the

expansion

OL1 (x) ≡ ψ(x) /D
L
ψ

= ψ(x)γµ

[

Dµ +
1

6
a2D3

µ + O(a4)

]

ψ(x)

= O1(x) +
a2

6
O4(x) + O(a4). (3.89)

We must therefore get a better approximation of the continuum operator with the replacement

OL1 (x) → OL
1 (x) − a2

6 O
L
4 (x). At O(a2) the classically improved näıve action is

SCI2 = −a
4

g2
0

∑

x

[

mOL0 (x) +OL
1 (x) − 1

6
a2OL4 (x)

]

+ O(a4) (3.90)

where OL
0 , OL1 , and OL

4 are defined in Eqs. (3.65), (3.68), and (F.7). The additional operator

takes a derivative relative to a site three links away (in the same direction) and is called the

Naik term [39].

3.4.5 Improving the Taste Symmetry of the Staggered Action

In the näıve action, there are 16 equivalent tastes for each quark flavor. One of these tastes

is the expected low-energy mode, while the other 15 have high energies. Because they are
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equivalent, however, there is the possibility of an additional interaction, whereby a high-

energy gluon can change a quark from one taste to another. In particular, a low-energy quark

can emit a gluon of momentum ζπ/a, where ζ is a 4-vector with one or more components

equal to 1 and all the others 0. (The vector ζ is used to identify one of the 15 doublers.)

Rather than being driven far off-shell, it is transformed into a low-momentum mode of one of

the other tastes. Of course, the gluon is highly virtual, and will soon be absorbed by another

quark (causing a second taste change). This is a non-physical process, and therefore we seek

to eliminate its effects from our simulations.

Because the taste-changing interactions involve gluon exchange, a simple method for re-

ducing the effect is to suppress gluon momenta near ζπ/a. This can be accomplished by

“smearing out” the gauge fields [40, 41]:

Aµ(x) → A′
µ(x) =

(

∏

µ

D−µ + 2 +Dµ

4

)

Aµ(x). (3.91)

In momentum space, this is equivalent to

Aµ(k) → A′
µ(k) =

(

∏

µ

1 + cos kµ
2

)

Aµ(k), (3.92)

which approaches Aµ(k) as k → 0 and vanishes when any component of k equals π.

The procedure can be formalized as follows Ref. [42]: we make the replacement

Uµ(x) →



1 +
∑

ρ6=µ

a2∆
(2)
ρ

4



Uµ(x) (3.93)

where

∆(2)
ρ ≡ 1

u2
0a

2

[

Uρ(x)Uµ(x+ ρ̂)U †
ρ(x+ µ̂) − 2u2

0Uµ(x) + U †
ρ(x− ρ̂)Uµ(x− ρ̂)Uρ(x− ρ̂+ µ̂)

]

=
1

u2
0a

2





6
-

?− 2u2
0

- +
?-6



 (3.94)

is a covariant second derivative that acts on link operators. This replacement suppresses
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Figure 3.4: The simple link is shown along with the 3-, 5-, and 7-staple terms used to suppress
taste-changing interactions. Also shown is the 5-link Lepage term used to suppress taste-
conserving errors due to double taste change. The 3-link Naik term is not shown. Together
with the coefficients of Table 3.2, these form the asqtad action shown in Eq. (3.97).

gluons with momentum pρ = π/a, for the three cases of ρ 6= µ, by including “staples”.10

We can extend this to include all 15 doublers by multiplying the terms to include the

combined effects of changing taste in multiple directions:

Uµ(x) → Vµ(x) =
∏

ρ6=µ

(

1 +
a2∆

(2)
ρ

4

)∣

∣

∣

∣

∣

symm.

Uµ(x). (3.95)

It should be noted that this equation adds 5-staples and 7-staples to our lattice action (see

Figure 3.4).

We have one remaining issue. There is the possibility of a taste-conserving interaction,

wherein the taste changes twice: first to a doubler mode, and then back. This leads to O(a2p2)

errors. Elimination of these effects requires one extra term:

Vµ(x) → V ′
µ(x) ≡ Vµ(x) −

∑

ρ6=µ

a2(∆ρ)
2

4
Uµ(x). (3.96)

The (∆ρ)
2 is the square of the first derivative, leading to the Lepage term shown in Figure 3.4.

The combination of the Naik term and the taste-symmetry restoring terms produces the a2

tadpole-improved (asqtad) action

Sasqtad = ψ γµ

(

V ′
µ(x) −

1

6
(D3

µ)
L

)

ψ + O(αsa
2, a4). (3.97)

Furthermore, tadpole improvement ensures the αs coupling in the error is small. It is usually

10The MILC collaboration introduced “fat links” as the simplest change to the link fields, and discovered
including them greatly reduces taste-symmetry violations [43]. Their success wasn’t explained until later.
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Table 3.2: The coefficients we use for the asqtad derivative. The coefficients are chosen such
that the coupling to a momentum-zero gluon is unity, while the coupling to gluons with
momentum components ±π is zero. The factor of (1/u0)

L−1, where L is the length of the
path, accounts for the tadpole improvement (one power of u0 has been absorbed into the
quark mass). See Ref. [44] for additional details.

Term Coefficient

Link 1
8 + 3

8 + 1
8

3-staple 1
8

1
2u

−2
0

5-staple 1
8

1
8u

−4
0

7-staple 1
8

1
48u

−6
0

Lepage − 1
16u

−4
0

Naik − 1
24u

−2
0

Urt = 6

- -

?
��

Upg = 6

��*��� -

?

�������
Utrt =

�
6

-

-
6

�

C
C
C

�
�
�

Figure 3.5: The rectangle, parallelogram, and twisted rectangle operators which can be used
to improve the gauge action. Not shown are the bent rectangle and twisted bent rectangle.
Coefficients for tree-level improvement are cpl = 5

3 , crt = − 1
12 , cpg = 0, and ctrt = 5

36 .

simplest to think of the asqtad action pictorially, as in Figure 3.4, in which case the terms

have the coefficients listed in Table 3.2.

3.4.6 Improving the Gauge Action

Now that we have highly-improved fermion actions (the clover action improved to O(αsa, a
2)

and the asqtad action improved to O(αsa
2, a4)), it is worthwhile to investigate improving

our gauge action. The standard gauge action has errors of O(a2). These can be removed by

some combination of additional terms, following the procedure of Lüscher and Weisz [34, 35].

Choices of these terms include those shown in Figure 3.5. Only two of the terms are needed

to improve the gauge action to O(αsa
2). For example, using rectangles gives a tree-level

tadpole-improved gauge action of

SG = −β
∑

x,µ>ν

{

5

3

Pµν(x)

u2
µu

2
ν

− 1

12

Rµν(x)

u4
µu

2
ν

− 1

12

Rνµ(x)

u4
νu

2
µ

}

+ O(αsa
2, a4). (3.98)
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The action can be improved further by including some11 one-loop effects in the coefficients

[45]:12

crt → − 1

12
(1 + 0.4805αs), (3.99)

cpg → −3

5
(0.03325αs). (3.100)

Using the rectangle and parallelogram terms13 gives

SG = βpl

∑

pl

1

3
<Tr (1 − Upl) + βrt

∑

rt

1

3
<Tr (1 − Urt) + βpg

∑

pg

1

3
<Tr (1 − Upg) + O(αsa

2, a4)

(3.101)

where Upl and βpl are the standard plaquette term and its coefficient, and

βrt = − βpl

20u2
0

(1 + 0.4805αs), βpg = −βpl

u2
0

(0.03325αs), βtrt =
βpl

12u4
0

. (3.102)

Because the calculation did not take fermion loops into account, errors are still introduced at

O(αsa
2, a4), though some improvement over the tree-level tadpole-improved gauge action of

Eq. (3.98) is expected.

3.4.7 Putting it All Together

Before continuing, let us summarize the discretization of the QCD action used in this work.

Our action is divided into three parts, representing the light quarks, the heavy quarks, and the

gauge fields. The light quarks use the asqtad action of Eq. (3.97), which has O(αsa
2, a4) errors.

Heavy quarks use tadpole-improved clover action of Eq. (3.86) in the Fermilab formalism,

which has O(αsa, a
2) discretization errors. Appendix A estimates these errors through the

use of a potential model calculation. The gauge fields use the tadpole-improved action of

Eq. (3.101). This action accounts for some one-loop effects14, and therefore has O(αsa
2, a4)

errors.

11The one-loop coefficients have only been calculated for the gauge field, not for fermion loops.
12The one-loop improvement of the twisted rectangle was not computed as that term is more sensitive to

tadpole improvement than any of the others.
13The twisted rectangle is not used, as that term is more sensitive to tadpole improvement than the others.
14See footnote 11.
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3.5 Calculating Observable Quantities

Once a consistent lattice field theory has been defined, we must implement it on a computer

to extract information about physical observables. In doing so, we must confront the practical

aspects of a computer implementation, and then design a method to extract the information

we desire.

Recall that in Eq. (3.2) we defined QCD via a path integral. Wick rotating to Euclidean

space and substituting S[φ] → Sf [U,ψ, ψ] + Sg[U ], we find the lattice equivalent:

〈0|Φ(U,ψ, ψ)|0〉 =
1

Z

∫

DU DψDψΦ(U,ψ, ψ) e−Sf [U,ψ,ψ]−Sg [U ]. (3.103)

Consider writing the fermion action in the matrix form

Sf =
∑

x,y

ψxMxyψy. (3.104)

We represent fermions using Grassmann variables, which are described in Appendix B. In our

current notation, Eq. (B.7) becomes

∫

DψDψe−ψMψ = detM . (3.105)

Integrating out the fermion degrees of freedom therefore gives

〈0|Φ(U,ψ, ψ)|0〉 =
1

Z

∫

DU Φ[U ] detM [U ] e−Sg [U ]. (3.106)

Due to the high dimensionality of the integral over DU we must use Monte Carlo methods.

We generate a set of statistically independent gauge configurations, Ui. For each one, we

calculate the integrand, and sum them to obtain a reliable estimate of the integral. The

available space of the integral is very large, and only a small subset provides a significant

contribution. If we were to randomly sample the entire space, the integral would not converge

with an accessible number of gauge configurations. Through a technique known as importance
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sampling, we choose the gauge configurations according to the probability distribution

P [U ] ∝ detM [U ]e−Sg [U ]. (3.107)

Importance sampling allows the Monte Carlo integral to converge significantly faster, which

is critical to the viability of the method. Additional details of how the gauge configurations

are generated according to Eq. (3.107) are given in Section 4.2.

Due to the large size of M , which has rank 12L4 (4 spins × 3 colors × L4 lattice sites),

calculating the determinant quickly becomes prohibitively expensive as the size L of the lattice

increases. It is therefore tempting to make the approximation detM = 1. This approximation,

called the quenched approximation, effectively ignores the effects of sea quarks by preventing

gluons from splitting into quark-antiquark pairs. In previous calculations, quenching was re-

quired due to computational limitations. However, the approximation is an uncontrolled one

(it cannot be systematically improved). It was observed that quenched calculations has ∼ 20%

errors when compared to experiment. This work does not use the quenched approximation

— we use the techniques described in Section 3.4 and gauge configurations produced using

advanced algorithms [28, 46] to speed up the calculation. Additionally, advances in comput-

ing following Moore’s Law [47] have allowed us to dramatically increase our computational

resources.

For the case of the quark propagator, we must use Eq. (B.8) instead:

∫

DψDψ ψψ e−ψMψ = M−1 detM . (3.108)

The quark propagator is then

〈ψ(x)ψ(y)〉 =
1

Z

∫

DU(detM)M−1
xy [U ] e−Sg [U ]. (3.109)

Ignoring the difficulties of computing the fermion determinant, our problem is reduced to the

form ξ = M−1η, or simply the matrix equation Mξ = η. Directly taking the inverse would

require O(N 3) operations, but our matrix, by virtue of the fact that our action is ultralocal,15

15Ultralocality means the action falls off to exactly zero after a finite distance. This is a stronger requirement
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Table 3.3: Gamma-matrix structure for verious quantum states.

State JPC Operator

scalar 0++ ψψ′ or ψγ0ψ
′

pseudoscalar 0−+ ψγ5ψ
′ or ψγ0γ5ψ

′

vector 1−− ψγµψ
′ or ψγµγ0ψ

′

axial-vector 1++ ψγµγ5ψ
′

is sparse. Therefore iterative matrix inversion methods become much more efficient. We use

the minimal residual algorithm described in Appendix C.2.

Once we have constructed the quark propagator we can begin to construct hadrons. This

is done by building operators that contain the proper quantum numbers. A state with J = 0

or 1 can be built using the structure

χ(x) = ψ(x)Γψ′(x), (3.110)

where ψ and ψ′ could represent different quark flavors. Table 3.3 lists some possible states.

3.5.1 Hadron Spectra

Finally, we are prepared to extract physical quantities. In general, the hadron propagators we

build will contain information not only of the ground state, but also of all excited states that

satisfy the specified quantum numbers and quark content. It is therefore necessary to extract

only the information wanted [48]. Consider the example of extracting the ηc mass. We may

write the correlation function as

〈Gηc(x, y)〉 = 〈Tχηc(x)χ
†
ηc

(y)〉 (3.111)

where T denotes time ordering. We can write the ηc propagator in terms of quark propagators

as

〈Gηc(x, y)〉 =
1

Z

∫

DU detM [U ]M−1
yx [U ]γ5M−1

xy [U ]γ5e−Sg [U ]. (3.112)

than locality, which only requires exponential falloff.
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In general, any hadron propagator can be written as a product of quark propagators in a

gauge-field background. If we Fourier transform to momentum space and project out a specific

3-momentum p, we can show that

Gηc(p, t) =
∑

x

eip·x〈Gηc(x, 0)〉

=
∑

n

Z2
ne

−Ent, (3.113)

where Zn = 〈0|χηc |n〉 is the matrix element giving the overlap of the operator χηc(x) with state

n. Here the sum is over all states n that have the same quantum numbers as the hadron in

question (in this case, the ηc). At large times t, the higher energy states will be exponentially

suppressed, so the ground state will dominate. The rate of exponential falloff of Gηc(p = 0, t)

at large times therefore gives us E0 = amηc , the ηc mass in lattice-spacing units.

Excited states can be found as well, by fitting a correlation function to multiple states

and projecting out the desired state [49, 50]. Because the propagator is dominated by the

ground state exponential, the determination of excited states requires more configurations

in the Monte Carlo calculation for statistical significance. The above method can also be

extended to the use of three-point functions.

The above assumes that the two quarks in the meson are both generated using the clover

action for heavy quarks. When we create mesons that include a light quark, we use the näıve

action for the light quark. As explained in Section 3.3, the näıve action suffers from the

doubling problem. The result is 16 different tastes of a fermion, and the possibility of taste-

changing interactions. This taste symmetry is ψ → (iγµγ5)(−1)µψ. The spatial components

lead to mesons which are much higher in energy, and therefore can be ignored. When the

temporal component is applied to the light quark of a meson we find a second meson:

Ψhγ5ψ → Ψhγ5(iγ0γ5)(−1)tψ = iΨhγ0ψ(−1)t. (3.114)

In the end, this means that each meson involving a light quark is accompanied by its parity
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partner, which appears as an oscillating state in the meson propagator:

Gηc(p, t) =
∑

n

Z2
ne

−Ent +
∑

m

Z2
m(−1)te−Emt (3.115)

where I have used scripted letters to indicate the parity partner energy and matrix element.

The spatial doublers don’t contribute, however, as such a state would have high physical

momentum, and therefore be very energetic. The contribution from such states enters the

meson correlation functions with an energy splitting ∆E ∼ O(1/(Ma2)) [51, Appendix A], so

we do not need to take them into account. They could also affect low-energy states through

loops, but the effect is comparable to the O(αsa
2) error of the asqtad action, and can also be

ignored.

3.5.2 Decay Constants

In the case of the Ds or D meson, there is the possibility of leptonic decay, where the quarks

annihilate to a W which subsequently decays to leptons (see Figure 2.6). This decay is

determined, in part, by the relevant CKM and hadronic matrix element (Vcs for Ds decay;

Vcd for D decay). We would therefore like to determine the decay constants, fDs and fD.

To extract the decay constant, we annihilate the meson propagator with an axial-vector

current, as in the correlation function:

〈GA4−ηc(x, y)〉 = 〈TχA4
(x)χ†

ηc
(y)〉. (3.116)

The A4 current is the lattice representation of a coupling to the axial-vector W boson. The

resulting propagator describes a particle with the energy of the meson, but with a coefficient

related to the decay constant. We then fit

GA4−ηc(p, t) =
∑

n

Z
(n)
A4
Z

(n)
Ds
e−Ent. (3.117)

Here ZA4
= 〈0|A4|Ds〉 and ZDs = 〈Ds|s̄γ5c|0〉. Using our knowledge of the ZDs coefficient

from Eq. (3.113), we can isolate ZA4
, which is proportional to the decay constant, fDs .
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3.6 Gold-Plated Quantities

Some quantities are “easy” to compute on the lattice. In particular, lattice QCD should

be able to provide accurate predictions for heavy quark physics, because the non-relativistic

quarks can be rapidly calculated. The Fermilab and UKQCD collaborations are using different

methods to simulate the heavy quarks, which provides an internal cross-check on any results.

In addition to the spectra for charmonium and bottomonium, we should be able to calculate

the B and D meson decay constants, mixing amplitudes, and semileptonic form factors. These

quantities test the validity of the fourth-root trick used by the staggered action to simulate

light quarks. In addition, they test our ability to perform chiral extrapolations. We refer to

this set of quantities as “gold-plated”, as they are the easiest, and most important, quantities.

Such quantities provide a critical first test of lattice QCD — demonstration of our ability

to successfully predict these quantities is a requirement if we are to have any confidence in

future lattice predictions. This work studies charmonium and the Ds and D systems as a

proving-ground of lattice techniques. We can combine our results with those of others who

study the b-quark systems to obtain a more general test [32].
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Chapter 4

Methodology

4.1 Computational Resources

The branch of computational physics lies between theory and experiment. Our measurements

come from the computers described in this section.

4.1.1 MILC Resources

Our collaboration works closely with the MIMD1 Lattice Computation (MILC) collaboration.

They have extensive parallel programming experience and resources at many large computing

centers, including NCSA. As a result, they provide gauge configurations to a large subset of

the lattice community. This is because generation of gauge configurations takes an immense

amount of processor time [52, 53]. These gauge configurations must then be analyzed for

the particular physics that interests each group, typically on smaller clusters of computers.

Parameters of the lattice gauge configurations generated by the MILC collaboration are given

in Table 4.1.

4.1.2 FNAL Resources

The Fermilab lattice gauge theory group consists of several researchers at Fermilab and smaller

groups at UIUC and other universities. Funding through DOE grants, the SciDAC2 program,

and other sources has allowed us to purchase several computing clusters to use in the analysis

1Multiple Instruction/Multiple Data, a type of computing where many processors work on different sets of
data in parallel

2Scientific Discovery through Advanced Computing
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Table 4.1: Parameters of the lattices generated by the MILC collaboration. This analysis uses
the “coarse” ensembles.

a Lattice β # of configs
Name (fm) Size 10/g2 amu,d/ams κcrit u0 (analyzed)

163 × 48 6.503 0.0492/0.082 401
163 × 48 6.485 0.0328/0.082 331
163 × 48 6.467 0.0164/0.082 645

x
co

ar
se

0.
17

2
163 × 48 6.458 0.0082/0.0820 400

203 × 64 6.85 0.050/0.05 0.13765 0.8707 493
203 × 64 6.81 0.030/0.05 0.13772 0.8696 564 (549)
203 × 64 6.79 0.020/0.05 0.13781 0.8688 484 (460)
203 × 64 6.76 0.010/0.05 0.13788 0.8677 658 (593)co

ar
se

0.
12

3

203 × 64 6.76 0.007/0.05 493 (403)
243 × 64 6.76 0.005/0.05 197 (136)

283 × 96 7.11 0.0124/0.031 0.13717 0.8788 527 (261)

fi
n
e

0.
08

9

283 × 96 7.09 0.0062/0.031 0.13720 0.8782 592 (472)

of the MILC gauge configurations.

ACPMAPS

The first major undertaking, in 1989, was acpmaps.3 This was a home-built supercomputer

designed and constructed at Fermilab. The foundation was the Intel i860 processor [55]. In

total, the machine contained several hundred processors. In addition, a parallel processing

language, Canopy, was written as a layer on top of C to take advantage of the hardware. This

machine was decommissioned in 2003, when it was deemed no longer worth the space and

power it consumed, having been obsoleted by PC clusters.

QCD80 Cluster

Beginning in late 1993, the concept of a beowulf cluster was introduced. In essence, the goal

was to combine Commodity Off-The-Shelf (COTS) computers and network them together. It

was hoped that this would provide a cheap alternative to groups that require the power of a

supercomputer, but don’t have the funds to purchase one. Over the next few years, the idea

gained support from the computing community, and matured to the point that it has replaced

supercomputers for applications that scale well with limited communication. (Supercomputers

3The Fermilab Advanced Computer Program MultiArray Processor System [54].
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are still required for shared-memory applications.)

After experimenting with an 8-node cluster in 1999, we obtained an 80-node cluster in 2001.

The machines were dual Pentium 3 processors running at 700MHz. They were interconnected

via Myrinet, a low-latency transport designed by Myricom specifically for clustered computing.

LQCD Clusters

The success of the 80-node cluster encouraged us to purchase a 128-node cluster in late 2002.

This cluster contained dual Pentium 4 processors running at 2.0GHz on a 400MHz FSB. An

upgrade in 2003 added another 128 nodes of dual P4’s, these running at 2.4GHz. We have

just purchased a 256-node cluster of single-processor P4’s, each with 1GB of RAM. These

machines are currently being added to the cluster using an Infiniband interconnect.

Other Projects

Despite the successes of beowulf clusters, it is important to note that specialty machines are

still being developed. In the lattice community, the most prominent example is the QCD On

a Chip (QCDOC) project [56, 57]. Researchers at Columbia University are working with IBM

to design a small processing unit that can be interconnected on a multidimensional lattice. It

is expected that this system will produce extremely fast computations for lattice QCD, and

could also be used for other problems that are easy to define on multidimensional lattices.

The primary advantage of this approach is speed; the disadvantages are the development time

and the inability to upgrade as newer technologies become available.

4.2 Generating the Gauge Configurations

The gauge fields are generated first, with probabilities determined by Eq. (3.107). Generating

gauge fields with that distribution is extremely time-consuming, because it is a nontrivial task

to find a gauge field that produces a minimum of the action. For a practical calculation,

we require several hundred such gauge fields. We use hybrid molecular-dynamics algorithms

[28, 46] to generate the gauge fields. These algorithms work by approximating the fermions

as random noise. The fermion fields are evolved through several timesteps using a molecular
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dynamics algorithm (which is similar to a random walk, except that it allows a more rapid

movement through configuration space by increasing the likelihood of multiple steps in the

same direction). Then they are subjected to a heat bath step, which drives them towards

the minimum. By alternating between molecular dynamics steps and heat bath steps, we can

move towards, and then explore, the configuration space of gauge fields that minimizes the

action.

The simulation may be started from a “cold start” where all fields are set to unity, or

from a “warm start” where they are set randomly. Either way, the fields must be evolved for

several timesteps (a period called “warming”) to bring them into the region that minimizes the

action. Once there, we can start selecting gauge-field configurations for use in our Monte Carlo

integral. Because each configuration is generated by modifying the previous one the resulting

configurations are highly correlated. An analysis of the correlation length indicates that we

should only save every sixth configuration that is generated. (We will later perform a more

careful analysis of the correlations to ensure they do not influence our results.) A simulation

will be run for a particular value of the lattice size, gauge coupling, and sea quark masses

until we have collected ∼ 500 gauge configurations. Parameters of the gauge configurations

produced by the MILC collaboration are listed in Table 4.1.

4.3 Obtaining Physical Results

Section 3.5 showed how we compute the lattice quark propagators, and combine them together

to form hadrons. Once we have our meson propagators we must extract physical results.

This is done by recognizing that a propagator falls off exponentially, with the exponential

determined by the energy of the meson. Recall that the our meson propagators only specify

the quark content and whether the meson is a vector, pseudoscalar, etc., not the specific energy

level. The meson propagators, therefore, contain all possible energy levels (cf. Eq. (3.113)):

G(t) =

∞
∑

n=0

Z2
ne

−Ent. (4.1)
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Of course, on the lattice we have periodic boundary conditions, so this must be generalized to

G(t) =

∞
∑

n=0

Z2
n

(

e−Ent + e−En(T−t)
)

. (4.2)

When attempting to extract information about a specific state, it would be helpful to

enhance the wavefunction contributing to that state. To do so, we use a smearing of the

quark content over several lattice sites, weighted by the expected wavefunction of the state, as

predicted by potential models. The trivial smearing is not a smearing at all, but rather a local

operator implemented by the δ-function. That operator has no preference for any particular

state — all states are included with approximately equal weight. If we wish to select a 1S

state, we can do so with the smearing

ψ1S(x, t) =
∑

x,t

P1S(x, t)ψ(x, t) (4.3)

where P1S(x, t) is the 1S wavefunction shown in Figure A.2. This will enhance the contribution

from the 1S state, while suppressing the contribution from other states [58]. We can use a

similar procedure to enhance the 2S state. In this work we did not use a 1P smearing — such

a smearing is being developed for future analyses. In a given analysis, we might use the δ, 1S,

and 2S smearings to enhance the signal-to-noise ratio for the state we’re trying to observe. In

the most general case, we can use different smearings for the source and sink (the two ends of

the hadron propagator). Therefore, we modify the form of our propagator to:

Gsrc,snk(t) =
∑

n

Z(n)
src Z

(n)
snk

(

e−Ent + e−En(T−t)
)

. (4.4)

For the case of heavy-light mesons, we must consider the oscillating states in our fits, as

explained in Section 3.5.1:

Gsrc,snk(t) =
∑

n

Z(n)
src Z

(n)
snk(−1)n(t+1)

(

e−Ent + e−En(T−t)
)

. (4.5)

Our task is now to use this model function to fit to the data we have obtained for the

meson propagator. The En of the fit will correspond to meson energies (masses), while the
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Zn contain information about matrix elements. The remaining sections of this chapter will

review fitting procedures, including multidimensional fitting and constrained curvefitting. The

chapter will conclude with a summary of our planned analysis. Details of the analysis will be

given in Chapter 5.

4.4 Fitting to Non-Linear Multi-Dimensional Functions

The model function to which we fit the meson correlators is both non-linear and multi-

dimensional, making fitting difficult. A review of multi-dimensional fitting algorithms is

given in Appendix C.3; the remainder of this section will focus on changes we made to the

Marquardt-Levenberg method.

The defining characteristic of the Marquardt-Levenberg method is that it introduces a

dimensionless parameter, λ, that carries us smoothly from the region of linear convergence

(λ� 1) to a region of quadratic convergence (λ� 1). The astute reader will notice that the

scale parameter λ is dimensionless, and therefore does not have a natural scale. In particular,

the optimal value of λ may differ between the variables parametrizing our fit. To remedy

the situation, we can convert λ to a vector, λ. Rather than adjusting all of the λi in the

same way, we can increase/decrease them according to the relative weight of how much their

respective parameter had varied for that fit step. In this way, a parameter j that changes

significantly will have a greater impact on its λj than a different parameter k that changed by

an insignificant amount during that minimization step. My weighting for a parameter change

∆ is ∆/
√

∆ · ∆. Using this weighting allows the fit to converge much faster (in fewer steps)

than the standard method of keeping all λi equal. The improvement appears to be related

to the number of parameters in the fit: for 6 parameters the minimizer required 1/6 as many

steps.

Normally, one assumes convergence when the χ2 stops changing. In addition to requiring

the χ2 to stop changing, we introduce an additional fit requirement, λ� 1. This ensures that

we are in the region of quadratic convergence, and did not simply take a step that did not

change the χ2. We also require the magnitude of the gradient at the minimum to be small.

While this is not required to obtain a result within the Hessian errors of the method, it is

55



helpful to obtain more precise minima for use in a bootstrap analysis.4

4.5 Constrained Curvefitting

In our case, we don’t know how many energy levels are needed in the fit. The required balance

between a general model function without introducing too much freedom makes it difficult to

obtain good fits.

In the past, it was commonplace to vary the minimum and maximum timeslices of the

data, and the number of energy levels in the model function, and look for a region of stability

in the results. This was a tricky procedure, because of the following constraints:

• Nstates must be large enough to include excited states in the data, but not large enough

to allow the fit parameters to wander to unphysical values

• tmin must be large enough to exclude excited states, but not reduce the signal

• tmax must be small enough to exclude the noise, but not reduce the signal

This work overcomes these limitations by using constrained curvefitting.

Traditional fitting methods utilize a few parameters that are allowed to take on any value.

This can cause problems when the data does not sufficiently constrain the parameters to

physical values. As an extreme example, consider the case where we expect our data to fall

on the sum of two lines:

y = (ax+ b) + (a′x+ b′) (4.6)

It is easy to see that the data can only constrain the sums a + a′ and b + b′, and not the

individual parameters. A fitter would get lost trying to find the “correct” solution. While

this is an extreme case, it is not significantly different from a case where the model function

may be analytically well defined (no redundant directions) but have redundant directions to

machine precision. Guarding against such runaway solutions is therefore a general problem.

Because we have some prior knowledge of what the physical values can be, it is possible to

guide the fitter to the correct solution. For example, consider the case where we expect that

4The bootstrap analysis is explained in Section 5.1.2.
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some set of parameters an will be centered about ãn with width σ̃an . We could then augment

our χ2 function to contain our prior knowledge:

χ2 → χ2
aug ≡ χ2 + χ2

prior (4.7)

where

χ2
prior ≡

∑

n

(an − ãn)
2

σ̃2
an

. (4.8)

The additions to the χ2 cause the fit to favor values with an = ãn ± σ̃an .

Our current goal is to fit a meson correlator to a sum of several states. If we use a

constrained fitting technique, the data will provide strong constraints over the lowest states,

while the priors will prevent the fitter from getting lost in the parameter-space allowed by the

highly-excited states. In this way, we can perform successful fits regardless of the quality of

the data, or of the number of states we allow.

One can think of traditional fitting (without priors) as a special case of constrained fitting.

Unconstrained fitting is equivalent to having infinitely wide priors for the first few parameters

and infinitely narrow priors for all other parameters. In our case, it would correspond to per-

forming a fit to only one or two energy levels, and setting all higher excitations to exactly zero.

Because one cannot justify setting infinitely narrow priors for some parameters, traditional

fitting has an infinite systematic error. The use of constrained fitting therefore helps us keep

our systematic errors under control [59, 60].

4.5.1 Testing the Priors

In the case of our model function, it is easy to see that the first few energy levels are likely to be

well-determined by the data, while higher energy levels could be lost in the noise. Constrained

curvefitting allows us to obtain sensible results for all parameters, but it is important to

determine exactly what part of those results is determined from the data, and what part is

determined by the priors. A straightforward way to see the effects of the priors is to modify

them, and see how the fit results change. If, for example, we double the prior width, and the

error on the fit doubles, then it was likely only constrained by the prior. If, on the other hand,
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the fit stays constant, then it must be independent of the prior choice.

We can conduct a similar test to see how many energy levels to include in the fit. In the

case of too-few energy levels, adding an additional level will affect previous results, since they

suffered from excited-state contamination. Once enough energy levels have been included in

the fit, however, adding more will not change the fit results.

4.6 Extracting Physics

At the end of the day, our goal is to obtain measurements that can be compared to experiment.

Our results take the form of splittings, kinetic masses, and decay constants.

4.6.1 Splittings

Splittings between meson masses are the simplest of our results. As described above, we

calculate spectra of mesons satisfying the given quantum numbers. These spectra are in

lattice units (a = 1) — hadron masses are calculated as aM . Conversion to physical units

requires us to determine the lattice spacing, a. One way to do this is to use some of our results

as inputs, and use experimental results to set the scale. A concrete example will be given in

Chapter 5.

This is not adding an extra parameter to QCD — lattice QCD has exactly the same

number of free parameters as QCD. All we are doing here is determining one of the available

free parameters, just as must be done in QCD. In this case, the lattice spacing a corresponds

to the strong coupling constant, αs.

4.6.2 Kinetic Masses

Experimentalists don’t usually measure mass splittings, but rather absolute masses. It is

therefore helpful for us to calculate the masses of various mesons. It is the kinetic mass,

M2, that we compare to experiment (see §3.3.1); we obtain it by varying the momentum and

performing a fit to Eq. (3.44). For mass splittings, we can obtain the most accurate results

by using the M1 values. The higher-order terms are used to allow us to carry out the fits to

high momentum, and to measure any violation of rotational symmetry.
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4.7 Summary of Fitting Procedure

Before delving into the details of the fits, it is helpful to outline our goals, and the path we

plan to take to achieve them.

4.7.1 Goals

For this project, we will be investigating stable mesons containing a charm quark. The quark

content of the study will therefore be charm-charm, charm-strange, or charm-light (where light

can refer to either an up or down quark). We will be interested in the meson spectroscopy

and, in the case of the heavy-light mesons, the decay constants. In order to provide the most

accurate results, it will be useful to describe the spectrosopy both in terms of splittings and

in terms of an absolute scale. Our primary focus will be to estimate (and control) all sources

of systematic error.

4.7.2 Plan of Attack

Because high accuracy is our goal, we will need to take a meandering path through the calcu-

lation. This is because different calculations are expected to give the smallest uncertainties for

particular quantities. Combining results from the different meson systems also helps ensure

that our results are self-consistent across all stated quantities.

Initial Conditions

We use lattice gauge-field configurations provided by the MILC collaboration. The configura-

tions vary the lattice spacing, size of the lattice, and masses of the light quarks (see Table 4.1).

The mass of the strange quark on these lattices is known (from kaon fits), and we use their

rough estimate of the lattice spacings as a starting guess for our own measurements. Building

from these basic blocks it is possible to perform an analysis of all systematic errors.

Charmonium Gives a−1

The first step of the calculation will involve determining the charmonium spectrum in terms

of mass splittings. Because the cc̄ splittings depend mostly on light-quark physics, the tuning
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of the charm-quark mass is not critical here. We can obtain results for the rest masses (M1

in Eq. (3.44)) which, though incorrect5, share a constant offset within each system. The mass

splittings are therefore expected to be quite accurate. The dominant error of our heavy quark

action is caused by the clover term, which introduces O(αsa) discretization errors. The spatial

component of the clover term σµνFµν corresponds to σ · B in the continuum, which gives rise

to the hyperfine splitting. We can therefore eliminate the O(αsa) errors introduced by this

term by spin-averaging the S-wave states as

m1S ≡ 1

4

(

mηc + 3mJ/ψ

)

. (4.9)

Furthermore, some O(a2) discretization errors also cancel in the spin-average.

A determination of the lattice spacing (necessary to calibrate our results) requires a single

mass splitting (to set the scale). There are two obvious candidates:

• Use the splitting between the m2S ≡ 1
4

(

mη′c + 3mψ′

)

and the 1S. A potential concern is

that the η′c and the ψ′ are very close to the DD̄ threshhold (see Figure 2.1), and therefore

we expect that threshhold effects might contaminate our results for those particles.

• Use the splitting between the m1P ≡ 1
9 (mχc0

+ 3mχc1
+ 5mχc2

) and the 1S. Because

we don’t currently have a lattice calculation of the χc2 state6, we instead use the hc

alone to determine 1P . To date, the hc has only been observed by one experiment. Its

“unconfirmed” status makes it somewhat risky to use as a calibration. However, the

observed mass mhc
= 3526 MeV is consistent with expectations:

m1P ≡ 1

9
(mχc0

+ 3mχc1
+ 5mχc2

)

≈ 1

9
(3415 MeV + 3 · 3511 MeV + 5 · 3556 MeV)

≈ 3525 MeV. (4.10)

Because the hc mass is consistent with expectations, we cautiously use it to set the scale of

our calculation. Comparisons with lattice spacings determined from the 2S − 1S splitting,

5See the discussion on our usage of M1 and M2 on page 27.
6The calculation of the χc2 is in progress.
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as well as lattice spacings determined by other groups, will be used as a cross-check on our

results.

Because simulations at the physical light-quark mass would be prohibitively expensive, all

simulations are performed at heavier masses in the range ms/10 ≤ ml < ms. To compare

with experiment, it is therefore necessary to perform an extrapolation down to the physical

light quark mass, ml ≈ ms/25. The dependence on msea is mild, and we therefore simply fit

to a constant or linear function.

Ds Gives mc

At this point, we still do not have a properly-tuned charm-quark mass. This is intentional,

as the charm quark mass can be tuned more accurately using the Ds than with charmonium.

We can compute the kinetic mass (M2 in Eq. (3.44)), which can be compared directly to the

experimentally-measured mass of the Ds. Because we already know the strange-quark mass in

lattice units (from MILC’s kaon results) and the lattice spacing (from the charmonium 1P−1S

splitting), this comparison allows us to tune the only remaining parameter: the charm-quark

mass mc. Again, the dependence on msea is mild.

In practice, we adjust the parameter κ, which is related to mc through Eq. (3.36):

am0 =
1

u0

[

1

2κ
− 1

2κcrit

]

(4.11)

where the 1/u0 provides tadpole improvement. Values of κcrit for each lattice are listed in

Table 4.1. The tuning selects 0 < κcharm < κcrit where κ ≈ 0 corresponds to an infinite bare

mass and κ ≈ κcrit corresponds to a massless particle.

We can use this charm-quark mass to re-investigate the charmonium spectrum to obtain

an absolute offset for comparison with experiment. Also, we can use the Ds results to obtain

information about the Ds decay constant fDs .

Chiral Extrapolation

Once the lattice spacing a and the charm quark mass mc have been determined, all other

quantities are predictions. The D system, however, introduces an additional complication: we
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must extrapolate in both msea and mval. In the limit mu,d → 0 QCD has a chiral symmetry.

An effective theory which describes this symmetry is chiral perturbation theory (χPT). It is

a well-tested theory, so we may use it to guide our extrapolation to the light quark mass.

We will also use it when interpolating to the physical strange quark mass (the strange quark

mass used in our calculations has some error, which we want to remove). Lattice χPT has

some additional complications. For example, we will work in a “partially quenched” theory,

where the mass of the sea quarks does not necessarily equal the mass of the valence quarks.

This is possible on the lattice because the sea quarks correspond to the detMsea term while

the valence quarks correspond to the M−1
val term. By using Msea 6= Mval we can easily achieve

partial quenching. Additional complications arise from the staggering of the sea quarks, and

the taste doubling of the näıve valence quark. These issues are discussed in Appendix E.

Investigation of the D decay constant fD is also possible, but likewise will require a com-

plicated chiral extrapolation.

4.8 Systematic Errors: Estimation or Removal

As with any measurement, we must estimate, and hopefully remove, any systematic errors.

Previous work in lattice QCD was performed under the quenched approximation, where sea

quark effects were ignored. It was estimated that the quenched approximation led to 20%

errors. This work does not make that approximation, but we still have to consider the effects

of several other approximations.

4.8.1 Finite Lattice-Spacing Errors

The most obvious approximation is that we discretize space-time on a lattice with a finite

lattice spacing, a. It has been estimated that the computational complexity increases as a−7

[61] (a−4 comes from the size of the lattice, a−2 from the fermion determinant, and a power of

a−1 that accompanies fermion masses). If we are to obtain results valid in the continuum, we

must have control over these lattice spacing errors. As described in Section 3.4 this control is

most efficiently obtained by using improved actions. Even with the improved actions, however,

we must test our results on several lattice-spacings to guard against lattice-spacing effects.
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4.8.2 Finite Volume Effects

Another problem is that we are working in a finite box. We use periodic boundary conditions,

but if the box isn’t large enough (relative to the size of the hadron we are investigating)

then there will be some effect. The solution to this is fairly simple: we increase the size of

the box. Of course, working in four space-time dimensions means any increase in size gets

raised to the fourth power (in reality the computational complexity scales as L5 [61]), so we

can’t completely eliminate these effects. The goal, therefore, is to reduce them until they

are comparable to the statistical uncertainties. It is also helpful to take the periodicity into

account when performing our analysis, hence the usage of a hyperbolic above, rather than a

simple exponential.

4.8.3 Violation of the Chiral Limit

Recall that our algorithm requires us to compute the inverse of the fermion matrix for valence

quarks, and the determinant of the fermion matrix for sea quarks. As the quarks become

lighter, the condition number of the matrix increases, indicating it is closer to being singular.

As explained in Appendix C.1, the computational effort required to calculate the inverse or

determinant of a matrix increases with its condition number. It is therefore computationally

expensive to simulate light quarks, with a complexity that increases as
(

mπ

mρ

)−6
. We are forced

to use light quarks that are heavier than their physical values, but light enough to allow for an

accurate chiral perturbation theory (χPT) to be used. In practice, we use light quark masses

in the range ms/10 ≤ m ≤ ms and extrapolate to the physical light quark mass.
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Chapter 5

Fitting Procedure in Detail

5.1 Preparation: Statistical and Numerical Techniques

Before analyzing data, it is helpful to review some of the statistical techniques we will be

using.

5.1.1 Jackknife Method

Because it is a sum of exponentials, our model function implicitly assumes that the meson

propagator is positive at every timeslice. Statistical fluctuations in the data, however, can

cause individual propagators to fluctuate negative on occasion. This is real, if nonphysical,

aspect of the raw data. To prevent situations like this from affecting our results, we use a

technique called the jackknife method. The jackknife method also gives a better estimate of

errors for correlated input.

In standard statistics, the mean and variance are computed using the data taken one

point at a time. Under the jackknife method, the inverse is done: the mean and variance are

computed using all of the data except one point at a time. By doing this, we avoid situations

where an individual point may fluctuate negative while the average is positive.

It is immediately obvious that the calculation of the mean need not change using this

method. The correlation matrix, however, changes from being computed as

σ2
i,j =

N
∑

n=1

(x̄i − xi,n)(x̄j − xj,n)

N(N − 1)
(5.1)
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to

σ2
i,j =

N − 1

N

N
∑

n=1



x̄i −
1

N − 1

∑

m6=n
xi,m







x̄j −
1

N − 1

∑

m6=n
xj,m



 (5.2)

=
N − 1

N

N
∑

n=1

(

x̄i −
Nx̄i − xi,n
N − 1

)(

x̄j −
Nx̄j − xj,n
N − 1

)

(5.3)

5.1.2 Statistical Uncertainties

Errorbars are supposed to give a confidence interval. Assuming Gaussian errors, an errorbar

of 1σ gives a 68% confidence bound. In our case, however, the errors may not be Gaussian,

which complicates our statement of statistical uncertainties. There are three methods we can

use to determine these uncertainties: chi-squared, hessian, and bootstrap.

Chi-Squared Errorbars

Most scientific work specifies errorbars to indicate the 1σ, or 68% confidence bound, of the

result. The most precise way to determine this bound is to map out the locus of all points

which increase the χ2 of the fit by unity from the minimum. This is typically easy in a one-

dimensional fit, but becomes computationally expensive in a multidimensional fit. As a result,

this method is rarely used to determine statistical uncertainties.

Hessian Errorbars

If Gaussian errors can be assumed, then a nice trick is to quote errorbars based on the

Hessian matrix of the χ2 function. The Hessian matrix provides second derivatives of the χ2,

which means its diagonal provides the curvature of the χ2 function in the direction of each

variable. Approximating the χ2 as a parabola in each direction, we can therefore construct

the appropriate bounds for our errorbars. This method has the advantage of being very fast

and easy, but the disadvantage of requiring the assumption of Gaussian uncertainties.
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Bootstrap Errorbars

We are fitting to a high-dimensional model function, and do not have the guarantee of Gaussian

uncertainties, so we use the bootstrap method. To construct the errorbars, we repeat the fit

multiple times (on slightly different data sets) and quote an error based on the variation in

fitted parameters.

Obviously the fits need to be done to different datasets, but we have a very limited set of

data. The solution is to generate new datasets from the existing data, with the distribution

of the existing data. Consider the case where we have N data points, xi. We construct a set

of data by randomly selecting N of those points, with replacement. This new “bootstrap”

dataset has all the statistical properties of the original dataset.

Once we have all the bootstrap datasets we calculate their best-fit parameters. The pa-

rameters are then sorted to construct an errorbar. The central value is taken to be the fit

result from the bootstrap dataset which includes each data point exactly once. The errors

come from the inclusion of 68% of the fit results.

When performing a constrained fit, the priors are an input, just like the data is. When

constructing our bootstrap samples it therefore makes sense to adjust the priors as well. This

is done by adjusting them within each prior’s width, using Gaussian statistics.

A Real-World Example

It is instructive to look at the differences in errorbars for a real-world situation. I show a slice

through the parameter-space in Figure 5.1. One can see from the figure that hessian errors

can be quite unreliable, especially in a case where the minimum is asymmetric. The figure

also shows how priors can be useful to assist the fitter in locating the minimum for cases where

there may be a fairly large plateau in the χ2 landscape. Without the priors, the fitter would

not have been able to determine which direction was downhill if it wandered into the region

logZ < −4. With the addition of the priors, however, that is not a problem. Of course, once

the true minimum is located, the priors have neglegible effect on the fit result.
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Figure 5.1: Example of the effect of priors and different types of errorbars, for the case of a
coefficient. The red curve indicates the contribution to the χ2 from the priors, while the blue
curve gives the contribution from data. The black curve is their sum, and is the function that
is minimized. The green square has height 1 (to show where a true χ2 errorbar should lie)
and width determined by the hessian errorbar.

5.1.3 Correlations and Blocking

One concern is that of correlations in the data skewing our results. It is necessary to check

for, and eliminate, any correlations. A simple way to do this is by “blocking” the data. This

is done by taking consecutive data points and averaging them in blocks of 2, 3, etc. Increasing

the block size reduces the effect of correlations from one block to the next, but reduces the

number of blocks, and therefore the statistical significance of the final result. If the data is

highly correlated, doubling the block size will increase the error bars by roughly a factor of
√

2. We can therefore try a few block sizes to eliminate correlations (and confirm that they

are gone).

5.1.4 Automatic Differentiation

As previously mentioned, we use the Levenberg-Marquardt method for our fits. As a tradeoff

for the efficiency of this method, it is necessary to have the derivative of the model function

with respect to each parameter. For simple model functions this is not an issue, but in our case

the model functions are sufficiently complex that obtaining the vector of derivatives is a non-
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trivial task. The difficulty of programming a derivative functional is further complicated by the

fact that we do not know until runtime the dimension of our problem — the number of energy

levels and coefficients. The fitting process requires us to vary the number of parameters to

watch for bias. Computer routines defining the derivative of our model function can therefore

be extremely complicated, and therefore highly error-prone. As a result, initial testing of a

model function proved very tedious, as can be seen in Appendix D.

As the project progressed, we found it useful to try new model functions to see if they

could provide tighter constraints on the fit parameters. For the purposes of rapidly testing

new model functions, it was therefore useful to find an automated way to obtain the derivative

functions. The chosen method is based on that of Wengert [62]. In this method, each variable

is taken to consist of two components: a value and a derivative. The number 5 might be

represented as (5, 0), and the variable x as (x, 1). More complicated expressions can be built

up by teaching the computer about the chain rule. For example, we teach the computer that

der(xy) ≡ val(x)der(y) + der(x)val(y), (5.4)

and that

der(cosh(x)) ≡ val(sinh(val(x)))der(x). (5.5)

The computer then can already handle something simple, such as the derivative of 5 cosh(x).

It proceeds as follows:

der(5 cosh(x)) = val(5)der(cosh(x) + der(5)val(cosh(x)) (5.6)

= 5val(sinh(val(x)))der(x) (5.7)

= 5 sinh(x) (5.8)

It is easy to see that by defining just a few expressions we can teach the computer to auto-

matically differentiate any model function we might require.

While useful for prototyping new model functions, the automatic differentiation does not

completely replace the need to program up explicit derivative functions. Some simple tests

68



showed that automatic differentiation runs about 12 times slower than a pre-programmed

derivative. For production running, therefore, hand-coded derivatives are still best. Those

functions can be tested against the results of the automated derivatives to ensure correctness.

5.2 Problems and Solutions

Constrained fitting, while providing better control over systematic errors, is not without its

drawbacks. We still have to specify a model function (and its derivative) and estimate errors.

The constrained fits make error estimation slightly more complicated, since the possibility

of over-constrained priors must be considered. Furthermore, we had trouble with statistical

fluctuations causing bad fits, and had to find ways to eliminate them. Specific examples of

these problems, and how we overcame them, will be given in the following sections.

5.3 Charmonium Gives a−1

The first step of the plan outlined in Section 4.7.2 is to study charmonium. We tie together

two charm quark propagators to obtain charmonium propagators. From these propagators we

hope to extract mass splittings in the charmonium spectrum. We can also use propagators

at p 6= 0, combined with the energy-momentum relation, to determine the kinetic masses of

these mesons. That step, however, will need to wait until we have tuned the charm-quark

mass.

5.3.1 The Model Function

The basic equation we want to model is Eq. (4.4):

Gsrc,snk(t) =
∑

n

Z(n)
src Z

(n)
snk

(

e−Ent + e−En(T−t)
)

. (5.9)

Of course, we know various things about the energies, such as the obvious fact that energies

are ordered. We can eliminate a lot of redundancy in the fit parameters by forcing the energies
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to take on a specific order by specifying not the energies, but the splittings. We therefore write

E1 = E0 + eε1

E2 = E1 + eε2 (5.10)

E3 = E2 + eε3

...

where our fit parameters are E0 and the εi.
1

Some other changes can be made to the model function as well. The sum of exponentials

is difficult for the computer to handle, since for t 6= T/2 they will be of vastly different scales,

and therefore subject to roundoff errors due to numeric underflow. To reduce such errors it is

helpful to recognize that

exp(a+ b) + exp(a− b) = 2 exp(a) cosh(b) (5.11)

which has the advantage that it avoids roundoff errors.

5.3.2 Effective Mass

Many of the fit parameters can be estimated in advance, and used to set priors for the fits.

For example, we know from other analyses that our lattice spacings are a−1 ≈ 1.6 GeV. We

can combine our knowledge of the approximate lattice spacing with our knowledge of the scale

of mass splittings (using experimental inputs for those which have been observed, or assuming

O(ΛQCD)) to construct priors for the energy splittings. We can also expect that coefficients

are O(1). One parameter, the ground state energy, cannot be guessed. This is because the

rest mass M1 in the dispersion relation (Eq. (3.44)) has an offset that is not directly related

to any physical parameter.

To get a starting guess for the ground state, we take advantage of the fact that the fits

fall off exponentially, with the ground state having the slowest decay. We can therefore look

1 Note that an alternative method to specify the splittings is via ε2i . Our method of using an exponential
has the advantage of allowing the range in the positive direction to be larger than the range in the negative
direction, which gives more meaning to specifying an energy splitting to within 50%.
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Figure 5.2: (a) Effective mass plot for the local-local smearing of the pion state of charmonium
on a .01/.05 lattice. (b) A magnification of the same plot.

at the exponential decay and pick out the leading exponential. A convenient way to do this

is plot the “effective mass” of consecutive timeslices. Assume the decay falls off as a single

exponential. Then

G(t) = exp(−Meff t). (5.12)

Comparing consecutive timeslices, we find

G(t+ 1) = exp(−Meff t) exp(−Meff) (5.13)

and therefore we can solve:

Meff = log(G(t)/G(t + 1)). (5.14)

I show a sample effective mass plot in Figure 5.2. The important characteristic of this plot

is that it levels off after the first few timeslices, since the excited-state exponentials have died

off. The plateau therefore gives us a reasonable guess of the ground state energy — in this

case 1.64. We repeat this process for each dataset in order to obtain a reasonable estimate of

the ground state energy.

It is worth noting that this is essentially the same as performing a fit to a single exponential,

with the advantage that it allows us to quickly identify both a reasonable timeslice range and
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Figure 5.3: (a) Effective mass plot for the 1S-1S smearing of the pion state of charmonium
on a .01/.05 lattice. (b) A magnification of the same plot. Note the plateau is much longer
than that of Figure 5.2.

the fit result.

5.3.3 Local, 1S, and 2S Smearings

In the previous section, we identified the plateau of the effective mass plot as the energy of

the ground state. But it is clear from Figure 5.2 that the plateau is contaminated, at early

timeslices, by the excited states. The usable portion is therefore reduced to later timeslices,

where the signal-to-noise ratio is diminished. In the standard δ-function smearing, there is a

contribution from all energy levels. By spatially smearing the meson propagator wavefunction

(using the wavefunctions calculated in Figure A.2) we can enhance the contribution from the

desired state. For example, using a 1S-1S smearing changes Figure 5.2 to have a much larger

plateau, as seen in Figure 5.3. The tradeoff is that there is a bit more noise. Similarly, one

can enhance the excited-state contribution by using a 2S smearing, or a P -wave state using

the 1P smearing.

5.3.4 Chaining Procedure for Starting Values

One of the problems with multidimensional fitting is that the final fit result can depend on

the starting guess. This is a direct result of the fact that the parameter phase space is large,
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and often too complex to be guaranteed to find the global minimum simply by following a

method of steepest descent. It is helpful, therefore, to start as close as possible to the correct

solution.

Obviously, if we knew the correct solution in advance, we wouldn’t need a fitter, and

experience shows that even setting priors does not always sufficiently constrain the starting

guess. We recognize, however, that it is much easier to find the true minimum when we

perform fits with fewer parameters. We can therefore run a chain of fits where we add a single

energy level at each link in the chain, and use the results of the previous fit as the starting

guess. The starting guess for the first fit simply comes from our priors. It is important to

note that the priors of subsequent fits are not adjusted — the priors encode our bias before

beginning the fitting procedure, and do not change once we have seen the data.

This method has proven to work fairly well, but can lead to problems if one of the fits in

the chain happens to be a poor fit. Subsequent fits will then be given a poor starting guess,

and may find a local minimum, rather than the global minimum. It is therefore important to

keep an eye on the fitting procedure, rather than fully automating it.

5.3.5 Setting the Priors

The priors must be treated very carefully to avoid introducing any bias into the fit results.

Ideally, the priors will have negligible effect on the fit at the true minimum — their purpose

is only to prevent the fitter from wandering into a non-physical region of parameter space.

However, the priors for highly excited states may (and should) directly affect the results. It

is therefore important to learn to recognize when the priors are affecting the data so we can

determine which results depend only on the data, and which are affected by the priors.

A simple way to observe the influence is to modify the prior widths. If the width can be

changed without affecting the fit results (either central value or errorbar), then we can be

confident that the results are independent of the priors. As an example, consider a fit to the

1S-1S smearing of the ηc, shown in Figure 5.4. As the figure shows, if either the energy or

coefficient prior is too tightly constrained, the fit results will be biased. Once the constraints

are sufficiently relaxed, however, the fit will adjust to its correct value. This is highlighted by

73



Figure 5.4: A test of the effect of the priors on a one-state fit to the 1S-1S smearing of the ηc.
The horizontal axis shows log2(prior width/standard width). Figures (a) and (b) show the
energy and coefficient, respectively. In these figures, the dotted line shows the 1σ constraint
introduced by the priors, which reaches our standard value at a value of 0 on the horizontal
axis. Figure (c) shows the χ2 of each fit. The colors serve only to guide the eye between the
plots.
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Table 5.1: The priors used in the charmonium analysis. Here 1S ≡ 1
4ηc + 3

4J/ψ and 2S ≡
1
4η

′
c + 3

4ψ
′.

State E0 ∆E0 E1 −E0 ∆(E1 −E0)

pi eff. mass 1
2ηc ≈ 1.49 GeV η′c − ηc ≈ 674 MeV 1

2 (η′c − ηc) ≈ 337 MeV
ro eff. mass 1

2J/ψ ≈ 1.55 GeV ψ′ − J/ψ ≈ 589 MeV 1
2 (ψ′ − J/ψ) ≈ 295 MeV

b1 eff. mass 1
2hc ≈ 1.76 GeV 2S − 1S ≈ 610 MeV 1

2

(

2S − 1S
)

≈ 305 MeV

a0 eff. mass 1
2χc0 ≈ 1.71 GeV 2S − 1S ≈ 610 MeV 1

2

(

2S − 1S
)

≈ 305 MeV

a1 eff. mass 1
2χc1 ≈ 1.76 GeV 2S − 1S ≈ 610 MeV 1

2

(

2S − 1S
)

≈ 305 MeV

Figure 5.5: (a) A 4-state fit to the propagator of Figure 5.2. Errorbars for both the data and
the fit are plotted, but are too small to resolve. (b) The same fit, but shown with the leading
exponential removed to show the remaining terms. The fit goes up on the last timeslice due
to the periodic boundary conditions of the lattice.

Figure 5.4(c), which shows how the χ2 drops dramatically as the fit is allowed to reach the

proper solution.

For our final results, we use priors as shown in Table 5.1.

5.3.6 Initial Results

Using the techniques already described, we can obtain some initial results and evaluate whether

the fitter is working as expected. Figure 5.5 shows a sample fit. Using the chaining procedure

and fitting to different numbers of states allows us to see very clearly the utility of using

a smeared propagator. Figure 5.6 shows the fits to (a) the ηc and (b) the η′c using the δ-δ

smearing only, the 1S-1S smearing only, or the 2S-2S smearing only. Note that the 1S
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Figure 5.6: Fits to (a) the ηc and (b) the η′c. Shown are fits that used the δ-δ smearing only
(indicated by a d), the 1S-1S smearing only (S), and the 2S-2S smearing only (2).
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smearing allows us to determine the ground state very accurately, even without including

many excited states. Meanwhile, the 2S smearing accomplishes the same for the excited

state.

We can also perform combined fits to multiple smearings, using any elements of the matrix













δ-δ δ-1S δ-2S

1S-δ 1S-1S 1S-2S

2S-δ 2S-1S 2S-2S













. (5.15)

While it is tempting to simply use the entire matrix, we caution that doing so may not be the

best choice. Some entries have a poor signal-to-noise ratio, as seen in Figure 5.7. Note that

if we restrict ourselves to the diagonal of this matrix we obtain Z
(n)
src Z

(n)
snk =

(

Z(n)
)2

, and can

constrain the Z (n) to be positive. This turns out to be an important constraint.

5.3.7 Cutting Out Anomalous Bootstraps

The bootstrap method is supposed to be insensitive to individual fit results. When done

properly, several fits are performed, and a histogram of the sorted fit parameters forms an

approximate bell curve. Because one standard deviation isn’t very far out into the tail, se-

lecting the central 68% should be fairly insensitive to the individual fit results.2 Sometimes,

however, the parameter-space has two minima that are each fairly likely to be the true mini-

mum. This can lead to a distribution which has a second (smaller) peak. Depending on the

size of the second peak, it can cause us to overestimate one side of the bootstrap errorbar

(and underestimate the other side). The occurrence of this problem is easy to detect: the

bootstrap errorbar exhibits a strong asymmetry. By looking at which minimum occurs more

frequently and has a smaller χ2 we can determine which of the minima is the “true” one,

and which is the result of a statistical fluctuation. In those cases, we manually eliminate the

portion of the tail corresponding to the incorrect fits. The resulting data then has reasonable

errorbars, which are insensitive to the precise location of our cut. Prior knowledge of physics

may also help to eliminate one of the minima as being in a disallowed region of phase space,

2Asymmetric errors are allowed by this method also: we take 34% from each side of the “best fit” value.
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δ-δ δ-1S δ-2S

1S-δ 1S-1S 1S-2S

2S-δ 2S-1S 2S-2S

Figure 5.7: Effective mass plots corresponding to the matrix of Eq. (5.15). Note that the lower
triangle of the matrix has a better signal-to-noise ratio, in general, than the upper triangle.
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though we will see that incorporating that knowledge into the model function or priors is the

best approach.

5.3.8 A More Robust Fitting Procedure

We found our näıve model function did not sufficiently constrain the parameters. Our con-

servative choice for the energy splitting prior widths allows the possibility of the minimizer

squeezing an extra state in the gap between two energy levels, or even below the ground

state. Such a state is nonphysical, but if the fitter adjusts its coefficient to 0, the state would

not contribute to the fit. While this does not occur all the time, it occurred with sufficient

frequency to distort the bootstrap errorbars, making it impossible to produce a quantitative

estimate of the statistical uncertainty in the result.

If we could prevent the coefficient from becoming small, the insertion of a spurious “state”

could not occur. Unfortunately we do not know the sign of the coefficients, and it is not

possible to allow the sign to vary while excluding zero.3

When the source and sink smearings are the same, the model function reduces to:

G(t) =
∑

n

Z2
(n)

(

e−Ent + e−En(T−t)
)

. (5.16)

Here it is clear that we can constrain the Z(n) to be positive. This is the case whenever we

do not allow mixed terms: src 6= snk. By constraining ourselves to data where the source and

sink share the same smearing, we can force the coefficients to be positive using Z = exp(ζ).

The constrained model function alone is not sufficient to cure the problem of nonphysical

states (due to our lack of knowledge of the magnitude of Z). As an example, consider a

two-state fit to the hc 1S-1S smearing. Depending on the initial conditions, the fitter might

find either of the solutions listed in Table 5.2.

We were unable to eliminate the statistical fluctuations through the use of the priors, as

doing so would introduce a bias into our results. Figure 5.8 reveals that the principal trigger

for settling on the incorrect minimum is the starting guess. When performing the bootstrap

3A functional form like z ≡ 1/x contains a discontinuity which a minimizer would be unable to cross. One
might imagine “reducing” the area near 0 with a function like z ≡ tan−1 x, but that simply makes the fitter
work harder to find the minimum where z = 0, and doesn’t prevent it.
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Table 5.2: Two plausible local minima for the hc 1S-1S smearing. The first is believed to be
the correct solution; the second contains a spurious ground “state”. Note that the first excited
state of Solution 2 agrees with the ground state of Solution 1. Also note that the coefficient
of the ground state of Solution 2 is comparatively small.

Solution 1 Solution 2

E0 1.97553 ± 0.00875223 1.78266 ± 0.0788273

E1 −E0 0.339531+0.206815
−0.128527 0.211059+0.0883556

−0.0622823

Z0 2.63319+0.0891991
−0.0862765 0.379053+0.382813

−0.190462

Z1 0.756851+0.538772
−0.314729 2.69700+0.0349813

−0.0345334

χ2/dof 10.496 / 14 12.666 / 14

Figure 5.8: Fit results for the hc 1S-1S smearing are shown as a function of starting guess.
Here the ensemble and priors were held fixed, and the starting guess allowed to vary. The blue
squares correspond to Solution 1 of Table 5.2, while the red diamons correspond to Solution 2.
The vertical blue (red) line indicates the E0 of Solution 1 (2), while the horizontal lines indicate
the ln(Z0).
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fits, we vary the prior central values randomly (with Gaussian width determined by the prior

width) to ensure the priors are not affecting the fit results. It is not necessary, however, to

vary the starting guess with the prior central values. Keeping the starting guess fixed greatly

reduces the problem of settling on an incorrect minimum.

This method, while an improvement, leaves open the question of how to ensure we aren’t

always using the wrong starting guess. There are three options for how to select a starting

guess:

• set it to the original prior central value: This doesn’t work well because the prior central

values are often a poor guess at the final fit results.

• allow it to vary, but only by σ/2: This seems promising, but the effect is insufficient to

solve the problem.

• fix it to the results of our “best fit”: This works well, but suffers from catastrophic

failure if the “best fit” exhibited the problem.

We choose the third option, and introduce some additional precautions to ensure that the

“best fit” contains proper physics. Whenever performing a series of fits, we do not begin with

the final number of energy levels, but rather use a “chaining” method to build up to it. For

example, the first fit will be to two states, then we’ll fit to three states, and finally to four

states. We can use the fit results of the two-state fit as our starting guess for the three-state

fit, since the parameters should be fairly close to their final values. Then we use the results

of the three-state fit as the starting guess for the four-state fit.

Additionally, we preface each fit with a test run where we vary the starting guess randomly

and observe the effect on the fit results. This is an effective way to map out the space of

plausible local minima. We then ensure that the minimum chosen as the starting guess for

future fits is one that “makes sense”.

Figure 5.8 suggests an additional technique for finding the true ground state. Fits where

the starting guess assumed a large E0 and Z0 are very likely to find the correct ground state.

This is because the data (in either a δ-δ or 1S-1S smearing, but not necessarily in a 2S-2S

smearing) will pull the fit down to the correct values. We might therefore intentionally set
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our priors (and starting guesses) slightly high, thereby ensuring the fitter will find the true

minimum.

It is important to note that the starting guess and the prior central value do not necessarily

need to be the same. The information we retain from an n-state fit to an (n+1)-state fit does

not need to affect our priors. In theory, it should be acceptable to modify our prior central

values (keeping the prior widths constant) based on results of previous fits. In practice, we

found this is not necessary — the fit results are rarely affected by the prior central values if

the prior widths are set to reasonable values. For simplicity, we only quote results where the

prior central values were not modified.

5.3.9 Testing for Bias

Implementing constrained curvefitting allows us to include additional states in our fits, but it

comes at the cost of requiring additional user inputs to set all the priors. In addition to prior

central values and widths (for each parameter), we also have freedom to choose

• the number of states to include: nstates

• the range of timeslices used in the fit: [tmin, tmax]

• the blocksize (to avoid correlations between consecutive configurations)

We must adjust each of these parameters independently and check to confirm there is no bias

in our results. The goal is to find a plateau — a range where adjusting the parameters does

not greatly influence the fit result. I will demonstrate this procedure using the example of the

local-local smearing of the pion propagator on the .01/.05 lattice (the same dataset shown in

the effective mass plot of Figure 5.2).

Determining the Number of States to Include

Typical results showing a variation of nstates from 2 up to 7 states are shown in Figure 5.9.

As the figure shows, the ground state is well determined, so even fits to only two or three

states obtain the correct value. Unbiased determination of the first excited state, however,

clearly requires nstates ≥ 4. Further increasing the number of states does not improve the fit
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Figure 5.9: Energy levels vs. number of states for the local-local smearing of the pion propa-
gator on the .01/.05 lattice. The ground state is stable for nstates ≥ 3, while the first excited
state requires nstates ≥ 4 before it plateaus.
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results, but dramatically increases the time taken for the fit (which increases as the square of

the number of fit parameters), so we perform all fits to four energy levels.

Determining Which Timeslices to Use

As seen in the effective mass plot (Figure 5.2), the meson propagator includes information

not only about the ground state, but also about many excited states. The propagator has

the tightest errorbars (and therefore the most statistical significance) for small t; as t gets

larger the signal-to-noise ratio declines. At timeslice 0, however, all states contribute (since

there is no exponential suppression of excited states). We refer to this condition as a “contact

term”. Therefore there is no reason to include timeslice 0 in the fits — it cannot provide

additional information. Because we want to extract the maximum information from the

meson propagators, it is desirable to set tmin as small as possible without introducing contact

terms, so we expect that, in general, the best results will be obtained for tmin = 1 (for S-wave

states) or 2 (for P -wave states). Similarly, tmax should be kept as large as possible, though

if the effective mass plot shows excessive noise it may improve fitting speed to reduce tmax

to eliminate the noise. Plots showing fit results under a variation of tmin, tmax are not very

illuminating — there is no discernible difference between fit results using a wide range of

timeslices.

Determining the Blocksize to Avoid Correlations

Finally, it is necessary to ensure our results are uncorrelated. We accomplish this by blocking

the results together, and then treating the blocks of averaged data as the new input dataset.

If the correlation length fits within a block, then consecutive blocks will be statistically in-

dependent. Of course, when using a block size of N we have a factor of N fewer datapoints.

Therefore it is expected that the statistical error will increase by
√
N . At the same time,

however, the averaged data is closer to the mean than the raw data, and therefore the error

decreases by a factor of
√
N . These two effects cancel for the case of uncorrelated data.4 If

the underlying data were correlated, however, the averaged data would not be significantly

4This assumes that the number of datapoints is large compared to the block size, such that the number of
blocks is much greater than unity.
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closer to the mean than the raw data (because one high point is likely to be followed by an-

other) and therefore we would see the errorbars grow as
√
N until all correlations have been

taken into account. In our case, analysis shows the errorbars do not change in size, so we can

safely assume our data is not correlated. Nevertheless, we standardize on a block size of 4

configurations just to be safe.

5.3.10 Splittings and Determination of a−1

Repeating the process for each quantum state, we obtain energies of all particles in the spec-

trum. Using the strategy of Section 4.7.2 we determine the lattice spacing by comparing the

hc − 1S splitting to experiment. A lattice spacing computed from the 2S − 1S splitting is

consistent. In addition, we compare to lattice spacings determined by the UKQCD collabora-

tion from the analysis of the bottomonium spectrum on these lattices. They obtain very tight

errorbars on the lattice spacing, as shown in Table 5.3, and are consistent with our findings.

Because we can propagate errors through bootstrap only with lattice spacings we determine,

we use our own lattice spacings for this analysis. A future goal is to standardize our methods

so the lattice spacings from both collaborations can be interchangeably propagated through

the bootstrap analysis.

We show mass splittings between charmonium mesons for a typicalmsea in Figure 5.10. The

zero of the plot is the spin-averaged 1S; the plot has been scaled such that the calculated result

of the hc matches experiment. By comparing the lattice 1P − 1S splitting with experiment

we can set the scale of our calculation: the lattice spacing. For the case of the MILC coarse

lattices we find a−1 ≈ 1.6 GeV, with no discernable dependence on msea (see Figure 6.1). See

Table 5.3 for details on all lattices.

5.4 Ds Gives mc

The next step in our procedure is to tune the charm-quark mass, mc, through fits to the Ds

spectrum. We choose the Ds for this tuning because the discretization effects are smaller for

the Ds than for charmonium. This is a direct result of the O(αsa, a
2) errors present in our

heavy-quark action.
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Figure 5.10: Charmonium splittings for the 01/05 lattice. The zero of the plot is the spin-
averaged 1S. The lines are experimental results, while the circles are the lattice result. The
lattice results have been scaled so the hc matches experiment.

Table 5.3: Lattice spacings measured on the MILC lattices. The lattice spacing determined
from the ψ(1P ) − ψ(1S) splitting is part of this work; the spacings from the Υ spectrum
courtesy of the UKQCD Collaboration [63]. For additional details see Ref. [64].

Lattice a−1 (GeV) a−1 (GeV) a−1 (GeV)

Size amu,d/ams ψ(1P ) − ψ(1S) Υ(2S) − Υ(1S) Υ(1P ) − Υ(1S)

163 × 48 0.0492/0.082
163 × 48 0.0328/0.082
163 × 48 0.0164/0.082
163 × 48 0.0082/0.0820 1.144(19) 1.128(19)

203 × 64 0.050/0.05 1.645(46) 1.670(39)
203 × 64 0.030/0.05 1.585(28) 1.714(52) 1.687(45)
203 × 64 0.020/0.05 1.607(30) 1.605(20) 1.634(25)
203 × 64 0.010/0.05 1.613(30) 1.596(25) 1.571(21)
203 × 64 0.007/0.05 1.567(30)
243 × 64 0.005/0.05

283 × 96 0.0124/0.031 2.312(26) 2.390(38)
283 × 96 0.0062/0.031 2.258(30) 2.305(45)
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5.4.1 Introducing a Light Quark

When simulating charmonium, we had two charm valence quarks. For the Ds spectrum, one

of the quarks is light. Simulating the light quark using the Wilson method is, as mentioned

in Chapter 3, not very efficient. Instead, we use an improved staggered quark (the same

treatment as the sea quarks). This has the advantage of having smaller discretization errors.

Also, this is the same treatment we will use for the D, and therefore we can re-use much of

the analysis.

5.4.2 The Heavy-Light Model Function

As explained in Section 3.5.1, the Ds meson propagators allow for both even- and odd-parity

states. As a consequence, the model function we use to extract particle masses must be

modified as in Eq. (4.5):

Gsrc,snk(t) =
∑

n

Z(n)
src Z

(n)
snk(−1)n(t+1)

(

e−Ent + e−En(T−t)
)

. (5.17)

Here, the parity of n forces the states to alternate between non-oscillating and oscillating.

Again, it is helpful to constrain the parameters in order to improve the fits. First, we

note that there are two hierarchies of energies, one for the oscillating states, and one for the

non-oscillating states. We know that the oscillating ground state will always have higher

energy than the non-oscillating ground state.5 Using the notation that the non-oscillating

ground state is E0 and the oscillating ground state is E1, we enforce this hierarchy with the

constraints:

E1 = E0 + eε1

E2 = E0 + eε2

E3 = E1 + eε3 (5.18)

E4 = E2 + eε3

...

5The non-oscillating state has JP = 0−, and has orbital angular momentum L = 0 and spin angular
momentum S = 0. The parity partner has JP = 0+, and has L = 1 and S = 1.
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Figure 5.11: (a) A 4-state fit to the vector state of a charm-strange meson. Errorbars for both
the data and the fit are plotted, but are too small to resolve. (b) The same fit, but shown
with the leading exponential removed to show the remaining terms. Here the oscillations of
the parity-partner state are visible.

Ei = Ei−2 + eεi

where our fit parameters are E0 and the εi. Note that while these constraints require the

oscillating ground state to have higher energy than the non-oscillating ground state, the

excited states may appear in any ordering. We also reuse Eq. (5.11) to reduce computational

roundoff errors. Using this functional form, we obtain fits as seen in Figure 5.11. We obtain

the Ds spectrum shown in Figure 5.12. Splittings that take into account both msea and mval

extrapolations are given in Table 6.2.

5.4.3 Kinetic Masses

Once we have the ability to fit the heavy-light propagators, our next step is to determine the

kinetic mass of the Ds. This mass, compared with experiment, allows us to tune our lattice

charm-quark mass. To accomplish this, we use the dispersion relation. Working in a finite

box of side L = na, our momentum is discretized with Brillouin zones of width 2π/L. As a

result, it is simplest to refer to momenta in units of 2π/L (which provides an infared (IR)

cutoff) in each of the three spatial directions. A particle at rest would have a momentum of
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Figure 5.12: Ds splittings for the 01/05 lattice. The zero of the plot is the spin-average of
the Ds and the D∗

s . The lines are experimental results, while the circles are the lattice result.
Here the scale is determined by the lattice spacing found in Section 5.3.10.

89



(0,0,0), while the slowest-moving particle would have a momentum of (1,0,0).6 The highest

momentum a particle can have is 2π/a, which provides an ultraviolet (UV) cutoff.

We perform fits to the dispersion relation using momenta from the set shown in Table 5.4.

The double-counting at a momentum of 3 gives us the opportunity to observe any effects of

Table 5.4: The momentum states used in the kinetic mass fits. The momentum p = (4, 0, 0)
is only used when it improves the fit.

(px,py,pz) p2

( 0 , 0 , 0 ) 0
( 1 , 0 , 0 ) 1
( 1 , 1 , 0 ) 2
( 1 , 1 , 1 ) 3
( 2 , 0 , 0 ) 4
( 2 , 1 , 0 ) 5
( 2 , 1 , 1 ) 6
( 2 , 2 , 0 ) 8
( 2 , 2 , 1 ) 9
( 3 , 0 , 0 ) 9
( 4 , 0 , 0 ) 16

our discrete rotational symmetry. We also use the momentum p = (4, 0, 0) when it improves

the fit.7 In general, it will be informative to compare on-axis results with off-axis results, so

they are plotted in different colors, as shown in Figure 5.13.

The fit to the dispersion relation of Eq. (3.44) gives us the kinetic mass of the particle. In

this case, the fit gave a kinetic mass of 1.29(2), in lattice units. Using our determination of the

lattice spacing, we find the lattice determination of the kinetic mass of the Ds is 1.91+0.19
−0.08GeV.

This is in good agreement with the experimental measurement of 1.968 GeV.

5.4.4 Tuning mc

We use the aml/ams = .01/.05 configuration to tune the charm quark mass, as that config-

uration has the most lattices available (and therefore the best statistical significance). For

κ = 0.119 our calculation of mDs was slightly low. We therefore reduce the parameter to

κ = 0.117 and repeat the calculation of Section 5.4.3. As it turns out, the value κcharm = 0.119

6The spatial dimensions are interchangeable, so we need not distinguish between elements of the set {(1,0,0),
(0,1,0), (0,0,1)}.

7Errorbars increase at larger momentum, as seen in Figure 5.13, so this extra point has minimal effect on
the fit results.
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Figure 5.13: A fit to the dispersion relation of Eq. (3.44). Data for on-axis momenta are shown
in blue squares, while off-axis momenta are shown in red circles. The alignment of on-axis
momenta with off-axis momenta indicates the rotational symmetry violations are small. The
fit had a χ2 of 6.6 for 6 degrees of freedom (10 data points – 4 parameters in the fit).

Figure 5.14: The mass of the Ds for two different values of κcharm on the 01/05 lattice. The
horizontal line indicates the experimental result.
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Table 5.5: Rest and kinetic masses for heavy-heavy and heavy-light mesons on the 01/05
lattice.

HH HL

aM1 1.6897(1) 1.2089(16)
aM2 2.2626(150) 1.3689(200)

aδM 0.5729(150) 0.1600(201)

gave a better approximation to the physical mass of the Ds, and was selected as the final value.

An Inconsistency Between HH and HL Results

As explained in Section 4.7.2, we use the heavy-light (HL) Ds system to tune mc rather than

the heavy-heavy (HH) charmonium system because the HL system has smaller discretization

effects. Although we can’t expect an exact tuning of κcharm from charmonium, we might

expect the results to be similar. It therefore came as a surprise that the charmonium M2(1S)

comes out 10-20% high8 (as compared to experiment) with only 1% errors. We know we

should expect some discretization error from lattice artifacts, but how much?

The discrepancy betweeen tunings for the heavy-quark mass was seen previously by a

group studying the Υ and B systems in quenched lattice QCD [65]. They note that the

“inconsistency”

I(H,L) =
δM(HL) − [δM(HH) + δM(LL)]/2

M2(HL)
(5.19)

where

δM ≡M2 −M1 (5.20)

is 0 for M2(HL) < 1, and goes negative linearly for M2(HL) > 1. In our case, fitting the kinetic

mass on the 01/05 lattice using momenta up to p = (3, 0, 0)9 gives the results of Table 5.5.

The dependence on amsea is neglegible. Ignoring the kaon (which is light) we find

8Results were 10% high using our lattice spacing from the charmonium 1P − 1S splitting, and 20% high
using the lattice spacing from the UKQCD analysis of the Υ spectrum.

9Restricting the HL kinetic mass fits to momenta up to p = (2, 0, 0) gives a slightly worse quality-of-fit, and
slightly larger errorbars, but the central value of the result is the same. Restricting the HH kinetic mass fits in
the same way has neglegible effect. In both cases, restricting the fit to only the linear term in p

2 gives a poor
quality of fit.
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I =
0.1600(201) − 1

20.5729(150)

1.3689(200)
=

−0.1265(215)

1.3689(200)
= −0.0924(158) at aM2(cs) = 1.3689(200).

(5.21)

This is similar to the inconsistency seen in Ref. [65]. We therefore find that the inconsistency

is independent of quenching effects.

A complete analysis of the expected inconsistency arising from discretization effects was

given by Kronfeld [66]. It is expected that the inconsistency be approximately

I ≈ −δBQQ
2MQq

(5.22)

where δB is the difference in binding energy between the kinetic mass and the rest mass:

M1Q̄q ≡ M1Q̄ +M1q +B1Q̄q

M2Q̄q ≡ M2Q̄ +M2q +B2Q̄q (5.23)

δBQ̄q = B2Q̄q −B1Q̄q (5.24)

For an S-wave state, the binding energy difference can be predicted from

δBQq
〈T 〉 =

1

3

{

5

[

µ2

(

M2
2Q

M3
4Q

+
M2

2q

M3
4q

)

− 1

]

+ 4a2µ2

(

M2
2Qw4Q +M2

2qw4q

)

}

, (5.25)

where 〈T 〉 is the kinetic energy of the meson, and µ2 = 1
2 (M2Q +M2q) is the kinetic reduced

mass of the constituent quarks. In our case, δB/〈T 〉=1.049. Using µ and p2 from our potential

model calculation (Tables A.1 and A.2) we can estimate the kinetic energy

〈T 〉 =
〈p2〉
2µ

=
0.5224 GeV2

1.4935 GeV
= 0.350 GeV (5.26)

so δB = 0.367GeV. The error on 〈p2〉 (and on µ) is a few percent (it is only a potential model

calculation, not a simulation of QCD). We therefore expect the inconsistency to be

I ≈ −δBQQ
2MQq

= − δBQQ
2a−1(aMQq)

= − 0.367 GeV

2(1.6 GeV)(1.3689)
= −0.084. (5.27)
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This expectation is slightly larger than the results found by others, but is in agreement with

our measured result.

We expect the inconsistency I to decrease when a heavy-quark action that eliminates all

O(a) discretization errors becomes available.

5.4.5 The Ds Decay Constant

The extraction of the decay constant was described in Section 3.5.2. After performing the fits

of Eqs. (3.113) and (3.117) to obtain the coefficients |ZDs |2 and ZA4
ZDs , it is clear that we

may extract

ZA4
=

ZA4
ZDs

√

|ZDs |2
=

〈0|A4|Ds〉〈Ds|s̄γ5c|0〉
√

|〈Ds|s̄γ5c|0〉|2
. (5.28)

Here ZA4
is a lattice quantity. To compare to the continuum quantity f

√
m we must account

for the lattice action normalization conventions. We find

f
√
m = ZhlA

√
2u0

√
1 − 6κ̃

√
2ZA4

(5.29)

where ZhlA is a current renormalization factor from perturbative matching,
√

2u0 accounts

for MILC’s staggered quark normalization, and
√

1 − 6κ̃ is the normalization for the Wilson

quark in the Fermilab interpretation (see text surrounding Eq. (3.53)). The final factor of
√

2

comes from the normalization convention

〈0|c̄γ5s|Ds〉〈Ds|s̄γ5c|0〉 = 2mDs . (5.30)

We break the calculation of ZhlA into a flavor-conserving part and a nonperturbative cor-

rection as [67, 68]:

ZhlA = ρA

√

ZhhV Z llV . (5.31)

The flavor-conserving renormalization factors were computed nonperturbatively [69]:

ZhhV = 1.33(2); Z llV = 0.86(5). (5.32)
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The parameter ρA includes radiative corrections, and is exptected to be close to unity [70].

Indeed, a one-loop calculation gives ρA = 1.044 on the coarse ensemble [71].

We find, after conversion to physical units, fDs ≈ 250 MeV. Again, the sea quark

extrapolation is insignificant. We will, however, improve upon this result in later sections,

after we have built the necessary formalism to interpolate to the physical valence quark mass.

5.5 Extrapolation to the D

Our treatment of the D is almost identical to our treatment of the Ds, except that we cannot

simulate the valence light quark mass due to computational slowdown as mq → 0 (see Sec-

tion 4.8.3). As a result, it is necessary to perform a chiral extrapolation down to the physical

light quark mass.

5.5.1 Chiral Extrapolations in PQQCD

Ordinarily a chiral extrapolation contains a single parameter: the mass of the light quark. In

our case, however, it is evident that most of the computational cost comes from varying the

sea quark mass, while variations in the valence quark mass are comparatively inexpensive.

It is therefore advantageous to vary the sea- and valence-quark masses independently — a

technique called partially quenched QCD (PQQCD). Full QCD, in which the sea- and valence-

quark masses are equal, can be thought of as a special case of PQQCD.

The theory is slightly complicated by the partially-quenched generalization because there

are now two different species of light quarks that can run around inside loops. For this reason,

there are additional parameters in our extrapolations.

5.5.2 Mass Splittings

We do not have a complete chiral perturbation theory (χPT) for the masses of the D mesons,

and are therefore forced to make an educated guess about how to attempt the extrapolations.

The linearity of the extrapolation in mval is evident from Figure 5.15. Unfortunately, the

extrapolation in msea is nonlinear, so we cannot comfortably extrapolate to the physical meson

masses. Instead, we content ourselves with extrapolations of mass splittings, as most nonlinear
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Figure 5.15: A mval extrapolation in the D system, for the case of the 01/05 lattice. It is clear
that, at accessible values of mval, the extrapolation is linear. Furthermore, it is apparent that
the same slope applies to both the D and the D∗.
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Figure 5.16: The selection of sea- and valence-quark masses we used for our PQSχPT extrap-
olation. Points of the same color come from the same lattice, and are expected to be highly
correlated. Points of different colors are expected to be uncorrelated. The line indicates “full”
QCD, where msea = mvalence.

effects should cancel. We can therefore obtain a reasonable extrapolation by considering terms

linear in both mval and msea:

mD∗ −mD ≈ Amval +Bmsea +C (5.33)

and so on for other splittings. It is clear from Figure 5.15 that, for the 01/05 lattice, aM1(D
∗−

D) = 0.079, which corresponds to M1(D
∗ −D) ≈ 127 MeV.

We can obtain an extrapolation for all lattices by performing a single combined fit to a

large parameter space. The first step is to perform bootstrap fits using several valence quark

masses on each of several lattices that have different sea quark masses. Our selection of data

is shown in Figure 5.16. Bootstrap data from each of these points in the input parameter

97



phase-space is used in a single combined fit.

Because we are fitting a 2-dimensional function to 60 data points, the resulting fits are dif-

ficult to understand, and not very informative. We simply summarize our results in Table 6.3

and note that each fit had χ2 < 1.

5.5.3 Staggered Chiral Perturbation Theory

Now let us continue on to investigate the full χPT for the D decay constant. The situation

is complicated further because we have staggered quarks. As described in Section 3.3.2, the

staggered quark formalism leaves us with four tastes of quarks. We have to take this into

account in any extrapolation we perform. In addition, we must account for the O(a2) errors

from taste-changing interactions.

The resulting theory is referred to as staggered χPT, or SχPT. Like the usual χPT, we fit

to the form

fQq

√

MQq = α

(

1 +
1

16π2f2
∆fq + · · ·

)

. (5.34)

where the ∆fq contains the chiral logs and the · · · are terms analytic in mq and
∑

f mf . In

our case, however, the form of the chiral logs is complicated by the different tastes of fermions.

Our fits use a functional form provided by Aubin and Bernard [72], which is summarized in

Appendix E.

We are fitting a 2-dimensional function to 60 data points, making the resulting fit too

complicated to understand from a single plot. Instead I show slices through the input param-

eter space. It is important to remember, however, that all of these slices came from the same

fit. A slice through parameter space corresponding to full QCD is shown in Figure 5.18. This

extrapolation gives our best determination of the D decay constant, fD = 237+14
−4 MeV.

The added information from this extrapolation also allows us to obtain a slight improve-

ment on our previous results for the Ds decay constant. The results of Section 5.4.5 were

restricted to a single value of the strange quark mass, ams = 0.0415. We can compare to

those results by taking a slice through the current fit where the valence quark mass is held

constant and only the sea quark mass can vary. Of course, hindsight tells us that strange

quark mass is not exact. We can use the results obtained from our PQSχPT extrapolation to
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Figure 5.17: Slices through the PQSχPT extrapolation. Correlated fits for each amsea are
shown.
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Figure 5.18: A slice through our PQSχPT extrapolation corresponding to full QCD. Only the
data corresponding to full QCD is shown, but the fit was to the full set of partially-quenched
data. The blue line indicates the fit, including taste violations. The red line (and dotted
errors) shows the prediction when taste violations have been turned off.
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interpolate to the correct strange quark mass. The final result for the Ds is therefore adjusted

slightly, to fDs = 289+15
−5 MeV.

Finally, it is helpful to realize that experimentalists might be better served by knowing a

very precise prediction of the ratio

Rq/s ≡
fD

√
mD

fDs

√
mDs

. (5.35)

We can determine this ratio better than the individual decay constants because their statistical

errors are largely correlated and therefore cancel out. Additionally, taking the ratio cancels

some of the parameters in the PQSχPT, therefore allowing for a somewhat more constrained

fit. A plot showing a slice through the full QCD parameter space of the extrapolation is given

in Figure 5.19. One can see from the plot that we find Rq/s = 0.834+0.011
−0.014 (statistical errors

only) in the chiral limit.
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Figure 5.19: A slice corresponding to full QCD through the PQSχPT extrapolation for the
fD/fDs ratio. Only the data corresponding to full QCD is shown, but the fit was to the full
set of partially-quenched data. The blue line indicates the fit, including taste violations. The
red line (and dotted errors) shows the prediction when taste violations have been turned off.
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Chapter 6

Results

After performing the meson propagator fits, there are a few remaining tasks before we can

compare to experiment. As we have already seen, it is necessary to use our value for a−1 to

convert all lattice results into physical units, such as GeV. We must also perform any necessary

chiral extrapolation, using the techniques of Sections 5.5.1 and 5.5.3. Also, to eliminate any

artifacts from the use of a finite lattice spacing, it is important to repeat the calculations at

different lattice spacings, and perform an extrapolation to the continuum limit. Finally, there

may be some remaining uncertainties, such as finite volume effects, that can be addressed by

performing simulations on lattices of different physical size and extrapolating to the infinite-

volume limit. When quoting results, we must also consider any systematic errors from the

tuning of lattice parameters.

6.1 The Charmonium System

After performing fits to the cc̄ meson propagators, we have extracted mass splittings and

kinetic masses of the J = 0 or J = 1 particles below threshhold. By using the 1P − 1S

splitting, we find the lattice spacings indicated in Figure 6.1. We see from the Figure that the

lattice spacing is held roughly constant over the range of sea quark masses in the study.

I show the lattice prediction of the spectrum of mass splittings (to the 1S) in Figure 6.2.

Numerical data for the splittings, including hyperfine splittings, are given in Table 6.1. As

can be seen in Figures 6.3–6.6, the sea quark effects are mild.

To determine the offset for our energy splittings, I calculate the kinetic mass of the 1S
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Figure 6.1: The inverse lattice spacings for the coarse lattices. The results for a−1 are 1.56(3),
1.61(3), 1.61(3), and 1.58(3) for amsea of 0.007, 0.01, 0.02, and 0.03.

Figure 6.2: The charmonium spectrum shown in terms of mass splittings. The zero of the
plot is the spin-averaged mass of the ηc and the J/ψ. Lines are the experimental observations,
while circles indicate the lattice result.
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Table 6.1: Mass splittings in the charmonium spectrum.

Quantity Lattice prediction Experiment Plot

hc − 1S input 459 MeV N/A

2S − 1S 587+46
−50 MeV 610 MeV Figure 6.3

J/ψ − ηc 100+4
−3 MeV 117 MeV Figure 6.4

ψ′ − η′c 43+74
−66 MeV 32 MeV Figure 6.5

(ψ′ − η′c)/(J/ψ − ηc) 0.4 ± 0.7 0.27 Figure 6.6

hc − χc0 81+29
−29 MeV 111 MeV Figure 6.7

hc − χc1 10+23
−25 MeV 16 MeV Figure 6.8

Figure 6.3: The 2S − 1S splitting. Lattice values are shown at four values of msea, with a
fit to a constant shown as a line with dotted errors. The experimentally-observed value is
shown as a burst. The lattice prediction of 2S − 1S = 587+46

−50 MeV is in agreement with the
experimentally observed value of 610 MeV.
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Figure 6.4: The J/ψ − ηc hyperfine splitting. Lattice values are shown at four values of msea,
with a fit to a constant shown as a line with dotted errors. The experimentally-observed value
is shown as a burst. The lattice prediction of J/ψ − ηc = 100+4

−3 MeV is significantly less than
the experimentally observed value of 117 MeV. The discrepancy is most likely due to the
O(αsa) discretization errors of the heavy quark action.

Figure 6.5: The ψ′ − η′c hyperfine splitting. Lattice values are shown at four values of msea,
with a fit to a constant shown as a line with dotted errors. The experimentally-observed value
is shown as a burst. The lattice prediction of ψ ′ − η′c = 43+74

−66 MeV is consistent with the
experimentally observed value of 32 MeV. The large errors on the lattice prediction are due
to the lack of statistical significance for the excited state fits.
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Figure 6.6: The ratio of hyperfine splittings: (ψ ′ − η′c)/(J/ψ − ηc). Lattice values are shown
at four values of msea, with a fit to a constant shown as a line with dotted errors. The
experimentally-observed value is shown as a burst. The lattice prediction of (ψ ′ − η′c)/(J/ψ −
ηc) = 0.4 ± 0.7 is consistent with the experimentally observed value of 0.27. The large errors
on the lattice prediction are due to the lack of statistical significance for the excited state fits,
however some systematic errors cancel in the ratio, making this a somewhat more accurate
prediction than the individual hyperfine splittings.

Figure 6.7: The hc − χc0 splitting, which tests the fine splitting resulting from the chromo-
electric interaction. Lattice values are shown at four values of amsea, with a fit to a constant
shown as a line with dotted errors. The experimentally-observed value is shown as a burst.
The lattice prediction of hc−χc0 = 81+29

−29 MeV is consistent with the experimentally observed
value of 111 MeV. It is expected that reducing the O(αsa) discretization errors of the heavy
quark action will reduce these errors.

107



Figure 6.8: The hc − χc1 splitting, which tests the fine splitting resulting from the chromo-
electric interaction. Lattice values are shown at four values of amsea, with a fit to a constant
shown as a line with dotted errors. The experimentally-observed value is shown as a burst.
The lattice prediction of hc − χc1 = 10+23

−25 MeV is in agreement with the experimentally ob-
served value of 16 MeV. It is expected that reducing the O(αsa) discretization errors of the
heavy quark action will reduce these errors.

spin-averaged state. This is done by fitting to the dispersion relation shown in Eq. (3.44).

A plot showing the result for each value of msea is given in Figure 6.9. We find M2(1S) =

3.57+0.11
−0.08 GeV, which is about 16% higher than the experimental value of 3.07 GeV. This

inconsistency is an expected result of the discretization errors of the heavy-quark action, as

explained in Section 5.4.4. Future improvements in the heavy-quark action (to remove the

O(a2) errors) will be needed to eliminate this inconsistency. The spin-averaged splittings are

not affected by the O(αsa) discretization errors and have uncertainties at the 5%− 10% level.

Other splittings have larger errors, giving 25% or larger uncertainties. These results are part

of a larger project which includes additional lattice spacings [73].

6.2 The Ds and D Systems

Splittings for the Ds system are given in Table 6.2, and for the D system in Table 6.3.

In each case, the splittings are at the 5% − 10% level. We do not have an absolute scale

for these quantities as the functional form of the chiral expansion which takes into account

staggered quarks is not yet known. The splittings to the D∗
sJ(2317) is of particular interest
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Figure 6.9: The kinetic mass of the charmonium 1S. The lattice values for the ηc are shown
in green diamonds and the values for the J/ψ in blue squares. The black circles indicate the
1S (the spin-average of the ηc and the J/ψ. The deviation from experiment is not unexpected
— see the text.

Table 6.2: Calculated splittings in the Ds system. The D∗
s −Ds splitting is in agreement with

experiment; the D∗
sJ −Ds and D∗∗

sJ −D∗
s splittings are larger than what has been observed.

Quantity Lattice prediction Experiment

D∗
s −Ds 129+9

−7 MeV 144 MeV

D∗
sJ −Ds 483+30

−25 MeV 349 MeV

D∗∗
sJ −D∗

s 469+30
−24 MeV 347 MeV

Table 6.3: Calculated splittings in the D system. The D∗ −D splitting is in agreement with
experiment; the D1 −D and D∗

2 −D∗ splittings are a bit low.

Quantity Lattice prediction Experiment

D∗ −D 129+9
−7 MeV 141 MeV

D1 −D 483+30
−25 MeV 558 MeV

D∗
2 −D∗ 469+30

−24 MeV 596 MeV
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Table 6.4: Decay constants fDs and fD compared to experiment.

Quantity Lattice prediction Experiment

fDs 289+15
−5 MeV 267 ± 33 MeV

fD 237+14
−4 MeV 223 ± 16+7

−9 MeV
fD

√
mD

fDs
√
mDs

0.834+0.011
−0.014 ∼ 0.814

because the JP = 0+ still needs confirmation, and because the mass of 2317 MeVhad not

been predicted. We find the mass of this state to be larger than the observed mass, but

our systematic uncertainties are too large to draw any conclusions. It is interesting to note,

however, that our results are in agreement with a previous lattice calculation [74].

The decay constants for the Ds and D are compared to experiment in Table 6.4. The

decay constants are determined at the 10% level — the experimental determination for fD is

comparable, and we await an improved determination of fDs from the CLEO-c collaboration.

These results are part of a larger project which includes additional lattice spacings [75, 76].
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Chapter 7

Conclusions

Lattice QCD is a maturing field. The asqtad action treats light quarks with O(αsa
2, a4) errors,

the clover action in the Fermilab interpretation treats heavy quarks with O(αsa, a
2) errors,

and the improved gauge action has O(αsa
2) errors. These lattice actions can already be used

to calculate many quantities, including spectra of stable particles and decay constants. All

errors are now controlled, and can be estimated or eliminated.

This work presented an analysis of charmonium and charmed mesons from the lattice

perspective. The calculations have uncertainties at the 5% − 10% level. Because errors are

controlled, we have been able to directly compare lattice results to experimental measurements.

The agreement seen by this comparison gives confidence that future results will match or

predict [77] experimental measurements. Having high confidence in quantitative predictions

of QCD is an important step in searching for physics beyond the Standard Model.

It is important to recognize, however, that our work is not yet complete. Current lattice

computations must be carefully tuned to optimize the delicate balance between box size (L),

lattice spacing (a), the light-quark mass (mq), and statistics. A short-term solution is to

build tera-scale compute clusters or special purpose machines [56, 57]. However, because

of the severe power-laws each of these quantities obeys, the future of the field depends on

improving the lattice actions to higher order. Our largest discretization errors arise from

the heavy-quark action, which has O(αsa, a
2) errors. The development of an O(a2)-improved

asymmetric heavy-quark action is already in progress (see Appendix F). Other groups are

investigating still other ideas, including domain wall, overlap, and twisted mass fermions.

With future actions it will be possible to reduce both systematic and statistical uncertainties,
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and investigate more difficult systems. Current heavy-light analyses are limited by statistical

uncertainties. Increased statistics will allow us to better determine the paramters of the

chiral extrapolation, which is currently a large systematic uncertainty. Also, improved actions

will reduce the heavy-quark systematic uncertainties. It is expected that heavy-light chiral

extrapolations will soon approach the few-percent level.
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Appendix A

Estimation of Operator Effects

The coefficients of our lattice actions are short-distance quantities. Therefore they can be

determined perturbatively, first at tree level, then with tadpoles, and finally with a full one-

loop calculation. However, for high levels of improvement the operators and coefficients are

not (yet) known. Our current lattice action for heavy quarks is the clover action, which is

improved to O(αsa, a
2). We would like to estimate the discretization error introduced by

those effects.

A straightforward way to obtain these estimates is to use a potential model to determine the

wavefunction of a bound state, and then evaluate the expectation values of various operators.

We might expect a potential model to provide a reliable estimate because the charm quarks are

non-relativistic, and the short-distance potential is approximately Coulombic. This was done

for the case of charmonium and bottomonium using two likely candidates for the potential

model:

• Cornell Model: This is a simple potential well with a Coulomb + linear form [78, 79]:

V (r) = −κ
r

+
r

a2
. (A.1)

It is the simplest model that includes both confinement and asymptotic freedom.

• Richardson Potential: This potential minimizes the number of parameters required to

achieve both asymptotic freedom and linear confinement [80]. The form of the potential
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is given in terms of the integral

V (r) =
8π

33 − 2nf
Λ

(

Λr − f(Λr)

Λr

)

(A.2)

where

f(t) =

[

1 − 4

∫ ∞

1

dq

q

e−qt

[ln(q2 − 1)]2 + π2

]

. (A.3)

The wavefunction can be found by evaluating the Schrödinger equation in the presence of the

potential well, and adjusting the energy level to find a wavefunction with the proper number of

nodes (0 nodes for the ground state) that falls off as r → ∞. Radial excitations merely require

additional nodes in the wavefunctions. We can also model the orbital angular momentum with

another simple change to the wavefunction.1

The free parameters in the models (κ, a andM,Λ) must be tuned to achieve correct physics.

This is most easily done by tuning for the correct meson mass for the ground (1S) and excited

(2S) states. The parameters resulting from such tuning are given in Table A.1.

Once appropriate parameters are determined, we use the potential well (shown in Fig-

1 In one dimension, the Schrödinger equation is

Hψ(x) =

„

−
~

2

2m

d2

dx2
+ V (x)

«

ψ(x) = Eψ(x). (A.4)

We can write this more simply as

ψ′′
n =

2m

~2
[V (x) −En]ψn(x). (A.5)

In three dimensions with radial symmetry, the Schrödinger equation becomes

Hψ(r) =

„

−
~

2

2m
∇2 + V (r)

«

ψ(r) = Eψ(r). (A.6)

After separating out the angular dependence we get the radial Schrödinger equation:

„

d2

dr2
+

2

r

d

dr

«

Rnl(r) −
2m

~2

»

V (r) +
l(l + 1)~2

2mr2

–

Rnl(r) +
2mE

~2
Rnl(r) = 0. (A.7)

Substituting unl(r) ≡ rRnl(r) gives

u′′
nl(r) =

2m

~2

»

V (x) +
l(l + 1)~2

2mr2
−Enl

–

unl(r). (A.8)

Note that this is the same as the one-dimensional case but with

V (x) → V (x) +
l(l + 1)~2

2mr2
(A.9)

unl(0) = 0 (ie, V (r < 0) = ∞). (A.10)
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Table A.1: Table of potential model values.

Potential Parameters

Cornell κ = 0.52, a = 2.34 GeV−1, mc = 1.840 GeV, mb = 5.174 GeV
Richardson Λ = 0.3975, mc = 1.4935 GeV, mb = 4.892 GeV

Table A.2: Potential model predictions for various charmonium states. The value indicates
the result from the Richardson potential, while the error indicates the deviation if the Cornell
model had been used instead.
Quantity \ State 1S 1P 2S 2P 3S 3P

m (GeV) 3.097 3.519(6) 3.688 3.955(13) 4.099(12) 4.312(27)
〈v2/c2〉 0.234(35) 0.248(48) 0.285(45) 0.314(51) 0.349(51) 0.378(58)

〈p2〉 (GeV2) 0.522(152) 0.553(125) 0.636(179) 0.701(188) 0.778(229) 0.843(242)

〈r2〉1/2 (fm) 0.423(47) 0.672(50) 0.856(96) 1.060(118) 1.214(143) 1.390(163)

ure A.1) to determine the appropriate wavefunctions. Plots of the resulting wavefunctions

for charmonium and bottomonium are shown in Figure A.2. The wavefunctions encode

all information about the mesons (to the extent that the potential model approximation is

correct).

Using these wavefunctions one can obtain lots of information about the mesons, as shown

in Tables A.2 and A.3. The agreement between the Richardson model predictions and

experiment is impressive. For example, the Richardson model predicts the Υ(2S) − Υ(1S)

and Υ(3S) − Υ(1S) splittings to high accuracy.

As an aside, we note that this technique may also be used to determine which of the several

O(a2) operators are most critical to obtain improvement. One might, for example, choose to

leave out a particularly expensive (in terms of computational requirements) operator if it could

be determined that its effects would be minor.

Table A.3: Potential model predictions for various bottomonium states. The value indicates
the result from the Richardson potential, while the error indicates the deviation if the Cornell
model had been used instead.
Quantity \ State 1S 1P 2S 2P 3S 3P

m (GeV) 9.460 9.903(55) 10.02(3) 10.26(5) 10.35(5) 10.53(6)
〈v2/c2〉 0.082(14) 0.068(3) 0.075(1) 0.077(2) 0.084(1) 0.087(1)

〈p2〉 (GeV2) 1.961(617) 1.638(95) 1.798(237) 1.839(181) 1.998(279) 2.094(262)

〈r2〉1/2 (fm) 0.224(23) 0.394(11) 0.505(28) 0.655(28) 0.750(44) 0.880(47)
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Figure A.1: Plots of the Cornell and Richardson potential wells. The Cornell model is shown
in green, the Richardson model in blue.

Figure A.2: Plots of the Schrödinger wavefunctions for charmonium and bottomonium. The
solid lines show the 1S, 2S, and 1P states, calculated using the Richardson potential. The
dotted lines show the same for the Cornell model.
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Appendix B

Grassmann Variables

We represent fermions through the use of Grassmann variables η: numbers which anticommute

such that {ηi, ηj} = 0. For each fermion, we will use a pair of these Grassmann variables:

(η+, η). Because they anticommute, the square of a Grassmann variable is zero, and the most

general function involving a single pair takes the form

F (η+, η) = F (00) + F (01)η + F (10)η+ + F (11)η+η. (B.1)

The derivative is defined by

∂η+F (η+, η) ≡ F (10) + F (11)η (B.2)

∂ηF (η+, η) ≡ F (01) − F (11)η+ (B.3)

which means

∂η∂η+F (η+, η) = F (11) = −∂η+∂ηF (η+, η). (B.4)

Furthermore, we define the integral by

∫

dηdη+F (η+, η) ≡ F (11) ≡ −
∫

dη+dηF (η+, η). (B.5)

Therefore we can integrate

∫

dη+dηe−λη
+η =

∫

dη+dη(1 − λη+η) = λ. (B.6)
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This can be extended to the case of a generic Gaussian integral:

∫

dη+
1 dη1 · · · dη+

NdηNe
−

P

i,j η
+
j Ajiηi = detA. (B.7)

Another useful integral is

∫

dη+
1 dη1 · · · dη+

NdηNe
−

P

i,j η
+
j Ajiηiηj1η

+
i1
· · · ηjnη+

in
= detA

∑

k1···kn

εk1k2···kn

j1j2···jn A
−1
k1i1

· · ·A−1
knin

(B.8)

where

εk1k2···kn

j1j2···jn ≡























1

−1

0























if (j1j2 · · · jn) is























even

odd

no























permutation of (i1i2 · · · in). (B.9)
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Appendix C

Numerical Techniques

C.1 Singular Matrices

The matrix inverse can be accomplished via LU decomposition, which requires O(N 3) opera-

tions. Using the LU decomposition, we can compute the determinant as1

detLU = detLdetU =
∏

i

Uii. (C.1)

Therefore computing a determinant is no harder than calculating a matrix inverse.

If the eigenvalues of a matrix differ by several orders of magnitude, it may impede the

calculation of its inverse. One may define the norm of a matrix in terms of a vector norm as

‖A‖ ≡ max
x6=0

‖A · x‖
‖x‖ , (C.2)

where, in the Euclidean norm,

‖x‖2 =

(

∑

i

|xi|2
)1/2

. (C.3)

Using this definition, the norm measures the maximum stretching the matrix does to any

vector. Defining the condition number of the matrix as

cond(A) ≡ ‖A‖ · ‖A−1‖ =

(

max
x6=0

‖A · x‖
‖x‖

)

·
(

min
x6=0

‖A · x‖
‖x‖

)−1

(C.4)

we see the condition number gives the ratio of the maxiumum stretching to the maximum

1Here we use the fact that the L matrix has 1’s along the main diagonal.
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Figure C.1: A pictorial representation of the importance of the condition number of a linear
system. The region of intersection of two lines with errors is best determined if the lines are
orthogonal to each other.

shrinking.

The condition number may be used to understand the accuracy we may expect from solving

a matrix equation. As a pictorial example, see Figure C.1.

C.2 Solving a System of Linear Equations

For some applications, we do not explicitly need the matrix inverse, but only to solve a system

of linear equations. Rather than inverting the matrix, we can simply guess a solution and then

use an iterative procedure to cause it to converge to the correct value. These iterative methods

can potentially converge faster than the O(N 3) operations required by direct matrix inversion.

In particular, iterative methods work well for sparse matrices.

The minimal residual algorithm to solve the matrix equation Mξ = η proceeds as follows:

• Take a guess of the correct answer, and denote it ξ0. Then calculate the residual (the

difference from the correct answer) as r0 = η −Mξ0.

• Repeat the following until the desired level of convergence has been achieved, increment-

ing k at each step:

1. s = Mrk

2. α = s†rk

s†s
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3. ψk+1 = ψk + ωαrk

4. rk+1 = rk − ωαs

Note that ω, the relaxation parameter, can be tuned to accelerate convergence.

Other, more complicated, algorithms exist that may provide faster convergence.2 A com-

mon alternative to minimal residual is to use a conjugate gradient method. Here one tries to

minimize the gradient of the residual, rather than the residual itself.

In addition, preconditioning the matrix may speed convergence in many cases. This means

multiplying by another matrix in an attempt to reduce the condition number of the matrix.

C.3 Multidimensional Curvefitting

The simplex method is an intuitive algorithm for multidimensional curvefitting [81, §10.4]. In

this method, we define a simplex3 in the parameter space. Each iteration begins by calculating

the χ2 at each vertex of the simplex and identifying the high point (worst χ2) and best point

(lowest χ2). Initially, we reflect the high point through the opposite face of the simplex. If its

value decreases so much that it becomes the new best point, we can try extrapolating it even

further through the opposite face. If, on the other hand, it is still the high point, then we can

try to make it better by finding an intermediate point along the perpendicular to the opposite

face which is better. Finally, if no such intermediate point can be found, then we simply

contract the entire simplex about the best point. Possible steps are shown in Figure C.2. This

algorithm has the advantage that it is very simple to understand (think of an amoeba working

its way through a complex space to a more desirable location). Also, it only requires function

evaluations — the derivative is not required.

Other methods are more mathematical, and can provide faster convergence. Near a mini-

mum x = m, we can Taylor expand the χ2 function to find

χ2(m + a) = χ2(m) + ∂xχ
2(x)

∣

∣

m+a
· a +

1

2!
a · ∂2

xχ
2(x)

∣

∣

m+a
· a + · · · (C.5)

2An introduction to several iterative methods for matrix inversion is given in Ref. [27, §11.5].
3A simplex is a geometrical shape which forms a minimal basis for a space. In a D-dimensional space, it

must therefore have D + 1 vertices.
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Figure C.2: Possible steps for the amoeba algorithm.
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≈ γ − d · a +
1

2
a ·D · a (C.6)

where γ = χ2(m), di = − ∂xi
χ2(x)

∣

∣

m+a
, and Di,j = ∂xi,xj

χ2(x)
∣

∣

m+a
. Here the vector a

contains the deviation from the ideal fit parameters. Where this is a good approximation, we

can calculate the best-fit parameters by differentiating with respect to a and setting the result

to 0. We find d = D · a, or a = D−1
· d. This is commonly referred to as the inverse-Hessian

method. Where the approximation is not good, all we can do is follow a method of steepest

descent, and step down the gradient.

Multi-dimensional fitting can be accomplished efficiently using the Levenberg-Marquardt

method [81, §15.5]. This method combines the linear convergence of steepest descent (far

from the minimum) with the quadratic convergence of the inverse-Hessian method (near the

minimum). It does this by combining the two methods while introducing a scale parameter,

λ, that controls their relative weight, with large λ favoring the steepest descent method, and

small λ favoring the inverse-Hessian method. In practice, we simply take D → D + λ
�
.

By adjusting λ during the fitting process, the method can smoothly cross over between the

two extremes. When the fitter takes a good step, it decreases λ, which increases the relative

weight of the inverse-Hessian method. If it takes a bad step, it increases λ, moving it back to

a steepest descent method. The method therefore automatically finds a balance, shifting to

get quadratic convergence as the minimum is approached.

As with any multi-dimensional fitting routine, we must restart the algorithm after reaching

the minimum. We do this by setting λ = 1 and repeating the fit, starting from its previous fit

result. The algorithm will therefore be encouraged to take a large first step, which will take

it away from the minimum it had found. This is necessary to avoid the case where we find

a local minimum that differs from the global minimum. While there is no known method to

guarantee one finds the global minimum, restarting the fitting algorithm one or more times can

give a greater confidence in the result. If the minimum it had previously found was the true

global minimum, the algorithm will find it again quickly (since it’s already starting nearby),

so little additional computer time is required. The benefit, however, is that if it was not the

true global minimum it has a chance to move away from the local minimum and find a better
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one.

C.4 Singular Value Decomposition

It is clearly not possible to find the inverse of a singular matrix. What is less obvious is what

happens in the case of a nearly-singular matrix. In a computer, the finite precision means that

we could get a poor inverse due to roundoff errors if a matrix is nearly singular. A technique to

obtain the most accurate possible inverse is to invert the matrix for those eigenvectors which

dominate the solution. This technique is called Singular Value Decomposition (SVD).

One may obtain an eigenvalue-like decomposition for any m× n matrix A as

A = UΣV T (C.7)

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix, and Σ is an m×n

diagonal matrix with the singular values on the diagonal. For a rank-deficient matrix, one or

more of the singular values may be zero (to within machine precision). We can now compute

the pseudoinverse as

A+ = V Σ+UT (C.8)

where the pseudoinverse of a scalar is defined as

σ+ =











1/σ, σ 6= 0

0, σ = 0
. (C.9)

Note that the ratio of the maximum singular value to the minimum singular value gives an

estimate of the condition number of the matrix. We can therefore reduce the condition number

(to allow for a more accurate matrix inverse, for example) by discarding those singular values

which do not contribute to within some specified precision. For example, after identifying the

maximum singular value, σmax, we could discard any singular values smaller than σmax/10
15.

Note that, by definition, it should4 be possible to decompose any matrix into its singular

4In practical implementations, this is not always the case. During the course of this research it was discovered
that the SVD routine called by Numerical Python would fail for some matrices. It turned out that their
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values. This is therefore a robust technique whenever a matrix inverse is required, and is

highly recommended in cases where the matrix might have a large condition number.

implementation (in dlapack lite.c) used an iterative method to converge on the decomposition. In rare
cases, that iterative routine would hit its maximum iteration limit and fail. The fix, which I suggested in bug
601052, was to increase the maximum iteration count [82].
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Appendix D

Model Function Derivatives

The calculation of the model-function derivative is a somewhat tedious task. For speed,

however, it is helpful to hand-code the derivatives.

Consider the model function described in Section 5.3.1:

Gsrc,snk(t) = 2
∑

n

Z(n)
src Z

(n)
snk exp(−Ent) cosh(−Ent) (D.1)

where

E1 = E0 + eε1

E2 = E1 + eε2 (D.2)

E3 = E2 + eε3

...

The Marquardt-Levenberg algorithm, in order to determine which way is downhill, needs

the partial derivative with respect to each parameter. It is simplest to consider the cases of

the E0 and εi, and the Z
(n)
smearing separately.

We can find the energy parameter derivatives most easily by considering the generic prob-

lem (where y = y(x)):

∂

∂x
ey cosh y =

∂y

∂x
ey (cosh y + sinh y) . (D.3)

In the case of interest, we have y = −(E0 + ε1 + ε2 + · · · + εn)t. Therefore, ∂E0
y = −t for all
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n. We find the partial derivative of our model function is just

∂Gsrc,snk(t)

∂E0
= −2t

∑

n

Z(n)
src Z

(n)
snk exp(−Ent) (cosh(−Ent) + sinh(−Ent)) . (D.4)

This is not hard to generalize to the derivatives with respect to the εi. For this case,

∂εiy = −t for n ≥ i, and zero otherwise. In equation form,

∂Gsrc,snk(t)

∂εi
= −2t

∑

n≥i
Z(n)

src Z
(n)
snk exp(−Ent) (cosh(−Ent) + sinh(−Ent)) . (D.5)

The derivatives with respect to the coefficients are simpler, but there is one minor catch:

the two smearings might be identical, which would lead to a Z 2 term. We therefore find

∂Gsrc,snk(t)

∂Z
(n)
src

=











2Z
(n)
snk exp(−Ent) cosh(−Ent) for src 6= snk

4Z
(n)
snk exp(−Ent) cosh(−Ent) for src = snk

(D.6)

Because we don’t decide how many energy levels to include in a fit until runtime, any

program we write must be completely general in that respect. The equations of the above two

sections are realized through the Python code shown in Figure D.1. At the end of this code,

the array dfdp will contain the partial derivatives with respect to each parameter.

It should be noted that this is one of the simplest model functions we consider. This

entire procedure must be repeated for each model function we wish to optimize. To reduce the

likelihood of introducing bugs, we rely heavily on the automatic differentiation of Section 5.1.4.
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dfdp = [] # Start with an empty dfdp array

sum = 0 # Take care of the energy parameters

for elevel in range(self.n_lvl): # E0 affects all energy levels

sum += (src_spect[elevel]

*snk_spect[elevel]

*(-self.Tmid*local_cosh(espect[elevel]*Tmid_t)

+Tmid_t*local_sinh(espect[elevel]*Tmid_t)

)

*2*local_exp(-espect[elevel]*self.Tmid)

)

dfdp.append(sum)

for i in range(1,self.n_lvl): # eps_i affects all energy levels >= i

sum = 0

for elevel in range(i,self.n_lvl):

sum += (src_spect[elevel]

*snk_spect[elevel]

*2*self.par[i]

*(-self.Tmid*local_cosh(espect[elevel]*Tmid_t)

+Tmid_t*local_sinh(espect[elevel]*Tmid_t)

)

*2*local_exp(-espect[elevel]*self.Tmid)

)

dfdp.append(sum)

for elevel in range(self.n_lvl): # Take care of the source/sink parameters

for i in range(self.n_src_snk):

if (i==source or i==sink):

if (source==sink):

dfdp.append(2*src_spect[elevel]

*local_exp(-espect[elevel]*self.Tmid)

*2*local_cosh(espect[elevel]*Tmid_t)

)

else:

dfdp.append(src_spect[elevel]

*snk_spect[elevel]

*local_exp(-espect[elevel]*self.Tmid)

*2*local_cosh(espect[elevel]*Tmid_t)

/self.src_snk(elevel,i)

)

else:

dfdp.append(zeros(len(t), ’d’))

Figure D.1: Sample Python code that implements the derivative of Eq. (D.1): Eq. (D.6).
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Appendix E

Partially Quenched Staggered

Chiral Perturbation Theory

Partially quenched staggered chiral perturbation theory (PQSχPT) treats the independent

extrapolation of light sea and valence quarks to their continuum values. The chiral expansion

has the form

fQq

√

MQq = α

(

1 +
1

16π2f2
∆fq + · · ·

)

(E.1)

where the ∆fq contains the chiral logs and the · · · are terms analytic in mq and
∑

f mf .

Following Aubin and Bernard [83, 84, 72], we write the 16 tastes as the multiplets1 P,A,T,V,I

with degeneracies 1,4,6,4,1, we can write the contributions to the chiral log as

∆fq = −1 + 3g2
π

2
(hav + hI + hA + hV ). (E.2)

The first contribution is simply an average over the 16 meson tastes:

hav =
1

16

16
∑

ξ=1

N
∑

f=1

M2
qf,ξ log(M2

qf,ξ). (E.3)

The other contributions are, for the case Nf = 2 + 1,

hI =
1

N

d

dM2
qq,I

(

N−1
∑

b=1

R
[N−1,N−1]
b

({

M qI
}

;
{

µI
})

M2
b,I logM2

b,I

)

(E.4)

1We use the notation P,A,T,V,I to refer to the pseudoscalar, axial-vector, tensor, vecor, and isosinglet states,
respectively.
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hA = a2δ′A
d

dM2
qq,A

(

N
∑

b=1

R
[N,N−1]
b

({

M qA
}

;
{

µA
})

M2
b,A logM2

b,A

)

(E.5)

and similarly for hV with the substitution A→ V . Here

{

M qI
}

= {Mqq,I ,Mη,I} with M 2
η,I =

M2
U,I

3
+

2M2
S,I

3
(E.6)

{

µI
}

= {MU,I ,MS,I} (E.7)

{

M qA
}

=
{

Mqq,A,Mη,A,Mη′ ,A

}

(E.8)

{

µA
}

= {MU,A,MS,A} (E.9)

and

R
[n,k]
j ({m}; {µ}) ≡

∏k
a=1(µ

2
a −m2

j)
∏

i6=j(m
2
i −m2

j)
. (E.10)

Finally, we learn from fits to fπ that [85, Eq. 47]

r21a
2δ′A = −0.28(3)(5) (E.11)

r21a
2δ′V = −0.11(8)(+21

−4 ). (E.12)

These values will be taken as priors in our fD fits. We also set gπ to its experimentally

measured value [86].

The hA and hV are suppressed by a factor of a2. These terms embody the O(a2) discretiza-

tion errors resulting from taste-changing interactions. While we must include these terms in

fits to lattice data, we will remove them when taking the continuum limit a→ 0.

Taking the derivatives for hI , hV , and hA is straightforward, if tedious. One finds:

hI =
1

3

[

((f − q)(s− q) + ((f − q)(s− q) − q(s− q) − q(f − q)) log(q/µ)

η − q

+
(f − q)(s− q)q log(q/µ) − (f − η)(s− η)η log(η/µ)

(η − q)2

]

(E.13)

hA = a2δ′A

[

(f − q)(s− q) + ((f − q)(s− q) − q(s− q) − q(f − q)) log(q/µ)

(η − q)(η′ − q)

+
((η − q) + (η′ − q))(f − q)(s− q)q log(q/µ)

(η − q)2(η′ − q)2
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Table E.1: Taste splittings, for a meson of taste Γ. Values obtained from light mesons [87].

Γ degeneracy δ(Γ)

P (Goldstone) 1 0.0000000
A 4 0.0295374
T 6 0.0471298
V 4 0.0631816

I (singlet) 1 0.0772650

− (f − η)(s− η)η log(η/µ)

(q − η)2(η′ − η)
− (f − η′)(s− η′)η′ log(η′/µ)

(q − η′)2(η − η′)

]

(E.14)

Here I have used the abbreviated notation M 2
q,I → q, etc., so

√
q has units of mass. In the

above, f refers to the sea quark, q refers to the valence quark, and µ is a renormalization

scale2.

Finally, the masses must be adjusted for taste splittings. We use the formula

a2m2
π(Γ) = δ(Γ) + (aµ)[amX + amY )] (E.15)

where aµ = 2.3647 on the coarse lattice, and the δ(Γ) are defined in Table E.1.

2The renormalization scale comes from the mass of the singlet contribution to the η′.
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Appendix F

Asymmetric Actions

In this work, we utilize a symmetric lattice, where the lattice spacing a is the same in the tem-

poral and three spatial directions. While this is a natural way to approach a relativistic system,

some improvement is possible for heavy quarks. The heavy quarks move non-relativistically,

so they have an asymmetry in their 4-momenta. It is possible to correct for this asymmetry

(and essentially boost the quarks to a relativistic frame). This can be done by treating the

spatial and temporal components of the operators differently.

This approach, called the Fermilab approach [5], is best applied to the charm and bottom

quarks. It is fairly straightforward to determine the necessary operators for improvement to

O(a). The only dimension 3 operator is still ψψ, but the dimension 4 operator now splits into

two operators:

ψ /Dψ →











ψγ0D0ψ

ψγ · Dψ
. (F.1)

At dimension 5, the splitting is even more complex:

ψ /D
2
ψ →











ψD2
0ψ

ψ(γ · D)2ψ
(F.2)

iψσµνFµνψ →























iψΣ · Bψ

ψα · Eψ

ψ[γ0D0,γ · D]ψ

. (F.3)

Redundant operators must be removed and the coefficients determined — a task that is
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complicated by the fact that there are many more operators to take into account. Without

axis-interchange symmetry, the transformation in Eq. (3.72) must be generalized to

ψ → exp[εa( /D +m) + δaγ · D]ψ

ψ → ψ exp[ε̄a( /D +m) + δ̄aγ ·D]. (F.4)

Applying this transformation leads to the dimension-five interactions listed in Eqs. (F.2) and

(F.3). From the four independent parameters only three combinations survive: ε + ε̄, δ + δ̄,

and δ − δ̄. The coefficents of the three terms ψD2
0ψ, ψ(γ · D)2ψ, and ψ[γ0D0,γ · D]ψ can be

chosen arbitrarily. The first two terms can be used to solve the doubling problem; the third

coefficient is chosen to be zero for simplicity (and performance).

The asymmetry modifies the fermion propagator slightly. As a result, the normalization

of the fermion field becomes

eM1a/2ψ(x) =
√

1 − 6rsκs ψn, (F.5)

where rs and κs refer to the Wilson parameter and hopping parameter in a spatial dimension,

and M1 ≡ E(0) is the rest mass. Results from calculations utilizing an O(a) asymmetric

lattice action are promising [88].

It turns out that, to O(a), the physics depends only on the kinetic mass (the M2 of

Eq. (3.44)) regardless of the tuning of the asymmetry parameter [88, Figure 5]. It is therefore

not necessary to tune the asymmetry parameter ζ. In this work, we have simply set ζ = 1.

The next step is to construct the O(a2) improved asymmetric action. At dimension 6,

there are two classes of operators: bilinear operators ψ(x)Obψ(x) where Ob is of dimension

3, and quadratic operators (ψ(x)Oqψ(x))2 where Oq is of dimension 0. The quadratic opera-

tors describe four-fermion interactions. A straightforward, but tedious, calculation shows the

bilinear terms can be written as

O4(x) = ψ(x)γµD
3
µψ(x)

O5(x) = ψ(x)D2 /Dψ(x)
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O6(x) = ψ(x) /DD2ψ(x) (F.6)

O7(x) = ψ(x)γµ[Dν , Fµν ]ψ(x)

O8(x) = ψ(x) /D
3
ψ(x).

We have already seen O4 (the Naik term) in Section 3.4.4. It is discretized as

OL4 ≡ ψ(x)γµ(D
3
µ)
Lψ(x)

= ψ(x)
∑

µ

γµ
(2a)3

[

Uµ(x+ 2µ̂)Uµ(x+ µ̂)Uµ(x)ψ(x+ 3µ̂) − 3Uµ(x)ψ(x + µ̂) (F.7)

+ 3U †
µ(x− µ̂)ψ(x− µ̂) − U †

µ(x− 3µ̂)U †
µ(x− 2µ̂)U †

µ(x− µ̂)ψ(x− 3µ̂)
]

.

This operator reaches sites 3 hops away.

For the quartic terms, everything is squared so charge, parity, and discrete lorentz sym-

metries don’t restrict our operators. In addition, we must allow for a gauge symmetry by

writing the operators as (ψΓtaψ)2. Finally, we must conserve flavor symmetry (allowing for

a four-quark interaction of two different flavors) so we must include the flavor generators βA.

These considerations add to our list the operators:

O9(x) = (ψ(x)taψ(x))2 O10(x) = (ψ(x)taβAψ(x))2

O11(x) = (ψ(x)γ5t
aψ(x))2 O12(x) = (ψ(x)γ5t

aβAψ(x))2

O13(x) = (ψ(x)γµt
aψ(x))2 O14(x) = (ψ(x)γµt

aβAψ(x))2

O15(x) = (ψ(x)γ5γµt
aψ(x))2 O16(x) = (ψ(x)γ5γµt

aβAψ(x))2

O17(x) = (ψ(x)σµνt
aψ(x))2 O18(x) = (ψ(x)σµνt

aβAψ(x))2.

(F.8)

It is expected that the 5+10 symmetric dimension 6 operators will expand out to 16+18

operators in the asymmetric case. To determine which operators are redundant, one must

begin with the field redefinitions

Aµ → Aµ + a2

(

1

2
ε
∑

ν

[Dν , Fµν ] + ε′ψγµψ

)

ψ → ψ + aε1 /Dψ + a2ε2D
2ψ + a2ε3 /D

2
ψ

ψ → ψ + aε1ψ /D + a2ε2ψD
2 + a2ε3ψ /D

2
. (F.9)
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Choosing the form of these operators and eliminating the redundant ones is a current area of

research [89, 90]. It will then be necessary to determine the coefficients of these operators. As

each coefficient is calculated, we can immediately implement the corresponding term into our

lattice actions. Although we won’t be guaranteed complete O(a2) improvement until all coef-

ficients have been calculated, we should be able to reap some benefits of O(a2) improvement

as additional terms are added.
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