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Vortices are considered in relativistic Maxwell–Higgs systems in interaction with a neutral scalar field. 
The gauge field interacts with the neutral field via the presence of generalized permeability, and the 
charged and neutral scalar fields interact in a way dictated by the presence of first order differential 
equations that solve the equations of motion. The neutral field may be seen as the source field of the 
vortex, and we study some possibilities, which modify the standard Maxwell–Higgs solution and include 
internal structure to the vortex.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Vortices are planar structures that attain interesting topologi-
cal behavior and have a diversity of applications in high energy 
physics and in condensed matter. In high energy physics in par-
ticular, in the case of a relativistic field theory, the Maxwell–Higgs 
model is perhaps the standard model that supports vortex config-
urations, as firstly shown by Nielsen and Olesen [1] and then by 
other researches [2–4].

The standard Maxwell–Higgs model describes an Abelian gauge 
field Aμ minimally coupled to a charged scalar field ϕ and obeys 
the local U (1) symmetry. To develop vortex solutions, the model 
has to be enlarged to accommodate a potential of the Higgs type 
that develops spontaneous symmetry breaking. This model was 
long ago enlarged to accommodate the U (1) × U (1) symmetry, 
now with two gauge fields and two complex scalar fields that 
interact via an extension of the Higgs-like potential [5]. An inter-
esting result of this model was the possibility of adding internal 
structure to the solution, having superconducting properties. In 
[6] and in the more recent works [7–9] and in references therein 
one finds other studies related to the presence of superconducting 
strings.

Another line of investigation which also deals with the U (1) ×
U (1) symmetry concerns the study of a visible U (1) gauge field 
sector Aμ and another hidden U (1) gauge field sector Cμ that 
interact via the two gauge field tensors Fμν = ∂μ Aν − ∂ν Aμ and 
Gμν = ∂μCν − ∂νCμ . The presence of the hidden sector is moti-
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vated by supersymmetric extensions of the standard model and by 
superstring phenomenology and may somehow play a role in the 
study of dark matter. Studies on vortex in such models appeared 
before in [10,11], and in references therein.

Recently, in [12] we started a program to describe vortex struc-
tures in generalized models in (2, 1) spacetime dimensions, and in 
[13] we studied the case of analytic vortex solutions. Other inves-
tigations on vortices that enlarge the U (1) symmetry to accommo-
date new fields appeared before in [14–17], and more recently in 
[18,19] and in references therein. In particular, in [16,17] the U (1)

symmetry is enlarged to become U (1) × S O (3), to accommodate 
the S O (3) spin group that under specific circumstances may lead 
to vortex solutions that behave as spin vortices. In this case, the 
S O (3) symmetry is driven by the addition of neutral scalar fields 
that couple to the U (1) symmetry via the charged Higgs-like field.

These works motivated us to go further and investigate ex-
tended versions of the generalized model. Our ultimate goal is to 
deal with the case in which the U (1) × U (1) symmetry plays the 
basic role. In the current work, however, we follow another route 
and take the symmetry U (1) × Z2, coupling U (1) to Z2 symmetry 
via the addition of a neutral scalar field, with the coupling modu-
lated by the presence of generalized permeability. The inclusion of 
the Z2 symmetry which is controlled by the neutral field is per-
haps the simplest possibility to enlarge the U (1) symmetry, and 
below we show that it may modify the profile of the vortex in a 
way of current interest.

2. The model

We work in (2, 1) flat spacetime dimensions with the La-
grangian density
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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L = −1

4
P (χ)Fμν F μν + |Dμϕ|2 + 1

2
∂μχ∂μχ − V (χ, |ϕ|) (1)

where χ is a real scalar field, the neutral field, ϕ is a com-
plex scalar field, the charged field, and Aμ is the Abelian gauge 
field. Also, Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic tensor and 
Dμ = ∂μ + ie Aμ stands for the covariant derivative. The poten-
tial is denoted by V (χ, |ϕ|) and may present terms that mix the 
real and complex scalar fields. We suppose P (χ) is a nonnega-
tive function of the real scalar field and use the metric tensor 
ημν = (1, −1, −1) and h̄ = c = 1. The equations of motion asso-
ciated to the Lagrangian density (1) are

∂μ∂μχ + 1

4
Pχ Fμν F μν + Vχ = 0 (2a)

DμDμϕ + ϕ

2|ϕ| V |ϕ| = 0, (2b)

∂μ

(
P F μν

) = Jν, (2c)

where the current is Jμ = ie(ϕDμϕ − ϕDμϕ) and Pχ = dP/dχ , 
Vχ = ∂V /∂χ , and V |ϕ| = ∂V /∂|ϕ|. By setting ν = 0 in equation 
(2c), one can show that for static field configurations the Gauss’ 
law is satisfied with A0 = 0. In this case, the vortex is electrically 
neutral since its electric charge vanishes.

To search for topological solutions, we consider static configu-
rations and suppose that

χ = χ(r), ϕ = g(r)einθ , �A = − θ̂

er
(a(r) − n), (3)

in which n ∈ Z is the vorticity. The functions χ(r), a(r) and g(r)
obey the boundary conditions

χ(0) = χ0, g(0) = 0, a(0) = n, (4)

χ(∞) = χ∞, g(∞) = v, a(∞) = 0. (5)

Here, χ0, χ∞ and v are parameters involved in the symmetry 
breaking of the potential. Considering the fields described by equa-
tions (3), the magnetic field has to satisfy

B = −F 12 = − a′

er
, (6)

where the prime stands for the derivative with respect to r. By 
using this, one can show the magnetic flux is quantized

� = 2π

∫
rdrB = 2πn

e
. (7)

The equations of motion (2) with the static fields (3) assume the 
form

1

r

(
rχ ′)′ = Pχ

a′2

2e2r2
+ Vχ , (8a)

1

r

(
rg′)′ = a2 g

r2
+ 1

2
V |ϕ|, (8b)

r

(
P

a′

er

)′
= 2eag2. (8c)

The energy density for static field configurations can be calcu-
lated standardly; one uses (3) to write

ρ = P
a′2

2e2r2
+ g′2 + a2 g2

r2
+ 1

2
χ ′2 + V . (9)

The equations of motion (8) are of second order and present cou-
plings between the fields. In order to get first order equations, we 
use the Bogomol’nyi procedure [2] and introduce an auxiliary func-
tion W = W (χ) to write the energy density (9) as

ρ = P (χ)

2

(
a′

er
± e(v2 − g2)

P (χ)

)2

+
(

g′ ∓ ag

r

)2

+ 1

2

(
χ ′ ∓ Wχ

r

)2

+ V −
(

e2

2

(
v2 − g2

)2

P (χ)
+ 1

2

W 2
χ

r2

)

± 1

r

(
W − a

(
v2 − g2

))′
,

(10)

where Wχ = dW /dχ . If the potential is written as

V (χ, |ϕ|) = e2

2

(
v2 − |ϕ|2)2

P (χ)
+ 1

2

W 2
χ

r2
, (11)

the energy becomes

E = 2π

∞∫
0

r dr
P (χ)

2

(
a′

er
± e(v2 − g2)

P (χ)

)2

+ 2π

∞∫
0

r dr
(

g′ ∓ ag

r

)2

+ 2π

∞∫
0

r dr
1

2

(
χ ′ ∓ Wχ

r

)2

+ E B ,

(12)

where

E B = ±2π

∞∫
0

dr
(

W − a
(

v2 − g2
))′

= 2π |W (χ(∞)) − W (χ(0))| + 2π |n|v2.

(13)

Since the three integrands in the energy (12) are all non-negative, 
we see that the energy is bounded by E B , i.e., E ≥ E B . If the solu-
tions obey the equations

χ ′ = ± Wχ

r
(14)

and

g′ = ±ag

r
, (15a)

− a′

er
= ±e

(
v2 − g2

)
P (χ)

, (15b)

the Bogomol’nyi bound is saturated, such that the energy is min-
imized to E = E B . Therefore, we have obtained three first order 
equations to study the problem, since they satisfy the equations of 
motion (8). As one knows, the fact that the solutions of the above 
first order equations (14) and (15) saturate the Bogomol’nyi bound 
implies stability against decay into similar lower energy configura-
tions.

It is worth commenting that the equation for the real scalar 
field (14) does not depend on the other fields. Thus, the real scalar 
field can be seen as a source to generate the vortex configuration, 
and we call it the source field. Although this is not apparent from 
the equations of motion (8), it is clear in the first order equations. 
Moreover, concerning the first order equations, it seems that the 
model one is dealing with is the bosonic portion of a larger, super-
symmetric theory, which will be further investigated elsewhere. 
Here we keep working with the above model, since it unveils sev-
eral interesting possibilities of investigations of current interest.
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An interesting issue concerns the presence of the radial coor-
dinate in the first order equation (14), which follows from the 
Bogomol’nyi procedure to minimize the energy of the static field 
configurations. One notes that the potential V (χ, |ϕ|) gained an 
extra contribution, the last term in the right hand side of equation 
(11), to close the Bogomol’nyi procedure. This extra contribution 
reminds us very much of the modification introduced before in 
[20] to circumvent the Derrick–Hobard scaling theorem [21,22], 
which informs us that a real scalar field, described by standard 
Lagrangian, cannot support stable static solution unless we work 
with a single spatial dimension.

To avoid instability of static solutions in (2, 1) spacetime di-
mensions, in [20] we suggested taking the real scalar field model 
in the form

L = 1

2
∂μχ∂μχ − 1

2

W 2
χ

r2
, (16)

with the potential changed exactly as it has appeared above in 
the last term in equation (11). We then see that if one considers 
g = |ϕ| → v and a → 0, one gets to the minimum energy configu-
ration for the gauge and complex scalar fields, and the model (1)
changes to the real scalar field model (16). In this case, the model 
(16) is governed by the first order equations (14), as shown before 
in [20]. Moreover, in the case one considers χ → χ̃ , with χ̃ be-
ing a constant, a minimum of the scalar field potential that obeys 
Wχ (χ̃) = 0, and since P (χ̃ ) is a positive real constant, one sees 
that the model (1) becomes the standard Maxwell–Higgs model 
and obeys the first order equations (15), with χ → χ̃ , so it has 
the same solutions, after rescaling the radial coordinate as

r → r
√

P (χ̃ ) . (17)

Below we consider P (χ) such that P (χ̃ ) = 1, so we will not need 
to rescale the radial coordinate.

Let us now work with the energy density (9), which can be 
written as magnetic, gradient and potential contributions

ρ = ρmag + ρgradϕ + ρgradχ + ρpot, (18)

where

ρmag = P (χ)
a′2

2e2r2
(19a)

ρgradϕ = g′2 + a2 g2

r2
(19b)

ρgradχ = 1

2
χ ′2 (19c)

ρpot = e2

2

(
v2 − g2

)2

P (χ)
+ 1

2

W 2
χ

r2
. (19d)

The first order equations (14) and (15) allow us to write ρpot =
ρmag + ρgradχ and ρgradϕ = 2g′2, so we can write

ρ = 2ρmag + ρgradϕ + 2ρgradχ . (20)

This equation is interesting because it separates the energy density 
of the vortex from the one of the source field, which are respec-
tively given by

ρvortex = 2ρmag + ρgradϕ and ρscalar = 2ρgradχ . (21)

It is worth mentioning that, according to result (13), the energy of 
the source field is fixed for a given W (χ). This implies that the 
same occurs for the vortex, in a manner that the magnetic and 
gradient portions may change, but its energy is always 2π |n|v2.
Fig. 1. The real scalar field solution (25) with the positive sign (left) and its en-
ergy density (26) in terms of r/r0 for r0 = 1 and 2, with the thickness of the lines 
increasing with r0.

From now on, we work with dimensionless fields, keeping in 
mind that the rescale

ϕ → vϕ, χ → vχ, Aμ → v Aμ,

r → r/ev, Wχ → vWχ , L → e2 v4L
(22)

can be done. We further set e = 1 and v = 1, and work with unit 
vorticity, n = 1, for simplicity.

3. The source field

Since the source field is independent from the other fields, we 
firstly deal with it and consider

W (χ) = χ − χ3

3
, (23)

which was investigated in Ref. [20] and more recently in [23] and 
in [24] to model planar skyrmion-like configurations, and also in 
[25] to study how massless Dirac fermions may behave in the 
background of such neutral planar structures. We can also use 
other possibilities, but here we consider the above W (χ), which 
changes the first order equation (14) to the form

χ ′ = ±1

r

(
1 − χ2

)
. (24)

In this case, χ̃ which we commented on below equation (16) can 
be ±1, and identify the fields χ0 and χ∞ which appears in the 
boundary conditions (4) and (5). The analytical solutions are given 
by

χ(r) = ± r2 − r2
0

r2 + r2
0

, (25)

where r0 is an arbitrary positive constant such that χ(r0) = 0. The 
corresponding energy density is given by

ρscalar = 16 r4
0 r2

(r2
0 + r2)4

(26)

In Fig. 1, we depict the solution (25) (with the positive sign) and 
the energy density (26) in terms of r/r0. We see that the solu-
tion χ(r) varies smoothly from −1 at the origin to 1 as r increases 
to larger and larger values. This behavior is important to model 
the function P (χ) which controls the magnetic permeability of the 
model. The peaks in the right panel in Fig. 1 are at r̄ = r0/

√
3. 

Also, we observe that the energy density varies less significantly 
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Fig. 2. The vortex solutions (left panel) a(r) (descending lines) and g(r) (ascending 
lines) and the magnetic field (right panel) in terms of r/r0 for r0 = 1 and 2, with 
the thickness of the lines increasing with r0.

for higher values of r0. This behavior will also appear for the vor-
tex configurations that we study below. By integrating the above 
equation (26), we get the energy

Escalar = 8π

3
, (27)

as expected from equation (13). Since the energy of the vor-
tex equals 2π , we conclude the total energy of the system is 
E = 14π/3.

4. The vortex profile

We now go further and use the solutions (25) to model the 
magnetic permeability of the vortex. We first consider the possi-
bility

P1(χ) = 1

1 − χ2
, (28)

which engenders the Z2 symmetry. As we see, at r = r0, the scalar 
field vanishes and P1(χ) becomes unity, leading us with a vor-
tex solution of the Nielsen–Olesen type [1]. However, the above 
choice makes P1(χ) divergent at the origin and asymptotically. As 
we will show below, the singular behavior at the origin will be 
compensated by the vanishing of B(r) as r approaches the origin.

To solve for the vortex, we consider the first order equations 
(14) and (15) with the upper signs, and the solution (25) with 
the positive sign. The source field modifies the first order equation 
(15b) to become

−a′

r
= 2 r2

0

(
1 − g2

)
r2

0 + r2
, (29)

which must be solved together with the equation (15a). The solu-
tions g(r) and a(r) are parametrized by the constant r0 and can 
be evaluated numerically. They are depicted in Fig. 2 and are simi-
lar to the standard Nielsen–Olesen vortex configurations, but with 
the gauge field configuration a(r) having a plateau near its core. 
This modifies the magnetic field in a significant way, which is also 
shown in the right panel in Fig. 2. The magnetic field vanishes at 
the origin, showing a behavior which is important to avoid the 
divergence of P (χ) and control the energy of the solution. This 
is different from the standard vortex solution [1] and remind us 
very much of the behavior of the magnetic field in the Chern–
Simons–Higgs model [26]; see also [27,28], which investigates the 
Maxwell–Higgs model, modified to incorporate generalized mag-
netic permeability, but with no extra neutral field.

In Fig. 3, we depict the energy density of the vortex and the 
total energy density of the field configurations for r0 = 1 and 2. 
Fig. 3. The energy densities of the vortex (left panel) and the total energy density 
(right panel) for r0 = 1 and 2, with the thickness of the lines increases with r0.

Fig. 4. The planar magnetic field, displayed in terms of r/r0 for r0 = 1 (left) and 2
(right).

We see that as r0 increases, both the position and the height of 
the maximum of the energy densities decrease.

The profile of the magnetic field is similar to the one of the 
Chern–Simons–Higgs model, but in the current model the parame-
ter r0 can be used to control its intensity around r0 itself. To show 
this more explicitly, in Fig. 4 we display the planar magnetic field 
for r0 = 1 and 2 to emphasize this behavior as one varies r0.

We may consider other possibilities for the generalized mag-
netic permeability, and now we take P (χ) in the form

P2(χ) = 1

χ2 . (30)

In this case, at the origin and asymptotically one has χ2 = 1, 
so P2(χ) becomes unity and the vortex behaves as the Nielsen–
Olesen one [1]. However, at r = r0 the scalar field vanishes and 
makes P2(χ) divergent, and this forces the magnetic field to van-
ish at r = r0, introducing an internal structure to the vortex.

In order to investigate the behavior of the vortex in this case, 
we need to solve equations (15a) and (15b), the last one changing 
to

−a′

r
= (r2 − r2

0)2 (1 − g2)

(r2 + r2
0)2

. (31)

We use numerical procedures to investigate the system. In Fig. 5, 
we display the solutions a(r) and g(r), and the magnetic field for 
some values of r0, with the radial coordinate normalized to r/r0. 
We see that the gauge field a(r) has a different behavior around 
r = r0, and this modifies the magnetic field accordingly, which now 
vanishes at r = r0.

The energy density of the vortex can be calculated as before, 
and in Fig. 6 we depict it and the total energy density of the 
field configurations as functions of r/r0 for some values of r0. Also, 
in Fig. 7 we depict the planar magnetic field for r0 = 0.5 and 1, 
to better emphasize its novel behavior: it decreases from unity 
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Fig. 5. The vortex solutions (left panel) a(r) (descending lines) and g(r) (ascending 
lines) and the magnetic field (right panel) in terms of r/r0 for r0 = 1 and 2, with 
the thickness of the lines increasing with r0.

Fig. 6. The energy densities of the vortex (left panel) and the total energy density 
(right panel) for r0 = 1 and 2, with the thickness of the lines increases with r0.

Fig. 7. The planar magnetic field, displayed in terms of r/r0 for r0 = 0.5 (left) and 1
(right).

to zero at r = r0, and then increases and decreases towards zero 
asymptotically. In the interval [0, r0] it remembers the solution of 
the standard Maxwell–Higgs model, and in the interval [r0, ∞) it 
behaves as in the Chern–Simons–Higgs model. This is the profile 
of a vortex with internal structure.

5. Ending comments

In this work we investigated a Maxwell–Higgs model in (2, 1)

spacetime dimensions, with the addition of a neutral field that 
interacts with the gauge field via the inclusion of a generalized 
magnetic permeability. The neutral field also interacts with the 
charged scalar field via the Higgs-like potential. We have chosen 
the potential in a way that makes the energy of the field configu-
rations to be minimized to its Bogomol’nyi bound, and this has led 
us to three first order differential equations that solve the equa-
tions of motion.
Interestingly, the first order equation of the neutral field de-
couples from the other two equations and can be solved indepen-
dently. This makes the neutral field the source field to generate 
the vortex configuration, and we have studied two distinct pos-
sibilities. In one case, the magnetic field of the vortex acquires 
the profile of the Chern–Simons–Higgs model. In the other case, 
the magnetic field seems to describe a vortex with internal struc-
ture.

The last possibility is new and may find applications in a di-
versity of contexts of current interest in nonlinear science. In the 
case of domain walls, for instance, it reminds us of the Bloch 
wall, which may be seem as an Ising wall with internal struc-
ture. The generalized model that we investigated in this work may 
be generated in metamaterials, and there it may find applications 
of current interest; see, e.g., Refs. [29–31] and references therein. 
The novel vortex configuration may also appear in dipolar atomic 
Bose–Einstein condensates, when the magnetic dipole moments of 
the atoms effectively participate of the atomic interaction; see, 
e.g., Refs. [32–34] and references therein. Moreover, the vortices 
with internal structure obey first order equations that minimize 
the energy, so they seem to be immersed in the bosonic portion 
of a larger, supersymmetric theory. Also, in the context of a larger 
theory, involving the U (1) × U (1) symmetry with visible and hid-
den sectors, the inclusion of generalized magnetic permeabilities 
opens new possibilities of study of current interest in high energy 
physics, as commented before in [13], for instance.
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