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Abstract. This is a discussion on fields, the internal degrees of freedom of which are
expressed by either the Grassmann or the Clifford ”coordinates”. Since both ”coordinates”
fulfill anticommutation relations, both fields can be second quantized so that their creation
and annihilation operators fulfill the requirements of the commutation relations for fermion
fields. However, while the internal spin, determined by the generators of the Lorentz group
of the Clifford objects Sab and S̃ab (in the spin-charge-family theory Sab determine the spin
degrees of freedom and S̃ab the family degrees of freedom) have half integer spin, have Sab

(expressible with Sab + S̃ab) integer spin. Nature made obviously a choice of the Clifford
algebra.

We discuss here the quantization — first and second — of the fields, the internal
degrees of freedom of which are functions of the Grassmann coordinates θ and their
conjugate momentum, as well as of the fields, the internal degrees of freedom of which are
functions of the Clifford γa. Inspiration comes from the spin-charge-family theory [[1,2,9,3],
and the references therein], in which the action for fermions in d-dimensional space is
equal to

∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c., with p0a = fαap0α + 1

2E
{pα, Ef

α
a}−, p0α = pα −

1
2
Sabωabα − 1

2
S̃abω̃abα. We write the basic states of the Grassmann fields and the Clifford

fields as a function of products of either Grassmann or Clifford objects, trying to understand
the choice of nature. We look for the action for free fields which are functions of either the
Grassmann coordinates or of the Clifford coordinates in order to understand why Clifford
algebra ”win” in the competition for the physical degrees of freedom (at least in our
observable world).

Povzetek. Avtorja obravnavata polja, pri katerih so notranje prostostne stopnje izražene
ali z Grassmannovimi ali pa s Cliffordovimi “koordinatami”. Ker obe vrsti “koordinat”
zadoščata antikomutacijskim relacijam, lahko za obe vrsti polj naredimo drugo kvanti-
zacijo tako, da kreacijski in anihilacijski operatorji zadoščajo komutacijskim relacijam za
fermionska polja. Za razliko od internih spinov, ki jih določajo generatorji Lorentzove
grupe Cliffordovih objektov Sab in S̃ab (v teoriji spinov-nabojev-družin Sab določajo spinske
prostostne stopnje, S̃ab pa družinske prostostne stopnje) in imajo polštevilčni spin), imajo
Sab (ki jih lahko izrazimo z Sab + S̃ab) celoštevilski spin. “Narava se je očitno odločila” za
Cliffordovo algebro.

? This is the part of the talk presented by N.S. Mankoč Borštnik at the 20th Workshop
”What Comes Beyond the Standard Models”, Bled, 09-17 of July, 2017, and published in
the Proceedings to this workshop.
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8 Why Nature Made a Choice of Clifford and not Grassmann Coordinates 101

Avtorja obravnavata kvantizacijo — prvo in drugo — za polja, pri katerih so notranje
prostostne stopnje funkcije Grassmannovih koordinat θ in ustreznih konjugiranih momen-
tov, pa tudi za polja, kjer so interne prostostne stopnje funkcije Cliffordovih koordinat
γa. Navdih najdeta v teoriji spinov-nabojev-družin [[1,2,9,3], in reference v teh člankih], v
kateri je akcija za fermione v d razsežnem prostoru enaka

∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c.,

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα. Da bi razumela

“izbiro narave”, zapišeta osnovna stanja Grassmannovih in Cliffordovih polj kot produkte
Grassmannovih ali Cliffordovih objektov. Iščeta akcijo za prosta polja, ki so funkcije Grass-
mannovih ali pa Cliffordovih koordinat, da bi bolje razumela, zakaj Cliffordova algebra
“zmaga” v tekmi za fizikalne prostostne stopnje (vsaj v opazljivem svetu).

Keywords: Spinor representations, Kaluza-Klein theories, Discrete symmetries,
Higher dimensional spaces, Beyond the standard model
PACS: 11.30.Er,11.10.Kk,12.60.-i, 04.50.-h

8.1 Introduction

This paper is to look for the answers to the questions like: Why our universe
”uses” the Clifford rather than the Grassmann coordinates, although both lead
in the second quantization procedure to the anticommutation relations required
for fermion degrees of freedom? Does the answer lay on the fact that the Clifford
degrees of freedom offers the appearance of the families, the half integer spin and
the charges as observed so far for fermions, while the Grassmann coordinates
offer the groups of (isolated) integer spin states and to charges in the adjoint
representations? Can this explain why the simple starting action of the spin-charge-
family theory of one of us (N.S.M.B.) [9,3,5,8,4,6,7] is doing so far extremely well
in manifesting the observed properties of the fermion and boson fields in the low
energy regime?

The working hypothesis is that ”Nature knows” all the mathematics, accord-
ingly therefore ”she knows” for the Grassmann and the Clifford coordinates. To
understand why Grassmann space ”was not chosen” – we see that the use of the
Dirac γa’s enabled to understand the fermions in the first and second quntized
theory of fields – or better, to understand why the Clifford algebra (in the spin-
charge-family theory of two kinds – γa’s and γ̃a’s) is succesfully applicable at least
in the low enery regime, we work in this paper with both types of spaces.

This work is a part of the project of both authors, which includes the fermion-
ization procedure of boson fields or the bosonization procedure of fermion fields,
discussed in Refs. [10] and in this proceedings for any dimension d (by the authors
of this contribution, while one of them, H.B.F.N. [11], has succeeded with another
author to do the fermionization for d = (1+ 1))), and which would hopefully help
to better understand the content and dynamics of our universe.

In the spin-charge-family theory [9,3,5,8,4,6,7] — which offers the explanation
of all the assumptions of the standard model, with the appearance of families, the
scalar higgs and the Yukawa couplings included, offering also the explanation for
the matter-antimatter asymmetry in our universe and for the appearance of the
dark matter — a very simple starting action for massless fermions and bosons in
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102 N.S. Mankoč Borštnik and H.B.F. Nielsen

d = (1+ 13) is assumed, in which massless fermions interact with only gravity, the
vielbeins fαa (the gauge fields of momentums pa) and the two kinds of the spin
connections (ωabα and ω̃abα, the gauge fields of the two kinds of the Clifford
algebra objects γa and γ̃a, respectively).

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (8.1)

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα and

R = 1
2
{fα[afβb] (ωabα,β − ωcaαω

c
bβ)} + h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β −

ω̃caα ω̃
c
bβ)}+ h.c.. The two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 . (8.2)

anticommute, {γa, γ̃b}+ = 0 (γa and γ̃b are connected with the left and the right
multiplication of the Clifford objects, there is no third kind of operators). One of
the objects, the generators Sab = i

4
(γa γb − γb γa) , determine spins and charges

of spinors of any families, another, S̃ab = i
4
(γ̃a γ̃b − γ̃b γ̃a) , determine the family

quantum numbers. Here 1 fα[afβb] = fαafβb− fαbfβa. There are correspondingly
two kinds of infinitesimal generators of the Lorentz transformations in the internal
degrees of freedom - Sab for SO(13, 1) and S̃ab for S̃O(13, 1), arranging states into
representations.

The curvature R and R̃ determine dynamics of the gauge fields — the spin
connections and the vielbeins, which manifest in d = (1+ 3) all the known vector
gauge fields as well as the scalar fields [5] which explain the appearance of higgs
and the Yukawa couplings, provided that the symmetry breaks from the starting
one to SO(3, 1)× SU(3)×U(1).

The infinitesimal generators of the Lorentz transformations for the gauge
fields – the two kinds of the Clifford operators and the Grassmann operators –
operate as follows

{Sab, γe}− = −i (ηae γb − ηbe γa) ,

{S̃ab, γ̃e}− = −i (ηae γ̃b − ηbe γ̃a) ,

{Sab, θe}− = −i (ηae θb − ηbe θa) ,

{Mab, Ad...e...g}− = −i (ηaeAd...b...g − ηbeAd...a...g) , (8.3)

where Mab are defined by a sum of Lab plus any of Sab or S̃ab, in the Grassmann
case Mab is Lab + Sab, which appear to be Mab= Lab + Sab + S̃ab, as presented
later in Eq. (8.22).

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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8 Why Nature Made a Choice of Clifford and not Grassmann Coordinates 103

We discuss in what follows the first and the second quantization of the fields
which depend on the Grassmann coordinates θa, as well as of the fields which
depend on the Clifford coordinates γa (or γ̃a) in order to try to understand why
”nature has made a choice” of fermions of spins and charges (describable in the
spin-charge-family theory by subgroups of the Lorentz group expressible with the
generators Sab) in the fundamental representations of the groups, which interact
in the spin-charge-family theory through the boson gauge fields (the vielbeins and
the spin connections of two kinds). We choose correspondingly either θa’s or γa’s
(or γ̃a’s, either γa’s or γ̃a’s [6,7,9]) to describe the internal degrees of freedom of
fields to clarify the ”choice of nature” and correspondingly also the meaning of
fermionization of bosons (or bosonization of fermions) discussed in Refs. [10] and in
this proceedings for any dimension d.

In all these cases we treat free massless boson and fermion fields; masses of
the fields which manifest in d = (1 + 3) are in the spin-charge-family theory due
to their interactions with the gravitational fields in d > 4, described by the scalar
vielbeins or spin connection fields

8.2 Observations which might be of some help when
fermionizing boson fields or bosonizing fermion fields

We present in this section properties of fields with the integer spin in d-dimensional
space, expressed in terms of the Grassmann algebra objects, and the fermion fields,
expressed in terms of the Clifford algebra objects. Since the Clifford algebra objects
are expressible with the Grassmann algebra objects (Eqs. (8.14, 8.15)), the norms of
both are determined by the integral in the Grassmann space, Eqs. (8.24, 8.27).

a. Fields with the integer spin in the Grassmann space

A point in d-dimensional Grassmann space of real anticommuting coordinates
θa, (a = 0, 1, 2, 3, 5, . . . , d), is determined by a vector {θa} = (θ1, θ2, θ3, θ5, . . . , θd).
A linear vector space over the coordinate Grassmann space has correspondingly
the dimension 2d, due to the fact that (θai)2 = 0 for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

Correspondingly are fields in the Grassmann space expressed in terms of the
Grassmann algebra objects

B =

d∑
k=0

aa1a2...ak θ
a1θa2 . . . θak |φog > , ai ≤ ai+1 , (8.4)

where |φog > is the vacuum state, here assumed to be |φog >= |1 >, so that
∂
∂θa

|φog >= 0 for any θa. The Kalb-Ramond boson fields aa1a2...ak are antisym-
metric with respect to the permutation of indexes, since the Grassmann coordinates
anticommute

{θa, θb}+ = 0 . (8.5)
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The left derivative ∂
∂θa

on vectors of the space of monomials B(θ) is defined as
follows

∂

∂θa
B(θ) =

∂B(θ)
∂θa

,{
∂

∂θa
,
∂

∂θb

}
+

B = 0 , for all B . (8.6)

Defining pθ
a

= i ∂
∂θa

it correspondingly follows

{pθa, pθb}+ = 0 , {pθa, θb}+ = i ηab , (8.7)

The metric tensor ηab (= diag(1,−1,−1, . . . ,−1)) lowers the indexes of a vector
{θa}: θa = ηab θ

b, the same metric tensor lowers the indexes of the ordinary vector
xa of commuting coordinates.

Defining 2

(θa)† =
∂

∂θa
ηaa = −i pθaηaa , (8.8)

it follows

(
∂

∂θa
)† = ηaa θa , (pθa)† = −iηaaθa . (8.9)

By introducing [2] the generators of the infinitesimal Lorentz transformations in
the Grassmann space as

Sab = θapθb − θbpθa ,

(8.10)

one finds

{Sab,Scd}− = i{Sadηbc + Sbcηad − Sacηbd − Sbdηac} ,

Sab† = ηaaηbbSab . (8.11)

The basic states in Grassmann space can be arrange into representations [2] with
respect to the Cartan subalgebra of the Lorentz algebra, as presented in App. 8.4.
The state in d-dimensional space with all the eigenvalues of the Cartan subalgebra
of the Lorentz group of Eq. (8.67) equal to either i or 1 is (θ0 − θ3)(θ1 + iθ2)(θ5 +
iθ6) · · · (θd−1 + iθd)|φog >, with |φog >= |1 >.

b. Fermion fields and the Clifford objects

Let us present as well the properties of the fermion fields with the half integer
spin, expressed by the Clifford algebra objects

F =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc > , ai ≤ ai+1 , (8.12)

2 In Ref. [2] the definition of θa† was differently chosen. Correspondingly also the scalar
product needed different weight function in Eq. (8.24) is different.
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8 Why Nature Made a Choice of Clifford and not Grassmann Coordinates 105

where |ψoc > is the vacuum state. The Kalb-Ramond fields aa1a2...ak are again in
general boson fields, which are antisymmetric with respect to the permutation of
indexes, since the Clifford objects have the anticommutation relations

{γa, γb}+ = 2ηab . (8.13)

A linear vector space over the Clifford coordinate space has again the dimension
2d, due to the fact that (γai)2 = 0 for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

One can see that γa are expressible in terms of the Grassmann coordinates
and their conjugate momenta as

γa = (θa − i pθa) . (8.14)

We also find γ̃a

γ̃a = i (θa + i pθa) , (8.15)

with the anticommutation relation of Eq. (8.13) and

{γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (8.16)

Taking into account Eqs. (8.8, 8.14, 8.15) one finds

(γa)† = γaηaa , (γ̃a)† = γ̃aηaa ,

γaγa = ηaa , γa(γa)† = 1 , γ̃aγ̃a = ηaa , γ̃a(γ̃a)† = 1 . (8.17)

All three choices for the linear vector space – spanned over either the coordinate
Grassmann space, over the vector space of γa, as well as over the vector space of
γ̃a – have the dimension 2d.

We can express Grassmann coordinates θa and momenta pθa in terms of γa

and γ̃a as well

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) . (8.18)

It then follows as it should ∂
∂θb

θa = 1
2
ηbc(γ

c + iγ̃c) 1
2
(γc − iγ̃c) = δab.

Correspondingly we can use either γa as well as γ̃a instead of θa to span the
vector space. In this case we change the vacuum from the one with the property
∂
∂θa

|φog >= 0 to |ψoc >with the property [2,7,9]

< ψoc|γ
a|ψoc > = 0 , γ̃a|ψoc >= iγ

a|ψoc > , γ̃aγb|ψoc >= −iγbγa|ψoc > ,

γ̃aγ̃b|ψoc > |a 6=b = −γaγb|ψoc > , γ̃aγ̃b|ψoc > |a=b = ηab|ψoc > . (8.19)

This is in agreement with the requirement

γa B(γ) |ψoc >: = (a0 γ
a + aa1 γ

a γa1 + aa1a2 γ
a γa1γa2 + · · ·+

aa1···ad γ
a γa1 · · ·γad ) |ψoc > ,

γ̃a B(γ) |ψoc >: = ( i a0γ
a − i aa1γ

a1 γa + i aa1a2γ
a1γa2 γa + · · ·+

i (−1)d aa1···adγ
a1 · · ·γad γa ) |ψoc > . (8.20)
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We find the infinitesimal generators of the Lorentz transformations in the
Clifford algebra space

Sab =
i

4
(γaγb − γbγa) , Sab† = ηaaηbbSab ,

S̃ab =
i

4
(γ̃aγ̃b − γ̃bγ̃a) , S̃ab† = ηaaηbbS̃ab , (8.21)

with the commutation relations for either Sab or S̃ab of Eq. (8.11), if Sab is replaced
by either Sab or S̃ab, respectively, while

Sab = Sab + S̃ab ,

{Sab, S̃cd}− = 0 . (8.22)

The basic states in the Clifford space can be arranged in representations, in which
any state is the eigenstate of the Cartan subalgebra operators of Eq. (8.67). The state
in d-dimensional space with the eigenvalues of either S03, S12, S56, . . . , Sd−1d

or S̃03, S̃12, S̃56, . . . , S̃d−1d equal to 1
2
(i, 1, 1, . . . , 1) is (γ0 − γ3)(γ1 + iγ2)(γ5 +

iγ6) · · · (γd−1 + iγd), where the states are expresses in terms of γa. The states of
one representation follow from the starting state obtained by Sab, which do not
belong to the Cartan subalgebra operators, while S̃ab, which define family, jumps
from the starting family to the new one.

8.2.1 Norms of vectors in Grassmann and Clifford space

Let us look for the norm of vectors in Grassmann space

B =

d∑
k

aa1a2...ak θ
a1θa2 . . . θak |φog >

and in Clifford space

F =

d∑
k

aa1a2...ak γ
a1γa2 . . . γak |ψoc >,

where |φog > and |φoc > are the vacuum states in the Grassmann and Clifford
case, respectively. In what follows we refer to the Ref. [2].

a. Norms of the Grassmann vectors

Let us define the integral over the Grassmann space [2] of two functions of
the Grassmann coordinates < B|C >, < B|θ >=< θ|B >†, by requiring

{dθa, θb}+ = 0,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

ddθ θ0θ1 · θd = 1 ,

ddθ = dθd . . . dθ0 , ω = Πdk=0(
∂

∂θk
+ θk) , (8.23)
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8 Why Nature Made a Choice of Clifford and not Grassmann Coordinates 107

with ∂
∂θa

θc = ηac. The scalar product is defined by the weight function ω =

Πdk=0(
∂
∂θk

+ θk). It then follows for a scalar product < B|C >

< B|C > =

∫
ddxddθa ω < B|θ >< θ|C >=

d∑
k=0

∫
ddxb∗b1...bkcb1...bk ,(8.24)

where according to Eq. (8.8) follows:

< B|θ >=< φog|
d∑
p=0

(−i)p a∗a1...app
θap ηapap · · ·pθa1 ηa1a1 .

The vacuum state is chosen to be |φog >= |1 >, Eq. (8.4).
The norm < B|B > is correspondingly always nonnegative.

b. Norms of the Clifford vectors

Let us look for the norm ofvectors, expressed with the Clifford objects F =∑d
k aa1a2...ak γ

a1γa2 . . . γak |ψoc >, where |φog > and |ψoc > are the two vac-
uum states when the Grassmann and the Clifford objects are concerned, respec-
tively. By taking into account Eq. (8.17) it follows that

(γa1γa2 . . . γak)† = γakηakak . . . γa2ηa2a2γa1ηa1a1 , (8.25)

while γa γa = ηaa.
We can use Eqs. (8.23, 8.24) to evaluate the scalar product of two Clifford

algebra objects < γa|F >=< (θa − ipθa)|F > and < (θb − ipθb)|G >. These
expressions follow from Eqs. (8.14, 8.15, 8.17)). We must then choose for the
vacuum state the one from the Grassmann case – |ψoc >= |φog >= |1 >. We
obtain

< F|G > =

∫
ddxddθa ω < F|γ >< γ|G >=

d∑
k=0

∫
ddxa∗a1...akbb1...bk .

(8.26)

{Similarly we obtain, if we express F̃ =
∑d
k=0 aa1a2...ak γ̃

a1 γ̃a2 . . . γ̃ak |φoc >

and G̃ =
∑d
k=0 bb1b2...bk γ̃

b1 γ̃b2 . . . γ̃bk |φoc > and take |ψoc >= |φog >= |1 >,
the scalar product

< F̃|G̃ > =

∫
ddxddθa ω < F̃|γ̃ >< γ̃|G̃ >=

d∑
k=0

∫
ddxa∗a1...akab1...bk .}

(8.27)

Correspondingly we can write

(aa1a2...ak γ
a1γa2 . . . γak)†(aa1a2...ak γ

a1γa2 . . . γak)

= a∗a1a2...ak aa1a2...ak . (8.28)
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The norm of each scalar term in the sum of F is nonnegative.
c. We have learned that in both spaces – Grassmann and Clifford – the norms

of basic states can be defined so that the states, which are eigenvectors of the Cartan
subalgebra, are orthogonal and normalized using the same integral. Studying the
second quantization procedure in Subsect. 8.2.3 we learn that not all 2d states can
be generated by the creation and annihilation operators fullfilling the requirements
for the second quantized operators, either for states with integer spins or for states
with half integer spin. We also learn that the vacuum state must in the Clifford
algebra case be different the one assumed in the first quantization case.

8.2.2 Actions in Grassmann and Clifford space

Let us construct actions for states in the Grassmann space, as well as in the Clifford
space. While the action in the Clifford space is well known since long [17], the
action in the Grassmann space must be found. In both cases we look for actions
for free massless states only.

States in Grassmann space as well as states in Clifford space are organized to
be – within each of the two spaces – orthogonal and normalized with respect to
Eq. (8.23). We choose the states in each of two spaces to be the eigenstates of the
Cartan subalgebra – with respect to Sab in Grassmann space and with respect to
Sab and S̃ab in Clifford space, Eq. (8.67).

In both spaces the requirement that states are obtained by the application of
creation operators on vacuum states – b̂θi obeying the commutation relations of
Eq. (8.40) on the vacuum state |φog > for Grassmann space, and b̂αi obeying the
commutation relation of Eq. (8.52) on the vacuum states |ψoc >, Eq. (8.59), for
Clifford space – reduces the number of states, in the Clifford space more than in
the Grassmann space. But while in the Clifford space all physically applicable
states are reachable by either Sab or by S̃ab, the states in the Grassmann space,
belonging to different representations with respect to the Lorentz generators, seem
not to be connected.

a. Action in Clifford space

In Clifford space we expect that the action for a free massless object

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (8.29)

is Lorentz invariant, and that it leads to the equations of motion

γapa|ψ
α
i > = 0 , (8.30)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ

α
i > = papa|ψ

α
i >= 0 .

(8.31)
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Correspondingly γ0 appears in the action since we pay attantion that

Sab† γ0 = γ0 Sab ,

S†γ0 = γ0S−1 ,

S = e−
i
2
ωab(S

ab+Lab) . (8.32)

We choose the basic states to be the eigenstates of all the members of the
Cartan subalgebra, Eq. (8.67). Correspondingly all the states, belonging to different
values of the Cartan subalgebra – at least they differ in one value of either the
set of Sab or the set of S̃ab, Eq. (8.67) – are orthogonal with respect to the scalar
product for a chosen vacuum state, defined as the integral over the Grassmann
coordinates, Eq. (8.23). Correspondingly the states generated by the creation oper-
ators, Eq. (8.57), on the vacuum state, Eq. (8.59), are orthogonal as well (both last
equations will appear later).

b. Action in Grassmann space

In Grassmann space we require – similarly as in the Clifford case – that the
action for a free massless object

A =
1

2
{

∫
ddx ddθ ω (φ†(1− 2θ0

∂

∂θ0
) θapaφ)}+ h.c. , (8.33)

is Lorentz invariant. pa = i ∂
∂xa

. We use the integral also over θa coordinates, with
the weight functionω from Eq. (8.23). Requiring the Lorentz invariance we add
after φ† the operator (1 − 2θ0 ∂

∂θ0
), which takes care of the Lorentz invariance.

Namely

Sab† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)Sab ,

S† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)S−1 ,

S = e−
i
2
ωab(L

ab+Sab) . (8.34)

We also require that the action leads to the equations of motion

θapa|φ
θ
i > = 0 ,

∂

∂θa
pa |φ

θ
i > = 0 , (8.35)

both equations leading to the same solution, and also to the Klein-Gordon equation

{θapa,
∂

∂θb
pb}+|φ

θ
i > = papa|φ

θ
i >= 0 . (8.36)

c. We learned:
In both spaces – in the Clifford and in the Grassmann space – there exists the action,
which leads to the equationsof motion and to the corresponding Klein-Gordon
equation.

We shall see that creation and annihilation operators in both spaces fulfill the
anticommutation relations, required for fermions. But while the Clifford algebra
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defines spinors with the half integer eigenvalues of the Cartan subalgebra opera-
tors of the Lorentz algebra, the Grassmann algebra defines states with the integer
eigenvalues of the Cartan subalgebra.

8.2.3 Second quantization of Grassmann vectors and Clifford vectors

States in the Grassmann space as well as states in the Clifford space are organized
to be – within each of the two spaces – orthogonal and normalized with respect to
Eq. (8.23). All the states in each of spaces are chosen to be eigenstates of the Cartan
subalgebra – with respect to Sab in the Grassmann space, and with respect to Sab

and S̃ab in the Clifford space, Eq. (8.67).
In both spaces the requirement that states are obtained by the application

of creation operators on vacuum states – b̂θi obeying the commutation relations
of Eq. (8.40) on the vacuum state |φog >= |1 > for the Grassmann space, and
b̂αi obeying the commutation relation of Eq. (8.52) on the vacuum states |ψoc >,
Eq. (8.59), for the Clifford space – reduces the number of states, in the Clifford space
more than in the Grassmann space. But while in the Clifford space all physically
applicable states are reachable either by Sab or by S̃ab, the states, belonging to
different groups with respect to the Lorentz generators, seems not to be connected
by the Lorentz operators in the Grassmann space.

Let us construct the creation and annihilation operators for the cases that we
use a. the Grassmann vector space, or b. the Clifford vector space. We shall see that
from 2d states in either the Grassmann or the Clifford space (all are orthogonal
among themselves with respect to the integral, Eq. (8.23)) – separately in each of
the two spaces – there are reduced number of sates generated by the corresponding
creation and annihilation operators, when products of Grassmann coordinates θa’s
and momenta ∂

∂θa
are required to represent creation and annihilation operators,

and only 2
d
2
−1 · 2d2−1, Eq.(8.60), when products of nilpotents and projectors,

Eq. (8.46), are chosen to generate creation and annihilation operators.

a. Quantization in Grassmann space

There are 2d states in Grassmann space, orthogonal to each other with respect
to Eq. (8.23). To any coordinate there exists the conjugate momentum. We pay
attention in this paper to 2

d
2
−1(2

d
2
−1 + 1) states, Eq. (8.43), when products of

the superposition of the Grassmann coordinates, which are eigenstates of the
Cartan subalgebra operators, are used to represent creation and their Hermitian
conjugatde objects the annihilation operators. Let us see how it goes.

If b̂θ†i is a creation operator, which creates a state in the Grassmann space,
when operating on a vacuum state |ψog > and b̂θi = (b̂θ†i )† is the corresponding an-
nihilation operator, then for a set of creation operators b̂θ†i and the corresponding
annihilation operators b̂θi it must be

b̂θi |φog > = 0 ,

b̂θ†i |φog > 6= 0 . (8.37)

We first pay attention on only the internal degrees of freedom - the spin.
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Choosing b̂θa = ∂
∂θa

it follows

b̂θ†a = θa ,

b̂θa =
∂

∂θa
,

{b̂θa, b̂
θ†
b }+ = δab ,

{b̂θa, b̂
θ
b}+ = 0 ,

{b̂θ†a , b̂
†
b}+ = 0 ,

b̂†θa |φog > = θa|φog > ,

b̂θa |φog > = 0 . (8.38)

The vacuum state |φog > is in this case |1 >.
The identity I can not be taken as an creation operator, since its annihilation

partner does not fulfill Eq. (8.37).
We can use the products of superposition of θa’s as creation and products

of superposition of ∂
∂θa

’s as annihilation operators provided that they fulfill
the requirements for the creation and annihilation operators, Eq. (8.40), with the
vacuum state |φog >= |1 >.

It is convenient to take products of superposition of vectors θa and θb to
construct creation operators so that each factor is the eigenstate of one of the
Cartan subalgebra member of the Lorentz algebra (8.67). We can start with the
creation operators as products of d

2
states b̂θ†aibi = 1√

2
(θai ± εθbi). Then the

corresponding annihilation operators are d
2

factors of b̂θaibi =
1√
2
( ∂
∂θai

±ε∗ ∂
∂θbi

),

ε = i, if ηaiai = ηbibi and ε = −1, if ηaiai 6= ηbibi . Starting with the state b̂θ†i =

( 1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) the rest of states belonging to

the same Lorentz representation follows from the starting state by the aplication
of the operators Scf, which do not belong to the Cartan subalgebra operators. It
follows

b̂θ†i = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θi = (
1√
2
)
d
2 (

∂

∂θd−1
+ i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) , ,

b̂θ†j = (
1√
2
)
d
2
−1 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θj = (
1√
2
)
d
2
−1 (

∂

∂θd−1
+ i

∂

∂θd
) · · · ( ∂

∂θ3
∂

∂θ0
− i(

∂

∂θ2
∂

∂θ1
) .

· · · (8.39)

It is taking into account that S01 transforms ( 1√
2
)2(θ0−θ3)(θ1+iθ2) into 1√

2
(θ0θ3+

iθ1θ2) or any Sac, which does not belong to Cartan subalgebra, Eq.(8.65), trans-
forms ( 1√

2
)2(θa + iθb)(θc + iθd) into i 1√

2
(θaθb + θcθd).

One finds that Sab(θa ± εθb) = ∓ ηaa

ε
(θa + εθb), while Sab applied on

(θaθb ± εθcθd) gives zero.
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Although all the states, generated by creation operators, which include one
(I±εθaθb) or several (I±εθa1θb1) · · · (I±εθakθak), are orthogonal with respect
to the scalar product, Eq.(8.24), such creation operators do not have appropriate
annihilation operators since (I ± εθaθb) and (I ± ε∗ ∂

∂θb
∂
∂θa

) (or several (I ±
εθa1θb1) · · · (I ± εθakθbk) and (I ± ε∗ ∂

∂θbk
∂
∂θak

) · · · (I ± ε∗ ∂
∂θb1

∂
∂θa1

)) do not
fulfill Eqs. (8.37, 8.38), since I has no annihilation partner. However, creation
operators which are products of one or several, let say n, of the kind θaiθbi (at
most d

2
, each factor of them is the ”eigenstate” of one of the Cartan subalgebra

operators – Sabθaθb|1 >= 0), while the rest, d
2
− n, have the ”eigenvalues” either

(+1 or −1) or (+i or −i), fulfill relations

{b̂θi , b̂
θ†
j }+|φog > = δij |φog > ,

{b̂θi , b̂
θ
j }+|φog > = 0 |φog > ,

{b̂θ†i , b̂
†
j }+|φog > = 0|φog > ,

b̂θ†j |φog > = |φj >

b̂θj |φog > = 0 |φog > . (8.40)

There are in (d = 2) two creation ((θ0 ∓ θ1, for ηab = diag(1,−1)) and corre-
spondingly two annihilation operators ( ∂

∂θ0
∓ ∂

∂θ1
), and one creation operator

θ0θ1 and the corresponding annihilation operator ∂
∂θ1

∂
∂θ0

, each belonging to its
own group with respect to the Lorentz transformation operators, which fulfill
Eq. (8.40), in (d = 4) there are two triplets of the kind presented in Eq. (8.39)
of creation and correspondingly two triplets of annihilation operators, and four
creation operators with one product of θaiθbi multiplied by (θci ± θdi ) and four
corresponding annihilation operators as well as the creation operator θ0θ3θ1θ2

with the corresponding annihilation operator, they all fulfill Eq. (8.40).
Let us count the number of creation operators, when one starts with the

creator, which is the product of d
2

factors, each with the ”eigenvalue” of the Cartan
subalgebra operators, Eq. (8.67), equal to either +i or +1, Eq. (8.39):

b̂θ†0 = (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) . (8.41)

There are 2
d
2
−1 creation operators of this type {(θ0−θ3)(θ1+iθ2)(θ5+iθ6) · · · (θd−3+

iθd−2)(θd−1 + iθd), (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθ5),
(θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd), · · · , (θ0 − θ3)(θ1 +
iθ2)(θ5−iθ6) · · · (θd−1−iθ5)} with the eigenvalues of the Cartan subalgebra equal
to {(+i,+1,+1, . . . ,+1,+1), (−i,−1,+1, . . . ,+1+ 1), (−i,+1,−1, . . . ,+1,+1),· · · ,
(+i,+1,+1 . . . ,−1,−1)}, each of the operators distinguishing from the others in
one pair of factors with the opposite eigenvalues of the Cartan subalgebra opera-
tors.

There are in addition 2
d
2
−1(2

d
2
−1 − 1)/2 Grassmann odd operators obtained

when Sef apply on (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd),
(θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) and on the rest of
2
d
2
−1 − 1 operators. S01 applied on (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 +

iθd−2)(θd−1 + iθd), (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd)
gives ∝ (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd), (θ0 + θ3)(θ1 −
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iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθ5)). Each of these operators have two
”eigenvalues” of the Cartan subalgebra equal to zero and all the rest equal to either
±i (if one of the two summands has ηaa = 1) or ±1 (otherwise). All these creation
operators are connected by Seg.

There are correspondingly all together 2
d
2
−1(2

d
2
−1 + 1)/2 creation operators

and the same number of annihilation operators (they follow from the creation
operators by Hermitian conjugation, Eq. (8.8)), belonging to one group, so that all
the operators follow from the starting one by the application of Saf.

There is additional group of creation and annihilation operators, which follow
from the starting one

b̂θ†0 = (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) . (8.42)

(one can chose in the starting creation operator with changed sign in any of
factors in the product, in each case the same group will follow). All the rest
2
d
2
−1(2

d
2
−1 + 1)/2 creation operators can be obtained from the starting one as in

the case of the first group.
There is therefore

2
d
2
−1(2

d
2
−1 + 1) (8.43)

creation and the same number of annihilation operators, which are built on two
starting states, presented in Eqs. (8.41, 8.42), divided in two groups, each gener-
ating or annihilating states belonging to the same representation of the Lorentz
algebra.

The rest of creators (and the corresponding annihilators) have opposite Grass-
mann character than the ones studied so far – like θ0θ1 ( ∂

∂θ1
∂
∂θ0

) in d = (1+1) and
in d = (1+3) θ0θ3(θ1±iθ2) ( ∂

∂θ1
∓i ∂

∂θ2
) ∂
∂θ3

∂
∂θ0

), θ1θ2(θ0∓iθ3) (( ∂
∂θ0
±i ∂

∂θ3
) ∂
∂θ1

∂
∂θ2

) and θ0θ3θ1θ2 ( ∂
∂θ2

∂
∂θ1

∂
∂θ3

∂
∂θ0

), which also fulfill the relations of Eq. (8.40).
All the states |φθi >, generated by the creation operators (presented in Eq. (8.40))

on the vacuum state |φog > are the eigenstates of the Cartan subalgebra operators
and are orthogonal and normalized with respect to the norm of Eq. (8.23)

< φθi |φ
θ
j > = δij . (8.44)

If we now extend the creation and annihilation operators to the ordinary
coordinate space, the relation among creation and annihilation operators at one
time read

{b̂θi (~x), b̂
θ†
j (~x ′)}+|φog > = δij δ(~x− ~x ′)|φog > ,

{b̂θi (~x), b̂
θ
j (~x
′)}+|φog > = 0 |φog > ,

{b̂θ†i (~x), b̂θ†j (~x ′)}+|φog > = 0 |φog > ,

b̂θ†j (~x)|φog > = 0 |φog >

|φog > = |1 > . (8.45)

b. Quantization in Clifford space
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In Grassmann space the requirement that products of eigenstates of the Cartan
subalgebra operators represent the creation and annihilation operators, obeying
the relation Eq. (8.40), reduces the number of states. Let us study what happens,
when, let say, γa’s are used to create the basis and correspondingly also to create
the creation and annihilation operators.

Let us point out that γa is expressible with θa and its its deriative (γa =

(θa + ∂
∂θa

)), Eq. (8.14), and that we again require that creation (annihilation)
operators create (annihilate) states, which are eigenstates of the Cartan subalgebra,
Eq. (8.67). We could as well make a choice of γ̃a = i(θa − ∂

∂θa
) 3. We shall follow

here to some extend Ref. [15].
Making a choice of the Cartan subalgebra eigenstates of Sab, Eq. (8.67),

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]: =
1

2
(1+

i

k
γaγb) , (8.46)

where k2 = ηaaηbb, recognizing that the Hermitian conjugate values of
ab

(k) and
ab

[k] are

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] , (8.47)

while the corresponding eigenvalues of Sab, Eq. (8.48), and S̃ab, Eq. (8.85), are

Sab
ab

(k) =
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k]

S̃ab
ab

(k) =
k

2

ab

(k) , S̃ab
ab

[k]= −
k

2

ab

[k] . (8.48)

We find in d = 2(2n+ 1) that from the starting state with products of odd number
of only nilpotents

|ψ11 > |2(2n+1) =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc > , (8.49)

having correspondingly an odd Clifford character 4, all the other states of the same
Lorentz representation, there are 2

d
2
−1 members, follow by the application of Scd 5,

which do not belong to the Cartan subalgebra, Eq. (8.67): Scd |ψ11 > |2(2n+1) =

|ψ1i > |2(2n+1). The operators S̃cd, which do not belong to the Cartan subalgebra of

3 We choose γa’s, Eq.(8.14) to create the basic states. We could instead make a choice of
γ̃a’s, Eq.(8.15) to create the basic states. In the case of this latter choice the role of γ̃a and
γa should be correspondingly exchanged in Eq. (8.74).

4 We call the starting state in d = 2(2n + 1) |ψ11 > |2(2n+1), and the starting state in d = 4n

|ψ11 > |4n.
5 The smallest number of all the generators Sac, which do not belong to the Cartan subal-

gebra, needed to create from the starting state all the other members is 2
d
2
−1 − 1. This is

true for both even dimensional spaces – 2(2n + 1) and 4n.
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S̃ab, Eq. (8.67), generate states with different eigenstates of the Cartan subalgebra
(S̃03, S̃12, S̃56, · · · , S̃d−1d), we call the eigenvalues of their eigenstates the ”family”
quantum numbers. There are 2

d
2
−1 families. From the starting new member with

a different ”family” quantum number the whole Lorentz representation with
this ”family” quantum number follows by the application of Sef: Sef S̃cd|ψ11 >
|2(2n+1) = |ψji > |2(2n+1). All the states of one Lorentz representation of any
particular ”family” quantum number have an odd Clifford character, since neither
Scd nor S̃cd, both with an even Clifford character, can change this character. We
shall comment our limitation of states to only those with an odd Clifford character
after defining the creation and annihilation operators.

For d = 4n the starting state must be the product of one projector and 4n− 1

nilpotents, since we again limit states to those with an odd Clifford character. Let
us start with the state

|ψ11 > |4n =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] |ψoc > , (8.50)

All the other states belonging to the same Lorentz representation follow again by
the application of Scd on this state |ψ11 > |4n, while a new family starts by the
application of S̃cd|ψ11 > |4n and from this state all the other members with the
same ”family” quantum number can be generated by SefS̃cd on |ψ11 > |4n: SefS̃cd

|ψ11 > |4n = |ψji > |4n.
All these states in either d = 2(2n+ 1) space or d = 4n space are orthogonal

with respect to Eq. (8.23).
However, let us point out that (γa)† = γaηaa. Correspondingly it follows,

Eq. (8.47), that
ab

(k)

†

= ηaa
ab

(−k), and
ab

[k]

†

=
ab

[k].
Since any projector is Hermitian conjugate to itself, while to any nilpotent

ab

(k) the Hermitian conjugated one has an opposite k, it is obvious that Hermitian
conjugated product to a product of nilpotents and projectors can not be accepted
as a new state 6.

The vacuum state |ψoc > ought to be chosen so that < ψoc|ψoc >= 1,

while all the states belonging to the physically acceptable states, like
03

[+i]
12

[+]
56

[−]
78

[−]

· · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc >, must not give zero for either d = 2(2n+ 1) or for d = 4n.
We also want that the states, obtained by the application of ether Scd or S̃cd or
both, are orthogonal. To make a choice of the vacuum it is needed to know the

6 We could as well start with the state |ψ11 > |2(2n+1) =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc >

for d = 2(2n + 1) and with |ψ11 > |4n =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] |ψoc > in the case of
d = 4n. Then creation and annihilation operators will exchange their roles.
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relations of Eq. (8.71). It must be

< ψoc| · · ·
ab

(k)

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

[k ′] · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = 0 . (8.51)

Our experiences in the case, when states with the integer values of the Cartan
subalgebra operators were expressed by Grassmann coordinates, teach us that the
requirements, which creation and annihilation operators must fulfill, influence the
choice of the number of states, as well as of the vacuum state.

Let us first repeat therefore the requirements which the creation and annihila-
tion operators must fulfill

{b̂αγi , b̂βγ†k }+|ψoc > = δαβ δ
i
k|ψoc > ,

{b̂αγi , b̂βγk }+|ψoc > = 0|ψoc > ,

{b̂αγ†i , b̂βγ†k }+|ψoc > = 0|ψoc > ,

b̂αγ†i |ψoc > = 0|ψoc > , (8.52)

paying attention at this stage only at the internal degrees of freedom of the states,
that is on their spins. Here (α,β, . . . ) represent the family quantum number de-
termined by S̃ac and (i, j, . . . ) the quantum number of one representation, deter-
mined by Sac. From Eqs. (8.49, 8.50) is not difficult to extract the creation operators
which, when applied on the two vacuum states, generate the starting states.

i. One Weyl representation
We define the creation b̂1†1 – and the corresponding annihilation operator b̂11,

(b̂1†1 )† = b̂11 – which when applied on the vacuum state |ψoc > create a vector of
one of the two equations (8.49, 8.50), as follows

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) ,

b̂11 : =
d−1 d

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 2(2n+ 1) ,

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] ,

b̂11 : =
d−1,d

[+]
d−2 d−3

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 4n . (8.53)

We shall call this vector the starting vector of the starting ”family”.
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Now we can make a choice of the vacuum state for this particular ”family”
taking into account Eq. (8.71)

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] |0 > ,

for d = 2(2n+ 1) ,

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] |0 > ,

for d = 4n , (8.54)

n is a positive integer, so that the requirements of Eq. (8.52) are fulfilled. We
see: The creation and annihilation operators of Eq. (8.53) (both are nilpotents,
(b̂1†1 )2 = 0 and (b̂11)

2 = 0), b̂1†1 (generating the vector |ψ11 >when operating on the
vacuum state) gives b̂1†1 |ψoc > 6= 0, while the annihilation operator annihilates the
vacuum state b̂11|ψ0 >= 0, giving {b̂11, b̂

1†
1 }+|ψoc >= |ψoc >, since we choose the

appropriate normalization, Eq. (8.46).
All the other creation and annihilation operators, belonging to the same

Lorentz representation with the same family quantum number, follow from the
starting ones by the application of particular Sac, which do not belong to the
Cartan subalgebra (8.65).

We call b̂1†2 the one obtained from b̂1†1 by the application of one of the four
generators (S01, S02, S31, S32). This creation operator is for d = 2(2n+ 1) equal to

b̂1†2 =
03

[−i]
12

[−]
35

(+) · · ·
d−1 d

(+) , while it is for d = 4n equal to b̂1†2 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] .
All the other family members follow from the starting one by the application of
different Sef, or by the product of several Sgh.

We accordingly have

b̂1†i ∝ S
ab..Sefb̂1†1 ,

b̂1i ∝ b̂11Sef..Sab , (8.55)

with Sab† = ηaaηbbSab. We shall make a choice of the proportionality factors so
that the corresponding states |ψ11 >= b̂

1†
i |ψoc >will be normalized.

We recognize that [15]:
i.a. (b̂1†i )2 = 0 and (b̂1i )

2 = 0, for all i.

To see this one must recognize that Sac (or Sbc, Sad, Sbd) transforms
ab

(+)
cd

(+) to
ab

[−]
cd

[−], that is an even number of nilpotents (+) in the starting state is transformed
into projectors [−] in the case of d = 2(2n+ 1). For d = 4n, Sac (or Sbc, Sad, Sbd)

transforms
ab

(+)
cd

[+] into
ab

[−]
cd

(−). Therefore for either d = 2(2n + 1) or d = 4n at
least one of factors, defining a particular creation operator, will be a nilpotent. For
d = 2(2n+ 1) there is an odd number of nilpotents, at least one, leading from the

starting factor (
dg

(+)) in the creator. For d = 4n a nilpotent factor can also be
d−1 d

(−)

(since
d−1d

[+] can be transformed by Sed−1, for example into
d−1 d

(−) ). A square of
at least one nilpotent factor (we started with an odd number of nilpotents, and
oddness can not be changed by Sab), is enough to guarantee that the square of
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118 N.S. Mankoč Borštnik and H.B.F. Nielsen

the corresponding (b̂1†i )2 is zero. Since b̂1i = (b̂1†i )†, the proof is valid also for
annihilation operators.
i.b. b̂1†i |ψoc > 6= 0 and b̂1i |ψoc >= 0, for all i.
To see this in the case d = 2(2n+1) one must recognize that b̂1†i distinguishes from
b̂1†1 in (an even number of) those nilpotents (+), which have been transformed

into [−]. When
ab

[−] from b̂1†i meets
ab

[−] from |ψoc >, the product gives
ab

[−] back,

and correspondingly a nonzero contribution. For d = 4n also the factor
d−1 d

[+] can

be transformed. It is transformed into
d−1 d

(−) which, when applied to a vacuum

state, gives again a nonzero contribution (
d−1 d

(−)
d−1 d

[+] =
d−1 d

(−) , Eq.(8.71)).
In the case of b̂1i we recognize that in b̂1†i at least one factor is nilpotent; that of the

same type as in the starting b̂†1 – (+) – or in the case of d = 4n it can be also
d−1 d

(−) .

Performing the Hermitian conjugation (b̂1†i )†, (+) transforms into (−), while
d−1 d

(−)

transforms into
d−1 d

(+) in b̂1i . Since (−)[−] gives zero and
d−1 d

(+)
d−1 d

[+] also gives zero,
b̂1i |ψoc >= 0.
i.c. {b̂1†i , b̂

1†
j }+ = 0, for each pair (i, j).

There are several possibilities, which we have to discuss. A trivial one is, if both
b̂1†i and b̂1†j have a nilpotent factor (or more than one) for the same pair of indexes,

say
kl

(+). Then the product of such two
kl

(+)
kl

(+) gives zero. It also happens, that b̂1†i

has a nilpotent at the place (kl) (
03

[−] · · ·
kl

(+) · · ·
mn

[−] · · · ) while b̂1†j has a nilpotent

at the place (mn) (
03

[−] · · ·
kl

[−] · · ·
mn

(+) · · · ). Then in the term b̂1†i b̂
1†
j the product

mn

[−]
mn

(+) makes the term equal to zero, while in the term b̂1†j b̂
1†
i the product

kl

[−]
kl

(+)

makes the term equal to zero. There is no other possibility in d = 2(2n + 1). In

the case that d = 4n, it might appear also that b̂1†i =
03

[−] · · ·
ij

(+) · · ·
d−1 d

[+] and

b̂1†j =
03

[−] · · ·
ij

[−] · · ·
d−1 d

(−) . Then in the term b̂1†i b̂
1†
j the factor

d−1 d

[+]
d−1 d

(−) makes

it zero, while in b̂1†j b̂
1†
i the factor

ij

[−]
ij

(+) makes it zero. Since there are no further
possibilities, the proof is complete.
i.d. {b̂1i , b̂

1
j }+ = 0, for each pair (i, j).

The proof goes similarly as in the case with creation operators. Again we treat
several possibilities. b̂1i and b̂1j have a nilpotent factor (or more than one) with the

same indexes, say
kl

(−). Then the product of such two
kl

(−)
kl

(−) gives zero. It also

happens, that b̂1i has a nilpotent at the place (kl) (· · ·
mn

[−] · · ·
kl

(−) · · ·
03

[−]) while b̂1j

has a nilpotent at the place (mn) (· · ·
mn

(−) · · ·
kl

[−] · · ·
03

[−]). Then in the term b̂1i b̂
1
j the

product
kl

(−)
kl

[−] makes the term equal to zero, while in the term b̂1j b̂
1
i the product

mn

(−)
mn

[−] makes the term equal to zero. In the case that d = 4n, it appears also that
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b̂1i =
d−1 d

[+] · · ·
ij

(−) · · ·
03

[−] and b̂1j =
d−1 d

(+) · · ·
ij

[−] · · ·
03

[−]. Then in the term b̂1i b̂
1
j the

factor
ij

(−)
ij

[−] makes it zero, while in b̂1j b̂
1
i the factor

d−1 d

(+)
d−1 d

[+] makes it zero.
i.e. {b̂1i , b̂

1†
j }+|ψoc >= δij|ψoc > .

To prove this we must recognize that b̂1i = b̂1S
ef..Sab and b̂1†i = Sab..Sefb̂1.

Since any b̂1i |ψoc >= 0, we only have to treat the term b̂1i b̂
1†
j . We find b̂1i b̂

1†
j ∝

· · ·
lm

(−) · · ·
03

(−)Sef · · ·SabSlm · · ·Spr
03

(+) · · ·
lm

(+) · · · . If we treat the term b̂1i b̂
1†
i ,

generators Sef · · ·SabSlm · · ·Spr are proportional to a number and we normalize
< ψ0|b̂

1
i b̂
1†
i |ψoc > to one. When Sef · · ·SabSlm · · ·Spr are proportional to several

products of Scd, these generators change b̂1†1 into
03

(+) · · ·
kl

[−] · · ·
np

[−] · · · , making

the product b̂1i b̂
1†
j equal to zero, due to factors of the type

kl

(−)
kl

[−]. In the case of

d = 4n also a factor
d−1 d

[+]
d−1 d

(−) might occur, which also gives zero.
We saw and proved that for the definition of the creation and annihilation operators

in Eqs.(8.49,8.50) all the requirements of Eq. (8.52) are fulfilled, provided that creation
and correspondingly also the annihilation operators have an odd Clifford character, that is
that the number of nilpotents in the product is odd.

For an even number of factors of the nilpotent type in the starting state and accord-
ingly in the starting b̂1†1 , an annihilation operator b̂1i would appear with all factors of the
type [−], which on the vacuum state (Eq.(8.54)) would not give zero.

ii. Families of Weyl representations
Let b̂α†i be a creation operator, fulfilling Eq. (8.52), which creates one of the

(2d/2−1) Weyl basic states of an α−th ”family”, when operating on a vacuum state
|ψoc > and let b̂αi = (b̂α†i )† be the corresponding annihilation operator. We shall
now proceed to define b̂α†i and b̂αi from a chosen starting state (8.49, 8.50), which
b̂1†1 creates on the vacuum state |ψoc >.

When treating more than one Weyl representation, that is, more than one
”family”, we must take into account that: i. The vacuum state chosen to fulfill
requirements for second quantization of the starting family might not and it will
not be the correct one when all the families are taken into account. ii. The products
of S̃ab, which do not belong to the Cartan subalgebra set of the generators S̃ab

(2d/2−1 − 1 of them), when being applied on the starting family ψ11, generate the
starting members ψα1 of all the rest of the families. There are correspondingly
the same number of ”families” as there is the number of vectors of one Weyl
representation, namely 2d/2−1. Then the whole Weyl representations of a particular
family ψα1 follows again with the application of Sef, which do not belong to the
Cartan subalgebra of Sab on this starting family.

Any vector |ψαi > follows from the starting vector (Eqs.8.49, 8.50) by the
application of either S̃ef, which change the family quantum number, or Sgh, which
change the member of a particular family (as it can be seen from Eqs. (8.73, 8.86))
or with the corresponding product of Sef and S̃ef

|ψαi > ∝ S̃ab · · · S̃ef|ψ1i >∝ S̃ab · · · S̃efSmn · · ·Spr|ψ11 > . (8.56)
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Correspondingly we define b̂α†i (up to a constant) to be

b̂α†i ∝ S̃
ab · · · S̃efSmn · · ·Sprb̂1†1

∝ Smn · · ·Sprb̂1†1 S
ab · · ·Sef . (8.57)

This last expression follows due to the property of the Clifford object γ̃a and
correspondingly of S̃ab, presented in Eqs. (8.74, 8.75).

For b̂αi = (b̂α†i )† we accordingly have

b̂αi = (b̂α†i )† ∝ Sef · · ·Sabb̂11Spr · · ·Smn . (8.58)

The proportionality factor will be chosen so that the corresponding states |ψαi >=
b̂α†i |ψoc >will be normalized.

We ought to generalize the vacuum state from Eq. (8.54) so that b̂α†i |ψoc > 6= 0

and b̂αi |ψoc >= 0 for all the members i of any family α. Since any S̃eg changes
ef

(+)
gh

(+) into
ef

[+]
gh

[+] and (
ab

[+])† =
ab

[+], while (
ab

(+))†
ab

(+)=
ab

[−], the vacuum state |ψoc >

from Eq. (8.54) must be replaced by

|ψoc >=
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |0 > ,
for d = 2(2n+ 1),

|ψoc >=
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] +
03

[+i]
12

[+]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] + · · · |0 > ,
for d = 4n, (8.59)

n is a positive integer. There are 2
d
2
−1 summands. since we step by step replace all

possible pairs of
ab

[−] · · ·
ef

[−] in the starting part
03

[−i]
12

[−]
35

[−] · · ·
d−1 d

[−] (or
03

[−i]
12

[−]
35

[−]

· · ·
d−3 d−2

[−]
d−1 d

[+] ) into
ab

[+] · · ·
ef

[+] and include new terms into the vacuum state so
that the last 2n+ 1 summands have for d = 2(2n+ 1) case, n is a positive integer,
only one factor [−] and all the rest [+], each [−] at different position. For d = 4n

also the factor
d−1 d

[+] in the starting term
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] changes to
d−1 d

[−] . The vacuum state has then the normalization factor 1/
√
2d/2−1.

There is therefore

2
d
2
−1 2

d
2
−1 (8.60)

number of creation operators, defining the orthonormalized states when applaying
on the vacuum state of Eqs. (8.59) and the same number of annihilation operators,
which are defined by the creation operators on the vacuum state of Eqs. (8.59).
S̃ab connect members of different families, Sab generates all the members of one
family.

We recognize that:
ii.a. The above creation and annihilation operators are nilpotent – (b̂a†i )2 = 0 =
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(b̂ai )
2 – since the ”starting” creation operator b̂1†1 and annihilation operator b̂ai are

both made of the product of an odd number of nilpotents, while products of either
Sab or S̃ab can change an even number of nilpotents into projectors. Any b̂a†i is
correspondingly a factor of an odd number of nilpotents (at least one) (and an
even number of projectors) and its square is zero. The same is true for b̂ai .
ii.b. All the creation operators operating on the vacuum state of Eq.(8.59) give a
non zero vector – b̂a†i |ψoc > 6= 0 – while all the annihilation operators annihilate
this vacuum state – b̂ai |ψ0 > for any α and any i.
It is not difficult to see that b̂ai |ψoc >= 0, for any α and any i. First we recognize
that whatever the set of factors Smn · · ·Spr appear on the right hand side of the
annihilation operator b̂11 in Eq.(8.58), it lives at least one factor [−] unchanged.

Since b̂11 is the product of only nilpotents (−) and since
ab

(−)
ab

[−]= 0, this part of the
proof is complete.
Let us prove now that b̂α†i |ψoc > 6= 0 for each α, i. According to Eq.(8.57) the
operation Smn on the left hand side of b̂1†1 , withm,n, which does not belong to

the Cartan subalgebra set of indices, transforms the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−]

· · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−] · · · · · ·
d−1 d

[+] ) into the term
03

[−i]
12

[−]

· · ·
lm

(+) · · ·
nk

(+) · · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

(+) · · ·
nk

(+) · · · · · ·
d−1 d

[+] ) and b̂1†1

on such a term gives zero, since
lm

(+)
lm

(+)= 0 and
nk

(+)
nk

(+)= 0. Let us first assume that
Smn is the only term on the right hand side of b̂1†1 and that none of the operators
from the left hand side of b̂1†1 in Eq.(8.57) has the indicesm,n. It is only one term
among all the summands in the vacuum state (Eq.8.59), which gives non zero

contribution in this particular case, namely the term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · ·
d−1 d

[−]

(or the term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · · · · ·
d−1 d

[+] ). Smn transforms the part · · ·
lm

[+]

· · ·
nk

[+] · · · into · · ·
lm

(−) · · ·
nk

(−) · · · and since
lm

(+)
lm

(−) gives ηll
lm

[+], while for the rest
of factors it was already proven that such a factor on b̂1†1 forms a b1†i giving non
zero contribution on the vacuum (8.54).
We also proved that what ever other Sab but Smn operate on the left hand side of
b̂1†1 the contribution of this particular part of the vacuum state is nonzero. If the
operators on the left hand side have the indexesm or n or both, the contribution on
this term of the vacuum will still be nonzero, since then such a Smp will transform

the factor
lm

(+) in b̂1†1 into
lm

[−] and
lm

[−]
lm

(−) is nonzero, Eq. (8.71).
The vacuum state has a term which guarantees a non zero contribution for any
possible set of Smn · · ·Spr operating from the right hand side of b̂1†1 (that is for
each family) (which we achieved just by the transformation of all possible pairs

of
cd

[−],
gh

[−] into
cd

[+],
gh

[+]), the proof that b̂α†i operating on the vacuum |ψoc > of

Eq. (8.59) gives nonzero contribution. Among [−] also
03

[−i] is understood.
It is not difficult to see that for each ”family” of 2

d
2
−1 families it is only one term

among all the summands in the vacuum state |ψoc > of Eq. (8.59), which give
a nonzero contribution, since when ever [+] appears on a wrong position, that
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is on the position, so that the product of
ab

(+) from b̂1† and
ab

[+] from the vacuum
summand appears, the contribution is zero.
ii.b. Any two creation operators anti commute — {b̂α†i , b̂

β†
j }+ = 0.

According to Eq.8.57 we can rewrite {b̂α†i , b̂
b†
j }+, up to a factor, as

{Smn · · ·Sprb̂1†1 S
ab · · ·Sef, Sm

′n ′ · · ·Sp
′r ′ b̂1†1 S

a ′b ′ · · ·Se
′f ′ }+.

Whatever the product Sab · · ·SefSm ′n ′ · · ·Sp ′r ′ (or Sa
′b ′ · · ·Se ′f ′Smn · · ·Spr) is, it

always transforms an even number of (+) in b̂1†1 into [−]. Since an odd number of
nilpotents (+) (at least one) stays unchanged in this right b̂1†1 , after the application

of all the Sab in the product in front of it or
d−1 d

[ +] transforms into
d−1 d

( −),
and since the left b̂1†1 is a product of only nilpotents (+) or an odd number of
nilpotents and [+] for d = 2(2n+1) and d = 4n, n is an integer, respectively, while
d−1 d

[+]
d−1 d

(−) = 0, the anticommutator for any two creation operators is zero.
ii.c.. Any two annihilation operators anticommute – {b̂αi , β̂

b
j }+ = 0.

According to Eq.8.58 we can rewrite {b̂αi , b̂
β
j }+, up to a factor, as

{Sab · · ·Sefb̂11Smn · · ·Spr, Sa
′b ′ · · ·Se

′f ′ b̂11S
m ′n ′ · · ·Sp

′r ′ }+.

What ever the product Smn · · ·SprSa ′b ′ · · ·Se ′f ′ (or Sm
′n ′ · · ·Sp ′r ′Sab · · ·Sef) is,

it always transforms an even number of (−) in b̂11 into [+]. Since an odd number of
nilpotents (−) (at least one) stays unchanged in this b̂11, after the application of all

the Sab in the product in front of it or
d−1 d

[ +] transforms into
d−1 d

( −), and since
b̂11 in the left hand side is a product of only nilpotents (−) or an odd number of
nilpotents and [+] for d = 2(2n+1) and d = 4n, n is an integer, respectively, while
ab

(−)
ab

(−)= 0 and
ab

[+]
ab

[−]= 0, the anti commutator of any two annihilation operators
is zero.
ii.d. For any creation and any annihilation operators it follows: {b̂αi , b̂

β†
j }+|ψ− >=

δabδij|ψ0 > .

Let us prove this. According to Eqs. (8.57,8.58) we may rewrite {b̂αi , b̂
β†
j }+ up

to a factor as {Sab · · ·Sefb̂11Smn · · ·Spr, Sm
′n ′ · · ·Sp ′r ′ b̂1†1 Sa

′b ′ · · ·Se ′f ′ }+. We dis-
tinguish between two cases. It can be that both Smn · · ·SprSm ′n ′ · · ·Sp ′r ′ and
Sa
′b ′ · · ·Se ′f ′Sab · · ·Sef are numbers. This happens when α = β and i = j. Then

we follow i.b.. We normalize the states so that < ψαi |ψ
α
i >= 1.

The second case is that at least one of

Smn · · ·SprSm
′n ′ · · ·Sp

′r ′ and Sa
′b ′ · · ·Se

′f ′Sab · · ·Sef

is not a number. Then the factors like
ab

(−)
ab

[−] or
ab

[+]
ab

(−) or
ab

(+)
ab

[+] make the anticom-
mutator equal zero. And the proof is completed.

iii. We learned:
iii.a. From 2d internal states expressed with Grassmann coordinates, which are
all orthogonal with respect to the scalar product, Eq.(8.24), not all of 2d fulfill re-
quirements that the states should be written as product of Grassmann coordinates
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on the vacuum state. We payed particular attention on 2
d
2
−1 (2

d
2
−1 + 1), states,

Eqs. (8.41, 8.42). To these creation operators the same number, (2
d
2
−1(2

d
2
−1 + 1)),

of the corresponding annihilation operators belong, fulfilling the relation for the
creation and annihilation operators (8.40), for which we expect that the creation
and annihilation operators have to. These states form two (separate) groups of
the Lorentz representation: The members of each group are reachable by Sab

(which do not belong to the Cartan subalgebra (8.65)) from one of the state of each
group, each with (2

d
2
−1(2

d
2
−1 + 1))/2members. The second quantized states have

in d = 4n an even Grassmann caharacter, while in d = 2(2n + 1) they have an
odd Grassmann character. There are in addition creation operators of opposite
Grassmann character then these 2

d
2
−1(2

d
2
−1 + 1)) states either in d = 4n or in

d = 2(2n+ 1). They are products of two, four or at most product of d θa.
iii.b. From 2d internal states expressed with Clifford coordinates, which again
are orthogonal with respect to the scalar product, Eq.(8.24), only 2

d
2
−1 (2

d
2
−1)

fulfill requirements that the second quantized states are expressed by products
of nilpotents and projectors, which apply on the vacuum state. The products of
nillpotents and projectors have to have an odd Clifford character in either d = 4n

or d = 2(2n + 1). They form creation operators and annihilation operators, full-
filling Eq.(8.52), for which we expect that the creation and annihilation operators
have to.
The corresponding states form families of states. Each family members are reach-
able from any one by Sab, while any family can be reached by S̃ab.
iii.c. We pay attention on even-dimensional spaces only.

8.3 Conclusions

We have started the present study to understand, why ”nature made a choice” of
the Clifford algebra, rather than the Grassmann algebra, to describe the internal
degrees of freedom of fermion fields, although both spaces enable the second
quantization of the internal degrees of freedom of the fermion type. We study
as well how to fermionize boson fields (or bosonize fermion fields) in any d
(the reader can find the corresponding contribution in this proceedings) to better
understand why and how ”nature made choices of the theories and models” in
the expansion of the universe.

The creation and annihilation operators fulfill anticommutation relations,
desired for fermions either in Grassmann space or in Clifford space, although
states in Grassmann space carry integer spins, what leads in the spinn-charge-family
theory (since spins in d ≥ 5 manifest as charges in d = (1+ 3)) to the charges in
the adjoint representations of the charge groups (the subgroups of the Lorentz
group SO(1, 13)) while states in the Clifford space carry half integer spin and
correspondingly are all the charges in the fundamental representations of the
groups.

We want to understand as well how does this choice of whether taking
Grassmann or Clifford space, manifest in the breaking of the starting symmetry
in d-dimension down to d = (1+ 3). The spin-charge-family theory namely starts
at d = (1+ 13) with the simple action in which massless fermions carry only two
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kinds of spin described by two kinds of the Clifford algebra objects – γa and γ̃a

– and interact with the gravity only – through vielbeins, the gauge fields of the
Poincaré algebra and the two kinds of the spin connection fields, the gauge fields
of these two kinds of the Clifford algebra objects. The theory offers the explanation
for all the assumptions of the standard model of elementary fields, fermions and
bosons, with the appearance of families including, explaining also the phenomena
like the existence of the dark matter, of the matter-antimatter asymmetry, offering
correspondingly the next step beyond both standard models – cosmological one
and the one of the elementary fields.

To come to the low energy regime the symmetry must break, first from
SO(13, 1) to SO(7, 1)× SU(3)×U(1) and then further to SO(3, 1) ×SU(3)×U(1).
Further study is needed to understand whether the ”nature could start” at all
with Grassmann space while ”recognizing”, when breaking symmetry in steps,
the ”advantage” of the Clifford degrees of freedom with respect to the Grassmann
ones: The covariant momentum of the starting action of the spin-charge-family
theory, Eq. (8.1), would in the case that the Grassmann coordinates describe the
internal degrees of freedom of massless objects with the anticommutation relation
of the creation and annihilation operators (Eq.(8.40)) read: p0α = pα−

1
2

SabΩabα,
whereΩabα are the spin connection gauge fields of Sab (of the generators of the
Lorentz transformations in the Grassmann space) and fαa p0α would replace the
ordinary momentum, when massless objects start to interact with the gravitational
field, through the vielbeins and the spin connections in Eq. (8.33).

This contribution is a step towards understanding better the open problems
of the elementary particle physics and cosmology.

Although we have not yet learned enough to be able to answer the four ques-
tions – a. Why is the simple starting action of the spin-charge-family theory doing so
well in manifesting the observed properties of the fermion and boson fields? b. Un-
der which condition can more general action lead to the starting action of Eq. (8.1)?
c. What would more general action, if leading to the same low energy physics,
mean for the history of our Universe? d. Could the fermionization procedure of
boson fields or the bosonization procedure of fermion fields, discussed in this
Proceedings for any dimension d (by the authors of this contribution, while one of
them, H.B.F.N. [11], has succeeded with another author to do the fermionization
for d = (1+ 1)), tell more about the ”decisions” of the universe in the history.

8.4 APPENDIX: Lorentz algebra and representations in
Grassmann and Clifford space

A Lorentz transformation on vector components θa, γa, or γ̃a, which are used
to describe internal degrees of freedom of fields with the fermion nature, and on
vector components xa, which are real (ordinary) commuting coordinates:
θ ′a = Λab θ

b, γ ′a = Λab γ
b, γ̃ ′a = Λab γ̃

b and xa = Λab x
b,

leaves forms

aa1a2...aiθ
a1θa2 . . . θai , aa1a2...aiγ

a1γa2 . . . γai , aa1a2...ai γ̃
a1 γ̃a2 . . . γ̃ai
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and
ba1a2...ai x

a1xa2 . . . xai , i = (1, . . . , d)

invariant.
While ba1a2...ai (= ηa1b1ηa2b2 . . . ηaibi b

b1b2...bi) is a symmetric tensor
field, aa1a2...ai (= ηa1b1ηa2b2 . . . ηaibi a

b1b2...bi) are antisymmetric tensor Kalb-
Ramond fields. The requirements that x

′a x
′bηab = xc xdηcd, θ ′aθ ′bεab = θcθdεcd,

γ ′aγ ′bεab = γcγdεcd and γ̃ ′aγ̃ ′bεab = γ̃cγ̃dεcd, where the metric tensor ηab

(in our case ηab = diag(1,−1,−1, . . . ,−1)) lowers the indices of vectors {xa}

(= ηabxb), {θa}: (θa = ηab θb), {γa}: (γa = ηab γb) and {γ̃a}: (γ̃a = ηab γ̃b),
εab is the antisymmetric tensor, lead to ΛabΛcd ηac = ηbd. An infinitesimal
Lorentz transformation for the case with detΛ = 1,Λ00 ≥ 0 can be written as
Λab = δab +ωab, whereωab +ωba = 0.

According to Eqs. (8.14, 8.15, 8.21) one finds

{γa, S̃cd}− = 0 = {γ̃a, Scd}− ,

{γa,Scd}− = {γa, Scd}− =
i

2
(ηacγd − ηadγc) ,

{γ̃a,Scd}− = {γ̃a, S̃cd}− =
i

2
(ηacγ̃d − ηadγ̃c) . (8.61)

Comments: In the cases with either the basis θa or with the basis of γa or γ̃a the
scalar products — the norms — < B|B > < F|F > are non negative and equal to∑d
k=0

∫
ddxb∗b1...bkbb1...bk .

To have the norm which would have fields with the positive and the negative
norm one could define the norm as< φ0|bb1...bkγ

bk . . . γb1cc1...ckγ
c1 . . . γck |φ0 >,

as it is used in Ref. [21] to obtain the generalized Stueckelberg equation.

8.4.1 Lorentz properties of basic vectors

What follows is taken from Ref. [2] and Ref. [9], Appendix B.
Let us first repeat some properties of the anticommuting Grassmann coordi-

nates.
An infinitesimal Lorentz transformation of the proper ortochronous Lorentz

group is then

δθc = −
i

2
ωabSabθc = ωcaθa ,

δγc = −
i

2
ωabS

abγc = ωcaγ
a ,

δγ̃c = −
i

2
ωabS̃

abγ̃c = ωcaγ̃
a ,

δxc = −
i

2
ωabL

abxc = ωcax
a , (8.62)

whereωab are parameters of a transformation and γa and γ̃a are expressed by θa

and ∂
∂θa

in Eqs. (8.14, 8.15).
Let us write the operator of finite Lorentz transformations as follows

U = e
i
2
ωab(Sab+Lab) . (8.63)
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We see that the Grassmann θa and the ordinary xa coordinates and the Clifford
objects γa and γ̃a transform as vectors Eq.(8.63)

θ ′c = e−
i
2
ωab(Sab+Lab) θc e

i
2
ωab(Sab+Lab)

= θc −
i

2
ωab{Sab, θc}− + · · · = θc +ωcaθa + · · · = Λcaθa ,

x ′c = Λcax
a , γ ′c = Λcaγ

a , γ̃ ′c = Λcaγ̃
a . (8.64)

Correspondingly one finds that compositions like γapa and γ̃apa, here pa are
pxa (= i ∂

∂xa
), transform as scalars (remaining invariants), while Sabωabc and

S̃ab ω̃abc transform as vectors: U−1 Sabωabc U = Λc
dSabωabd, U−1 S̃ab ω̃abc U =

Λc
dS̃ab ω̃abd.

Also objects like

R =
1

2
fα[afβb] (ωabα,β −ωcaαω

c
bβ)

and
R̃ =

1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ)

from Eq. (8.1) transform with respect to the Lorentz transformations as scalars.
Making a choice of the Cartan subalgebra set of the algebra Sab, Sab and S̃ab,

Eqs. (8.10, 8.14, 8.15),

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , (8.65)

one can arrange the basic vectors so that they are eigenstates of the Cartan subal-
gebra, belonging to representations of Sab, or of Sab and S̃ab.

8.5 APPENDIX: Technique to generate spinor representations
in terms of Clifford algebra objects

We shall briefly repeat the main points of the technique for generating spinor
representations from Clifford algebra objects, following the reference[12]. We ask
the reader to look for details and proofs in this reference.

We assume the objects γa, Eq. (8.14), which fulfill the Clifford algebra, Eq (8.13).

{γa, γb}+ = I 2ηab, for a, b ∈ {0, 1, 2, 3, 5, · · · , d}, (8.66)

for any d, even or odd. I is the unit element in the Clifford algebra, while {γa, γb}± =

γaγb ± γbγa.
We accept the “Hermiticity” property for γa’s, Eq. (8.17), γa† = ηaaγa. lead-

ing to γa†γa = I.
The Clifford algebra objects Sab close the Lie algebra of the Lorentz group of

Eq. (8.21) {Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac). One finds from
Eq.(8.17) that (Sab)† = ηaaηbbSab and that {Sab, Sac}+ = 1

2
ηaaηbc.
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Recognizing that two Clifford algebra objects Sab, Scd with all indexes dif-
ferent commute, we select (out of infinitely many possibilities) the Cartan sub
algebra set of the algebra of the Lorentz group as follows

S0d, S12, S35, · · · , Sd−2 d−1, if d = 2n,

S12, S35, · · · , Sd−1 d, if d = 2n+ 1. (8.67)

To make the technique simple, we introduce the graphic representation[12] as
follows

ab

(k): =
1

2
(γa +

ηaa

ik
γb),

ab

[k]: =
1

2
(1+

i

k
γaγb), (8.68)

where k2 = ηaaηbb. One can easily check by taking into account the Clifford
algebra relation (Eq.8.66) and the definition of Sab that if one multiplies from the

left hand side by Sab the Clifford algebra objects
ab

(k) and
ab

[k], it follows that

Sab
ab

(k)=
1

2
k
ab

(k),

Sab
ab

[k]=
1

2
k
ab

[k] . (8.69)

This means that
ab

(k) and
ab

[k] acting from the left hand side on anything (on a
vacuum state |ψ0〉, for example) are eigenvectors of Sab.

We further find

γa
ab

(k) = ηaa
ab

[−k],

γb
ab

(k) = −ik
ab

[−k],

γa
ab

[k] =
ab

(−k),

γb
ab

[k] = −ikηaa
ab

(−k) (8.70)

It follows that Sac
ab

(k)
cd

(k)= − i
2
ηaaηcc

ab

[−k]
cd

[−k], Sac
ab

[k]
cd

[k]= i
2

ab

(−k)
cd

(−k), Sac
ab

(k)
cd

[k]=

− i
2
ηaa

ab

[−k]
cd

(−k), Sac
ab

[k]
cd

(k)= i
2
ηcc

ab

(−k)
cd

[−k] . It is useful to deduce the following
relations

ab

(k)
ab

(k) = 0,
ab

(k)
ab

(−k)= ηaa
ab

[k],
ab

(−k)
ab

(k)= ηaa
ab

[−k],
ab

(−k)
ab

(−k)= 0
ab

[k]
ab

[k] =
ab

[k],
ab

[k]
ab

[−k]= 0,
ab

[−k]
ab

[k]= 0,
ab

[−k]
ab

[−k]=
ab

[−k]
ab

(k)
ab

[k] = 0,
ab

[k]
ab

(k)=
ab

(k),
ab

(−k)
ab

[k]=
ab

(−k),
ab

(−k)
ab

[−k]= 0
ab

(k)
ab

[−k] =
ab

(k),
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0,
ab

[−k]
ab

(−k)=
ab

(−k) .

(8.71)
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We recognize in the first equation of the first row and the first equation of the
second row the demonstration of the nilpotent and the projector character of the

Clifford algebra objects
ab

(k) and
ab

[k], respectively.
Whenever the Clifford algebra objects apply from the left hand side, they always

transform
ab

(k) to
ab

[−k], never to
ab

[k], and similarly
ab

[k] to
ab

(−k), never to
ab

(k).
We define in Eq. (8.59) a vacuum state |ψ0 > so that one finds

<
ab

(k)

†
ab

(k) >= 1,

<
ab

[k]

†
ab

[k] >= 1. (8.72)

Taking the above equations into account it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd. (We advise
the reader to see the reference[12].)

For d even, we simply set the starting state as a product of d/2, let us say,

only nilpotents
ab

(k), one for each Sab of the Cartan sub algebra elements (Eq.(8.67)),
applying it on an (unimportant) vacuum state[12]. Then the generators Sab, which
do not belong to the Cartan sub algebra, applied to the starting state from the left
hand side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
...

0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] ψ0
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
... (8.73)

8.5.1 Technique to generate ”families” of spinor representations in terms of
Clifford algebra objects

When all 2d states are considered as a Hilbert space, we recognize that for d even
there are 2d/2 ”families” and for d odd 2(d+1)/2 ”families” of spinors [12,13,9]. We
shall pay attention of only even d.

One Weyl representation form a left ideal with respect to the multiplication
with the Clifford algebra objects. We proved in Ref.[9], and the references therein
that there is the application of the Clifford algebra object from the right hand side,
which generates ”families” of spinors.

Right multiplication with the Clifford algebra objects namely transforms the
state of one ”family” into the same state with respect to the generators Sab (when
the multiplication from the left hand side is performed) of another ”family”.
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We defined in refs.[13] the Clifford algebra objects γ̃a’s as operations which
operate formally from the left hand side (as γa’s do) on any Clifford algebra object
A as follows

γ̃aA = i(−)(A)Aγa, (8.74)

with (−)(A) = −1, if A is an odd Clifford algebra object and (−)(A) = 1, if A is an
even Clifford algebra object.

Then it follows that γ̃a obey the same Clifford algebra relation as γa.

(γ̃aγ̃b + γ̃bγ̃a)A = −ii((−)(A))2A(γaγb + γbγa) = 2ηabA (8.75)

and that γ̃a and γa anticommute

(γ̃aγb + γbγ̃a)A = i(−)(A)(−γbAγa + γbAγa) = 0. (8.76)

We may write

{γ̃a, γb}+ = 0, while {γ̃a, γ̃b}+ = 2ηab. (8.77)

One accordingly finds

γ̃a
ab

(k): = −i
ab

(k) γa = −iηaa
ab

[k], (8.78)

γ̃b
ab

(k): = −i
ab

(k) γb = −k
ab

[k],

γ̃a
ab

[k]: = i
ab

[k] γa = i
ab

(k), (8.79)

γ̃b
ab

[k]: = i
ab

[k] γb = −kηaa
ab

(k) . (8.80)

If we define

S̃ab =
i

4
[γ̃a, γ̃b] =

1

4
(γ̃aγ̃b − γ̃bγ̃a), (8.81)

it follows

S̃abA = A
1

4
(γbγa − γaγb), (8.82)

manifesting accordingly that S̃ab fulfil the Lorentz algebra relation as Sab do.
Taking into account Eq.(8.74), we further find

{S̃ab, Sab}− = 0, {S̃ab, γc}− = 0, {Sab, γ̃c}− = 0. (8.83)

One also finds

{S̃ab, Γ }− = 0, {γ̃a, Γ }− = 0, for d even,

{S̃ab, Γ }− = 0, {γ̃a, Γ }+ = 0, for d odd, (8.84)

which means that in d even transforming one ”family” into another with either
S̃ab or γ̃a leaves handedness Γ unchanged. (The transformation to another ”family”
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in d odd with γ̃a changes the handedness of states, namely the factor 1
2
(1 ± Γ)

changes to 1
2
(1∓ Γ) in accordance with what we know from before: In spaces with

odd d changing the handedness means changing the ”family”.)
We advise the reader also to read [2]where the two kinds of Clifford algebra

objects follow as two different superpositions of a Grassmann coordinate and its
conjugate momentum.

We present for S̃ab some useful relations

S̃ab
ab

(k) =
k

2

ab

(k),

S̃ab
ab

[k] = −
k

2

ab

[k],

S̃ac
ab

(k)
cd

(k) =
i

2
ηaaηcc

ab

[k]
cd

[k],

S̃ac
ab

[k]
cd

[k] = −
i

2

ab

(k)
cd

(k),

S̃ac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[k]
cd

(k),

S̃ac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(k)
cd

[k] . (8.85)

We transform the state of one ”family” to the state of another ”family” by the
application of γ̃a or S̃ac (formally from the left hand side) on a state of the first
”family” for a chosen a or a, c. To transform all the states of one ”family” into states
of another ”family”, we apply γ̃a or S̃ac to each state of the starting ”family”. It is,
of course, sufficient to apply γ̃a or S̃ac to only one state of a ”family” and then
use generators of the Lorentz group (Sab), and for d even also γa’s, to generate all
the states of one Dirac spinor.

One must notice that nilpotents
ab

(k) and projectors
ab

[k] are eigenvectors not
only of the Cartan subalgebra Sab but also of S̃ab. Accordingly only S̃ac, which
do not carry the Cartan subalgebra indices, cause the transition from one ”family”
to another ”family”.

The starting state of Eq.(8.73) can change, for example, to

0d

[k0d]
12

[k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2), (8.86)

if S̃01 was chosen to transform the Weyl spinor of Eq.(8.73) to the Weyl spinor of
another ”family”.
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