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1 Introduction

The semi-leptonic decays B̄ → K̄π`` and B̄s → K̄K`` are |∆B| = |∆S| = 1 flavor-changing

neutral current processes (FCNCs) which are sensitive to flavor physics in and beyond the

standard model. While being phase space suppressed with respect to the corresponding

resonant channels B̄ → K̄(∗)(φ)``, the non-resonant decays become important with high

statistics available for future experimental analyses [1, 2]. In particular non-resonant decays

constitute important backgrounds to the forthcoming precision studies of B̄ → K̄∗(→
K̄π)`` and B̄s → φ(→ K̄K)`` decays.

In this work we calculate the non-resonant B̄ → K̄π`` and related B̄s → K̄K``

contributions. The non-resonant heavy to light decays factorize at low recoil by means of

the hard scale of order of the b−quark mass, mb, for the dilepton invariant mass squared,

q2 = O(m2
b) [3]. Specifically we employ the operator product expansion (OPE) in 1/mb

as put forward in ref. [4] (for later work, see [5]) with subsequent detailed analyses for

resonant decays [6, 7]. Requisite hadronic B̄ → K̄π form factors are available from heavy

hadron chiral perturbation theory (HHχPT), e.g., refs. [8, 9], valid in the region where

both 3-momenta of the final-state pseudoscalars are soft in the B-meson rest frame. We

perform phenomenological studies in this region of low recoil. In the large recoil region,

a recent study is ref. [10]. Recent activities covering semi-leptonic b → u`ν tranisitions

include [11, 12].

Other backgrounds to B̄ → K̄∗(→ K̄π)`` previously considered are resonant S-wave

contributions from the scalar mesons K∗0 (1430) or κ(800) [13–15]. Here we discuss addi-

tionally features of the D-wave background. While heavier states such as the K∗0,2(1430)

are essentially outside the low recoil region with q2 & (14−15) GeV2, there is some overlap

with the K∗-region due to their width. Since the φ is much more narrow, backgrounds to

B̄s → φ(→ K̄K)`` are generically smaller and in particular there is no low lying scalar

resonance decaying to KK̄ with an appreciable branching fraction.

The plan of the paper is as follows: in section 2 we introduce the effective weak

|∆B| = |∆S| = 1 Hamiltonian used in this work. In section 3 we present the B̄ → K̄π``

matrix element relevant at low hadronic recoil. Angular distributions are given in section 4.

The phenomenology is worked out in section 5, before we conclude in section 6. Auxiliary

information on parametric input, kinematics, phase space and form factors is deferred to

several appendices.

2 Effective Hamiltonian

We employ the following effective hamiltonian for rare |∆B| = |∆S| = 1 decays:

Heff = −4GF√
2
VtbV

∗
ts

αe
4π

∑
i

Ci(µ)Oi(µ) , (2.1)

where
O7 =

mb

e
s̄σµνPRbFµν , O′7 =

mb

e
s̄σµνPLbFµν ,

O9 = s̄γµPLb ¯̀γµ` , O′9 = s̄γµPRb ¯̀γµ` ,

O10 = s̄γµPLb ¯̀γµγ5` , O′10 = s̄γµPRb ¯̀γµγ5` .

(2.2)
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Here PL/R = (1 ∓ γ5)/2 denote chiral projectors, αe the fine structure constant, µ the

renormalization scale and Fµν the electromagnetic field strength tensor. Doubly Cabibbo-

suppressed contributions proportional to VubV
∗
us are neglected.

In the SM the O7,9,10 induce the dominant contributions, whereas the Wilson coef-

ficients of the chirality-flipped operators, O′7,9,10, can be of importance in extensions of

the SM. We neglect lepton masses in this work. While we do not specifically study

CP-asymmetries, our framework covers the possibility of complex Wilson coefficients.

CP-violation at the level of the SM can be taken into account in a straightforward manner.

The operators in eq. (2.2) may be amended by scalar and tensor ones to achieve a complete

basis of dimension 6 operators which is beyond the scope of this work.

Lepton-universality breaking effects between ` = e and ` = µ operators can be taken

into account as well, assigning a lepton flavor index to each operator and respective Wilson

coefficient C(′)`. Such effects could be probed for with ratios (with the same cuts in both

numerator and denominator, to minimize theory uncertainties)

RK̄π ≡
B
(
B̄ → K̄πµµ

)
B
(
B̄ → K̄πee

) , (2.3)

proposed previously for B̄ → H``, H = K̄(∗), Xs decays [16], or by using further ratios

of angular observables. Deviations of RK̄π or RH in general from unity can be assigned,

up to small kinematic corrections, to lepton-universality-breaking new physics, e.g., in

lepto-quark models or supersymmetric ones with R-parity violation [17], or specific Z ′

models [18, 19]. We emphasize that contributions from intermediate charmonium reso-

nances subsequently decaying to electrons or muons drop out in RK̄π and related ratios,

after correcting for differences of radiative tails. Here and in the following we suppress for

brevity the analogous expressions for the B̄s → K̄K`` decay, unless stated otherwise.

3 The B̄ → K̄π`` matrix element at low recoil

The non-resonant decays B̄ → K̄π`` are accessible at low hadronic recoil with the OPE

in 1/mb. In the basis used in this work, given in eq. (2.2), the generalized transversity

amplitudes can be written by means of universality [20] to lowest order in 1/mb as

H
L/R
0,‖ = C

L/R
−

(
q2
)
F0,‖

(
q2, p2, cos θK

)
, H

L/R
⊥ = C

L/R
+

(
q2
)
F⊥
(
q2, p2, cos θK

)
, (3.1)

where Fi (i = 0,⊥, ‖) denote the transversity form factors

F0 =
Nnr

2

[
λ1/2w+

(
q2, p2, cos θK

)
+

1

p2

{(
m2
K−m2

π

)
λ1/2−

(
m2
B−q2−p2

)
λ1/2
p cos θK

}
w−
(
q2, p2, cos θK

)]
,

F‖ = Nnr

√
λp
q2

p2
w−
(
q2, p2, cos θK

)
, F⊥ =

Nnr

2

√
λλp

q2

p2
h
(
q2, p2, cos θK

)
. (3.2)
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These are later generalized to include the contributions from the resonances decaying to

K̄π final states. The normalization factor for the non-resonant decays reads

Nnr =
GF |VtbV ∗ts|αe

27π4mB

√
π

√
λλp

mBp2
. (3.3)

The B̄ → K̄π form factors w±, h are defined in section 3.2. We denote the invariant mass

squared of the dilepton- and K̄π-system by q2 and p2, respectively, whereas θK is the

angle between the kaon and the B̄ in the
(
K̄π
)

center-of-mass system, where details on the

kinematics are given in appendix B. Furthermore, the Källén function λ(a, b, c) is given by

λ(a, b, c) = a2 + b2 + c2− 2(ab+ ac+ cb), with the short-hand notations λ = λ
(
m2
B, q

2, p2
)

and λp = λ
(
p2,m2

K ,m
2
π

)
, where mM and pM denote the mass and 4-momentum of the

meson M = B,K, π, respectively.

The transversity amplitudes may be expanded in terms of associated Legendre poly-

nomials Pm`

F0 =
∑
`=0

a`0
(
q2, p2

)
Pm=0
` (cos θK) ,

F‖ =
∑
`=1

a`‖
(
q2, p2

) Pm=1
` (cos θK)

sin θK
, (3.4)

F⊥ =
∑
`=1

a`⊥
(
q2, p2

) Pm=1
` (cos θK)

sin θK
.

Useful relations to the Legendre polynomials P` are P 0
` = P` and

Pm=1
` = sin θK [dP`/d cos θK ]. As detailed later in section 4, we take the dependence on

sin θK and φ in F‖,⊥ out of the form factor and assign it to the angular distribution.

The dilepton system can only carry helicities 0, ±1, which by helicity conservation gives

the respective range for the K̄π system. The well-known result from Kl4 decays [21] is

recovered that there is no S-wave contribution for H‖,⊥ since P 1
0 = 0. The a`i coefficients

can be obtained using the orthogonality of the Pm` , the magnitude of which drops rapidly

with increasing `.

The q2-dependent short-distance coefficients C
L/R
± are defined as

CL±
(
q2
)

= Ceff
9

(
q2
)
± C ′9 −

(
C10 ± C ′10

)
+ κ

2mbmB

q2

(
Ceff

7 ± C ′7
)
, (3.5)

CR±
(
q2
)

= Ceff
9

(
q2
)
± C ′9 + C10 ± C ′10 + κ

2mbmB

q2

(
Ceff

7 ± C ′7
)
, (3.6)

and resemble the ones of ref. [7] for B → K(∗)`+`− decays to which we refer for details.

The C
(eff)
i , C ′i are (effective) coefficients of the operators in eq. (2.2). Time-like polarization

does not contribute in the limit of vanishing lepton masses. Corrections to the heavy-quark

limit are parametrically suppressed as O
(
αsΛ/mb, C

(′)
7 /C9Λ/mb

)
and at the percent level.

Non-factorizable corrections vanish at the kinematic endpoint, i.e. at zero recoil.

In section 3.1 we give the requisite short-distance couplings in B̄ → K̄π`+`− decays

at low recoil. In section 3.2 we discuss the B̄ → K̄π form factors and compute the im-

proved Isgur-Wise relations. In section 3.3 we present exact relations for the non-resonant

transversity amplitudes which hold at zero recoil. For brevity, in the following we frequently

suppress the arguments in various phase-space-dependent functions.
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3.1 Short-distance couplings

In terms of a model-independent analysis the short-distance couplings in eq. (3.1) constitute

four complex functions of the dilepton mass. In B̄ → K̄π`+`− decays, the following

combinations of these couplings appear:

ρ±1 =
1

2

(
|CR± |2 + |CL±|2

)
, δρ =

1

4

(
|CR− |2−|CL−|2

)
, ρ±2 =

1

4

(
CR+C

R∗
− ∓ CL−CL∗+

)
, (3.7)

where ρ±2 can in general be complex and ρ+
2 equals ρ2 as in [7]. The corresponding expres-

sions in terms of the (effective) Wilson coefficients read

ρ±1 =

∣∣∣∣Ceff
9 ± C ′9 + κ

2mbmB

q2

(
Ceff

7 ± C ′7
)∣∣∣∣2 + |C10 ± C ′10|2 , (3.8)

δρ = Re

[(
Ceff

9 − C ′9 + κ
2mbmB

q2

(
Ceff

7 − C ′7
))(

C10 − C ′10

)∗]
, (3.9)

Reρ+
2 = Re

[(
Ceff

9 + κ
2mbmB

q2
Ceff

7

)
C∗10 −

(
C ′9 + κ

2mbmB

q2
C ′7

)
C ′∗10

]
, (3.10)

Imρ+
2 = Im

[
C ′10C

∗
10 +

(
C ′9 + κ

2mbmB

q2
C ′7

)(
Ceff

9 + κ
2mbmB

q2
Ceff

7

)∗]
, (3.11)

Reρ−2 =
1

2

[
|C10|2 − |C ′10|2 +

∣∣∣∣Ceff
9 + κ

2mbmB

q2
Ceff

7

∣∣∣∣2 − ∣∣∣∣C ′9 + κ
2mbmB

q2
C ′7

∣∣∣∣2
]
, (3.12)

Imρ−2 = Im

[
C ′10

(
Ceff

9 + κ
2mbmB

q2
Ceff

7

)∗
− C10

(
C ′9 + κ

2mbmB

q2
C ′7

)∗]
. (3.13)

The coefficient κ = 1− 2αs/(3π) ln(µ/mb), as in ref. [6], stems from relating the tensor to

the vector form factors, as shown below.

The accessibility of the coefficients ρ−2 and δρ is a new feature of the non-resonant

decays with respect to B̄ → K̄(∗)`` decays. In the SM basis of operators, where the C ′i are

negligible, only two couplings exist, ρ1,2 [6], and the following relations hold:

ρ1 ≡ ρ±1 = 2Reρ−2 , ρ2 ≡ Reρ+
2 = δρ , Imρ±2 = 0 . (SM basis) (3.14)

3.2 B̄ → K̄π form factors

The relevant B̄ → K̄π matrix elements can be parameterized as follows:

〈K̄i(pK)πj(pπ)|s̄γµ(1− γ5)b|B̄(pB)〉= icij
[
w+pµ+w−Pµ+rqµ+ihεµαβγp

α
Bp

βP γ
]
, (3.15)

〈K̄i(pK)πj(pπ)|s̄iqνσµν(1+γ5)b|B̄(pB)〉=−icijmB

[
w′+pµ+w′−Pµ+r′qµ+ih′εµαβγp

α
Bp

βP γ
]
, (3.16)

where the form factors w(′)
± , r

(′), h(′) depend on q2, p2 and cos θK . The combinatorial fac-

tors are given as |c−+|2 = |c0−|2 = 2|c00|2 = 2|c−0|2 = 1. Employing ε0123 = −1 and

σµν = i/2[γµ, γν ], the relations to the form factors adapted from ref. [3] are a = w+−w−−r,
b = w+ +w−−r, c = r, where details are given in appendix D. The form factor r, which pa-

rameterizes the qµ component, does not contribute in the approximations employed in this

work, i.e. vanishing lepton masses and absence of scalar operators. For the (pseudo-)scalar

matrix element follows (we neglect the strange quark mass):

〈K̄i(pK)πj(pπ)|s̄(1 + γ5)b|B̄(pB)〉 = icij/mb

[
w+p · q + w−P · q + rq2

]
. (3.17)
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We compute the improved Isgur-Wise relations [22] to lowest order in 1/mb and in-

cluding O(αs) corrections using the method of equations of motion: starting from

i∂ν (s̄iσµν(1 + γ5)b) = −mbs̄γµ(1− γ5)b+ i∂µ(s̄(1 + γ5)b)− 2s̄i
←
Dµ (1 + γ5)b (3.18)

and matching onto the heavy quark expansion, refer to, e.g., ref. [4] for the Wilson coeffi-

cients, we obtain

w′± = w±κ , h′ = hκ . (3.19)

Using eq. (3.19), the universal behavior [6] of the OPE detailed for B̄ → K̄∗`+`− in [4]

becomes manifest, in the leading order matrix element of non-resonant decays, eq. (3.1).

The explicit results in HHχPT [3] are consistent with this when keeping leading terms in

the expressions for the primed form factors only, as given in appendix D. The form factors

to lowest order in 1/mb used in this paper are given as

w± = ±gfB
2f2

mB

v · pπ + ∆
,

h =
g2fB
2f2

1

[v · pπ + ∆][v · p+ ∆ + µs]
, (3.20)

where v = pB/mB, ∆ = mB∗ − mB = 46 MeV and µs = mBs − mB = 87.3 MeV [23].

Here, f(B) denote the decay constants in the SU(3) limit of the light and heavy meson

multiplets and g the HHχPT coupling, where the values used are given in appendix A. As

is common practice for the phase space as well, we take into account the effect of different

meson masses.

The corresponding expressions for the B̄s → K̄K form factors read:

w± = ±gfB
2f2

mBs

v · pK + ∆s
,

h =
g2fB
2f2

1

[v · pK + ∆s][v · p+ ∆]
, (3.21)

where ∆s=mB∗−mBs =−42 MeV. In this case all combinatorial factors can be set to unity.

HHχPT is an effective theory that applies to light mesons with soft momenta, suffi-

ciently below the scale of chiral symmetry breaking around 1 GeV. By kinematical consid-

erations, in B̄ → K̄π`` decays the momenta of the final pseudoscalars in the B-restframe

are smaller for larger q2-values. Quantitatively, typical momentum-like scales Eπ−mπ and

EK −mK [8] do not exceed 0.8 GeV (0.5 GeV) for q2 above 14 (16) GeV2, but are smaller

in most of the corresponding (p2, cos θK)-parameter space. While higher-order corrections

in the regions with larger momenta will be more important, the expansion is trustwor-

thy for most of the low-recoil phase space. We employ (3.20) and (3.21) for the full low

recoil region.

3.3 Endpoint relations

The transversity amplitudes H
L/R
i , where i = 0, ‖,⊥, of the weak decays B̄ → K̄∗J``, where

K̄∗J denotes a kaonic meson with spin J and mass mKJ , are subject to endpoint relations,

– 6 –
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that is, kinematic constraints at vanishing recoil λ
(
m2
B, q

2,m2
KJ

)
= 0 [20]. This situation

corresponds to vanishing 3-momenta of the final hadronic and leptonic system ~p = ~q = 0 in

the center-of-mass system of the B, leading to an enhanced rotational symmetry because

of absence of direction. The endpoint relations read, [20],1

H
L/R
0 = 0 +O

(√
λ
)
, (J = 0)

H
L/R
⊥ = 0 +O

(√
λ
)
, H

L/R
‖ = −

√
2H

L/R
0 +O(λ) , (J = 1) (3.22)

H
L/R
0,‖,⊥ = 0 +O

(
λ(J−1)/2

)
, (J ≥ 2) .

Corrections in the vicinity of the endpoint are ruled by parity selection and are indicated

above. In the low recoil OPE the relations are equally present in the hadronic form factors.

The endpoint relations for the non-resonant decays are obtained from angular expan-

sion at λ∗ = λ
(
m2
B, q

2, p2
)

= 0. This corresponds to q2
∗ =

(
mB −

√
p2
)2

for fixed p2 or

p2
∗ =

(
mB −

√
q2
)2

for fixed q2. In particular, λp is finite at p2
∗ in general. Eq. (3.22)

implies that the endpoint is dominated by the ` = 1 amplitudes with longitudinal and

parallel polarization which are related and finite after removing the common phase space

factor Nnr. To show this explicitly in the low recoil OPE, define F̂i ≡ Fi/Nnr and denote

the corresponding coefficients as in eq. (3.4) by â`i . At the endpoint one readily obtains

that all â`i vanish except for â1
0,‖, which obey

â1
0 = â1

‖ = −

√
q2

p2
λp w−

∣∣∣∣∣
λ=λ∗

, (3.23)

which is consistent with eq. (3.22). Note that due to isotropicity, the form factor w− is

cos θK-independent at the endpoint, in accordance with the HHχPT results eq. (3.20).

It follows that the relations for B̄ → K̄∗`` decay observables [20] hold at λ∗ for the

non-resonant decay, including the fraction of longitudinally polarized
(
K̄π
)
, FL, being

1/3. Note that the endpoint values are assumed in general at different values of q2 such

that the non-resonant modes do dilute the vector signal predictions. Phenomenological

consequences are discussed further in sections 4 and 5.1.

4 Angular distributions

We present angular distributions for B̄ → K̄π`` decays for the basis given in eq. (2.2) and

massless leptons. In section 4.1 we give the general expressions and discuss the special

point of zero recoil. In section 4.2 we discuss angular projections, where the K̄π system

is in low angular momentum configuration, ` = 0, 1, 2, i.e., S, P, D partial waves. This

expansion corresponds to the lowest order terms in non-resonant decays as well as resonant

contributions from spin J = 0, 1, 2 states subsequently decaying to K̄π. In section 4.3 we

present the angular distributions in the low recoil region based on eq. (3.1).

1Relative signs depend on conventions for polarization vectors.
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4.1 General case

The B̄ → K̄π`` angular distribution, with the angles θ`, θK , φ defined as in [25], can be

written as

d5Γ =
1

2π

[∑
ci(θ`, φ)Ii

(
q2, p2, cos θK

)]
dq2dp2d cos θKd cos θ`dφ , (4.1)

where

c1 = 1, c2 = cos 2θ`, c3 = sin2 θ` cos 2φ, c4 = sin 2θ` cosφ, c5 = sin θ` cosφ,

c6 = cos θ`, c7 = sin θ` sinφ, c8 = sin 2θ` sinφ, c9 = sin2 θ` sin 2φ . (4.2)

The phase space allows the angles to be within the ranges

− 1 < cos θK ≤ 1 , −1 < cos θ` ≤ 1 , 0 < φ ≤ 2π . (4.3)

The coefficient functions Ii ≡ Ii
(
q2, p2, cos θK

)
are given in terms of transversity amplitudes

in eq. (3.1) as

I1 =
1

16

[
|HL

0 |2 + |HR
0 |2 +

3

2
sin2 θK

{
|HL
⊥|2 + |HL

‖ |
2 + (L→ R)

}]
,

I2 = − 1

16

[
|HL

0 |2 + (L→ R)− 1

2
sin2 θK

{
|HL
⊥|2 + |HL

‖ |
2 + (L→ R)

}]
,

I3 =
1

16

[
|HL
⊥|2 − |HL

‖ |
2 + (L→ R)

]
sin2 θK ,

I4 = −1

8

[
Re
(
HL

0 H
L
‖
∗)

+ (L→ R)

]
sin θK ,

I5 = −1

4

[
Re
(
HL

0 H
L
⊥
∗)− (L→ R)

]
sin θK , (4.4)

I6 =
1

4

[
Re
(
HL
‖ H

L
⊥
∗)− (L→ R)

]
sin2 θK ,

I7 = −1

4

[
Im
(
HL

0 H
L
‖
∗)− (L→ R)

]
sin θK ,

I8 = −1

8

[
Im
(
HL

0 H
L
⊥
∗)

+ (L→ R)

]
sin θK ,

I9 =
1

8

[
Im
(
HL
‖
∗
HL
⊥

)
+ (L→ R)

]
sin2 θK .

After integrating over φ, cos θ` and both, respectively, we obtain

d4Γ

dq2dp2d cos θKd cos θ`
= I1 + I2 cos 2θ` + I6 cos θ` , (4.5)

d4Γ

dq2dp2d cos θKdφ
=

1

π

(
I1−

I2

3
+
π

4
I5 cosφ+

π

4
I7 sinφ+

2

3
I3 cos 2φ+

2

3
I9 sin 2φ

)
, (4.6)

d3Γ

dq2dp2d cos θK
= 2

(
I1 −

I2

3

)
. (4.7)

At zero recoil λ = λ∗, see section 3.3, the following exact relations hold

I3 = −I1 + I2

2
, I4 = −

√
(I1 + I2)(I1 − 3I2)

2
, I5,6,7,8,9 = 0 , (4.8)
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and in addition the cos θK and cos θ`-distributions become isotropic,

d3Γ

dq2dp2d cos θK

/( d2Γ

dq2dp2

)∣∣∣∣
λ=λ∗

=
1

2
, (4.9)

d3Γ

dq2dp2d cos θl

/( d2Γ

dq2dp2

)∣∣∣∣
λ=λ∗

=
1

2
, (4.10)

while the φ-distribution between the K̄π and `` planes does not,

d3Γ

dq2dp2dφ

/( d2Γ

dq2dp2

)∣∣∣∣
λ=λ∗

=
1

2π

(
1− 1

3
cos 2φ

)
, (4.11)

in agreement with [20].

4.2 S-, P- and D-wave angular projections

Using eq. (4.4) and substituting in the Legendre polynomials

P 0
0 (x)=1, P 0

1 (x)=x, P 0
2 (x)=

1

2

(
3x2−1

)
, P 1

1 (x)=−
√

1−x2, P 1
2 (x)=−3x

√
1−x2, (4.12)

we obtain the full angular distribution d5Γ(S + P + D) for the K̄π pair in S-, P- and

D-wave configuration. Since ` is fixed, all angular dependence can be made explicit. In

particular, the angular coefficients Jix = Jix
(
q2, p2

)
, stemming from Ii, i = 1, . . . , 9 and

given in appendix E, do not depend on θK . Higher partial waves can be included in a

similar manner. The angular distribution is given as

d5Γ(S + P +D)

dq2dp2d cos θKd cos θ`dφ
= (4.13)

1

2π

∑
i=1,2

ci
(
Jicc cos2θK+Jiss sin2θK+Jic cosθK+Jissc sin2θK cosθK+Jisscc sin2θK cos2θK

)
+
∑

i=3,6,9

ci
(
Jicc cos2θK + Ji + Jic cosθK

)
sin2θK

+
∑

i=4,5,7,8

ci
(
Jicc cos2θK + Jiss sin2θK + Jic cosθK + Jissc sin2θK cosθK

)
sinθK

 .
Explicit expressions of the Jix are given in appendix E. Integration over θK yields

d4Γ(S + P +D)

dq2dp2d cos θ`dφ
=

1

2π

∑
i=1,2

ci

(
2

3
Jicc +

4

3
Jiss +

4

15
Jisscc

)
+
∑

i=3,6,9

ci

(
4

15
Jicc +

4

3
Ji

)

+
∑

i=4,5,7,8

ci

(
π

8
Jicc +

3π

8
Jiss

) , (4.14)

and integrating further over φ and θ`,

d2Γ(S + P +D)

dq2dp2
=

4

3

[
J1cc + 2J1ss +

2

5
J1sscc −

1

3

(
J2cc + 2J2ss +

2

5
J2sscc

)]
. (4.15)
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Figure 1. The first few angular coefficients a`i (left i = 0, middle i =‖) of the non-resonant form

factors Fi, given in eq. (3.2), for central values of the input parameters at p2 = m2
K∗ . The blue

dotted, black solid and red dashed lines correspond to S, P and D coefficients, respectively. In the

plot to the right the form factor F0 is shown at p2 = m2
K∗ and q2 = 18 GeV2 in S (blue short-long

dashed), S+P (green dotted) and S+P+D (red dashed) approximation, together with the full result

(solid black curve).

For a pure P-wave, only a subset of coefficients contribute: Jiss,icc for i = 1, 2, Ji
for i = 3, 6, 9 and Jic for i = 4, 5, 7, 8. Their relation to the ones from B̄ → K̄∗(→
K̄π)`` analyses [6] (BHV) are: Jiss = 3/4JBHV

is , Jicc = 3/4JBHV
ic (i = 1, 2), Ji = 3/4JBHV

i

(i = 3, 6, 9) and Jic = 3/2JBHV
i (i = 4, 5, 7, 8).

To approximate the non-resonant distribution, i.e., its form factors eq. (3.2) by its

S+P+D-wave components turns out to be useful when discussing the P-wave decays B̄ →
K̄∗(→ K̄π)`` to which the non-resonant ones constitute a background. The S+P+D

distribution will receive two types of corrections from higher waves: there will be additional,

higher trigonometric polynomials of the angle θK , and secondly the S+P+D coefficients Jix
will receive further contributions. Quantitatively, we find that near p2 = m2

K∗ the S+P+D

approximation in the longitudinal part of the rate is at the few permille level, whereas the

corrections to the parallel and perpendicular ones are equal and drop from one percent

at q2 = 14 GeV2 to sub-permille towards zero recoil. The corrections in the simpler S+P

approximation are about one order of magnitude larger. In our numerical estimate we used

the explicit form factors eq. (3.20).

To illustrate the features of the S+P+D approximation we show in figure 1 the first

few angular coefficients a`0,‖
(
q2, p2

)
of the non-resonant form factors Fi, given in eq. (3.2),

for central values of the input parameters at p2 = m2
K∗ . Due to the identical angular

dependence of the respective form factors w− and h the angular expansion for the transverse

form factors F‖ and F⊥ is identical up to an overall kinematic factor and for brevity a`⊥ is

not shown. Towards lower q2-values the S-wave contribution dominates F0. Also shown in

figure 1 is F0

(
18 GeV2,m2

K∗ , cos θK
)

in S, S+P and S+P+D approximation, and the full

result. Note that convergence of the angular expansion is achieved after cos θK-integration

rather than locally. Since going to D-waves corresponds to one order more for F0 relative to

the two transverse form factors (not shown) the approximation works better for the former.

The observables based on the Ii, and the derived Jix, in the B̄ → K̄∗(→ K̄π)``

analyses contain different contributions from the non-resonant S,P and D-wave states.

– 10 –
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Generically, the following features hold, where we extend existing findings for the S-wave

background [7, 13–15] to include D-wave effects:

i) there is no S-wave contribution to I3,6,9.

ii) The D-wave contributions to I3,6,9 can be separated from the pure P-one by an angular

analysis, since both appear individually in separate coefficients Jix.

iii) In I1,2 the S- and D-wave contributions need to be subtracted by sideband

measurements.

iv) The S-P and D-P interference to I4,5,7,8 can be separated from the pure P-wave con-

tribution by angular analysis, while S-D and pure D-contributions remain. In general,

the latter require sideband subtractions, unless they can be neglected, see below.

v) In the presence of a sufficiently dominating P-wave contribution, the S- and D-waves

can be considered small and S-S, S-D and D-D contributions are doubly suppressed

and hence may be neglected. This concerns about half of the 35 coefficients Jix, given

in appendix E, which receive in this approximation P-wave contributions, only.

vi) As discussed further in section 5.2, strong phase differences are experimentally ac-

cessible and signal the presence of interference.

vii) The separation of non-resonant contributions from resonant ones in the same partial

wave requires sideband subtractions.

4.3 Low recoil

At leading order low recoil OPE, the sensitivity of the angular coefficients to long- and

short-distance physics factorizes as follows:

I1 =
1

8

[
|F0|2ρ−1 +

3

2
sin2 θK

{
|F‖|2ρ−1 + |F⊥|2ρ+

1

}]
,

I2 = −1

8

[
|F0|2ρ−1 −

1

2
sin2 θK

{
|F‖|2ρ−1 + |F⊥|2ρ+

1

}]
,

I3 =
1

8

[
|F⊥|2ρ+

1 − |F‖|
2ρ−1

]
sin2 θK ,

I4 = −1

4
Re
(
F0F∗‖

)
ρ−1 sin θK ,

I5 =
[
Re(F0F∗⊥)Reρ+

2 + Im(F0F∗⊥)Imρ−2
]

sin θK , (4.16)

I6 = −
[
Re
(
F‖F∗⊥

)
Reρ+

2 + Im
(
F‖F∗⊥

)
Imρ−2

]
sin2 θK ,

I7 = Im
(
F0F∗‖

)
δρ sin θK ,

I8 =
1

2

[
Re(F0F∗⊥)Imρ+

2 − Im (F0F∗⊥) Reρ−2
]

sin θK ,

I9 =
1

2

[
Re
(
F⊥F∗‖

)
Imρ+

2 + Im
(
F⊥F∗‖

)
Reρ−2

]
sin2 θK ,
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where the short-distance coefficients are given in eq. (3.7) and the generalized transversity

form factors are defined as

F0 ≡ F0

(
q2, p2, cos θK

)
= F0

(
q2, p2, cos θK

)
+
∑
R

P 0
JR

(cos θK) · F0JR

(
q2, p2

)
, (4.17)

Fi ≡ Fi
(
q2, p2, cos θK

)
= Fi

(
q2, p2, cos θK

)
+
∑
R

P 1
JR

(cos θK)

sin θK
· FiJR

(
q2, p2

)
, i =‖,⊥ .

Here, the first terms on the right-hand sides are the non-resonant form factors, as given

in eq. (3.2), and the second terms denote contributions from resonances R with spin JR
decaying to K̄π with the corresponding polarization-dependent form factors F(0,‖,⊥)JR .

The latter can include either a parameterization of the line shape or, in the narrow-width

approximation, a delta distribution. The separation of the individual contributions to the

partial waves is non-trivial, in particular for very wide resonances such as the κ(800). This

means that there is a risk to double-count contributions when the line shapes are extracted

experimentally.

The factorization of long- and short-distance factors with universal short-distance co-

efficients at low recoil can be seen in eq. (4.16). This separation allows suitable observables

to be formed that are sensitive to the electroweak physics, without the need for separat-

ing each of the different contributions to eq. (4.17). Strong phase differences between the

generalized form factors Fi can arise from the interference of non-resonant decays with

resonances or overlapping resonances. This provides an opportunity to probe the couplings

ρ−2 and δρ, which otherwise could not be accessed in B̄ → K̄(∗)`` decays.2 At the same

time information on strong phases can be extracted experimentally. Particularly useful in

this regard are the (naive) T-odd observables I7,8,9 [25].

In the SM basis, eq. (4.16) can be simplified using eq. (3.14) to give

I1 =
1

8
ρ1

[
|F0|2 +

3

2
sin2 θK

{
|F‖|2 + |F⊥|2

}]
,

I2 = −1

8
ρ1

[
|F0|2 −

1

2
sin2 θK

{
|F‖|2 + |F⊥|2

}]
,

I3 =
1

8
ρ1

[
|F⊥|2 − |F‖|2

]
sin2 θK ,

I4 = −1

4
ρ1 Re

(
F0F∗‖

)
sin θK ,

I5 = ρ2 Re(F0F∗⊥) sin θK , (SM basis) (4.18)

I6 = −ρ2 Re
(
F‖F∗⊥

)
sin2 θK ,

I7 = ρ2 Im(F0F∗‖ ) sin θK ,

I8 = −1

4
ρ1 Im(F0F∗⊥) sin θK ,

I9 =
1

4
ρ1 Im

(
F⊥F∗‖

)
sin2 θK .

Note that the non-vanishing values of I7,8,9 in the SM basis are induced by non-vanishing

relative strong phases.

2These couplings can also be accessed in baryonic decays such as Λb → Λ``. We thank Danny van Dyk

for informing us about their forthcoming publication [24].
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5 Phenomenological analysis

A key feature of non-resonant B̄ → K̄π`` decays is that at low recoil they are amenable

to the lowest order OPE, resulting in eq. (4.16). As in B̄ → K̄(∗)`` decays [6, 7], the

separation of short-distance from form factor coefficients allows to construct observables

that are sensitive to short-distance or hadronic physics separately. This makes non-resonant

decays useful by themselves, given sufficient data for an angular analysis. Here we discuss

only a few important phenomenological applications, leaving a more detailed analysis for

future work. The numerical estimates are based on HHχPT form factors, as given in

eq. (3.20), which are extrapolated in parts of the phase space beyond their nominal region

of validity. This means that the uncertainties in particular in rates covering such regions

are possibly underestimated. This highlights the importance of ratios and asymmetries to

be constructed from the angular analysis, which can have a much weaker dependence on

form factors, as well as independent and improved B̄ → K̄π form factor determinations.

We perform phenomenological studies at low hadronic recoil of non-resonant B̄ →
K̄π`` decays (section 5.1), discuss aspects of the angular analysis (section 5.2), including

resonances (section 5.3) and of B̄s → K̄K`` decays (section 5.4).

5.1 Non-resonant B̄ → K̄π`` decays

In the analysis of non-resonant B̄ → K̄π`` decays, the focus lies on estimating their

influence on B̄ → K̄∗(892)`` (“P-wave”) analyses. To that aim, the ranges of interest for

the invariant mass of the (K̄π) system are defined as follows:

– full phase space of the non-resonant decay: p2
min≡(mK+mπ)2 ≤ p2<

(
mB−

√
q2
)2

,

where the endpoint for the dilepton system is q2 = q2
max ≡

(
mB −

√
p2

min

)2

=

21.58 GeV2.

– P-wave ‘signal’ window: 0.64 GeV2 ≤ p2 < 1 GeV2, corresponding to the endpoint

q2 = 20.06 GeV2.

– S+P-wave ‘total’ window: p2
min ≤ p2 < 1.44 GeV2, corresponding to the endpoint

q2 = q2
max.

We stress that both, the signal B̄ → K̄∗`` and the non-resonant B̄ → K̄π`` background

decays, are |∆B| = |∆S| = 1 FCNCs and need to be analyzed together in a model-

independent way.

Differential SM branching ratios for the non-resonant decays are shown in figure 2.

The curves are obtained by integrating eq. (4.7) over the accessible phase space. Form

factors from HHχPT are employed, as given in eq. (3.20), using the parametric input given

in table 3. The left-hand plot of figure 2 shows the impact of the p2-cuts defined above

on the q2-distribution. Without p2 cut, the resulting integrated SM branching fraction

in the low-recoil region is in the few 10−8 range, about an order of magnitude smaller

than the corresponding ones for B̄ → K̄∗``, as given, e.g., in [7]. Since the very high-q2

region is dominated by small hadronic masses, the distribution for the S+P window differs

– 13 –



J
H
E
P
0
9
(
2
0
1
4
)
1
0
9

Figure 2. The non-resonant differential branching fraction dB
(
B̄ → K̄π``

)
/dq2 (left)

without p2-cuts, in the P -wave ‘signal’ window and the S+P-wave ‘total’ window, and

d2B
(
B̄ → K̄π``

)
/dq2dp2 (right) for fixed q2 = 16, 17.5, 19 GeV2 (from outer to inner curves) in

the SM, see text for details. B̄ → K̄π form factors are taken from HHχPT, eq. (3.20), and include

parametric uncertainties only. Dashed lines are for central values of the input parameters.

from the one without cuts only at smaller values of q2. This feature is shared also in

the following plots with other observables. Both, P- and S+P-window cuts reduce the

low-recoil branching ratios to around 10−8. The right-hand plot of figure 2 shows the p2

distribution for fixed values of q2. The spectrum is very different from the Breit-Wigner

resonance distributions.

Outside the K∗ region, the integrated SM branching ratio in non-resonant decays is

10 · 10−9 above and 4 · 10−9 below the signal window, and 4 · 10−9 above the S+P window,

see figure 3 on the left, where the branching ratio for a variable cut in p2 is shown for

q2
min = 14, 16 GeV2:

B
(
B̄ → K̄π``

)
p2≥p2cut

=

∫ (mB−mK−mπ)2

q2min

dq2

∫
p2cut

dp2 θ(λ)
d2B
dq2dp2

(
B̄ → K̄π``

)SM
. (5.1)

Uncertainties in the B̄ → K̄π`` decay distributions stem from the following sources:

i) the short-distance quantity ρSM
1 , ii) parametric uncertainties, i.e. V ∗tsVtb and the B-meson

lifetime, iii) subleading 1/mb corrections, and iv) form factors (parametric, especially g,

and systematic, from higher order HHχPT corrections, which would induce strong phases,

and SU(3) breaking). The latter (iv), which presently dominates the uncertainty budget,

can be reduced in the future through improved determinations of the form factors w±, h. We

recall that we employ the leading order HHχPT results including some part of the SU(3)-

corrections by using physical values for the decay constants, as detailed in appendix A.

Remaining systematic uncertainties, which are not included in the numerical estimates in

this work, can be at order few 10% in the form factors, making further determinations

from other means desirable. The uncertainties in ρSM
1 , which is known at next-to-leading

order in QCD, have been studied in detail in ref. [6] and amount to about 3%. The

contributions to the uncertainty in the branching ratio from the CKM factors and the

– 14 –
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Figure 3. Left: branching fraction of non-resonant B̄ → K̄π`` decays in the SM, integrated over

the low-recoil region from (14, 16) GeV2 − q2max as a function of the lower p2-integration boundary,

as defined in eq. (5.1). The vertical lines indicate (from left to right) the lower and upper bound for

the P window, and the upper cut for the S+P window. Right: R = (dB(B̄ → K̄π``)/dq2)/(dB(B̄ →
K̄∗``)/dq2) in the SM basis for the three p2-regions of interest. In the ratios the short-distance

coupling ρ1(q2) cancels, see eq. (4.18). The endpoint behavior is discussed in the text. In both

plots dashed lines indicate central values of the input parameters. B̄ → K̄π form factors are taken

from HHχPT, eq. (3.20), and include parametric uncertainties only.

lifetime are about 5% and 0.5%, respectively. Further effects from charmonium resonances

B̄ → (ψ′... → ``)K̄π, not captured by insufficient bin size or unfortunate bin boundaries,

are known from related B̄ → K̄(∗)`` studies and apply analogously. Factorizable resonance

effects drop out in several ratios [20], see [26] for a recent study. The latter works found

also sizable non-factorizable charmonium contributions in B → Kµµ data. If and at which

level this implies corrections to universality has to be settled experimentally in the future,

e.g., with B̄ → K̄∗`` angular analysis. The result for the fully integrated branching ratio

of the non-resonant decay in the SM at low recoil reads

108 ·
∫ q2max

14 GeV2
dq2 dBSM

dq2

(
B̄ → K̄π``

)
= 2.22 +0.66

−0.56

∣∣∣
g
±0.12

∣∣∣
CKM

+0.07
−0.06

∣∣∣
SD
. (5.2)

The ‘signal-to-background’ ratio R = (dB(B̄ → K̄π``)/dq2)/(dB(B̄ → K̄∗``)/dq2) in

the SM basis is shown in figure 3 on the right. Note that here the short-distance coupling

ρ1(q2) drops out, as shown in eq. (4.18), and the results hold model-independently. The

distributions for B̄ → K̄∗`` can be obtained from the general formula, eq. (4.13), by

projecting out the spin-1 component as shown in appendix E. These agree with previous

findings on the angular distributions in [6]. The form factors for B̄ → K̄∗ used in this

work are taken from [27] as compiled in [6], and employ an uncertainty estimate for the

ratios V/A1 of 8% and A2/A1 of 10% from [28]. The ratio R diverges at the K∗ endpoint

in the zero-width approximation, q2 = (mB − mK∗)
2 = 19.21 GeV2, but is regularized

in finite width by replacing the phase space factor λK∗ by λ. The remaining theoretical

uncertainties in R stem from the heavy-quark expansion and form factors in the numerator

and denominator, added in quadrature, where the latter could be reduced by an improved
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Figure 4. The angular observable FL for B̄ → K̄π`` with the three different p2 cuts in the SM

basis. Dashed lines are for central values of the input parameters. The short-distance coupling

ρ1(q2) drops out in the SM basis, see eq. (4.18). The horizontal dotted line marks the endpoint

prediction FL = 1/3, see section 3.3, the vertical one the endpoint of the K∗(892) distribution.

B̄ → K̄π form factors are taken from HHχPT, eq. (3.20), and include parametric uncertainties only.

(and perhaps even combined) calculation of the B̄ → K̄∗ and B̄ → K̄π form factors.

The p2 cuts are seen to be rather efficient in suppressing the non-resonant decays over the

whole low-recoil q2 region. However, a contribution of several percent remains, even for the

K∗(892) signal region. As will be seen in section 5.3, this thereby constitutes the dominant

background.

The impact of the different p2 cuts on angular observables is shown exemplarily in

figure 4 for FL, the fraction of longitudinal transversity states. In the SM basis at low

recoil short-distance couplings cancel and FL (locally) measures form factor ratios. In FL
also form factor uncertainties cancel; specifically, for HHχPT form factors this concerns the

decay constants and to a large extent the coupling g, although it enters the form factors

with different powers, cf. eq. (3.20), and this cancellation is not perfect. Note also that

systematic uncertainties in the form factors have not been included. We expect, however,

that some cancellations take place in ratios. Nevertheless, it shows that appropriately

constructed observables can be predicted with much higher precision than the differential

rate. The endpoint value of non-resonant decays equals 1/3 as predicted, yet the very

same K∗(892) endpoint prediction is contaminated from non-resonant backgrounds because

FL = 1/3 is assumed at different values of q2. The steep approach towards the maximal

non-resonant q2 is caused by λp, which vanishes at this point.

5.2 Angular analysis

Approximating the non-resonant distributions by their S, P, D partial waves is a useful

approximation, especially when discussing interference with resonant contributions. The

following aspects of the resulting distribution, as given in eq. (4.13), are addressed: impact

of non-resonant contributions on the B̄ → K̄∗`` angular coefficients (subsection 5.2.1), mea-

surement of strong phases, specifically impact of relative phases from the K∗ overlapping
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Figure 5. The ratio Jnr
ix /J

K∗

ix for p2 = m2
K∗ in the SM basis for J1cc(= J2cc), J1ss and J2ss (left

plot) and J3, J4c, J5c and J6 (right plot). Form factor uncertainties are not included.

with the non-resonant contributions (subsection 5.2.2) and predictions for contributions to

B̄ → K̄∗`` SM null tests (subsection 5.2.3). We treat the K∗(892) in zero-width approx-

imation. A full study of the physics reach of the angular analysis, including correlations,

beyond zero-width-K∗ or global fits, is beyond the scope of the present work.

5.2.1 Background to the angular coefficients in B̄ → K̄∗``

In order to estimate the influence of the non-resonant contributions more generally, the

relative contributions in the angular coefficients of B̄ → K̄∗``, Jnr
ix /J

K∗
ix , are calculated

underneath the mass peak of the K∗ at low recoil in the SM basis, from which the influence

on all observables in the B̄ → K̄∗`` analyses can be estimated. In this basis the short-

distance physics cancels in these ratios. The results are shown in figure 5; the corresponding

curves for J7c,8c,9 are discussed in the next subsection, as for those JK
∗

are null tests in

the lowest order OPE. All ratios are at the few percent level, except for the ones of J3

and Jiss, i = 1, 2, which can be larger and increase towards lower values of q2. For J3

this happens because JK
∗

3 vanishes in the limit f‖(K
∗) ∼ f⊥(K∗). The latter can be

understood in terms of helicity conservation [29] and, while being formally a feature at

large recoil, starts setting in already at the lower q2-end of the low-recoil region. The

effect in Jiss, i = 1, 2 stems from the numerator and is predominantly caused by the sizable

non-resonant S-wave component in F0, see figure 1.

These ratios are typically of the same size as the relative contributions of non-resonant

decays to the differential branching ratio, as shown in figure 3. However, some of the ratios

can also be significantly larger, implying an even larger influence on other observables,

rendering their inclusion mandatory.

5.2.2 Probing strong phases

The angular coefficients associated with I7−9 are particularly sensitive to relative strong

phases since they vanish without the latter in the SM basis, as shown in eq. (4.18). The

coefficients associated with I7 vanish even in the more general SM+SM′ basis in this case,
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Figure 6. Tests for relative strong phases: |J7c/J6|, |J8c/J3| and |J9/J3| for p2 = m2
K∗ and

maximal relative strong phase δK∗ = π/2 in the SM basis, see text for details.

as can be seen from eq. (4.16). This offers opportunities to probe the relative strong phases

between resonant and non-resonant contributions, and between different resonances. For

interference effects to be sizable, the resonant P-wave contribution from B̄ → K̄∗`` has

to be involved. The following observables therefore probe the interference of the non-

resonant P-wave with the K∗ contribution cleanly. In particular, the normalization to J3,6

guarantees that is no additional S- or D-wave “pollution” in the denominator.

J7c

J6
'

Im
(
F0PF

∗
‖P

)
Re
(
F‖PF

∗
⊥P
) , (5.3)

J8c

J3
' 2

Im (F0PF
∗
⊥P )

|F⊥P |2 − |F‖P |2
, (5.4)

J9

J3
= 2

Im
(
F⊥PF

∗
‖P

)
|F⊥P |2 − |F‖P |2

. (5.5)

In figure 6 the absolute values of these ratios are shown in magnitude for a maximal strong-

phase difference, in order to see how large they can become. The curves would vanish for

δK∗ = 0, π. We recall that in general the phase is expected to vary over the phase space. It

is seen that contributions can be sizable and can be benefited from in an angular analysis.

Note that all these ratios depend dominantly on one relative strong phase between the K∗

and the non-resonant contribution, δK∗ . Its extraction is possible even in the presence of

an extended operator basis, where the new combinations of Wilson coefficients, δρ and ρ−2 ,

appear which are discussed in section 3.1. If δρ and ρ−2 are complex, potentially further

contributions to J8x and J9x arise, while J7x still requires a finite relative strong phases to

be non-zero. In that case it useful that different combinations of form factors and these

coefficients enter the angular coefficients J(7−9)x, see appendix E. Note again that I9 is free

from S-wave contributions.
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Figure 7. SM predictions for J̃SM
7c,8c,9/Γ(B0) for maximal relative strong phase δK∗ = π/2. The

observables would vanish for a pure resonant contribution or δK∗ = 0, π.

5.2.3 B̄ → K̄∗`` SM null tests

The coefficients discussed in the last paragraph vanish in the SM basis for a purely resonant

decay B̄ → K̄∗``, thereby providing null tests of the standard analysis of this mode. In

figure 7, they are shown as a function of the dilepton invariant mass squared, for p2 = m2
K∗

in the zero-width approximation and normalized to the total width Γ(B0):

J̃SM
7c = −ρSM

2 Im
(
F0PF

∗
‖P

)
, (5.6)

J̃SM
8c =

ρSM
1

4
Im (F0PF

∗
⊥P ) , (5.7)

J̃SM
9 =

ρSM
1

4
Im
(
F⊥PF

∗
‖P

)
. (5.8)

The effect in J7c is the largest among the observables studied. When compared to the

differential branching ratio of B̄ → K̄∗`` in the SM, the induced change J̃SM
7c /Γ(B0) can

be up to ∼ 5% in magnitude.

5.3 Resonant S-wave contributions to B̄ → K̄π``

Semi-leptonic decays to the K̄π`` final state contain contributions from decays proceeding

via kaon resonances. The relevant states are detailed in table 1.

The angular distributions for semi-leptonic B̄ to spin-0 kaons can be obtained from the

general formula, eq. (4.13), by projecting out the spin-0 component, as shown in appendix E.

The p2 line shape of the resonant S-wave contributions to B̄ → K̄π`` can be described

phenomenologically by the coupled Breit-Wigner formalism set out in ref. [13],

BWS

(
p2
)

= NS
[

−gκ
(mκ − iΓκ/2)2 − p2

+
1

(mK∗0
− iΓK∗0 /2)2 − p2

]
, (5.9)

with the normalization factor NS fixed by∫ ∞
−∞

dp2|BWS

(
p2
)
|2 = 1 . (5.10)
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JP mass [MeV] width [MeV] branching ratio to K̄π

κ(800) 0+ 658 557 ∼ 100 %

K∗0(892) 1− 895.8 47.4 ∼ 100 %

K∗(1410) 1− 1414 232 ∼ 7 %

K∗0 (1430) 0+ 1425 270 ∼ 100 %

K∗02 (1430) 2+ 1432 109 ∼ 50 %

K∗(1680) 1− 1717 322 ∼ 39 %

K∗3 (1780) 3− 1776 159 ∼ 19 %

Table 1. Selected states decaying to K̄π [23]. Data on κ(800) from [30].

We stress that we are not aiming at a first-principle description of the κ line shape but

rather employ (5.9) as a simple, data-based parameterization.

The parameter gκ is complex in general and the data on
(
K̄π
)

line shapes is well

approximated at least in the ‘signal’ window by the parameter values |gκ| . 0.2, π/2 .
arg gκ . π.3 Since the resonances are considered within this formalism at finite width, the

appropriate phase-space factor is the function λ introduced in section 3. A comparison of

different line shapes in a wider p2 region can be seen in ref. [10].4 After taking into account

that the agreement of the parametrization in eq. (5.9) with the other ones discussed there

improves for the value arg gκ = π/2 (this work, see below) when compared to arg gκ ' 0,

used in ref. [10], the difference between the predictions is at the 30% level. This can be

taken as an indication for the size of uncertainties in the resonant K̄π S-wave background.

The differential branching fraction of B̄ → K̄π``, where the K̄π comes from aK∗0 (1430)

or κ(800) state in the low-recoil region, is shown in figure 8. The value of the parameters

chosen are |gκ| = 0.2 and arg(gκ) = π/2, in order to maximize the S-wave distribution

in the region preferred by experimental data. The dotted curves correspond to gκ =

0, i.e. no resonant contribution from the κ(800). When compared to the non-resonant

differential branching fractions shown in figure 2, the magnitude of the resonant differential

branching fractions is subdominant to the non-resonant one. This is further illustrated in

figure 9, which is the analogue to figure 3 for the resonant S-wave contributions. Again

form-factor uncertainties from the numerator and denominator enter and are added in

quadrature. Form factors for B → K∗0 (1430) are taken from QCD sum rules (QCDSR) [31].

A calculation within the light front quark model [32] yields consistent values at low recoil.

The form factor estimates are considered rather uncertain already at large momentum

transfer; additionally, they have to be extrapolated to the large recoil region. Note that

they depend on the interpretation of the κ(800) resonance; ref. [31] assumes that the

K∗0 (1430) is the lowest scalar sq̄ resonance. A comparable estimate in pQCD [33] yields

very large values for the form factor at low recoil, which we consider unrealistic. It can be

seen that resonances with higher mass and J 6= 1, including the K∗2 (1430), have less overlap

with the K∗(892) and/or a smaller rate to K̄π, as shown in table 1, and consequently their

impact on angular analyses is even smaller.

3We thank Damir Becirevic for communication on this point.
4The dotted and dashed curves in figure 7 of ref. [10] are labeled erroneously and should be interchanged.

We thank the authors for confirmation.
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Figure 8. Differential branching fraction of resonant S-wave B̄ → (K̄∗0 (1430) + κ(800))`` decays

using the line shape given in eq. (5.9) [13], as a function of q2 for the three p2 regions (left) and

for p2 at two given values of q2 (right). The branching fractions are given using the numerical

input in table 3, QCDSR form factors [31], |gκ| = 0, 0.2 (dotted and dashed lines, respectively) and

arg gκ = π/2. Form factor uncertainties are not included.

Figure 9. RK∗
0κ

= (dB(B̄ → (K̄∗0 (1430) + κ(800))``)/dq2)/(dB(B̄ → K̄∗``)/dq2) for the resonant

S-wave contributions, using the line shape given in eq. (5.9) for arg gκ = π/2, |gκ| = 0, 0.2 (dotted

and dashed lines, respectively) (form factor uncertainties are not included) in the SM basis for the

three p2-cuts. In the ratios the short-distance coupling ρ1(q2) cancels, see eq. (4.18). The endpoint

behavior is discussed in the text.

The J = 1 resonances with higher mass and their resulting P-wave contributions do not

change the structure of the B̄ → K̄∗ `` angular distribution, while contributing to the gen-

eralized transversity form factors Fi ∝
∑
FiP . This way, the short-distance/long-distance

separation with universal short-distance coefficients of the low recoil region remains intact.

Since ratios of form factors extracted from data [34] are accessible only as superposition

of 1− states with relative strong phases, information on the p2-dependence is necessary

before they can be compared to predictions for B̄ → K̄∗ from lattice QCD or sum rule

calculations.
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We conclude that the non-resonant decays form the largest part of the background

in the B̄ → K̄∗`` ‘signal’ window. While such effects are at the order of a few percent

in the decay rate, their size generically differs depending on the observable in question.

Some angular observables have been studied in this regard in the previous subsection. In

the future the accuracy to which these effects can be predicted can be further improved

with better knowledge of the B̄ → K̄π form factors. A sufficiently precise non-resonant

distribution may allow to circumvent sideband subtractions. We stress that this depends

on the angular coefficient involved. Note also that relative strong phases signal interference

from non-resonant or resonant sources and can quantify any such admixture.

5.4 Non-resonant B̄s → K̄K`` decays

The decays B̄s → K̄K`` are similar to the B̄ → K̄π`` ones and it is possible to obtain

similar predictions for the corresponding non-resonant contributions. A main difference

between the two decays is the narrow width of the resonant P-wave state, which allows for

much tighter cuts to isolate the signal. In order to understand the contributions to the

experimental distributions, the following regions of p2 are chosen:

– full phase space of the non-resonant decay: p2
min ≡ (2mK)2 ≤ p2 <

(
mBs −

√
q2
)2

,

with endpoint q2 = q2
max ≡

(
mBs −

√
p2

min

)2

= 19.18 GeV2.

– P-wave ‘signal’ window: 1.01 GeV2 ≤ p2 < 1.06 GeV2, corresponding to mφ ±
12 MeV [35] and the endpoint q2 = 19.03 GeV2.

– S+P-wave ‘total’ window: p2
min ≤ p2 < (mφ + 50 MeV)2 = 1.14 GeV2, and the

endpoint q2
max.

Note that the endpoint of the signal decay B̄s → K̄K`` is at q2 =(mBs−mφ)2 =18.90 GeV2.

Another important difference between the decays B̄s → K̄K`` and B̄ → K̄π`` is that

there are no low lying scalar (s̄s) mesons, as can be seen in table 2, which contribute to

the signal window. This is because the low-mass (s̄s) mesons have either small branching

ratios to K̄K or do not overlap significantly with the φ. In this regard, the B̄s → φ`` decay

is cleaner than the B̄ → K̄∗`` one as the latter contains resonant backgrounds at low recoil

from states such as the κ(800). Furthermore, there are opportunities in Bs decays due to

the finite lifetime difference, including untagged CP-asymmetries related to I5,6,8,9 [25].

The differential branching fractions for non-resonant B̄s → K̄K`` decays in the SM

at low recoil are shown in figure 10. The SM branching ratio as a function of the low

p2-integration cut is presented in figure 11. The form factors from HHχPT used in this

prediction are given in eq. (3.21). Theory uncertainties as discussed in section 5.1 apply

likewise. Due to the tighter P and S+P cuts the suppression of the non-resonant rates is

by one order of magnitude more efficient than for B̄ → K̄π`` decays.

Given the absence of additional interfering resonances, the neglect of doubly suppressed

contributions, i.e. S-S, S-D, and D-D interference, is clearly justified for B̄s → K̄K``, sim-

plifying the angular analysis greatly. Furthermore, the possibility to isolate the resonant
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JP mass [MeV] width [MeV] branching ratio to K̄K

f0(980) 0+ 990 ∼ 70 subdominant

φ 1− 1019 4 48.9 % (K+K−)

f2(1270) 2+ 1275 185 4.6 %

f0(1370) 0+ ∼ 1350 ∼ 350 subdominant

f2(1430) 2+ ∼ 1430 unknown needs confirmation

f0(1500) 0+ 1505 109 8.6 %

f ′2(1525) 2+ 1525 75 89 %

Table 2. Available information for selected (s̄s) mesons decaying to K̄K [23].

Figure 10. Non-resonant dB(B̄s → K̄K``)/dq2 (left) without p2-cuts, in the P-wave ‘signal’

window and the S+P-wave ‘total’ window, and d2B(B̄s → K̄K``)/dq2dp2 (right) for fixed q2 =

16, 17.5 GeV2 (outer and inner curve, respectively) in the SM, see text for details. B̄s → K̄K form

factors are taken from HHχPT, eq. (3.21), and include parametric uncertainties only. Dashed lines

are for central values of the input parameters.

contribution from B̄s → φ`` so well offers opportunities for using the non-resonant decays

as a signal mode: outside the signal region for the φ, they provide the dominant con-

tribution. The null tests discussed for vanishing strong phase differences in B̄ → K̄π``

in section 5.2.3 are actually probing new physics in the B̄s → K̄K`` decay: a potential

significant measurement of one of the coefficients J(8,9)x in this decay would indicate new

physics. J7x, however, would remain zero to very good approximation.

6 Conclusions

We present model-independent distributions for non-resonant B̄ → K̄π`` and B̄s → K̄K``

decays, where ` = e, µ, at low hadronic recoil. To benefit from the OPE in 1/mb we

give improved Isgur-Wise form factor relations between the vector and tensor currents, as

shown in section 3.2. These relations follow from the equations of motion and make the

universal structure of the helicity amplitudes inherited from the kinematic endpoint [20]

manifest. The exact endpoint relations for weak decays [20] are extended to non-resonant
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Figure 11. The branching fraction of non-resonant B̄s → K̄K`` decays in the SM, integrated over

the low-recoil region from (14, 16) GeV2 − q2max as a function of the lower p2-integration boundary,

analogously to the definition in eq. (5.1). The vertical lines indicate (from left to right) the lower

and upper bound for the P window, and the upper cut for the S+P window. B̄s → K̄K form

factors are taken from HHχPT, eq. (3.21), and include parametric uncertainties only.

decays in section 3.3. The only non-vanishing amplitudes at the kinematic endpoint in

B̄ → K̄π`` decays come from P-wave states. The behavior of the non-resonant decays at

zero recoil therefore reflects features of B̄ → K̄∗(892)`` decays, however at different values

of the dilepton invariant mass. This is shown explicitly for the observable FL.

The non-resonant modes constitute a background to precision tests of the SM with

B̄ → K̄∗( → K̄π)`` and B̄s → φ(→ K̄K)`` decays. While the branching fractions of

non-resonant decays are at the level of 10−8 in the SM, and hence only about an order of

magnitude smaller than the P-wave signal modes, kinematic cuts suppress the non-resonant

rates in the P-wave analyses efficiently. We also find that the branching fraction of resonant

S-wave background is subdominant to the branching fraction of the non-resonant decays.

Additional opportunities in B̄s → K̄K`` follow from the fact that the KK̄ distribution

is very simple and contains essentially only one pronounced resonance which is very narrow.

Once the φ is removed, the spectrum is given by the non-resonant decay which can be used

as an FCNC test.

Our numerical estimates are based on HHχPT B̄ → K̄π form factors which have

been extrapolated in parts of the phase space beyond their nominal region of validity.

However, this affects the lower dilepton mass region more than the region closer to the

endpoint. Improvement of these approximations would require complementary and more

precise information on the form factors available, for instance from lattice QCD [36].

Angular analyses when non-resonant decays are included become significantly more

involved as an infinite tower of states with different angular momenta is present. The

approximation of the non-resonant state to only the lowest S, P and D waves is sufficient

to a percent-level precision in the rate. The full angular distribution in this approximation

is given in eq. (4.13). We summarize the qualitatively new ingredients in the study of

non- resonant modes: i) Access to further combinations of Wilson coefficients δρ and ρ−2 ,

as shown in section 3.1, that are not present in B̄ → K̄(∗)`` analyses, ii) the possibility
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to probe strong phase differences using the interference with the resonant contributions,

and iii) new contributions to null tests of B̄ → K̄(∗)`` decays. The latter two items are

discussed in section 5.2.

Before closing we note that one may also consider lepton-universality breaking effects

between dielectron and dimuon final states through the ratio RK̄π, see eq. (2.3), and

its B̄s → K̄K`` counterpart. This is of interest in view of the recent preliminary data

by LHCb on the related ratio for B̄ → K̄``, RK = 0.745 ±0.090
0.074 ±0.036 [37] in the bin

1 GeV2 ≤ q2 < 6 GeV2. Comparing to unity and adding systematic and statistical errors

in quadrature, this constitutes a 2.6σ hint for lepton-flavor non-universal physics beyond

the SM. Interpreted within the SM+SM′ basis, this yields (at 1σ) roughly

−1.5 . Re(Xµ −Xe) . −0.7, X` = CNP`
9 + C ′`9 −

(
CNP`

10 + C ′`10

)
, ` = e, µ , (6.1)

pointing without further correlations from data or model-constraints to new physics in

either b → see, b → sµµ, or both, the latter however not being universal. The study of

the impact of (6.1) on the non-resonant distributions presented here, in particular RK̄π, is

interesting but beyond the scope of this work. However, the recent data emphasize once

more the great potential of rare semileptonic decays to probe weak scale physics in and

beyond the SM.

In addition the B̄ → K̄π`` distribution contributes to the high q2-tail of B̄ → Xs``

decays where the latter cease to be inclusive [3]. While having smaller rates than B̄ →
K̄`` the non-resonant modes have a richer angular structure and constitute the dominant

contribution to the forward-backward asymmetry for q2 > (mB −mK∗)
2.

We expect that this work supports the exploration of flavored processes and look

forward to future analyses.
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A Parametric input

The lattice value of g [40] obtained in the B system is in good agreement with the one

extracted from the D∗+ → D0π+ decay rate, g = 0.59±0.07 [23]. The main uncertainty on

the latter stems from the D∗+ total width [23]. The values should agree due to heavy quark

symmetry. We choose to use for the decay constants of the pseudoscalar mesons in the

SU(3) limit, f2 and fB, the values fπfK and fBd , respectively. Note that fBd/fπ ≈ fBs/fK ,

as can be inferred from table 3, albeit these corrections are beyond the scope of the HHχPT

calculation employed in this work.
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Parameter Value Source

|V ∗tsVtb| 0.0407± 0.0011 [38]

Γ(B0) (4.333± 0.020) · 10−13 GeV [23]

Γ(Bs) (4.342± 0.032) · 10−13 GeV [23]

fπ 130.4± 0.2 MeV [23]

fK 156.2± 0.7 MeV [23]†

fBd 188± 4 MeV [39]

fBs 224± 5 MeV [39]

g 0.569± 0.076 [40]†

†Uncertainties added in quadrature.

Table 3. Numerical input used in this work. Γ(B0,s) denotes the mean total width.

B Kinematics

We consider the decay B̄0 → K̄π`+`− and define

q = p`− + p`+ , Q = p`− − p`+ , (B.1)

p = pK + pπ = pB − q , P = pK − pπ . (B.2)

This way, q2 and p2 denote the invariant mass squared of the dilepton- and K̄π-system,

respectively. Assuming m` = 0, the relevant scalar products read

pB · pK =
1

4p2

[(
m2
B − q2 + p2

) (
p2 +m2

K −m2
π

)
−
√
λλp cos θK

]
, (B.3)

pB · pπ =
1

4p2

[(
m2
B − q2 + p2

) (
p2 −m2

K +m2
π

)
+
√
λλp cos θK

]
, (B.4)

pB · p`− =
1

4

[(
m2
B + q2 − p2

)
− λ1/2 cos θ`

]
, (B.5)

pB · p`+ =
1

4

[(
m2
B + q2 − p2

)
+ λ1/2 cos θ`

]
, (B.6)

p`− · p`+ =
q2

2
, (B.7)

pK · pπ =
p2 −m2

K −m2
π

2
, (B.8)

P · p = m2
K −m2

π , (B.9)

Q · q = 0 , (B.10)

p · q =
m2
B − q2 − p2

2
, (B.11)

p ·Q = −1

2

√
λ cos θ` , (B.12)

P · q =
1

2p2

[(
m2
B − p2 − q2

) (
m2
K −m2

π

)
−
√
λλp cos θK

]
, (B.13)
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P ·Q =
1

2p2

[(
m2
B − q2 − p2

)
λ1/2
p cos θK cos θ` −

(
m2
K −m2

π

)
λ1/2 cos θ`

−2
√
q2p2λp cosφ sin θK sin θ`

]
, (B.14)

εµνρσP
µpνQρqσ =

1

2

√
λλp

q2

p2
sinφ sin θK sin θ` , (B.15)

p2 + P 2 = 2
(
m2
K +m2

π

)
, Q2 = −q2 , (B.16)

where the phase space factors λ and λp are defined after eq. (3.3).

These expressions confirm the ones given by Wise et al. [9] (LLW) when taking into

account the following differences (DHJS: this work):

εLLW
0123 =1= −εDHJS

0123 , θLLW
K =π−θDHJS

K , φLLW =
(
π+φDHJS

)
mod (2π) . (B.17)

Although stated differently, the definitions for θ` agree.

C Five-fold differential rate

The four-body phase space can be calculated by considering successive two-body transitions

with the momenta pB → p(→ pπpK)q(→ p`+p`−), yielding (see, e.g., [41])

dRLIPS
4 =

1

4(4π)6

λ1/2λ
1/2
p

p2m2
B

dp2dq2dcosθKdcosθ`dφ . (C.1)

Thanks to the proportionality of the two matrix elements in eqs. (3.15), (3.16), that is, the

Isgur-Wise relations given in eq. (3.19), the fully differential angular distribution for the

SM basis can be expressed as

d5Γ =
1

2mB

∑
spins

|M|2dRLIPS
4 (C.2)

=
1

2mB

α2
eG

2
F |VtbV ∗ts|2

2π2
H ij
µν

[
ρ1L

µν
S − 2ρ2L

µν
A

]
dRLIPS

4 (C.3)

=
N 2

nr

2π
H ij
µν

[
ρ1L

µν
S − 2ρ2L

µν
A

]
dq2dp2d cos θKd cos θ`dφ , (C.4)

with the short-distance couplings ρ1,2 defined in eq. (3.14). This shows again that at

low recoil in the SM basis any observable can be sensitive to two combinations of Wilson

coefficients, only; including the primed operators then leads to the additional combinations

given in eq. (3.7). Since the form factors depend on p2, q2, θK , only, we will group the

squared matrix element as follows, following [9]:

N 2
nrH

ij
µνL

µν = |cij |2
ρ1

∑
i=1−4,8,9

ci(θ`, φ)Ii
(
q2, p2, θK

)
−2ρ2

7∑
i=5

ci(θ`, φ)Ii
(
q2, p2, θK

) , (C.5)

with the coefficients ci given in eq. (4.2).
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For the explicit calculation, we start with the leptonic tensor:5

Lµν = ρ1L
µν
S − 2ρ2L

µν
A , (C.6)

LµνS =
1

2

[
qµqν −QµQν − q2gµν

]
, (C.7)

LµνA = − i
2
εαµγνqαQγ . (C.8)

The hadronic tensor is given as

H ij
µν = 〈K̄i(pK)πj(pπ)|s̄γµ(1− γ5)b|B̄(pB)〉〈K̄i(pK)πj(pπ)|s̄γν(1− γ5)b|B̄(pB)〉∗ , (C.9)

where we parametrize the matrix element as in eq. (3.15). Clearly, the two contributing

terms are

LµνH ij
µν = ρ1L

µν
S H ij

µν,S − 2ρ2L
µν
A H ij

µν,A . (C.10)

We obtain

LµνS H ij
µν,S = |cij |2LµνS

{
Re [(w+pµ + w−Pµ + qµr)(w+pν + w−Pν + qνr)

∗]

+ |h|2εµαβγενρστpαBpβP γp
ρ
Bp

σP τ

+2Im [h∗(w+pν + w−Pν + qνr)] εµαβγp
α
Bp

βP γ
}
, (C.11)

LµνA H ij
µν,A = i|cij |2LµνA

{
Im[(w+pµ + w−Pµ + qµr)(w+pν + w−Pν + qνr)

∗]

+2Re(h∗(w+pν + w−Pν + qνr)εµαβγp
α
Bp

βP γ
}
, (C.12)

the calculation of which is lengthy, but straight-forward. Expressing the two contributions

in terms of the Lorentz-invariants calculated before, we get (y = w+p+ w−P )

LµνS H ij
µν,S =

|cij |2

2

{
|w+|2

[
(p · q)2 − (p ·Q)2 − q2p2

]
+ |w−|2

[
(P · q)2 − (P ·Q)2 − q2P 2

]
+ 2Re(w+w

∗
−)(p · qP · q − p ·QP ·Q− q2p · P )− |h|2(εµνρσP

µpνQρqσ)2

+ |h|2q2
[
q2
(
p2P 2−(p·P )2

)
−p·q(p·qP 2−p·Pq ·P )+q · P (p · qp · P−p2q · P )

]
+εµνρσP

µpνQρqσ [Im(w+h
∗)p ·Q+ Im(w−h

∗)P ·Q]} , (C.13)

LµνA H ij
µν,A = |cij |2

{
Re
[
h∗q2(p ·QP · y − p · yP ·Q) + h∗q · y(p · qP ·Q− p ·Qq · P )

]
−εµνρσPµpνQρqσIm(w+w

∗
−)
}
. (C.14)

D HHχPT-non-resonant form factors

The B̄ → K̄π matrix element can be parameterized as, following ref. [3],6

〈K̄i(pK)πj(pπ)|s̄γµ(1− γ5)b|B̄(pB)〉= icij

[
apπµ + bpKµ + cpBµ − 2ihεµαβγp

α
Bp

β
Kp

γ
π

]
, (D.1)

〈K̄i(pK)πj(pπ)|s̄iqνσµν(1+γ5)b|B̄(pB)〉=−icijmB

[
a′pπµ+b′pKµ+c′pBµ−2ih′εµαβγp

α
Bp

β
Kp

γ
π

]
, (D.2)

5The expressions in [9] correspond to C9 = +1, C10 = −1.
6We remove the 1/q2 employed in ref. [3] and add a factor mB for dimensional reasons in the definition

of the tensor matrix element.
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with form factors a(′), b(′), c(′), h(′), which depend on q2, p2 and cos θK . To lowest order

HHχPT [3] they read

a =
gfB
f2

mB

v · pπ + ∆
, b = 0 , (D.3)

c =
fB
2f2

[
1−2g

v · pπ
v · pπ+∆

− v · (pK−pπ)

v · (pK+pπ)+µs
−2g2 pK · pπ−v · pKv · pπ

[v · pπ+∆][v · (pK + pπ)+µs]

]
, (D.4)

h =
g2fB
2f2

1

[v · pπ + ∆][v · (pK + pπ) + ∆ + µs]
, (D.5)

a′ =
gfB

f2(v · pπ+∆)

[
mB−v · pK−v · pπ + g

v · pKv · (pK + pπ)− pK · pπ −m2
K

v · (pK + pπ) + ∆ + µs

]
, (D.6)

b′ =
g2fB

f2(v · pπ + ∆)

pK · pπ +m2
π − v · pπ v · (pK + pπ)

v · (pK + pπ) + ∆ + µs
, (D.7)

c′ = − gfB
f2mB(v · pπ + ∆)

[
mBv · pπ −m2

π − pK · pπ

+ g
pK · pπ v · (pK − pπ)−m2

Kv · pπ +m2
πv · pK

v · (pK + pπ) + ∆ + µs

]
, (D.8)

h′ =
gfB

2f2mB(v · pπ + ∆)

[
1 + g

mB − v · pK − v · pπ
v · (pK + pπ) + ∆ + µs

]
. (D.9)

Keeping leading terms in the expressions for the primed form factors only (with g ∼ 1),

one obtains

a(′) =
gfBmB

f2(v · pπ + ∆)
, b(′) = 0, c′ = − gfBv · pπ

f2(v · pπ + ∆)
,

h(′) =
g2fB

2f2(v · pπ + ∆)

1

v · p+ ∆ + µs
. (D.10)

Note that c(′)/a = O(1/mb) holds.

E S-, P-, and D-wave contributions

From the full angular distribution, given in eq. (4.13), one can read off its contributions from

the S-, P-, and D-waves and their interference. At low recoil, the angular coefficients Jix can

be expressed in terms of short-distance couplings, presented in section 3.1, and form factors

Fi` = Fi`(q
2, p2), i = 0, ‖,⊥. The latter receive contributions from the angular expansion

of the non-resonant amplitudes, eq. (3.4), and from decays of spin 0,1,2 resonances as given

below in section E.1. Explicitly, the coefficients read as follows:

J1cc =
1

8

[
|F0S |2 + |F0P |2 + |F0D|2 + 2Re(F0SF

∗
0D)
]
ρ−1 , (E.1)

J1ss =
1

8

[(
|F0S |2 +

1

4
|F0D|2 − Re(F0SF

∗
0D) +

3

2
|F‖P |2

)
ρ−1 +

3

2
|F⊥P |2ρ+

1

]
, (E.2)

J1c =
1

4
[Re(F0PF

∗
0S) + Re(F0PF

∗
0D)] ρ−1 , (E.3)
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J1ssc =
3

8

[(
−Re(F0PF

∗
0D) + 3Re(F‖PF

∗
‖D)
)
ρ−1 + 3Re(F⊥PF

∗
⊥D)ρ+

1

]
, (E.4)

J1sscc =
9

16

[(
−1

2
|F0D|2 + 3|F‖D|2

)
ρ−1 + 3|F⊥D|2ρ+

1

]
, (E.5)

J2cc = −J1cc , (E.6)

J2ss = −1

8

[(
|F0S |2 +

1

4
|F0D|2 − Re(F0SF

∗
0D)− 1

2
|F‖P |2

)
ρ−1 −

1

2
|F⊥P |2ρ+

1

]
, (E.7)

J2c = −J1c , (E.8)

J2ssc =
3

8

[(
Re(F0PF

∗
0D) + Re

(
F‖PF

∗
‖D

))
ρ−1 + Re (F⊥PF

∗
⊥D) ρ+

1

]
, (E.9)

J2sscc =
9

16

[(
1

2
|F0D|2 + |F‖D|2

)
ρ−1 + |F⊥D|2ρ+

1

]
, (E.10)

J3 =
1

8

(
|F⊥P |2ρ+

1 − |F‖P |
2ρ−1

)
, (E.11)

J3cc =
9

8

(
|F⊥D|2ρ+

1 − |F‖D|
2ρ−1

)
, (E.12)

J3c =
3

4

(
Re (F⊥PF

∗
⊥D) ρ+

1 − Re
(
F‖PF

∗
‖D

)
ρ−1

)
, (E.13)

J4cc =
1

4
Re
(
F0SF

∗
‖P + 3F0PF

∗
‖D + F0DF

∗
‖P

)
ρ−1 , (E.14)

J4ss =
1

4
Re

(
F0SF

∗
‖P −

1

2
F0DF

∗
‖P

)
ρ−1 , (E.15)

J4c =
1

4
Re
(
F0PF

∗
‖P + 3F0SF

∗
‖D + 3F0DF

∗
‖D

)
ρ−1 , (E.16)

J4ssc = −9

8
Re
(
F0DF

∗
‖D

)
ρ−1 , (E.17)

J5cc = −Re (3F0PF
∗
⊥D + F0DF

∗
⊥P + F0SF

∗
⊥P ) Reρ+

2

− Im (3F0PF
∗
⊥D + F0DF

∗
⊥P + F0SF

∗
⊥P ) Imρ−2 , (E.18)

J5ss =
1

2
Re (F0DF

∗
⊥P − 2F0SF

∗
⊥P ) Reρ+

2 +
1

2
Im (F0DF

∗
⊥P − 2F0SF

∗
⊥P ) Imρ−2 , (E.19)

J5c = −Re (3F0DF
∗
⊥D + 3F0SF

∗
⊥D + F0PF

∗
⊥P ) Reρ+

2

− Im (3F0DF
∗
⊥D + 3F0SF

∗
⊥D + F0PF

∗
⊥P ) Imρ−2 , (E.20)

J5ssc =
9

2
Re(F0DF

∗
⊥D)Reρ+

2 +
9

2
Im(F0DF

∗
⊥D)Imρ−2 , (E.21)

J6cc = −9Re
(
F‖DF

∗
⊥D
)

Reρ+
2 − 9Im

(
F‖DF

∗
⊥D
)

Imρ−2 , (E.22)

J6 = −Re
(
F‖PF

∗
⊥P
)

Reρ+
2 − Im

(
F‖PF

∗
⊥P
)

Imρ−2 , (E.23)

J6c = −3Re
(
F‖PF

∗
⊥D + F‖DF

∗
⊥P
)

Reρ+
2 − 3Im

(
F‖PF

∗
⊥D + F‖DF

∗
⊥P
)

Imρ−2 , (E.24)

J7cc = −Im
(

3F0PF
∗
‖D + F0DF

∗
‖P + F0SF

∗
‖P

)
δρ , (E.25)

J7ss =
1

2
Im
(
F0DF

∗
‖P − 2F0SF

∗
‖P

)
δρ , (E.26)

J7c = −Im
(

3F0DF
∗
‖D + 3F0SF

∗
‖D + F0PF

∗
‖P

)
δρ , (E.27)

J7ssc =
9

2
Im
(
F0DF

∗
‖D

)
δρ , (E.28)
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J8cc = −1

2
Re (3F0PF

∗
⊥D + F0DF

∗
⊥P + F0SF

∗
⊥P ) Imρ+

2

+
1

2
Im (3F0PF

∗
⊥D + F0DF

∗
⊥P + F0SF

∗
⊥P ) Reρ−2 , (E.29)

J8ss =
1

4
Re (F0DF

∗
⊥P − 2F0SF

∗
⊥P ) Imρ+

2 −
1

4
Im (F0DF

∗
⊥P − 2F0SF

∗
⊥P ) Reρ−2 , (E.30)

J8c = −1

2
Re (3F0DF

∗
⊥D + 3F0SF

∗
⊥D + F0PF

∗
⊥P ) Imρ+

2

+
1

2
Im (3F0DF

∗
⊥D + 3F0SF

∗
⊥D + F0PF

∗
⊥P ) Reρ−2 , (E.31)

J8ssc =
9

4
Re (F0DF

∗
⊥D) Imρ+

2 −
9

4
Im (F0DF

∗
⊥D) Reρ−2 , (E.32)

J9cc =
9

2
Re
(
F⊥DF

∗
‖D

)
Imρ+

2 +
9

2
Im
(
F⊥DF

∗
‖D

)
Reρ−2 , (E.33)

J9 =
1

2
Re
(
F⊥PF

∗
‖P

)
Imρ+

2 +
1

2
Im
(
F⊥PF

∗
‖P

)
Reρ−2 , (E.34)

J9c =
3

2
Re
(
F⊥PF

∗
‖D + F⊥DF

∗
‖P

)
Imρ+

2 +
3

2
Im
(
F⊥PF

∗
‖D + F⊥DF

∗
‖P

)
Reρ−2 . (E.35)

E.1 Identifying resonant kaon contributions with Spin 0,1 and 2

The pure resonant S,P-contributions can be taken in the full dimension 6 operator basis

from [7], the D-wave contribution from [42]. Based on these expressions, one can identify

the S-, P-, and D-wave contributions in zero width approximation up to a strong phase δJ
as follows.

The S-wave decay rate can be written as

d2Γ(S)

dq2d cos θK
=

∫
dp2 δ

(
p2 −m2

K∗0

) d3Γ

dq2dp2d cos θK

∣∣∣∣
S

=
ρ−1
3
|F0S |2 , (E.36)

dΓ(S)

dq2
=

2ρ−1
3
|F0S |2 . (E.37)

Comparison with the standard form, which can be extracted e.g. from eq. (65) in [7], yields

F0S = f̃+

√
Γ0

2
λ

3/4
0 eiδS , (E.38)

where the B̄ → scalar form factor f̃+(q2) is defined as

〈S̄(p)|s̄γµγ5b|B̄(pB)〉 = f̃+(q2) (pB + p)µ + qµ(. . .) . (E.39)

Estimates for f̃+(q2) exist for K∗0 (1430) in QCDSR [31], the lightfront quark model [32] and

pQCD [33], where also the κ(800) form factor has been estimated. All of these methods

work for large momentum transfer and their results have to be extrapolated to the small

recoil region. The normalization Γ0 is given by

Γ0 =
G2
Fα

2
e|VtbV ∗ts|2

29π5m3
B

, λ0 ≡ λ
(
m2
B,m

2
K∗0
, q2
)
. (E.40)
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The pure P-wave contribution to the doubly differential rate in zero-width approxima-

tion is given as

d2Γ(P )

dq2d cos θK
=

∫
dp2 δ

(
p2 −m2

K∗
) d3Γ

dq2dp2d cos θK

∣∣∣∣
P

=
1

3

[
cos2 θKρ

−
1 |F0P |2 + sin2 θK

(
ρ+

1 |F⊥P |
2 + ρ−1 |F‖P |

2
)]
, (E.41)

dΓ(P )

dq2
=

2

9

[
ρ−1 |F0P |2 + 2

(
ρ+

1 |F⊥P |
2 + ρ−1 |F‖P |

2
)]
. (E.42)

Finite-width effects can be easily included by replacing the δ distribution by the corre-

sponding distribution. Matching onto the standard form, as, e.g., given in [6], yields

F0P = −3f0 e
iδP , F‖P = −3

√
1

2
f‖ e

iδP , F⊥P = 3

√
1

2
f⊥ e

iδP , (E.43)

where the relative signs are from matching onto the angular coefficients.

The requisite B̄ → vector transversity form factors are defined as

f⊥ = NK∗
√

2λK∗

mB +mK∗
V ,

f‖ = NK∗
√

2 (mB +mK∗)A1 ,

f0 = NK∗
(
m2
B −m2

K∗ − q2
)

(mB +mK∗)
2A1 − λK∗ A2

2mK∗(mB +mK∗)
√
q2

,

(E.44)

where λK∗ ≡ λ
(
m2
B,m

2
K∗ , q

2
)
, the normalization factor is

NK∗ = GFVtbV
∗
tsαe

√
q2
√
λK∗

3(4π)5m3
B

, (E.45)

and the B → K∗ form factors V , A1,2, are defined as in [6, 27].

Finally, we also match the D-wave projection onto the K∗2 contribution in zero-width

approximation:

d2Γ(D)

dq2d cos θK
=

∫
dp2 δ

(
p2 −m2

K∗2

) d3Γ

dq2dp2d cos θK

∣∣∣∣
D

=
1

12
|F0D|2ρ−1 (1 + 3 cos2 θK − 9 sin2 θK cos2 θK)

+ 3
(
|F‖D|2ρ−1 + |F⊥D|2ρ+

1

)
cos2 θK sin2 θK , (E.46)

dΓ(D)

dq2
=

2

15

[(
|F0D|2 + 6|F‖D|2

)
ρ−1 + 6|F⊥D|2ρ+

1

]
. (E.47)

Matching onto eq. (10) of [42] (LLW’10) yields (note that θDHJS
K = π − θLLW ′10

K )

F0D =
√

15A0 e
iδD , F‖D =

√
5

2
A‖ e

iδD , F⊥D = −
√

5

2
A⊥ e

iδD , (E.48)
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where we defined

A0 = NK∗2

√
λK∗2√

24mBm2
K∗2

√
q2

[(
m2
B−m2

K∗2
−q2

)(
mB+mK∗2

)
Ã1−

λK∗2
mB+mK∗2

Ã2

]
, (E.49)

A‖ = NK∗2

√
λK∗2

2mBmK∗2

(
mB +mK∗2

)
Ã1 , and (E.50)

A⊥ = −NK∗2
λK∗2

2mBmK∗2

Ṽ

mB +mK∗2

, (E.51)

with the normalization factor

NK∗2 = GFVtbV
∗
tsαe

√
q2
√
λK∗2

3(4π)5m3
B

√
B (K∗2 → Kπ) . (E.52)

For the definitions of the form factors in these equations, see [42]; note that we added a

tilde to distinguish them from the ones in the B → K∗ transition.
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