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Abstract

We present a geometric description of flux backgrounds in supergravity that preserve eight
supercharges using the language of (exceptional) generalised geometry. These “exceptional
Calabi—-Yau” geometries generalise complex, symplectic and hyper-Kéhler geometries,
where integrability is equivalent to supersymmetry for the background. The integrability
conditions take the form of vanishing moment maps for the “generalised diffeomorphism
group”, and the moduli spaces of structures appear as hyper-Kéahler and symplectic
quotients. Our formalism applies to generic D = 4,5,6 backgrounds preserving eight
supercharges in both type II and eleven-dimensional supergravity. We include a number
of examples of flux backgrounds that can be reformulated as exceptional Calabi—Yau
geometries.

We extend this analysis and show that generic AdS flux backgrounds in D = 4,5 are
also described by exceptional generalised geometry, giving what one might call “exceptional
Sasaki-Einstein” geometry. These backgrounds always admit a “generalised Reeb vector”
that generates a Killing symmetry of the background, corresponding to the R-symmetry
of the dual field theory. We also discuss the relation between generalised structures and
quantities in the dual field theory.

We then consider deformations of these generalised structures. For AdSs backgrounds
in type IIB, a first-order deformation amounts to turning on three-form fluxes that preserve
supersymmetry. We find the general form of these fluxes for any Sasaki-Einstein space and
show that higher-order deformations are obstructed by the moment map for the symmetry
group of the undeformed background. In the dual field theory, this corresponds to finding
those marginal deformations that are exactly marginal. We give a number of examples
and match to known expressions in the literature. We also apply our formalism to AdS 4
backgrounds in M-theory, where the first-order deformation amounts to turning on a

four-form flux that preserves supersymmetry.
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Chapter 1

Introduction

In this introductory chapter, we begin with an overview of string theory and the problems
it may solve. We then discuss supergravity backgrounds with an emphasis on those that
preserve supersymmetry and comment on the use of G-structures. Finally, we review the

use of generalised geometry for backgrounds with flux.

1.1 Physics in the twenty-first century

Modern theoretical physics is built upon two great pillars: general relativity and quantum
mechanics. General relativity describes classical gravity and its interaction with matter.
The essential idea of this theory is that geometry controls the physics. Matter can warp
and bend spacetime, while gravity itself is a manifestation of spacetime curvature. This
geometric description of a physical phenomenon is appealing as it allows us to use a range
of mathematical tools to understand physics.

Unfortunately there is a problem with this point of view. We believe the universe and
the laws of physics that describe it are fundamentally quantum mechanical. Instead of the
geometric picture suggested by relativity, we should think of physics in terms of quantum
fields and interactions. There is no good reason to think that gravity is special in this
respect, so we must treat it quantum mechanically too. We can do this by considering

small fluctuations of the metric tensor g around a fixed background geometry 7

Guv = Nuv + ”hum (1.1)

where the coupling x? is proportional to Newton’s constant G and hyw is the graviton field
which parametrises the fluctuations away from 7,,. As g, describes a physical system
up to diffeomorphisms, the fluctuation h,, must be a spin-two gauge field that couples
to a rank-two symmetric tensor, T},,, known as the stress-energy tensor. We can try to
quantise the dynamics of h,,, by taking a path integral over all possible field configurations.
Unfortunately there is a problem with quantising gravity in this naive way as the coupling

constant x has negative mass dimension and so will grow at higher energies, rendering the
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theory non-renormalisable. Put another way, the gravitational coupling G has units of
length squared, so the dimensionless coupling that controls the strength of interactions is
G /02, where £ is the characteristic length scale probed by a given physical process. As we
probe smaller length scales the coupling grows without bound. Fatally, these problems are
not restricted to high-energy scattering processes, but also appear in loop diagrams where
the momenta of virtual particles are integrated over all possible values. Due to this, pure
gravity diverges at two-loop order [4], and the problem is worse when matter or gauge
fields are included, where the divergence appears at one loop [5-8]. Initially there was
some hope that combining gravity and supersymmetry to give supergravity might help
with renormalisation, but even this only delays the appearance of divergences to higher
loop orders.!

Despite these problems, we still have an effective field theory description of quantum
gravity that is perfectly good up to some energy scale E far below the Planck scale
Mp = \/W The effective theory is governed by an action that is an expansion in

powers of curvatures
S = /d‘ﬁmﬁg (Ml%R +a1R? + asR, R™ + asMp2RP + ...+ Ematter), (1.2)

where the a; are an infinite set of couplings and Lpatter contains particle physics and
matter couplings up to the Planck scale. At low energies, there is an expansion in powers
of E/Mp. At each order in the expansion, only a finite number of couplings are needed to
calculate the amplitude for a given physical process, and we can perform a finite number
of experiments to measure these couplings, after which our theory is predictive for that
energy scale. This is just as good as any other effective field theory, such as the pion
description of the strong force or the Fermi theory of weak interactions. The trouble
appears for E &~ Mp: there is no controlled expansion in powers of E/Mp and all the
couplings are equally important. We can no longer carry out a finite number of experiments
to measure the couplings and so the theory is no longer predictive. The effective field
theory description breaks down at energies near the Planck scale, exactly the regime we
need to probe to see quantum gravity effects.

There are a number of proposals that hope to fix these problems. As with the Fermi
theory at the electroweak scale, it might be that new degrees of freedom appear at the
Planck scale that smear out and soften graviton scattering. An immediate objection to
this is that we do not know the degrees of freedom in L atter €ven below the Planck scale,
so our chances of stumbling across the correct ultraviolet (UV) degrees of freedom without
a guiding principle are vanishingly small. One way around this is to hope that at high
energies, gravity is described by an interacting UV fixed point [10]. At the fixed point, the

infinite number of couplings are actually determined by a finite number of parameters, so

!The perturbative renormalisability of A = 8 supergravity is an open question. Regardless, there are
non-perturbative arguments that show the theory is inconsistent and requires a UV completion by M-theory
on a seven-torus [9].
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that the theory is again predictive. However, the dynamics at the fixed point will almost
certainly be strongly coupled and so fall outside of the perturbative regime. There are
technical problems with studying such fixed points non-perturbatively, such as the Gribov
ambiguity [11] or the use of the exact renormalisation group equation, but more worryingly
there is a fundamental issue with trying to understand quantum gravity in this way. It is
common lore that there is no regime in which pure quantum gravity effects are important
while matter interactions can be neglected — quantum gravity does not have a “decoupling
regime”. Thanks to this, even if we manage to find a UV fixed point in pure gravity,
when we add matter to the theory the nature and even the existence of the fixed point
can change. Again, we need to know the matter content of our theory right up to the
energy scale associated with the fixed point and we are back to where we started, hoping
to stumble on the correct theory. There seems to be no consistent way to view gravity as
coming from a field theory of particles.

The apparent miracle of string theory is that it provides a seemingly UV-finite theory
that includes gravity and specifies its matter content. The spectrum of a quantised string
contains an infinite tower of massive higher-spin excitations that provide a UV completion
of the effective field theory for quantum gravity and completely constrain the curvature and
matter couplings. The massive higher-spin fields can be thought of as the gauge fields for
a tower of spontaneously broken higher-spin gauge symmetries. On general grounds such
a theory should be UV finite. At high energies, the string excitations are approximately
massless and the higher-spin gauge symmetry is restored. The Coleman—Mandula theorem
then forces the S-matrix to be trivial, so that scattering in the UV is soft and free of
divergences. This is one of many reasons to be hopeful that string theory can provide a
“theory of everything” or at least point us in the right direction.

Of course, until string theory is tested in experiments we must remember that math-
ematical beauty is not sufficient for its validity. Nature may really be described by some
effective field theory up to the Planck scale, with a UV theory controlled by an infinite
number of parameters that take some seemingly arbitrary values in our universe. The
universe is not guaranteed be understandable by humans. But with the promise of string

theory and much left to study, it seems somewhat premature to give up quite yet.

1.2 String theory

String theory is a quantum theory of gravity and matter, where the fundamental constitu-
ents of the universe are no longer particles, but extended objects known as strings. Strings
can be open or closed, with their length scale is given by the string length £;. The dynamics
of the theory is essentially fixed by minimising the area of the string as it propagates in
spacetime. With an eye towards geometry, string theory is especially interesting as the
spaces or “backgrounds” on which strings can propagate are highly restricted.

The first hints of string theory were seen while searching for an S-matrix description of
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the strong interaction. At the time, particle accelerators were producing an abundance
of hadronic resonances that exhibited a nearly linear relationship between their spin and
mass squared, J ~ M2/, with the constant of proportionality o’ dubbed the Regge slope.
Veneziano [12] proposed an expression for the scattering amplitude for the resonances that
reproduced the Regge slope and obeyed the crossing relation between the s- and ¢-channels
seen in experiments. This and later work came to be known as the dual resonance model.
Interestingly, the amplitude was well behaved in the UV due to its pole structure, which

could be viewed as coming from an infinite tower of massive higher-spin states. Soon after,
it was shown that a generalisation of the Veneziano amplitude could be understood as
coming from single-particle states of infinitely many harmonic oscillators [13—16], and so
the amplitude might be interpreted as the tree-level contribution from a full quantum
theory. It was soon pointed out that such an amplitude was consistent with that of a
quantised relativistic string [17-19]. Unfortunately, unitarity of the theory required that it
exist in a 26-dimensional spacetime, which posed problems for constructing realistic hadron
models. This, together with QCD’s newfound success, reduced the appeal of the dual
resonance model as a theory of the strong interaction. Fortunately this model was destined
for greater things. One of the original criticisms of the theory was the appearance of a
massless spin-two particle in the spectrum that could not be removed. Upon identifying
this excitation with the graviton, this apparent drawback became a reason to study the

theory further.

String theory is usually formulated in terms of a conformal field theory (CFT) on
the string’s two-dimensional worldsheet [20]. The dynamics of the classical theory are
governed by the Nambu—-Goto action, which is simply the integrated worldsheet area.
The Nambu—Goto action is not easily quantised as it contains a square root of the
worldsheet fields. Instead, we use the Polyakov action which is classically equivalent to
the Nambu—Goto action but is more easily quantised [21]. The Polyakov action is a Weyl
invariant non-linear sigma model with a d-dimensional target space. Using the Weyl and
diffeomorphism symmetries, one can gauge fix the action to obtain a flat worldsheet metric
and d worldsheet scalar fields that can be thought of as maps from the worldsheet to the
target space. The massless excitations of the string viewed from the target space are a
scalar, a symmetric rank-2 tensor and an antisymmetric rank-2 tensor, which we identify
as the dilaton, the metric and the Kalb-Ramond B field. From the worldsheet perspective,
vacuum expectation values (VEVSs) of these fields appear as couplings in the worldsheet

action.

String theory has one free parameter ¢, = v/o/, the characteristic length scale of the
string. Naively, the string coupling gs is also a free parameter but its value is actually
fixed by the dilaton. We understand string theory best as a perturbative double expansion
in both g5 and 1/a/. The string coupling measures the strength of string interactions. In
particular, it tells us how to weight different worldsheet topologies in the genus expansion

for the string S-matrix. This is a perturbative expansion that makes sense only for small
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string coupling,? which is equivalent to requiring the string length to be much smaller
than the Planck length. The expansion in 1/¢’ is somewhat different. For a string in flat
space, the worldsheet CFT is free and is easily solved. If instead the string is on a curved
background, the CFT is an interacting theory where the target space metric appears in
the action as an infinite set of couplings. The CF'T is weakly coupled when these couplings
are small, which is true when the target space is curved on a length scale much larger than
the string length. If the target space is highly curved compared to the string length, the
worldsheet theory is strongly coupled, but it is still well defined as a path integral and can
be tackled using non-perturbative methods.

As with any quantum field theory, a symmetry of the classical action may fail to
be a symmetry of the full quantum theory. Such a symmetry is called anomalous. An
anomaly in a local symmetry indicates the quantum theory is inconsistent. Since the
Weyl invariance of the Polyakov action is a local symmetry, the corresponding anomaly
must vanish for the theory to be consistent. The Weyl anomaly appears in the trace of
the worldsheet stress tensor, which is equivalent to the beta functions for the worldsheet
couplings. The vanishing of the Weyl anomaly defines what we mean by a consistent
string theory background: it is a target space for which the beta functions all vanish.? At
one-loop, the beta functions fix d = 26 and reduce to the Einstein equations for the target
space coupled to the dilaton and the B field [22].

Though an encouraging first step towards a theory of quantum gravity, the bosonic
string cannot be the full story as it does not admit spacetime fermions and the ground
state of the theory is tachyonic. We can solve both of these problems by introducing
worldsheet fermions to obtain supersymmetry on the worldsheet. The resulting superstring
theory still has a tachyon but it can be consistently removed using the so-called GSO
projection, leaving a theory with spacetime supersymmetry (and fermions) which is free of
anomalies in ten spacetime dimensions [23,24].

There are in fact five consistent superstring theories, all with ten-dimensional target
spaces: type I, type ITA, type IIB and heterotic with SO(32) or Eg x Eg gauge group [23,25].
It was realised in the early 90s that all five theories are linked by a web of dualities [26]
and further conjectured that they were actually different limits of a fundamental non-
perturbative theory which has come to be known as M-theory [27].

There are two type II theories, so-called as they have N/ = 2 supersymmetry in ten
dimensions, obtained by different choices of GSO projection on the string worldsheet.
The difference between them amounts to a choice of chirality for the spacetime fermions,
particularly the two gravitini: in type ITA they have opposite chirality, giving N = (1, 1)
supersymmetry; in type IIB they have the same chirality, giving NV = (2, 0) supersymmetry.

2If the string coupling is large, the perturbative expansion we use to define the S-matrix is not well
defined and we have to rely on path integral formulation of the string. String field theory provides such a
formulation.

3The B-functions can also vanish in d # 26 if one has a dilaton with a large gradient. This solution
does not describe our spacetime, which is approximately static and homogeneous, so we will only consider
string theory in the critical dimension.
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The two theories share their NS-NS sector, which contains a rank-two symmetric tensor, a
rank-two antisymmetric tensor and a scalar field; these are more commonly known as the
spacetime metric g, the B field and the dilaton ¢. The R-R sector of each theory is filled
out by (p + 1)-form potentials Cp,1 which give rise to (p 4 2)-form field strengths Fj,; o,
where p is even for type IIA and odd for type IIB.

One can integrate a field strength over a non-trivial cycle to find the corresponding
conserved charge. A natural question to ask is what are the objects that carry these
charges? In analogy with standard electromagnetism, a (p + 1)-form potential will couple
electrically to a (p + 1)-dimensional hypersurface or magnetically to a (6 — p)-dimensional
hypersurface [28,29]. The hypersurfaces that source R-R charge are known as Dp-branes [30].
D-branes correspond to endpoints of open strings: an open string with (9 — p) Dirichlet
boundary conditions has ends that live on Dp-branes. Furthermore, the massless modes of
the open strings that end on the brane give rise to a gauge theory on the worldvolume of
the brane [31]. Strings themselves are (1 4 1)-dimensional hypersurfaces and so source a
two-form potential common to both type ITA and IIB, namely the B field. The B field
also couples magnetically to a (5 4 1)-dimensional hypersurface known as the NS5-brane.

Type I string theory can be obtained as an orientifold of type IIB string theory in the
presence of 32 half D9-branes to cancel anomalies [32,33]. The resulting theory contains
unoriented open and closed strings, and the bosonic spacetime degrees of freedom are the
metric, dilaton and the R-R two-form potential. From this, we see the theory has D1-,
D5- and D9-branes. The theory admits NV = 1 supersymmetry in ten dimensions and
anomaly cancellation implies the presence of an SO(32) gauge group, coming from the 32
half D9-branes.

Heterotic string theory arises by taking the left-moving modes to be those of bosonic
string theory and the right-movers to be those of superstring theory. The extra modes of
the left-movers give one-form gauge potentials, where anomaly cancellation implies the
gauge group must be SO(32) or Eg x Eg [25,34]. There are no open strings and so no
D-branes in this theory.

As we have mentioned, the five distinct string theories are thought to be connected by
a web of duality transformations, known as S- and T-dualities. These dualities connect
apparently distinct descriptions of the same physical system.

S-duality is a strong-weak duality that connects a strongly coupled description to a
weakly coupled description, so is non-perturbative in gs. For example, type IIB string theory
is self-dual under S-duality, so it’s weak and strong coupling limits are the same [35,36].
Type I string theory with string coupling g5 is S-dual to the SO(32) heterotic string with
coupling 1/gs . [37]. M-theory is S-dual to both the type ITA and the Eg x Eg heterotic
strings [26,38-40].

T-duality exchanges small and large radii in the target space, so is non-perturbative
in o/. For example, the SO(32) and Eg x Eg heterotic strings are connected via T-

duality [41], as are type IIA and IIB when compactified on a circle [28,42]. One can also

20



combine T-duality and S-duality to give a so-called U-duality transformation [26], which

is non-perturbative in both g5 and «’.

As with the bosonic string, the superstrings’s target space must satisfy certain conditions
to maintain worldsheet Weyl invariance, namely that the g-functions for the worldsheet
couplings all vanish. To one-loop, the S-functions are simply the equations of motion for
the massless excitations of the string in the target space. The remarkable fact is that
the equations of motion are actually those of the known ten-dimensional supergravity
theories [43]. This is not a surprise. As the string length is taken to zero, we expect
to recover a point-particle limit, and indeed as o’ — 0 all superstring theories admit a
supergravity limit. Furthermore, despite us not having a definition of M-theory its low-
energy limit is thought to be the unique eleven-dimensional ' = 1 supergravity [38,39,44].
In summary, we can study supergravity to better understand the low-energy behaviour of

string theory and M-theory.

The supergravity limit gives us access to the massless, perturbative degrees of freedom
of the corresponding string theory. Branes do not fall into this subsector. Taking type II
string theory for example, D-brane masses scale as 1/gs, so they are “heavy” in the weakly
coupled supergravity limit gs — 0 and no longer seen as perturbative degrees of freedom.
Despite this, we cannot ignore their effects as the massless degrees of freedom we are
interested in can interact with D-branes, which source R-R charge and are the endpoints of
open strings. Instead of fields, D-branes appear in supergravity as non-perturbative solitons
or solutions to the equations of motion [30,45]. M-theory also admits branes, the M2- and
Mb5-branes, which appear in eleven-dimensional supergravity as solutions to the equations
of motion. These brane solutions correspond to Bogomol’'nyi-Prasad-Sommerfield (BPS)
states [27,46]. In fact, they are half-BPS states and so are annihilated by half of the

supersymmetry generators.

If string theory is to provide a description of our universe, an obvious impediment
is the requirement that the theory lives in ten dimensions. At the energy scales we can
probe, the universe looks very much four-dimensional. The standard way to recover four
dimensions at low energies is to assume the ten-dimensional spacetime is a (possibly
warped) product R®! x M, where R3! is four-dimensional Minkowski space and M is a
six-dimensional compact space. If the volume of M is small compared with the energy
scale of measurements, the resulting theory is effectively four-dimensional. This procedure
is known as compactification and is the string theory realisation of the Kaluza—Klein
mechanism. Importantly for us, the details of the four-dimensional effective theory depend
on the choice of internal space M. In particular, the presence of supersymmetry at the
compactification scale is fixed by the topological and differential structure of M. As we now
discuss, there are a number of reasons why we might want to focus on compactifications

that allow for supersymmetry.

Supersymmetry has been an important ingredient in particle phenomenology for some

time, with a preference for A/ = 1 supersymmetry that is spontaneously broken at low
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energies. Despite the lack of experimental evidence for its presence, we continue to
use supersymmetry in our models as it solves a number of problems with the standard
model. In the majority of grand unified theories (GUTs), the three gauge couplings of the
standard model should unify once above the GUT scale. Unfortunately, if we follow the
running of the gauge couplings within the standard model we find the couplings do not
meet. Supersymmetry alters the running of the couplings so that they meet, giving gauge
coupling unification and the possibility of deriving the standard model from a grand unified
theory. In addition, the modified running of the couplings may provide a mechanism
for electroweak symmetry breaking. Another problem is that, generically, we expect the
Higgs mass to receive loop corrections that push it up to the Planck scale [47 —49]. If we
want a 125 GeV Higgs, we are forced to tune the parameters of the standard model to
an unnatural level. Supersymmetry solves this hierarchy problem as the loop corrections
from bosonic and fermionic fields cancel each other [50,51]. Supersymmetry also provides
natural dark matter candidates if the lightest supersymmetric particle is stable [52,53].
These are some of the reasons to focus on understanding those compactifications that lead
to supersymmetric theories in four dimensions. More generally, as theorists we are also

interested in supersymmetric compactifications to any number of dimensions.

As we have mentioned, string theory admits a number of surprising dualities, but
testing such dualities is difficult. In most cases, we have only a perturbative description of
the relevant theories at weak coupling. The dualities however can map between weak and
strong coupling or perturbative and non-perturbative physics. For this reason, performing
calculations to check the general validity of these dualities is difficult, if not impossible
with our current knowledge. One way around this problem is to exploit supersymmetry.
In the presence of sufficient supersymmetry there are quantities that can be calculated
exactly on both sides of the duality and then compared for consistency. These quantities
are normally interpreted as counting BPS states [54—57]. The dualities have survived all

such checks to date and give a compelling reason to study supersymmetric backgrounds.

There has also been great interest in understanding supersymmetric backgrounds thanks
to the AdS/CFT correspondence [58-60]. The AdS/CFT correspondence conjectures that
type IIB string theory on a space that is the product of anti-de Sitter space (AdS) and a
compact manifold is equivalent to a conformal field theory (CFT) living on the boundary
of the AdS space. In a looser form, it relates string theory (or M-theory) on a geometry
which is asymptotically AdS to a field theory living on the boundary, giving an explicit
example of the holographic principle [61,62]. The original setup is a stack of N D3-branes
placed in flat R%!, where the worldvolume of the D3-branes spans R*! and the transverse
directions are R = Rt x S°. At small string coupling, the gravitational backreaction is
negligible and the branes are described in terms of a U(N) superconformal field theory on
their worldvolume, coming from open strings stretching between the branes. For D3-branes,
this worldvolume theory is in fact N' = 4 super Yang-Mills (SYM) [31]. At large string

coupling, the backreaction of the branes introduces five-form flux and a relative warp
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factor between the worldvolume and transverse directions, giving a black brane solution in
type IIB string theory. Near to the branes, in the near-horizon limit, the ten-dimensional
geometry approaches AdSs x S°. The point is that these two descriptions of the branes
are actually the same. Super Yang—Mills and string theory are very different theories,
so it is important to understand the range of validity of each description. The 't Hooft
coupling of the worldvolume theory is A = g%-MN , where the Yang—Mills coupling gy of
the worldvolume theory is related to the string coupling of the bulk theory by g%M = 47ys.
In the near-horizon limit, the radius of both AdSs and S° is R* = 4wgsNo/? so that

- () 0

where £, = v/a/ is the string length. Furthermore, the Planck length fp and the AdS;

radius are related by
lp

(R>4 - \gN (1.4)

In the supergravity approximation where {3 < R, stringy corrections are absent leaving us

with type IIB supergravity that is dual to a strongly coupled gauge theory with A > 1.
Conversely, strongly curved backgrounds for which the supergravity description breaks
down should be described by a weakly coupled gauge theory. The gauge theory simplifies
further in the limit N — oo for fixed A. This is known as the 't Hooft limit and corresponds
to taking only planar diagrams in the gauge theory [63]. On the string side, from (1.4)
we see this corresponds to R > fp so that quantum gravity corrections are small, which
corresponds to taking only genus-zero string diagrams. For A > 1 and N > 1, we
then have a strongly coupled gauge theory in the planar limit that is dual to classical
supergravity. The point to remember is that the ten-dimensional background is actually a
supersymmetric flux background as the D3-branes source N units of five-form flux that
thread AdSs and the five-sphere. There are generalisations of this setup to geometries
that come from replacing Rt x S® with conical Calabi-Yau spaces, where the compact
five-dimensional space is Sasaki-Einstein [64]. A better understanding of the most general
supersymmetric AdS flux backgrounds would give us a plethora of new examples and great
insight into the AdS/CFT correspondence. This alone may be considered reason enough

to study supersymmetric backgrounds.

String theory is a promising approach to understanding quantum gravity and has
many other applications, including quantum field theory, mathematics, condensed matter
physics and black-hole physics. In all of these areas, the presence of supersymmetry and
the existence of supersymmetric string backgrounds are key to understanding the physics
and making calculations tractable. In this thesis, we will focus on trying to understand

these supersymmetric backgrounds in the supergravity limit.
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1.3 Supergravity backgrounds

The first investigations into supergravity backgrounds focussed on those without flux that
preserve supersymmetry. Assuming a four-dimensional Minkowski factor, the required
spaces were found to be special holonomy manifolds [65,66]. The archetypal example is
a six-dimensional Calabi—Yau manifold [65] which admits a single covariantly constant
spinor, a Killing spinor, and so has SU(3) holonomy. In this case, the geometry can be
equivalently described by a holomorphic three-form  and a symplectic two-form w, both
constructed as bilinears of the Killing spinor. The covariant constancy of the spinor then
translates to the integrability conditions d€2 = dw = 0. In particular, integrability of €2
implies the manifold is complex, and the tools of complex and algebraic geometry can
then be used to construct examples and calculate important physical properties, such as

moduli spaces, particle spectra and couplings [67-69].

A large class of phenomenologically promising models come from combining these
spaces with the Eg x Eg heterotic string, as compactifying this theory on a six-dimensional
Calabi-Yau manifold leads to an N' = 1 effective theory in four dimensions with the
possibility of chiral fermions [65]. Moreover, the standard model gauge group can be
embedded in Eg x Eg, leading to realistic string models [70]. In the standard embedding,
the SU(3) holonomy group of the Calabi-Yau threefold embeds in one of the Eg factors,
and the commutant of SU(3) inside Eg is an Eg gauge group that can accommodate the
required SU(3) x SU(2) x U(1). The particle content, such as the number of standard
model generations, is then fixed by topological data of the Calabi—Yau. One can also carry

out a similar program for M-theory on G manifolds with singularities [66,71-73].

Such compactifications generically lead to a number of massless scalar fields, known
as moduli. For the example of Calabi—Yau spaces, the moduli correspond to the possible
ways to deform either the Kéhler structure or the complex structure of the threefold [69].
Generically, no potential is generated for such fields and so their VEVs are not fixed by
any dynamical mechanism. This is a problem as the fields can appear as couplings in
the low-energy effective action, leading to a large number of undetermined parameters
in the effective four-dimensional theory. Not only is this undesirable from an aesthetic
viewpoint, it is also at odds with observations: such massless fields can lead to long-range
forces, which we do not observe. Furthermore, such fields would dramatically change early
universe cosmology as the moduli would generically have VEVs of order the weak scale and

would dominate reheating, causing problems for large-scale structure formation [74,75].

To avoid these problems, one must introduce a potential for the moduli so that
they become massive and decouple from the effective low-energy physics. Ideally, this
potential should be dynamically generated so that the VEVs of the moduli are fixed by the
background and not by some arbitrary choice of potential. One way to do this is to include
fluxes on the internal space. These flux compactifications were originally an extension

of Calabi-Yau compactifications for the heterotic string [76-78] and then extended to
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M-theory in [79] (see [80] for a review). The use of fluxes to fix moduli was first studied
in [81], and it indeed seems that all moduli may be fixed in this way in some supergravity
limits [82-85].

Flux compactifications are also attractive as they allow us to obtain realistic models
from type II theories, since fluxes generically reduce the four-dimensional gauge group
and break supersymmetry [86,87]. This has led to N' = 1 models from flux-deformed
Calabi-Yau backgrounds and culminated in a whole new subfield known as F-theory [88].
In addition, fluxes generically lead to a warp factor for the four-dimensional spacetime,

which has been suggested as a way to explain gauge hierarchies [89].

Flux backgrounds are also important for the AdS/CFT correspondence. Generically
flux compactifications are dual to confining gauge theories, so they may provide a way to
describe QCD (or QCD-like theories) via string theory [90-92]. Furthermore, the most
studied examples of AdS/CFT are those for which the gravity solution is AdS times an
odd-dimensional sphere with a top-form flux [64]. Turning on extra fluxes while preserving
supersymmetry is then equivalent to deforming the gauge theory by marginal operators.
The full supergravity solutions dual to these deformed theories are known in only a few

cases [93], so a full understanding of supersymmetric flux backgrounds is essential for
testing AdS/CFT.

For a time, flux compactifications were thought to be a fruitless endeavour thanks to
a number of no-go theorems that ruled out compactifications to Minkowski or de Sitter
spacetimes when fluxes are present [89,94-98]. The no-go theorems apply to generic
compactifications and do not assume supersymmetry. As an example, consider the Einstein

equation restricted to the four-dimensional spacetime
e AR+ Thux = 2V2e?2, (1.5)

where R is the Ricci scalar for the unwarped four-dimensional metric, Th,x is the contribu-
tion due to fluxes on the internal space and A is the warp factor for the four-dimensional
metric. Upon integrating this equation over the internal compact space without boundary,
the right-hand side vanishes. Since Thy,y is positive definite (it depends on the squares
of the fluxes) we must have R < 0 for consistency; this rules out both Minkowski and
de Sitter solutions. One can escape these results by including stringy corrections to the
Einstein equations or localised negative tension sources, such as orientifold planes, that
provide a negative contribution to Tq.x. The possibility of avoiding the no-go theorems

reinvigorated the investigation of flux compactifications.

Having discussed the positives of flux compactifications, we must admit the program
has some problems. Despite the large body of work on flux compactifications, there are still
issues with constructing stable (or even metastable) de Sitter vacua. The most promising
way forward is the KKLT proposal [99] which suggests a way to produce metastable de

Sitter vacua with small positive cosmological constant. Unfortunately, there are now
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suspicions that the full backreacted solution is unstable [100,101]. Furthermore, assuming
de Sitter vacua can be constructed, there is still the problem of the string landscape [102].
Given the possible choices of fluxes, branes and singularities, there are likely to be an
extremely large number of admissible vacua and, for the time being, we have no idea
whether there is some dynamical mechanism for vacuum selection. There has been some
work on statistical studies of the landscape [103], while a more ambitious approach is
to classify possible backgrounds. One possible application of the work in this thesis is
to the classification of generic flux backgrounds, particularly those that preserve eight

supercharges.

1.4 Generalised geometry

String theory is a theory of extended objects and this extra complexity can lead to new and
unexpected symmetries. In particular, its low-energy supergravity limit is not only a theory
of gravity, it also admits fluxes which are derived from local potentials that are defined
up to gauge transformations. Thanks to this, supergravity has not only diffeomorphism
invariance, but also p-form gauge symmetries. This extra structure hints that we should
come up with a new language that treats these symmetries on an equal footing, much as
the language of differential geometry is suited to the diffeomorphism invariance of gravity.
As we will see, this language is generalised geometry.

The conventional notion of a G-structure has already provided a useful way to analyse
flux backgrounds [97,104,105]. While the manifold M no longer has special holonomy, the
Killing spinor bilinears still define a set of tensors that are invariant under G C SO(d; R),
where d is the dimension of M. The fluxes then appear as an obstruction to integrability
of the G-structure. Formally this is encoded in the intrinsic torsion, and only when
this vanishes does the background have special holonomy. For generic backgrounds, the
structure is only locally defined since there can be points where the stabiliser group of the
Killing spinors changes.

A natural question is whether there is an analogous geometric description of generic
supersymmetric flux compactifications in terms of integrable structures. The basic point of
this thesis is that there is actually a natural geometry in which supersymmetry for a generic
flux background again corresponds to integrable, globally defined G-structures. In the
context of type Il reductions to four dimensions, this defines the natural string-theoretic
generalisation of the notion of a Calabi—Yau manifold to backgrounds including both
NS-NS and R-R flux.?

A description in terms of integrable structures is important since it provides approaches

for tackling problems such as analysing the deformations and moduli spaces of arbitrary

4As we have mentioned, there are general “no-go” theorems [95,97,98,106,107] that, in the absence of
sources, exclude reductions on a compact space to a Minkowski or de Sitter backgrounds when fluxes are
present. Thus, the backgrounds in this thesis are generically either non-compact or have an anti-de Sitter
spacetime.
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flux backgrounds, as well as constructing new examples. We also note that it would not
only give generalisations of the classical target-space theories of the topological string A
and B models to include R-R modes, but also defines a corresponding pair of theories in
M-theory.

Focussing for the moment on ' = 2, D = 4 backgrounds, in the case of NS-NS flux such
a reformulation has already appeared under the name of generalised complex geometry [108—
111]. Here one considers structures on a generalised tangent bundle £ ~ TM @® T*M,
admitting a natural O(d, d) metric. For a large class of supersymmetric backgrounds with
non-trivial two-form B field and dilaton ¢, the holomorphic and symplectic forms generalise
to a pair of O(6,6) pure spinors ®* € T'(A*T*M), each defining an SU(3,3) C O(6,6)
structure. The pure spinors satisfy compatibility conditions that imply that together
they define an SU(3) x SU(3) structure. The A = 2 Killing spinor equations then imply
d®* = 0, and one says the SU(3) x SU(3) structure is integrable [111]. Each such integrable
@ defines a generalised complex structure [108] and the integrable SU(3) x SU(3) structure
is known as a generalised Calabi-Yau metric structure [109]. This language has been
useful for a whole range of applications including addressing deformations [109,112-114],
topological strings and sigma models [115-119], T-duality and mirror symmetry [120-124],
non-geometric backgrounds [125,126], steps towards classifying flux backgrounds [127-131]
and the AdS/CFT correspondence [132-134].

Generalised complex geometry is ideal for reformulating the NS-NS sector of type II
supergravity, but the R-R fields do not enter on the same footing as the B field or dilaton.
To include R-R fluxes and M-theory compactifications, we need to consider Eg4) x Rt
or exceptional generalised geometry [135,136]. The generalised tangent space is further
extended to include the R-R gauge symmetries, such that it admits a natural action of
Eq(a) % R*. This extension gives a unified geometrical description of type IT and M-theory
restricted to a (d — 1)- or d-dimensional manifold respectively [137,138], invariant under
local transformations by the maximal compact subgroup H 4 of Eg4) X R*. The bosonic
symmetries combine in a generalised Lie derivative and there is a generalised metric,
invariant under Hy, that encodes all the bosonic degrees of freedom. One can find a
generalised connection D that is the analogue of the Levi-Civita connection, such that the
full bosonic action is equal to the corresponding generalised Ricci scalar, and the fermion

equations of motion and supersymmetry variations can all be written in terms of D.

Exceptional generalised geometry is particularly suited to describing generic supersym-
metric backgrounds with flux [126,139-142]. In the case without flux, we know that the
underlying structure is that of special holonomy. A similar idea holds for backgrounds
with flux in generalised geometry. Minkowski backgrounds with any number of super-
symmetries are now known to be in correspondence with generalised special holonomy
spaces [143,144], while the same result is known to hold true for minimally supersymmetric
AdS backgrounds [145] and is suspected to hold for any number of supersymmetries. As

with conventional special holonomy, we can think of these spaces as having torsion-free
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generalised G-structures defined by a set of invariant tensors that satisfy some integrability

conditions. We will see that exceptional generalised geometry provides such a description.

The appearance of the exceptional groups can be understood by considering the
maximal N = 8, d = 4 supergravity. This theory has a global E7(7) and a local SU(8)
symmetry. These groups can be realised directly in eleven-dimensional supergravity by
assuming a 4 + 7 split of the underlying spacetime, leading to a breaking of Spin(10,1) to
Spin(3,1) x Spin(7) [146]. One can then enhance the Spin(7) to a local SU(8) symmetry,
where SU(8) is the maximal compact subgroup of E7(7). It has been shown that one
can repeat this for the other Eg4) groups [147-150]. In a sense, exceptional generalised
geometry gives an infinite-dimensional extension of these supergravities where the action

of these hidden groups is geometrised.

We note that there is a long history of considering exceptional groups in supergravity,
in many cases by positing the existence of extra coordinates [146,149,151-156]. More
recently, there has been great interest in double field theory, where these extra coordinates
play a central role [157-166]. One aim of double field theory is to construct an extension of
supergravity in which T-duality is manifest. The inspiration for this is given by considering
string compactifications on a d-dimensional torus, where T-duality acts by exchanging the
momentum and winding modes of the string. One defines coordinates that are dual to the
winding modes, giving both the usual compact coordinates on the torus = and another
set of coordinates £ that parametrise a dual torus. Taken together, we have a “doubled”,
2d-dimensional torus. The fields of the theory can then depend on all coordinates of
this extended space, and there is an action of the T-duality group O(d,d) on the fields.
However, these fields are constrained: to recover the known diffeomorphisms and gauge
transformations one must impose a “section condition” that removes the dependence
on half of the coordinates. Locally, after imposing the section condition, doubled field
theory reduces to generalised geometry. However, double field theory can describe more
complicated global configurations, such as T-folds where one can patch together the

doubled space using T-dualities, in addition to the usual transition functions [167-169].

The study of double field theory has not been restricted to torus compactifications,
however there are a number of problems with the theory on more general backgrounds [126,
166,170,171]. For toroidal backgrounds, the coordinates dual to the winding modes have a
clear physical interpretation. For more general backgrounds there are generically no non-
trivial cycles and so no windings modes. The question is then what the extra coordinates
correspond to physically and whether the doubled space has any interpretation.® For this
reason, we will not comment further on the relation between our constructions and double
field theory.

5An alternative proposal which is consistent is that of Hull [166] in which the doubled space is physical
but the geometric structures exist only on the local quotient space.
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1.5 Plan of the thesis

We begin in chapter 2 with a brief review of supersymmetric backgrounds in supergravity,
focussing first on the case without flux. We then explain how the geometric description
of such spaces can be extended to generalised Calabi—Yau geometries in the presence of
NS-NS flux, and propose that the correct language for understanding the most general

flux backgrounds is exceptional generalised geometry.

In chapter 3 we define the analogue of Calabi—Yau geometry for generic D = 4, N = 2
flux backgrounds in type II supergravity and M-theory. We begin by discussing backgrounds
with a four-dimensional Minkowski spacetime and show that there are generalisations of
the complex and symplectic structures for generic flux backgrounds. Such “exceptional
Calabi—-Yau” geometries are determined by two generalised objects that parametrise hyper-
and vector-multiplet degrees of freedom, where supersymmetry of the background is
equivalent to integrability of these generalised structures. We discuss how these ideas
follow from gauged supergravity and the concept of generalised intrinsic torsion, and how
they can be used to explore the moduli space of solutions. We then extend our construction
to D =5 and D = 6 flux backgrounds preserving eight supercharges, where analogous

structures appear.

In chapter 4 we repeat our analysis for generic AdS flux backgrounds preserving eight
supercharges in D = 4 and D = 5. Again, they are described by a pair of globally defined,
generalised structures with integrability conditions that are equivalent to supersymmetry.
We give a number of explicit examples of such “exceptional Sasaki—Einstein” backgrounds
in type IIB supergravity and M-theory. In particular, we give the complete analysis of
the generic AdS; M-theory backgrounds. We also briefly discuss the structure of the
moduli space of solutions. In all cases, one structure defines a “generalised Reeb vector”
that generates a Killing symmetry of the background corresponding to the R-symmetry
of the dual field theory, and in addition encodes the generic contact structures that
appear in the D = 4 M-theory and D = 5 type IIB cases. Finally, we investigate the
relation between generalised structures and quantities in the dual field theory, showing
that the central charge and R-charge of BPS wrapped-brane states are both encoded by
the generalised Reeb vector, as well as discussing how volume minimisation (the dual of a-

and F-maximisation) is encoded.

In chapter 5 we apply our formalism to the study of exactly marginal deformations
of N =1 SCFTs that are dual to generic AdS5 flux backgrounds in type IIB or eleven-
dimensional supergravity and show there is a geometric interpretation of the known gauge
theory results. Focussing on Sasaki-Einstein backgrounds in type IIB supergravity we find
an explicit, first-order expression for the three-form flux dual to the marginal deformations.
We then show that our expression for the three-form flux matches those in the literature

and the obstruction conditions match the one-loop beta functions of the dual SCFT.

In chapter 6 we extend this analysis to d = 3, N' = 2 superconformal field theories that
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arise on a stack of M2-branes at a conical singularity. The supergravity backgrounds are
of the form AdSs x M, where M is a seven-dimensional Sasaki—Einstein manifold. Again,
we find an explicit expression for the first-order four-form flux that is dual to the marginal
deformations. We also show that our expression for the four-form flux matches those in
the literature.

Finally, in chapter 7 we summarise the main points of this thesis and discuss some

open problems and directions for future work.
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Chapter 2

Supergravity backgrounds and

generalised geometry

In this chapter, we review supersymmetric backgrounds and generalised geometry. We
briefly summarise the standard D = 4, N' = 2 example of Calabi-Yau backgrounds in type
II theories, discuss how the notion of Calabi—Yau extends when one includes NS-NS flux
and mention the problems that arise when one includes all fluxes. We finish with a short

review of generalised geometry in preparation for the next chapter.

2.1 Supersymmetric backgrounds

A supergravity background is a solution to the classical supergravity equations of motion. If
we are to connect with phenomenology or AdS/CFT, we should look for solutions which are
a (warped) product of an internal space M with a maximally symmetric external spacetime,
such as Minkowski or AdS. In order to preserve the Poincaré or AdS symmetry of the
external spacetime, we must set all fermionic fields to zero so the background is purely
bosonic. As we outlined in the previous chapter, supersymmetric backgrounds are a key
ingredient in both string phenomenology and the AdS/CFT correspondence. A background
is supersymmetric if all the supergravity fields (and hence the solution) are invariant under
the supersymmetry transformations. Recall that the supersymmetry transformations

depend upon a choice of supersymmetry parameter ¢ and take the schematic form
d(boson) = e(fermion), d(fermion) = e(boson). (2.1)

The variations of the bosonic fields always contain a fermionic field, and since we have set
these to zero the variations automatically vanish. The non-trivial conditions come from
the variations of the fermionic fields. Supersymmetry of the background is then equivalent

to the existence of a non-vanishing spinor € for which the supersymmetry variations vanish.
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Generically, the variations take the form of differential and algebraic conditions
De =0, Pe =0,

where D is a supergravity connection and P is an endomorphism of the spinor bundle,
both given in terms of the metric, fluxes and any other bosonic fields. These equations are
known as the Killing spinor equations, and a background is supersymmetric if it admits
one or more solutions, known as Killing spinors.

The product form of the metric implies that the ten-dimensional supersymmetry
parameter € schematically takes the form of a tensor product of a spinor»n on Minkowski

or AdS and an internal spinor x on M:
E=NRX.

The decomposition of the ten-dimensional spinor splits the Killing spinor equations into

conditions for n on the external spacetime and conditions for y on M. We then say that the
background preserves a number of real supercharges equal to the real degrees of freedom
of 1 times the number of independent solutions of the Killing spinor equations on M. The
basic question is then how the existence of Killing spinors on M restricts its geometry and

fluxes.

2.1.1 Backgrounds without flux

The classic example of an A/ = 2 background is type II string theory with vanishing fluxes,

where M is a Calabi—Yau threefold. The background metric takes the form of a product
ds?y = ds*(R>!) + ds*(M), (2.2)

and we have set all fluxes and the warp factor to zero. The only degrees of freedom on the
internal manifold are its metric, so that the effective four-dimensional theory that would
arise from compactification on this background depends upon the geometry of M alone.
With the aim of finding N' = 2 supersymmetry in the effective four-dimensional theory,
the two ten-dimensional spinors decompose as
er=n ®x{ +m DXy,

i Lo (2.3)
e2=1, X3 +13 X5,

where the + subscripts denote chirality, the upper/lower choice of chirality refers to type
ITA/IIB, and 7; and x; are Weyl spinors in four and six dimensions, so that ;" and x; are
the conjugates of 77;|r and XZTF. Note that this is not the most general spinor ansatz [172],
but it will suffice for this chapter.

The mere existence of non-vanishing spinor fields on M imposes a topological condition,
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namely a reduction of the structure group of M to a subgroup of Spin(6) ~ SU(4). Viewing
XT as a four-component Weyl spinor with norm |yi|? = )’(fxi, the frames in which it
can be written as x{ = (|x1/,0,0,0) form an SU(3) structure. The second internal spinor
X; can then be parallel, nowhere parallel or a mix of the two depending on the position
on the manifold M. If the second spinor is nowhere parallel to x{, the SU(3) frames in
which x4 = (0, |x2/,0,0) themselves form an SU(2) structure, and will lead to an N = 4
effective four-dimensional theory. Instead, we will consider the case where the two internal
spinors are parallel. In other words, there is a single non-vanishing spinor x™ on M that
defines an SU(3) structure and two spinors 7,2 on the external spacetime, resulting in

eight supercharges and A = 2 supersymmetry in four dimensions.

Equivalently, one can think of the SU(3) structure in terms of the invariant tensors
defined by x*. Normalising the spinor so that x*x* = 1, the tensor J”, = ixT™, x"
is a section of the endomorphism bundle of TM and satisfies J?> = —1, hence it defines
an almost complex structure. Furthermore, the metric is automatically Hermitian with
respect to this almost complex structure, and lowering an index of J with the metric defines
a two-form wy,, = —Jmpn. One can also use the spinor to construct a nowhere-vanishing
three-form Qnp = X Ymnpx~- Using Fierz identities, one can check the action of J on w
and €2 implies that they are (1, 1)- and (3, 0)-forms, and so satisfy w A 2 = 0. Furthermore,
the normalisation of x T implies %w ANwAw= %iQ A Q. The forms w and € are invariant
under Sp(6;R) and SL(3;C) subgroups of GL(6;R) respectively, and together they are
invariant under SU(3) C SO(6). The different structure groups embed as

GL(6;R) D Sp(6; R) for w
U U (2.4)
SL(3;C) for @ D>  SU(3) for {w,Q}

Assuming the fluxes, warp factor and dilaton are set to zero, the Killing spinor equations
in spacetime are trivial. We simply take nj to be constant spinors. The Killing spinors

equations on the internal manifold reduce to
Vxt =0.

In other words, the internal manifold M must admit covariantly constant spinors. This
means that the Levi-Civita connection V is compatible with the SU(3) structure defined
by the spinors, and, since the Levi-Civita connection is torsion-free, the SU(3) structure
has vanishing intrinsic torsion. The internal manifold M must thus have SU(3) special

holonomy.

We can also understand this in terms of the invariant forms w and 2. The almost
complex structure is covariantly constant, V.J = 0, since it is defined in terms of x* which
is itself covariantly constant, and so the almost complex structure is integrable. As V is

torsion-free, we can replace 0 with V in the exterior derivative, from which we see the
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covariant constancy of J implies dw = 0. Thus, M is actually Kéhler with Kéahler form
w. As Q is constructed from T, we also have dQ2 = 0 which implies  is a holomorphic
three-form. This means the components of the three-form in complex coordinates are
Qyjr = f(2)€ijk, where f(z) is a holomorphic, nowhere-vanishing section of the canonical
line bundle. The Ricci form for the Hermitian metric compatible with w and the Levi-Civita
connection is R = i00log V9. From the expression for {2, we have that the norm of the
holomorphic three-form satisfies ||2[|* = | f(2)[?/\/g, which together with §f = 0 implies

R = —iddlog | Q2. (2.5)

As ||Q||? is a globally defined, nowhere-vanishing function, R is exact and so the manifold
M has vanishing first Chern class.! Kihler manifolds with vanishing first Chern class are
Calabi—Yau manifolds, which are known to admit a Ricci-flat metric in the same Kahler
class [173-176]. The definition of the structure in terms of spinors makes this obvious as,
since € is defined using x* which has constant norm,  has constant norm and thus R
actually vanishes.

In summary, one can build two differential forms as bilinears in T, a symplectic form
w and a holomorphic three-form €2, which together define a torsion-free SU(3) structure
on M. On a more practical level, the crucial points are that the manifold is complex,
allowing the use of algebraic geometry, and the existence theorem for the metric, which
guarantees that as long as the Ricci form is exact, there exists a Ricci-flat metric. Upon
including fluxes, we lose these mathematical tools. The SU(3) structure has torsion and
is not always globally defined. The structure can interpolate between SU(2) and SU(3)
depending on whether the internal spinors are parallel or not. To understand the general
case, we now discuss a simple generalisation of Calabi—Yau that allows for NS-NS flux

while retaining a geometric interpretation.

2.1.2 Generalising the notion of a Calabi—Yau structure

Generic flux solutions of the N' = 2 Killing spinor equations can be thought of as string-
theory generalisations of the conventional notion of a Calabi—Yau manifold to backgrounds
including both NS-NS and R-R fluxes. The simplest extension is to consider generic NS-NS
backgrounds by including the dilaton and three-form flux H = dB.

The solution is characterised by a pair of spinors (Xf, X;), each stabilised by a different
SU(3) subgroup of Spin(6) ~ SU(4). Generically the common subgroup leaving both x;"
invariant is SU(2). However, since the norm between the spinors can vary over M, there
can be points where the spinors are parallel and the stabiliser group enhances to SU(3).

Backgrounds where this happens are called “type-changing” [108,109]. The presence of

!One can also see this from the relation ¢1 (M) = ¢ (TH°M) = —ci(Kar), where c¢; is the first Chern
class and Ky is the canonical line bundle over M. Since 2 is a nowhere-vanishing section, K is trivial.
A trivial bundle admits a flat connection, so ¢1(Kar) = 0 and hence the first Chern class of the manifold
vanishes.
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two spinors X{F means that the differential forms constructed from the spinor bilinears are
more intricate than in the Calabi—Yau case. The background can be characterised by two

polyforms [111]

ot = e e P(xf @ xF) e D(NTT*M), (2.6)
- =ec e By

where ATT*M and A~T*M are the bundles of even- and odd-degree forms respectively.
The polyforms satisfy a pair of compatibility conditions (A.11) and the Killing spinor

equations are equivalent to the integrability conditions
det =0, d®~ =0, (2.8)

which define what is known as a generalised Calabi—Yau metric. A conventional Calabi—Yau

background is of course a special case, given by taking
Pt = e PeBelv, b~ =ie %eBQ, (2.9)

with B closed and ¢ constant. We see that ®* generalises the symplectic structure and
®~ generalises the complex structure.
As we will now see, the geometric interpretation of these conditions is given by

generalised geometry [108-111].

2.2 Generalised geometry

Generalised geometry is the study of structures on a vector bundle E over a manifold M,
where F is formed from the tangent bundle, cotangent bundle and products thereof. The
original formulation of generalised geometry was given by Hitchin [108] and codified by
Gualtieri [109] into what we now call O(d, d) x RT generalised geometry or generalised
complex geometry. The original motivation was to define geometric structures that include
both complex and symplectic geometry as limiting cases. In this case, the larger vector
bundle is E ~ TM & T*M which admits a natural O(d, d) metric on it sections, coming
from the obvious pairing of vectors with one-forms. This endows E with an O(d,d)
structure. Much like conventional vectors, one can define a bracket on sections of E to give
a generalisation of the Lie bracket, known as the Courant bracket. The automorphisms
of the Courant bracket are not only diffeomorphisms but also closed shifts of the B field,
or what we know as gauge transformations. In this way, the gauge symmetries of the
NS-NS sector of type II supergravity are built into the geometric description. Using the
generalisation of vectors and Lie brackets, one can proceed by analogy with conventional
differential geometry, defining connections on E and a generalised metric, which defines
an O(d) x O(d) C O(d, d) structure. The key point is that the structures that arise are
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directly applicable to physics, in particular to string theory and supergravity.

Let us return to the generalised Calabi—Yau metric example of the previous section and
briefly sketch how the pair of closed polyforms define a torsion-free structure in O(6,6) x R*
generalised geometry [108,109,111]. The generalised tangent bundle E ~ TM @ T*M
admits a natural O(6,6) metric 1. The two polyforms ®* can then be viewed as sections of
the positive and negative helicity Spin(6, 6) spinor bundles? associated to E, each stabilised
by a different SU(3,3) subgroup of Spin(6,6). Therefore, each ®* individually defines a
generalised SU(3, 3) structure. The compatibility conditions imply that their common

stability group is SU(3) x SU(3), so that the various structure groups embed as

0(6,6) x R* 5 SU(3,3)s for &+
U U (2.10)
SU(3,3)_ for = D> SU(3) x SU(3) for {®T, P~}

Note that the two SU(3) stabiliser groups are precisely the groups preserving Xf and
X5 in (2.3). The integrability conditions d®* = 0 are equivalent to the existence of a
torsion-free generalised connection compatible with the relevant SU(3, 3)+ structure.

It is natural to ask how these structures and their integrability conditions are extended
when one considers generic backgrounds, for example including R-R fluxes. These are the
questions we address in chapter 3. In identifying the relevant objects in the generalised
geometry, and how they connect to conventional notions of G-structures, it will be useful
to have a range of examples of N/ = 2 backgrounds. To this end, a number of simple
cases, with and without R-R fluxes and in both type II and M-theory, are summarised
in appendix A, along with more details of the Calabi—Yau and generalised Calabi—Yau
metric cases.

One can think of O(d,d) x R* generalised geometry as geometrising the NS-NS sector
of supergravity. If we want to describe generic flux backgrounds with R-R fluxes in type II
theories or four-form flux in M-theory, the relevant extension is Ey(g) x R* generalised

geometry.

2.3 Eg@ X RT generalised geometry

Eq@) x R* or exceptional generalised geometry is the study of structures on a vector
bundle known as a generalised tangent bundle E, where F admits a unique action of the
Eq(q) group [135,136]. We can define a generalised frame bundle F for E as an Eqq) x Rt
principal bundle. There is a generalised Lie derivative [136,137,178] which encodes the
infinitesimal symmetries, diffeomorphisms and gauge transformations, of the supergravity
theory, and one can use it to define generalised torsion and the analogue of the Levi-

Civita connection [137,138]. Generalised tensors are defined as sections of vector bundles

2In making this identification there is an arbitrary scaling factor that can be viewed as promoting the
0(6, 6) action to an O(6,6) x RT action, corresponding to the dilaton degree of freedom [124,177].
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transforming in some representation of Eg(g) x R*. A generalised G-structure is then
defined by a set of generalised tensors that are invariant under the action of a subgroup
G C Eq(g)- Equivalently, it is a choice of G principal sub-bundle of the generalised frame
bundle P C F. The notion of an integrable generalised structure as one with vanishing
intrinsic torsion then follows in analogy to the conventional case [143]. We now summarise

the key points we need, relegating some details to appendix B.

For M-theory on a manifold M of dimension d < 7, the generalised tangent bundle is
E~TM& N*T*M & N°T*M @ (T*M @ N"T*M). (2.11)

For a type II theory on a (d — 1)-dimensional manifold M, the generalised tangent bundle

1S
E~TM@®T*M & ANET*M © NT*M @ (T*M ® A°T*M), (2.12)

where + refers to even- or odd-degree forms for type IIA or IIB respectively. For type
ITA, this is just a dimensional reduction of the M-theory case. For type IIB, this can be

rewritten in a way that stresses the SL(2; R) symmetry as
E~TM® (S@T*M)®dNT*M @ (S AN°T*M) & (T*M @ \°T*M), (2.13)

where S is an R? bundle transforming as a doublet of SL(2;R). In all cases the generalised
tangent bundle is an Eg4) X RT vector bundle. For example, for d = 7 it transforms in
the 56, representation, where the subscript denotes the R™ weight. By definition, a scalar
field of weight p, transforming in the representation 1, is a section of (det T M yp/(9=d) 3

The generalised frame bundle F is an Eq@) % R* principal bundle constructed from
frames for E. One defines generalised tensors as sections of the vector bundles associated
with different Eg(q) X R* representations. Of particular interest is the adjoint bundle ad F,

corresponding to the adjoint representation of Ey4) X R*. In M-theory we have
ad FE~R@(TM @T*M) @ N3T*M & NST*M @ N*TM @ AT M, (2.14)
while in type II

adF ~R& [R®ATM @ AT*M)| 215
® [(TM @ T*M) ® N*T*M & N’TM] @ [ATTM & ATT*M] '

where the upper and lower signs refer to type IIA and type IIB respectively. For IIB this

3Since supersymmetric backgrounds are orientable, we can assume det T*M is trivial. A discussion of
fractional density bundles can be found in [179].
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can also be written as

adF ~R& (TM @T*M) & (S® 5% )@ (S®NTM) & (S ® ANT*M)

(2.16)
ONTM @ NT*M & (S @ NSTM) @ (S @ A°T* M),

where the subscript on (S ® S*)y indicates that one takes the traceless part. For d =7
these bundles transform in the 1¢ 4+ 133¢ representation, where the singlet is the part

generating the RT action.

The generalised tangent bundle is actually defined as an extension, so that there is a
non-trivial patching between the tensor components. In M-theory, on the overlap of two
local patches U; N U; of M, a generalised vector V' € I'(E) is patched by

Vi = etbantdhan (2.17)

where A(;;) and [X(ij) are locally two- and five-forms respectively, which can be identified as
sections of ad F', so that e T446) is the exponentiated adjoint action. The isomorph-
isms (2.11) and (2.14) depend on a pair of potentials A € T(A3T*M) and A € D(AST*M)

via the exponentiated adjoint action
V= eA+A‘7, R =R e*A*A7 (2.18)

where V € I'(E) and R € I'(ad F), the “untwisted” objects V and R are sections of
TM&NT*M&--- and R® (TMQT*M)& - - - respectively, and A and A are patched by

A = Ag) + dAg), Ay = Ag) + dAg) = 305 A A, (2.19)
The corresponding gauge-invariant field strengths
F =dA, F=dA-1ANF, (2.20)

are precisely the supergravity objects defined in (B.24). The type II theories are similarly
patched. For type IIB we have

dAL  +dA

where A ) and ./~\(7;j) are locally a pair of one-forms and a three-form respectively. The

(ij
relations between the twisted and untwisted objects are written as

V =By R=eBHCOReB'-C (2.22)
with the corresponding three- and five-form field strengths given by
F' = dB’, F=dC + i¢;;B' N FY, (2.23)
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where F'! = H, F? = F3 and F are the usual supergravity field strengths, defined in (B.53).
We discuss how to include a non-zero axion-dilaton in appendix B.3, following [139].
The differential structure of the generalised tangent bundle is captured by a gen-
eralisation of the Lie derivative that encodes the bosonic symmetries of supergravity,
namely diffeomorphisms and form-field gauge transformations. Given a generalised vector
field V € I'(E), one can define the action of the generalised Lie derivative (or Dorfman
derivative) Ly on any generalised tensor. For example, its action on generalised vectors is
given in (B.16) and (B.45), and on sections of ad F' in (B.17) and (B.46). The generalised
Lie derivative endows E with the structure of a Leibniz algebroid [180] and will play an

essential role in defining the integrability conditions on the generalised structures.
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Chapter 3

Exceptional Calabi—Yau

backgrounds

In this chapter we define the analogue of Calabi-Yau geometry for generic D = 4, N' = 2
flux backgrounds in type II supergravity and M-theory. We show that solutions of the
Killing spinor equations are in one-to-one correspondence with integrable, globally defined
structures in E7(7) x R* generalised geometry. Such “exceptional Calabi—Yau” geometries
are determined by two generalised objects that parametrise hyper- and vector-multiplet
degrees of freedom and generalise conventional complex, symplectic and hyper-Kéahler
geometries. The integrability conditions for both hyper- and vector-multiplet structures
are given by the vanishing of moment maps for the “generalised diffeomorphism group”
of diffeomorphisms combined with gauge transformations. We give a number of explicit
examples and discuss the structure of the moduli spaces of solutions. We then extend our
construction to D =5 and D = 6 flux backgrounds preserving eight supercharges, where

similar structures appear.

3.1 Introduction

We are searching for a generalisation of the notion of a Calabi—Yau manifold to back-
grounds including both NS-NS and R-R flux. We will show that exceptional generalised
geometry [135-138] gives precisely such a reformulation: the supersymmetric background
defines an integrable generalised structure, which we call an “exceptional Calabi—Yau”
(ECY) geometry.! The tensors w and €2 are replaced by a pair of generalised structures
that interpolate between complex, symplectic and hyper-Kahler geometries. With respect
to the N' = 2 supersymmetry, one structure is naturally associated to hypermultiplets and
the other to vector multiplets, and the integrability conditions, defined using generalised

intrinsic torsion [143], have an elegant interpretation in terms of moment maps.

'Tn this thesis, we take “integrable” to mean first-order integrability or, equivalently, vanishing intrinsic
torsion. We have not made any investigations into whether first-order integrability implies full integrability
for the structures we consider, or even how to define obstructions to higher-order integrability.
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The two generalised structures defining generic N' = 2, D = 4 backgrounds are invariant
under Spin*(12) and Eg(9) subgroups of the Er7) x R* acting on the generalised tangent
space. We refer to them as H and V structures respectively, standing for “hypermultiplet”
and “vector-multiplet”. If compatible, together they define an HV structure that is
invariant under SU(6). It is then natural to define an ECY geometry as one that admits
an integrable HV structure. Such structures were first introduced in the context of type 11
theories in [181]. Since the supersymmetry parameters transform under H; = SU(8) in the
exceptional generalised geometry, the SU(6) structure appears as SU(6) is the stabiliser
group of a pair of Killing spinors. Some steps towards rephrasing supersymmetry in terms
of integrable generalised structures in the N’ = 1 case, where the structure is SU(7), were
taken in [136] in M-theory and in [181] in type II. The full set of N" =1 conditions, written
using a particular generalised connection, were given in [182], and this was extended to
N = 2in [172]. The four-dimensional effective theories in both N =1 and N = 2 have
been considered in [136,181,183].

For each structure, we show that the integrability conditions correspond to the existence
of a torsion-free G-compatible generalised connection. This follows the analysis of [143]
where it was shown that there is a natural definition of intrinsic torsion for generalised
G-structures, and one can define generalised special holonomy as structures withG C Hy
and vanishing generalised intrinsic torsion. Supersymmetric backgrounds of type II and
eleven-dimensional supergravity in various dimensions are constrained to have generalised
special holonomy in both the Minkowski [143,144] and AdS [145] case. Here, we use the
same notion of generalised intrinsic torsion to prove that our integrability conditions are

equivalent to the Killing spinor equations.

As first noted in [181], the infinite-dimensional spaces of hypermultiplet and vector-
multiplet structures admit hyper-Kéhler and special Kahler metrics respectively. Strikingly,
we find that the integrability conditions for each can be formulated as the vanishing of the
corresponding moment maps for the action of the generalised diffeomorphism group. The
moduli spaces of structures are then given by a hyper-Kéahler or symplectic quotient. For
ECY geometries there is an additional integrability condition that involves both structures.
That differential conditions appear as moment maps on infinite-dimensional spaces is
a ubiquitous phenomenon [184,185]. Examples include the Atiyah—Bott description
of flat gauge connections on a Riemann surface [186], the Donaldson—Uhlenbeck—Yau
equations [187-189], the Hitchin equations [190], and even the equations for K&hler—Einstein
metrics [191,192]. In our case we see that there are also moment maps for geometries
defining generalisations of complex and symplectic structures that, in addition, use the
full (generalised) diffeomorphism group.

Physically the appearance of moment maps is natural. It is possible to reformulate the
full ten- or eleven-dimensional supergravity as a four-dimensional N' = 2 theory [123, 181,
193]. The Spin*(12) structures then naturally parametrise an infinite-dimensional space of

hypermultiplets, while the Eg(,) structures encode an infinite-dimensional space of vector
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multiplets. This is the origin of our names for the two types of structures. The N = 2
theory will be gauged, and supersymmetry implies that the gauging defines a triplet of
moment maps on the hypermultiplets and a single moment map on the vector multiplets
(see for example [194]). This structure was already noted in [181], where it was pointed
out that the gauged symmetry was simply the R-R gauge transformations. However,
for generic backgrounds, as we show here, not only the R-R gauge transformations but
actually the whole set of generalised diffeomorphisms are gauged, including NS-NS gauge
transformations and conventional diffeomorphisms. The integrability conditions can then
be directly translated into the vanishing of the gaugino, hyperino and gravitino variations,
following a similar analysis for A/ = 1 backgrounds in [136,181,182,195]. In making this
translation we partly rephrase the standard conditions, as given in [196-198|, showing that
the gaugino variation generically implies a vanishing of the vector-multiplet moment map.

Our formalism also applies to both type II and M-theory backgrounds in D = 5 and
D = 6 preserving eight supercharges. The hypermultiplet structure is always of the same
form, but the second generalised structure that is compatible with it is dependent on the
case in hand. As we discuss in the next chapter, AdS backgrounds can also be described
in this formalism.

Starting in section 3.2 we define the relevant generalised structures for N =2, D =4
backgrounds. We discuss the integrability conditions in section 3.3. We give a number
of examples that we hope will clarify some of the more abstract constructions. More
technical aspects, such as the equivalence of integrability with torsion-free G-structures,
the origin of the integrability conditions from gauged supergravity and the moduli space
of supersymmetric compactifications, are all in section 3.4. We discuss the extension to

D = 5,6 backgrounds in section 3.5.

3.1.1 Supersymmetric backgrounds in type II and M-theory

We consider type II and M-theory spacetimes of the form RP~51 x M, with a warped
product metric
ds? = ?2ds?(RP11) + ds? (M), (3.1)

where A is a scalar function on M. Initially we will assume D = 4 and hence M is
six-dimensional for type II and seven-dimensional for M-theory. For the type II theories we
use the string frame metric so that the warp factors for type II and M-theory are related
by A = Aym + %gb, where ¢ is the dilaton. We allow generic fluxes compatible with the
Lorentz symmetry of R3!. Thus for M-theory, of the eleven-dimensional four-form flux F

we keep the components

le...m4 = J mi..myg> le..‘m7 - (*F)ml...mm (32)

where m = 1,...,7 are indices on M, while for type II we use the democratic formalism [199]

and keep only the flux components that lie entirely on M.
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In M-theory, the eleven-dimensional spinors € can be decomposed into four- and

seven-dimensional spinors n;r and ¢; respectively according to
e=n ®e +n; ®e+c.c. (3.3)

where £ denotes the chirality of n;t and we add the charge conjugate. The internal spinor
e is complex, and can be thought of as a pair of real Spin(7) spinors ¢ = Ree +ilme. The

Killing spinor equations read [200-203]

1 ni...n ni.nansn. 117 ny...n
Vme + ﬁFnl..ﬂM(’Ym Lol — 85m 1'7 213 4)6 — 1o gif'mni..ng” b = O,
1

V"' Ve + (OmA)y™e — %le.‘.m47m1...m4€ - %7! my.mgY e =0,

where V is the Levi-Civita connection for the metric on M and 4™ are the Cliff(7;R)
gamma matrices. These imply that F' vanishes for Minkowski backgrounds [200], since it

can be supported only by a cosmological constant.

There are similar expressions for the Killing spinor equations in type II (see for
example [111]). In this case, there are a pair of real ten-dimensional spinors {e1,e2}. The

most general decomposition under Spin(3,1) x Spin(6) is [172]

. + o
H=afe (L) e 2] e (3.5)
€2 X1 X2

where 4+ denotes the chirality, we add the charge conjugate and the upper and lower
signs refer to type ITA and IIB respectively. This choice of sign corresponds to the two
different embeddings of Spin(6) ~ SU(4) C SU(8): one for type IIA and one for type IIB,
corresponding to the decompositions 8 = 4 + 4 and 8 = 4 + 4 respectively. We see the

internal spinors can be combined into two, complex, eight-component objects

+ o+
X1 X2
€1 = ~ s €2 = s (3.6)
<XT> (x?)

which for type ITA is simply the lift to the d = 7 complex spinors of the M-theory case.
The standard spinor ansatz (2.3) corresponds to taking y; = 0.

In both type II and M-theory, the gamma matrices generate an action of SU(8) on the
eight-component spinors ¢;. For N/ = 2 backgrounds we have two independent solutions, €;
and e, to the Killing spinor equations. With respect to the SU(8) action, the solutions are
thus invariant under an SU(6) subgroup. In E7) x RY generalised geometry this SU(8)
action is a local symmetry [137,138]. From this perspective, as stressed in [143,172,181],

we can view the A/ = 2 background as defining a generalised SU(6) structure
N =2 background {e;,e2} <= generalised SU(6) structure. (3.7)
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Understanding how this SU(6) structure is defined and its integrability conditions, along

with the analogous structures in D =5 and D = 6, will be the central goal of this chapter.

3.2  Eg(r) structures

We now show that a generic N' = 2, D = 4 background defines a pair of generalised
structures in Eq7) X R* generalised geometry. For type II backgrounds this pair was first
identified in [181]. We will turn to the integrability conditions in the next section.

The idea of a generalised G-structure is as follows. In conventional geometry, the
generic structure group of the tangent bundle TM of a d-dimensional manifold M is
GL(d;R). The existence of a G-structure implies that the structure group reduces to
G C GL(d;R). It can be defined by a set of tensors {Z} that are stabilised by the action
of G, or alternatively as a principal G-sub-bundle Py of the GL(d;R) frame bundle F.
In generalised geometry, one considers an extended tangent bundle E which admits the
action of a group larger than GL(d;R). For us the relevant generalised geometry will
have an action of Er ) x R*. One can define frames for £ and a corresponding principal
E7(7) X R™ bundle, called the generalised frame bundle F'. A generalised G-structure is then
defined by a set of generalised tensors that are invariant under the action of a subgroup
G C Eq(7) x R*. Equivalently, it is a principal G-sub-bundle Pg, of the generalised frame
bundle F.

The two generalised G-structures relevant to ' = 2, D = 4 backgrounds are?3

hypermultiplet structure, J, G = Spin*(12), (3.8)
vector-multiplet structure, K G = Eg(2). .

We will often refer to these as H and V structures respectively. As we will see, we can
impose two compatibility conditions between the structures such that their common
stabiliser group is Spin*(12) N Eg(2) = SU(6), defining

HYV structure, {Jo, K} G =SU(6). (3.9)

We see that the generalisation of the embeddings (2.4) and (2.10) for Calabi-Yau and

generalised Calabi—Yau metrics respectively is given by

E7(7) X R+ D) Spln*(12) for Ja
U U (3.10)
E6(2) for K > SU(G) for {Ja, K}

The SU(6) group is the same one that stabilises the pair of SU(8) Killing spinors {e1, €2}.

2In [181] these were denoted K, and A = 2 Re L respectively.
3Spin*(12) is the double cover of SO*(12), the latter corresponding to a particular real form of the
complex SO(12;C) Lie algebra [204].
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hyper vector

E Gframe G = G =
™ GL(6) Sp(6;R)  w  SL(3;C)
TMeT*M 0(6,6) x Rt SU(3,3), @t SU(3,3)- &
TMeT"MSNT"Me... E7(7) x RT Spin*(12) J, E6(2) K

Table 3.1: The (generalised) tangent bundles and G-structures in conventional, generalised
complex and exceptional generalised geometry for type IIB supergravity. We include the
group Game that acts on the (generalised) frame bundle, the reduced structure group G
of the symplectic, complex, generalised complex, vector- or hypermultiplet structure, and
the invariant object = that defines the structure.

These structures are generalisations of the symplectic and complex structures on
Calabi—Yau manifolds in type II compactifications. Focussing on type IIB, in table 3.2
we list the (generalised) tangent bundles and structures that appear in conventional and
generalised O(d, d) x Rt and E7(7) X RT geometries. We see that the H structure generalises
the symplectic structure w (or the pure spinor ®*), while the V structure generalises the
complex structure  (or the pure spinor ®~). For type ITA the situation is reversed, and
the V and H structures generalise w and 2 respectively.

Recall that the moduli spaces of (integrable) symplectic and complex structures of
Calabi-Yau manifolds are associated with A" = 2, D = 4 hypermultiplets and vector
multiplets in type II theories. The same thing happens here: the moduli space of integrable
Spin*(12) structures defines fields in hypermultiplets and that of integrable Eg(2) structures
defines fields in vector multiplets, hence the names. In fact, one can also consider
the infinite-dimensional space of all such structures, without imposing any integrability
conditions, and these too can naturally be associated with hypermultiplets and vector
multiplets. As described in [123,181, 193], one can view this structure as arising from
a rewriting of the full ten- or eleven-dimensional theory, analogous to the construction
in [146], but with only eight supercharges manifest. The local SO(9,1) Lorentz symmetry
is broken and the degrees of freedom can be repackaged into N' = 2, D = 4 multiplets.
However, since all modes are kept — there is no Kaluza—Klein truncation — the hyper- and
vector-multiplet spaces are infinite dimensional.

We now define H and V structures, discuss the infinite-dimensional spaces of structures,
and, in each case, show how the various examples of N' = 2, D = 4 backgrounds given in
appendix A define J, and K.

3.2.1 Hypermultiplet structures

The idea of a hypermultiplet structure (or H structure) was first introduced in [181] in the

context of type II theories. Formally we have:
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Definition. An Eq(7y hypermultiplet structure is a Spin*(12) C Eq(7) X R* generalised

structure.

In other words, it is a Spin*(12) principal sub-bundle IBSpin*(lQ) of the generalised frame
bundle F. More concretely, we can define the structure by choosing a set of invariant
generalised tensors. The relevant objects are a triplet of sections of a weighted adjoint
bundle

Jo €T(ad F @ (det T*M)V?) o =1,2,3, (3.11)

such that they transform in the 133; representation of E77) x RT. We require them
to define a highest weight sup subalgebra of e7(7), which is the necessary and sufficient

condition for them to be invariant under Spin*(12). We can write the algebra as
[Ja» Jg] = 2K€a8yJ, (3.12)

where & is a section of (det T*M)'/? and the commutator is simply the commutator in the
adjoint representation of Ez(7) x R*, defined in (B.11) and (B.40). The norms of the J,
calculated using the e7(7) Killing form given in (B.31) and (B.60), are then fixed to be

tr(Jadg) = —K>0up- (3.13)

As described in [181], decomposing under the SU(8) subgroup? of E7(7), one can view the
corresponding “untwisted” objects J, as being constructed from bilinears of the Killing
spinors ¢; of the form ay €;€j, where aéj are the Pauli matrices.

A key point for us, first noted in [181], is that the infinite-dimensional space of H
structures admits a natural hyper-Kéhler metric. To define the space of structures, note
that, at a particular point € M, the structure J,|, is invariant under Spin*(12) so it

can be viewed as fixing a point in the homogeneous space
Jaly, € W = Ez(y x RY/Spin*(12). (3.14)
One can then consider the fibre bundle of homogeneous spaces

W — ZH
i (3.15)
M

constructed by taking a quotient Zy = F /G of the generalised frame bundle F by the
structure group G = Spin*(12). Choosing an H structure is equivalent to choosing a

section of Zj;. Thus the infinite-dimensional space of all possible H structures is simply

“The actual subgroup is SU(8)/Z but the discrete group factors are not important for the work in this
thesis.
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the space of smooth sections,
space of hypermultiplet structures Ag = I'(Zg). (3.16)

Crucially, the fibres W of Zp are themselves pseudo-Riemannian hyper-Kahler spaces. In
fact W is a hyper-Kéhler cone over a pseudo-Riemannian symmetric quaternionic-Kéhler

space, also known as a Wolf space,
W/H* = Eq(7)/(Spin*(12) x SU(2)), (3.17)

where the action of the quaternions H* mods out by SU(2) x R*. The Riemannian
symmetric quaternionic-Kéhler spaces were first considered by Wolf in [205] and classified
by Alekseevsky in [206], while the pseudo-Riemannian case was analysed by Alekseevsky
and Cortés [207], and (3.17) is indeed included in their list. Recall that one can always
construct a hyper-Kéhler cone, known as the Swann bundle, over any quaternionic-Kéhler
space [208]. In this case the cone directions are simply the SU(2) bundle together with
the overall RT scaling. The hyper-Kahler geometry on W, as first described in [209], is

summarised in appendix E.2.

The hyper-Kéhler geometry on Ay is inherited directly from the hyper-Kéhler geometry
of the W fibres of Zy;. This is in much the same way that the infinite-dimensional space of
smooth Riemannian metrics on a compact d-dimensional manifold (which can be viewed as
the space of sections of a GL(d;R)/O(d) homogeneous fibre bundle) is itself a Riemannian
space [210-212]. The construction follows that on W. Concretely, consider a point o € Ay,
corresponding to a choice of section o(z) € T'(Zy). Equivalently, given a point o € Ay
we have a triplet of sections J,(z). Formally, one can think of J,(z)[o] as a triplet of
functions on Agy taking values in the space of sections I'(ad F @ (det T*M)'/?)

Jo: A — T(ad F @ (det T*M)Y/?). (3.18)

The tangent space T, Ay at o is spanned by vectors v € T, Ay that can be viewed as a small
deformation of the structure J,(z). Formally, we can define the change v, (x) in J,(z),
given by v acting on the section-valued functions J,, that is vo, = v(Jy) = 1,0J,, Where &
is the exterior derivative on Ay. By definition, v, (z) is a section of ad F @ (det T*M)'/2.

At each point o it can always be written as
va(z) = [R(2), Ja()], (3.19)

where R(z) is a section of the e7(7) @ R adjoint bundle ad F. Note that only elements
that are not in spinj, actually generate non-zero v,. Decomposing ad F ~ad pSpin*(lQ) &)

ad PSJ;) in*(12) where pspin*(12) is the generalised G-structure defined by J,, this means
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formally we can also identify
Ty An 2 T'(ad Paye(19) @ (det TM)'/?). (3.20)

Given two tangent vectors v, w € T, Ay, we then define a triplet of symplectic forms at

the point o € Ay, such that the symplectic products between v and w are given by

Qo (v,w) = €apy /M tr(vgws). (3.21)

Recall that v, (z) and w,(2) are sections of ad F@ (det T*M)'/2. Thus tr(vgws ) is a section
of det T*M and can indeed be integrated over M. These forms define the hyper-Kahler
structure.

The geometry on Ay is actually itself a hyper-Kéhler cone. There is a global SU(2) x R
action that rotates and rescales the structures J,. This means that one can define a
hyper-Kahler potential [208], a real function x which is a Kéhler potential for each of the

three symplectic structures. On Ay it is given by the functional

X = ;/ K2, (3.22)
M

where 2 is the density that depends on the choice of structure o(x) € I'(Zy) through (3.12).
In terms of the Killing spinors ¢;, the global SU(2) symmetry corresponds to the fact that,
under the decompositions (3.3) and (3.5), the ¢; are determined only up to global U(2)
rotations of the pair of four-dimensional spinors n;". Thus the global SU(2) action on
J,, is simply part of the four-dimensional N' = 2 R-symmetry. The global RT rescaling
corresponds to shifting the warp factor A in (3.1) by a constant, and then absorbing
this in a constant conformal rescaling of the flat metric ds?(R*!). Modding out by these
symmetries, we see that the physical space of structures is actually an infinite-dimensional
quaternionic-Kahler space. As we have mentioned, this structure on Ay can be viewed,
following [123,181,193], as a rewriting of the full ten- or eleven-dimensional supergravity
theory as a four-dimensional A/ = 2 theory coupled to an infinite number of hypermultiplets,
corresponding to the full tower of Kaluza—Klein modes parametrising Ag. Physically,
the Swann bundle structure corresponds to coupling hypermultiplets to superconformal
gravity [213-215].

3.2.2 Vector-multiplet structures

Vector-multiplet structures (or V structures) were also first introduced in [181] in the

context of type II theories. Formally we have:

Definition. An Ey7) vector-multiplet structure is an Egg) C Eg7) x R* generalised

structure.
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In other words, it is an Eg(9) principal sub-bundle I5E6(2) of the generalised frame bundle
F'. The corresponding invariant generalised tensor is a section of the generalised tangent
bundle

K eT'(E), (3.23)

which we recall transforms in the 561 representation of Er(7) x RT. This tensor is almost

generic, the only requirement is that it satisfies
q(K) >0, (3.24)

where ¢ is the quartic invariant of E7(7).5 This ensures that the stabiliser group is Eg(z) [216].
As will see below when we discuss the geometry of the space of V structures following [181],
one can use ¢(K) to construct a second invariant generalised vector K , and it is often

convenient to consider the complex object
X = K +iK. (3.25)

Decomposing under the SU(8) subgroup of E7(7), one can view the corresponding “untwisted”

objects X as being constructed from bilinears of the Killing spinors €; of the form €/ eieJT =

616;F — 626?.
In this case, the infinite-dimensional space of V structures admits a natural rigid (or
affine) special Kahler metric [181]. The structure K|, at a particular point x € M fixes a

point in the homogeneous space
K|, € P =Ezxz x RY/Eg(y). (3.26)
One can then consider the fibre bundle of homogeneous spaces

P— ZV
| (3.27)
M

constructed by taking a quotient Zy = F /G of the generalised frame bundle F by the
structure group G = Eg(z). Choosing a V structure is equivalent to choosing a section of
Zv. Thus the infinite-dimensional space of all possible V structures is simply the space of

smooth sections,
space of vector-multiplet structures Ay = I'(Zy). (3.28)

The space of K is an open subset of I'(E), thus we can identify the space of V structures

Recall that E7(7) can be defined as the group preserving a symplectic invariant s and a symmetric
quartic invariant q. Given the RT weight of E, note that ¢(K) € T'((det T*M)?).
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Ay = {K e T(E) : ¢(K) > 0}. (3.29)

Note that I'(E) is a vector space, and hence we have a natural set of local flat coordinates
on Ay, fixed by choosing a frame for E. The decomposition into conventional tensors as

in (B.6) and (B.35) is an example of such a choice.

The special Kéhler metric on Ay is again inherited from the special Kéhler metric on
P, the homogeneous space fibres of Zy. (Special Kéahler geometry is reviewed in [217,218]
and summarised in appendix E.1.) Recall that one can always define a complex cone over
a local special Kahler manifold to give the corresponding rigid special K&hler manifold.
The Riemannian symmetric spaces that admit local special Kahler metrics were analysed
in [219,220] and include the case E7(_s5)/(Eg x U(1)). Here we need a pseudo-Riemannian

form based on E(7), so the relevant space is
P/C" = Ez7)/(Eg(2) x U(1)). (3.30)

Here the C* action is generated by the U(1) bundle together with the overall R™ scaling. The
rigid special Kéhler geometry on Ay can be formulated in analogy to Hitchin’s construction
of the metric on the space of SL(3;C) structures [221] and SU(3, 3) structures [108]. The
space P is a “prehomogeneous vector space” [222], that is, it is an open orbit of E7(7) X Rt
in the real 56; representation. The open subset is defined by the condition ¢(K) > 0.
Consider a point K € Ay. The vectors in the tangent space T Ay at K can be viewed
as a small deformation of K, which are just sections of F, hence Tx Ay ~ I'(E). Given
v,w € Tk Ay, the fibre-wise E(7) symplectic invariant s then defines a symplectic form (2
on Ay by

Qmm_ﬂﬁ@m, (3.31)

where, since sections of E are weighted objects, s(v, w) is a section of det 7" M and hence it
can be integrated over M. As reviewed in appendix E.1, special Kéhler geometry requires
the existence of a flat connection preserving 2. Here, the vector-space structure of I'( E)
provides natural flat coordinates on Ay, and hence defines a flat connection with respect
to which € is by definition constant. We can then use the quartic invariant to define a
function H that determines the complex structure and hence the metric (E.4). We define

the real Hitchin functional

H:/\@my (3.32)
M

where again the weight of K means that \/q(K) € I'(det T*M). This defines a second
invariant tensor K € I'(E) ~ Tx Ay as the corresponding Hamiltonian vector field

10 = —0H, (3.33)
where 4 is the exterior derivative on Ay, and hence an invariant complex generalised vector
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X = K +iK. The two real invariants correspond to the two singlets in the decomposition
56 =1+ 1+ 27 + 27 under Eg(2) C E7(7). The metric on Ay is given by the Hessian

0H

Hyyn = ———r
MN SKMSKN’

(3.34)

where M =1, ...,56 denote the components of K. The definition of the metric is equivalent
to choosing a complex structure given by ZM N = —§KM /0K and implies that —H is the
Kihler potential for the special Kihler metric on Ay.% In these expressions we are using
the flat coordinates on Ay defined by the vector space structure on I'(E'). To see the more
conventional description of special Kéhler geometry in terms of a holomorphic prepotential
F, one needs to switch to a particular class of complex coordinates, as described in [218].

On any rigid special Kahler geometry there is a global C* symmetry, such that the
quotient space is, by definition, a local special Kéhler geometry. On Ay, the action of
C* is constant rescaling and phase-rotation of the invariant tensor X. The U(1) part is
simply the overall U(1) factor of the four-dimensional N’ = 2 R-symmetry, while, as for
the hypermultiplet structure, the RT action is a reparametrisation of the warp factor A.
Modding out by this symmetry, the physical space of structures Ay /C* is an infinite-
dimensional local special Kéhler space. This is in line with the discussion of [123,181,193],
where we view Ay /C* as the space of vector-multiplet degrees of freedom, coming from
rewriting the full ten- or eleven-dimensional supergravity theory as a four-dimensional
N = 2 theory. Physically, the cone structure on Ay corresponds to coupling the vector
multiplets to superconformal gravity [213-215].

3.2.3 Exceptional Calabi—Yau structures

In the previous sections, we defined two generalised structures that give the extension
of complex and symplectic geometry of Calabi—Yau manifolds for generic flux solutions,
but alone these are not enough to characterise a supersymmetric background. Recall that
N = 2 backgrounds define a generalised SU(6) structure [143,181], this SU(6) being the
same group that stabilises the A" = 2 Killing spinors. Formally we define:

Definition. An E;;) HV structure is an SU(6) C E7(7) x R generalised structure.

In other words, an SU(6) principal sub-bundle pSU(G) of the generalised frame bundle F.
If the SU(6) structure is integrable, we refer to it as “exceptional Calabi-Yau” or ECY.
For type II backgrounds it is the flux generalisation of a Calabi—Yau three-fold, while for
M-theory it is the generalisation of the product of a Calabi-Yau three-fold and S!.

As in the simpler Calabi—Yau case, to ensure that the background is indeed N' = 2 we need
to impose a compatibility condition between the H and V structures such that together
they define a generalised SU(6) structure. The common stabiliser group Spin*(12) N Eg(2)
of the pair {J,, K} is SU(6) if and only if J, and K satisfy two compatibility conditions.

5Note that our conventions for the E7(7) symplectic form mean that the metric here is é that in [181].
Also our normalisation of the quartic invariant is fixed relative to the symplectic form by the relation (E.7).
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Definition. The two structures J, and K are compatible if together they define an SU(6) C

E7(7) x R™ generalised structure. The necessary and sufficient conditions are [181]

Jo - K =0,

3.35
tI‘(JaJB) = —2v/ q(K) 50467 ( )

where - is the adjoint action 133 x 56 — 56, given in (B.10) and (B.39).”

These constraints can be thought of as the generalisations of the conditions (A.2) between
symplectic and complex structures on a Calabi—Yau manifold. Note that they are equivalent
to

Jp- X=J_-X=0, (3.36)

where J+ = J; = iJs, and the normalisation condition
lis(X, X) = 2, (3.37)

respectively, where x is the factor appearing in (3.12) and s(-, ) is the E () symplectic
invariant, given in (B.30) and (B.59).

3.2.4 Examples of E7(7) structures

We now show how the examples of N' = 2 supersymmetric backgrounds described in
appendix A each define H and V structures. We hope this will give a sense of the variety
of geometries that can be described. In the same way that generalised complex structures
can be thought of as interpolating between complex and symplectic structures, we will see
that H structures can interpolate between these and conventional hyper-Kéhler structures.
Similarly, V structures cover a wide range of possibilities, interpolating between complex,
symplectic and simple product structures. We will also check that the structures are
compatible, and so define an HV or generalised SU(6) structure. Although we do not give
the details, the structures can be calculated explicitly as Killing spinor bilinears using the
decomposition of E7(;) under SU(8).

Throughout this section we will use the “musical isomorphism” to raise indices with the
background metric g on M. For example, if w is a two-form, w! is the corresponding bivector
(wh)m? = gmP gy, Note that when the flux is non-trivial, since the compatibility and
normalisation conditions are Er7) X R* covariant, we can always check them using the

untwisted structures. For example, the compatibility condition in M-theory is

Jo K = (A Je 44 (AR = A, K)=0 & J, K=0. (3.38)

For the following examples, one can check the suy algebra (3.12) and normalisation (3.13)
of the J, using (B.11) and (B.31) for M-theory, and (B.40) and (B.60) for type IIB. The

"The second compatibility condition in (3.35) implies that R actions on J, and X are correlated.

93



normalisation (3.37) of X (or K) can be checked using the symplectic invariant, given by
(B.30) for M-theory and (B.59) for type IIB. Finally, one can check compatibility of the
structures (3.36) using the adjoint action, given by (B.10) for M-theory and (B.39) for
type IIB.

Calabi—Yau manifolds in type 1IB

Consider first type I1IB on a Calabi—Yau manifold M. The H structure is defined by the
symplectic form w on M. The decomposition of the adjoint bundle ad F in this case

follows (2.16). The H structure is given by

Ji = %ﬂniw — %if@niwjj + %iﬁniw ANwAw+ %mniwﬁ Awf A wh, (3.39)
J3 = %/ﬁ%ij —thwAw+ imwﬁ Awh,
where the SL(2;R) doublet n’ = (—i, 1) is a section of S, ¥ = —ioy is a section of

(S ® S*)g, where o3 is the second Pauli matrix, and the density is simply x* = volg,
where volg = %w A w A w is the volume form on M. Note that J3 can be thought of as a
combination of two U(1) actions embedded in Er(7), the first generated by 7 in sl and the
second generated by w A w — w! A wh. Since w? = w™!, J, is completely determined by w
alone.

Recall that in type IIB the generalised tangent bundle F has a decomposition into
tensors, given in (2.13). For a Calabi-Yau background, the V structure is defined by the

holomorphic three-form 2 simply as
X =Q. (3.40)

We can also check the compatibility conditions given the form of J, in (3.39). The adjoint
action (B.39) gives

Jp - X < —in'wfLQ + n'Q A w, J_ - X o =i Q4+ 7l A w. (3.41)

These vanish if and only if w A Q = w A Q = 0, from which we recover the standard

compatibility condition for an SU(3) structure.

CY3 x S! in M-theory

For type ITA compactifications on Calabi—Yau three-folds, the complex structure should
define the H structure. If we add the M-theory circle to this case, we expect the holomorphic
three-form {2 and the complex structure I to appear in J, — this is indeed the case. Using

the decomposition (2.14), we find

Jy=3kQ— L0,

_ _ (3.42)
Jy=3k1 — LikQAQ — Hik QP A QF,
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where the density is just the volume form x? = vol; = %iQ AQNC.
The symplectic structure on the Calabi—Yau manifold determines the V structure.

Using the decomposition (2.11), we find
X:Cﬁ—}—iw—%g/\w/\w—ig”@volp (3.43)

Using the adjoint action (B.10) and the algebraic conditions 2+ = 0, 24w = 0 and
w A Q =0, it is straightforward to show that the compatibility conditions are satisfied.

Generalised Calabi—Yau metrics in type II

This is the case first considered in [181]. The H structure is determined by the SU(3,3)+
structure pure spinors ®~ and ®* in type ITA and type IIB respectively. To see the
embedding it is natural to use the decomposition of E 7(7) under SL(2;R) x O(6,6). The
adjoint bundle was given in (2.15). The three sets of terms in brackets correspond to the
decomposition 133 = (3,1) + (1,66) + (2,32T), while the first term is just the singlet
(1,1) generating the R™ action.

The H structure is given by®

Jy = u'dT,

| | (3.44)
J3 = k(u'u; + w'u;) — sk TV,

where the upper/lower choice of sign in ®F gives the type ITA/IIB embedding, and we
have defined

i
. 1 [ -1
ul =3 < i’f) e T((det T* M)"? © (R @ ASTM)), (3.45)
K
with
K2 = (0T, dF), (3.46)
where u; = eijuj , so that u'n; = —%, and we are using the isomorphism ATTM ~

NSTM @ AN*T*M. The object J*, transforming in the O(6,6) adjoint representation
(1,66), is the generalised complex structure defined in (A.13). It is important to note that
the NS-NS B field is included in the definition of the pure spinors so that the objects J,
are honest sections of the twisted bundle ad F.

Using the adjoint action and the ¢;(7) Killing form in section 3 of [181], one can check
that the triplet satisfies the suy algebra (3.12) and is correctly normalised (3.13). The
embedding reduces to the previous examples in that, for type IIA, the pure spinor &~
corresponding to the complex structure embeds in J, and, for type IIB, we find J, contains
the symplectic structure. Note that upon taking a conventional symplectic structure, we
expect this to reduce to the type IIB case of section 3.2.4. It is important to note that
the SL(2;R) factor in each case is different: for type IIB it is S-duality, while for the

8Note that with our conventions, the 32F component CT here is equal to v/2 times the CT used in [181].
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generalised complex structure it is the commutant of the O(6,6) action. Taking this into
account, it is straightforward to show the two cases match after including a constant SU(2)

rotation of the J,.

The V structure is determined by the generalised complex structure as [181]
X = o, (3.47)

where the upper/lower choice of sign in ®* gives the type IIA/IIB embedding. Using
the symplectic invariant in section 3 of [181], rescaled by a factor of 1/4, one can check
this satisfies the normalisation condition (3.37). Notice that upon taking a conventional

complex structure, this does indeed reduce to the case of section 3.2.4.

For J, in (3.44), the adjoint action in section 3 of [181] gives
Jy - X o ul(®F, TAPE), J_ - X o @(®T, TApF), (3.48)

These vanish if (d*, TA®T) = (&+, T4dT) = 0. We recover the compatibility conditions
(A.11) for {®T,®~} to define an SU(3) x SU(3) structure.

D3-branes on HK x R? in type IIB

In this case, the hyper-Kéhler geometry on M provides a natural candidate for realising
the suy algebra. Using the structures defined in appendix A.4, we start by defining the

untwisted structure

Jo=—1kly—Yowa AN G+ Lrwh ACEACE (3.49)

2

where k2 = 22 volg includes the warp factor. The actual structure is a section of the

twisted bundle ad F, and includes the four-form potential C' and two-form potentials B’

via the adjoint action as in (2.22)
Jo = eB'HC JLe B0 (3.50)

We see explicitly that H structures can also encode hyper-Kéhler geometries.

X essentially defines the structure of the R? factor, since the hyper-Kéhler structure

was already encoded in J,. We first define the untwisted object
X = ale® (¢ — iCe) + infe® (¢ — iC2) A voly, (3.51)

where n’ = (—i, 1)’ and %wa N wg = dqp voly. The presence of five- and three-form flux

means the actual structure is a section of the twisted bundle F
X =eP'1Cx. (3.52)
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We can check the compatibility condition with J, in (3.49). This can be done using the

twisted or untwisted forms, since the twisting is an E7(7) x R* transformation. We find

Jo - X o =0’ I, - (C1 — i) — it (wh, A CF A CE)a((Gr — i) Avoly)

—in'Iy - ((C1 = iG2) A voly).

K

(3.53)

This vanishes as I, - (; = I, - voly = 0 and Cf_:wa =0.

Wrapped M5-branes on HK x R? in M-theory

The final example is that of wrapped Mb5-branes. As discussed in appendix A.5, the
geometry admits two different sets of Killing spinors depending on whether the M5-branes
wrap R? or a Kihler two-cycle in the hyper-Kihler geometry. These lead to two different
H structures.

Let us consider the Kahler two-cycle case first. Using the structure defined in ap-

pendix A.5, we can define the untwisted H structure as

ja:—lmaJr%nngga—%nnggg (3.5)
. %Iﬁ €a8~G8 N\ Gy A voly —im 6,157% A C,% A VOlﬂ,
where r = €22 vol; and the tensors
Ta = €aprCh ® & €ET(TM @ T M), (3.55)

generate the SO(3) rotations on R3. The V structure is defined by the untwisted object
X =e®Q+ieQ Avols, (3.56)

where ) = w9 + iws.

For M5-branes wrapped on R?, the untwisted structures are

Jo= kT, — thwa NG+ trwl A (3.57)

where again k% = > vol;, and

X =B+ ng) +e2(G i) A G — e (G + i) Avoly

3.58
—ie®(¢1 +iG) ® voly . (3.58)

In both cases there is a non-trivial four-form flux, so that the actual twisted structures

depend on the three-form potential A and, as in (2.18), are given by

Jo = eAJpe ™, X =X, (3.59)



It is easy to check that in both cases the algebra (3.12), normalisation and compatibility

conditions are all satisfied.

3.3 Integrability

Having given the algebraic definitions of hyper- and vector-multiplet structures, we now

need to find the differential conditions on them that imply the background is supersym-
metric. Formulations in terms of specific generalised connections have already appeared
in [172,181]. Here we would like to write conditions that use only the underlying differential
geometry, in the same way that dw = d2 = 0 depends only on the exterior derivative.
The key ingredient will be the action of the group of generalised diffeomorphisms GDiff.
Infinitesimally, this action is generated by the generalised Lie derivative Ly, and we will
see that all the conditions are encoded using this operator.

We will show that the hypermultiplet conditions arise as moment maps for the action
of GDiff on the space of structures Ay. These maps were already partially identified
in [181]. As we prove in section 3.4, in the language of G-structures, they are equivalent
to requiring that the generalised Spin*(12) structure is torsion-free. The vector-multiplet
condition similarly implies that the generalised Eg(y) structure is torsion-free. Finally we
consider integrability for an HV structure. Given integrable H and V structures, there is
an additional requirement for the generalised SU(6) structure, defined by the pair {J,, K},
to be torsion-free. In other words, the existence of compatible torsion-free Spin*(12)
and Eg(y) structures is not sufficient to imply that the SU(6) structure is torsion-free.
While not inconsistent with the general G-structure formalism, this is in contrast with
the Calabi—Yau case, where the combination of integrable and compatible symplectic and

complex structures is enough to imply the manifold is Calabi—Yau.

3.3.1 Integrability of the hypermultiplet structure

We now introduce moment maps for the action of generalised diffeomorphisms on the
infinite-dimensional space of H structures. An H structure is then integrable if the
corresponding moment maps vanish.

We denote the group of generalised diffeomorphisms — diffeomorphisms and form-field
gauge transformations — by GDiff. Infinitesimally it is generated by the generalised Lie
derivative Ly, where V is a generalised vector, that is, a section of F. Thus roughly we
can identify the Lie algebra gdiff with the space of sections I'(E). Actually this is not quite
correct since there is a kernel in the map I'(E) — goiff. For example, in M-theory, on a local
patch U; of M, we see from (B.16) that the component 7 € T'(T*U; ® ATT*U;) in V does
not contribute to Ly . Similarly, if the components w € T(A2T*U;) and o € T'(APT*U;) are
closed they do not contribute. In what follows, it is nonetheless convenient to parametrise

elements of goiff by V' € I'(E) remembering that this map is not an isomorphism.
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Suppose that o(x) € Ay is a particular choice of H structure parametrised by the
triplet J,. The change in structure generated by goiff is d.J, = Ly J,, which can be viewed

as an element of the tangent space T, Ay. Thus we have a map
p: goiff — T, A, (3.60)

such that, acting on the triplet of section-valued functions J,, defined in (3.18), the vector
py generates a change in J,
pv(Jo) = Ly Ja. (3.61)

Given an arbitrary vector field w € T, Ap, we have, from (3.21), that

1oy Qa (W) = Qa(pyv, w) = €apy /M tr((Lv Jg)ws). (3.62)

If 7 € T(A"T*M) is a top-form, so that it transforms in the 12 representation of Er7(7) X R,

then by definition
/ Ly~ :/ L, =0, (3.63)
M M

where £, is the conventional Lie derivative and v € I'(T'M) is the vector component of

the generalised vector V € I'(E). Using the Leibniz property of Ly, we then have

1oy Qo (W) = %Eaﬁ'y /M tr[(Lng)w7 — Jﬁ(Lwa)]
= —3€apy /M tr[wg(Ly Jy) + Jg(Lyw,)] (3.64)
= lwdlu’a(v)a

where § is the exterior derivative on Ay, that is, a functional derivative such that by

definition 2,0J, = wq, and

paV) = ~deamn [ wr(IaLvT), (3.65)

is a triplet of moment maps. With this result we can define what we mean by an integrable

structure:

Definition. An integrable or torsion-free hypermultiplet structure J, is one satisfying
ta (V) =0 for all V € I'(E), (3.66)
where 11, (V) is given by (3.65).

As we will show in section 3.4, these conditions are equivalent to .J, admitting a torsion-
free, compatible generalised connection. They are also the differential conditions on J,

implied by the requirement that the background admits Killing spinors preserving ' = 2
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supersymmetry in four dimensions.

3.3.2 Integrability of the vector-multiplet structure

The integrability condition for the vector-multiplet structure K also depends on the
generalised Lie derivative, but in a very direct way. Recall that K € T'(E), thus we can

consider the generalised Lie derivative along K, namely L.

Definition An integrable or torsion-free vector-multiplet structure K is one satisfying
LgK =0, (3.67)

or, in other words, K is invariant under the generalised diffeomorphism generated by itself.

As we will show in section 3.4, these conditions are equivalent to there being a torsion-
free generalised connection compatible with the generalised Egy) structure defined by
K. Furthermore, it is easy to see that it implies Lxg K = 0. In addition, using the
results of appendix C, we see that the generalised Lie derivative LxX, where X =
K +iK, is identically zero for any vector-multiplet structure K. Hence the integrability
condition (3.67) is equivalent to

LxX =0. (3.68)

Again, (3.67) is implied by the existence of N/ = 2 Killing spinors. In section 3.4.3, we will
show that (3.67) is actually equivalent to the vanishing of a moment map for the action of
GDiff on Ay.

3.3.3 Exceptional Calabi—Yau structures

Finally, we can consider the integrability conditions for the HV structure, defined by a

compatible pair {J,, K}.

Definition. An ECY geometry admits an integrable or torsion-free HV structure {J,, K},
such that J, and K are separately integrable and in addition

LxJa =0, (3.69)

or, in other words, the J,, are also invariant under the generalised diffeomorphisms generated
by K and K.

As we will show in section 3.4, these conditions are equivalent to there being a torsion-free
generalised connection compatible with the generalised SU(6) structure, defined by {J,, K'}.
Using the results of [143], this implies that these conditions are equivalent to the existence

of N' = 2 Killing spinors.
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It is important to note that the pair of compatible and integrable H and V structures
is not enough to imply that the existence of an ECY geometry. This is because there can

be a kernel in the torsion map, as can happen for conventional G-structures.’

3.3.4 Examples of integrable structures

We now return to our examples of supersymmetric N/ = 2 backgrounds and show in each
case that the relevant integrability conditions (3.66), (3.68) and (3.69) are satisfied. For
the examples of Calabi-Yau in type IIB and CY3 x S! in M-theory, we show that the
conditions are necessary and sufficient using a decomposition into SU(3) torsion classes.
The torsion classes are more complicated for the other examples, and so we show only
that the supersymmetric backgrounds give examples of integrable structures. Instead, the
equivalence of integrability and N = 2 supersymmetry is shown using generalised intrinsic
torsion in section 3.4.

There are a number of convenient calculational tricks we will use. First note that in the

(J4,J—,J3) basis, the moment map conditions are naturally written as the combinations

s = / tr(J_LyJs) = 0, P / te(JsLyJy) =0,  (3.70)
M M

and LxJ, is equivalent to LxJ; = LxJ_ = 0. We also note that, from the form of the
generalised Lie derivative (B.15) and the adjoint projection (B.14) (and the corresponding
expressions (B.44) and (B.43) in type IIB), acting on any generalised tensor o

Lya=Ly,a—R-a, (3.71)

where R € I'(ad F), R - « is the adjoint action, v is the vector component of V', £, is the
conventional Lie derivative and
dw + do for M-theory,

R= , , (3.72)
d\'+dp+do* for type 1IB,

where we are using the standard decompositions of V' given in (B.6) and (B.35). Using
the identity tr(A[B, C]) = tr(B[C, A]) and the algebra (3.12), this allows us to rewrite the

moment maps (3.65) as

(V) = _%eaﬁv /M tr(Jﬂ(['vJv - [R, Jv]))

- _%Eaﬁv/ tr(JsLoyJy) —2/ ktr(RJy).
M M

(3.73)

The final tool is that, when the background has flux, it is often useful to write

See appendix C of [98] for an explicit example of a non-integrable product structure defined by the
product of two compatible, integrable complex structures.
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the conditions using the untwisted structures .J, and X. For this we need the twisted
generalised Lie derivative ﬁv.w This is just the induced action of Ly on untwisted fields,
and is given in (B.25) for M-theory and (B.54) for type IIB. It has the same form as Ly
but includes correction terms involving the fluxes due to the p-form potentials. This can

be written as a modified R in (3.73), given by

- do—153F+d6 —1wF+oAF for M-theory
AN — 93 F +dp — 15 F — e XA FI +d6" + XA F — A F? for type 1B ’
(3.74)

The conditions for integrability on the untwisted structures are simply

N

1a(V) = —Leas, / (sl ) =0 YV,  LgX=0,  Lgda=0. (3.75)
M

Calabi—Yau in type IIB

Consider first the hypermultiplet structure (3.39). Parametrising V as in (B.35), we get
conditions for each component o, ;\i, p and &'. From the second term in (3.73), taking

each of the form-field components in turn, we find the non-zero moment maps are

,u+(5\i) x / eijnj/fzwﬁ_nd:\i o / el-jnjw Aw A dN o / eijnjdw Aw AN =0,
M M M
(3.76)
pi(6') o / €in? K Vongd&z x / €;;n’do’ =0,
M M

2

where we use £2 = volg so k%wh ox w A w, and for j

u;;(ﬁ)oc/ /ﬁz(wﬁ/\wﬁ)_ndﬁoc/ w/\dﬁcx/ dwAp=0, (3.77)
M M M

where we use k2w! A wf oc w. From this we recover dw = 0. For the vector component ¥

the only non-zero contribution is
ps(0) o /M kw1l (kw) — Ly(kw?)s(kw) + HVOngﬁﬁ(K volg) — Lys(k V01ﬁ6)_|:‘€ volg

o</ %w/\w/\ﬁgijﬁgvol(; =0,
M
(3.78)

which can be seen to vanish using dw = 0, L;w = 13dw + dizw and integrating by parts.
Turning to the conditions on X given by (3.40), from (B.45) only the 7 component of

the Dorfman derivative is non-trivial

LxX =jQANdQ =0. (3.79)

10The nomenclature here is confusing: the twisted generalised Lie derivative acts on untwisted fields.
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Notice that the integrability condition is considerable weaker than requiring an integrable
SL(3; C) structure — it only requires that the (3,1) part of d§2 vanishes. In the intrinsic
torsion language of [223], only the W5 component is set to zero, so that the underlying
almost complex structure is unconstrained.

The pair {J,, K} define an integrable generalised SU(6) structure if they are individually
integrable and also satisfy (3.69). From (B.46), we have

LxJ: x in‘wf ,dQ — n'w A dQ = 0,

(3.80)
LxJ3 o¢ —3(w* Awh)odQ — j(w* A wh)1jdQ + 11(w? A wh)udQ =0,

which sets the remaining type-(2,2) components of df2 to zero. Taken together, we have

dw = d2 = 0, as expected.

CY3 x S! in M-theory

Consider first the hypermultiplet structure (3.42). Parametrising V as in (B.6), the form

field components @ and & in the second term in (3.73) give the non-zero moment maps

u+(d))o</ /{2Qﬁ4dcbo</ C/\Q/\dﬁmx/ AdCAQ)AD =0,
M M M

(3.81)
113(5) o</ nZ‘(QMQﬁ)Jd&m/ QAd&oc/ d¢ A6 =0,
M M M
which give d¢ = 0 and ¢ A d2 = 0 as conditions, and where we have used x2Qf < ¢ A Q
and k2Qf A QF & ¢. In the intrinsic torsion language of [224], this fixes the components
{Wi, Wa, W5} and {R, V1, T1, Wy} to zero. The vector contribution is

ps(0) o /M kP L5 (KQ) + Lo(k Q) L(k Q)
oc/ CAQANLQ+CAQNA LD (3.82)
M

o</ 15:CdQAQ =0,
M

where we have used [ L;k? = 0 and the previous conditions to reach the final line. This
fixes the torsion class F to zero.

Turning to the conditions on X given by (3.43), upon using the algebraic relations we
find (3.68) simplifies to dw A w = 0, which requires the torsion classes {Wy, E + E, V2, To}
to vanish. Notice that this is weaker than requiring an integrable Sp(6;R) structure. One
can also explicitly check that (3.67) and (3.68) constrain the same torsion classes, and that
Lx X = 0 vanishes identically.

Finally, we have the additional condition that ensures the HV structure is integrable
and so defines an ECY geometry (3.69). Upon imposing the previous conditions, this

forces the remaining torsion classes to vanish. Taken together, we find (, w and 2 are
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closed, and that ¢* is a Killing vector

Generalised Calabi—Yau metrics in type II

Throughout we will use the expressions given in appendix B of [181], generalised to describe
both type ITA and IIB. The generalised vector decomposes as V =v + A + A + 7 + A+
where v is a vector, A a one-form, A a five-form, 7 is a one-form density and A* are sums

B+B+C*

of even or odd forms. From the e action we conclude that in the splitting (3.73)

we have

R =dA + (dA 1 Vv + UidAi, 3.84
j

where v = (1,0), dA acts as a “B-transform”, and the upper sign refers to type ITA and
the lower to type IIB. Thus in the moment maps for J, given in (3.44), we have the

non-zero contributions, using the trace formula given in section 3.1 of [181] and u'v; = k1,

pea) o [

(dAi,cIfF>o</ (A%,d®F) =0, (3.85)
M

M

and

ug(A)oc/ <<I>:F,dA/\<I>:F>o</ (ADT, A A DF) + (O, A A dOT) = 0,

M M

) . (3.86)

us(R) o / di =0,
M

where in the first line we have used the expression (A.13) for J iAB. From these we recover

d®¥* = 0. For the vector component we have

ps(v) o /M € (W' 0T, Ly(u'®T)) o /M(qﬁ,ﬁvqﬁ) =0, (3.87)

where we have used the identity eijﬂiﬁvuj = 0. Using £,®FT = 1,d®T + d2,®F and
integration by parts, we see that this indeed vanishes.

For the conditions involving X given by (3.47), using (3.73) we have
Lxa « (v'd®*) - a =0, (3.88)

where « is any generalised tensor, - is the relevant adjoint action and we have imposed
d®* = 0. Hence (3.68) and (3.69) are both satisfied.

D3-branes on HK x R? in type IIB

We have a non-trivial five-form flux F' in this case, so it is convenient to use the untwis-

ted structures and twisted generalised Lie derivative. Focussing on J, given in (3.49),
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from (3.73) and (3.74), the only non-zero form-field contribution to the moment maps is
ta(p) o / K2 (wh A Cf A Cg)_ndﬁ x / e? 2w A dp ox / d(e2Awa) Ap=0. (3.89)
M M M

We recover d(e?*w,) = 0. The © condition is considerably more complicated and involves
the five-form flux F' through the term 3 F' in (3.74). After some manipulation, using in

particular that e,g, tr(IgL,1,) = —eaﬁv(w%_nﬁvw,y), one finds
~ 2A ~ 2A -
o (D) x / e““wa N 1gF 4+ 2e T eqgydA A wg A gwy A G A Co. (3.90)
M

This vanishes for dA = —% * F' or more precisely it fixes the components of dA that are

transverse to (i 2.

For X given in (3.51) and using (3.74), acting on any untwisted generalised tensor &
we have

N ~

Lya=—-R-a=0, (3.91)
since we have

R=n'd(e® (¢ —iG)) +in'd(e?(¢1 — i) A voly) + a'e® (G —iG) A F =0.  (3.92)
We have used d(e®¢;) = 0 and d(e*” voly) = 0 so that the last two terms simplify to
4idA A (G — i) Avoly = (¢ —il2) A F, (3.93)

which vanishes for dA = —% * F' or more precisely it fixes the components of dA that are
in the direction of (1 2. Hence the conditions (3.68) and (3.69) are both satisfied.

We also note that it is simple to extend our description to include imaginary self-dual
three-form flux, as first considered in [225-227] and analysed in detail in the case of
hyper-Kéhler manifolds times R? in [228]. The metric, five-form flux and axion-dilaton
are of the same form as for our example, but the warp factor is no longer harmonic and

there is a non-zero three-form flux on M
F' 4iF? = dvy;(2) A 71, (3.94)

where v7(z) are analytic functions of z = x + iy, and 77 are harmonic anti-self-dual two-
forms on the hyper-Kéahler space. The moment maps are altered only in the p component,
thanks to the —eijS\i A FJ contribution to R in the presence of three-form flux, giving a
term

/ A Awa AF2 = X2 Awa AFY, (3.95)
M

which vanishes as the wedge product of a self-dual two-form w, with an anti-self-dual

two-form 77 is zero. The Ly expression is also altered thanks to the same correction,
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giving an extra term
eijﬁi(ql — ICQ) A Fi = —(Cl — 1C2) A (Fl — 1F2) (396)

But this also vanishes as F! +iF? = ~}(z)dz A 77, and dz = e 2((; + (). Hence we still

have ﬁj(d = 0 for any tensor &.

Wrapped M5-branes on HK X R3 in M-theory

In both cases we have a non-trivial four-form flux F', and so it is convenient to use untwisted

structures and the twisted generalised Lie derivative.

We first consider M5-branes wrapping a Kéhler two-cycle in the hyper-Kahler. Using
the form of J, given in (3.54), together with (3.73) and (3.74), the contribution to the

moment maps from & is

Ha () o / /-;26()¢57(Volzjj1 /\Cé A Cg)_nd& x / 2y AN dG o / d(e® ¢ ) NG, (3.97)
M M M

We recover d(e?2¢;) = 0 for i = 1,2,3. The terms in the moment maps due to & are

[ (@) o / Leapy 2 (voly ACK A () (@ A F) — k2 (wh A Ch)udid

M (3.98)

x / A NF NG+ Leas,d(@®Pws A A Gy) A
M

This vanishes upon using the expressions for the flux F' = e *® xd(e*®ws3) and the exterior
derivatives of the (;. Again, the ¥ condition is more complicated and involves the four-form

flux F' through the term 13 F in (3.74). After some manipulation, one finds

,ua(@) X / 12dA A volg Al A (Cl N1l + G ANglo + (3 A Z{)C:g)
M (3.99)
+ €apyw3 A Qﬁ A ny NgF

Again, this vanishes after imposing the conditions from (A.28).

Now consider the conditions that depend on X. For X given in (3.56), acting on any

untwisted generalised tensor & we have

Lea=-R-

(o))

: (3.100)
where R is given by
R=d(e®Q) +d(ie®Q A volz) + e2Q A F. (3.101)
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But R itself vanishes as

d(e®Q) =0, (3.102)
d(ie®Q Avols) + QA F =0, .

where we have used the expressions for the flux F' and the torsion conditions on w, and ¢;
from (A.28). Hence, both (3.68) and (3.69) are satisfied.

Next we consider M5-branes wrapping an R? plane in R3. Using the form of J, given
in (3.57), together with (3.73) and (3.74), the non-zero form-field contribution to the

moment maps is

ua(d))oc/ Hz(wg/\Cg)Jd(ZJO(/ eQAwa/\Cl/\Cg/\choc/ d(e*Pwa NG AG)AG. (3.103)
M M M

This vanishes after using the expressions in (A.31). Again, the ¢ condition is more
complicated and involves the four-form flux F' through the term 3 F in (3.74). After some

manipulation, one finds
wa(V) = / 12ea5762AdA A wg A volg Ngw,y — 4e*2w, A C1 NG NagF. (3.104)
M

This vanishes for xF = e~*2d(e*2(; A (2), or more precisely it fixes the components of dA

that are transverse to (123.

For X given in (3.58), acting on any untwisted generalised tensor & we have

Lia="L a—R-a, (3.105)

oA (¢ +iC5)
where R is given by

R=d[e®(¢1 +1i) A Gl — eA(¢F +ich)uF — d[e® (¢ + i¢2) A voly]

3.106
+e2(Q +i¢) A AF. ( )

But R vanishes as
d(e®¢ A G3) =0,

¢GLF =0, (3.107)

d(e?¢ Avoly) —eAG AGAF =0,
with similar expressions for (5. The generalised Lie derivative along X then reduces to the
Lie derivative along eA(di + igg), and we note that A does not depend on the coordinates

x or y, so that C%Q_ndA = 0. It is then simple to check that the Lie derivative along
eA(di + ng) preserves both X and .J,, and so both (3.68) and (3.69) are satisfied.
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3.4 Generalised intrinsic torsion, supersymmetry and mod-

uli spaces

In this section, we analyse the integrability conditions for the hyper- and vector-multiplet
structures using the notion of generalised intrinsic torsion, first introduced in generality
in [143] and for a specific heterotic extension of O(d,d) x RT generalised geometry in [140].
This will allow us to do two things: first to show that each integrability condition is
equivalent to the existence of a torsion-free generalised connection compatible with the
relevant structure, and second to prove, using the results of [143], that the full set of
conditions defining an ECY geometry are equivalent to solving the N = 2 Killing spinor
equations.

We then show that the integrability conditions have a simple interpretation in terms
of rewriting the full ten- or eleven-dimensional supergravity theory in terms of an N = 2,
D = 4 gauged supergravity coupled to an infinite number of hyper- and vector-multiplets,
as considered in [123,181,193]. Finally we discuss some general aspects of the moduli

spaces of structures.

3.4.1 Generalised intrinsic torsion and integrability

We start by recalling the definition of generalised intrinsic torsion given in [143]. Let
Pg C F be a principal sub-bundle of the generalised frame bundle F defining a generalised
G-structure. It is always possible to find a generalised connection D that is compatible
with Pg, however in general it will not be torsion-free. Recall that the generalised torsion

T of D is defined, given any generalised tensor « and generalised vector V € I'(E), by [137]
T(V)-a=L2a— Lya, (3.108)

where the torsion is viewed as a map T': E — ad F and T'(V') acts in the adjoint represent-
ation on a. Here L%/) is the generalised Lie derivative with the partial derivative replaced

with the covariant derivative ﬁ, that is, acting on any generalised tensor «,
LPa=(V-D)a— (D xuq V) - a. (3.109)

Let W C E* ® ad F be the space of generalised torsions. For E7(7) X R* generalised
geometry, we have [137]
W~E"@®K, (3.110)

where the dual generalised tangent bundle E* transforms as 56_1 and K is the generalised
tensor bundle corresponding to the 912_; representation. For other Ey4) X R* groups

the representations appearing in W are listed in [137].

By definition, any other generalised connection D’ compatible with Pg can be written
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as D' = D + %, where
Y=D-D el(Kg), with Kg=FE"®adPg. (3.111)
We then define a map 7: K — W as the difference of the torsions of D and D' ,
() =T -T €T (W). (3.112)
In general, the map 7 will not fill out the whole of W. Defining the image
Wg =im71 C W, (3.113)

we can then define the space of the generalised intrinsic torsion, in exact analogy to
ordinary geometry, as the part of W not spanned by Wy, that is

W& =w/Wg. (3.114)

nt

of
the generalised G-structure Pg, is the projection of the torsion 7' onto W.C,. By definition

int*

Given any G-compatible connection D, we say that the generalised intrinsic torsion Tigt,

this is independent of the choice of D. Tt is the part of the torsion that cannot be changed
by varying our choice of compatible connection.

The intrinsic torsion T.¢

ini is the obstruction to finding a connection which is simultan-

eously torsion-free and compatible with the generalised G-structure. Hence, if it vanishes

we say that Pg is an integrable or torsion-free generalised G-structure.

Intrinsic torsion for hypermultiplet structures

Let us calculate the intrinsic torsion for a Spin*(12) structure. Decomposing W under
SU(2) x Spin*(12) we have!!

W =56 + 912 = 2(2,12) + (1, 32) + (3,32) + (1,352) + (2, 220), (3.115)
while for the space of Spin*(12) connections we have
Kepin=(12) = ((2,12)+(1,32)) x (1,66) = (2,12)+(2,220)+(1,32)+(1,352). (3.116)

This implies Wgpin+(12) € (2,12) + (1,32) + (1,352) + (2,220). Using the explicit form

of the map 7, we can show that this is actually an equality, hence

WP (12) _ (2 12) + (3, 32). (3.117)

int

We will now show that the triplet of moment maps constrain the same representations.

HSince calculating intrinsic torsion reduces to linear algebra at a point in the manifold, in what follows
we do not distinguish between vector bundles and their representations.
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Since D is compatible with the Spin*(12) structure, by definition D.J, = 0. Using (3.108)
and (3.109), and integrating by parts to move D from V to J,, we have

1aV) % o [ (V- DI, = (D xaa V). 1) = [T(V). 1))

x / rtr(JT(V)) + /@tr(Ja(ﬁ Xad V) (3.118)
M

[ (T W) + [ A v
M M
where the second term in the last line comes from the torsion of D when evaluating
the total derivative in the integration by parts. We have also used the fact that the
expression is independent of the choice of compatible connection D and so only depends
on the intrinsic torsion ﬂifin*(l2). We see that the moment maps vanish if and only
if the (3,1) component of Ti}gin*(m)(v) vanish for all V. Recall that V transforms in
the 56 = (2,12) + (1, 32) representation. Given the decomposition (3.117), we see that
the (3,1) component of I}iﬁin*(lz)(V) vanishes if and only if both the (2,12) and (3, 32)
components of the intrinsic torsion vanish. Thus the vanishing of the moment maps is

equivalent to the existence of a torsion-free Spin*(12) structure.

Intrinsic torsion for vector-multiplet structures

Repeating the analysis for vector-multiplet structures by decomposing under Eg(o), we
have
W=56+912=1+2-27+78+4 351+ c.c,, (3.119)

while for the space of Eg() connections we have
Kpg,, = (1+27 +cc.) x 78 =274 78 + 351 + 1728 + c.c. (3.120)

This implies Wig,, € 27+ 78 + 351 +c.c. Using the explicit form of the map 7, we can
show again that this is actually an equality, hence
VVEEM) =1+27+c.c. (3.121)
We will now show that the Ly K = 0 condition is equivalent to vanishing generalised
intrinsic torsion. Using (3.108), (3.109) and DK = 0, we have
LxK = LRK -~ T(K) K = -T,°®(K) - K. (3.122)
Since K is a singlet under Eg;) and LK is a generalised vector transforming in the

56 = 1+27+c.c. representation, this condition implies that the 1427+ c.c. components of

E6(2)
Tint

Thus the vanishing of Lx K is equivalent to the existence of a torsion-free Eg(9) structure.

vanish. However, these are precisely the components in the intrinsic torsion (3.121).
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Intrinsic torsion for HV structures

It was shown in [143,144] that solutions of the A/ = 2 Killing spinor equations are in
one-to-one correspondence with torsion-free SU(6) structures. We now show that the full
set of integrability conditions on compatible pairs of structures {J,, K} are equivalent
to vanishing SU(6) intrinsic torsion and hence to solutions of the N' = 2 Killing spinor

equations.

Explicitly we have, decomposing under SU(2) x SU(6),

W =56+ 912 = (1,1) +2(1,15) + (1,21) + (1,35) + (1,105)

(3.123)
+3(2,6) + (2,20) + (2,84) + (3,1) + (3,15) + c.c.

From the analysis in [143] we have

WU = (2,1) x (S+J) + c.c.
(3.124)
— (1,1) + (3,1) +2(2,6) + (1,15) + (3,15) + (2,20) + c.c.,

where S+.J =8+56 = (2,1)+2(1,6)+(2,15) + (1, 20) are the representations in which
the Killing spinor equations transform. Note that we can also decompose the hyper- and
vector-multiplet intrinsic torsions as

w02 = (2,6) + (3,1) + (3,15) + c.c., -
3.125
WS = (1,1) + (2,6) + (1,15) + c.c.

int

Since the (2,20) is missing from these decompositions, it is immediately clear that having
an integrable hypermultiplet structure J, and a compatible integrable vector-multiplet
structure K is not sufficient to imply we have an integrable SU(6) structure.

As we will now see, the missing components are set to zero by the extra conditions
LxJ, = 0. As before, given an SU(6)-compatible generalised connection, from (3.108),
(3.109) and DK = DJ, = 0 we have

LxJo = LRJ, — [T(X), Jo) = —[T5VO(X), J,]. (3.126)
Since X is a singlet under SU(6) and LxJ, transforms in the 133 representation, we see
that LyxJ, indeed includes the missing (2,20) component. In appendix C, we calculate
which components of the intrinsic torsion appear in which of the three supersymmetry
conditions (3.118), (3.122) and (3.126). The results are summarised in table 3.4.1.

We see that collectively the three integrability conditions on {J,, K} are equivalent to
solving the N' = 2 Killing spinor equations. Since an SU(6)-compatible connection is a
special case of both a Spin*(12)- and an Eg(,)-compatible connection, this decomposition
also provides a direct proof that there are indeed no unexpected kernels in the 7 map in

these two cases, and that p, = 0 and L K are equivalent to the existence of a torsion-free
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VVSIE(G) component

Integrability condition (1,1) (3,1) (2,6) (2,6) (1,15) (3,15) (2,20)

fa =0 X X X
LgK =0 X X X
LxJ,=0 X X X X X

(6)

Table 3.2: The components of the generalised intrinsic torsion T/Vlig appearing in each

of the N' = 2 supersymmetry conditions.

Spin*(12) and Eg() generalised structure respectively.

©) appear in multiple conditions. The

We also see that certain components of VVSIEI
ta(V) and Lg K conditions are complementary. However the Lx.J, condition shares
components with each of the other conditions. The relation between (1,1) components

comes from taking Lx of the second compatibility condition in (3.35) and using Lx X =0
tr(JoLxJg + JgLxJa) = —318(X, Lx X) 6,8, (3.127)

while the relation between (2,6)" components comes from taking Ly of the first condition
in (3.35)
(LxJa) K+ Jy-LxK =0. (3.128)

The relation between the (3,1) and (3, 15) components arises from evaluating the moment

maps on X
fa(X) = —Leapy /M tr(JgLxJy). (3.129)

Let us end this section by briefly noting how the conventional SU(3) intrinsic torsion,
which vanishes for type II Calabi—Yau backgrounds, embeds into the generalised case. The
combined SU(8) spinor (3.6) defines two different embeddings of Spin(6) ~ SU(4)+ C SU(8):
one for type IIA and one for type IIB, corresponding to the decompositions 8 = 4 + 4
and 8 = 4 + 4 respectively. There are hence two different embeddings of SU(3)+ C SU(6),
giving the embeddings of the torsion classes defined in [223] for type ITA

Wi :1¢c C (3, 1), Wy : 8¢ C (3, 15), Ws:6 C (2,20),

(3.130)
Wy:3C(2,6), Ws5:3C(2,6),
and for type IIB

Wi:le C (3,1), Wy:8¢C (2,20), Ws:6C (3,15),

(3.131)
Wi:3C(2,6), Ws:3C(2,6),

which in each case is consistent with the analysis of section 3.3.4.
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3.4.2 Supersymmetry conditions from gauged supergravity

As we have already noted, there is a natural physical interpretation of the spaces of hyper-
multiplet and vector-multiplet structures. We can view them as arising from a rewriting
of the full ten- or eleven-dimensional theory as in [146] but with only eight supercharges
manifest [123,181,193]. The local SO(9,1) Lorentz symmetry is broken and the degrees
of freedom can be repackaged into N' = 2, D = 4 multiplets. However, since all modes
are kept — there is no Kaluza—Klein truncation — the vector- and hypermultiplet spaces
Ay and Ap become infinite dimensional. As previously argued for N’ = 1 backgrounds in
O(6,6) generalised geometry in [195] and in E(;) generalised geometry in [136,181,182],
the integrability conditions can be similarly interpreted in a four-dimensional language.
The interactions of the four-dimensional theory are encoded in the gauging of isometries
on Ay and Ay, together with the concomitant moment maps, as summarised in [194].
From the form (3.65) of the hyper-Kéhler moment maps, we see that we are gauging
generalised diffeomorphisms. The general conditions, coming from the vanishing of the
gaugino, hyperino and gravitino variations, for the four-dimensional theory to admit a
supersymmetric ' = 2 Minkowski vacuum have been analysed in [196,197]. As we now

show, these translate directly into the three integrability conditions for J, and K.

Recall that the scalar components of the hypermultiplets describe a quaternionic-Kéhler
space. Let Ay be the associated hyper-Kéahler cone. Similarly, the scalar components
of the vector multiplets describe a local special Kahler space. Let Ay be the associated
rigid special Kahler cone. The gauging is a product of an action of a group Gy on the
quaternionic-Kéahler space and of a group Gy on the local special Kéhler space, that each
preserve the corresponding structures. These can always be lifted to an action on Ay that
preserves the triplet of symplectic forms and commutes with the SU(2) action on the cone,
and an action on Ay that preserves the Kéhler form and complex structure and commutes
with the U(1) action on the cone. Following [197], the conditions for a Minkowski vacuum
in a generic gauged N = 2 theory, lifted to Ay and Ay, can be written as

Ohtta =0, XAe)k! =0, X0

L =0. (3.132)

Here A parametrises the Lie algebra gy of Gy while A parametrises the Lie algebra gy of Gy,
and k) and l;:;\ are the corresponding sets of vector fields generating the actions on Ay and
Ay (see also appendix E.1). The label u is a coordinate index on Ajg and i is a holomorphic
coordinate index on Ay, so that l;‘;\ is actually the holomorphic part of the real vector
generating the action. The p, ) are a triplet of moment maps fi: Ag — gf;. As discussed
in appendix E.1, the complex vector X is a particular non-zero holomorphic vector on Ay,
written in flat coordinates, that defines the special Kéhler geometry and also generates the
C* action on the cone. The indices A denote components in the natural flat coordinates

on Ay. The matrices @/A\ and (:)f{ are the corresponding embedding tensors [229,230].

Let us now translate this formalism into the geometrical objects defined previously when
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Ay and Ay are the infinite-dimensional spaces of hyper- and vector-multiplet structures.
In this case, the gauging is by generalised diffeomorphisms Gy = Gy = GDiff. Recall that
we parametrised the Lie algebra gdiff by sections V' € I'(E) even though there was actually
a kernel in this map. Furthermore, from (3.29), we saw that generalised vectors defined

flat coordinates on Ay. Thus we can identify the embedding tensors with the map

~

© = 0: I'(E) — gdiff. (3.133)

The vectors k) and 12:5\ generate the action of GDiff on Ay and Ay, so we can view them
as maps

k: goiff — (T An), e+ goiff — T(T Avy). (3.134)

Hence we can identify the composite maps ko© and l%o@, acting on an arbitrary generalised

vector V', with
VEO{ky = Ly J,,
s i (3.135)
From appendix E.1, note that ko® is just the set of generators Xr=> acting on X.
Thus, as first noted in [140], in the infinite-dimensional gauging, we can identify a generic
combination of generators VAX,=> with the generalised Lie derivative L. Similarly we
have
VEO{ i n = ta(V). (3.136)

Finally, recall from the discussion in section 3.2.2 that our notation is consistent and
the holomorphic vector field X is indeed the complexified vector-multiplet structure
X = K +iK. Thus the three conditions (3.132) are precisely

o (V) =0 for all V, LxJ, =0, L¢X =0. (3.137)

We see that the integrability conditions on the structures have a very simple inter-
pretation in terms of the gauged supergravity. This analysis is useful when looking for
integrability conditions in other situations, in particular the backgrounds in D = 5 and

D = 6 with eight supercharges which we discuss in later sections.

3.4.3 Moduli spaces

In this section, we will discuss some simple aspects of the moduli spaces of H, V and ECY
structures. In the Calabi—Yau case, these come from deformations of the complex and
symplectic structures. For example in type IIA, the H-structure moduli space describes
the complex moduli together with harmonic three-form potentials C, while the V-structure
moduli space describes the Kahler moduli. The main point here is that the H and V moduli
spaces appear as hyper-Kahler and symplectic quotients respectively, and so by construction

describe quaternionic and special Kéhler geometries as required by supersymmetry.
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Moduli space of hypermultiplet structures

We have already seen that the differential conditions (3.66) that define integrable H
structures can be viewed as the vanishing of a triplet of moment maps for the action of the
generalised diffeomorphism group GDiff on the space Ayp. Acting on the moment maps
with the vector field py € I'(T'Ap), corresponding to an element of goiff labelled by W,

we have, using integration by parts and Leibniz,

Yow Oa(V) = —g€apy /M tr[(Lw J5)(Ly Jy) + JaLy (Lw Jy)]

= —éfaﬁw/ tr(Js(Lr,wdy)) (3.138)
M
= /‘LC“(LVW)a

where we have used (3.63) and the Leibniz property. However the Lie bracket on goiff is

[Lv,Lw] = Lr,w = Lyw]s (3.139)

where [V, W] is the antisymmetric Courant bracket for E;7) x R* [136,137]. Thus we
see that the moment maps (3.65) are equivariant. Since any two structures that are
related by a generalised diffeomorphism — a combination of diffeomorphism and gauge
transformation — are physically equivalent, the moduli space of integrable structures is

naturally a hyper-Kéhler quotient, defined as
My = Ay JJGDiff = p71(0) N 5 *(0) N 3 ' (0)/GDiff. (3.140)

By construction My is also hyper-Kéahler.

The space of structures Ay is actually a hyper-Kéhler cone, and for the quotient space
to also be a hyper-Kéhler cone one needs to take the zero level set'? of the moment maps, as
we do, and ensure that the GDiff action commutes with the SU(2) action on the cone. We
can check that this is indeed that case. Under the SU(2) action we have 6.J, = €305,
or, in other words, the action is generated by a triplet of vectors ¢ € I'(T'Ay) such that

£(J3) = €apyJy- (3.141)
Acting on the section-valued functions .J,, we see the Lie bracket is given by
[pV,fa] (J8) = Lv(€apyJy) = €apyLvJy = 0. (3.142)

Hence the action of GDiff does indeed commute with the SU(2) action. This means that
My is also a hyper-Kéhler cone [208], and we identify the physical moduli space with the

base of the cone My /H*. By construction, as required by supersymmetry, this space is

12More generally, one requires that the level set is invariant under the SU(2) action.
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quaternionic-Kahler.

It is worth noting that the action of GDiff on 7 (0) Ny *(0) Nz ' (0) is not generally
free. For example, in a type IIB Calabi—Yau background, the integrable structure J,, given
in (3.39), is invariant under symplectomorphisms. Thus we expect that the moduli space
My is not generically a manifold, but has a complicated structure as a union of hyper-
Kéhler spaces [231]. We could still try to calculate the dimension of My in a neighbourhood
by considering the linear deformation away from a point o € Ay corresponding to an
integrable structure J,. The variation of the moment maps is just du,, where § is the
exterior derivative on Apg, while the infinitesimal generalised diffeomorphisms are generated
by Ly . We can identify goiff with I'(F) and T, Ay with sections of a bundle ad Pslmn*(u)

as in (3.20). We then have the exact sequence of maps

I(E) Loloy

DL dpa 3
Again, this is complicated by the existence of fixed points. From our examples, it appears
that generically the sequence is not elliptic, and hence the moduli space is not finite-

dimensional.

Moduli space of vector-multiplet structures

For the vector-multiplet structures we need to understand the constraint Lx K = 0 on the
space of structures Ay and again mod out by generalised diffeomorphisms. It turns out
that the integrability condition can again be interpreted as the vanishing of a moment map
as we now describe. In fact, this reformulation is not specific to this infinite-dimensional set
up, but applies to any flat, supersymmetric vacuum of gauged N’ = 2, D = 4 supergravity,

giving a new interpretation of the conditions derived in [196,197].

We have argued that from a gauged supergravity perspective the condition Lx K
arises from a gauging of the generalised diffeomorphism group on Ay. As discussed in
appendix E.1, there are a number of requirements of the action of the gauge group on
Ay for it to preserve the special Kahler structure. First it must leave the symplectic
form invariant. Let py € I'(T'Ay) be the vector field on Ay generating the action of a
generalised diffeomorphism parametrised by V' € I'(E). Recall that the structure K can be

viewed as a coordinate on Ay, as given in (3.29), thus associating Tx Ay ~ I'(E) we have
py =Ly K € F(T.Av). (3.143)
Given an arbitrary vector field W € I'(T'Ay) we have, from (3.31), that

1y QW) = Qpy, W) = / S(Ly K, ). (3.144)
M
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Using (3.63) and the Leibniz property of Ly we have

1y UW) = ;/M s(LyK,W) — s(K, LyW)
=-1 / s(W, Ly K) + s(K, Ly W) (3.145)
M
= ZW6M(V)7

where ¢ is the exterior derivative on Ay and p(V') is a the moment map

(V) =—3 /M s(K, Ly K). (3.146)

Thus the action of GDiff preserves the symplectic structure on Ay.

Acting on the moment map by the vector field py, corresponding to an element of
goiff labelled by W, we have

Lo 61 (V) = —3 /M s(LwK,LyK) + s(K, Ly Ly K)
_ _%/ S(K, Ly, wK) (3.147)
M
= M(LVW)7

where we have used (3.63) and the Leibniz property. Thus from the Lie bracket (3.139)
on goiff we see that the moment map (3.146) is equivariant. We also see, using (3.32)

and (3.63), that the Hitchin functional H is invariant under the action of py, since

Lol = pu(H) = [ (LK Do Va) = [ LevaB) =0, (08)

In addition, py = Ly K is clearly linear in K and so maps flat coordinates to flat coordinates.
This is enough to show that the GDiff action also preserves the complex structure. Finally
recall that the coordinate K™ (x) can also be regarded as the components of a vector field
and that the C* action on Ay is generated by X = K +iK = K —iZ-K € I'(T'Ay), where
7 is the complex structure on Ay. As a vector field we have £,, K = [py, K] = 0 and
so, since L,,Z = 0, we have [py, X| = 0 and hence the action of GDiff on Ay commutes
with the C* action. These means that this gauging satisfies all the conditions necessary to
preserve the special Kahler structure.

We now show that the condition L K = 0 is actually equivalent to the vanishing of the
moment map p(V) for all V. To do this we first note some identities using (B.16), (B.30)
and (3.63)

AV, LyV) = /M Lo(to7) + 2d(@?) + (2w A o) — d(100 Aw) =0,
(3.149)

U, Ly W) — Q(W, Ly U) _/ Lys(U, W) = 0.
M
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Under the identification of VAX => with Ly, these are just the representation con-
straint (E.13) and the first constraint of (E.12). These imply

p(V) = —1Q(K, LyK) = Q(V, LK) = /M s(V, LgK), (3.150)

and hence we have the alternative definition for the integrability of K:
Definition. An integrable or torsion-free Er 7y vector-multiplet structure K is one satis-
fying
pw(V)=0 foralVel(F), (3.151)
where p(V) is given by (3.146).
This reformulation is actually generic for any gauged N' = 2, D = 4 theory as we now
show. Using (E.9) and (E.11), we see that the third condition of (3.132) can be rewritten
as
XA@XI%%\(@ZXF)QEF = XAXAngE = %XAngEXE = 2@5&#5\, (3152)
where we have used the identities (E.12), (E.13) and (E.14). We see that the condition
X A@Xl;‘f\ = 0 is generically equivalent to the vanishing of the moment map u5 = 0.
This reformulation gives a simple realisation of the moduli space of vector-multiplet
structures. Since any two structures related by a generalised diffeomorphism are equivalent,

it is naturally given by the symplectic quotient
My = Ay JGDiff = 1 ~1(0)/GDiff. (3.153)

By construction My is also special Kéhler. In fact it is a cone over a local special Kéhler
space, as required by supersymmetry. As usual for symplectic quotients of Kéhler spaces,
we can also view My as a quotient by the complexified group My = Ay /GDiffc. As for
the case of hypermultiplet structures, generically GDiff does not act freely on p~1(0) and

hence My is not necessarily a manifold, but rather has a stratified structure [232].

Moduli space of ECYs

Finally we consider the moduli space of ECYs. We first define the space of compatible HV

structures, though without the restriction on the norms. Formally, this is
A={(Jo, K) € Ag x Ay : Jo - K = 0}. (3.154)
The moduli space of ECYs is then given by
M={(Jo,K)EA: ia =0, n=0, LxJ, =0, k2 = =2/q(K)}/GDiff.  (3.155)

The reason for dropping the norm compatibility condition from the definition of A is that

it then has a fibred structure as we now discuss. One can imagine first choosing K and
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then J, subject to the condition J, - K = 0, or vice versa. At each point x € M, we can

then view the coset E(7)/SU(6) as a fibration in two different ways:

Spin*<12)/SU(6) E— E7(7)/SU(6) EG(Q)/SU(G) E— E7(7)/SU(6)

l i (3.156)

E7(7)/Spin*(12) E77)/Ee(2)

In both cases the fibres admit the appropriate geometry. Thus we can use exactly the same
construction as in sections 3.2.1 and 3.2.2 to define the corresponding infinite-dimensional
spaces of structures as hyper-Kéahler and special Kéhler manifolds. If we label these A{,
for the space of V structures given a fixed H structure J,, and .Ag for the space of H

structures given a fixed V structure K, the space A then has two different fibrations:

AL —— A A —— A
l l (3.157)
.AH -AV

Even with this fibred structure on A, the structure of the moduli space M appears to
be very complicated. Nonetheless, N' = 2 supergravity implies that it should become a
product of the hyper- and vector-multiplet moduli spaces. Let us now comment on how
this might translate into conditions on our structures. The product structure suggests
that, at least locally, the moduli space of hypermultiplet structures is independent of the

choice of vector-multiplet structure, and vice versa. One is tempted to conjecture that
M = Mfp x MY, (3.158)
with Mﬁ( and M\J, given by the quotients
ME = AK pGDiff ., M = A{ )GDift, (3.159)

where GDiff i C GDiff is the subset of generalised diffeomorphisms preserving K and
GDiff ; C GDiff is the subset preserving J,. The point here is that Af and A{, admit
moment maps for GDiff x and GDiff ; respectively, in complete analogy to section 3.3. For
this to work the spaces M and My, must (locally) be independent of the choice of K
and J, respectively.

We end with a few further comments. First, using the results of [143], the integrability
conditions on K and J, are equivalent to the Killing spinor equations, and we identically
satisfy the Bianchi identities by defining the structure in terms of the gauge potentials.
We then recall that for warped backgrounds of the form (3.1), the Killing spinor equations
together with the Bianchi identities imply the equations of motion [98, 105,143, 233].

Consequently, since the equations of motion on M are elliptic, the moduli space M must
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always be finite dimensional.

The second point relates to the generalised metric G. Recall that this defines an
SU(8) C Eq¢7) x RT structure and encodes the bosonic fields of the supergravity theory,
restricted to M, along with the warp factor A [135,137]. Since SU(6) C SU(8), the HV
structure {J,, K} determines the generalised metric G. Given a Lie subalgebra g we can

decompose e7(7) DR =g @ g. Decomposing into SU(2) x SU(6) representations we find

spinfy” = (1,1) + (2,6) + (2,6) + (2,20) + (3,1),
ez = 2(1,1) + (1,15) + (1,15) + (2,6) + (2,6),
sugt = (1,1) 4 (1,15) + (1,15) + (2, 20),
sugt = 2(1,1) + (1,15) + (1,15) + (2,6) + (2,6) + (2,20) + (3,1).

(3.160)

Thus the deformations of {J,, K} that do not change the generalised metric G are those
in the (1,1) + (2,6) + (2,6) + (3,1) representations. The first and last are the U(1) and
SU(2) symmetries acting on K and J, respectively. It is easy to see that the moment maps
vanish only for constant rotations. The remaining (2,6) + (2, 6) deformations correspond
to deforming the Killing spinors for a fixed background. If such solutions exist, they imply
that the background actually admits more supersymmetries than the AV = 2 our formalism
picks out. We also note that these deformations appear in both the deformations of K
and J,, and are related through the constraint J, - K = 0. Thus we conclude that if
the background is honestly N/ = 2, then, up to a global SU(2) x U(1) rotation, there
is a unique structure {J,, K} for each generalised metric G and, infinitesimally, we can
consider independent J, and K deformations. This gives some credence to the conjecture
that the moduli space takes the form (3.158).

Finally we note that the conditions LxX = LxJ, = 0 imply that
LxG =0, (3.161)

and so K and K are generalised Killing vectors. This means there is a combination of
diffeomorphism and gauge transformations under which all the supergravity fields are
invariant. Hence, locally, one can always choose a gauge in which Lx = £,,, where v is the
vector component of X. If the metric g has no conventional Killing vectors, then v =0

and the integrability conditions involving X are equivalent to
L x (anything) = 0, (3.162)

independent of the choice of J,, as we saw happen explicitly in a number of our examples.
In this case, an alternative approach to calculating M is to solve (3.162) and the moment
map conditions on J, independently, impose the compatibility conditions, and then
quotient by GDiff.
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3.5 Eg4(q) structures for D = 5, 6 supersymmetric flux back-

grounds

In this section we consider generic D = 5,6 type II and M-theory flux backgrounds
preserving eight supercharges. In complete analogy with the D = 4 case, they define a pair
of integrable generalised structures, though now in Eg) for N =1, D = 5 backgrounds
and Es5) ~ Spin(5,5) for N' = (1,0), D = 6 backgrounds. In both cases there is a H
structure naturally associated to hypermultiplet degrees of freedom. In D = 5 there is
also a V structure, though now the space of structures admits a very special real geometry
rather than a special Kéhler geometry, in line with the requirements of N =1, D =5
gauged supergravity. In D = 6 we find the second structure is naturally associated to
N = (1,0) tensor multiplets.

Since much of the analysis follows mutatis mutandis the D = 4 case, we will be

relatively terse in summarising the constructions.

3.5.1 Eg) hyper- and vector-multiplet structures

For compactifications to D = 5, the relevant generalised geometry [137,138] has an action
of Egg) X RT. The generalised tangent bundle transforms in the 27/ representation and
decomposes under the relevant GL(d) group as (2.11) or (2.13), where the one-form density
terms are not present. The adjoint bundle transforms in the 1¢ 4+ 78¢ representation and
decomposes as in (2.14) or (2.16), where the doublet of six-forms and six-vectors are not
present for type IIB. In both type IT and M-theory, the spinors transform under the USp(8)
subgroup of Eg(g) RT. For ' = 1 backgrounds in D = 5, the single Killing spinor is
stabilised by a USp(6) subgroup.

Structures and invariant tensors

The Eg(g) generalised G-structures are defined as follows.

Definition Let G be a subgroup of Eg(g). We define

o a hypermultiplet structure is a generalised structure with G = SU*(6)
e a vector-multiplet structure is a generalised structure with G' = Fy(y)

e an HV structure is a generalised structure with G = USp(6)

As before, an H structure is defined by a triplet of sections J, of a weighted adjoint bundle,
as in (3.11), such that they transform in the 7835 representation of Egg) x R* and define
a highest weight sus subalgebra of ¢g(5). The algebra and norms of the J, are the same as
for the D = 4 case, given in (3.12) and (3.13). A V structure is defined by a generalised
vector!3

K €T(F), suchthat c¢(K,K,K)#0, (3.163)

BThere are two distinct Eg(6) orbits preserving Fy 4y, distinguished by the sign of ¢(K, K, K) [216].
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where c is the Eg) cubic invariant given in (B.29) and (B.58). Compatibility between
the vector- and hypermultiplet structures implies that the common stabiliser group
SU*(6) N Fy(4) of the pair {J,, K} is USp(6). The necessary and sufficient conditions are

Jo K =0,

(3.164)
tr(JoJdg) = —c(K, K, K) dqp,

where - is the adjoint action. Note that the second condition implies K is in the orbit
where ¢(K, K, K) > 0. They are equivalent to

J-K=0, ¢KKK)==r% (3.165)

respectively, where & is the factor appearing in (3.12). If the HV structure is integrable,
we again say it defines an ECY geometry since in M-theory it is the flux generalisation of
a compactification on a Calabi—Yau three-fold.

As with the D = 4 case, the infinite-dimensional space of H structures Ay is the space
of smooth sections of a bundle over M with fibre W = Egg) x R*/SU*(6). This fibre is a

hyper-Kéhler cone over a pseudo-Riemannian Wolf space [207]
W/H" = Eg/(SU(6) x SU(2)). (3.166)

The hyper-Kéahler geometry on Apg is again inherited directly from the hyper-Kéahler
geometry on W. The details follow exactly the D = 4 case in section 3.2.1 upon exchanging
the relevant groups.

The infinite-dimensional space of V structures
Ay ={K € T'(E) : ¢(K,K,K) > 0} (3.167)

can also be viewed as the space of smooth sections of a bundle over M with fibre P =
Eg ) < R*/ Fy). It admits a natural (rigid) very special real metric, which again is
inherited from the very special real metric on the homogeneous-space fibres.'* The
Riemannian symmetric spaces that admit (local) very special real metrics were analysed
in [236] and include the case Eg(_s6)/F4. Here we need a pseudo-Riemannian form based

on Eg), where the relevant space is again a prehomogeneous vector space [222]
P/RT = EG(G)/F4(4). (3.168)

The geometry on Ay can be constructed as follows. Consider a point K € Ay. Given
u,v,w € Tk Ay ~ T'(E), the fibre-wise cubic invariant ¢ defines a cubic form on Ay by

C(u,v,w) = /M c(u,v,w), (3.169)

MFor reviews of very special real geometry see for example [234,235].
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where, since sections of E are weighted objects, we have c(u,v,w) € I'(det T*M) and
hence it can be integrated over M. The metric on Ay is then defined as the Hessian of

C(K,K,K)
5C

T OKMSKN-

In these expressions we are using the flat coordinates on Ay defined by the vector-space

CuN (3.170)

structure of I'(F). On any rigid very special real geometry there is a global RT symmetry,
such that the quotient space is, by definition, a local very special real geometry. On Ay,
the action of R™ is constant rescaling of the invariant tensor K. As for the hypermultiplet
structure, the R™ action is simply a physically irrelevant constant shift in the warp
factor A. Modding out by the symmetry, the physical space of structures Ay /R* is an
infinite-dimensional local very special real space.

In analogy with the D = 4 discussion of [123,181,193], we can view Ay/RT and
the quaternionic-K&hler base of Ay as the infinite-dimensional spaces of vector- and
hypermultiplet degrees of freedom, coming from rewriting the full ten- or eleven-dimensional

supergravity theory as a five-dimensional A’ = 1 theory.

Integrability

The integrability conditions for the Eg) generalised G-structures again arise from gauging
the generalised diffeomorphism group, and are almost identical to those in D = 4 given
in (3.66), (3.67) and (3.69), namely

pa(V)=0 for all V e I'(E), (3.171)
LK =0, (3.172)
LicJa = 0. (3.173)

In each case they are equivalent to the structure admitting a torsion-free, compatible
generalised connection: if the first condition holds, J, defines a torsion-free SU*(6)
structure; if the second condition holds, K defines a torsion-free Fy(4) structure; if all
three conditions are satisfied, {J,, K} define a torsion-free USp(6) structure. In the latter
case, using the results of [143], this implies that these conditions are equivalent to the
existence of an N' = 1 Killing spinor. Again, the pair of compatible and integrable H and

V structures is not enough to imply that the HV structure is integrable.

Note that the condition Lxg K = 0 can be written in an equivalent form as follows.

Using the results and notation of [137], we have
LK = LK — [K,K] =0 xp (K xy K) = dK’, (3.174)
where K’ is the exterior derivative K’ = §C € I'(E* ® det T* M), on Ay, of the invariant
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WUSP(G‘)

int component

Integrability condition (1,1) (3,1) (2,6) (2,6) (1,14) (3,14) (2,14

ta =0 X X X
LK =0 X X X
LgJy,=0 X X X X X

(6)

Table 3.3: The components of the generalised intrinsic torsionI/VigtS P
of the N =1, D = 5 supersymmetry conditions.

appearing in each

functional C(K, K, K). The condition (3.172) is then simply
dK' = 0. (3.175)
For example in M-theory, if K = v + w + o then
K' = w+1,0—iwAw+jwrc—Ljornw € T(T*" M N T*MeT*M@A\T*M), (3.176)
and the conditions are simply
dK' = d(1,w) + d(1,0 — 3w Aw) = 0. (3.177)

To see that these differential conditions constrain the generalised intrinsic torsion for
the different generalised structures, we start by noting that for Eg) ¥ R™ generalised

geometry the space of generalised torsions is [137]
W = 27 + 351'. (3.178)
Repeating the analysis of section 3.4, we find, decomposing under SU(2) x SU*(6),

Wl © = (2,6) + (3,15), (3.179)
while decomposing under Fy4)
Wi =14 26. (3.180)

int
The intrinsic torsion components of an HV or USp(6) structure, decomposed under
SU(2) x USp(6), along with which integrability conditions they constrain, are summarised
in table 3.5.1. We note that it is equal to (2,1) x (S + J), where S + J = 8 4 48 is the
USp(8) representation in which the Killing spinor equations transform. From the results
of [137], we see that, again, the Killing spinor equations are equivalent to the differential

conditions for an ECY or integrable USp(6) structure.

As in the D = 4 case, the integrability conditions have a direct interpretation in terms

84



of D =5 gauged supergravity. Following [197], the conditions for a Minkowski vacuum in

a generic gauged N = 1 theory can be written as!®

Ot =0, hAOXKY = 0, hAONE = 0. (3.181)
The only difference compared with the D = 4 case is that the vector h* is now the
coordinate vector in the real special geometry on Ay, written in flat coordinates, which
here we identify with K. The three conditions (3.181) then translate directly into the
three integrability conditions (3.171)—(3.173).

We can again consider the moduli spaces of structures. The integrability conditions
for the H structure are identical to those in D = 4, and again the moduli space is a
hyper-Kéhler quotient, exactly as discussed in section 3.4.3. The arguments leading to the
identification of the moduli space of V structures are also similar to those of D =4, and
so we simply summarise the relevant observations and results.

As discussed in [238], rigid very special real geometry requires the existence of a flat
torsion-free connection V preserving a metric tensor Cy,, that, with respect to the flat
coordinates, can be written as the Hessian of a cubic function C. For us, the vector-space
structure of I'(F) defines natural flat coordinates on Ay and the cubic function is given
by (3.169). The function is invariant under the action of generalised diffeomorphisms, and
since py = Ly K is linear in K, it maps flat coordinates to flat coordinates. Thus GDiff
preserves the very special real structure. Furthermore, we observe that given an integrable
structure K such that Lx K = 0, any other choice of structure related to K by the action
of GDiff is automatically integrable too. This means that integrability of the structure
is well defined under equivalence by GDiff, so that both the very special real structure
and the integrability condition descend to the quotient space. Thus the moduli space of

integrable vector-multiplet structures is
My ={K € Ay : Lx K = 0}/GDiff, (3.182)

which, as the RT action generated by K commutes with GDiff, is a rigid very special real
space. As required by supersymmetry, it is a cone over a local very special real space. The
moduli space of ECYs is again more complicated, though all the comments made in the

D =4 case also apply here.

Example: Calabi—Yau manifold in M-theory

Just for orientation, we consider the simplest example of a generalised USp(6) structure,
namely M-theory on a six-dimensional Calabi—Yau manifold M. In fact, assuming M has

only an SU(3) structure, supersymmetry implies that the metric is Calabi—Yau and that

5Note that the third condition comes from the term in W=4Z proportional to e*f [237], which was
assumed to vanish in [197].
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the warp factor A and four-form flux F' vanish [239,240]. The goal here is to see how these

conditions arise from the integrability conditions on the H and V structures.

The untwisted H and V structures are encoded by €2 and w respectively. We have

Jy = —1kQ+ LeQF,

- _ _ (3.183)
Jy = 3kl — LikQ A Q — LikQf A QF,

where [ is the almost complex structure (A.4) and the Eg(6)-invariant volume is K2 =

e38 volg, while
K = —c®w. (3.184)

It is easy to check, using the expressions in appendix B, that J, generate an suy algebra
and that the structures satisfy the correct normalisation and compatibility conditions,
given (A.2). As previously, the actual structure will include the three-form potential A via
the adjoint action: .J, = e e~ and K = e*K. In what follows it will be easiest to use

the untwisted forms with the twisted Dorfman derivative in the differential conditions.

The hypermultiplet structure is integrable if the triplet of moment maps vanish. We
start with pu3. The moment map is a sum of terms that depend on arbitrary ¢, @ and &.

Considering each component in turn we find

ug(&)oc/ m%QMQﬁ)Jd&a/ e3Ad&o</ d(e**) A s, (3.185)

M M M

ug(w)m/ /{2(Qﬁ/\ﬂﬁ)_|(d}/\F)O(/ SAONE. (3.186)
M M

These imply dA = F = 0. Using the fact that A is constant, the ¥ component of p3 and

the © component of py simplify to
w3 (0) o< / AP LLQ — QL) / 2 (1 A dQ — 12 A dQ),
M M
pt (©) o / AN dw / SRAQ N @.
M M

The first requires the (3,1) component of d2 to vanish or, in the language of [223], the
Ws component of the SU(3) torsion is set to zero, while the second vanishes if and only
if dQ) vanishes, that is, W; = Wy = W5 = 0. Finally, the ¢ component of p vanishes
identically, while the ¢ term vanishes if F' vanishes. Together, we see that the integrability
of the hypermultiplet structure requires a constant warp factor, a vanishing four-form flux
and that Q is closed.

For the V structure we have
LpK = —wAdw=0, (3.187)
which requires the W, component of the SU(3) torsion to vanish. Note that requiring K
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to define a integrable Fy(4) structure is considerably weaker than the condition for w to
define an integrable symplectic structure. Finally, the Ly J, = 0 condition required for an

integrable USp(6) structure is equivalent to
LiJs o< jQjdw — 110%0dw — dw A Q = 0. (3.188)

One can show this vanishes if and only if dw vanishes, that is W; = W3 =W, = 0.
We have shown that for this restricted SU(3) ansatz, integrability of the generalised
USp(6) structure requires M to be Calabi—Yau, that is dw = d2 = 0, with a constant

warp factor and a vanishing four-form flux.

3.5.2 Ej(s) hyper- and tensor-multiplet structures

For compactifications to D = 6 the relevant generalised geometry [137,138] has an action
of Es(5) X R* ~ Spin(5,5) x R*. The generalised tangent bundle transforms in the 164
representation and decomposes under the relevant GL(d) group as (2.11) or (2.13), where
the doublet of five-forms are not present for type IIB and the one-form density terms are
not present for type IIB or M-theory. The adjoint bundle transforms in the 19 + 45¢
representation and decomposes as in (2.14) or (2.16), where the six-forms and six-vectors
are not present for type IIB or M-theory. In both type II and M-theory, spinors transform
under a USp(4) x USp(4) ~ Spin(5) x Spin(5) subgroup of Ej5 x R*. For N' = (1,0)
backgrounds, the Killing spinor is stabilised by an SU(2) x USp(4) subgroup.

Structures and invariant tensors

The Es5(5) generalised G-structures are defined as follows.
Definition. Let G be a subgroup of E5(5). We define

e a hypermultiplet structure is a generalised structure with G = SU(2) x Spin(1,5)
e a tensor-multiplet structure is a generalised structure with G = Spin(4, 5)

o an HT structure is a generalised structure with G = SU(2) x USp(4)

As before, the H structure is defined by a triplet of sections J, of a weighted adjoint
bundle, as in (3.11), such that they transform in the 452 representation of Eg5) x R* and
define a highest weight suy subalgebra. The algebra and norms of the J, are the same as
for the D = 4 case, given in (3.12) and (3.13).

The T or tensor-multiplet structure is new. It is defined by choosing a section of
the bundle N transforming in the 102 representation of Ej) x R*. For M-theory on a

five-dimensional manifold M,
N ~T*M @ N*T*M, (3.189)
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while for type IIB on a four-dimensional manifold M it is
N~S@NTMoSe AT M. (3.190)
The invariant generalised tensor for a Spin(4,5) structure is a section of N:
Q €T'(N) such that 7n(Q,Q) > 0, (3.191)

where 7 is the SO(5, 5) metric given in (B.28) and (B.57).
A pair of compatible structures define an SU(2) x USp(4) structure and satisfy

Jo - Q =0,
(3.192)
tr(‘]@‘]ﬁ) = 777(@7 Q) 504,3a
where - is the adjoint action. They are equivalent to
Jy-Q =0, (3.193)
and the normalisation condition
n(Q,Q) =, (3.194)

respectively, where & is the factor appearing in (3.12). If the HT structure is integrable,
we again say it defines an ECY geometry since it preserves eight supercharges and is
the analogue of the corresponding structures in D = 4 and D = 5. In this case, there is
no example without flux that is a Calabi—Yau space so the nomenclature is somewhat
misleading, although the simplest flux example discussed in section 3.5.2 does have an
underlying Calabi—Yau two-fold.

As before, the infinite-dimensional space of H structures Ay is the space of smooth
sections of a bundle over M with fibre W = E5(5) x R*/(SU(2) x Spin(1,5)). This fibre is

a hyper-Kihler cone over a pseudo-Riemannian Wolf space [207]'6
W/H* = S0(5,5)/(SO(4) x SO(1,5)). (3.195)

The hyper-Kéahler geometry on Ay is again inherited directly from the hyper-Kéhler
geometry of W. The details of this exactly follow the D = 4 case in section 3.2.1 upon
exchanging the relevant groups.

The infinite-dimensional space of T structures

Ar ={Q e T(N) : n(Q, Q) > 0} (3.196)

can also be viewed as the space of smooth sections of a homogeneous-space bundle

"“Recall E55) ~ Spin(5,5), Spin(4) ~ SU(2) x SU(2) and USp(2) ~ SU(2), and note we have not been
careful here to keep track of any discrete group factors.
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Zp over M with fibre P = Ej5) x R/Spin(4,5) ~ SO(5,5) x RT/SO(4,5) ~ R>®. It
admits a natural flat metric, which again is inherited from the flat metric on the fibres
P. In N = (1,0) gauged supergravity, the scalar fields in the tensor multiplets describe
Riemannian geometries of the form SO(n,1)/SO(n), where the cone over this space is just
flat R™! [241]. Here our fibres P are isomorphic to R>® with a flat pseudo-Riemannian

metric, with the base of the cone given by the hyperboloid
P/RT =50(5,5)/S0(4,5), (3.197)

where the RT action is just the overall scaling. The flat metric is given by the quadratic

form on At
S(,w) = [ n(ww) (3.198)
M

where v,w € I'(TgAr) ~ I'(N), and since sections of N are weighted objects, we have
n(v,w) € T'(det T*M) and hence it can be integrated over M. The flat metric on Ay is
simply 3. On Ar, the action of RT is constant rescaling of the invariant tensor ). As
for the hypermultiplet structure, the R™ action is simply a reparametrisation of the warp
factor A. Modding out by the symmetry, the physical space of structures Ar/R* is an
infinite-dimensional hyperbolic space.

As in the discussion of [123,181,193], we view Ar/R™ and the quaternionic-Kéhler
base of Ay as an infinite-dimensional spaces of tensor- and hypermultiplet degrees of
freedom, coming from rewriting the full ten- or eleven-dimensional supergravity theory as

a six-dimensional N' = (1,0) theory.

Integrability

The integrability conditions again arise from gauging the generalised diffeomorphism group

and, for the H structures, are identical to those in D = 4,5 given in (3.66), namely
pa(V) =0 for all V € I'(E), (3.199)

which is equivalent to the structure admitting a torsion-free, compatible generalised

connection.

The integrability condition for the T structure @ is new and does not require the
generalised Lie derivative. Instead, it appears in much the same way as the integrability of
the pure spinors ®* describing generalised complex structures in O(d, d) x R* generalised
geometry. Recall that the usual derivative operator 0 embeds in E* which transforms in
the 16° ; representation of Spin(5,5). We can use the 16, x 102 — 167 action to form
the projection E* @ N — E, given in (B.22) and (B.51). This means there is a natural
action of d on ) which results in a generalised vector, and furthermore, in this case, it is

covariant. We then have
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Definition. An integrable or torsion-free tensor-multiplet structure ) is one satisfying
d@ =0, (3.200)

or in other words @ is closed under the exterior derivative.

These conditions are equivalent to there being a torsion-free generalised connection com-
patible with the generalised Spin(4,5) structure defined by Q. We can also consider the
integrability conditions for the HT generalised structure defined by the compatible pair

{Ja, Q}
Definition. An ECY geometry admits an integrable or torsion-free HT structure {J,, Q}

such that J, and @ are separately integrable. There are no further conditions.

In contrast to the case of compatible V and H structures, the existence of a pair of
compatible and integrable H and T structures is enough to imply that the HT structure
is integrable. These conditions are equivalent to there being a torsion-free generalised
connection compatible with the generalised SU(2) x USp(4) structure defined by {J,, Q}.
Using the results of [143], this implies that the conditions are equivalent to the existence
of an N = (1,0) Killing spinor.

To see that these differential conditions constrain the appropriate generalised intrinsic
torsion for the different generalised structures, we start by noting that for Es5) X R*

generalised geometry the space of generalised torsions is [137]
W = 16° + 144°. (3.201)

Repeating the analysis of section 3.4, we find, decomposing under SU(2) x SU(2) x Spin(1, 5)
where the first factor is the SU(2) generated by J,,

WSU(Q)XSpin(l,S) _ (2’ 1, 40) + (3’ 2’4), (3202)

int
while decomposing under Spin(4, 5)

popin(4s) _ 16, (3.203)
The intrinsic torsion components of an HT or SU(2) x USp(4) structure, decomposed under
SU(2) x SU(2) x USp(4), along with which integrability conditions they constrain, are
summarised in table 3.5.2. We note that the intrinsic torsion is equal to (2,1,1)x (S™+J7),
where ST + J~ = (1,4) + (5,4) are the USp(4) x USp(4) representations in which the
Killing spinor equations transform for A" = (1,0) supersymmetry [143]. Again, from the
results of [137], the Killing spinor equations are equivalent to the differential conditions
for an integrable SU(2) x USp(4) structure.

As in the D = 4 and D = 5 cases, the integrability conditions have a interpretation

in terms of D = 6 gauged supergravity as we now sketch. The gauging of D = 6
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Ty SU@)xUSp(4)

int component

Integrability condition (1,2,4) (2,1,4) (2,1,4) (3,2,4)

o =0 X X
d@Q =0 X X
Table 3.4: The components of the generalised intrinsic torsion VV;E(Q)XUSPM) appearing in

each of the N' = (1,0), D = 6 supersymmetry conditions.

supergravity coupled to tensor-, vector- and hypermultiplets using the embedding tensor
formalism is discussed in the context of “magical supergravities” in [242]. The conditions
for a supersymmetric Minkowski background coming from the vanishing of the gaugino
variations read!”

O ftar = 0, Lo} =o. (3.204)

The key difference compared with the D = 4 case is that the vector L! is now the coordinate
vector on the flat tensor-multiplet space Ap. Note that the first condition was previously
discussed in [197]. In making the translation to the integrability conditions we note that

L' corresponds to @, while the matrix 9? is a map
0:T(N)—T(E), (3.205)
which we can identify with the action of the exterior derivative d discussed above, so that
LYo; = dQ. (3.206)

Hence the conditions (3.204) are precisely (3.199) and (3.200). Note that there are number
of conditions on #%, as well as on the intertwiner between T'(N), I'(E) and I'(E*), related
to the tensor hierarchy and necessary for the supersymmetry algebra to close. It would
be interesting to see how these are satisfied by the exterior derivative d in the infinite-
dimensional case. The fact that the geometry on each fibre SO(5,5) x Rt /SO(4,5) of the
homogeneous-space bundle Zt is a pseudo-Riemannian variant of that appearing in one of
the magical supergravity theories suggests that the structure will essentially be inherited
fibre-wise.

The moduli spaces in this case are much the same as the previous examples we have
seen. The moduli space of H structures is again as discussed in section 3.4.3. The space of
T structures At admits a flat geometry, defined by the metric 3. Again, the vector-space
structure of I'(N) defines natural flat coordinates on At and hence a flat connection

that, by definition, preserves ¥. GDiff preserves the flat structure, and furthermore an

"Note we use a different index notation from [242] to match the notation used in D = 4 and D = 5.
Also, the first term in (3.204) comes contracted with a matrix m>* in the gaugino variation, but using the
fact that m? oc (LY L)1 we see that this term can only vanish if the first term in (3.204) vanishes.
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integrable structure () remains integrable under the action of GDiff. Thus the moduli

space of integrable tensor-multiplet structures is
Mp ={Q € At : dQ = 0} /GDiff, (3.207)

which is again flat. As required by supersymmetry, it is a cone over a hyperbolic space.
As for the previous cases, generically GDiff does not act freely on At and hence Mr is
not necessarily a manifold. The moduli space of ECYs is again more complicated, though

all the comments made in the D = 4 case also apply here.

Example: NS5-branes on a hyper-Kéahler space in type 11B

The standard NS5-brane solution is a warped product of six-dimensional Minkowski space
with a flat four-dimensional transverse space and preserves sixteen supercharges [243].
Exchanging the flat transverse space for a four-dimensional hyper-Kéahler space breaks
supersymmetry further, leaving eight supercharges [77]. Thus, we expect it can be
formulated as an integrable SU(2) x USp(4) structure within Es) x R* generalised
geometry. The metric takes the standard form (3.1) with D = 6, and the four-dimensional
space M admits an SU(2) structure, with a triplet of two-forms w, as in (A.19), and a
canonical volume form %wa Nwg = 0qp voly. The solution also has non-trivial NS-NS three-
form flux H and dilaton ¢, but the warp factor A is zero. The solution is supersymmetric
if the SU(2) structure and three-form flux satisfy [77,98]

d(e™?wy) = 0, *H = —e??d(e™29). (3.208)

Recall that in type II theories there are two types of ten-dimensional spinors. The NS5-brane
solutions are an example of a pure NS-NS geometry preserving eight supercharges where
the preserved Killing spinors are all of one type: they have VT special holonomy in the
language of [98]. As such they cannot be described by generalised complex structures [111].
For this reason it is interesting to see how they do appear in the Ej:) X R* generalised
geometry. (Note that we described the same solution wrapped on R? in E7(7) x R
generalised geometry in terms of the wrapped M5-brane background of appendix A.5.)

Embedding in type IIB, the H structure is determined by the w,, such that the
untwisted objects are

Jy = —%Iﬁ}[a + %/iuiwa + %m}iwﬂ (3.209)

o)
where (I,)™, = —(wa)™, is the triplet of almost complex structures, u’ = (—1,0) and

v' = (0,—1), and k? = e"2?vol, is the Es(5)-invariant volume. The untwisted T structure

depends only on the volume form and dilaton through
Q = v’ + e vl voly, (3.210)
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where u and v are the same as above. It is easy to check from the results of appendix B that
the J, generate an sus algebra, and that the normalisation and compatibility conditions are
satisfied. The NS-NS three-form flux H embeds in the first component of F% (see (2.23)).
Thus, as previously, the actual structures will include the NS-NS two-form potential via
the adjoint action: J, = B jae_Bl and @ = eBlQ In what follows it will be easiest to
use the untwisted forms with the twisted Dorfman derivative in the differential conditions.

For the moment maps the N terms give
fta(N') o / e 2w AdN, (3.211)
M

which vanishes for d(e2%w,) = 0, completely fixing the intrinsic torsion of the underlying

SU(2) structure. Using this condition, the ¥ terms simplify to
- —2¢ . —2¢ _
Ha (D) o / €apye “Pdo ANwg Nigwy — e “CPwq N1 H. (3.212)
M

This vanishes for xH = —e??d(e2%). In terms of the untwisted objects, the integrability
of the T structure is given by

dmQ =0, (3.213)

where the action of dg on Q € T'(N) is defined in (B.56). Using the explicit form of Q,
we have
dFiQ = du’ + 6Z'juiFj (3.214)

The one-form term vanishes as u’ has constant entries. The three-form term also vanishes
as the contraction of u! with F7 picks out F? = Fj, which is zero for the NS5-brane
background.

Finally, note that we can embed the D5-brane solution in a similar way. The dilaton

2 — voly. We also take

now appears as a warp factor A, so the Es)-invariant volume is &
u' = (0,1) and v’ = (—1,0), and drop the factor of e=2¢ in Q. The moment maps then
vanish if

d(e®wq) = 0, Fy=—2%d(e”®). (3.215)

The first of these is the correct differential condition for the SU(2) structure. The second
is the correct three-form flux, coming from the dual of the seven-form flux due to the D5-
brane [98]. The integrability of the T structure takes the same form as for the NS5-brane,
but now the contraction of u* with FV picks out F'' = H, which is zero for the D5-brane

background.

3.6 Summary

In this chapter we have given a new geometrical interpretation of generic flux backgrounds in

type II supergravity and M-theory, preserving eight supercharges in D = 4,5, 6 Minkowski
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spacetime, as integrable G-structures in Eg(g) xRT generalised geometry. As in conventional
geometry, integrability was defined as the existence of a generalised torsion-free connection
that is compatible with the structure, or equivalently as the vanishing of the generalised
intrinsic torsion, defining what we called an “exceptional Calabi-Yau” (ECY) space.

We found the differential conditions on the structures implied by integrability, and
showed that they took a simple form in terms of the generalised Lie derivative or mo-
ment maps for the action of the generalised diffeomorphism group. As for Calabi—Yau
backgrounds, supersymmetric solutions are described as the intersection of two separate
structures that can be associated to hypermultiplet and vector-multiplet degrees of freedom
in the corresponding gauged supergravity. We saw how the simple examples of Calabi—Yau,
generalised Calabi—Yau and hyper-Kéhler structures appear in our formalism, as well as
various other simple supersymmetric flux backgrounds.

We saw that the spaces of hypermultiplet and vector-multiplet structures admit hyper-
Kahler and special Kahler metrics respectively. The integrability conditions for each took
the form of a moment map for the action of the generalised diffeomorphism group, so that

the moduli spaces of structures is given by a hyper-Kéahler or symplectic quotient.
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Chapter 4

Exceptional Sasaki—Einstein

backgrounds

In this chapter we analyse generic AdS flux backgrounds preserving eight supercharges in
D =4 and D = 5 dimensions using exceptional generalised geometry. We show that they
are described by a pair of globally defined generalised structures, identical to those that
appear for Minkowski flux backgrounds but with different integrability conditions. We give
a number of explicit examples of such “exceptional Sasaki—Einstein” backgrounds in type
IIB supergravity and M-theory. In particular, we give the complete analysis of the generic
AdSs M-theory backgrounds. We also briefly discuss the structure of the moduli space of
solutions. In all cases, one structure defines a “generalised Reeb vector” that generates a
Killing symmetry of the background corresponding to the R-symmetry of the dual field
theory, and in addition encodes the generic contact structures that appear in the D =4
M-theory and D = 5 type IIB cases. Finally, we investigate the relation between generalised
structures and quantities in the dual field theory, showing that the central charge and
R-charge of BPS wrapped-brane states are both encoded by the generalised Reeb vector,
as well as discussing how volume minimisation (the dual of a- and F-maximisation) is

encoded.

4.1 Introduction

Supersymmetric AdS backgrounds are of central importance to gauge/gravity duality.
In the simplest examples, corresponding to branes at conical singularities where only
a top-form field strength is non-zero, they describe familiar geometries [64], such as
Sasaki-Einstein or weak-Go spaces. However, backgrounds with generic fluxes are much
more complicated and at first glance have no simple geometrical description. Significant
progress has been made analysing them using G-structures [97,98,104,105], for example
as means of classifying AdS, and AdSs solutions with eight supercharges in both type 11
theories [244] and M-theory [240,245]. More generally one can use generalised geometry [108—
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110] to characterise the type II backgrounds, as for example in [130,132,246]. In both
cases the geometry is defined by set of invariant tensors, typically only locally defined,
satisfying some first-order differential equations that capture the lack of integrability of
the structure in terms of the form-field flux. It is natural then to ask if there is a single
notion of geometry that captures the known examples in terms of a global, integrable

structure, perhaps also in a way adapted to the degrees of freedom of the dual theory.

As we saw in the previous chapter, the answer is to use Egq) X R* generalised
geometry [135-138]: generic Minkowski flux backgrounds in D = 4,5, 6 preserving eight
supercharges can be formulated as “exceptional Calabi—Yau” geometries. In this chapter
we will give the extension of this formalism for “exceptional Sasaki-Einstein” geometries,
that is, generic type II and M-theory AdS backgrounds in D = 4,5 preserving eight
supercharges. The generalised structures are identical to those that appear for Minkowski
backgrounds, however the integrability conditions are modified in a way that depends on
the cosmological constant, and is equivalent to the presence of singlet intrinsic torsion
for the corresponding generalised connection [145]. In each case the vector-multiplet
structure is defined by an invariant generalised vector which is Killing: it generates a
combination of diffeomorphisms and gauge transformations that leave the background
invariant, corresponding in this case to the R-symmetry of the dual field theory. By
analogy to the Sasaki—Einstein case we refer to it as the “generalised Reeb vector”. The
formalism also allows one to analyse the structure of the moduli space of backgrounds.
In particular we find that the space of integrable hypermultiplet structures appears as a
Kéhler slice of a hyper-Kéahler quotient of the original space of structures, in a way closely
related to the “HK/QK correspondence” of Haydys [247]. This mirrors the analysis of
gauged D = 4,5 supergravity [198,248] precisely because the structures can be thought
of as describing a rewriting of the ten- or eleven-dimensional supergravity as a D = 4,5

theory coupled to an infinite number of hyper- and vector-multiplets [181].

We analyse three explicit cases to show how known supersymmetric AdS flux back-
grounds appear in our formalism. For D =5 in type IIB, we consider the Sasaki-Einstein
solutions, and also give the form of the generalised Reeb vector for the generic backgrounds
in terms of spinor bilinears defined in [244]. For D = 5 in M-theory, we give a completely
general analysis, showing how the structures are defined in terms of the bilinears of [240],
and also that the integrability conditions are satisfied. Finally, for D = 4 in M-theory we
again consider the Sasaki—Einstein solutions, and give the form of the generalised Reeb

vector for the generic backgrounds in terms of bilinears of [245].

One striking feature that emerges is the role played by the generalised Reeb vector.
It is already known that, remarkably, the generic D = 5 type IIB and D = 4 M-theory
backgrounds admit contact structures [134,245,249], which encode both the central charge a
(or free energy F) of the theory and the R-charges of operators dual to wrapped branes. This
structure appears very naturally in the exceptional Sasaki—-Einstein description: it is simply

the generalised Reeb vector. As we discuss, this also leads to a very natural conjecture,
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following the work of [250], for the generic notion of “volume minimisation” [251,252], the
gravity dual of a- and F-maximisation in the field theory [253-255].

This chapter is organised as follows. We begin in section 4.2 by reviewing the generalised
structures that appear for D = 4,5 Minkowski backgrounds preserving eight supercharges,
and then recall the integrability conditions on the structures. We then move onto the main
result, namely the extension of the integrability conditions for AdS backgrounds. We leave
the interpretation of the conditions and a discussion of the moduli spaces of integrable
structures to section 4.3. We provide some concrete examples of supersymmetric AdS
backgrounds in sections 4.4 and 4.5 and show they do indeed define integrable structures.
In section 4.6, we comment on the relation between vector-multiplet structures and several
field theory quantities, in particular the central charge and free energy, the dimension of

operators dual to wrapped branes and the dual of a- and F-maximisation.

4.2 Generalised structures for AdS

We begin by reviewing the generalised structures that define D = 4,5 backgrounds
preserving eight supercharges. These were defined in the previous chapter for Minkowski
vacua, but are equally applicable to AdS. The only difference is in the integrability
conditions, and one of the main results of this chapter is to give the conditions relevant to
AdS. We provide some concrete examples, including the case of completely general fluxes
in M-theory giving an AdSs vacuum. We leave the interpretation of the conditions and a

discussion of the moduli spaces of integrable structures to section 4.3.

4.2.1 Hyper- and vector-multiplet structures in E44) generalised geo-
metry

We consider type II and M-theory solutions of the form AdSp x M, where M is (10 — D)-
dimensional for type II and (11 — D)-dimensional for M-theory. We assume the metric is a

warped product

ds® = e?2ds?(AdSp) + ds* (M), (4.1)
where A is a scalar function on M. We take m to be the inverse AdS radius, so that the
Ricci tensor is normalised to Ry, = —(D — 1)m?g,,,, where g is the metric on AdSp, and
the cosmological constant is A = —%(D — 1)(D — 2)m?®. As in the previous chapter, we

allow generic fluxes compatible with the AdS symmetry of the external spacetime and use
the string frame metric for type II solutions.

We showed in the previous chapter that a generic Minkowski background preserving
eight supercharges is completely characterised by a pair of generalised G-structures in
exceptional generalised geometry. These structures were first defined in [181], in the
context of type II theories. The pairs of structures that appear for N' =2, D = 4 and

N =1, D = 5 backgrounds were named hypermultiplet and vector-multiplet structures,
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Grame H structure V structure HYV structure

D=4 E7(7) X R+ Spln*(12) E6(2) SU(G)

Table 4.1: The generalised G-structures with G C Eg7) and G C Eg(g) that define
eight-supercharge backgrounds in D = 4 and D = 5 respectively.

or H and V structures for short, since they are associated to hyper- and vector-multiplet
scalar degrees of freedom in D dimensions. The relevant structure groups defined by the

H and V structures are summarised in table 4.2.1.

The hypermultiplet structure is defined by a triplet of sections of a weighted adjoint
bundle

Hstructure :  J, € D(ad F @ (det T*M)Y?) o =1,2,3, (4.2)

which define a highest weight sus subalgebra of ¢44) and are normalised using the ;g

Killing form such that
[Jar Jg] = 2K€a8yJ, tr(JoJg) = —K20ug- (4.3)

Similarly, the vector-multiplet or V structure is defined by a section of the generalised
tangent bundle F

V structure : K eT'(E), (4.4)

which has a positive norm with respect to the E;(7) quartic invariant q(K) > 0 or the
Eg(6) cubic invariant c¢(K) > 0.1 In D = 4, one can use the quartic invariant as a Hitchin

function to define a second invariant tensor K and combine the two into a complex object
X = K +iK. (4.5)

Explicitly, K is defined by the relation
s(V, K) = 2q(K)™"?q(V, K, K, K). (4.6)

for arbitrary V € I'(E).

Finally the pair of structures {J,, K} define an HV structure if they are compatible,

'Recall that for E7(7y there is a symmetric quartic invariant q(V1, V2, V3, V4) and a symplectic invariant
s(V1, V2) and for Eg(g) a symmetric cubic invariant ¢(Vi, Va2, V3). We use the shorthand ¢(V) = q(V, V,V,V)
and c¢(V) = ¢(V,V, V).
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that is, if they satisfy the conditions

—2v/q(K)dop D =4,

HV structure : Jo - K =0, tr(JoJg) =
—c(K)dap D =5,

(4.7)

where for D = 4 from (4.6) we also have \/q(K) = 1s(K, K).

Given a pair of globally defined spinors on M, one can construct “untwisted” structures
{ja, K } in terms of spinor bilinears. The full structures include the potentials for the
appropriate form fields and are given by the exponentiated adjoint action on the untwisted

objects, thus in M-theory we have
Jo = eA+Ajae_A_A, K= eA+AI~(, (4.8)
where A is the three-form potential and A is the dual six-form potential, and for type IIB
Jo = eBiJFCjae_Bi_C, K = eBi+Cf(, (4.9)

where B is the SL(2;R) doublet of two-form potentials and C is the four-form potential.
In this case one also needs to include dressing by the IIB axion and dilaton, as described
in appendix B. Since these transformations are in Ey4), the algebra, normalisation and
compatibility conditions (4.3) and (4.7) can be checked using either the twisted or untwisted

objects.

4.2.2 Exceptional Sasaki—Einstein geometry

We now describe the integrability conditions on the HV structure for the case of a
supersymmetric AdS background preserving eight supercharges. As discussed in [143,145],
the difference from the Minkowski case is that there is a constant singlet component of the
generalised intrinsic torsion, resulting in a background with weak generalised holonomy.
This leads to a simple modification of the Minkowski conditions given in the previous
chapter.

Recall that the space of H structures has a natural hyper-Kéahler cone geometry and
admits a triplet of moment maps for the action of the generalised diffeomorphism group
GDiff, that is, the diffeomorphism and gauge transformation symmetries of the underlying
supergravity theory. Infinitesimal transformations are generated by the generalised Lie
derivative Ly and so are parametrised by generalised vectors V' € I'(E). The moment

maps for a given element in goiff parametrised by V are given by

o (V) = —%eam/ tr(JaLy J,). (4.10)
M
For Minkowski backgrounds, supersymmetry implied that the moment maps vanished. For
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AdS backgrounds they take a fixed non-zero value. Let us define the real functions
D=t AV)=2 [ gl VYK KK, (4.11)
M

D=5: ~(V) = /M c(V,K,K). (4.12)

Note that the first definition can also be written in terms of K using (4.6).
We can then define the exceptional generalised geometry analogue of a Sasaki—Einstein

structure, corresponding to an AdS background with generic fluxes. We have

Definition. An exceptional Sasaki-FEinstein (ESE) structure is an HV structure {J,, K}
satisfying

pa(V) = Ay (V) for all V e T'(E), (4.13)
LrK =0, (4.14)
L Jo = €apyAgdy, LiJa =0, (4.15)

where (V) is given by (4.11) and (4.12), and A, are real constants related to the inverse
AdS radius by |[A| = 2m for D = 4 and |\| = 3m for D = 5, where [A|*> = A\ + A3 + \3.

The second condition in (4.15) is relevant only for D = 4.

The integrability condition for the vector-multiplet structure (4.14) is unchanged from the
Minkowski case. As shown in appendix C, for D = 4 this is equivalent to Lx X = 0, as
Lx X vanishes identically. The other two conditions now have right-hand sides, determined
by the singlet torsion. Note that the third condition (4.15) simply states that the action of
L is equivalent to an SU(2) rotation of the J,. Note also that this condition is consistent
with the moment map conditions when taking V = K (and V = K in D = 4). As shown
in appendix F, for ESE spaces, the second compatibility constraint in (4.7) is actually a
consequence of the integrability conditions.

Recall that for D = 4 there is a global U(1) R-symmetry that acts on X, taking
X — X' = el®X. Strictly, one should write the condition (4.15) replacing K with Re X’
and K with Im X’. However, the point is that one can always choose a gauge where the
condition takes the form (4.15). In a similar way one can use the SU(2) global R-symmetry
to set A\;2 = 0. (The only unbroken part of the R-symmetry is then a U(1) preserving As.)

The conditions (4.10) can then be written as
p3(V) = Asy(V), M+(V) =0, for all V' € F(E)a (416>

while the conditions (4.15) read



These are the forms we will use when checking the integrability for various examples.

We can immediately deduce various properties from the integrability conditions. The
first is that the ESE space is generalised Einstein. Recall that the HV structure {J,, K}
determines the generalised metric G that encodes the supergravity degrees of freedom
on M. Given a generalised metric one can construct a unique generalised Ricci tensor
following [137]. Using the generalised intrinsic torsion of the ESE background, which we
discuss in section 3.4, and the results of [145], we find that the generalised Ricci tensor

satisfies the generalised Einstein equation?®

(D—-1)(D —2)
dp

Ryn = mZGMN, (4.19)
where M and N are indices running over the dual generalised tangent space E* and dg is
the dimension of F.

Next we note that since Lx K = 0 and Ly J, is equal to an SU(2) R-symmetry rotation,
which simply rotates the Killing spinors but leaves the supergravity degrees of freedom

unchanged, we can conclude that LxG = 0 and so
LkG=0 <« K is a generalised Killing vector, (4.20)

as is also the case for Minkowski backgrounds. Note that for the D = 4 solutions, K is

also generalised Killing. Let us decompose K into vector and form components

+w+o+T M theory,
K-1¢ Y (4.21)

E+ N4+ p+ot+7 typellB,

where £ is the vector component. The generalised Killing vector condition in M-theory is

equivalent to
Leg=0, LeA—dw=0, LeA—do+idwnA=0, (4.22)

where A is the three-form potential and A is the dual six-form potential. In type IIB it is

equivalent to

ﬁgg =0, ﬁgc = dp — %Gijd)\i A Bj, (4 23)
LB = AN, LeB'=do' + AN AC — 1dp A Bi + LB A ey BF A dN, '

where B is the SL(2; R) doublet of two-form potentials, B’ are their six-form duals and
C is the four-form potential. In each case, the form components give compensating
gauge transformations so that the field strengths (F' = dA etc.) are invariant under

the diffeomorphism generated by £&. We immediately see that if £ = 0 then all the

?We are using Ryn = Ry + ﬁG v~ R, where R® and R are the generalised tensors defined in [137].
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form components are closed and hence Lg acting on any generalised tensor vanishes.
However, this is in contradiction with the condition (4.15). Hence we conclude that &
is non-zero and the solution admits a Killing vector that also preserves all the fluxes.
Furthermore from (4.15) we see that it generates the unbroken U(1) C SU(2) R-symmetry.
On Sasaki—Einstein spaces this vector is known as the Reeb vector. Thus we are led to
define

Definition. We call K the generalised Reeb vector of the exceptional Sasaki—Einstein

geometry, noting that its vector component £ € I'(T'M) is necessarily non-vanishing.

The fact that K is generalised Killing means that, in the untwisted frame where there
are no potentials in the generalised metric, the corresponding “twisted” generalised Lie

derivative must reduce to just a conventional Lie derivative, that is
Ly = Le, (4.24)

where € is the vector component of K (and hence also of K). Acting on an arbitrary

untwisted generalised tensor &, the twisted generalised Lie derivative takes the form

Lya=L,a—-R-a, (4.25)

where R is a tensor in the adjoint representation of Ey(g), R - & is the adjoint action, v is

the vector component of V, £, is the conventional Lie derivative and

N do—1w5F+d6 —wF +OAF for M-theory,
AN — 5 F' 4 dp — 15F — €] N AFI +dg* + XA F — A F* for type TIB.
(4.26)

The condition (4.24) thus means that the corresponding tensor R vanishes. The condi-
tions (4.14) and (4.15) can then be written as

Ledo = €aprrgly, LK =0. (4.27)

In what follows it will sometimes be simpler when checking solutions to use these forms of

the conditions.

Finally, we note that there is a consistency condition on K implied by the moment
map conditions (4.13). Strictly, there is a kernel in the map Lo: I'(E) — g0iff, meaning
that two different generalised vectors can generate the same generalised diffeomorphism.

In other words, we have Ly = Ly A, which holds if

wt+o+T with dw = do = 0 in M-theory,
A=Y | | | (4.28)
AN +p+o'+7 with d\' =dp =do* =0 in type 1IB.
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Thus for the conditions (4.13) to make sense we need
2(A) =0, (4.20)

which is a differential condition on K. In fact it is implied by the conditions (4.14)
and (4.15). Note first that these conditions are satisfied by both K and K+ A. As we have
already mentioned, substituting (4.15) into the expression for the moment maps (4.10)
gives

() = A /M W2 = Aoy (K), (4.30)

where the second equality follows from the second of the compatibility conditions (4.7).
From the homogeneity of ¢ and ¢, we note that upon taking the functional derivative,

where M runs over all the components of the generalised vector, we have

07 (K)

v SKM

= (D - 2)y(V). (4.31)

Then note that, using o (K + A) = po(K) and (4.30), we have

dpia(K)

_ AM
=27 5Kn

= )\a(D - 2)’7(A)7 (4'32)

and hence indeed v(A) = 0. Note that this derivation did not use the moment map
conditions (4.13) themselves, only the conditions (4.14) and (4.15) involving L.

Finally, in the D = 4 case K is also generalised Killing. However, from the condition
~v(A) =0 and (4.6), we have

(1) = /M s(T, K) =0, (4.33)

for all 7 for both type IIB and M-theory. From the form of the symplectic invariant given
in (B.30) and (B.30), this implies that the vector component of K vanishes. Since K is
Killing this means

Lz (anything) = 0, (4.34)

or in other words, K is in the kernel of the map Le: I'(E) — goiff, satisfying the same
conditions as A in (4.28). As such, it generates a trivial generalised diffeomorphism and
hence the generalised metric is not invariant under a second symmetry; only K generates

a non-trivial transformation.

4.2.3 (Generalised intrinsic torsion

As conjectured in [143] and proven in [145], the Killing spinor equations for generic AdS

flux backgrounds preserving eight supercharges are in one-to-one correspondence with HV
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structures with constant singlet generalised intrinsic torsion.® In each case the non-zero
torsion was in the (3,1) of SU(2) x G, where G is the HV structure group, which breaks
the SU(2) R-symmetry to U(1). These were called spaces with weak generalised special
holonomy, in analogy with conventional G-structures. This is in contrast to Minkowski
backgrounds where all components of the intrinsic torsion vanished. Note that there are
no singlets in the generalised intrinsic torsion for D = 6, giving the standard result that
there are no N' = (1,0) AdS solutions in six dimensions.

In order to prove that our conditions (4.13), (4.14) and (4.15) are equivalent to the
conditions for supersymmetry, we need to check that they indeed admit a constant non-zero
singlet in the (3,1) component of the intrinsic torsion. To do this we can simply repeat
the calculations of section 3.4. One immediately notes that the (3,1) component appears
in the moment maps and LgJ,, but not Lg K. This explains why the Lx K = 0 condition
is unchanged from the Minkowski case. By definition, the right-hand side of (4.15) is a
constant singlet in (3, 1) as it is a constant linear combination of J,. Consistency with the
moment maps then implies (4.13) for V' = K. This proves that the integrability conditions

are indeed equivalent to the Killing spinor equations.

4.3 Gauged supergravity and moduli spaces

4.3.1 Integrability conditions from gauged supergravity

As stressed in [181] and the previous chapter, the infinite-dimensional spaces Ap and
Ay of hyper- and vector-multiplet structures correspond to a rewriting of the ten- or
eleven-dimensional supergravity theory so that only eight supercharges are manifest [146].
The local Lorentz symmetry is broken and the fields of the theory can be reorganised into
N =2,D=4or N =1, D=5 multiplets without making a Kaluza—Klein truncation. One
can then interpret the integrability conditions in terms of conventional gauged D =4 or
D = 5 supergravity with an infinite-dimensional gauging by GDiff. The general conditions
for supersymmetric vacua have been given in [196,197,248], and we showed in the previous
chapter that for Minkowski backgrounds these conditions are precisely the integrability
conditions on the generalised structures.

Let us now briefly show that the same is true for the AdS backgrounds. Following [197],
a generic gauged N' = 2, D = 4 theory admits an AdS vacua provided

ONflar = —%eKv/QQAE Im(iX%)aq, X2 Ok

=0,  X"ONY = caa (6",
(4.35)
where |fi| o< m, aq is unit-norm vector parametrising S?, KV is the Kihler potential and

Qax the symplectic structure on the space of vector multiplets Ay. We have written the

3Strictly for D = 4 only the A = 1 case was considered in [145]. However, combined with the comments
about N = 2 in [143], the results of [145] are sufficient to prove that for A" = 2 there is a constant singlet
torsion transforming in a triplet of SU(2).
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last condition not on the quaternionic-Kéahler space, but on the corresponding hyper-Kahler
cone. Any Killing vector preserving the quaternionic-K&hler structure on the base lifts to
a vector that rotates the three complex structures on the cone. Thus (£*)" are the three
vectors generating the su, action the cone, normalised such that £ - &% = §*8. There
is a consistency condition between the first and third conditions that arises from the
identity ky - € = —2pu4, [213,215]. This is the same consistency we already noted for the
integrability conditions (4.15) and (4.14). Contracting the third expression in (4.35) with
€ and the first expression with X*, we find

¢ =20 XA Im(pXT). (4.36)

We can then choose i to be real using the U(1) action on X. Using the identifications
between terms in the N' = 2 expressions and the H and V geometries discussed in
section 3.4, we see that, using (4.6) and for real fi, the three conditions in (4.35) exactly
match (4.13), (4.14) and (4.15) respectively. Explicitly we can identify

VA@?\,“’O{,)\ = IU’OC(V)7
sVAIM(X )t = aaQ(V, K) = agy(V), (4.37)

and e~ %" =iQ(X, X). While acting on the section-valued functions .J,, we have

apt®(Jo) = —€apyaply,

(4.38)
X2O\kx(Ja) = Lx Ja.

It is straightforward to see that conditions in D = 5 can similarly be matched to the

gauged supergravity expressions for AdS vacua given in [197].

4.3.2 Moduli spaces of ESE backgrounds

We now turn to analysing the structure of the moduli space of exceptional Sasaki—-Einstein
backgrounds satisfying the integrability conditions (4.13)—(4.15). Given the relation to
gauged supergravity discussed above, we can use known results on the form of the moduli
space of AdS vacua in these theories [198,248]. For example, for N' =2, D = 4 gauged
supergravity, it was shown in [198] that the vector-multiplet moduli space is a real subspace
of the local special Kahler manifold Ay /C*, while the hypermultiplet moduli space is a
Kéhler submanifold of the quaternionic manifold Ay /H*, at least in the so called “minimal”
solution. More generally, the combined moduli space is no longer a product.

In fact, the situation here is more complicated because we have to impose the com-
patibility conditions (4.7) between the H and V structures. This means that even before
imposing the integrability conditions, the space A of HV structures is not actually a

product Ay x Ap. Nonetheless, as we have described, if we drop the normalisation part
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of the compatibility condition, we can view A as a fibration of a hyper-Kéhler cone space
over a special Kahler space (or vice versa). The same structure arises for D = 5 but now
we have a hyper-Kéhler cone over a very special real manifold (or vice versa).

Focussing for definiteness on D = 5, though an analogous analysis applies to D = 4,
we can use this fibration picture to analyse the form of the moduli space. Let us first fix a
generalised Reeb vector K € Ay satisfying the integrability condition Lx K = 0. We can
now consider the space of H structures Ag C Ay compatible with the fixed K, that is

AE ={J, € Ay : Jo- K =0}. (4.39)

We can drop the normalisation condition x? = ¢(K) since, as we show in appendix F, it is
a consequence of the supersymmetry conditions. At each point on the manifold M, the

space of possible J, is given by the hyper-Kahler cone
W = Fyq) % R*/USp(6), W/H* is a Wolf space, (4.40)

and in complete analogy to the construction of Ay we find that the infinite-dimensional
space AII{( is itself a hyper-Kahler cone. We are now left with imposing the remaining two

supersymmetry conditions
ta(V) =Aav(V),  LiJa = €apyrpJy- (4.41)

We would like to have geometrical interpretations of both conditions. Recall first
that since A{{{ is a hyper-Kéhler cone it admits a free SU(2) action generated by a triple
of vectors €% € I'(TAX). The action of GDiff is triholomorphic (it preserves all three
symplectic structures) and is generated by a vector py € I'(T A{f ) for each V € E. By

definition, acting on the J, we have

pv(Ja) = Lyda,  £%(J5) = €apy s (4.42)

Because of the “source” term A,7y(V') in the moment maps, only a subgroup U(1) C SU(2)
of transformations leave the moment map conditions invariant. This group is generated by
r = Ao€% and preserves one linear combination of complex structures I = A\, I% on .Ag .
Restricting to V = K, the vector px generates a one-dimensional subgroup G C GDiff
corresponding to the generalised diffeomorphisms generated by K. As we showed in

section 3.4, these two actions commute.

We can now interpret the condition (4.15) as a vector equation
px —1r =0, (4.43)

that is, it restricts us to points on .A{{{ that are fixed points of a combined action of G

and U(1). (Note that generically we expect that fixed points will only exist for certain
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choices of K satisfying Lx K = 0.) We define
Ni = {p € Aff : px(p) —r(p) = 0}. (4.44)

Since both px and r preserve the complex structure I, both are real holomorphic vectors
and hence Ny is a Kahler subspace of Ag with respect to I.

Let us now turn to the moment maps. We would like to view them as defining a hyper-
Kihler quotient. Thought of as single map p: A% — gdiff* x R3, for AdS backgrounds,
the level set defined by (4.13) is u=1(A4), where the element A, € gdiff* x R3 is given by
the functional derivative A, = A\,07/0V. But since (V') depends on K we see that it is
not invariant under the full generalised diffeomorphism group. A hyper-Kéhler quotient is
well defined only on a level set that is invariant under the action of the quotient group.
However, we can define a subgroup of generalised diffeomorphisms GDiff x C GDiff as

those that leave K invariant, that is the stabiliser group,
GDiffx = {® € GDiff : & - K = K}, (4.45)

so that infinitesimally, V' parametrises an element of the corresponding algebra goiffy if
Ly K = 0. Since Lg K = 0 note that G C GDiffk. For a fixed K, any two H structures
related by an element of GDiff - are equivalent. If we restrict to the subgroup GDiff g,
then we can view the moment maps as a hyper-Kihler quotient? Since the moment map
conditions break the SU(2) action to U(1), although the quotient space is by definition
hyper-Kéahler, it is not a hyper-Kahler cone, that is, there is no longer an underlying
quaternionic-Kéahler space.

Combining the quotient with the fixed-point conditions (4.43) we then have two
possibilities: either take a quotient and then impose (4.43) or impose (4.43) and then take
a quotient. Doing the latter we note that the fixed-point condition already imposes that
we are on a Kéhler subspace, so there is no notion of a hyper-Kéhler quotient. However, we
show in appendix F that, restricting to GDiff ¢ on Ny, two of the moment map conditions
are identically satisfied. Thus we are actually only taking a symplectic quotient with a

moment map given by pu(V) = Agpia (V). Thus we have the diagram

pr—r=0
Al PRI e

HK quotientl szmpl. quotient (4'46)

,r./

M/H—:0>MH

“The one caveat is that the conditions (4.13) are satisfied for arbitrary V parametrising all of goiff
not just V with Ly K = 0 parametrising goiff,. Thus we need to be sure the conditions arising from the
moment maps with restricted V', together with the other supersymmetry conditions (4.14) and (4.15), are
sufficient. Although we have not found a general proof, we can see this is true in a number of explicit
examples. This is not surprising, since the moment maps only constrain a relatively small independent
component (2, 6) of the intrinsic torsion.
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where M{; = .A{I{ /| GDiff i is a hyper-Kéhler manifold, and the final moduli space
My = Ny /GDiff ¢ is Kéhler.

The vector r’ in (4.46) generates the U(1) action on the quotient space MJ;. Since the
action of px is modded out on the quotient space, it is trivial and so the condition becomes
just 7/ = 0. However, since 7’ is still real holomorphic with respect to I, we see that going
via My, the space My is again Kéhler. One caveat to taking the hyper-Kéhler quotient
first is that there might be additional solutions to ' = 0. Since r is freely acting, we
have 7' = 0 whenever there is a generalised diffeomorphism such that Ly J, = €agyAg 5.
However, since Ly K = 0 as V € goiffg, we see that such V' are generalised Killing vectors.
Thus, provided K is the only generalised Killing vector, we can take either path in the
diagram (4.46).

We can slightly refine the construction to make a connection to the “HK/QK corres-
pondence” of Haydys [247], which physically is related to the c-map. This also helps the
analysis in the case where there are fixed points. Given V satisfying Ly K = 0, acting on

any generalised tensor o we have
[Lv,Lkla =L, gka=0. (4.47)

Thus G is in the centre of GDiff ¢ and as such is a normal subgroup. Thus we can define

the quotient group GDiff% = GDiff /G and write GDiff k¢ as a semi-direct product
GDiffx = G x GDiff%. (4.48)

We can then perform the hyper-Kéahler quotient in two stages: first by the action of Gg
and then by GDiff%, as described in symplectic case, for example, in [256]. We can then
add one more level to the diagram (4.46)

pr—r=0

*//|Gx */Gk

~ ~

S BN (4.49)

¢ //GDiftY, ¢/ GDiff%,

v v

Ml —=0 s My
Consider the path through the diagram with two commuting Abelian actions on AX
given by G and U(1) C SU(2), with the latter preserving only one linear combination
of the three complex structures. This is exactly the set up that appears in the HK/QK

correspondence [247]: the hyper-Kahler manifold is Py while the quaternionic-Kahler
manifold is AE /H*.
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4.4 AdS5 backgrounds as ESE spaces

We now discuss the structure of exceptional Sasaki-Einstein (ESE) backgrounds for AdSs.
The generic flux backgrounds for type IIB were analysed in [244], and for M-theory in [240].
Here we first show how the standard type IIB Sasaki—Einstein reduction with five-form
flux embeds as an ESE background, and comment on how this extends to the generic case.
We then give the ESE form of the generic M-theory background, showing explicitly how

the integrability conditions reproduce those given in [240].

4.4.1 Sasaki—Einstein in type IIB

Backgrounds of the form AdSs x M, where the five-dimensional space M is Sasaki—Einstein
and there is a non-trivial self-dual five-form flux, are supersymmetric solutions of type
IIB supergravity preserving at least eight supercharges [257]. The metric is a product of
the form (4.1) with D = 5 and a constant warp factor, which we take to be zero. Five-
dimensional Sasaki—Einstein spaces admit a nowhere-vanishing vector field £, known as the
Reeb vector and a pair of two-forms 2 and w, that together define an SU(2) C GL(5;R)

structure (for a review see for example [258,259]). They satisfy the algebraic conditions
QAQ=2wAw, 16 = 1w =0, 1o =1, (4.50)

where o is the one-form constructed from £ by lowering the index with the metric (that is

¢ = of). In addition one has the differential conditions
do = 2muw, dQ) = 3imo A Q, (4.51)

where m is the inverse AdSs radius, usually normalised to m = 1. Such a compactification

is supersymmetric provided there is a five-form flux given by
dC = F = 4mvols, (4.52)

where vols = —%0 Aw A w.
Note that these conditions imply that the Reeb vector ¢ is a Killing vector that

preserves ¢ and w, but rotates {2 by a phase
,ng = ﬁgw = ﬁgg = 0, [fQ = 3imf2. (4.53)

The rotation of § corresponds to the R-symmetry of the solution. In what follows we also

need the (transverse) complex structure

I, = —w", = HQ"Q,, — Q"PQ,,), (4.54)
which satisfies 17, Qpn, = iQn.-
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The Sasaki-Einstein geometry defines an “untwisted” HV structure invariant under
SU*(6)
Jy = %fiuiQ + %mviQﬁ, (4.55)
Jy = 1kl + 1etl 4+ LA QF - LkQ A G, '
where u! = (—i,1), v’ = (—1, —i)%, 7 is given in terms of the second Pauli matrix 7+ = —ioy,
and the Egg)-invariant volume is K2

by

= vols. The V structure invariant under Fy4) is given

K=¢(—0Aw. (4.56)
Using the adjoint action and the eg) Killing form from appendix B, one can check that
J,, satisfy the su, algebra and are correctly normalised as in (4.3), while using the cubic
invariant from appendix B and the algebraic conditions (4.50), one can check that K and
J,, satisfy the compatibility conditions (4.7), so that together {J,, K} define a USp(6)
structure. The full “twisted” structures include the four-form potential C' as in (4.9),
however, in what follows, it will actually be easier to work with the untwisted structures

and use the twisted generalised Lie derivative in the differential conditions.

Let us now see how the integrability conditions on o, w, 2 and F arise. We turn first
to the moment map conditions (4.16). Let V be an untwisted generalised vector. Using
the untwisted K, we see that the function (4.12) takes the form

(V) = ?1)/ 150 vols +w A p, (4.57)
M
where v and p are the vector and three-form components of V. As the moment map

condition must hold for an arbitrary generalised vector, we can consider each component

of V in turn. We begin with the 5 components of 3

() = 1(p) = % [ RO AR [ pne

(4.58)
:/ %dﬁ/\a— %A;;ﬁ/\w7
M
which vanishes for do = %)\3&]. Next we consider the p condition, which gives
py (V) o</ R2QF (N +1A2)

M
x / (QF svols) A d(A! +iA2) (4.59)

M

x / d(o AQ) A (M +i)2).
M
Using do o< w from the previous condition, this vanishes for o A d2 = 0. Finally we have
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the ¥ components of pus:

Mg('f})—)\g”y(@):é/ iﬁﬁQ/\J/\Q—iE{,Q/\J/\Q—415F/\U—:15/\3/ 150 vols
M M

= / zf,a(%idQ AQ— %F — %)\3 Vol5),
M
(4.60)

where we have simplified using the previous conditions. Requiring that the expression
above vanishes for all v fixes the flux to F' = %idQ AQ— %)\3 vols.

For the vector-multiplet structure (4.14), using the expression for the twisted Dorfman

derivative, we find
I:Rf( =Lel+ Le(—0 Aw) —1¢(d(—0 Aw) — 16 F5) = —dw, (4.61)

which vanishes if w is closed. Finally, the condition (4.18) on LgJ,, combined with the
conditions from the hyper- and vector-multiplet structures, fixes the remaining SU(2)
torsion classes and the five-form flux in terms of the cosmological constant. Setting

A3 = 3m, we have
do = 2mw, dQ) = 3imo A Q, F = 4mvols . (4.62)

We see that we reproduce the full set of Sasaki—Einstein integrability conditions (4.51).

In summary, we have shown that a background consisting of a five-dimensional manifold
with an SU(2) structure, and generic five-form flux defines a generalised USp(6) HV
structure. Furthermore, requiring that the HV structure is ESE implies that the SU(2)

structure is Sasaki-Einstein and the five-form flux takes the correct supersymmetric value.

4.4.2 Generic fluxes in type 1IB

Although we will not give the full analysis, let us makes some comments on the case of
generic fluxes in type IIB, first considered in [244] and recently reformulated in terms
of generalised connections in [142]. In this case, the Killing spinors defines a local U(1)
structure and there are a large number of tensors that can be defined in terms of spinor
bilinears. The H and V structures for generic backgrounds, as in the Sasaki-Einstein case,
can again be written in terms of appropriate spinor bilinears. In particular, it is relatively

easy to show that the untwisted V structure takes the form
K =¢+ N 62, (4.63)
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where, in terms of the fermion bilinears of [244], we have®
¢=K! AN =e’?ReK3, A= Ac??ReKz+e ??ImKs,  p=—+V, (4.64)

where ¢ is again the Killing vector for the R-symmetry. As we pointed out in (4.24), the
fact that K is a generalised Killing vector means that the generalised Lie derivative along
K reduces to a conventional Lie derivative along the Killing direction. For this to be true,

the tensor R, defined in (4.26), must vanish. This follows from the differential conditions

Ad(®2 K3) =iQ A K3 — e*P A K3 — ik, G, (4.65)
d(e* % V) = —1cF + 5e*2(G A K3 — G A K3), (4.66)

where G is the complex three-form flux and the other forms are defined in [244]. These
conditions are most easily derived directly from the Killing spinor equations.

Recall that there is also a complex bilinear two-form W satisfying

DS W) + P ASA W = LG, 4.67
4m,

where f is a constant related to the five-form flux on M. This condition implies that
B! +iB% = (4m/f)e®'W are potentials for the three-form flux G [134]. Using these
potentials in (4.9), and the explicit forms of the bilinears given in [244], we then find that
the full twisted V structure is given by®

K=¢(—-o0Aw+1C, (4.68)

where do = (8m?/ f)w, C is the four-form potential for the five-form flux F = dC—F'ABJ.

In the notation of [244], 0 and w are defined as
o=—e" Ky, w=—eV. (4.69)

We see that the form of K is identical to the Sasaki-Einstein case. Furthermore, in [134,249],
it was shown that o is a contact structure, even in the case of generic flux, and £ is the

corresponding Reeb vector. The corresponding contact volume is

64m?t 5a/ 64m*
fi?e:ﬂ vols = —lc(K), (4.70)

where vol; is the volume of M in the Einstein frame, and we see that it is the Eg(g)-invariant

%U/\do*/\da:—

volume up to a constant.

5Note that A’ = A — i is the warp factor in the Einstein frame, corresponding to that used in [244].

5Note that this includes the dressing by the axion-dilaton degrees of freedom. There is a slight subtlety
that here we first twist by the B? potentials defined by W and then dress by the axion-dilaton, whereas
previously the transformations were made in the opposite order. Thus strictly the potentials defined by W
differ from those we have been using by the axion-dilaton dressing.
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4.4.3 Generic fluxes in M-theory

We now consider the most general supersymmetric solutions of eleven-dimensional su-
pergravity of the form AdSs x M, as first discussed in [240]. In this case, the internal
six-dimensional space M has a local SU(2) structure characterised by tensor fields con-
structed as bilinears of the Killing spinor on M. The metric on M always admits a Killing
vector corresponding to the R-symmetry of the dual N = 1 superconformal field theory. As
we will see, in this case, the embedding of the SU(2) structure into the H and V structures

is fairly intricate.

Let us start by summarising the structure of the solution and the relevant spinor
bilinears. The metric is a warped product of the form (4.1) with D = 5. Locally, the

internal metric can be written as
ds*(M) = dsgyg) + ¢ + G, (4.71)

where the SU(2) structure on ds%U(Q) is captured by a complex two-form {2 and a real

fundamental two-form w. The volume form is given by
volg = JWAWAGAGL=1ANQAGAG. (4.72)

We also have an almost complex structure for ds%U@) given by

I = it = (@0, 0D,) 47
The set of spinor bilinears defined in [240] are”
sinf =éete, Y=w-—sin0G NG = —i€+’7(2)€+a
51 =cosf (1 = €+’Y(1)6+, Y = (G N —sinfw= iFL'y(Q)ef, (4 74)
52 =cosf (s = ielhy(l)ef, X =—-QA(sinf( —i¢2) = €+T’}/(3)6+, ‘
Q =coshQ = 6+T’)/(2)67, V=cosOwAC=eyge,

where 7 are gamma matrices for Cliff(6) in an orthonormal frame for M and the Killing
spinor on M is split into e and €, where e~ o y7¢™. In the following we will also need
four other, related bilinears

—ix X = €+T’Y(3)6_, *V = i€+7(3)e+,

X L . _ L - (4.75)
Y ANY NY =€ Y6)€ 4 =—%( =i€ Y(5)€ -

The differential conditions on the SU(2) structure derived from the Killing spinor

"Note that, compared with [240], we have relabelled A to A, ¢ to 6 and K; to ¢;. We have also absorbed
an overall warp factor into ds®(M).
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equations are given in (B.9) — (B.16) of [240]: we reproduce those that we need here®

d(e3 sin ) = 2me?2¢1,  d(e?2CGy) = +F + 4me'?,

(4.76)
d(e*2X) =0, d(e*2V) = 2 sin F + 2me?2 « Y.

One can use the Killing spinor equations to derive additional identities for forms that were
not considered in [240] (but are implied by the conditions therein). We find

d(e?Y") = —F, d(e®Z) = e®Y' A F, (4.77)
where £ = eAfg is the Killing vector that preserves the full solution
LeF =LA =Leg=0, (4.78)

and generates the U(1) R-symmetry. Since the R-symmetry maps € to el®T, Lie

derivatives of the spinor bilinears vanish except for
LeQ = 3imQ, LeX = 3imX, (4.79)

as can be derived from the conditions in [240].

Embedding as a generalised structure

The untwisted HV structure is defined in terms of the spinor bilinears as follows. For the
SU*(6) structure we have
Ji=ik(Qp —ix X +ix X¥), (4.50)
Jy = —AVR+ Le(GAY =G AYE) = LAY AY AY + LYEAYEAY), '
where k2 = 32 volg is the Eg(6)-invariant volume and Qr and Yg are sections of TM @T* M,
constructed by raising the first index of the corresponding two-form with the metric, that is
(Qr)™, = g""Qpn and (Yg)™,, = ¢"Ypn. The F4) structure is given by the generalised
Reeb vector
K=¢—-e2Y' +e22. (4.81)

Using the adjoint action, ¢g(g) Killing form and cubic invariant given in appendix B, one
can check the J, satisfy an su, algebra and that both structures are correctly normalised.
To be sure that together they define an USp(6) structure we also need to check the first
compatibility condition in (4.7), or equivalently J, - K = 0. Splitting into vector, two-form

8 As mentioned, we have absorbed an overall warp factor into the metric on M, so that the powers of A
appearing here are different to those in [240].
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and five-form components, we find
T K|y o< Qr -G —i(xX)"2Y" =0,
Ti+ K| poguyy o Q- Y +iC50(xX) — i(xX)Z = 0, (4.82)
T4 K| psguyy X Qr - Z +i(*xX)AY' =0,

T*M

T*M

where we have used the expressions for the spinor bilinears in terms of the SU(2) structure
to see that each term vanishes. The full structures will be twisted by the three-form gauge
potential A as in (4.8). However, it is again actually easier to work with the untwisted

structures and use the twisted generalised Lie derivative in the differential conditions.

Integrability

We now turn to the integrability conditions starting with the moment maps (4.16). Let

V = 0 +@+ & be an untwisted generalised vector. The function (4.12) then takes the form
Y(V) = —;,/ Bane+xY' AD =Y A Z). (4.83)
M

We first consider 3. The moment map is a sum of terms that depend on arbitrary v, @

and &, so we can consider each component in turn. The & component is
wus3(6) — Asy(6) = llﬁi/ K2 (*X'ti A *Xﬁ)_ndﬁ + :1,)/\3/ RO NG
M M
— 5/ ¢ sinf dé + §A3/ 2O NG (4.84)
M M
— _;/ d(e*sinf) A& + gAg/ e?2C NG
M M
Remembering that A3 = 3m, this vanishes for
d(e*® sin ) = 2me?2(;. (4.85)
This is the first differential condition in (4.76). The @ component is
ps(@) — Mgy (@) = 1161/ R (1(Qn - XE 4 Q-+ XF) 0 + (6XF A XE) (@ A F))
M
+ 33 / ByY' A
/ (egA‘V A d@ — sin 2@ A F) + %)\3 / 2 %Y A D
M

/(d (€2V) A w—sin9e3AwAF)+§A3/ A %Y N
M M

_1
2

l\')\»—*

(4.86)
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This vanishes for
d(e*2V) = 32 sin OF 4 2me?® x Y. (4.87)

This is the fourth differential condition in (4.76). The © component is rather long but can
be shown to vanish as a result of the differential conditions in (4.76). For the p moment
map, the contribution from terms containing & vanishes without imposing any differential

conditions. The contribution from the & terms simplifies to

fg (@) = —;/ SAX Ndw = —;/ d(e**X) A Q. (4.88)
M M

This vanishes after imposing the third differential condition in (4.76)
d(e32X) =o. (4.89)
The ¥ component is again somewhat involved but can be shown to vanish as a result of
the conditions in (4.76).
For the vector-multiplet structure we first use the condition (4.24), which, substituting
for K in (4.26), gives

R=—d(e?Y') — 3 F +d(e?Z) —eAY' NF =0, (4.90)

which reproduces the two equations in (4.77). We then have

LK =LK =0, (4.91)

since the bilinears £ = eAgg, Y’ and Z are all invariant. Finally we have the condition (4.18)
which, given (4.79), reads

in agreement with A3 = 3m.

In summary, we have shown that the most general AdSs solutions of eleven-dimensional

supergravity do indeed define an exceptional Sasaki—Einstein space.

4.5 AdS, backgrounds as ESE spaces

We now discuss the structure of exceptional Sasaki-Einstein (ESE) backgrounds for AdS,.
We first show how the standard M-theory Sasaki-Einstein reduction with seven-form flux
embeds as an ESE background, and comment on how this extends to the generic case,

given in [245].
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4.5.1 Sasaki—Einstein in M-theory

We now briefly discuss the structure of exceptional Sasaki-Einstein (ESE) backgrounds
for AdSy, focussing on the example of conventional Sasaki-Einstein geometry in M-theory.
These are supersymmetric solutions preserving at least eight supercharges [64], and are
dual to a three-dimensional superconformal field theory living on a stack of M2-branes

placed at the tip of the corresponding Calabi—Yau cone.

The metric is a product of the form (4.1) with D = 4 and a constant warp factor, which
we take to be zero. Seven-dimensional Sasaki-Einstein spaces admit a nowhere-vanishing
vector field &, known as the Reeb vector, a complex three-form ) and real two-form w,
which together define an SU(3) C GL(7;R) structure. They satisfy the algebraic conditions

iNAQ = %w ANw A w, 16 = 2¢w = 0, 1wo =1, (4.93)

ool

where o is the one-form constructed from & by lowering the index with the metric. In

addition one has the differential conditions
do = mw, dQ) = 2imo A Q, (4.94)

where m is the inverse AdS, radius, usually normalised to m = 2. Such a compactification

is supersymmetric provided there is a seven-form flux given by
dA = F = —3mvoly, (4.95)

where vol; = %0 AwAwAw. (Recall that F is the Hodge-dual of the four-form flux
F = 6mvol(AdSy) in eleven-dimensions.) These conditions imply that the Reeb vector &

is a Killing vector that preserves ¢ and w, but rotates €2 by a phase
Leo=Lew = Leg =0, L = 2iml). (4.96)

The rotation of  corresponds to the R-symmetry of the N’ = 2 solution. In what follows
we also need the (transverse) complex structure

™, = —w™ = L@, — QI (4.97)

n n

which satisfies 1%,Qqnp = 1Qmnp. For simplicity of presentation, we assume that the
four-form flux and warp factor vanish, though one can show that these also follow from

the integrability conditions.

The HV structure defined by the SU(3) structure is actually the same as the example
considered the previous chapter, namely a Calabi—Yau threefold times a circle. The

difference between the two is in the differential conditions on the SU(3) invariant forms.
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We have the untwisted tensors

Jy =50 - 5Qf
:L Z :i O _ siof A Of (4.98)
where k2 = vol; is the E7(7)-invariant volume and
X=¢(+iw—30AwAw—io®voly. (4.99)

Using the adjoint action, the symplectic invariant and the e7(7) Killing form, one can check
that .J, generate an sus algebra and that both structures are correctly normalised and are
compatible, as in (4.3) and (4.7).

We now show how the integrability conditions on the SU(3) structure arise by requiring
{Ja, K} to be ESE. Starting with the moment maps (4.16), we note that if V = 64+&+6+7

is an arbitrary untwisted generalised vector, then

(V) = / s(V,K) = —}1/ (150 voly +6 A w). (4.100)
M M
Starting with us, the terms that depend on & are
13(3) — Agv(6) = 1161/ K2(QF A QF)1dF) + }1>\3/ AW
M M
:—é/ d&/\a—i—}l)\;g/ FAw (4.101)
M M

——%/ 6/\d0+}1)\3/ 0Aw,
M M

which vanishes for do = %)\3&]. The p4 moment map is

(V) = —51/ — L2 te(1 - (D)) + L2 (wh A wh A wh) S(da A Q)
M
= —slsi/ 32 Ao + o Ado A Q (4.102)
M
= %1/ o AQAdD,
M

which, using do « w from above, vanishes for o A d©2 = 0. In the language of [224], this

fixes the torsion classes {Wi, Wa, W5} to zero. Finally, the 0 components of g are
p3(0) — Azy(0) = — ki / kP L (KQ) + Lo(kQF)akQ — K2(QF A Q) s F
M
- i)\:}, /M 150 voly (4.103)
= 515/ (ZﬁUdQAQ+4Z@UF) — [11)\3/ 1350 voly,
M M
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where we have used the previous results to reach the final line. Requiring this to vanish
fixes the flux to F' = £3 voly —2dQ A Q.

For the vector-multiplet structure, using the expression for the twisted generalised Lie
derivative (4.25) and (4.26), we find

ﬁkk =Leb+ Le(—30NwAw) —ie(d(—F0 Aw Aw) — 2515) = —dw A w, (4.104)

so that integrability implies dw A w = 0. In the language of [224], the torsion classes
corresponding to {Wy, E + E, Vs, T5} must vanish. Finally, the conditions from (4.17)
combined with those from the H and V structures fix the remaining SU(3) torsion classes
to S =0 and F = i)\g, so that, with A3 = 2m, we have

do = mw, dQ = 2imo A Q, F = —3mvoly. (4.105)

We see we reproduce the full set of Sasaki—FEinstein integrability conditions.

In summary, we have shown that a background consisting of a seven-dimensional
manifold with an SU(3) structure and generic seven-form flux defines a generalised SU(6)
structure. Furthermore, requiring that the HV structure is ESE implies the manifold must
be Sasaki-Einstein and the seven-form flux matches that of the standard supersymmetry-

preserving solution.

4.5.2 Generic fluxes in M-theory

Although we will not give the full analysis, let us now discuss some aspects of how the
previous analysis extends to the case of generic fluxes in M-theory, first considered in [245].
In this case, the Killing spinors define a local SU(2) structure. The H and V structures for
generic backgrounds, as in the Sasaki—Einstein case, can be written in terms of appropriate
spinor bilinears. Assuming the seven-form F is non-zero, it is relatively straightforward to

show that the complex untwisted V structure takes the form
X =£+32Y + 827 — i, (4.106)
where, in terms of the fermion bilinears, using the notation of [245], we have
£= i)Zﬁ_'y(l)X_, Y =ixive)x- Z = %Y, T =€ ®voly. (4.107)

The tensors Y and Z are generically complex, but, as shown in [245], £ is real, so there is
no vector component in the imaginary part of X, consistent with the general argument
given at the end of section 4.2.2. The generalised Lie derivative along the real part of X

generates the R-symmetry, and so must reduce to a conventional Lie derivative along &.
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We indeed find that the tensor R, defined in (4.26), vanishes due to

d(e*AY) = 1 F, (4.108)
Ad(eS2Z) = 1 F — S2Y A F, (4.109)

where the first is given in [245] and the second can be derived from the Killing spinor
equations.

Recall also that there is also a spinor bilinear three-form satisfying

d (P2 Im(XS @) x-)) = o F (4.110)

Compared with the expression given in [245], we have reinstated the inverse AdS radius m
(set to m = 2 in [245]), and f (denoted by m in [245]) parametrises the seven-form flux,
namely F = —fvol;. We see (3m/f)ef Im(X%7v(3)X-) is a potential for the four-form
flux F'. Using this potential in (4.8) and the explicit forms of the bilinears given in [245],
we then find that the full twisted V structure is given by

X:e;‘[§+iw—%a/\w/\w—io®(%U/\w/\w/\w)}, (4.111)
where do = (3m?/f)w. In particular, the real part is given by
K=¢(-lonwhw+acA (4.112)

We see that the form of X matches that of the Sasaki-Einstein case (4.99). It was
shown in [245] that o is a contact structure, even in the case of generic flux, and ¢ is the

corresponding Reeb vector. The corresponding contact volume is

27m° 3 27m°
%J/\da/\da/\daz fT <37}32> e”? voly = f?z\/ q(K), (4.113)
where vol7 is the volume of M. Again it is simply a constant times the E;(7)-invariant

volume.

4.6 Central charges, BPS wrapped branes and volume min-
imisation

Of the many field theory properties that can be determined from the dual geometry, two of
the most studied are the central charge a or free energy F of the theory and the conformal
dimension of operators that arise from supersymmetric wrapped branes. The key point of
this section is that they are all encoded, in a universal way, by the generalised Reeb vector
K. This also leads to a conjecture as to how the dual description of a-maximisation in

D = 4 and F-maximisation in D = 3 appears.
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We have considered three ESE geometries in this chapter: AdSs in type 1IB and
M-theory and AdS, in M-theory. The generic generalised Reeb vector in each case is given
by

§—0oNw+1C, AdS5 in type IIB,
K=3¢-eAY +e2Z +2A— ANe”Y’, AdSs in M-theory, (4.114)
& — %0 ANwAw+ 15121, AdSy4 in M-theory,

where in the last case we are assuming the seven-form flux F is non-trivial and in the first
that five-form flux F' is non-trivial. Each K is a generalised Killing vector that generates
the global R-symmetry of the dual field theory. It is a combination of diffeomorphism
(parametrised by &) and gauge transformation (parametrised by the p-form components),
under which the transformations of the metric g and gauge potentials vanish, as in (4.22)
and (4.23). For AdSs in type IIB [134,249] and AdS, in M-theory [245], the generic
geometry admits a canonical contact structure o. As we have already noted, it is striking
that this structure is equivalent to specifying the generalised Reeb vector K, where the

integrability arises from requiring that K is generalised Killing.

For AdSs solutions the central charge a of the dual field theory is given by [260]

™

= — 4.11
a 8m3G5’ ( 5)

where G5 is the effective five-dimensional Newton’s constant. Using the results of [249]
and [261], one finds that for both the generic type IIB and M-theory background the

inverse of G5 is given by the integral of the Egg)-invariant volume

G5lo</ e3Avol:/ c(K). (4.116)
M M

As review in appendix G, quantising so we have N units of background flux and fixing
this integer IV in the expression for a reverses the dependence on the invariant volume.
This leads to a universal expression for the central charge in terms of the generalised Reeb

vector, applicable to both type IIB and M-theory
a”t o</ oK), (4.117)
M

where in type IIB the constant of proportionality scales as N~2 and in M-theory as N 3.
Recall that for type IIB, ¢(K) is proportional to the contact volume %0 Ado Ado.

A similar formula for the free energy of the field theory on a three-sphere can be derived
for generic AdS, backgrounds following [245]. The real part of the free energy is equal to

the gravitational free energy and is given by

™
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where the four-dimensional Newton’s constant is given by the E7(7)-invariant volume

Gt /M 2 voly = /M2\/q(K). (4.119)

Fixing the quantised background flux then gives, as in [255],
F?x / Va(K), (4.120)
M

where the constant of proportionality scales as N 3. Again, 1/q(K) is proportional to
the contact volume, %0’ Ado Ado Ado. Although we have not considered type 1IB AdSy
backgrounds, we expect that the same formula for the free energy holds since ¢(K) (and

¢(K) in the AdS; case) are U-duality invariants.

Let us now discuss how the properties of chiral operators in the dual SCFT coming
from wrapped branes are encoded by K. For definiteness, we will focus on AdSs in type
IIB. A probe D3-brane wrapping a supersymmetric three-cycle X3 in My gives rise to
a BPS particle in AdSs. The particle appears as the excitation of a field that couples
to a chiral primary operator Oz, and thus the probe D3-brane corresponds to a BPS
operator in the dual field theory. The (warped) volume of the wrapped D3-brane is then
associated to the conformal dimension of the operator A(Q3), which in turn is proportional
to the R-charge. In order for the three-cycle to be supersymmetric, it must be calibrated
by a (generalised) three-form calibration. There are many ways to find this calibration,
including using spinor bilinears of the full ten-dimensional Killing spinors or checking the

k-symmetry conditions directly.

A similar story applies to probe M2-branes wrapping supersymmetric two-cycles in Mg
and probe Mb-branes wrapping supersymmetric five-cycles in M7, corresponding to chiral
primary operators in the dual four- and three-dimensional SCFTs. For all three cases, the
relevant calibration form is known and the conformal dimensions of the corresponding

operators are given by

T
D3-branes in AdS; [134,249:  A(O3) = -2 | 5 Aw,
m P
. _ _ T N
M2-branes in AdSs [261]:  A(Os) = - e~Y’, (4.121)
P

Mb5-branes in AdSy [245]: A(Os) = _Tws foAwAw,
m Jx,
where T, is the tension of the brane wrapping the cycle. From (4.114) we see that the
relevant calibration form appears in the generalised Reeb vector K, implying that the
components of K are the (generalised) calibrations that define supersymmetric cycles.
This is not surprising since K is defined as a bilinear of the Killing spinors and imposing

that Lg reduces to L¢ requires the components of K to satisfy equations that resemble
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generalised calibration conditions. For backgrounds with non-trivial fluxes, the calibration
condition is equivalent to asking that the energy of the wrapped brane is minimised. This
suggests that the generalised calibration should be given by the twisted K. Notice however
that, for the branes we discussed above, most of the potentials have vanishing pull-back
on the wrapped cycle and hence do not contribute to the conditions (4.121). We leave for

future work a more detailed analysis of how calibrations appear in this language.

As we have seen, the generalised Reeb vector K encodes the central charge or free
energy of the dual field theory. For some time, a classic problem in four-dimensional
N =1 SCFTs was to find the correct U(1) symmetry that gives the R-symmetry as the
theory flows from the UV to the IR. A general procedure for determining this was given
by Intriligator and Wecht [253], namely a-maximisation. For three-dimensional N' = 2
theories the analogous procedure consists of maximising the free energy [254,255]. (Both
cases can also be thought of as minimising the coefficient Trr of the two-point function
of the R-symmetry current [262].) The bulk version of this process is known as volume
minimisation [251,252], and was originally derived for Sasaki-Einstein backgrounds, but a
version also appears to hold for the case of generic type IIB backgrounds [250]. The idea
is to relax the supersymmetry conditions slightly and show that the resulting supergravity
action depends only on the choice of Reeb vector, £. The actual supersymmetric background
then appears after minimising over the possible choices of &.

This leads to a natural question: what is the dual of a-maximisation (or F-maximisation)
in our language? Comparing with [250-252] there is a very natural candidate for relaxing the
supersymmetry conditions, namely simply to drop the normalisation conditions x? = ¢(K)
in D =5 and k? = 2@ in D = 4, defining a notion of an “exceptional Sasaki
structure”. Following the analogous analysis to that given in appendix F, we find this

requires that the moment map conditions are slightly modified, giving

Definition. An exceptional Sasaki structure is a pair {J,, K} of H and V structures

satisfying J, - K = 0 and the integrability conditions

(V) = Aa / o(V) WV eT(E), (4.122)
M

LgK =0, (4.123)

Lk Jo = €apy Ay, LyJo =0, (4.124)

where ¢(V') is given by

o(V) = iq(v, K,K,K)/q(K), for D=4 (4.125)
k2c(V,K,K)/c(K), for D=5

where tr(JoJg) = —k?dap and A, are real constants, as in the definition of an ESE

structure. The condition L J, = 0 is relevant only for D = 4.
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An interesting open question is whether in the D = 5 type IIB case this agrees with the
notion of a generalised Sasaki structure defined in [250]. The natural conjecture is then
that, over the space of such structures, the supergravity action restricted to the internal

space M is given by

SsugraOC/ Va(K), and Ssugraoc/ c(K), (4.126)
M M

for D =4 and D = 5 respectively, and so depends only on the generalised Reeb vector.
Extremising over the space of K then selects the generalised Reeb vector that corresponds
to the actual R-symmetry.

Motivation for this formulation comes from the fact, already noted in section 4.3.1,
that the supersymmetry conditions for an ESE structure can be interpreted in terms
of gauged D = 4 or D = 5 supergravity with infinite dimensional spaces of hyper- and
vector-multiplets. Various authors have considered the dual of a- and F-maximisation from
the point of view of a conventional dual gauged D =5 or D = 4 supergravity [263-265],
and showed explicitly that they correspond to extremising over the space of possible R-
symmetries either, in D = 5, the cubic function that determines the real special geometry
of the vector multiplets [263,264], or, in D = 4, the real function that determines the
special Kéhler geometry of the vector multiplets [265]. In our language, this corresponds to
varying K and extremising the integral of either ¢(K) or /q(K), exactly as we conjecture
above.

Showing that such a procedure works would provide the dual of a- and F-maximisation
not only for an arbitrary flux background, generalising the Sasaki—FEinstein cases in I11B
on AdS5 and M-theory on AdSy, but also for the generic M-theory AdSs background for
which no notion of volume minimisation exists. It may also provide insight into exactly

what space of solutions one is extremising over in the flux case.

4.7 Summary

In this chapter we have given a new geometrical interpretation of generic AdS flux
backgrounds preserving eight supercharges within generalised geometry. These “exceptional
Sasaki-Einstein” (ESE) geometries are the natural string generalisations of Sasaki-Einstein
spaces in five and seven dimensions. The geometries always admit a “generalised Reeb
vector” that generates an isometry of the background corresponding to the R-symmetry of
the dual field theory. In the language of [145], ESE spaces are weak generalised holonomy
spaces, and the cone over such a space has generalised special holonomy. We have included
a number of examples of ESE spaces including conventional Sasaki—Finstein in five and
seven dimensions, as well as the most general AdS5 solutions in M-theory. We also discussed
the structure of the moduli spaces of ESE spaces, pointing out an interesting connection
to the “HK/QK correspondence” [247].
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A particular advantage of the formalism is that the generalised H and V structures
defining the background are associated to hypermultiplet and vector-multiplet degrees of
freedom in the corresponding gauged supergravity, providing a natural translation between
bulk and boundary properties. We showed for example that the V structure, which is
defined by the generalised Reeb vector K, encodes the contact structure that appears
in generic D = 5 IIB and D = 4 M-theory backgrounds [134,245,249]. Furthermore K
determines the central charge in D = 5 and free energy in D = 4 of the dual theory, and
is a calibration for BPS wrapped branes giving the dimension of the dual operators. In
the examples with contact structures, this framework allows one to calculate properties
of the field theory using the relation between the contact volume and the choice of Reeb
vector [134,245,249]. The special role of K also led us, following [250], to a conjecture for

the generic form of volume minimisation [251,252].
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Chapter 5

Marginal deformations of d = 4,
N =1 SCFTs

In this chapter we apply exceptional generalised geometry to the study of exactly marginal
deformations of A/ = 1 SCFTs that are dual to generic AdSs flux backgrounds in type
IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are
parametrised by the space of chiral primary operators of conformal dimension three, while
exactly marginal deformations come from quotienting this space by the complexified global
symmetry group. We show how the supergravity analysis gives a geometric interpretation of
the gauge theory results. The marginal deformations arise from deformations of generalised
structures that solve moment maps for the generalised diffeomorphism group and have the
correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the
only symmetry of the background, all marginal deformations are exactly marginal. If the
background possesses extra isometries, there are obstructions that come from fixed points
of the moment maps. The exactly marginal deformations are then given by a further
quotient by these extra isometries.

Our analysis holds for any N' =1 AdS5 flux background. Focussing on the particular
case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deforma-
tions correspond to perturbing the solution by three-form flux at first order. In various
explicit examples, we show that our expression for the three-form flux matches those in
the literature and the obstruction conditions match the one-loop beta functions of the
dual SCFT.

5.1 Introduction

The AdS/CFT correspondence allows the study of a wide class of superconformal field
theories in four dimensions, many of which are realised as the world-volume theories of
D3-branes at conical singularities of Calabi—Yau manifolds. The best known examples are
N = 4 super Yang—Mills and the Klebanov—Witten model, which are obtained by stacking
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D3-branes in flat space or at the tip of the cone over T! respectively.

An interesting feature of N' = 1 superconformal field theories (SCFTSs) is that they may
admit exactly marginal deformations, namely deformations that preserve supersymmetry
and conformal invariance. A given N/ = 1 SCFT can then be seen as a point on a
“conformal manifold” in the space of operator couplings. The existence and dimension of
the conformal manifold for a given theory can be determined using A/ = 1 supersymmetry
and renormalisation group arguments [266-269]. For instance, N” = 4 super Yang-Mills
admits two exactly marginal deformations, the so-called 8- and cubic deformations.! Even
in this simple case, it is difficult to determine the precise geometry of the conformal
manifold.

Using AdS/CFT, the same questions can be asked by studying deformations of the
supergravity background dual to the given SCFT. For N' = 4 super Yang—Mills, the
supergravity dual of the full set of marginal deformations is known only perturbatively.
In [270], the first-order perturbation was identified with the three-form fluxes of type
IIB, and the corresponding linearised solution was given in [225]. The second-order
solution, including the back-reacted dilaton and metric, was constructed in [271], which
also identified an obstruction to the third-order solution, corresponding to the vanishing of
the gauge theory beta functions. This required considerable effort, and it seems unlikely
one can reconstruct the full solution from a perturbative analysis. More promisingly,
using duality transformations, Lunin and Maldacena were able to build the full analytic
supergravity dual of the S-deformation [93]. The same transformation applied to T1! or
YP4 manifolds gives the gravity duals of the S-deformation of the Klebanov—Witten theory
and more general N' = 1 quiver gauge theories [93]. For the other marginal deformations
of YP? models, the identification of the gravity modes dual to them can be found in [272],
but no finite-deformation gravity solutions are known.

The Lunin—-Maldacena (LM) solution has a nice interpretation in generalised complex
geometry [132,133], a formalism that allows one to geometrise the NS-NS sector of
supergravity [108,109]. One considers a generalisation of the tangent bundle of the
internal manifold, given by the sum of the tangent and cotangent bundles. The structure
group of this generalised tangent bundle is the continuous T-duality group O(d, d). The
transformation that generates the LM solution is then identified as a bi-vector deformation
inside O(d, d) [132]. However, this is not the case for the other marginal deformation of
N = 4. In order to capture all exactly marginal deformations, one is tempted to look at
the full U-duality group. This requires considering exceptional or E g4 X R* generalised
geometry [135,136], where the U-duality groups appear as the structure groups of even
larger extended tangent bundles.

The relevant structures for AdSs compactifications are a hypermultiplet (or H) structure
Jo and a vector-multiplet (or V) structure K. These structures are naturally associated

with the hypermultiplet and vector-multiplet degrees of freedom of the five-dimensional

IThere is also a third exactly marginal deformation that is simple changing the gauge coupling.
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gauged supergravity on AdSs, hence their names. Together they are invariant under
a USp(6) subgroup of Eg) x RT and also admit a natural action of the USp(2) local
symmetry of N' = 1 supergravity in five dimensions.? Although our specific examples will
focus on type IIB geometries, the same analysis applies equally to generic N' =1 AdSs
solutions of type IIB or eleven-dimensional supergravity.

This generalised geometric description of the internal geometry translates naturally to
quantities in the dual field theory, which is particularly useful when analysing marginal de-
formations. Indeed, since hypermultiplets and vector multiplets of the gauged supergravity
correspond to chiral and vector multiplets of the dual SCFT [263], the deformations of
the H and V structures map directly to superpotential and Kahler deformations of the
dual SCFT. Using the properties of the N’ = 1 superconformal algebra, Green et al. [269]
showed that marginal deformations can only be chiral operators of (superfield) dimension
three and that the set of exactly marginal deformations is obtained by quotienting the
space of marginal couplings by the complexified global symmetry group. The main result
of this chapter will be to reproduce these features from deformations of generic solutions
on the supergravity side: the supersymmetric deformations must preserve the V structure
but can deform the H structure. In addition, the exactly marginal deformations are a
symplectic quotient of the marginal deformations by the isometry group of the internal
manifold. This corresponds to the global symmetry group of the dual field theory.

The chapter is organized as follows: we begin in section 5.2 with a discussion of marginal
deformations of N/ =1 SCFTs focussing on a number of classic examples that are dual to
AdSs x M type IIB backgrounds, where M is a Sasaki—-Einstein manifold. In section 5.3, we
review the reformulation of AdSs backgrounds in terms of exceptional generalised geometry.
We then describe how the moduli space of generalised structures appears and outline how
this reproduces the findings of [267-269]. For concreteness, in section 5.4 we specialise
to type IIB Sasaki—Einstein backgrounds. We find the explicit linearised supersymmetric
deformations corresponding to the operators in the chiral ring, matching the Kaluza—Klein
analysis of [273], and recover the result that the supersymmetric deformations give rise
to three-form flux perturbations [225]. In section 5.5, we give the explicit examples of
S?, Th! and Y9, and show that our expression for the three-form flux on S° matches
the supergravity calculation of Aharony et al. [271], and reproduces the flux of the LM

solution for generic Sasaki-Einstein manifolds.

5.2 Marginal deformations of ' =1 SCFTs

Conformal field theories can be seen as fixed points of the renormalisation group flow
where the beta functions for all couplings vanish. Generically, since there are as many

beta functions as there are couplings, CF'Ts correspond to isolated points in the space of

2We use the nomenclature N’ = 1 to denote backgrounds with eight supercharges in five dimensions, as
this is the minimal amount of supersymmetry.
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couplings. This is not the case for supersymmetric field theories, where non-renormalisation
theorems force the beta functions for the gauge and superpotential couplings to be linear
combinations of the anomalous dimensions of the fundamental fields [266]. If global
symmetries are present before introducing the marginal deformations, the number of
independent anomalous dimensions will be smaller than the number of couplings and not
all beta functions will be independent. The theory then admits a manifold of conformal
fixed points, M. This is equivalent to saying that a given SCFT at a point p € M, admits
exactly marginal deformations, namely deformations that preserve conformal invariance at
the quantum level. The dimension of the conformal manifold is given by the difference
between the number of classically marginal couplings and the number of independent beta
functions. The two-point functions of the exactly marginal deformations at each point
p € M, defines a natural metric on M, called the Zamolodchikov metric.

Recently, developing the argument in [267], the authors of [269] proposed an alternative
method to analyse the A/ = 1 exactly marginal deformations of four-dimensional SCFTs,
which does not use explicitly the beta functions for the superpotential couplings, but
instead relies on the properties of the N' = 1 algebra. Take a four-dimensional N' = 1
SCFT at some point p in the conformal manifold, and consider all possible marginal
deformations. These are of two types: “Kéahler deformations” which are perturbations
of the form [ d*@V where V is a real primary superfield of mass dimension A = 2, and
“superpotential” deformations which have the form [ d?0 © where O is a chiral primary
superfield with A = 3.3 The results of [269] are that:

e there are no marginal Kéahler deformations since they correspond to conserved

currents;

e there is generically a set of marginal superpotential deformations O;, with the generic

deformation W = h'O; parametrised by a set of complex couplings {h'};

e if the undeformed theory has no global symmetries other than the U(1)g R-symmetry,

all marginal deformations are exactly marginal;

e however if the original SCFT has a global symmetry G that is broken by the generic
deformation W = h'Q;, then the conformal manifold, near the original theory, is
given by the quotient of the space of marginal couplings by the complexified broken
global symmetry group

M. = {h'}/Gc, (5.1)

where M. is Kéahler with the Zamolodchikov metric.

The reduction (5.1) can be viewed as a symplectic quotient for the real group G, where

setting the moment maps to zero corresponds to solving the beta function equations for

3Here we give the mass dimension of the operator written as an N = 1 superfield. In component
notation, in both cases the contribution to the Lagrangian has dimension A = 4.
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the deformations. Note also that the vector space of couplings h? (modulo G¢) parametrise
the tangent space T, M, at the particular SCFT p € M., and so define local coordinates
on the conformal manifold near p. Thus, as written (5.1), is only a local definition.

More generally one can also consider operators @ = A + 61 + 2F4 that are chiral
primary superfields of any dimension, modulo the relations imposed by the F-terms of
the SCFT. The lowest components A form the chiral ring under multiplication A” = AA’
subject to the F-term relations, whereas the #2-components satisfy Far = AFy + A'Fy,

and hence transform as a derivation on the ring (specifically like a differential “d A”). In
what follows it will be useful to define the infinite-dimensional complex space of couplings
{4%,+'"} corresponding to deforming the Lagrangian by a term A = 4/F4, + /' A; for
generic chiral ring elements A; and §?-components F4,. The 4% terms are supersymmetric,
while the 4 terms break supersymmetry, and generically neither are marginal. One of
our results is that the supergravity analysis implies that there is a natural hyper-Kahler
structure on this space, since the pair (v%,7%) arise from the scalar components of a
hypermultiplet in the bulk AdS space. More precisely, if there is a global symmetry G,
one naturally considers the space defined by the hyper-Kihler quotient?

M= {7} )G (52)
The conformal manifold is then a finite-dimensional complex submanifold of M
M. C M, (5.3)

with the A; couplings 7" set to zero and only the exactly marginal 7* coefficients (denoted
h; above) non-zero.
We now give three examples of SCFTs whose conformal manifolds have been analysed

and whose gravity duals will be discussed in the rest of the chapter.

5.2.1 N = 4 super Yang—Mills

The most studied example of a SCFT in four dimensions is A' = 4 super Yang—Mills. The
fields of the theory are — besides gauge fields — six scalars and four fermions, all in the
adjoint representation of the gauge group SU(N) and transforming non-trivially under the
SU(4) R-symmetry. In N' = 1 notation, these fields arrange into a vector multiplet and
three chiral superfields ®. The theory has a superpotential

Wi = ghegjp tr(' 7 0F), (5.4)

which is antisymmetric in the fields, and the coupling is fixed by N’ = 4 supersymmetry to
be equal to the gauge coupling, h = 7. In this notation, only the SU(3) x U(1) subgroup

of the R-symmetry is manifest.

4For more on this hyper-Kéhler quotient see section 5.3.2.
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The marginal deformations compatible with ' = 1 supersymmetry are given by the
chiral operators
W = Lhejp tr(@'QIOF) + L £, tr('0T0F), (5.5)

where f;j is a complex symmetric tensor of SU(3) and h is a priori different from the gauge
coupling 7. In all there are eleven complex marginal deformations. The superpotential
(5.5) breaks the global SU(3) symmetry, leaving the U(1)g symmetry of N' = 1 theories.

Therefore, the conformal manifold is
M = {h, fijr}/SUB)c, (5.6)

with complex dimension dim(M.) = 11 — 8 = 1 4 2. The first deformation is an SU(4)
singlet corresponding to changing both 7 and h, the other two are true superpotential

deformations.

The same conclusions can be reached by studying the beta functions of the deformed
theory [266,271]. One can show that the beta function equations for the gauge coupling and
the superpotential deformations are proportional to the matrix of anomalous dimensions.

At one loop, this (or more precisely its traceless part) is

2
j_N"—4

Vi = W(fiklfjkl — 36 fam fFm) = 0, (5.7)

corresponding to the SU(3) moment maps, when we view (5.6) as a symplectic quotient.
This equation imposes eight real conditions on f;;;. One can remove another eight real
degrees of freedom using an SU(3) rotation of the fields ®*. Together, these reduce the

superpotential deformation to [266]
W = Lheijp tr(@'0I0F) + f5tr(D1 0703 + 202D ) + £ tr((21)* + (22)% + (2%)?). (5.8)

The coupling f3 is the so-called B-deformation,® and f) is often called the cubic deformation.
As mentioned above, the first term in this expression is to be interpreted as changing h

and 7 together.

One can go beyond the one-loop analysis. The deformed theory has a discrete Zs x Zs
symmetry, which forces the matrix of anomalous dimensions of the & to be proportional
to the identity. One can then show that the beta function condition (at all loops) reduces
to just one equation, thus again giving a three-dimensional manifold of exactly marginal
deformations. Since this will be relevant for the gravity dual, we stress that the only

obstruction to having exactly marginal deformations is the one-loop constraint (5.7).

This term can also be written as tr(e ™ ®!®?®3 — ¢ 7™ P39?®') where f is complex [93].

132



5.2.2 Klebanov—Witten theory

The Klebanov—Witten theory is the four-dimensional SCFT that corresponds to the
world-volume theory of N D3-branes at the conifold singularity [257]. This is an N' =1
SU(N) x SU(NV) gauge theory with two sets of bi-fundamental chiral fields A; and B;
(i = 1,2) transforming in the (N, IN) and (N, IN) respectively. The superpotential is

W = he® et t1(A Ba A By), (5.9)

and preserves an SU(2) x SU(2) x U(1)r global symmetry, under which the chiral fields
transform as (2,1,1/2) and (1,2,1/2) respectively. The R-charges of the fields A; and
B; are such that the superpotential has the standard charge +2. The superpotential is
not renormalisable, suggesting that the theory corresponds to an IR fixed point of an RG
flow. Indeed, one can show that this theory appears as the IR fixed point of the RG flow
generated by giving mass to the adjoint chiral multiplet in the Zs orbifold of N' = 4 super
Yang-Mills [257].

Classically, the marginal deformations of the KW theory are given by the following

chiral operators

W = he*Pe*? tr(AoBaAgBj) + [ tr(AaBaApBy)

(5.10)
+ 7 [tr(Wlwl) - tr(W2W2)],

where the tensor faﬁ"j‘g is symmetric in the indices a8 and &, and therefore transforms
in the (3,3) of the SU(2) x SU(2) global symmetry group. The deformation 7 does not
break the global symmetry of the theory and corresponds to a shift in the difference of the
gauge couplings (1/g? — 1/g3).

The exactly marginal deformations of the KW theory were found in [274]. Only three
components of the faﬁ’dg term are exactly marginal, so we have five exactly marginal
deformations in total. This is in agreement with the dimension of the conformal manifold,
given by

Mo = {h, f*% £}/(SU(2) x SU(2))c. (5.11)

One reaches the same conclusions by studying the beta functions of the deformed
theory [257]. These are equivalent to the SU(2) x SU(2) moment maps, which take the

form

a _ royeBF . lsa pmvaf -
V=T 00 — 306 Fryap =0, (5.12)
. o R . 1 ¢d - o °
,yocB _ faﬁowfaﬁﬁfy N 55046.]60457"\/1’&57_’\/ = 0.

These remove six real degrees of freedom. We can also redefine the couplings using the

SU(2) x SU(2) symmetry to remove another six real degrees of freedom, leaving three
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complex parameters. The exactly marginal deformations are then given by

W = he®Pe% tr(Aq Bs AgBg) + 7 [tr(WiW1) — tr(WaWa))]
+ [3(A1Bj A2 By + A1 By A3 By) + [2(A1 B A1 By + A3 B3y A2 B;) (5.13)
+ f3(A1By A1 By + A3 B{ A2 Bj).

The deformation parametrised by f3 is the S-deformation for the KW theory, since it
is the deformation that preserves the Cartan subgroup of the global symmetry group
(U(1) x U(1) in this case).

5.2.3 YP49 gauge theories

The KW theory is the simplest example of an N' = 1 quiver gauge theory in four dimensions.
A particularly interesting class of these theories arise as world-volume theories of D3-branes
probing a Calabi—Yau three-fold with a toric singularity, where the singular Calabi—Yau
spaces are cones over the infinite family of Sasaki-Einstein Y?*¢ manifolds [275,276].5 These
theories have rather unusual properties, such as the possibility of irrational R-charges.
The field theories dual to the infinite family of geometries were constructed in [277], which

we review quickly.

The properties of the dual field theories can be read off from the associated quiver.
The fields theories have 2p gauge groups with 4p 4+ 2¢g bi-fundamental fields. Besides the
U(1)R, they have an SU(2) x U(1)r global symmetry. The 4p 4+ 2q fields split into doublets
and singlets under SU(2): p doublets labelled U, ¢ doublets labelled V', p — ¢ singlets
labelled Z and p + ¢ singlets labelled Y. The general superpotential is

q

W = hEaﬁ (Z(UngBYle + Vk k+1Y2k Z Z +1Y2J 1U > (514)
k=1 J=q+1

where the o and (3 indices label the global SU(2). The R-charges of the fields are

pg2(2p — (4p* — 3¢%)"/?

(3¢ — 2p + (4p* —3q2)1/2)
“2(—4p® + 3¢ + 2pq + (2p — ) (4p” — 3¢H)'?),
“2(—4p® 4+ 3¢> — 2pq + (2p + ) (4p” — 3¢%)'/?),

Y

! (5.15)

<
<
Wi Wl Wi Wi
>Q

q

while their charges under the additional U(1)r symmetry are respectively 0, 1, —1 and 1.

5The integer numbers p and ¢ satisfy 0 < g < p. Note that Y''° = T, the five-dimensional manifold
in the KW theory.

134



The marginal deformations of these theories are given by [274]

q p
W = (héag + fap) (Z(U,?V,ngk_l + VUL Yar) + > ZjU;*H}fgj_lUf) 7 Ogauge:
k=1 Jj=q+1
(5.16)

where f,3 is symmetric and Ogauge is an operator involving differences of gauge couplings.
Note that W preserves U(1)r, but the f,3 terms break the SU(2) to U(1). The SU(2)

moment maps giving the beta functions are
6abcfb]gc =0, (517)

where fog = f%(04)as, which has the solution f¢ = r%!®. Modding out by the SU(2)
action leaves a single deformation that is exactly marginal, namely the analogue of the
[B-deformation for the Y?? theories. As mentioned previously, the S-deformation breaks the

global symmetry to its Cartan generators. Thus one can take f2 non-zero, or equivalently

Jin = —fa2 = fp (5.18)

Note that the counting is in agreement with the dimension of the conformal manifold,
given by
M, = {h7 faﬁ) T}/SU(Q)(C = {ha fﬂu T}' (519)

Naively the quotient gives the wrong counting. However f,3 does not completely break
SU(2) but instead preserves a U(1), meaning that the quotient removes only two complex

degrees of freedom.

5.3 Deformations from exceptional generalised geometry

According to AdS/CF'T, the supergravity dual of a given conformal field theory in four
dimensions is a geometry of the form AdSs; x M, where the AdSs factor reflects the
conformal invariance of the theory. The duals of exactly marginal deformations that
preserve N' = 1 supersymmetry are expected to be of the same form, but with a different
geometry on the internal manifold. Generically, the solution will also have non-trivial
fluxes and dilaton, if present. These solutions should be parametrically connected to the
undeformed solution, so that the moduli space of exactly marginal deformations of the
gauge theory is mapped to the moduli space of AdSs vacua.

Finding the full supergravity duals of exactly marginal deformations is not an easy task;
few exact solutions are known, and those that are were found using solution-generating
techniques based on dualities [93]. The idea we pursue is to exploit as much of the
symmetry structure of supergravity as possible to look for the generic exactly marginal
deformations. As we have outlined, this is most naturally done in the context of generalised

geometry.
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In this section, we outline the general results applicable to arbitrary AdSs supergravity
backgrounds, whether constructed from type II or eleven-dimensional supergravity. In
particular, we find the supergravity dual of the field theory results of [269]. In the following
section, we discuss the specific case of type IIB compactifications on Sasaki—Einstein

manifolds, giving considerably more detail.

5.3.1 Generalised structures and deformations

Consider a generic supersymmetric solution of the form AdSs x M, where M can be either
five- or six-dimensional depending on whether we are compactifying type II or eleven-
dimensional supergravity. We allow all fluxes that preserve the symmetry of AdS;. We
are looking for the duals of ' =1 SCFTs in four dimensions and so the dual supergravity
backgrounds preserve eight supercharges, that is N’ = 1 in five dimensions. As we have
seen, a background preserving eight supercharges is completely determined by specifying

¢

a pair of generalised structures: a “vector-multiplet structure” K and a “hypermultiplet
structure” J,, a triplet of objects labelled by a = 1,2, 3. Supersymmetry implies that the
structures K and J, satisfy three differential conditions, given in (4.13)—(4.15). The two

of particular relevance to us are

fa(V) = Ao / oK, K, V) vV, (5.20)

LigJo = €apy gy, 5.21
By N\BJy

where the triplet of functions u, (V) are defined to be

pa(V) = —;eam/tr(Jg Ly J,). (5.22)

The third condition is
LK =0. (5.23)

The constants A, are related to the AdSs cosmological constant and can always be fixed to
AL =X =0, A3 = 3. (5.24)

As we showed in (4.20), K is a “generalised Killing vector”, that is L generates a gener-
alised diffeomorphism that leaves the solution invariant, and this symmetry corresponds to
the R-symmetry of the SCFT. In analogy to the Sasaki—Einstein case, we sometimes refer
to K as the “generalised Reeb vector”. In addition, the functions p, can be interpreted as
a triplet of moment maps for the group of generalised diffeomorphisms acting on the space
of J, structures. As such we will often refer to (5.20) as the moment map conditions.

To find the marginal deformations of the N' = 1 SCFT we need to consider perturbations

of the structures K and J, that satisfy the supersymmetry conditions, expanded to first
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order in the perturbation. These are of two types,” which correspond to the two types
of deformation in the SCFT. The easiest way to justify this identification is to note that,
from the point of view of five-dimensional supergravity, fluctuations of K live in vector
multiplets and those of J,, live in hypermultiplets. According to the AdS/CFT dictionary,
vector multiplets and hypermultiplets correspond to real primary superfields and chiral
primary superfields in the SCFT [263].

Let us first consider the Kéahler deformations, where we hold J, fixed and deform K.
Looking at the moment maps (5.20), we see the left-hand side depends only on J, and so

does not change, but the right-hand side can vary, thus we must have
/C(K, 0K, V)=0 vV. (5.25)

The K tensor is invariant under an Fy4) C Egg) subgroup. Decomposing into Fyy)
representations, we find 27 = 1+ 26 and a singlet in the tensor product 26 x 26 = 1+....
Writing

0K = aK + Kag, V =bK + Vag, (5.26)

the terms that form a singlet in the cubic invariant are
/abC(K,K,K)+/C(K,K26,V26) =0. (527)

The first term is generically non-vanishing, so we must take a = 0 implying there is no
singlet component in 0 K. We cannot simply scale K. For the second term, we know the
F4 Dynkin diagram has no symmetries, so the fundamental representation is equivalent to
its dual. This means the singlet in 26 x 26 appears in the symmetric or the antisymmetric
product. If the singlet were to appear in the antisymmetric product, ¢(K, Kag, Vag) would
vanish identically as the cubic invariant is itself symmetric and K¢ would be unconstrained.
For F the singlet appears in the symmetric product [278].8 Thanks to Weyl’s unitary
trick, the real forms that have the same complexification as F4 also admit an invariant
symmetric product. This is the case for Fy(4). This means K¢ X V26 is symmetric and is
generically non-zero in ¢(K, Kag, Vag). Given that it must vanish for any Vag, K26 must
itself vanish. Together these mean § K = 0, so there are no deformations of K that satisfy
the moment maps. This matches the field theory analysis that there are no deformations

of Kahler type.

For the superpotential deformations we can solve (5.20) and (5.21) to first order in

dJn. We do this in two steps. First we solve the linearised moment map conditions (5.20).

"There is actually a third type where both §J, # 0 and 6K # 0, but in this case none of the supergravity
fields are perturbed; instead it corresponds to a deformation of the Killing spinors, implying the background
admits more than eight supersymmetries. For this reason it will not interest us here.

80ne can find a basis for fa in terms of matrices in so2¢ that stabilise a certain cubic polynomial in 26
dimensions [279]. This means the 26 representation is real and that f4 inherits a symmetric bilinear from
5026.

137



This gives an infinite number of solutions which correspond to §2-components and fields in
the chiral ring of the dual gauge theory; generically these are not marginal. Imposing the
first-order generalised Lie derivative condition (5.21) will select a finite number of these

modes that are massless in AdSs and correspond to the actual marginal deformations.

5.3.2 Exactly marginal deformations and fixed points

We now turn to how the supergravity structure encodes the SCFT result that all marginal
deformations are exactly marginal unless there is an additional global symmetry group G.
The key point, as we will see, is that the differential conditions (5.20) appear as moment

maps for the generalised diffeomorphisms.

A priori, to see if the marginal deformations are exactly marginal one needs to satisfy
the equations (5.20) and (5.21) not just to first order, but to all orders in the deformation.
In general this is a complicated problem: typically there can be obstructions at higher
order that mean not all marginal deformations are actually exactly marginal. For example,

a detailed discussion of deformations of N' =4 up to third order is given in [271].

However, viewing the conditions (5.20) as a triplet of moment maps provides an elegant
supergravity dual of the field theory result that does not require detailed case-by-case
calculations. We discussed the generic situation in section 4.3.2, which we now review.
Moment maps arise when there is a group action preserving a symplectic or hyper-Kéhler
structure. Here the u, correspond to the action of generalised diffeomorphisms acting
on the structure J,. Thus to get physically distinct solutions we need to satisfy the
moment map conditions (5.20) and then identify solutions that are related by a generalised

diffeomorphisms. Formally this defines a subspace of hypermultiplet structures
M = {Ja: fta = Aay}/CDiff, (5.28)

where 7 is the function
(V) = / (K, K, V), (5.20)

and GDiffi is the subgroup of generalised diffeomorphisms that leave K invariant. In
other words, we are considering the moduli space of solutions for J, for fixed K. By
construction (5.28) defines a hyper-Kéahler quotient and hence M is hyper-Kéhler. The
condition (5.21) then defines a Kéahler subspace M. C M. We can also consider first
imposing (5.21) and then the moment maps (5.20). Let AX be the space of H-structures
Jo(z) for fixed K. Imposing (5.21) defines a Kéhler subspace My C A%. The moment
map conditions then take a symplectic quotient of Ny rather than a hyper-Kéhler quotient.
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We then have the following picture

A (5.21) N
HK quotient (5.20{ ‘/sympl. quotient (5.20) (5.30)
/’\Z (5.21) M.

A nice property of moment map constructions is that generically there are no obstruc-
tions to the linearised problem: every first-order deformation around a given point p € M
in the hyper-Kéhler quotient (or alternatively p € M, for the symplectic quotient) can be
extended to an all-order solution. The only time this fails is if the symmetry group at p
defining the moment map has fixed points. In our context this means there are generalised
diffeomorphisms that leave the particular J, and K structures invariant, so that one can

find a V' such that the generalised Lie derivatives vanish
LyJ,=LyK =0. (5.31)

From equation (4.20) and the discussion preceding it, these imply Ly G = 0 so that V is
a generalised Killing vector and the vector component of V is a Killing vector. These V
generate isometries of the background (beyond the U(1)gr R-symmetry), corresponding to
the global symmetry group G of the dual field theory.” Thus we directly derive the result

that every marginal deformation is exactly marginal in the absence of global symmetries.

Suppose now that the global symmetry group G is non-trivial. By construction, those
V that generate G fall out of the linearised moment map conditions — they trivially solve
the moment maps as Ly J, = 0. Thus to solve the full non-linear problem, one must
somehow impose these additional conditions. It is a standard result in symplectic (or
hyper-Kéahler) quotients that the missing equations correspond to a quotient by the global
group G on the space of linearised solutions. Suppose {v%,7/*} are coordinates on the
space of linearised deformations, corresponding to couplings of operators F4, and A;.
Imposing (5.21) then restricts to the marginal operators {h;} C {7¢,7"*}. By construction,
there is a flat hyper-Kéhler metric on {v*,7/"} and a flat Kéihler metric on {h;}. In addition
there is a linear action of G on each space that preserves these structures. The origin is a
fixed point of G owing to the fact that we are expanding about a solution with a global

symmetry. The moduli space of finite deformations then corresponds to a quotient of each

For example, for M = S® the isometry group is SO(6) ~ SU(4) D U(1)r x SU(3), so V would give the
Killing vectors that generate SU(3).
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space by G (at least in the neighbourhood of the original solution). Thus we have

P (5.21)
{v',7"} {hi}
HK quotient by GJ ‘/sympl. quotient by G (532)
v (5.21) M.

This structure is discussed in little more detail in section 5.4.4. We see that we directly
recover the field theory result (5.1) that the conformal manifold is given by M. = {h;} /G =
{h;}/Gc.10

Note that interpreting the supersymmetry conditions in terms of moments maps nicely
mirrors the field theory analysis of the moduli space of marginal deformations. Indeed
imposing (5.21) and solving the linearised moment maps (5.20) is equivalent to restricting
to chiral operators of dimension three that satisfy the F-term conditions. The further
symplectic quotient by the isometry group G then corresponds to imposing the D-term

constraints and modding out by gauge transformations.

5.4 The case of D3-branes at conical singularities

The results summarized in the previous section are completely general and apply to
any AdSs flux background. To make the discussion more concrete we will focus on
deformations of A/ = 1 SCFTs that are realised on the world-volume of D3-branes at the
tip of a Calabi-Yau cone over a Sasaki-Einstein (SE) manifold M.

Before turning to the generalized geometric description of the supergravity duals, we

present their description in terms of “conventional” geometry.

5.4.1 The undeformed Sasaki—Einstein solution

In the ten-dimensional type IIB solution dual to the undeformed SCFT, the metric takes

the form!!
ds%o = eQAds2(R3’1) + e_zAdsz(CY)
1
= i detde’ + -5 (dr” 4 r*ds’(SE)) (5.33)
= ds*(AdSs) + ds*(SE),

where the radial direction of the Calabi—Yau cone together with the four-dimensional
warped space form AdSs. In the second and third line we have used the explicit form of

the warp factor for AdSs, e® = r. The solution has constant dilaton, e? = 1, and five-form

0The space of marginal operators {h;} is Kéhler, so the symplectic and complexified quotients agree.
1Tn these conventions the radius of AdSs is R = 1, so the cosmological constant is A = —6.
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flux given by
F5 = 4<V01AdS + V015), (534)

where vols is the volume form on M. The metric on the Sasaki—FEinstein manifold locally
takes the form
ds*(SE) = o2 + ds*(KE), (5.35)

where o is called the contact form and the four-dimensional metric is Kahler—Einstein

(KE), with symplectic two-form given by
w = 1do. (5.36)

There is also a holomorphic (2,0)-form €, compatible with w

wAQ=0, wAw=3ANQ, (5.37)

satisfying
dQ) = 3ioc A Q. (5.38)
The five-dimensional volume form is then vol; = —%a Aw A w.'?2 The forms o, Q and w

define an SU(2) structure on the Sasaki-Einstein manifold. The complex structure I for

the Kahler—Einstein metric can be written as

I = —w™, = H(Q™Q,, — Q"PQy,), (5.39)

n n

which satisfies 17, Qpn, = iQp.

The R-symmetry of the field theory is realised in the dual geometry by the Reeb vector
field &, satisfying
1o =1, 1edo = 0. (5.40)

Locally we can introduce a coordinate v such that

o= 1(dv +n), € = 30y. (5.41)

If a tensor X satisfies L X = igX, we say it has charge ¢ under the action of the Reeb
vector. The objects defining the SU(2) structure on M have definite charge

ﬁEO' = ng = ﬁg[ = O, ﬁgQ = 3if). (5.42)

The R-charge r is related to ¢ by ¢ = 3r/2. For example, € is charge +3 under the Reeb
vector and has R-charge +2.

12These conventions are chosen to match [244].

141



The contact and Kahler structures allow a decomposition of the exterior derivative as
d=0+0+0ALe, (5.43)
where 0 is the tangential Cauchy-Riemann operator, which satisfies [280,281]
0*=0*=0, 90+ 00 = —2w A L¢. (5.44)

For calculations, it is useful to introduce a frame such that the complex, symplectic and

contact structure have the following form

Q= (e +ied) A (e +1e?),
w=e2Ne’ et Ned, (5.45)
o=c¢el.
If the SE manifold is “regular” the Reeb vector defines a U(1) fibration over a
Kihler-Einstein base. This is the case for S and T™!, dual to ' =4 SYM and the N’ = 1
KW theory, where the base manifolds are respectively CP? and CP! x CP!. The YP4

spaces are generically not fibrations.

5.4.2 Embedding in exceptional generalised geometry

Let us quickly review the description of supersymmetric AdS; x M solutions in Egg) x Rt
generalised geometry following the presentation in chapter 4. Although we will focus on
type IIB for definiteness, we stress that the construction is equally applicable to solutions
of eleven-dimensional supergravity. In particular, one could apply our methods to the
generic M-theory AdSs solution of [240], which we embedded in Eg) x R* generalised
geometry in the previous chapter.

The generalised structures K and J, transform under Eg(g) X R* as an element of the
27" and a triplet of elements in the 78. The J, form an SU(2) triplet under the Eg )
adjoint action, corresponding to the R-symmetry of the N’ = 1 supergravity

[Ja, J8] = 2K€qpyJy, (5.46)

where 2 is the volume form on M for an unwarped solution with vanishing dilaton. The

normalisations of K and J, are fixed by
c(K,K,K) = K, tr(JoJg) = —K20up, (5.47)

where c is the cubic invariant of Eg), and tr is the trace in the adjoint representation

(see (B.58) and (B.60)). The two structures are compatible, which means they satisfy

Jo K =0, (5.48)



where - is the adjoint action on a generalised vector: 78 x 27/ — 27’ (see (B.39)).

The generalised structures K and J, are combinations of the geometric structures on
M Dbuilt from bilinears of the A/ = 1 Killing spinors [142]. For Sasaki-Einstein manifolds,
these are the Reeb vector £, the symplectic form w and the holomorphic two-form 2. We

gave the form of K and J, in section 4.4.1, which we reproduce here'®

K=¢(—0ANuw,
Ji = trul(Q —10P), (5.49)
Jy = %n([—iag—iﬁ/\ﬁ—kiﬁﬁ/\m),

where J, = Jy +1iJs, 02 is the second Pauli matrix and the SL(2; R) vector is u® = (—i, 1).
Note that K depends only on the Reeb vector and the contact structure, whereas J,

depends only on the complex structure of the Kéahler—Einstein metric.

Supersymmetry conditions

For a supersymmetric compactification to AdSs, the structures K and J, must satisfy the
differential conditions (5.20)—(5.23). We showed this to be the case in section 4.4.1: the
first two reduce to (5.36), (5.38) and (5.42), thus fixing the constants A, as in (5.24), while
condition (5.23) gives no extra equations. Note that since the deformations we are after
leave the structure K invariant, the latter condition will play no role in the following. As
we discussed in section 4.3.1, the supersymmetry conditions can be viewed as the internal
counterpart of the supersymmetry conditions in five-dimensional gauged supergravity [197]:
(5.20) comes from the gravitino and gaugino variations (as does (5.23)), while (5.21) is
related to the hyperino variation (recall K is associated to the vector multiplets, while J,
is associated to the hypermultiplets).

The key ingredient in the supersymmetry conditions is the generalised Lie derivative L.
This encodes the differential geometry of the background, unifying the diffeomorphisms
and gauge symmetries of the supergravity. Given two generalised vectors V and V' the
generalised Lie derivative is given by (B.45). This can be extended to an action on any
generalised tensor. For example, the action on the adjoint representation is given in (B.46).
One always has the choice to include the supergravity fluxes in the structures K and J,
or as a modification of the generalised Lie derivative. Here the latter option turns out to
be more convenient. This defines a “twisted generalised Lie derivative” L, which takes the

same form as (B.45) but with the substitutions
dXT — AN — o, F, dp — dp — 1, F5 — e A" A FY. (5.50)

In the remainder of this chapter, we will use exclusively the untwisted structures and the

3Note that we are using the “untwisted” structures but have dropped the tildes. In what follows, we
will use the untwisted structures and the twisted Dorfman derivative.
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twisted Dorfman derivative. In order to avoid cluttered notation, we drop the tildes from
untwisted structures and the hat from the twisted Dorfman derivative.

As we emphasised in section 4.3.2, there is a natural hyper-Kéhler geometry on the
space of J, structures. There is also an action of generalised diffeomorphisms taking one
Jo, into another. This action preserves the hyper-Kéhler structure. The conditions (5.20)
can then be viewed as moment maps for the action of the generalised diffeomorphisms.
By construction the space M of solutions to this condition in (5.28) is also hyper-Kéhler.
The generalised Lie derivative condition (5.21) takes a Kéahler slice of this space. For the

SE structure (5.49) and five-form flux given in (5.34) we have
Ly = Le, (5.51)

and thus Lk generates the U(1)r symmetry. Recall from (4.24) that this is actually a
general result: the slice taken by condition (5.21) essentially fixes the R-charge of J to
be 43, and J3 to be zero.

5.4.3 Linearised deformations

The structures K and J, lie in orbits of the Eg) action. The linearised deformations A
are therefore elements in the adjoint of Eg(g), which take us from a given point in these
orbits corresponding to the original solution (in the case of Sasaki-Einstein, this is (5.49)),
to another point in the orbit corresponding to the structures of the deformed geometry.
We have seen from the gauge theory that we expect the marginal deformations A to leave

the structure K invariant, while deforming J,. This implies
IK=A-K=0, 0Jo = [A, Jo] # 0. (5.52)

As we will discuss in more detail in appendix H, the deformations A are doublets under

the SU(2) generated by J,
_A(T)
A= 2. ). 5.53
AT (5.53)

with A_ = [J,, A;].'* The signs & denote the charge under J3, [J3, A+] = +iAs, and 7

is the charge under the action of Lg corresponding to their R-charge
(r) _ 3:,.4(0)
LKA:‘: = 217"./4:|: . (554)

The difference in the R-charge of the two components follows from (5.21), (5.54) and the
definition A_ = [J+, A+]
We now need to find pairs of solutions for AL satisfying the linearised supersymmetry

conditions and, for definiteness, R-charge » > 0. In the next subsection, we start by

MStrictly speaking, this should be A_ = k™ [J1, A4 ], but we have dropped the factors of x for ease of
presentation in this section.
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first finding solutions to the linearised moment maps. We then have to mod out by
the symmetry, identifying deformations that are related by diffeomorphisms or form-
field gauge transformations as corresponding to the same physical deformation. This
process corresponds to finding the bulk modes dual to the bosonic components of all
chiral superfields: namely the chiral ring operators A; (associated to .A_) and the related
supersymmetric deformations of the Lagrangian Fy, (associated to Ay). Then in the
following subsection, we turn to finding the subset of marginal deformations. The technical

details are discussed in appendix H. Here we outline the procedure and present the results.

The chiral ring

The linearised moment map equations are given by'®
S11a(V) = / ktr(Jas Ly A) =0 YV €27, (5.55)

where we are using the fact that the deformation leaves K invariant.
We start by looking for A that solve (5.55). The A, deformations can be distinguished

by which components of the Eg) x R* adjoint are non-zero. They fall into two classes
A, =B+ j, Ay =dj, (5.56)

where the first contains only two-forms and the corresponding bi-vectors, and the second
contains only sly entries.
As shown in appendix H.2, the two-form part of the A solutions to (5.55) consists of

two independent terms
B = —Lia' | fQ+ 5 l0(0f Q) + fo A (0 fJQ)] — i@, (5.57)

where €2 and o are the holomorphic two-form and the contact form on the SE manifold,
and the SL(2;R) vector is u’ = (—i, 1). The expression df.) is equivalent to (0f)™Qmn
in indices. The bi-vector part of the solution is obtained by raising indices with the SE
metric. The term in the brackets is completely determined by a function f on the SE

manifold satisfying

df =0, Lef =iqf. (5.58)

Note that f is holomorphic with respect to 0 if and only if it is the restriction of a
holomorphic function on the Calabi—Yau cone over the Sasaki—FEinstein base [273]. The
second term depends only on a primitive (1, 1)-form § on the KE base that is closed under
both 0 and 0

SAw=0, 96 = 95 = 0. (5.59)

5 As we discuss in appendix H.2, the actual deformation is by A = Re A, so that the deformed structures
are real. This do not affect the discussion that follows.
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Imposing that the deformation A, has fixed R-charge  — 2, and using (5.42), gives

Lef = 3irf, Led = 3i(r — 28, (5.60)

so that f is a homogeneous function on the Calabi—Yau cone of degree %r.

Let us now consider A, . Its only non-zero components are a’. € sly, which are again
+ y i ;

determined by a function f on the manifold
Ay = -1 fa'a;, (5.61)
where u; = eijﬁj and the function f is holomorphic
df =0. (5.62)
The deformations of fixed R-charge r — 2 satisfy

Lef =35i(r—2)F, (5.63)
so that f is a homogeneous function on the Calabi-Yau cone of degree %(7" —2).

For each solution A, one can generate an independent solution A_ by acting with
J4. Indeed, any deformation of the form A_ = [J;, A4] is automatically a solution of the
moment maps, provided A, is. The explicit form of these deformations for A_ and A_ is
given in (H.11) and (H.13). Thus the solutions of the linearised moment maps consist of
an infinite set of deformations A labelled by their R-charge r, which are generated by
the two holomorphic functions, f and f, and a (1,1)-form, ¢, and another independent set
of deformations A_ generated by f’, f’ and &'. Together these give the general solution to
the deformation problem. Arranging these deformations as in (5.53), we find three types

of multiplets, schematically,

A(_”) f/ f/ 5!
E)00-0

with charge r given respectively by » > 0, r > 2 and r = 2.

Let us now identify what these solutions correspond to physically. For this it is
convenient to compute the action of the linearised deformations on the bosonic fields of
type II supergravity and then interpret the multiplets (5.64) in terms of Kaluza—Klein
modes on the Sasaki-Einstein manifold. One way to read off the bosonic background is
from the generalised metric G. This is defined in (H.39) and encodes the metric, dilaton,
the NS-NS field B> and the R-R fields Cy, Cy and C4. As discussed in appendix H.2.1,
the two-form and bi-vector deformations f and their partners f’ at leading order generate

NS-NS and R-R two-form potentials, and a combination of internal four-form potential
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and metric!®

f! Cy+ g%, s/ONQ+ 3 QAT A Df Q) + ...
~ : x Z 1 _ i _ |- (5.65)

Similarly one can show that the holomorphic function f and its partner f’ correspond to
the axion-dilaton, and NS-NS and R-R two-form potentials

(fl> ~ <02 4%) x (f@) . (5.66)
f Co —ig f

Finally the two-form and bi-vector deformations § and its partner §’ generate NS-NS and

R-R two-form potentials and a component of the internal metric

/ m TN Y FUA L
N A (750" + 507", | (5.67)
) Cy — 1By )

The Kaluza—Klein (KK) spectrum for a generic Sasaki-Einstein background was
analysed in [273] by solving for eigenmodes of the Laplacian on the manifold. The states
arrange into long and short multiplets of N' = 1 supergravity in five dimensions. Our
multiplets (5.65), (5.66) and (5.67) are indeed the short multiplets of [273].

In terms of the bulk five-dimensional supergravity, each (A(_r), AS:fQ)) doublet of fixed
R~charge corresponds to a different hypermultiplet. In the dual field theory the .,45:_2) piece
corresponds to the #2-component of a chiral superfield while the A(_T) piece corresponds to
the lowest component [263]. We then have the following mapping between supergravity

and field theory multiplets

/
f ~ tr Oy, superpotential deformations, r > 0,
f f
JE/
7 ~ tr W, WO 7  coupling deformations, r > 2, (5.68)
5/
5 ~ Ogauge, difference in gauge couplings, r = 2.

For S the first two sets of multiplets corresponds to the operators tr(®*) and tr(W, W ®*),
where ® denotes any of the three adjoint chiral superfields of N' = 4 SYM, and the
last multiplet is not present. For T!, one has tr(Of) = tr(AB)*, tr(WoW*0j5) =
tr[(W3+W3)(AB)*] and Ogange = tr(W3 — W3) where A and B denote the two doublets

The full form of the four-form potential and metric is given by (H.11) with 7’ = %qaf’_@ and
a(0f' .Q).

o' =

1
4q(q—1)
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of bi-fundamental chiral superfields. In analogy with the T! case, for a generic SE the
operators Oy and O 7 are products of chiral bi-fundamental superfields of the theory, while
Ogauge corresponds to changing the relative couplings of the gauge groups.

The tower of deformations gives the space M defined in (5.2). In particular, the
A_ = (f',f',8') ~ A; deformations parametrise the chiral ring, while A, = (f, f,8) ~ Fl,

parametrise the superpotential deformations.

Marginal deformations

The marginal deformations are a subspace of solutions in M that also satisfy the second
differential condition (5.21). At first order in the deformation, this is

(LA, Ju] =0, (5.69)

where we have used again the fact that the deformations leave K invariant. Since the

commutators with J, are non-zero, this condition amounts to the requirement
LK.A =0 = £§A = 0. (5.70)

In other words, the R-charge of A vanishes. Comparing with (5.64) we see that the A_
components always have positive R-charge and therefore are not solutions of (5.69). Thus
marginal deformations can only be given by the .AS:_Q) components with » = 2. This is
consistent, because, as we have mentioned, the A, components correspond to deforming
the SCFT by 62 terms, which are supersymmetric, whereas the A_ terms correspond to the
lowest component of a chiral superfield and so do not give supersymmetric deformations.
From (5.60) and (5.63) we see that the A(f) components (r = 2) are!”

f of degree 3, f = constant, 0 € Hrl);lim(M), (5.71)
corresponding precisely to superpotential deformations with A = 3, a change in the original
superpotential (and at the same time of the sum of coupling constants), and a change in

the relative gauge couplings respectively.

Linearised supergravity solution

We want now to compute the supergravity solutions at linear order. As discussed in detail
in appendix H.2.1, this can be done by looking at the action of the marginal deformations
A, and A+ on the generalised metric, which encodes the bosonic fields of type IIB
supergravity. We first consider the effect of a A, deformation to linear order. As already

mentioned, such a deformation generates NS-NS and R-R two-form potentials, given by

Co —iBy = —i(fQ+ 50(0fQ) + Lio A (9fQ)) — 2id. (5.72)

17¢71,1
Hprim

(M) denotes the cohomology of primitive (1, 1)-forms.
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Taking an exterior derivative, the complexified flux G3 = d(Cy — iB3) to leading order is
Gz =—310f ANQ+4fo ANQ — 20 AO(OfQ). (5.73)

The (1,1)-form 6 € H?(M) is closed and therefore does not contribute to the flux. On
the Calabi—Yau cone, it is well-known that superpotential deformations correspond to
imaginary anti-self-dual (IASD) flux [225]. The G3 here is the component of the IASD
flux restricted to the Sasaki—Einstein space.

Now consider the effect of a marginal /l+ deformation to linear order. As we show in
appendix H.2.2, such a deformation allows for non-zero, constant values of the axion and
dilaton, given by

f=Cy—ig. (5.74)

We stress that this calculation and the expressions for the leading-order corrections
to the solution (5.73) for the NS-NS and R-R three-form flux and the axion-dilaton in
(5.74) are valid for any Sasaki-Einstein background. One simply needs to plug in the
expressions for the holomorphic form and contact structure of the given Sasaki—Einstein
space. These objects are given in terms of a frame in (5.45). We will give the explicit form
of the frame for the examples of S°, T1! and the YP¢ manifolds, and compare the flux

with some known results in section 5.5.

5.4.4 Moment maps, fixed points and obstructions

The linearised analysis above has identified the supergravity perturbations dual to marginal
chiral operators in the SCF'T. However, this is not the end of the story. Really we would
like to find the exactly marginal operators. In the gravity dual this means solving the
supersymmetry equations not just to first order but to all orders. In general there are
obstructions to solving the supersymmetry conditions to higher orders, and not all marginal
deformations are exactly marginal [271]. As we saw in section 5.2, in the field theory these
obstructions are related to global symmetries [269].

As we discussed in section 5.3.2, the fact that the supergravity conditions in exceptional
generalised geometry appear as moment maps gives an elegant interpretation of the field
theory result. This analysis was completely generic, equally applicable to type II and
eleven-dimensional supergravity backgrounds. We will now give a few more details, using
the Sasaki—FEinstein case as a particular example.

The key point is that generically there are no obstructions to extending the linearised
solution of a moment map to an all-orders solution. The only case when this fails is
when one is expanding around a point where some of the symmetries defining the moment
map have fixed points (see for instance [185]). Since here the moment maps are for the
generalised diffeomorphisms, we see that there are obstructions only when the background
is invariant under some subgroup G of diffeomorphisms and gauge transformations, called

the stabiliser group. Such transformations correspond to additional global symmetries
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in the SCFT. Furthermore, one can use a linear analysis around the fixed point to show
that the obstruction appears as a further symplectic quotient by the symmetry group G.
This mirrors the field theory result that all marginal deformations are exactly marginal
unless there is an enhanced global symmetry group and that the space of exactly marginal

operators is a symplectic quotient of the space of marginal operators.

To see this in a little more detail let us start by reviewing how the conditions (5.20)
appear as moment maps and how the obstruction appears. We will first consider M , the
space of chiral ring elements and #2-components, and then at the end turn to the actual
marginal deformations. As we stressed above, this discussion is completely generic and
not restricted to Sasaki-Einstein spaces. One first considers the space Ag of all possible

hypermultiplet structures compatible with a fixed K, in other words
AB = (] (x): J,- K =0} (5.75)

Since each point p € .AI[{{ is a choice of structure defined by a triplet of functions J,(z) on
M, the space Ag is infinite dimensional. Nonetheless it is hyper-Kéhler. A tangent vector

v at the point p can be thought of as a small change in the structure
Va(t) = 0Ju(x) = [A(z), Jo(z)] € THAE, (5.76)

where A(x) is some Eggy x R* element. The hyper-Kihler structure is characterised by a
triplet of closed symplectic forms, 2,. These symplectic structures €, are defined such
that, given a pair of tangent vectors v, v’ € T, pAff , the three symplectic products are given

by
Qa(v,0') = eam/tr(vgv;) = 2//{1:1"([.,4, A'Jy). (5.77)

The generalised diffeomorphism group acts on J,(z) and hence on Ag . Furthermore its
action leaves the symplectic forms €2, invariant. Infinitesimally, generalised diffeomorphisms
are generated by the generalised Lie derivative so that §J, = Ly Jy € T, p.A{{( . Thus, just
as vector fields parametrise the Lie algebra of conventional diffeomorphisms via the Lie
derivative, one can view the generalised vectors V as parametrising the Lie algebra goiff
of the generalised diffeomorphism group.!® One can then show that the 1, (V) in (5.20)
are precisely the moment maps for the action of the generalised diffeomorphism group on
AE . As written they are three functions on AK x goiff where J, gives the point in A&
and V parametrises the element of goiff, but they can equally well be viewed as a single
map fi: Aff — goiff* x R? where gdiff* is the dual of the Lie algebra. Solving the moment
map conditions (5.20) and modding out by the generalised diffeomorphisms to obtain M
as in (5.28) is a hyper-Kéhler quotient. As discussed in section 4.3.2, one subtlety is that,

8Note from (4.26) that shifting the form components A" and p of V by exact terms does not change
Ly, furthermore it is independent of ¢*. Thus different generalised vectors can parametrise the same Lie
algebra element.
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in order to define a quotient, the right-hand side of the conditions \,7, given in (5.29)
and which depends on K, must be invariant under the action of the group. Thus the
quotient is really defined not for the full generalised diffeomorphism group, but rather the
subgroup GDiff k¢ that leaves K invariant. Infinitesimally V' parametrises an element of
the corresponding Lie algebra goiffy if Ly K = 0. Thus we have the quotient (5.28).

The linearised analysis of the last section first fixes a point p € AII{{ corresponding to
the Sasaki—Einstein background satisfying the moment map conditions, and then finds
deformations of the structure d.J, € T, p.A{{( for which the variations of the moment maps
Spta (V) vanish for all V. If we view Su, as a single map du: T,AE — goiffj, x R3, the
linearised solutions live in the kernel. Suppose now that p is fixed under some subset
of generalised diffeomorphisms, that is we have a stabiliser group G C GDiffx. The
corresponding Lie subalgebra g C goiffy is

g ={V € @iffg : Ly J, = 0} (5.78)

At a generic point in A% satisfying the moment map conditions, all elements of GDiff i
act non-trivially and so the stabiliser group is trivial. Thus solving dua (V) = 0 we get
a constraint for every V' € goiffs. In contrast, at the point p, we miss those constraints
corresponding to V' € g. Thus we see that the obstruction to extending the first-order
deformation to all orders lies precisely in g* x R3, that is, it is the missing constraints.
Put more formally,'” the embedding i: g — gdiffx induces a map i*: gdiff;, — g* on the

dual spaces and, at p, we have an exact sequence
1) %
T,AE 2 goiffi x R? —— g x R3 . (5.79)

The map y is not onto and the obstruction is its cokernel g* x R3.
The standard argument for moment maps at fixed points actually goes further. Let
U be the vector space of linearised solutions du, (V) = 0 at p, up to gauge equivalence.
For the Sasaki—FEinstein case it is the space of solutions, dual to the couplings of the
operators (A;, Fa,), given in (5.68). Formally ¢ is defined as follows. Recall that the space
of solutions is ker dpu C TPAIH{ . The action of GDiff g on p € Ag defines an orbit O C Aﬁ ,
and modding out by the tangent space to the orbit 7,0 at p corresponds to removing
gauge equivalence, so that
U = kerdp/T,0. (5.80)

The moment map construction means that the hyper-Kéahler structure on TpAII{( descends
to U. By definition, the stabiliser group G acts linearly on TpAIH( and this also descends
to U. Furthermore it preserves the hyper-Kéhler structure. Thus we can actually define
moment maps [i, for the action of G on Y. The standard argument is then that the space

of unobstructed linear solutions can be identified with the hyper-Kéahler quotient ofi/ by

19Gee for example the note in section 5 of [185].
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G, so near p we have

M=UJG ={AEU: fi, =0}/C, (5.81)

just as in (5.2). The idea here is that if we move slightly away from p we are no longer
at a fixed point and there are no missing constraints. Thus we really want to take the
hyper-Kahler quotient in a small neighbourhood of .Ag near p. However we can use the
tangent space TP.AE to approximate the neighbourhood. The moment map on T,,.AII{( can
be thought of in two steps: first we impose du, = 0 at the origin and mod out by the
corresponding gauge symmetries, reducing Tp.Ag to the space U. However this misses the
conditions coming from the stabiliser group G which leaves the origin invariant. Imposing
these conditions takes a further hyper-Kéhler quotient of & by G. Finally, note that since
G acts linearly on U, the obstruction moment maps ji, are quadratic in the deformation .A.
This exactly matches the analysis in [271], where in solving the deformation to third-order
the authors found a quadratic obstruction. What is striking is that we have been able to

show how the obstructions appear for completely generic supersymmetric backgrounds.

This discussion has been somewhat abstract. Let us now focus on the simple case of
S® to see how it works concretely. The full isometry group is SO(6) ~ SU(4). However,
only an SU(3) subgroup preserves J, and K, hence

for S° the stabiliser group is G = SU(3).

Rather than consider the full space of linearised solutions (5.68), for simplicity we will just
focus on f and f’, and furthermore assume both functions are degree three: L¢f = 3if
and L¢f' = 3if’. In terms of holomorphic functions on the cone C3, this implies both

functions are cubic
f= fijkzizjzk, f = f'ijkzizjzk. (5.82)

The coefficients (f*%, fi/F) parametrise a subspace in the space of linearised gauge-fixed
solutions U. Using the expressions (5.56) and (5.77) one can calculate the hyper-Kéahler
metric on the (f“*, /%) subspace. Alternatively, one notes that the hyper-Kihler
structure on Ag descends to a flat hyper-Kéahler structure the subspace, parametrised by

f9% and f"* as quaternionic coordinates. We then find the three symplectic forms

Q3 = Lidf9%" Adfi — Sidf 9% A d S,

o (5.83)
Qp = dfF A dfl,

where Q1 = O 4+ i{2y and indices are raised and lowered using d;;. The SU(3) group acts
infinitesimally as
5fz]k — a[ilf‘jk]l,

. o 5.84
6f/z]k — a[zlf/jk]l’ ( )
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where tra = 0 and af = —a. This action is generated by the vectors
pla) = a'; (MOt — fim0™ + f7¥ 0y — Fi,07%), (5.85)

where 0;; = 0/9f%* and 1 = 0/0f"3k . Tt is then easy to solve for the (equivariant)
moment maps fiq(a) satisfying i) = dfia(a), to find

fis(a) = Sia'; (fM fiwr — F7 Fir),

- ikl F (5.86)
fi+(a) = azjf]klfi/kl'
Solving the moment maps fi,(a) = 0 for all aij gives
™ Fikr = 26575 Fotm — ™ Fig + 2655 ™™ figm) = 0, (5.87)

ikl F1 151 pkim g
P ik = 50°5 7 fyam = 0.

Imposing these conditions and modding out by SU(3) then gives the unobstructed de-
formations living in M. If we actually included all the modes in (f, f’) we would find
polynomials with arbitrary coefficients f1-% but the construction would be essentially
the same. This also applies to the (f, f') modes. Since H?(S?) = 0 there are no (4,’)

solutions on S°.

So far we have discussed how the existence of fixed points leads to obstructions in the
construction of the space M. However ultimately we would like to find the unobstructed
exactly marginal deformations M.. Returning to the generic case, recall that the marginal
deformations corresponded to a subspace given by the ASE) components of the full set of
deformations, satisfying the condition (5.70). (In the Sasaki-Einstein case these are given
in (5.71).) Let us denote this subspace by U. C U. Since Lk .J, is a holomorphic vector
on M with respect to one of the complex structures (see section 4.3.2), U, is a Kéahler
subspace. Furthermore, taking the hyper-Kéhler quotient by G' and then restricting to the
marginal deformations is the same as restricting to the marginal deformations and then
taking a symplectic quotient by G using only the moment map A“fi,. In other words the
diagram

U U

J J (559

M=U)G — Mc=U)JG

commutes. This is because the action of Lx which enters the generalised Lie derivative
condition (5.21) commutes with the action of Ly generating G.2° Given U, /G = U./Gc,
we see that we reproduce the field theory result (5.2).

It is simple to see how this works in the case of S®. The marginal modes correspond to

20We have [Lv,Lk] = Lr, x = 0 since by definition Ly K = 0 if V is in the stabiliser group G.
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f''= f' =0, while f is restricted to be degree three and f constant (recall § and & are
absent on S°). Since constant f is invariant under SU(3), the moment map conditions
fio, = 0 on the marginal modes reduce to a single condition that comes from i3 (given
A1 = A2 = 0), namely

H(™ Fi — 267 15 fram) = 0, (5.89)

since the jiy moment map is satisfied identically as f' = f' = 0. Comparing with
section 5.2, we see that we indeed reproduce the field theory result that the exactly
marginal deformations are a symplectic quotient of the marginal deformations by the

global symmetry group G.

5.5 Examples

In the previous section we derived the first-order supergravity solution dual to exactly
marginal deformations on any Sasaki-Einstein background. We now apply this to the
explicit examples of the supergravity backgrounds dual to N’ = 4 super Yang-Mills, the
N =1 Klebanov—Witten theory and N' =1 YP? gauge theories.

5.5.1 N = 4 super Yang—Mills

The Sasaki-Einstein manifold that appears in the dual to N’ = 4 SYM is S®, whose

four-dimensional Kihler—Einstein base is CPP2. The metric on S® can be written as?!

ds?(S°) = da? + s2d6? + cAd¢? + s2cadea + s2s2dg3, (5.90)

where the coordinates are related to the usual complex coordinates onC?, pulled back to
S°, by

21 = cae'?, 29 = Socpe'?2, 23 = Sq80€3. (5.91)

We can take the following frame for S°

el = cidqﬁl + c%sidqb + sisgdqbg,
e? +ie® = e3i¢/2(da —icqSqder + icacgsad@ + icasasgd@,) (5.92)

et +ied = e3i¢/2(sad9 —icgsasgdps + icpsasgdes),

where 3¢ = ¢1 + ¢2 + ¢3. The complex, symplectic and contact structures are defined
in terms of the frame in (5.45). One can check they satisfy the correct algebraic and
differential relations (5.40)—(5.42).

The marginal deformations are given in terms of a function f which is of charge

three under the Reeb vector and the restriction of a holomorphic function on C3. In our

21Here s, and c,, are shorthand for sin a and cos a, and similarly for 6.
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parametrisation the Reeb vector field is
£ =30y = 0y, + Op, + 0ps, (5.93)
and the coordinates z; have charge +1
Lezi = iz;. (5.94)

Thus, f must be a cubic function of the z;. An arbitrary cubic holomorphic function on

C3 has ten complex degrees of freedom and can be written as
f= %2z, (5.95)

where f9* is a complex symmetric tensor of SU(3) with ten complex degrees of freedom.
This is the same structure as the superpotential deformation (5.5). As mentioned before,
not all components of f correspond to exactly marginal deformations because we still
need to take into account the broken SU(3) global symmetry. This imposes the further

constraint
F™ Firr = 506%™ frim = 0, (5.96)

which removes eight real degrees of freedom. We can also redefine the couplings using the
SU(3) symmetry to remove another eight real degrees of freedom, leaving a two-complex
dimensional space of exactly marginal deformations. Thus, there are two independent
solutions

[ o 212223, (5.97)

and
faoc 28 4 25 + 23, (5.98)

corresponding to the S-deformation and the cubic deformation in (5.8).

The supergravity dual of the S-deformation was worked out in [93]. One can check

that using our frame for S® and taking

fa= —%’yzlzgzg, (5.99)

where 7 is real, our expression (5.73) for the three-form fluxes reproduces those in the
first-order [-deformed solution [93]. To generate the complex deformation of LM, we
promote v to v — io, where both v and ¢ are real. This reproduces the LM fluxes with
7 = 1. The full complex deformation with general 7 can be obtained using the SL(2;R)

frame from [139].

Unlike the pg-deformation, the supergravity dual of the cubic deformation is known
only perturbatively. Aharony et. al have given an expression for the three-form flux for

both the § and cubic deformations to first order [225]. Again, one can check that our
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expression reproduces this flux for both fg and f.

We saw that the marginal deformations (5.71) also allow for closed primitive (1, 1)-forms
that do not contribute to the flux. If such terms are not exact — if they are non-trivial in
cohomology — they give additional marginal deformations. On CP?, the base of S°, there
are no closed primitive (1, 1)-forms that are not exact, and so the marginal deformations

are completely determined by the function f.

5.5.2 Klebanov—Witten theory

A similar analysis can be performed for deformations of the Klebanov—Witten theory. In
this case the dual geometry is T1!, the coset space SU(2) x SU(2)/U(1) with the topology
of $2 x $3. TV can also be viewed as a U(1) fibration over CP! x CP! with metric [282]

ds*(Th") = & (dvp + cos O1d¢y + cos adez)? + & Z (d6? + sin? 0;d¢?). (5.100)
i=1,2

Each SU(2) acts on one CP!, and the U(1) acts as shifts of . The Reeb vector field is

¢ = 30,. (5.101)

As with S®, a holomorphic function on the cone over TY! determines the marginal

deformations. In this case, the cone is the conifold, defined by
A4 +A+22=0  zecChL (5.102)
The conifold equation can also be written as

det Zz'j = O, (5.103)

a __

where Z;; = 024, 0* = (0,il) and o are the Pauli matrices. We can choose complex

ij
coordinates A, and By (o = 1,2), corresponding to each CP!, which are dual to the chiral

fields of the gauge theory

i —1i A1B1 A1B
g[8 t1zg 21—z | by AiB2 ) (5.104)
21 +izo —z3+iz AsBy A3DBs
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The complex coordinates z, can be parametrised by

1 0 0y ; 0 0y .
2] = 3 (sin 51 sin gel(wﬂbl*@)/? —icos 51 coS 2261(¢+¢1+¢2)/2) ,
vy = - (sin D gin P2eit0-61-620/2 | 05 01 cos P2 eiwrmron2)
2i 2 2 2 2 (5.105)
vy = L cos D sin Reiwror-o0/2 g O o P2 giw-siron 2
2 2 2 2 2
L0 02 wri—sa)2 i 01 g 02 itw—1400)/2
=g <cos 5 sin e isin - cos —e ,
from which we see they have charge 3/2 under the Reeb vector field
Lezg = 3izq. (5.106)
We can take the following frame for T1!
el = %(dw + cos 01d¢; + cos Gad o),
e +ied = %ewﬂ(i df; + sin 6;dey), (5.107)

et +ied = %ew’ﬂ(i dfs + sin Oad o).

The complex, symplectic and contact structures are defined in terms of the frame in (5.45).

One can check they satisfy the correct algebraic and differential relations (5.40)—(5.42).
The function f defining the marginal deformations is of weight three under the Reeb

vector and a restriction of a holomorphic function on the conifold. Thus f must be a

quadratic function of the z,, namely
f=1f"z2 = faﬁ’dBAaBaAﬁBB, (5.108)

where f% is symmetric and traceless (by condition (5.102)), or analogously faﬁ’dB is
symmetric in o3 and &f. These deformations are the SU(2) x SU(2)-breaking deformations
in (5.10) and generically give nine complex parameters. We remove six real degrees of
freedom when solving the moment maps to account for the broken SU(2) x SU(2) symmetry.
The moment maps are precisely the beta function conditions given in (5.12). We can also
redefine the couplings using SU(2) x SU(2) rotations to remove another six real degrees
of freedom, leaving a three-complex dimensional space of exactly marginal deformations
labelled fg, fo and f3 in (5.13). We have

2, .2 2 2
fp o<zl + 25 — 23 — 23,

fo o< 22 — 23, (5.109)
fa o< 27 = 23.

The first of these is the g-deformation for the KW theory. The supergravity dual of the
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-deformation was worked out in [93]. One can check that using our frame for T*! and
taking
F=13v(d + 25— 23 — =), (5.110)

our expression (5.73) reproduces the three-form fluxes that appear in the first-order (-
deformed solution [93]. To our knowledge, the fluxes for the other deformations were not

known before.

Unlike CP?, CP! x CP! admits a primitive, closed (1,1)-form that is not exact (spe-
cifically the difference of the Kihler forms on each CP!), giving one more exactly marginal
deformation, corresponding to a shift of the B-field on the S?2. On the gauge theory
side, this corresponds to the SU(2) x SU(2)-invariant shift in the difference of the gauge
couplings in (5.10). Together with h, coming from the superpotential itself, one finds a

five-dimensional conformal manifold.

5.5.3 YP49 gauge theories

We can repeat the analysis of the Klebanov—Witten theory for the A/ = 1 quiver gauge
theories of section 5.2.3. The dual geometries are the family of Sasaki—Einstein spaces
known as YP4, which have topology S% x $? (recall 0 < ¢ < p and Y*? = T11). The metric
is [276]

ds*(YP?) = (1 — y)(d6® + sin® 0d¢) + w(y)'q(y) ' dy® + 55w(y)g(y)(AB + cos 0de)?
+ 1(dy — cos 6 + y(dB + cos Bdg))?,

(5.111)
where the functions w(y) and ¢(y) are
2(a — y?) a—3y? +2y3
_ _ Aoy 2y” 112
w(y) T q(y) PR (5.112)

and a is related to p and ¢ by

1 —3¢?
a=--2 "0 [42 3. (5.113)

2 4p3

The Reeb vector field is
£ = 30y. (5.114)

As with S°, a holomorphic function on the cone over YP? determines the marginal
deformations. The complex coordinates that define the cone for a genericY?? are known
but rather complicated [283]. However, we need only the coordinates that can contribute

to a holomorphic function with charge +3 under the Reeb vector — fortunately there are
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only three such coordinates

by = e(¥79) cog? Hﬁ 1/2
2 Y
)5
by = ¥H9) gin? = 5 Zl_Il(y—yi)lm, (5.115)
w0 07
bs = e¥sin 5 co8 5 E(y — ;)2

The y; are the roots of a certain cubic equation and are given in terms of p and q as

y1 = 30" (2p — 3¢ — (4p° — 3¢*)'/?),
y2 = 107" (20 + 3¢ — (4p* — 3¢)'?), (5.116)
ys =5 — 1y — o

The coordinates b, actually have charge +3 under the Reeb vector

Lebg = 3ibg, (5.117)
and so the holomorphic function that encodes the marginal deformations will be a linear
function of the b,.

We can take the following frame for any Y?¢
= %(dz/) — cos 0d¢ + y(dB + cos 6dg)),
. 1—y\ /2
e® +ie® = el¥/? (6> (df + isin 0d¢), (5.118)
et +ie® = e/ 2w (y) " 2q(y) T (dy + Fw(y)a(y)(dB + cosfdg)).

The complex, symplectic and contact structures are defined in terms of the frame in (5.45).

One can check they satisfy the correct algebraic and differential relations (5.40)—(5.42).

The function f defining the marginal deformations is of weight three under the Reeb
vector and a restriction of a holomorphic function on the cone. Thus f must be a linear

combination of the b,, namely

f= f"ba. (5.119)

These deformations are the SU(2)-breaking deformations in (5.16) and generically give
three complex parameters. We remove two real degrees of freedom when solving the
moment maps to account for the broken SU(2) symmetry (leaving a U(1) unbroken). The
moment maps are precisely the beta function conditions given in (5.17). We can also
redefine the couplings using SU(2) rotations to remove another two real degrees of freedom,

leaving a one-complex-dimensional space of exactly marginal deformations. The single
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independent solution is
fg X bg. (5.120)

This is the §-deformation for the quiver gauge theory. The supergravity dual of the
p-deformation for YP? was worked out in [93]. One can check that using the frame for
YP4 given in (5.118) and taking (5.120), our expression (5.73) reproduces the three-form
fluxes that appear in the first-order S-deformed solution [93]. Together with h and 7 (dual
respectively to the axion-dilaton and the B-field on the S?), one finds a three-dimensional

conformal manifold.

5.6 Summary

In this chapter we have used exceptional generalised geometry to analyse exactly marginal
deformations of d = 4, N' = 1 SCFTs that are dual to AdS; backgrounds in type II or eleven-
dimensional supergravity. In the gauge theory, marginal deformations are determined by
imposing F-term conditions on operators of conformal dimension three and then quotienting
by the complexified global symmetry group. We have shown that the supergravity analysis
gives a geometric interpretation of this gauge theory result. The marginal deformations are
obtained as solutions of moment maps for the generalised diffeomorphism group that have
the correct charge under the Reeb vector, which generates the U(1)g symmetry. If this is
the only symmetry of the background, all marginal deformations are exactly marginal. If
the background possesses extra isometries, there are obstructions that come from fixed
points of the moment maps. The exactly marginal deformations are then given by a further
quotient by these extra isometries.

For the specific case of Sasaki—Einstein backgrounds in type IIB we showed how
supersymmetric deformations can be understood as deformations of generalised structures
which give rise to three-form flux perturbations at first order. Using explicit examples, we
checked that our expression for the three-form flux matches those in the literature and the

obstruction conditions match the one-loop beta functions of the dual SCFT.
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Chapter 6

Marginal deformations of d = 3,

N = 2 SCFTs

In the previous chapter, we set out how to find marginal deformations of d =4, N =1
superconformal field theories by considering the dual AdSs solutions in type IIB super-
gravity. Deformations of the field theory appeared as deformations of the hypermultiplet
structure, and the marginal deformations were those that have the correct charge under
the generalised Reeb vector. The exactly marginal deformations were selected following
an analysis of the fixed points of the moment maps, and taking a further quotient by the
stabiliser group, corresponding to the broken global symmetry group.

As we emphasised, this approach is completely general and applies to deformations of
arbitrary backgrounds. In particular, our analysis also applies to N = 2 AdS, solutions in
M-theory. Deformations of these backgrounds are dual to marginal deformations of d = 3,
N = 2 superconformal field theories. In this chapter, we analyse theories that arise on a
stack of M2-branes at a conical singularity. The backgrounds are of the form AdSy x M,
where M is a seven-dimensional Sasaki—Einstein manifold. Again, we find a first-order
expression for the four-form flux that is dual to marginal deformations of the field theory

and compare with known results in the literature.

6.1 Introduction

The AdS/CFT correspondence relates supergravity on backgrounds with an AdS factor to
the conformal field theory living on the boundary. Usually one considers the field theory
to be superconformal, with supersymmetry allowing the calculation of protected quantities.
One is then interested in deformations by operators that preserve the superconformal
symmetry. Classically, such operators are known as marginal. If the operators also preserve

the symmetry at the quantum level, they are known as exactly marginal deformations.
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In the space of marginal couplings, the exactly marginal directions are said to define the
conformal manifold M..

Exactly marginal deformations of the SCFT appear in the supergravity dual as a
continuous family of AdS solutions. Aharony et al. performed a perturbative analysis
of AdS® x S that identified the marginal deformations and found an obstruction at
third order in the deformation reminiscent of the one-loop beta-function [271]. Later,
Lunin and Maldacena proposed a method for generating AdS solutions from backgrounds
possessing at least two U(1) isometries [93]. The new solutions are dual to exactly marginal
deformations of the SCFT known as (-deformations. Unlike the perturbative approach,
the solution-generating technique gives the full analytic supergravity backgrounds to all
orders in the deformation. Ideally one would like to find the analytic solutions dual to the
other marginal deformations.

The solution-generating technique of Lunin and Maldacena also applies to M-theory
backgrounds with three U(1) isometries, where it has been used to find new AdSy solutions
by deforming S7, QYbt, MUL and others [93,284,285]. Unlike AdS® x S, there has not
been a perturbative analysis of the marginal deformations of AdSy x S7, however there is
some guidance from the dual field theory. The S” solution preserves N = 8 supersymmetry,
or 32 supercharges, and arises as the near-horizon limit of a stack of M2-branes in flat
space. The dual three-dimensional CFT living on the branes has an SO(8) global symmetry
coming from the eight directions transverse to the branes. Although the theory does
not have a Lagrangian description, there has been a proposal for the number of exactly
marginal deformations [267]. The couplings that preserve eight supercharges define a

conformal manifold

M, = 35/SU(4)c = 35//SU(4), (6.1)

where SU(4) is the broken global symmetry group, and 35 is the rank-four symmetric tensor
of SU(4). From this we expect the exactly marginal deformations to be determined by 20
complex functions. The existence of a conformal manifold for N = 2 Chern—Simons-matter
theories was first found in [286-289] following explicit calculations, and the calculation
was extended to an all-orders weak-coupling argument in [290].

The analysis of the conformal manifold was systematised in [269] for N =1, d = 4
SCFTs that may be strongly coupled; we reviewed the results of this work in section 5.2.
The use of the superconformal algebra to constrain the allowed deformations generalises to
N = 2 theories in three dimensions as the multiplets are similar in structure to those of the
four-dimensional theories. In this case, the marginal deformations of the superpotential are
given by chiral primary superfields of dimension A = 2. The other possible deformations
come from real primary superfields of dimension A = 1, but these are conserved currents
and so there are no deformations. This mirrors the analysis in the d = 4 case: the
conformal manifold, near to the undeformed theory, is again simply the quotient of the
space of marginal couplings by the complexified broken global symmetry group.

In this chapter, we use the language of generalised geometry to find supersymmetric
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deformations of AdS, times Sasaki-Einstein backgrounds in M-theory. The deformations
turn on a four-form flux perturbation that is dual to a marginal deformation in the field
theory. Our analysis applies to any Sasaki—Finstein background preserving at least eight
supercharges, including S” and the previously mentioned examples. We find the marginal
deformations are encoded in a function of charge four under the Reeb vector that is
holomorphic on the Calabi—Yau cone over the Sasaki-Einstein manifold. In particular, for
S” we find the marginal deformations are defined by a quartic function of the complex
coordinates z; on C*. Such a quartic function generically has 35 complex degrees of
freedom. The obstruction appears in our formalism as an extra symplectic quotient that
reduces this to 20 complex degrees of freedom, agreeing with the counting from the dual
field theory. We also carry out the same analysis for Q%! and MUt

We begin in section 6.2 by finding the algebraic form of the linearised deformation. We
then examine the differential conditions imposed by integrability and give the four-form flux
generated by the deformation. The expression for the flux is valid for any Sasaki-Einstein
background and includes the linearised fluxes found using the solution-generating technique
of Lunin and Maldacena as a special case. In section 6.3 we look at the examples of S7,

QYL! and MYY! and find agreement with the known results.

6.2 Linearised deformations

Backgrounds of the form AdSs x M, where M is a seven-dimensional Sasaki—Einstein
manifold, are supersymmetric solutions of eleven-dimensional supergravity preserving at
least eight supercharges [64]. They are dual to the three-dimensional superconformal field
theory living on a stack of M2-branes placed at the tip of the corresponding Calabi-Yau
cone.! As we showed in section 4.5, these solutions can be formulated as SU(6) structures
with singlet torsion within E7(7) x RT generalised geometry. We now want to investigate
the possible deformations of this structure that are still integrable. In other words, we
look for deformations of the supergravity background that preserve eight supercharges.
We expect these to be dual to exactly marginal deformations in the field theory.

Jo and K define Spin®(12) and Egy) structures respectively and together they define
an SU(6) structure. As marginal deformations of the field theory are dual to deformations
of the hypermultiplets in supergravity, we should vary J, while keeping K fixed. Thus we
want

SK=A-K =0, 5o = [A, Ja] #0, (6.2)

for some A € T'(ad F). As the deformations leave the Fj(2) structure invariant, at a point

'The most studied example of M-theory on AdSs x S7/Zy is dual to the Chern-Simons-matter theory
living on a stack of M2-branes probing a C?/Zj singularity [291]. Of these only S” and S7/Z, are
Sasaki-Einstein. The supersymmetry parameters transform in the 8 of SU(8). This breaks under SU(6) as
8 =6+ 1+ 1. Viewing S” as Sasaki-Einstein picks out the two supercharges that are singlets under the
SU(6) structure. These are not the supercharges that are picked out in ABJM theory, which live in the6
instead. Thus we can view S” and S”/Zs as Sasaki-Einstein, but not further quotients.
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on the internal manifold A parametrises an element of Eg(5)/SU(6). The adjoint of Eg (o)
decomposes under SU(6) x SU(2) as

78 = (1,3) @ (35,1) @ (20, 2). (6.3)

The first term corresponds to SU(2) rotations of the triplet J,. The second term is the
adjoint of SU(6), which leaves both J, and K invariant by definition. Therefore, the
deformations are in the (20, 2) and form a doublet under the SU(2) defined by J,. We

are free to choose them to be eigenstates of J3
[J3, Ax] = 1AkA). (6.4)

The non-zero eigenstates correspond to A = 0,1,2. The A = £2 eigenstates correspond to
J+. The A = 0 eigenstates are in SU(6), so will leave J, and K invariant. The deformations
we seek are the A = £1 eigenstates, which we refer to as A+. We note that we can find an

eigenstate with eigenvalue —ik from Ay by acting with J, thanks to the Jacobi identity
[Jg, K_I[Ji, .Ai]] = :Fili[Ji, Ai] (6.5)

Complex conjugation gives an eigenstate with the opposite eigenvalue. We notice that
Lk commutes with the action of J3 (as LxJs = 0) so we can also label states by their
R-charge. We organise the states into doublets

(r)
./4 — ( “th'__Q)) ) T 2 05 (66)
A+

where doublets with < 0 are related by complex conjugation.
To find the explicit form of the eigenstates, it is useful to note that the action of J3

splits into separate actions on {a,a} and {r,a,a}. We then organise the eigenstates as
AL =a+a, A =TI A =r+a+a. (6.7)

Using this as a basis, the modes { A, A* } give the possible +ix eigenstates. Using the

algebraic conditions on w, 2 and I, it is simple to show that the A, eigenstate is
A = [0+ fQ+ 0 AWFQ)] + [¢F + FOF + €A (QF)], (6.8)

where ¢ is a (1,2)-form, f is a function, Q is the conjugate of the complex three-form,
o is the contact form and v is a (1,0)-form. Notice that the components are related by
mnp = Qmnp, Where we lower the indices of o using the undeformed metric.? The A_

mode in the same doublet as A, is given by A_ = x~1[J,, A4].

2The three-form components of the USp(8) Lie algebra embed in E7(7y as amnp = —Qmnp, SO the
deformation is not in uspg.
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6.2.1 Supersymmetry conditions

We are looking for deformations of the Sasaki—Einstein background that preserve super-
symmetry, so that the deformed K and J, still define a torsion-free SU(6) structure. At

linear order in the deformation, the supersymmetry conditions reduce to
Sa(V) = / ktr(JaLyA) =0 YV €56, (6.9)
[Lx A, Jy] =0. (6.10)

As the deformed structures should be real, we take the deformation to be A = Re A4,
where Re A = %(.A+ + A%). In this section we give the derivation of the constraints that

these equations impose on A, .

For what follows, it is useful to note that the contractions of the components of A

with the volume form are

(&N (Qﬁ_n/))_nvoh =ivAQ,
QO Jvoly = —ifo AQ, (6.11)
P Jvoly = io A ¢.

We also use the identities
vol7(aa) = (aavolr) A a, vol7(aua) = (aavoly) A a, (6.12)

where a, «, @ and & are an arbitrary three-form, three-vector, six-form and six-vector

respectively.

Moment map conditions

The calculation of the conditions follows closely that of appendix H.2. For example, the

variation of pg is of a similar form as that for the previous AdSs case:

/ o tr(Jy Ly A) = / i tr(Js[dew, A]) o / o tr(dwlJs, A)). (6.13)
We then note that [J3, A] o< AL — A_, which gives

/ﬁtr(dw[Jg,A]) x //12 Im o sdw o /d(Im aavoly) A w, (6.14)
where « is the three-vector component of A,. As this should vanish for arbitrary w, we
require

d(Im aeavoly) = 0. (6.15)
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Using the explicit form of A, (6.8) and the contractions of its components with the
volume (6.11), the conditions from dug = 0 and dpuy = 0 reduce to

0¢ + d¢p = 0,
Lev+0f =0,
ov =0, _
_ _ af =0, (6.16)
0p+4iv ANQ =0, _ -
_ (i) +6ifQ =0,
ov —2fw =0,

where we have simplified some of the relations using
v AQ+iw A (v2Q2) =0, (6.17)

where v is an arbitrary (1, 0)-form with respect to I.
We now want to solve the system of differential equations to find the general form of
the deformation. Following a method similar to that in appendix H.2, one can show that

a solution is given by

5 . i 1 _
0f =0, Lef=iaf,  v=_0f 6= 50000 .9). (6.18)

One can check this solves the system of equations using
0(0f Q) = —6qfQ, (6.19)

where f is a holomorphic with respect to 0 and has charge +¢ under the Reeb vector field.
One can also include in ¢ a (1,2)-form x that is closed. The three-form component of the
deformation is then

Ay = [0+ ;a A OF ) + DOF) + v, (6.20)

2q(¢ —1)
where 0f = 0, L¢f =1iqf and dx = 0. The three-vector component is given by substituting
(6.18) into (6.8) or by raising the indices of the three-form component using the undeformed

metric.

Lie derivative along K

Now that we have satisfied the moment map conditions we must impose the Dorfman
derivative condition. At first order this is given by (6.10). The commutators are non-zero
for both Jy and J3 so that the condition reduces to Lx. A = 0. As K is a generalised
Killing vector, the Dorfman derivative along K reduces to a Lie derivative along the Reeb

vector field &, so the deformation condition is
LeA=0.
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We see that the deformation must have charge zero under the Reeb vector field. From the
explicit form Ay, we see f is charge +4 and the closed term x is charge zero. These are

the conditions for a deformation to be marginal.

6.2.2 Fluxes

As for the previous type IIB case, the three-vector component of the deformation can be
traded for a three-form deformation by considering its action on the generalised metric.
The three-form potential induced by a first-order deformation by a three-form a and a

three-vector « is

Apnp = Gmnp + Cmnp = 20mnp,
where we lower the indices of the three-vector using the undeformed metric. Obviously,
this procedure becomes more complicated at higher orders in the deformation due to
contractions between the three-form and three-vector terms that can correct the metric,
warp factor and fluxes.

The real deformation will generate a three-form potential of the form
A=2Re (fQ + Lio A (0f9) + L0(0F ) + x)- (6.21)
The flux due to A is
F:Re(%éf/\Q—ia/\@(@fJQ)+61fa/\Q). (6.22)

This flux is valid for the marginal deformations of any seven-dimensional Sasaki—Einstein
background and, as we will discuss, it reproduces the first-order fluxes of the S-deformation
of Lunin and Maldacena [93].

6.3 Examples

In the previous section we used the existence of a torsion-free generalised structure to derive
the first-order fluxes that are dual to exactly marginal deformations for any Sasaki—Einstein
background. We now give the explicit examples of the supergravity backgrounds where
the internal space is S7, QbV! or MU, In what follows, it proves useful to take an
orthonormal frame on M in which the invariant objects defining the Sasaki-Einstein

structure are
Q = (e! +ie?) A (€3 +iet) A (e® +ief), w=e?+ e+ oc=c’. (6.23)

6.3.1 S”

As an AdS, background in M-theory, the seven-sphere S preserves 32 supercharges. When

viewed as a Sasaki-Einstein manifold, we pick out eight of these supercharges — it is these
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supercharges that will be preserved by the first-order flux we have given. We can view S’
as a U(1) fibration over CP?, a six-dimensional Kéhler-Einstein base. The metric on S7

can be written as? [93]
ds*(ST) = d6? + sida® + s3s2dB% + chdd? + sicides + sgsic%d¢§ + sgsisédqﬁ. (6.24)
We can introduce an explicit frame in terms of the coordinates on S”:

el +ie? = e4i¢/3(d0 — isgceddy + iSaCQC(QXd(Z)Q + 189096%83d¢3 + iSQCQSiS%dgbzl),

3 +iet = e4i¢/3(39da — isqCaSpdo + isaca59c%d¢>3 + isacasw%dgm), (6.25)
e’ +ie® = eM¥/3 (5,598 — isgcgsgsadds + isasgcssedos), '

e’ = c3doy + sictdes + sisgc%dd)g + sgsis%d@;,

where 49 = ¢1+ @2+ Pp3+ 4. Using this frame, one can check that the complex, symplectic
and contact structures given in (6.23) satisfy the algebraic and differential conditions
(4.93), (4.94) and (4.96).

Up to closed three-forms, the marginal deformations are parametrised by a holomorphic
function f that descends from the Calabi-Yau cone over S”. The function f is of charge

four under the Reeb vector. In our parametrisation, the Reeb vector field is
§ =40y = Op, + O, + Op; + O, (6.26)

The cone over S7 is C*, and the coordinates on S” are related to the usual complex

coordinates on C* by

21 = cpel?, 2o = spca€'®?, 23 = sesa%ei‘b?’, 24 = 395a55ei¢4, (6.27)

where the coordinates z; have charge +1 under the Reeb vector field
Lezi = iz;. (6.28)
Thus f must be a quartic function of the z;. The general form of such a function is
f= fijklzizjzkzl, (6.29)

where fY* is a complex symmetric tensor of SU(4). There are generically 35 complex
degrees of freedom in such a symmetric rank-four tensor, corresponding to the the 35
marginal deformations previously discussed by Kol [267]. Requiring our first-order per-
turbation to extend to higher orders forces us to consider if there are fixed-point isometries
at the S” point in the space of couplings. We can think of S7 as a U(1) fibration over

a CP? base, where the SU(4) that acts on the base leaves the S7 solution invariant. In

3We are using so and ¢, as shorthand for sin o and cos ¢, and similarly for 8 and 6.
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other words, S7 = SU(4)/SU(3) where the action of SU(4) preserves the U(1) fibration.
This is not true of the other presentations of S” as a homogeneous space. This means
we have an SU(4)’s worth of fixed-point symmetries, where the marginal deformations
defined by f generically break this SU(4). To account for this we construct a moment
map for the SU(4) action on the space of couplings and perform a symplectic reduction.
The deformations that survive are those that extend to higher orders, namely the exactly

marginal deformations. These deformations satisfy
FE Fittm — 306%™ frtgn = 0. (6.30)

This removes 15 real degrees of freedom and we can use the SU(4) action to remove another
15 real degrees of freedom, leaving 20 complex parameters, in agreement with the counting
given by Kol [267]. Recall that H3(S”) = 0 and so there are no marginal deformations due
to closed (1,2)-forms .

The -deformed S7 solution was first given in [93], which we reproduce in appendix I.
Taking f o< iy21222324, where 7 is real, and using our frame for S7, one can check that our
expression (6.22) reproduces the four-form flux of the first-order S-deformed S” solution.
Notice that we can also take f o< yz1292324, where we have dropped a factor of i compared
with the LM solution. This will also solve the moment map conditions and thus is a

marginal deformation, similar to the full complex S-deformation of N' = 4.

6.3.2 QYY1

As an AdS, background in M-theory, the Sasaki-Einstein manifold QU1 preserves eight
supercharges. Viewing QU%! as a U(1) fibration over CP! x CP! x CP!, the metric* can
be written as [292,293]

3 2 3
ds* QM) = & (d¢ + Z cos HidqﬁZ) + Z(def + sin? 6;dp?). (6.31)
i=1 i=1
We can introduce an explicit frame in terms of the coordinates on Q11

el +ie? = Lew/‘g(i df; + sinf1d¢y),

2v2
e® +iet = L_e¥/3(1dfsy + sin Oyd ),
o 2 ; (6.32)
e’ +ie :ﬁe‘w (idfs + sin O3des),

" = 1(dv + cosf1dey + cos Bade + cos f3dgs).

Using this frame, one can check that the complex, symplectic and contact structures given
in (6.23) satisfy the algebraic and differential conditions (4.93), (4.94) and (4.96).

Up to closed three-forms, the deformation is parametrised by a holomorphic function

4The metric has been scaled to ensure Ry, = 6g,u0.

169



f that descends from the Calabi-Yau cone over Q'!''. The deformations are marginal if f

is of weight four under the Reeb vector. In our parametrisation, the Reeb vector is

¢ =40, (6.33)

The cone over Q1! is described by an embedding in C?® using eight complex coordinates

w; that satisfy nine constraint equations. The explicit form of the coordinates is [294]

_ e%(¢+¢>1+¢2+¢3) Wy = e%(¢*¢>1*¢2*¢3)

w1 Ch1/2C05/2C03 /2> 56,/25605/2565/2>

w3 = eéwwl_¢2_¢3)091/2502/2593/2, wq = e%(w_¢1+¢2+¢3)891/2092/2693/27 (6.34)
ws = ex WOy ey nsp g, we = ex VAT g0 cp sy o, '
wr = e%(wwl7¢2+¢3)691/2892/2693/2, wg = eé(w*d’l7¢2+¢3)891/2892/2093/2-

The embedding coordinates w; are charge 4+2 under the Reeb vector field, so the general
form of the function f is
I = fww;, (6.35)

where f¥ is symmetric with complex entries. There are generically 36 complex degrees of
freedom in such a symmetric rank-two tensor, but 9 of them will not contribute to f due
to the constraints on the w;. Thus there are 27 complex degrees of freedom corresponding
to 27 marginal deformations. We can also use homogeneous coordinates A,, B; and Cj
that are related to the w; by [295]

wy = A1B2Ch, wy = AsB1Cy, w3 = A1B1Cs, wy = A By(Ch,

(6.36)
ws = A1B1C1, we = AsB1Ch, wr = A1 BaCs, wg = A2 B (.
We can then write the generic deformation as
f = foibib A, B, Cy Ay B G, (6.37)

where fab""i”dz; is symmetric in (ab), (bb) and (db). We can think of Q1! as a U(1) fibration
over a CP! x CP' x CP! base, so there is an SU(2)? isometry that leaves the solution
invariant, and we have an SU(2)? of fixed-point symmetries. Again, we want to take a

symplectic reduction of the space of couplings by the action of SU(2)3. The moment map
for the first SU(2) action is

b 7 1 s pedabib 7
tsu@) = S o abas — 306 f e b by (6.38)

and the others follow by swapping undotted for dotted or double-dotted indices. The

conformal manifold of exactly marginal deformations that preserve eight supercharges is
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given by the symplectic reduction
M, = {fababiby ysu(2)3. (6.39)

The three moment maps for SU(2) gives 9 real conditions on the f“b@"”‘ﬂ;, and we can
remove another 9 degrees of freedom using SU(2)? rotations of the couplings. In addition,
H3(Q11) = 0 and so there are no marginal deformations due to closed (1,2)-forms x.
Thus, the conformal manifold is 27 — 9 = 18 complex dimensional.

The S-deformed Qb1! solution was first given in [284,285], which we reproduce in
appendix I. Taking f o ywiwe = yA1A2B1 B2C1C5, where +y is real, and using our frame
for Q1! one can check that our expression (6.22) reproduces the four-form flux of the

first-order [-deformed solution.

6.3.3 MbLM!

As an AdS, background in M-theory, the Sasaki-Einstein manifold MY!! preserves eight

supercharges. Following the presentation in [296], the metric on MY! can be written as

As2 (M) = 3 (dp? + L2l (dy + cd)? + 152 (462 + 52467) ) 6.0

+ £(d6? + s5de?) + & (dT + A + 2c9d)?,

where \ = %(1 + 3 cos 2u)dep — 3cos O sin? udp.> We can introduce an explicit frame in

terms of the coordinates on M 11:

el +ie? = @eif/ﬁ (du — iisin 2u(dy + cos 5d<§)>,
e +iet = ?e”/ﬁ sin pu(df + isin 6dg),
e’ +ieb = 2—\1/§e17/6(d0 — isin 0d¢),

el = 1(d7 + A +2cos0dg).

(6.41)

Using this frame, one can check that the complex, symplectic and contact structures given
in (6.23) satisfy the algebraic and differential conditions (4.93), (4.94) and (4.96).

Up to closed three-forms, the deformation is parametrised by a holomorphic function
f that descends from the Calabi-Yau cone over MU1t, The deformations are marginal if

f is of weight four under the Reeb vector. In our parametrisation, the Reeb vector is
& =80-. (6.42)

The cone over MU+ is described by an embedding in C3Y [297]. Instead we use homogeneous

coordinates U; and V,, which are charge +8/9 and +2/3 respectively under the Reeb vector

®Note that the A we use differs from that of [284,296] by 2d1.
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field [285], so the general form of the function f is
f = fIRPUU U VLV, (6.43)

where 7% is symmetric on (ijk) and (ab) with complex entries, transforming in the
(10,3) of SU(3) x SU(2). There are generically 30 complex degrees of freedom in such
a tensor, thus there are 30 complex degrees of freedom corresponding to 30 marginal
deformations.

Again we consider if there are fixed-point isometries at the M*!! point in the moduli
space of couplings. MU' is a U(1) fibration over a CP? x CP! base, so there is an
SU(3) x SU(2) isometry that acts on the base, leaving the solution invariant. We can
construct a moment map for the SU(3) x SU(2) action on the space of couplings and

perform a symplectic reduction. The moment maps are

tsue) = £ Firtab — 360%™ Frim ab,

tsue) = F75 firrpe — 36 F 7 Fiin ca-

The conformal manifold of exactly marginal deformations that preserve eight supercharges

is given by the symplectic reduction
M, = {fi7F21 /SU(3) x SU(2). (6.44)

The moment maps give 8 + 3 real conditions on the 7% and we can remove another 11
degrees of freedom using rotations of the couplings. In addition, H*(M"!!) = 0 and so
all global three-forms are trivial in cohomology [297]. This means there are no marginal
deformations due to closed (1,2)-forms x. Thus, the conformal manifold is 30 — 11 = 19
complex dimensional.

The S-deformed M1t solution was first given in [284, 285], which we reproduce in
appendix I. Taking f o< ivel™/2sin 6 sin 0 sin? 14 cos (1, where +y is real, and using our frame
for MULL one can check that our expression (6.22) reproduces the four-form flux of the

first-order (-deformed solution.

6.4 Summary

In this chapter we have used exceptional generalised geometry to analyse exactly marginal
deformations of d = 3, N/ = 2 SCFTs that are dual to AdS; backgrounds in eleven-
dimensional supergravity. In the gauge theory, marginal deformations are determined by
imposing F-term conditions on operators of conformal dimension two and then quotienting
by the complexified global symmetry group. We have shown that the supergravity analysis
gives a geometric interpretation of this gauge theory result. The marginal deformations are

obtained as solutions of moment maps for the generalised diffeomorphism group that have
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the correct charge under the Reeb vector, which generates the U(1)g symmetry. If this is
the only symmetry of the background, all marginal deformations are exactly marginal. If
the background possesses extra isometries, there are obstructions that come from fixed
points of the moment maps. The exactly marginal deformations are then given by a further
quotient by these extra isometries.

For the specific case of Sasaki-Einstein backgrounds, we showed how supersymmetric
deformations can be understood as deformations of generalised structures which give rise
to four-form flux perturbations at first order. Using explicit examples, we checked that

our expression for the four-form flux matches those in the literature.

173



174



Chapter 7

Discussion

In this thesis, we have presented the idea that generalised geometry provides a geometrical
interpretation of generic flux backgrounds in type II supergravity and M-theory. We
focussed on backgrounds preserving eight supercharges in D = 4,5,6 Minkowski or
D = 4,5 AdS spacetimes and showed they define integrable G-structures in Eg4) X R+
generalised geometry. As in conventional geometry, integrability is defined as the existence
of a generalised torsion-free connection that is compatible with the structure, or equivalently
as the vanishing of the generalised intrinsic torsion (or a non-vanishing singlet component
in the AdS case). This led to us defining what we called “exceptional Calabi-Yau” (ECY)
spaces and “exceptional Sasaki-Einstein” (ESE) spaces, which provide the natural flux
generalisations of Calabi—Yau and Sasaki-Einstein spaces. For both ECY and ESE spaces,
we found the differential conditions on the structures implied by integrability, and showed
that they took a simple form in terms of the generalised Lie derivative or moment maps
for the action of the generalised diffeomorphism group. As for Calabi—Yau backgrounds,
supersymmetric solutions are described as the intersection of two separate structures. We
also discussed the structure of the moduli spaces of ECY and ESE spaces, and pointed

out an interesting connection to the “HK/QK correspondence” [247].

We saw how examples of ECY geometries are given by the simple examples of
Calabi—Yau, generalised Calabi—Yau and hyper-Kahler spaces as well as various other

supersymmetric flux backgrounds.

In the ESE case, we saw that such geometries always admit a “generalised Reeb vector”

that generates an isometry of the background corresponding to the R-symmetry of the
dual field theory. In the language of [145], ESE spaces are weak generalised holonomy
spaces, and the cone over such a space has generalised special holonomy. We have included
a number of examples of ESE spaces including conventional Sasaki—Finstein in five and
seven dimensions, as well as the most general AdSs solutions in M-theory.

A particular advantage of the formalism is that the H and V structures defining the
background are associated to hypermultiplet and vector-multiplet degrees of freedom in the

corresponding gauged supergravity. This provides a natural translation between bulk and
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boundary properties. We showed for example that the V structure, which is defined by the
generalised Reeb vector K, encodes the contact structure that appears in generic D =5
type IIB and D = 4 M-theory backgrounds [134,245,249]. Furthermore, K determines the
central charge in D = 5 and free energy in D = 4 of the dual theory, and is a calibration
for BPS wrapped branes giving the dimension of the dual operators.

As we saw, a key application of our formalism is to the AdS/CFT correspondence and
we took some first steps in this direction. We used Egy4) X R* generalised geometry to
analyse exactly marginal deformations of N' =1 SCFTs that are dual to AdS5 backgrounds
in type II or eleven-dimensional supergravity. In the gauge theory, marginal deformations
are determined by imposing F-term conditions on operators of conformal dimension three
and then quotienting by the complexified global symmetry group. We showed that the
supergravity analysis gives a geometric interpretation of this gauge theory result. The
marginal deformations are obtained as solutions of moment maps for the generalised
diffeomorphism group that have the correct charge under the Reeb vector, which generates
the U(1)gr symmetry. If this is the only symmetry of the background, all marginal
deformations are exactly marginal. If the background possesses extra isometries, there
are obstructions that come from fixed points of the moment maps. The exactly marginal
deformations are then given by a further quotient by these extra isometries. For the
specific case of Sasaki—Einstein backgrounds in type IIB we showed how supersymmetric
deformations can be understood as deformations of generalised structures which give rise
to three-form flux perturbations at first order. Using explicit examples, we showed that
our expression for the three-form flux matches those in the literature and the obstruction
conditions match the one-loop beta functions of the dual SCFT.

Finally, we extended our analysis to AdS; backgrounds in eleven-dimensional super-
gravity. We showed how deformations of generalised structures give rise to supersymmetry-
preserving four-form flux perturbations at first order and how higher-order obstructions
again come from fixed points of the moment maps. Using explicit examples, we showed

that our expression for the four-form flux matches those in the literature.

7.1 Future directions

There are many directions for future study. The obvious extension is to find the analogous
structures for backgrounds with different amounts of supersymmetry. In Eg4) x R* gener-
alised geometry the supersymmetry parameters transform under the maximal compact
subgroup Hy. As shown in [143,144], supersymmetric backgrounds preserving N supersym-
metries are given by integrable G-structures where G C Hy is the stabiliser group of the N/
Killing spinors. Thus, for example, D = 4, N" = 1 backgrounds define an SU(7) C SU(8)
structure [136], which in M-theory would give the flux generalisation of a Gg structure.
This viewpoint should give insight into the moduli space of N' = 1 flux compactifica-

tions. We have also seen that the structures are naturally associated to multiplets in the
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D-dimensional theory, and furthermore that the integrability conditions can be deduced
from the standard form of the D-dimensional gauged supergravity. This should provide a

relatively simple prescription for deriving the conditions for other examples.

We discussed some general properties of the moduli spaces, notably that they arise
as hyper-Kéhler and symplectic quotients and that the full moduli space has a fibred
structure. However, for Calabi—Yau compactifications it is known that the moduli space
splits and is simply a product of the hypermultiplet and vector-multiplet moduli spaces. It
is still an open problem to understand how the moduli space of ECYs splits into a product

of a hyper-Kéhler space and a special Kéhler space.

As we have seen, integrability of the H structure generically is captured by a moment
map. Typically, the vanishing of a moment map is closely allied to a notion of stability (see
for example [185]), which, if it exists, would here define integrable complex or symplectic
structures (and their generalisations) under the action of some quaternionic version of the

full generalised diffeomorphism group.

There is a natural question about reduction of structures, similar to that for generalised
complex geometry [298]: how, given a generalised Killing vector, structures with eight
supercharges on M define structures on a space of one dimension lower. Physically this
would realise the r-map of [234]. In the AdS case, K is always a generalised Killing vector
and the cone over an ESE space has generalised special holonomy. In the conventional
Sasaki—Einstein case one can use the Reeb vector to define a symplectic reduction of the
Calabi—Yau cone. Locally, this gives a four-dimensional geometry that is Kéhler—Einstein.
When one moves to generalised complex geometry, there is an analogous result using the
theory of generalised quotients that the transverse space admits a generalised Hermitian
structure [134]. It would be interesting to understand how this carries over to exceptional

generalised geometry by developing a theory of generalised quotients.

Conventional generalised complex geometry is known to capture the A and B topological
string models on backgrounds with H flux [115,116,119]. The geometries defined here
should encode some extension to M-theory or with the inclusion of R-R flux. It was
previously proposed [299, 300] that the relevant topological M-theory was related to
Hitchin’s formulation of Go structures [301], which combines both the A and B model.
Here we have a slightly different picture with two candidate structures in M-theory.
Note that in principle either the H structures or the V structures could be viewed as
generalisations of the A and B models, with mirror symmetry mapping H (or V) structures
in ITA to H (or V) structures in IIB. However, the integrability conditions on the V
structure are considerably weaker — for example, for a generalised complex structure they
do not imply that d®* = 0. In this case it would appear one would need to choose a fixed
background J, and impose the Lx J, condition. The hypermultiplet structure integrability,
on the other hand, does imply d®* = 0, and hence these give the natural candidates for
generalisations of the topological string models. It would be particularly interesting to

consider the quantisation of these models, as in [116] though now with a hyper-Kahler
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rather than symplectic space of structures.

In the AdS examples with contact structures, one can calculate properties of the field
theory using the relation between the contact volume and the choice of Reeb vector [134,
245,249]. The special role of K also led us, following [250], to a conjecture for generic form
volume minimisation [251,252]. It would be particularly interesting to see if we can extend
these techniques to the case of D =5 M-theory backgrounds using the generalised Reeb
vector. Moreover, it should be possible to use generalised intrinsic torsion to show that the
supergravity actions are given by the integral of the Fy-invariant volume, as in (4.126).

An important question both for phenomenology and the AdS/CFT correspondence
is to identify the deformations of the structures. Our analysis holds for any NV = 1
AdSs background so it would be interesting to apply it to one of the few examples of
non-Sasaki—Einstein backgrounds, such as the Pilch—-Warner solution [302]. This is dual
to a superconformal fixed point of N’ = 4 super Yang-Mills deformed by a mass for one
of the chiral superfields. More generally, one expects that the deformation problem is
described by some underlying differential graded Lie algebra (DGLA) with cohomology
classes capturing the first-order deformations and obstructions, as described for example
in [303]. For H structures in IIA, this would be some generalisation of the Dolbeault
complex. Such extensions appear in generalised complex geometry [109, 304, 305], but
this would go further to include R-R degrees of freedom. In the generalised complex
structure case, starting from a conventional complex structure, it is known that the extra
deformations can be associated with gerbe and non-commutative deformations of the
algebraic geometry [109,115]. An open question is how to understand the corresponding R-
R deformations when they exist. Furthermore, in the AdS context solving the deformation
problem gives a way of finding the exactly marginal deformations in the dual field theory.
One might hope that understanding the underlying DGLA structure may help identify
the all-order supergravity backgrounds dual to the deformations; so far only the dual of
the S-deformation has been obtained. With these in hand, one would be able to perform
many non-trivial checks of the AdS/CFT correspondence, including calculating the metric
on the conformal manifold.

There are also applications to phenomenology. Supersymmetric deformations of the
geometry give rise to moduli fields in the low-energy effective action obtained after
compactifying on the internal manifold. Determining the number and nature of moduli
fields that arise in flux compactifications is difficult in general as we lose many of the
mathematical tools used in Calabi—Yau compactifications. In our formalism, fluxes and
geometry are both encoded by the generalised structure whose deformations will give
all the moduli of the low-energy theory. Generalised geometry points to a new set of
tools to understand these deformations, such as generalisations of cohomology and special

holonomy.
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Appendix A

Examples of N =2, D = 4

backgrounds

In this appendix, we shall summarise a number of simple N' = 2 backgrounds in both type
IT and M-theory, with and without fluxes. We use these to provide concrete examples of
E7(7) structures in section 3.2.4 and to show how the usual supersymmetry conditions are

recovered from integrability conditions in section 3.3.4.

A.1 Calabi—Yau manifolds in type II and SU(3) structures

Calabi—Yau manifolds admit a single covariantly constant spinor xy* defining an SU(3) C
Spin(6) ~ SU(4) structure. In this case, the two SU(8) Killing spinors of (3.6) are given

by [172]
+
€ = (XO ) , €2 = <X0_> ; (A.1)

Equivalently it admits a symplectic form w and a holomorphic three-form €2 that are

compatible, which translates to

wAQ=0, FWAWAW=FHAAQ. (A.2)
One can choose a frame {e“} for the metric on M where the invariant forms take the form

w=e?+ e+ e Q= (el +ie?) A (e +1iet) A (€ +ie?), (A.3)

where €% = e® A e’. Raising an index on w defines an almost complex structure I on the

six-dimensional space

In the language of G-structures, w and € define Sp(6; R) and SL(3; C) structures respectively.
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The compatibility conditions (A.2) imply that the common subgroup is given by Sp(6; R) N
SL(3; C) = SU(3). The fact that y is covariantly constant is equivalent to the integrability

conditions

dw =0, dQ = 0. (A.5)

A.2 CY3 x S!' in M-theory

Let us also briefly note the form of the M-theory lift of the type IIA Calabi—Yau background.

The seven-dimensional internal space is a product M = Mgy X S! with metric
ds*(M) = ds*(Msys)) + ¢, (A.6)

where ¢ = dy, with y the coordinate on the M-theory circle, and dsQ(MSU(;;)) is the ITA
Calabi—Yau metric on Mgy3). The Killing spinors take the same form as (A.1) but are
now viewed as complex Spin(7) spinors. They again determine an SU(3) structure, which
can equivalently be defined by the triplet of forms {w, 2, (}. If we raise an index to define

the vector ¢f = 0y, we have the compatibility conditions
%w/\w/\w: %iQ/\Q, wAQ=0, 1esw = 0, 1181 = 0, (A7)
and the integrability conditions
dw =0, dQ2 =0, d¢ = 0. (A.8)

Note that they imply ¢* is a Killing vector.

A.3 Generalised Calabi—Yau metrics in type II and pure
spinors
Returning to type II, we now consider the case where we include non-trivial H = dB flux

and dilaton. For simplicity, the warp factor is taken to vanish. The two SU(8) Killing
spinors of (3.6) are given by!

_( (0
€ = ( 01> , € = (XE) . (A.9)

The background can then be characterised using O(d,d) x RT generalised geometry
following [111].

! As mentioned in [172], this is not the most general spinor ansatz. There are pure NS-NS, N/ = 2
backgrounds where the Killing spinors do not take the form (A.9), and hence are not described by generalised
complex structures.
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The generalised tangent bundle E ~ TM & T*M admits a natural O(d, d) metric 7.
The background is defined by two complex polyforms, taking d = 6,

d* e T(NET* M), (A.10)

which can then be viewed as sections of the positive and negative helicity Spin(6,6) x R
spinor bundles, where the R™ factor acts by a simple rescaling. The generalised spinors
are not generic but are “pure” meaning they are stabilised by an SU(3,3) C Spin(6,6)

subgroup. They also satisfy the consistency conditions

(@1, ) = (&, 07, (@T, V-9 )= (", V-0 ) =0 WV, (A.11)

where, given V = £ + X\ € I'(TM @ T*M), one defines the Clifford action V - ®* =
VAL 4 @F = 3.®F + A A ®*. In addition, (-,-) is the Spin(6, 6)-invariant spinor bilinear, or
Mukai pairing, given by

(T, %) = (=)D ) A N6, (A.12)
p

where W,y denotes the p-form component of ¥ and [p] is the integer part of p.

Each pure spinor defines an (almost) generalised complex structure J* € I'(ad F),
where ad F' ~ T((TM @ T*M) @ A*T*M @ A*TM) is the principal O(6,6) frame bundle

for E. The generalised complex structures are given by

+ PA Ft
+A ~<(I) 7F B(I) >
j B =1 <(Di, (ii> ’ (Al?))
where T'4 are 0O(6,6) gamma matrices with A = 1,...,12, and indices are raised and

lowered using the O(6,6) metric. Note that acting on pure spinors it has the property

175, 0480% = 3i0%. (A.14)

The integrability conditions are
dot =0, d®~ =0, (A.15)

which define what is known as a generalised Calabi-Yau metric [109]. These conditions
imply that each almost generalised complex structure is separately torsion-free. Each is

also equivalent to the existence of a torsion-free generalised connection compatible with
the SU(3, 3)+ structure defined by ®*.
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A.4 D3-branes on HK x R? in type IIB

Let us now turn to three further flux examples. The first corresponds to D3-branes in
type IIB at a point in a space M = Mgy(z) X R?, where Mgy o) is a four-dimensional
hyper-Kéhler space. This is in the class of the solutions first given in [225-227] and
analysed in detail for M = Mgy 2) x R? in [228]. We have a conformal factor A and an
R-R five-form flux F, and in general also an imaginary self-dual three-form flux. The

metric on M takes the form
ds® = d&*(Msy(y)) + ¢ + €3, (A.16)
where d§2(MSU(2)) is an SU(2)-structure metric on Mgy ) and
¢ = e Ada, G = e 2dy. (A.17)

The type IIB axion-dilaton 7 = C + ie? is constant, and for convenience we take 7 = i.

The two SU(8) Killing spinors take the form

+ L
X1 —1X2
e =1, , €2 = . (A.18)
(wf) ( X3 )

The two spinors X;r define a conventional SU(2) structure, which is simply the one defined
by the hyper-Kéahler geometry. It is determined by a triplet of symplectic forms w, and
the pair of one-forms {(1,(2}. One can always choose a frame {e®} for the metric on M

where these take the form

14, 23 13 24 12, 34
wi=e +e wry=¢e"—e wg=e€e"+e
’ s ’ ; ’ (A.19)
G =e’, G2=e
The corresponding triplet of complex structures is given by (I,)™,, = —(wa)™,,, such that

for Q = wy + iwq, we have (I3)", 2, = iQmpn. The volume form on M is defined by
%wa Awg A (1 Ao = dap volg . (A.20)
If we include only five-form flux, the integrability conditions for the structure are

d(e®¢) =0, d(e* w,) =0, dA = 1% F, (A.21)

=

where F' is the component of the five-form flux on M and * is the six-dimensional Hodge
duality operator, calculated using the metric (A.16). If one also includes a non-zero
three-form flux on M, it has to have the form [228]

H+iF3 = d’yj(z) ATy, (A.22)
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where 7(z) are analytic functions of z = x+iy and 77 are harmonic anti-self-dual two-forms
on the hyper-Kéhler space. The functions y7(z) are constrained by a differential equation

arising from the Bianchi identity for F'.

A.5 Wrapped M5-branes on HK X R3 in M-theory

For our final two examples, we consider the M-theory backgrounds corresponding to
wrapped Mb5-branes in a seven-dimensional geometry that is a product of a four-dimensional
hyper-Kahler space with R3. There are two possibilities: the branes can either wrap a
Kéhler two-cycle in the four-dimensional hyper-Kéhler space or wrap an R? plane in R3.

In each case, the spacetime is a product M = Mgy(g) X R3 with the metric
ds® = d5*(Msu(e)) + ¢F + G + G5, (A.23)

where Mgy (o) admits an SU(2) structure, ds?(Mgys)) is the metric determined by the
structure, (; are one-forms, and there is a non-trivial four-form flux F. Crucially, because
of the back-reaction of the wrapped brane, the SU(2) structure has torsion, in other words
the metric is no longer hyper-Kéhler.

One can choose a frame {e®} for the metric on M such that the forms determining the

SU(2) structure are given by

wy = M4 B, wy = €13 — 2, wy = €2 4 &3
(A.24)
Cl = 657 CQ = 667 €3 = 67'
The corresponding triplet of complex structures is given by (1,)™, = —(wq)™,,, while the
volume form on M is defined by
Twa Awg A G A G A (3 = dapvolr. (A.25)

The integrability conditions differ in the two cases. Consider first the case where the
Mb5-brane wraps a Kahler cycle, calibrated by ws, in the hyper-Kéahler manifold. The
metric takes the form [306,307]

ds® = d3?*(Mgy(z)) + e *2 (dz? + dy® + dz?), (A.26)

so that
(1 = e ?Adx, G = e 224y, (3 = e 224z, (A.27)

The remaining conditions can then be written as

d(e®w;) = d(ePwsq) =0, d(e*Pws) = e*® x F,

A28
d(e4Aw3 NG ANCGQAG)=0, ( )
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where x is the Hodge duality operator calculated using the metric (A.23). Note that
the integrability conditions preserve the SO(3) symmetry between the (, but break the
symmetry between the w,.

For an M5-brane wrapping R?, the metric takes the form
ds* = e*4Ad§IQ{K(MSU(2)) + 28 (dz® + dy?) + e 42422 (A.29)

where d§%IK(MSU(2)) is a hyper-Kihler metric on Mgy 2y, and
(1 = ePdu, G = ePdy, (3 = e 2Adz. (A.30)

In addition
d(e4Aw1) = d(e4Aw2) = d(e4Aw3) =0,

(A.31)
A A G) =e*A « F, d(e*2¢ Avoly) = 0,

where %wa Awg = 0a3 voly. Now the symmetry between the (, is broken but that between
the w, is preserved.

These examples are interesting because we have the same SU(2) structure in each
case but very different integrability conditions. A seven-dimensional SU(2) structure
in M-theory actually admits four independent globally defined spinors.? In the two
examples, different pairs of spinors are picked out by the Killing spinor equations. When
we turn to generalised geometry, we will see that these different choices give two very
different embeddings of the SU(2) structure into the generalised structure. Note that,
dimensionally reducing along (3, these solutions also correspond to wrapped NS5-branes
in type ITA. In the first case of branes wrapped on a Kéahler cycle, the ten-dimensional
Killing spinors actually take the form (A.9), and so these geometries are included in the
class of SU(3) x SU(3) NS-NS backgrounds described in appendix A.3. However, when
the brane is wrapped on R?, the Killing spinors take the form

€ = <X0T> , € = <X§> , (A.32)

and, although the background is purely NS-NS, we see that it is not described by an

torsion-free SU(3) x SU(3) structure, an exceptional case first noted in [111].

2This counting is reflected in the fact that compactifying M-theory on K3 x T® breaks half the
supersymmetry.
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Appendix B

Egd) X RT representations

B.1 Notation

Our notation follows [138]. Wedge products and contractions are given by

Y|
(1} A u)al'"aerp’ — (p Tﬁ )'v[al"'uaerl"'aP*Pl},
bp:
(¢+¢)!
()‘ A p)a1.‘.aq+q/ = W)\[al--.aqpanrlu-anrq/]’
1 .
(U—‘)\)m...aqu = Hvblmbp)\bl,..bpal...aq,p it p <gq,
: (B.1)
(U_‘)\)m...apfq — a,Ual...ap,qb1...bq)\blmbq ifp > g,
o 1
(oad ) = Gy e
d!

(J)\ /\ p)a7a1”,ad = (q I 1)‘(d+ 1 _ q)' Aa[al...aq_lpaq...ad}'

Given a basis {é,} for TM and a dual basis {e*} for T*M, there is a natural gl; action

on tensors. For example, the action on a vector and a three-form is
b d d d
(r-v)*=r%v’°, (1 Nabe = =7 Adbe — 7y Aade — T Aabd- (B.2)

When writing the components of generalised tensors, we sometimes use the notation that
(.. .)(p) and (.. .)(q) denote p-form and ¢-vector components respectively. For a p-form p,
we denote by pf the p-vector obtained by raising the indices of p using the conventional
metric on the manifold.

We define the Hodge star as

1
* eM0p — 7'6a1~~-apb1 bqebl...bq. (B3)
q!

With a Euclidean metric we have €14 = e¢!*¢ = 1, so that 1 = vol and xvol = 1. With
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a mostly plus Minkowski metric we have €y _4_1 = —e’+%"1 = 1, so that x1 = vol and

*vol = —1. In particular this choice implies

(AF1p) volg = p A #. (B.4)

B.2 Eg4q4) X R for M-theory

We review from [138] a construction of Eyq) x R using the GL(d) subgroup appropriate
to M-theory, including useful representations, tensor products and the generalised Lie

derivative.

On a d-dimensional manifold M, the generalised tangent bundle is
E~TM® N°T*M & NT*M @ (T*M @ NTT*M). (B.5)
We write sections of this bundle as
V=v+tw+o+rT, (B.6)

where v € T'(TM), w € T(A2T*M), 0 € T(A’T*M) and 7 € T(T*M @ AN"T*M). The

adjoint bundle is
ad F~R@® (TM @ T*M) ® N3T*M & NST*M & N3TM & ASTM. (B.7)
We write sections of the adjoint bundle as
R=Il+r+a+a+a+a, (B.8)

where | € R, r € T(End TM), a € T(A3T*M) etc. We take {é,} to be a basis for TM with
a dual basis {e®} on T*M so there is a natural gl, action on tensors. The ¢4y subalgebra
is generated by setting [ = r?, /(9 — d). This relation fixes the weight of generalised tensors
under the R factor, so that a scalar of weight k is a section of (det T*M)*/(9=d)

1 € T((det T* M)+ O=D). (B.9)

We define the adjoint action of R € T'(ad F) on V € I'(E) to be V/ = R-V. The
components of V' are
V=Ww+r-v+aw— alo,
W =lw+r-w+via+ aso + 6T,
(B.10)
o =lo+r-oc+via+aw+ o,

' =lr+r-7—jaAw+jalo.
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We define the adjoint action of R on R’ to be R” = [R, R']. The components of R” are

= Yaud — o/La) + 2(da — aad'),
" = [r,7'] + jasjd — jo/ sja — F1(asd — o La)

+ j& sja — jaaja’ — 21(a’a — aod'),

" !/ / !~ ~/
a'=r-a—1r-a+aosa—aid, (B.11)
~// ~/ !~ /
a =r-a—r-a—ala,
" / / ~/ ~ /
o =r-a —r-at+aia—oaa,

&' =r-& —-r-a-and.

The dual of the generalised tangent bundle is E*. We embed the usual derivative
operator in the one-form component of £* via the map T*M — E*. In coordinate indices
M, one defines

Om for M =m,
oy = (B.12)
0 otherwise.

We then define a projection to the adjoint as
Xad: E*®E — ad F. (B.13)
Explicitly, as a section of ad F' we have
0XaqaV=0®v+dw+do. (B.14)
The generalised Lie (or Dorfman) derivative is defined as
LyW = VBagW4 — (8 xuq V)5 W5, (B.15)

This can be extended to act on tensors by using the adjoint action of 9 x,q V' € T'(ad F ) in
the second term. We will need explicit expressions for the Dorfman derivative of sections

of E and ad F. The Dorfman derivative acting on a generalised vector is

Ly V' = L + (Lo — 1ydw) + (Lyo" — 1do — ' A dw)

(B.16)
+ (Ly7' = jo' Ndw — ju' Ado).
The Dorfman derivative acting on a section of the adjoint bundle is
LyR = (Lyr + jasjdw — $lasdw — jasjdo + 21a.do)
+ (Lya+71-dw—asdo) + (Lya+r-do+ dw A a) (B.17)

+ (Lya — audw) + (Lya).
For Ej(5), we also need the vector bundle transforming in the 102 representation of
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Spin(5,5) x RT. We define this bundle as
N ~T*M & AN*T*M. (B.18)
We write sections of this bundle as
Q =m+n, (B.19)

where m € T(T*M) and n € T'(A*T*M). We define the adjoint action of R € I'(ad F) on
Q € T'(N) to be @ = R - Q, with components

/
m =2lm+r-m— aim,

(B.20)
n=2ln+r-n—aAm.
Using 16° x 10 — 16, we define a projection to E as
Xxp: E*®@ N — E. (B.21)
Explicitly, as a section of E, this allows us to define
dQ =0 xg Q =dm + dn. (B.22)

We define a patching of the bundle £ such that on the overlaps of local patches U; NU;
we have
Vip) = et Tahan ), (B.23)

where A(;;) and A(ij) are locally two- and five-forms respectively. This defines the gauge-

invariant field strengths as

F = dA, F=dA-JANF (B.24)

The twisted Dorfman derivative i’V of an untwisted generalised tensor f is defined as

Lyfi=e Ly ap (e ). (B.25)

The twisted Dorfman derivative ﬁf/ is given by the same expression as the usual Dorfman

derivative with the substitutions

dw — d — 1 F, do —ds —13F + O A F. (B.26)
The projection 0 X g @ also simplifies in a similar fashion allowing us to define

drQ =e"(0 xp (e*Q)) =dm +dn — F Am. (B.27)
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The quadratic invariant for Ess) is
n(Q,Q) =-mAn. (B.28)
The cubic invariant for Eg ) is
c(V,V,V)=—(w Ao+ fw AwAw). (B.29)
The symplectic invariant for E7 ) is
s(V, V') = —2(0,7 —1y7+ 0 AW — 0’ Aw). (B.30)
The ¢4 Killing form is
tr(R, R) = %(ﬁ tr(r) tr(r') + te(rr’) + aa’ + o/ sa — God — d’Ja). (B.31)

The form of the Ej4)-invariant volume x? depends on the compactification ansatz. For

compactifications of the form

g1 = e**g11_a + ga, (B.32)
the invariant volume is
k2 = D% /g, (B.33)

B.3 Egi1a+1) X Rt for type IIB

We provide details of the construction of Eqy(441) X R using the GL(d) x SL(2) subgroup
appropriate to type IIB supergravity, including useful representations, tensor products

and the generalised Lie derivative.

On a d-dimensional manifold M, the generalised tangent bundle is

E~TM&T*M & (T*M & NT*M & N°T*M) © N°T*M @ (T*M ® A°T* M)

(B.34)
~TM & (T*M @ 8) ® N3T*M & (AN T*M ® S) @ (T*M @ NST*M),
where S transforms as a doublet of SL(2). We write sections of this bundle as
V=v+X+p+o +1, (B.35)

where v € T(TM), X' € T(T*M ® S), p € T(A3T*M), 0 € T(NT*M ® S) and 7 €
[(T*M @ AST*M). The adjoint bundle is

adF =R ® (TM QT*M)® (S® 5% @ (S®ATM)® (S @ A*T*M)

(B.36)
O ANTM @ AN*T*M @ (S @ ASTM) @ (S ® A°T* M),
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where the subscript on (S ® S*)y denotes the traceless part. We write sections of the
adjoint bundle as
R=l+r+a+ 38 +B +~v+C+a' +a, (B.37)

where [ € R, r € '(End T M), etc. We take {é,} to be a basis for TM with a dual basis

{e%} on T*M so there is a natural gl; action on tensors.

The ¢441(q+1) subalgebra is generated by setting [ = r,/(8 — d). This fixes the weight
of generalised tensors under the RT factor, so that a scalar of weight k is a section of
(det T* M )</ (8=d)

1; € T((det T* M)/ =), (B.38)

We define the adjoint action of R € T'(ad F) on V € I'(E) to be V/ = R-V. The

components of V' are

V=41t yop+ e BN +e;a o7,

NC=IXN 47N+ a ;N — yao' +viB' + B'op — &',

p=lp+r -p+viC+ €Z'j,3i_10'j + eij/\i A B 4 o, (B.39)
o't :lai+r-ai+aijaj —C AN+ pAB + Bir +vod,

T =lr+r-T+ei AN ANal — jpAC —ejjot A B

We define the adjoint action of R on R’ to be R” = [R, R']. The components of R” are

U = %(7_10/ — ’}/JC) + %Ekl(ﬁk_:B/l — ﬁ/k_lBl) + %Eij (&i_lfl/j — dli_ldj),
v = (ror' =) + e (iB i BY — jB 1 B) — tley (8B — gFLBY
+ (jy2iC" = jv' 5§ C) — L1(yaC" — ' 2C)
+€j(ja’sja’? — jal yjal) — 3e;(alua" — & Lal),
a";=(a-d —d a);+ ex(BaB" — BLBY) — %536“(&%3’1 — p’*.BY
+ €@ a™ — & a) — %5@%(@%&” —a'*.ah,
B//i — (T’ . ,Bli . ’I"/ . ﬁz) + (CL . ﬂ/ . (1/ . 6)1 o (’}/JB/i o ’}/_IBi) o (di—lcl o d/i_IC),
=(r- Bt . Bi) + (a- B —d- B)i + (Bi_nC’ — B’iJC’) — (’)u&’i — ’Y/Jdi),
(7“ . 'y’ — . ’}/) -+ Eijﬁi A\ ,Blj + Ez‘j(di_JB/j — d/iJBj),
C” = (7“ . Cl — 7'/ . C) — eijBi A B/j —|— Gij(ﬂin/j — ﬁ/iJ&j),
(
(

(B.40)

7’~d/i—T/-&i)—i-(a-@/—a/-d)i—(5i/\’y/—ﬁli/\’y),
r-d"—r @)+ (a-@ —d -a)'+ (B'AC'—B"AC).

The dual of the generalised tangent bundle is E*. We embed the usual derivative

operator in the one-form component of £* via the map T*M — E*. In coordinate indices
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M, one defines

Om for M =m,
oy = (B.41)
0 otherwise.

We then define a projection to the adjoint as
Xad: E*Q@E — ad F. (B.42)
Explicitly, as a section of ad F' we have
O XaqV=00v+d\N +dp+do’. (B.43)
The generalised Lie (or Dorfman) derivative is defined as
LyW = VBagWA — (0 x0q V)25 W5. (B.44)

This can be extended to act on tensors by using the adjoint action of 9 x,q V' € T'(ad F ) in
the second term. We will need explicit expressions for the Dorfman derivative of sections

of E and ad F. The Dorfman derivative acting on a generalised vector is

Ly V' = L' + (LN = 20dN) + (Lop' — 10dp + €55d N A NY)
4 (Ly0" = 1ydo’ +dp AN —dX A p) (B.45)
+ (Lo — € g NP Ado? 4+ jp Adp + €50’ AdN).

The Dorfman derivative acting on a section of the adjoint bundle is

LyR = (Lol + 5yadp + euB 2dN + 2ey6* 1do?)
+ (Lo + jyaidp — S1yadp + €558" AN — 1ley B85 2dN
+ €55 1jdo? — 31ea Ldot)
+ (Loa’j + € B adN — 367 5e B AN + €507 udo® — $6° 6P 1do?)
+ (LB — yod\ — @' Ldp) (B.46)
+ (LyB' +r-dN +d';dN + BLdp — yado)
+ (Lyy + €@ 2dN)
+ (L,C +7-dp+ ;AN A B + ¢ 87 2do?) + (L,&Y)
+ (L@’ +7-do’ + a'jdo? —dN A C + B' Adp).

For Ej5(5), we also need the vector bundle transforming in the 102 representation of
Spin(5,5) x RT. We define this bundle as

N~SaNTMaeSe AT M. (B.47)
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We write sections of this bundle as
Q=m'+n+yp, (B.48)

where m?’ € I'(S), n € T(A?T*M) and p' € T'(S ® A*T*M). We define the adjoint action
of R € T'(ad F)on Qe ['(N) to be @ = R - Q, with components

m't = 2lm' + aijmj + Biin — ypt,
n' =2In+r-n+e;Bp +eym Bl (B.49)
Pt = 2lpi+r~pi+aijp7+Bi/\n—miC.

Using 16° x 10 — 16, we define a projection to E as
Xp: E*Q N — E. (B.50)
Explicitly, as a section of E, this allows us to define

dQ =9 x5 Q = dm' + dn. (B.51)

We define a patching of the bundle such that on the overlaps of local patches U; N U;
we have ‘ i
Vi = et tdhany (B.52)

where A'éz.j) and A(ij) are locally one- and three-forms respectively. This defines the

gauge-invariant field strengths as
F' =dB', F=dC — }e;F' A DB (B.53)
We embed the NS-NS and R-R three-form fluxes as F31 = H and F32 = Fj.

The twisted Dorfman derivative Ly of an untwisted generalised tensor [i is defined by

Lipfi=eP"CL pi oo (ePTn0). (B.54)

The twisted Dorfman derivative Ly is given by the same expression as the usual Dorfman

derivative but with the substitutions

A\ = AN — o B,
dp — dp — 15 F — e;j N A FI, (B.55)
do® = A6+ N'AF — j A F'

The projection 0 X g @ also simplifies in a similar fashion allowing us to define
dpQ = e B (0 xp (eBiQ)) =dm' +dn + ;m'FV. (B.56)
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The quadratic invariant for Ess) is
n(Q,Q) = e;;m'p’ — tn An. (B.57)
The cubic invariant for Eg ) is
c(V,V,V) = —3(wp Ap+eijp A NAN = 2¢;51,\07). (B.58)
The symplectic invariant for E7 ) is
s(V,V') = =2 ((7 —1w7) + €;(N A = XN Ao?) —pAp). (B.59)
The ¢441(44+1) Killing form is
tr(R, R') = %(Tid tr(r) tr(r’) + tr(rr’) + tr(aa’) + y20" + ' 2C + €;(3 2B" + p"1B7)
+ey(aioal + &a )).

(B.60)

The form of the Eg;1(441)-invariant volume x? depends on the compactification ansatz.

For compactifications of the form
_ 2A
g10 = €77 g10~d *+ 9d, (B.61)
the invariant volume includes a dilaton dependence and is given by

K2 = e 20e8-DA o0 (B.62)

We can include non-zero axion Cp and dilaton ¢ in our formalism using the SL(2)

frame given in [139]. Let fZZ be an SL(2) frame written in terms of a parametrisation of

SL(2)/SO(2) as
5 e?/2 0
[ = Coetl? o012 (B.63)

Comparing with the split frame of [139], we see we can write a generalised vector as
V=v+e ?2\ fe ¢+ e 327 (B.64)

where \! = f’é)\2 etc., and A contains no explicit axion-dilaton dependence. Using this we

can determine where the dilaton appears in the adjoint for Eg44) and @ for Ess)

R=I1+r+ aij + 6923 4 e 2Bl 4 0y 4 e ?C + 39265 4 732,

B.65
Q=e?m' +e Pn+e 392 (B.65)
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Looking back to J, and Q for the NS5-brane solution in (3.209) and (3.210), we see they
are indeed of this form. The various powers of the dilaton correspond to the exponentiated

action of the adjoint element given by

47— %(—I—HL). (B.66)
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Appendix C

Intrinsic torsion for SU(6)

Following [143,144], we first calculate the intrinsic torsion space w3V for generalised

int

SU(6) structures. Decomposing under SU(2) x SU(6) the space of generalised torsions

decomposes as

W =56 +912 = (1,1) + 2(1,15) + (1,21) + (1,35) + (1,105)

(C.1)
+3(2,6) + (2,20) + (2,84) + (3,1) + (3,15) + c.c.

The space of SU(6) connections is given by

Ksue) = ((1,1) 4 (2,6) + (1,15) + c.c.) x (1,35)
=(1,15) + (1,21) + (1,35) + (1,105) (C.2)
+(1,384) + (2,6) + (2,84) + (2,120) + c.c.

Thus we have

WEUO) 5 (1,1) + (1,15) + 2(2,6) + (2,20) + (3,1) + (3,15) + c.c., (C.3)
where equality holds if there are no unexpected kernels in the map 7: Kgy) — W. To
see that this is indeed the case, we need the explicit map. In SU(8) indices, sections of
Kgy(g) are given by -

Y= (84575 2%75,) € (28 + 28) x 63, (C.4)

where the elements are antisymmetric on « and 8 and traceless on contracting v with 4.

The space W decomposes as
W =56+ 912 = 28 + 36 + 420 + c.c., (C.5)

and the map 7 is

€ 36 + 28,
T (C.6)
T(Z)O‘B’Y = 32[‘16 "/] € 420,



where the “0” superscript on f]?aﬁ‘sﬂ means it is completely traceless. The 28 and 36
representations correspond to the symmetric and antisymmetric parts of T(i)ag. There

are similar expressions for the conjugate representations in terms of X..

Turning to SU(6) connections, let ¥ be a section of Kgy). We can split the spinor

indices & into a =1,...,6 and ¢ = 7,8 so that the non-zero components are

Yana € (1, 15) X (1, 35),
Yuid = —%iaq € (2,6) x (1,35), (C.7)
Y% € (1,35),

and similarly for the conjugate ¥.. We then find the non-zero components of 7(X) are

T(2)ab = Zac’p € (1,15) + (1,21),
T(X)ib = Zic% €(2,6),
7(2)ave” = 381" + Zafel” b(S] € (1,105) + (1,15),
(S)an® = 25ia% + 2Z0c 8 € (2.84) + (2,6), (C.8)
T(2)aif¢ = Xij% € (1,35),
T(D)abi’ = V(0107 € (1,15),
T(E)m] EMC a5j] €(2,6),

and hence Wiy is indeed given by an equality in (C.3). Note in addition that

T(E)abii - %T(E)[ab] =0, T(Z)aijj + %T(E)ia =0. (Cg)

We now turn to showing which components of the intrinsic torsion enter each of the
integrability conditions on the pair {J,, X'}. For this it is useful to have an expression for
T(V) for SU(6) connections. We first note that the compatible SU(6) connection D must

also be an SU(8) connection and hence can be written as
D=D+%, (C.10)

where 3 € Kgy(g) and D is a torsion-free SU(8) connection. (That such connections exist
is central to the formulation of supergravity in terms of generalised geometry: they are
the analogues of the Levi-Civita connection of conventional gravity [137,138].) Since D is

torsion-free, the torsion of D is given by
T=r71(%). (C.11)

We can then calculate (V). Writing V = (V#,V,,5) for the decomposition 56 = 28 + 28
and T(V) = (T(V)o, T(V)®5, T(V)*?7%) for the decomposition of the adjoint 1 4 133 =
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1+ 63 + 70, we define the adjoint action on a generalised vector W as

[T(V)- W] = T(V)oW + T(V)*, W + T(V)2, W + T(V)*P1OW, 5,

_ _ _ _ (C.12)
Jop = T(V)oWag = T(V) oWy = T(V) sWar + T(V)aprsW ™.

=
S
=

From the form of the generalised Lie derivative in SU(8) indices given in appendix D
of [126], we find

T(V) = 3%‘/0‘*87'(2)055 + c.c.,
T(V)*s = %VW/ (T(f))w,ﬁa + %T(f])m&;/ + %T(i)wéﬁl + %T(i])w/ég) + c.c.,
T(V)*e = Ly (f(i)[aﬁtaf} - f(i)[aﬁagaj]) ~ x(c.c),
(C.13)

where x(c.c.) is the Hodge dual of the conjugate expression.

We also have expressions for the structures X and J, in terms of the spinor indices. For

X the non-zero component is the singlet in the 28 = (1,1)+(2,6) + (1, 15) representation
X = (TY, T T%)  (¢7,0,0), (C.14)

while for J, it is the triplet in the 63 = (1,1)+(3,1)+(2,6)+(2,6)+(1, 35) representation
(Ja)5 = ((Ja)od'j: (Ja) 4. (Ja) o (o)™, (Ja) ) o (0, (0a)';,0,0,0), (C.15)

where o, are the Pauli matrices. Substituting into the generalised Lie derivative in SU(8)
indices, we find

LxX =0 identically, (C.16)
simply from the form of the X given in (C.14).

For the moment maps, since x2 has weight two, the condition (3.118) on the intrinsic

torsion can be written as

tr(JaT(V)) +T(Jy-V)o x %leaaji iji + %V“’aaji(Sij + 7yj)
+ V’W’Uaji(Tyj — ij) + c.c., (017)

where we abbreviate T(ﬁ))ag and T(i)aﬁ,Y(S as Top and Tag,y&. This vanishes for all V' if and
only if
Uaji 7_a,bji =0 € (37 15)7

(Taij” + £Tia) — 57ai =0 € (2,86), (C.18)

Note, comparing with (C.9), that the (2, 6) representation appearing in the second line
is indeed independent of the (2,6) component of the torsion generated by an SU(6)
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generalised connection.

The non-zero components of T'(X) are

T(X)o X eijTij, T(X) j X 26 T(Jk) — 7(6 Tkl)(sl
T(X)ia X eleakli — %Eik(&fak + T]w) T(X) p X elebkl + = (6 Tkl)éba
T(X)abij o Gik’T_'abj Ejk —abi + 2 ’Lj [ab] T(X)abcz x 6zk,]_abc k,
(C.19)

so the non-zero components of T(X) - X are

(T(X) X) X 47’[1]] S (]_, 1),
(T(X) . X) X 2(7'(”']' + le) + %Tai € (2, 6)/, (C.QO)
(T(X) - X)™ oc —2(7%; — 279) € (1,15).

Note again that the linear combination of torsions in the second and third lines are
independent of those appearing in an SU(6) generalised connection, and further that the
combination in the second line is different from the one in the second line of (C.18), and

hence we denote it (2,6)". Similarly, the non-zero components of [T'(X), J,] are

T(X), Ja]ij o< (elekl)aaij — 26ik7(lk)0alj + 26lk7'(jk)crail €(1,1)+(3,1),

[T(X), Ja]" a X (2(Tai” + L7ia) + 370i) 00 je* € (2,6), c21)
[T(X), Jo]™ oc =R 7% 0,¢ € (2,20),
[T(X), Ja]™ o 2799 P o,y € (3,15).

Note that the combination of torsions appearing in the second line is the same as the

combination appearing in the second line of (C.20).
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Appendix D

Moment maps and quotients

In this appendix, we briefly review the notion of moment maps, and symplectic and hyper-
Kahler quotients, including the infinite-dimensional example of flat gauge connections on
a Riemann surface due to Atiyah and Bott [186].

Consider a manifold Y with a symplectic form €2 that is closed, d{2 = 0. Suppose there
is an action of a Lie group G on Y that preserves the symplectic structure — that is G acts
on Y via symplectomorphisms. An element ¢ in the Lie algebra g of G induces a vector
field py on Y. As the group G acts via symplectomorphisms, the Lie derivative of {} with
respect to py vanishes. Together with d(2 = 0, this implies dz,,2 = 0 and so 1,,€2 is closed.
A moment map for the action of the group G on the manifold Y isamap p: Y xg—R
such that, for all g € g,

du(g) = 10,2 (D.1)

The moment map is defined up to an additive constant of integration. If g* is the dual of
the Lie algebra g, one can also view p as a map from Y to g*. If G is non-Abelian one
can fix the constant by requiring that the map is equivariant, that is, that yu commutes
with the action of G on Y. Still viewing p as a map from Y to g*, one can then form the
symplectic quotient

Y)G = p110)/G. (D.2)

This quotient space inherits a symplectic structure from Y and is a manifold if G acts

freely on Y. (Generically the reduced space is not a manifold, but is a “stratified space”.)

On a hyper-Kéahler manifold Y, one can consider an action of G that preserves all three
symplectic forms €2,. Instead of a single moment map, one can then consider a triplet of
maps fiq: Y — g* satisfying

dpa(9) = 2p,{a- (D.3)

Choosing them to be equivariant, one can then define the hyper-Kdhler quotient [308]

Y/IG = 7' (0) N pz ' (0) Nz ' (0)/G. (D.4)
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This space inherits a hyper-Kéahler structure from Y, and the quotient is a manifold if G
acts freely.

We can also consider the case where both the group and the symplectic space are infinite
dimensional. A well-known example is the work of Atiyah-Bott [186]. Let G be a compact
Lie group and P be a principal G-bundle over a compact Riemann surface 3. The group of
gauge transformations G is the set of G-equivariant diffeomorphisms of P. Infinitesimally
it is generated by sections of the adjoint bundle ad P, that is Lie(G) = T'(ad P). Let Y be

the infinite-dimensional space of connections on P. The curvature of a connection A € Y
is

F=dA+354, A (D.5)

One can associate the tangent space T4Y at A € Y with the space of ad P-valued one-forms

QL(%,ad P). Given two elements «, 3 € T4Y, one can define a symplectic product

Qa, B) = /E tr(a A B), (D.6)

where tr is a gauge-invariant inner product on g, for example the Killing form if g is

semi-simple. To see that {2 is non-degenerate note that, given a metric on X, we have
Q(a, #a) = / tr(a A xa) = ol > 0, (D.7)
b

and so Q(a,*a) = 0 if and only if @ = 0. Furthermore, any connection A can be written
as A = A 4 o for some fixed connection A® and o € Q'(X,ad P) (in other words Y
is an affine space modelled on Q'(X, ad P)), meaning that in this parametrisation Q is
independent of A and hence, in particular, €2 is a closed two-form on Y.

The moment map for the G-action on Y is u = F'. To see this note that, given an element

A of Lie(G) ~ I'(ad P), the induced vector field on Y is just the gauge transformation of
A, namely

pr = dA + [A A (D.8)

Thus we have, for any o € T'(TY),

15, Q) = Qpp, ) = /Etr[(dA—F [A,A]) Aa] = / tr[A A (da + [A, o])]

s [en), ) 29

where ¢ is the exterior derivative on Y, that is, in coordinates, the functional derivative
0/0An(x). Viewed as a map p: Y — Lie(G)*, we see that = F.
This map is equivariant, and so we may form the symplectic reduction by quotienting

by the space of gauge transformations G
Y/G = u0)/G. (D.10)
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This is the moduli space of flat connections, that is A € Y such that F' = 0 modulo gauge
equivalence. The space of connections Y and the group of gauge transformations G are

infinite dimensional, but the moduli space is actually finite dimensional.
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Appendix E

Special geometries

E.1 Special Kahler geometry

There are a number of different ways to define rigid (or affine) special Kéhler geometry [217,
218,309]. The most appropriate to our needs follows [218], stating that it is a 2n-dimensional

Kéhler manifold Ay with a flat, torsion-free connection \Y satisfying
Vinnp =0, V2P, =0, (E.1)

where () is the Kéahler form and Z is the complex structure. Note that V is not the

Levi-Civita connection, since these conditions do not imply V is metric compatible.
Locally, by the Poincaré Lemma, the condition on Z can be integrated. The usual

formulation is to note that, since V is torsion-free, one also has @[mékn] = 0, thus locally

there exists a complex vector field X such that

VpX™ = "y — iT™. (E.2)

Writing the real and imaginary parts as

X" =" 4+ig™, (E.3)
so that V2™ = 0™, and V,2™ = —7™,,, one notes that the metric is given by gm, =
QmpIP, = —Qmp@na?p = —@n(ﬂmpfcp). But since g, is symmetric, this means there

exists a local real function H such that the metric is given by the Hessian

9mn = _@m@nHa (E.4)
and Qi" = V,H = 9, H. Note that in these conventions, following [218], H is equal
to minus the Kéhler potential.

The fact that V is torsion-free and flat means one can always introduce real coordinates

such that V,, = @/dz™. This notation is consistent with (E.3) since the condition

203



V5, Re X™ = §™,, means that in flat coordinates we can always locally identify Re X™ with
the coordinate ™. It is conventional to use a different index notation > to distinguish
flat coordinates (or equivalently ¥ is the index for a flat frame). If one requires that the
symplectic structure takes a standard form in the flat coordinates, then the choice of z* is

determined up to affine symplectic transformations
o™ = P¥za® 4+ & (E.5)

where P € Sp(2n;R) and c is constant. Note that in flat coordinates gy = —0x0=H.
Since V is not the Levi-Civita connection, one cannot introduce coordinates that are both
flat and complex. However, one can go halfway and define so-called “special coordinates”
XT such that

0 0

x-x>2 _x1 % _p

ONZ oxl — oy (E-6)

where ¥ = (z,y;) are flat Darboux coordinates (that is ones where Q = dz! A dy;),

implying that 2/ = Re X! and y; = — Re F;. Furthermore, the condition (E.2) implies
that there is a local holomorphic function F(XT), called the prepotential, such that
Fr = 0F/0X".

Again following [218], one can define a local (or projective) special Kdhler manifold in
terms of the complex cone over it, in analogy to the way a quaternionic-Kéahler manifold
defines a hyper-Kéhler cone. Suppose Ay is a rigid special K&hler manifold such that there
is a globally defined holomorphic complex vector field X satisfying (E.2) that generates a
C* action that preserves the structure. Then the rigid Kéhler structure on Y descends to
a local special Kéhler structure on the quotient space Ay /C*.! One can also show that,
as a function of any set of flat coordinates, H is homogeneous of degree two. Furthermore,
the Kéahler potential K on Ay /C* is given by

e M = H = LQ(X, X), (E.7)

where we use the homogeneity of H to derive the last equality.

In gauged N = 2 supergravity one identifies an action of a group Gy on Ay /C*, which
can be lifted to an action on Ay that commutes with the C* action. Supersymmetry
requires that the action of Gy preserves the special Kahler structure. If /2:;\ e(TAy) is
the vector field corresponding to the action of an element of the Lie algebraj\ € gv, then
one first requires

L; Q=0, L; =0, (E.8)

p) A
or, in other words, that 12:5\ is a real holomorphic Killing vector. In addition, it must map

flat coordinates to flat coordinates by a symplectic rotation, equivalent to the condition,

!Strictly, the fermions provide an additional integral condition on the cohomology of the Kihler form
on the quotient [217].
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in components, that it is linear in x>, that is

B = pyZsa, (E.9)

where pj € sp,,(R). It is easy to see that the corresponding moment map is given by

My = %p;\ 259525557 (E.10)

where p5yz = p;\AEQ Ax- The particular gauging of the N’ = 2 theory is encoded in an
embedding tensor (:)f‘\ [229,230]. This can be used to define a set of (constant) generators
in sp,(R)

=" = Orp s, (E.11)

so that, by definition, they must satisfy [229]
XpEs) =0, Xpr™ gz — Xppr™ X,z = Xaga, A=, (B.12)
where Xpzy = Xa="'Qry. They also satisfy a “representation constraint”
Xipzx) = 0. (E.13)

Finally, we note that contracting the moment map (E.10) with the embedding tensor
gives é?\\ﬂj\ = %XAEE:UEJUE. Using the condition Xy=x X=X> = 0 given in [230], which is

a consequence of k5 being holomorphic, we have

é?\\ﬂj\ = iXAEEXEXE. (E.14)

E.2 Hyper-Kahler geometry of Wolf spaces

A Wolf space is a symmetric quaternionic-Kahler space W/H* = G'/(G x SU(2)) (as
always we are ignoring discrete factors). The Riemannian case was first studied by Wolf
in [205] and classified by Alekseevsky in [206], while the pseudo-Riemannian case, of
relevance here, was analysed by Alekseevsky and Cortés in [207]. It is known that every
quaternionic-Kéhler manifold admits a bundle over it whose structure group is SU(2) [310].
More importantly, there exists a tri-Sasaki structure on this bundle [311] and hence the
cone over the SU(2) bundle is hyper-Kahler [208]. The geometry on this “Swann bundle”
W for Wolf spaces has been explicitly constructed in [209].

We can construct the tri-Sasaki and hyper-Kéahler structures as follows. The tri-Sasaki
space over the Wolf space is simply the symmetric space S = G'/G. As for any symmetric

space, given an element k € G’ one can decompose the right-invariant one-form 6 as
=kdk ! =7n+A, (E.15)

205



where 7 € ¢ © g and A € g. The one-forms 7w descend to one-forms on S, while A
transforms as a G-connection. Since S is the tri-Sasaki space over the Wolf space, G’
contains an SU(2) factor whose centraliser is G. We can then define a triplet of maps

Ja: G' — ¢’ as parametrising the orbit
Ja(k) = k3R, (E.16)
(0)

where 75 is some fixed set of sus C g’ generators, stabilised by G. We normalise such

that j, satisfy the algebra
[jcwj,@] = 26a,8'yj’y' (E'17>

By definition j,(kg) = ja(k) for all g € G. Thus j, descend to a triplet of g'-valued
functions on S = G'/G
Ja: S — ¢, (E.18)

where, by definition, there is a one-to-one correspondence between points in S and points

on the orbit in g’. The exterior derivative of j, on S is

dja = (dk)E ™ g 4 jakdk™!
= [Ja, 0] (E.19)

- [ja,TF],

where we have used [j,, A] = 0 as the j, are stabilised by G.

The tri-Sasaki structure is defined by a triplet of one-forms whose derivatives give a
triplet of symplectic forms on the base of the SU(2) fibration. Following the discussion

in [312], the one-forms are given by

~ 1 N A
= —z¢€ tr(djg -
Tla 5€apy tr(djs - Jy) (£.20)

=tr(7 - Ja),

which are clearly the right-invariant forms projected onto the sus subalgebra.
Now consider the metric cone over the tri-Sasaki space W = G’ x RT /G, with cone
coordinate r. The one-forms on the cone are inherited from those on the base as [312]
Na = rzﬁow (E21>

From the definition of 7, in terms of the j,, this can be viewed as taking the triplet of

functions j,: W — g’ on the cone to be
Ja =T)a- (E.22)
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An exterior derivative gives the symplectic forms

Wo = 2dng,
. ! S (E.23)
= 5€apy tr(djg A djy).

Note that the symplectic forms are manifestly closed. Given two vector fields v,w € I'(W),

if we define the triplet of functions v, = 1,dj,, then
Wa (v, w) = €qpy tr(vgws). (E.24)

Any change in the functions j, defining a point in W can be generated by the adjoint

action of a, € g’, so we can also view vector fields as v, = [ay, jo|. We then have

Wa (v, w) = €apBy tr([avv ]B] [, ]W])

(E.25)
= 2tr([av, aw]ja).

This is the analogue of the Kirillov—Kostant—Souriau symplectic structure on coadjoint

orbits, as discussed in [209].

207



208



Appendix F

Two results on normalisations and

the supersymmetry conditions

We first show that the D = 5 normalisation condition x?> = c(K) is implied by the
supersymmetry conditions for ESE spaces. Consider the set of generalised vectors of the
form V = fK where f is an arbitrary function. Using the standard form of the generalised

Lie derivative given in [137], we have
LfKJ :fLKJa— [(df Xad K),Ja], (Fl)

where x,q is the projection to the adjoint bundle x,q: E* @ E — ad F. Since J, - K = 0,
we have tr((df X ad K)Ja) = 0 and hence

€afy tl"(Jg[df Xad K, J»y]) = —€afy tr((df X ad K)[Jﬁ, J’Y])
= =2k tr((df Xaa K)Jo) (F.2)
=0.

Thus
fa(fK) = —3eapy /Mftr(JBLKJV) SSW /M fr2, (F.3)

where we have used the supersymmetry condition LgJ, = €ng,AgJ,. But we also have
W) = [ KK ) = [ fets), (F.4)
M M

Hence the moment map conditions (4.13) imply that

/ frK? :/ fe(K), for all f (F.5)
M M

which implies the normalisation condition x* = ¢(K). The analogous calculation in D = 4

shows that the normalisation condition x? = 2,/q(K) is similarly a consequence of the
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integrability conditions.

Focussing again on D = 5, for definiteness we set A1 2 = 0. We now show that for the
action of GDiff i, that is those generalised diffeomorphisms that preserve K, the moment
map conditions p4 (V') = 0 are implied by the fixed-point conditions LxJo = €asyA3J5,
which read

Ly Jy = FidsJa, LiJs=0. (F.6)

Acting on the first condition with Ly we have
gLy Jy = Lv(LKJ+) = LLVKJ+ + LK(ij+) = LK(ij+), (F7)

since we have Ly K = 0 for elements of the Lie algebra goiffs. Substituting into the p

moment maps we have

p (V) = —i/M tr(JsLy Jy)
(F.8)
=2t /M tr(JsLx Ly Jy) = Ay " /M tr((LiJ3)(LyvJy)) =0,

where we have used the second condition in (F.6).
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Appendix G

Flux quantisation, central charges

and free energy

We briefly review the derivation of the central charge from [249] and [261]. The central

charge a is given in terms of the effective five-dimensional Newton’s constant as [260]

™

R G.1
where G5 in type IIB is given by
3272 : 3272
Gitg = may | €2 1:/ K G.2
5,1IB (2765)893 /M e VOls (27765)893 " C( )7 ( )
while for M-theory it is given by
32m? 3272
Glz/ e?’Avol:/cK. G.3
5M (27Tf11)9 M 6 (27T£11)9 M ( ) ( )
The corresponding flux quantisation conditions are
N 1 / dC e 7 t 1IB
= o, 4. ype )
2ml)4
( 7718) 9s Jm (G4)
Ny=——— | dAcZ M-theory,
= (2W€11)3/E Y

where Y is any four-cycle in M. From the five-dimensional part of Einstein’s equations
we note that dC' and dA must both scale as the inverse AdS radius m. Defining the

dimensionless volumes
< !
Vs = m5/ 32" vols, Vs = m6/ 32 volg, (G.5)
M M
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we expect the scaling dependence

1 1 2/3

More generally, as in [249] and [261], one can solve explicitly for dC' and dA in terms of

the structure and find exact expressions for the flux quantisation. We also have

1 1
arnB ~ —z25 V5, anB ~ —59 Ve- (G.7)
mB3g?2 m9g51)1
Solving for m then gives
N2 N3
ariB ~ 75, am ~ 757 (G-8>

and hence a™! scales as [, ¢(K) in both cases.
For M-theory AdS, backgrounds, we follow [245]. The free energy of the field theory is
given by [313]

T
= G.9
eI (G.9)
where the effective four-dimensional Newton’s constant is
3272 3272
Gii —/ %2 vol —/ 2 K). G.10
AM T 0r01)0 Jo T Gty [y VA (6.10)
The flux quantisation condition gives
I /d[lez (G.11)
(27T£11)6 M ' '
Via the same scaling arguments as above, defining the dimensionless volume
Vi = m7/ e?2 voly, (G.12)
M
we find (the exact relations are given in [245])
1 1
N ~ WV% F o~ WV7’ (G-l?’)
11 11
so that solving for m gives, as in [255],
N3/2
72 (G.14)
7

and hence F~2 scales as [, /q(K).
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Appendix H

Supersymmetry conditions and

deformations

In this appendix we give a detailed discussion of the deformations of the Sasaki—Einstein
structure and of the derivation of the constraints from supersymmetry. We start with a
brief description of the generalised structures and then move to their deformations and

the conditions that supersymmetry imposes on them.

H.1 Embedding of the linearised deformations in general-

ised geometry

Here we will justify the choice of (5.56) for the linearised deformation. As already mentioned,
K is left invariant by an Fy4) subgroup of Eg) while the triplet J, is left invariant by
SU*(6). Together J, and K are invariant under a common USp(6) subgroup. We argued
in section 5.3.1 that the dual of marginal deformations should leave K invariant, but
modify the J,. This means that at a point on the internal manifold they must be elements
of the coset Fy(4y x R¥/USp(6). The 52 (adjoint) representation of Fy(4) decomposes under
USp(6) x SU(2) as

52 = (1,3) @ (21,1) @ (14, 2). (H.1)

The first term corresponds to the triplet J, and its action simply rotates the J, among
themselves. The second term is the adjoint of USp(6), which leaves both K and J,
invariant. Therefore, the deformations are in the (14,2) and form a doublet under the
SU(2) defined by J,. We can choose them to be eigenstates of J3

[J3, ALy] = HIARAL). (H.2)

The non-trivial eigenstates correspond to A = 0,1, 2. From the SU(2) algebra (5.46) we
see that the eigenstates with A = 2 are J1 themselves. The eigenstates with eigenvalue

zero are in USp(6), or in other words they leave J, and K invariant, and we will therefore
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not consider them. To simplify notation we will call the A = +1 eigenstates Ay. We note
that we can generate an eigenstate with eigenvalue —ix from A, by acting with Jy, as

the Jacobi identity implies
[J3, H_I[Ji, ALl = Fik[Jx, AL (H.3)

We also note that complex conjugation also gives the eigenstate with opposite eigenvalue.
Since Lx commutes with the action of J3 we can also label states by their R-charge as
in (5.54), so that we have doublets

(r)
A= < “?;_2)>, r>0. (H.4)
Ay

We have chosen r > 0 for definiteness. Those doublets with » < 0 will be related by
complex conjugation. (Note this convention leads to a slight over-counting for 0 < r < 2,
since the doublets with charge r have complex conjugates with charge —r 4+ 2. However, it

is the most convenient form to adopt for out purposes.)

To compute the eigenstates with A =1 it helps to note that the Eg) action of J3 acts
separately on {B?, 3}, aij and {r,C,v,(} (see (B.40)). Using this we can organise the

eigenstates as

Ay =B+ 7, Ao =[J, A =r+C+y+1, (H.5)

Ay =dj, A =[]y, A ]=B"+p". (H.6)

As complex conjugation gives the eigenstate with opposite eigenvalue, using this basis, the
modes {A,, A* fl+, ft*_} fill out the possible +ik eigenstates. In fact we will find that,
with this basis, imposing 7 > 0 actual restricts to only A, and fhr.

One can use the forms defining the SU(2) structure on a SE manifold — Q, w and o —
and the corresponding vectors to decompose the eigenstates. It is straightforward to verify

that the eigenstate A, is given by
Ay = -La [fQ+2(pw + & + 0 AD)] — 3@ [fOF — 2(put — &F — € A D)), (H.7)

where u' = (—i,1), v is a (0,1)-form, © is a (1,0)-vector on the base, & is a primitive
(1,1)-form on the base, and p and f are arbitrary complex functions on the SE manifold.
The w! and &* terms in the bi-vector are obtained from the two-forms by raising indices

with the metric g™".

The requirement that the deformation leaves K invariant (A, - K = 0) translates to

constraints on the components of A, namely
o AwA B =0, 1B = B',(0 Aw), (H.8)
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which impose p = 0 and © = #!. Thus the A, deformation that leaves K invariant is
Ap = -5 [fQ+ 2@+ 0 AD)] — L@ [fOF +2(0 + £ AD)], (H.9)

where we have omitted the vector symbols f and it is understood that all terms in the
bi-vector part are obtained by raising the GL(5) indices of the corresponding forms with

the metric ¢"". Note that the two-form and bi-vector components are related by
B' = —¢';(989), (H.10)

where we lower the indices of the bi-vector with the undeformed metric g. The A_ mode

in the same multiplet as A, is given by A_ = x~![.J;, A,] and has the following form

A= (21f’]14 (G + o AT+ @+ EN a’)JjQ))

i ) (H.11)
+ (G ANQE QAT AT ) + (G VB ANF + B NEAT) +if,

where we should regard f’ as distinct from f.
Similarly, we can construct the .,Zl+ deformation that leaves K invariant. It has only
i

a’ .

; components, given by

A_A,_ = —%fﬁiﬁj. (H.12)

The A_ mode in the same multiplet as /Lr is given by A_ = n_l[J+,A+] and has the
following form

Ao = (—5ia' ') + (— 5@ 'OF), (H.13)

where again we should regard f’ as distinct from f . We see this is of the form B? + 3 as
expected from (H.6).

H.2 Supersymmetry conditions

We are interested in deformations of the Sasaki—Einstein background that preserve super-
symmetry. This is equivalent to requiring that the deformed structures are integrable, that
is the new J, and K must satisfy (5.20) and (5.21). At linear order in the deformation

these conditions reduce to

pa (V) = /Fctr(Ja,LvA) =0 VVe2r, (H.14)

[LrxA,Jy] =0. (H.15)
As we want the deformed structures to be real, we take the deformation to be A = Re A4,
where Re Ay = (A4 + A%). In this section we give the derivation of the constraints that

these equations impose on the deformations A, . For the other deformations we give only

the final results for the constraints, which can be derived in a similar fashion.
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Moment map conditions

Let us first consider the deformation A, and the conditions from duz = 0. Given the
form of J3 (5.49), only the aij, ™., Cnpg and 7"""P4 components of the generalised Lie

derivative contribute. The relevant terms are

Ly Ay = (eijjB0jdN — F1eBFodN)
+ (ejuB N — 167 e1 85 dN) + (€5dN A BY) (H.16)
= _[d)‘l7 A+]a

where B’ and /3 are the two-form and bi-vector components of A,. We use this and

rearrange the trace to give
/litr(Jg,LV/L_) x /K;tr(Jg, [dX', A4]) o /ntr(d)\i, [J3, AL]), (H.17)

with a similar expression for .,le Using that A, is an eigenstate of J3 with eigenvalue
+ik and the form of the trace (B.60), this simplifies to

/ rtr(dN, [J3, AL]) o / K€ Bl odN
(H.18)
OC/ﬁijd(,BiJVOl5)/\)\j,

where we have used vols(3'.dM) o« (82 vols) AdM. When combined with the contribution

from Lv/ii, this should hold for arbitrary A/ and so we require
d[(ﬁ" - (ﬁi)*)wols} =0. (H.19)

Using the explicit form of A, (H.9), this condition gives

3(9_:(2)
ow
Of AQ+ 3O A (7Q)

0,
0, (H.20)
200 + QA Le(7292).

The analysis of duy follows from similar manipulations. For du there are terms that

must vanish for arbitrary v and p. The terms in p give

20f = Le(70),

of =0,
(H.21)
d(r.Q) =0,
5(5_:@) = —4fw.
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The terms in v give

ov = —2ifQ,
of =0, (H.22)
dw AT+ 400 + LQ A Le(72) = 20Q A (72Q) + QA OF.

Taken together, the moment map conditions on the deformation A, are

A7) =0, (H.23)
oo =0, (H.24)
20f = Le(78), (H.25)
of =0, (H.26)
A(0) = —4fw, (H.27)
ov = —2ifQ, (H.28)
(H.29)

Note that we have simplified some expressions using
dw A0 = —iQ A (029), wA (0.Q) = —iQ A D, (H.30)

where v is an arbitrary (0,1)-form with respect to I.

We want to solve the system (H.23)-(H.29) of differential equations to derive the form
of the deformation. From (H.23) we know 7. is closed under 9, and so it may be written
as the sum of a J-closed term and a 0-exact term. However, we also have Hé’O(M ) =0 for
a five-dimensional Sasaki—Einstein space M, and so only a d-exact term is needed. We
make an ansatz )

P = —2;3 f. (L.31)

where f has a well-defined scaling under &, L¢f = igf, and ¢ is non-zero.! Next (H.27)

gives
o(r.Q) = —?aaf =2i00f — 4fw = —4fw. (H.32)

We can solve this by taking f to be holomorphic, which also solves (H.26). The ansatz
for v.€), together with the scaling under ¢ and holomorphicity of f are enough to satisfy
(H.25).

iIf g =0 and f is holomorphic, f is necessarily constant. But from (H.28), a constant f requires 2 to
be 0-exact, which is not true. The only solution to the differential conditions for constantf is f = 0, and
so we do not need to consider the case of ¢ =0
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We can invert (H.31) and write v as
b= 9f 0 (H.33)
Then (H.28) is automatically satisfied

59 = - B(01.8) = 2-(dgfl) = —21f
ov = 2q8(8f49) 2q( 4qfQ) = —2ifQ, (H.34)
where we have used 9(0f.Q) = —4qfQ for a holomorphic function f.2

If we take @ = A(Of ) + 8, (H.29) becomes

1
4q(q—1)

W = 0(157,=0(0f Q) +0)
m (~00(0f 1) — 2w A Le(0f ) + 0

A0 AQ =i 25w A (DF Q) + 96 (11.35)
= —%W A (Of 1) + 95

= —-3wAD,

Qi
Il

implying 7 = 241118 29, in agreement with above, and 6 = 0. Finally, (H.24) implies
26 = 0.
Taken together, these determine the A, solutions of the moment map equations. For

example, the two-form component of /l+ is
B' = —Lia' | O+ 5 50(0f Q) + to A (0 fJQ)] s, (H.36)

where f is holomorphic with respect to 0 (and hence has charge ¢ > 0 under the Reeb
vector) and § is O- and O-closed (and hence has charge zero). The bi-vector component is
determined from this using (H.10). Notice that f-dependent terms and § are independent
of each other, so we really have two eigenmodes within this expression. In fact, this solution
to the moment map equations corresponds to the .A "2 modes with r > 0 labelled by f

and § in (5.64).

Consider now the deformations A, in (H.12). A similar analysis of the moment maps
gives
af =0, (H.37)

SO f is holomorphic (and hence has charge ¢ > 0 under the Reeb vector). This solution

corresponds to the .A(T_Q) modes with 7 > 2 labelled by f in (5.64).

(r—2)

So far we have examined A, and A, which correspond to the Ay modes in (5.64)

and are parametrised by the holomorphic functions f and f , and a 0- and O-closed (1,1)-

?In general one has 9(9f.Q) = (¢° + 4g — No) fQ and I(Of Q) = 5(¢° — 49 — Ao) f for a function
satisfying Af = Aof and L¢f =iqf [273].
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form 8. Now we comment on the A" modes, defined by AT = kT4, A$_2)]. Naively,

one might think we should solve the moment maps from scratch for an A(_T) deformation.
For example, the deformation would be calculated using the generic form of A_, given by
(H.11), and would then lead to differential conditions on the components of A, from which
A_ is generated. Fortunately, given a solution A, to the deformed moment maps (H.14),
one can show that A_ = k~![J,, A,] is automatically a solution too. The components
of A_ are determined by A, and the differential conditions on the components of A_
reduce to the differential conditions on 4, that we have already given. For example,
we have seen that A, is completely determined by a holomorphic function f and a -
and O-closed (1,1)-form 6. As A_ = x~'[J;, A,] is automatically a solution, it too is
determined by a holomorphic function f’ and a - and 0-closed (1,1)-form §’. Similarly ./ZlJr
will be determined by holomorphic function f’ . Here, we should note, however, because of
our slight over-counting, the r = 2 case with constant f’ is actually the complex conjugate
of the 7 = 0 case of A, .

Lie derivative along K

At first order in a generic deformation A € 78 of Eg), the generalised Lie derivative
condition is given by (5.69). It is straightforward to check that the commutators are
non-zero for both J4 and Js, and so the condition reduces to Lx. A = 0. From (5.51), we
know that the generalised Lie derivative along K reduces to the conventional Lie derivative

along &, and so the deformation condition is simply
ﬁg.A =0. (H.38)

We see that the deformation must have scaling dimension zero under the Reeb vector
field. Using the explicit form of A, and /l+, we find f is charge +3 and f is charge zero
(which together with 0 f =0 implies f is constant). We also have ¢ is charge zero, which
is consistent with it being - and O-closed. This agrees with (5.71). These are precisely

the conditions for the deformations to be marginal.

H.2.1 Generalised metric

We have deformed the geometry by two-forms and bi-vectors, but the bosonic fields of type
IT supergravity do not include bi-vectors. As is typical in generalised complex geometry,
acting on the bosonic fields, the bi-vector deformation can be traded for deformations by
a gauge potential. We first construct the generalised metric and then give the dictionary
for translating a bi-vector deformation into a two-form deformation.
A generalised metric defines a USp(8) structure. K and .J, together define a USp(6)
structure and so also define a generalised metric, though reconstructing the metric from

them may be complicated.®> For this reason it proves simpler to construct the generalised

3For example, the conventional metric can be recovered from the three- and four-forms defining a G 2
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metric from scratch. For a generalised vector V the generalised metric, in the untwisted
basis, is

G(V, V) = 0" + hij)\im/\jm + %pm1m2m3pm1m2m3 + %hijai

mi...ms

g™ - (H.39)

where h;; is the standard metric on SL(2)/SO(2) and we have raised/lowered indices using
the metric gmn.*

The generalised metric defines a USp(8) structure and so should be left invariant by a
USp(8) subgroup of Eg(g) x RT. Using the adjoint action on V' € 27/, one can show that
USp(8) is generated by elements of the Egg) x R* adjoint satisfying

I =0, aij = —aji,
Tmn = —Tnm, Cmnpq = —Tmnpq; (H'4O>
1 2 2 1
anzﬁrrww an:_ﬁmn

One can read off the new bosonic background by constructing the deformed generalised
metric. The metric, axion-dilaton and four-form R-R potential receive corrections starting
at second order. At first order, only the two-form potentials, Bs and Cs, are corrected. If
we consider a deformation by a two-form B? and a bi-vector /3%, at first order the resulting

two-form deformation is
By = B! — g8, Co = B>+ gp'y. (H.41)

We see that the bi-vector can be traded for a two-form contribution. This will become
more complicated at higher orders in the deformation due to terms from contractions of
the bi-vector with the two-form.

As previously mentioned, this procedure is analogous to what is done when trading
p-deformations in generalised complex geometry for metric and B-field deformations (see
for example equations (3.3) and (3.4) in [314]).

Flux induced by deformation

Using (H.41) we have that our two-form deformation Re A, = B' + ¢ will induce NS-NS
and R-R two-form potentials given by

Cy = 2B, By = 2B (H.42)
The complexified potential is

Cy —iBy = —2i(B' +1iB?). (H.43)

structure, but the relation between the two is not trivial.
*We have chosen Cy = ¢ = 0 for the backgrounds we consider, so h;; is simply ;.
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Using the explicit form of A, that solves the deformed moment maps (H.36), this is

Cy—iBy = —i | fQ + 525000 2Q) + Lo A (9f20) + 25} , (H.44)

where L¢ f = igf. From (H.38), this deformation will correspond to a marginal deformation

if ¢ = 3 and ¢ is d-closed. The complexified potential then simplifies to
Co —iBy = —1[fQ+ 50(0f Q) + Lo A (9f2Q) +25] . (H.45)
Taking an exterior derivative, the resulting complexified flux Gs = d(Cy — iB») is

Gz = —i(0f ANQ+ £00(0f Q) +i2w A (Of Q) —io A (04 0)(9fQ))

S - i (H.46)

where we have used dé = 0, w A (0f2Q) = i0f AQ and 9(0f Q) = —12f£. We stress once
more that this flux is valid for marginal deformations of any Sasaki—Einstein structure

and reproduces the first-order fluxes of the S-deformation of Lunin and Maldacena [93].

H.2.2 Marginal deformations and the axion-dilaton

Let us now consider the effect of an /Lr deformation. Such a deformation is marginal if f
is charge zero under &, which, when combined with 0 f = 0, implies f is simply a constant
complex number. The physical effect of such a marginal deformation can be found from
its action on the SL(2;R) doublets that appear in the generalised metric. For example,

the undeformed generalised metric contains terms of the form
G N) = 6 AN 4. (H.47)
To first order, the deformed generalised metric will then be

GA+ XA+ 0X) = 05( X + 0NN +0X) + ...
= (83 + 2mij) NN + ..,

1 Imf —Ref
mij = 5 (—Ref —Imf)’ (H.49)

which is simply the real part of (H.12). We now want to compare this to the form of the

(H.48)

where

generalised metric when the axion-dilaton is included. From [139], we see this is
G N) = hig AN 4. (H.50)
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where

C2+e20 —C
hij = e¢ 0 te 0 . (H.51)
—Co 1
Expanding the fields to linear order, we find
— —C
—Co ¢

By comparing this expression with the deformed metric m;;, we see we can encode a

first-order change in the axion-dilaton by taking f = Cy —ig.
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Appendix I

~v-deformed solutions

Here we summarise the results of the solution-generating technique of Lunin and Maldacena
applied to AdSy solutions in M-theory [93]. We follow the general prescription laid out

in [285]. The undeformed metric and four-form flux are assumed to have the form

ds?; = 1ds?(AdSy) + ds*(M), F = §volaas - (L.1)

This is of the same form as the Sasaki-Einstein backgrounds we consider. Note that we

have normalised the metric on the internal space M to give R, (M) = 6g,,(M).

First, we split the metric on M into a three-torus and a four-dimensional space My
ds?(My) = ds?(T3) + ds?(My). (1.2)
The metric on the torus is then expressed as
ds*(T%) = AY3 M, Do, Dy, (L3)

where Dy, = dp, + A, and det My, = 1. The particular form of the one-forms A,
depends on the undeformed metric. The eleven-dimensional solution obtained from the

solution-generating technique is

ds?; = G713(1ds?(AdSy) + ds®(My) + Gds*(T?)),

(1.4)
F= %VO]AdS —6vAY2 voly —vd(GA Dp1 A Dy A Dps),

where G = (1 +~+2A)~! and voly is the volume form of ds?(My). From this, we see the
first-order contribution to the flux is

F = —67AY2voly —vd(ADy¢1 A Dpa A Deps). (L.5)

This is the flux we will match our results to. To find the explicit form of this for a

background, we need to specify ¢,, A, voly and A,. We now give these in our conventions.
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| I
The solution for S7 is given in [93]. The angles parametrising the three-torus are

01 =3V — 1 — P2 — @3, Y2 =29 — 1 — P2, Y3 =01 —. (L.6)

A, voly and the A, are!

A = spst (cgel + stshep(ch + spel))
voly = —A_l/ngcgsmsismdQ ANda AdB Ady,
—4(1 + 2c95)c3c2 + 82 335(63 + s2c2)

Ay = deb,
! dcge? + s2555(ch + s5¢2) ¥

o 2—4cgci + 53525(09 + seca)d
27T 422+ 5282 (c2 + s2c2) ¥
0~ a”2B8\~0 0

45252 8262

350

As=1[1-— dv.
3 ( dcge? + s2555(ch + spc2) v

1.2 Ql,l,l
The solution for Q511 is given in [284,285]. The angles parametrising the three-torus are
Y1 =01, Y2=02, 3= ¢s. (1.8)
A, voly and the A, are
B 2033831352 + (2 — cop, — 0292)333

2048 ’
voly = 8 3/2H 125 s9,59,d01 A dfa A dB3 A dip

8cg, 55 55
A — _ Lt u2 U3 3
1=y W (L9)
2—c99, — C 82 c2 -
Ay = 221 20> + 02 gs de’
2s 9, Cos €, Sp,
8¢y, 55 55
Az = L 72 dap.
3 7 (0
The function H is
H=5- 30293 + €20, (—3 + C20, + 0293) + 6292(—3 + 26310293). (110)

'Note that this corrects a typographical error in [93], where the term in the four-form flux coming from
Al/? voly was written with sga instead of szasi.
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.3 mMbbl

The solution for M>!! is given in [284,285]. The angles parametrising the three-torus are

pr=0, p2=¢ @3=1. (L11)

A, voly and the A, are?

A= ﬁh sin?
voly = —%h_lﬂ cos pusin @ sin @ sin? pdp A df A dO A dr,
Ay = —64h~ ! cos 0 cos? pusin® 0 dr, (1.12)
Ay = 24h™ ! cos O sin? 0 sin® 2u dr,
Az = 8h ™t sin? 0(3 + 5 cos 24 + 2 cos 20 sin? p1)dr.

The function h is

h = 8sin® 6 cos 2pu(cos 20 +7) — 6(cos 20+ 3) sin? 0 cos 4p1+cos 20(cos 20 —33) — 13 cos 20445

ZNote that this is not the same deformation as [284].
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