
Imperial College London

Department of Physics

Generalised geometry for

supersymmetric flux backgrounds

Anthony Ashmore

29th August 2016

Supervised by Professor Daniel Waldram

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Physics of Imperial College London

and the Diploma of Imperial College London





Copyright

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the licence terms

of this work

1



2



Declaration

I hereby certify that, to the best of my knowledge, all of the material in this dissertation

which is not my own work has been properly acknowledged. This research described has

been done in collaboration with Daniel Waldram, Michela Petrini, Mariana Graña and

Maxime Gabella. The presentation closely follows our papers [1–3].

3



4



Abstract

We present a geometric description of flux backgrounds in supergravity that preserve eight

supercharges using the language of (exceptional) generalised geometry. These “exceptional

Calabi–Yau” geometries generalise complex, symplectic and hyper-Kähler geometries,

where integrability is equivalent to supersymmetry for the background. The integrability

conditions take the form of vanishing moment maps for the “generalised diffeomorphism

group”, and the moduli spaces of structures appear as hyper-Kähler and symplectic

quotients. Our formalism applies to generic D = 4, 5, 6 backgrounds preserving eight

supercharges in both type II and eleven-dimensional supergravity. We include a number

of examples of flux backgrounds that can be reformulated as exceptional Calabi–Yau

geometries.

We extend this analysis and show that generic AdS flux backgrounds in D = 4, 5 are

also described by exceptional generalised geometry, giving what one might call “exceptional

Sasaki–Einstein” geometry. These backgrounds always admit a “generalised Reeb vector”

that generates a Killing symmetry of the background, corresponding to the R-symmetry

of the dual field theory. We also discuss the relation between generalised structures and

quantities in the dual field theory.

We then consider deformations of these generalised structures. For AdS5 backgrounds

in type IIB, a first-order deformation amounts to turning on three-form fluxes that preserve

supersymmetry. We find the general form of these fluxes for any Sasaki–Einstein space and

show that higher-order deformations are obstructed by the moment map for the symmetry

group of the undeformed background. In the dual field theory, this corresponds to finding

those marginal deformations that are exactly marginal. We give a number of examples

and match to known expressions in the literature. We also apply our formalism to AdS 4

backgrounds in M-theory, where the first-order deformation amounts to turning on a

four-form flux that preserves supersymmetry.
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Chapter 1

Introduction

In this introductory chapter, we begin with an overview of string theory and the problems

it may solve. We then discuss supergravity backgrounds with an emphasis on those that

preserve supersymmetry and comment on the use ofG-structures. Finally, we review the

use of generalised geometry for backgrounds with flux.

1.1 Physics in the twenty-first century

Modern theoretical physics is built upon two great pillars: general relativity and quantum

mechanics. General relativity describes classical gravity and its interaction with matter.

The essential idea of this theory is that geometry controls the physics. Matter can warp

and bend spacetime, while gravity itself is a manifestation of spacetime curvature. This

geometric description of a physical phenomenon is appealing as it allows us to use a range

of mathematical tools to understand physics.

Unfortunately there is a problem with this point of view. We believe the universe and

the laws of physics that describe it are fundamentally quantum mechanical. Instead of the

geometric picture suggested by relativity, we should think of physics in terms of quantum

fields and interactions. There is no good reason to think that gravity is special in this

respect, so we must treat it quantum mechanically too. We can do this by considering

small fluctuations of the metric tensor g around a fixed background geometry η

gµν = ηµν + κhµν , (1.1)

where the coupling κ2 is proportional to Newton’s constant G and hµν is the graviton field

which parametrises the fluctuations away from ηµν . As gµν describes a physical system

up to diffeomorphisms, the fluctuation hµν must be a spin-two gauge field that couples

to a rank-two symmetric tensor, Tµν , known as the stress-energy tensor. We can try to

quantise the dynamics of hµν by taking a path integral over all possible field configurations.

Unfortunately there is a problem with quantising gravity in this naive way as the coupling

constant κ has negative mass dimension and so will grow at higher energies, rendering the
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theory non-renormalisable. Put another way, the gravitational coupling G has units of

length squared, so the dimensionless coupling that controls the strength of interactions is

G/`2, where ` is the characteristic length scale probed by a given physical process. As we

probe smaller length scales the coupling grows without bound. Fatally, these problems are

not restricted to high-energy scattering processes, but also appear in loop diagrams where

the momenta of virtual particles are integrated over all possible values. Due to this, pure

gravity diverges at two-loop order [4], and the problem is worse when matter or gauge

fields are included, where the divergence appears at one loop [5–8]. Initially there was

some hope that combining gravity and supersymmetry to give supergravity might help

with renormalisation, but even this only delays the appearance of divergences to higher

loop orders.1

Despite these problems, we still have an effective field theory description of quantum

gravity that is perfectly good up to some energy scale E far below the Planck scale

MP =
√
~c/G. The effective theory is governed by an action that is an expansion in

powers of curvatures

S =

ˆ
d4x
√
−g
(
M2

PR+ a1R
2 + a2RµνR

µν + a3M
−2
P R3 + . . .+ Lmatter

)
, (1.2)

where the ai are an infinite set of couplings and Lmatter contains particle physics and

matter couplings up to the Planck scale. At low energies, there is an expansion in powers

of E/MP. At each order in the expansion, only a finite number of couplings are needed to

calculate the amplitude for a given physical process, and we can perform a finite number

of experiments to measure these couplings, after which our theory is predictive for that

energy scale. This is just as good as any other effective field theory, such as the pion

description of the strong force or the Fermi theory of weak interactions. The trouble

appears for E ≈ MP: there is no controlled expansion in powers of E/MP and all the

couplings are equally important. We can no longer carry out a finite number of experiments

to measure the couplings and so the theory is no longer predictive. The effective field

theory description breaks down at energies near the Planck scale, exactly the regime we

need to probe to see quantum gravity effects.

There are a number of proposals that hope to fix these problems. As with the Fermi

theory at the electroweak scale, it might be that new degrees of freedom appear at the

Planck scale that smear out and soften graviton scattering. An immediate objection to

this is that we do not know the degrees of freedom in Lmatter even below the Planck scale,

so our chances of stumbling across the correct ultraviolet (UV) degrees of freedom without

a guiding principle are vanishingly small. One way around this is to hope that at high

energies, gravity is described by an interacting UV fixed point [10]. At the fixed point, the

infinite number of couplings are actually determined by a finite number of parameters, so

1The perturbative renormalisability of N = 8 supergravity is an open question. Regardless, there are
non-perturbative arguments that show the theory is inconsistent and requires a UV completion by M-theory
on a seven-torus [9].
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that the theory is again predictive. However, the dynamics at the fixed point will almost

certainly be strongly coupled and so fall outside of the perturbative regime. There are

technical problems with studying such fixed points non-perturbatively, such as the Gribov

ambiguity [11] or the use of the exact renormalisation group equation, but more worryingly

there is a fundamental issue with trying to understand quantum gravity in this way. It is

common lore that there is no regime in which pure quantum gravity effects are important

while matter interactions can be neglected – quantum gravity does not have a “decoupling

regime”. Thanks to this, even if we manage to find a UV fixed point in pure gravity,

when we add matter to the theory the nature and even the existence of the fixed point

can change. Again, we need to know the matter content of our theory right up to the

energy scale associated with the fixed point and we are back to where we started, hoping

to stumble on the correct theory. There seems to be no consistent way to view gravity as

coming from a field theory of particles.

The apparent miracle of string theory is that it provides a seemingly UV-finite theory

that includes gravity and specifies its matter content. The spectrum of a quantised string

contains an infinite tower of massive higher-spin excitations that provide a UV completion

of the effective field theory for quantum gravity and completely constrain the curvature and

matter couplings. The massive higher-spin fields can be thought of as the gauge fields for

a tower of spontaneously broken higher-spin gauge symmetries. On general grounds such

a theory should be UV finite. At high energies, the string excitations are approximately

massless and the higher-spin gauge symmetry is restored. The Coleman–Mandula theorem

then forces the S-matrix to be trivial, so that scattering in the UV is soft and free of

divergences. This is one of many reasons to be hopeful that string theory can provide a

“theory of everything” or at least point us in the right direction.

Of course, until string theory is tested in experiments we must remember that math-

ematical beauty is not sufficient for its validity. Nature may really be described by some

effective field theory up to the Planck scale, with a UV theory controlled by an infinite

number of parameters that take some seemingly arbitrary values in our universe. The

universe is not guaranteed be understandable by humans. But with the promise of string

theory and much left to study, it seems somewhat premature to give up quite yet.

1.2 String theory

String theory is a quantum theory of gravity and matter, where the fundamental constitu-

ents of the universe are no longer particles, but extended objects known as strings. Strings

can be open or closed, with their length scale is given by the string length `s. The dynamics

of the theory is essentially fixed by minimising the area of the string as it propagates in

spacetime. With an eye towards geometry, string theory is especially interesting as the

spaces or “backgrounds” on which strings can propagate are highly restricted.

The first hints of string theory were seen while searching for an S-matrix description of
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the strong interaction. At the time, particle accelerators were producing an abundance

of hadronic resonances that exhibited a nearly linear relationship between their spin and

mass squared, J 'M2α′, with the constant of proportionality α′ dubbed the Regge slope.

Veneziano [12] proposed an expression for the scattering amplitude for the resonances that

reproduced the Regge slope and obeyed the crossing relation between the s- and t-channels

seen in experiments. This and later work came to be known as the dual resonance model.

Interestingly, the amplitude was well behaved in the UV due to its pole structure, which

could be viewed as coming from an infinite tower of massive higher-spin states. Soon after,

it was shown that a generalisation of the Veneziano amplitude could be understood as

coming from single-particle states of infinitely many harmonic oscillators [13–16], and so

the amplitude might be interpreted as the tree-level contribution from a full quantum

theory. It was soon pointed out that such an amplitude was consistent with that of a

quantised relativistic string [17–19]. Unfortunately, unitarity of the theory required that it

exist in a 26-dimensional spacetime, which posed problems for constructing realistic hadron

models. This, together with QCD’s newfound success, reduced the appeal of the dual

resonance model as a theory of the strong interaction. Fortunately this model was destined

for greater things. One of the original criticisms of the theory was the appearance of a

massless spin-two particle in the spectrum that could not be removed. Upon identifying

this excitation with the graviton, this apparent drawback became a reason to study the

theory further.

String theory is usually formulated in terms of a conformal field theory (CFT) on

the string’s two-dimensional worldsheet [20]. The dynamics of the classical theory are

governed by the Nambu–Goto action, which is simply the integrated worldsheet area.

The Nambu–Goto action is not easily quantised as it contains a square root of the

worldsheet fields. Instead, we use the Polyakov action which is classically equivalent to

the Nambu–Goto action but is more easily quantised [21]. The Polyakov action is a Weyl

invariant non-linear sigma model with a d-dimensional target space. Using the Weyl and

diffeomorphism symmetries, one can gauge fix the action to obtain a flat worldsheet metric

and d worldsheet scalar fields that can be thought of as maps from the worldsheet to the

target space. The massless excitations of the string viewed from the target space are a

scalar, a symmetric rank-2 tensor and an antisymmetric rank-2 tensor, which we identify

as the dilaton, the metric and the Kalb–Ramond B field. From the worldsheet perspective,

vacuum expectation values (VEVs) of these fields appear as couplings in the worldsheet

action.

String theory has one free parameter `s =
√
α′, the characteristic length scale of the

string. Naively, the string coupling gs is also a free parameter but its value is actually

fixed by the dilaton. We understand string theory best as a perturbative double expansion

in both gs and 1/α′. The string coupling measures the strength of string interactions. In

particular, it tells us how to weight different worldsheet topologies in the genus expansion

for the string S-matrix. This is a perturbative expansion that makes sense only for small
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string coupling,2 which is equivalent to requiring the string length to be much smaller

than the Planck length. The expansion in 1/α′ is somewhat different. For a string in flat

space, the worldsheet CFT is free and is easily solved. If instead the string is on a curved

background, the CFT is an interacting theory where the target space metric appears in

the action as an infinite set of couplings. The CFT is weakly coupled when these couplings

are small, which is true when the target space is curved on a length scale much larger than

the string length. If the target space is highly curved compared to the string length, the

worldsheet theory is strongly coupled, but it is still well defined as a path integral and can

be tackled using non-perturbative methods.

As with any quantum field theory, a symmetry of the classical action may fail to

be a symmetry of the full quantum theory. Such a symmetry is called anomalous. An

anomaly in a local symmetry indicates the quantum theory is inconsistent. Since the

Weyl invariance of the Polyakov action is a local symmetry, the corresponding anomaly

must vanish for the theory to be consistent. The Weyl anomaly appears in the trace of

the worldsheet stress tensor, which is equivalent to the beta functions for the worldsheet

couplings. The vanishing of the Weyl anomaly defines what we mean by a consistent

string theory background: it is a target space for which the beta functions all vanish.3 At

one-loop, the beta functions fix d = 26 and reduce to the Einstein equations for the target

space coupled to the dilaton and the B field [22].

Though an encouraging first step towards a theory of quantum gravity, the bosonic

string cannot be the full story as it does not admit spacetime fermions and the ground

state of the theory is tachyonic. We can solve both of these problems by introducing

worldsheet fermions to obtain supersymmetry on the worldsheet. The resulting superstring

theory still has a tachyon but it can be consistently removed using the so-called GSO

projection, leaving a theory with spacetime supersymmetry (and fermions) which is free of

anomalies in ten spacetime dimensions [23,24].

There are in fact five consistent superstring theories, all with ten-dimensional target

spaces: type I, type IIA, type IIB and heterotic with SO(32) or E8×E8 gauge group [23,25].

It was realised in the early 90s that all five theories are linked by a web of dualities [26]

and further conjectured that they were actually different limits of a fundamental non-

perturbative theory which has come to be known as M-theory [27].

There are two type II theories, so-called as they have N = 2 supersymmetry in ten

dimensions, obtained by different choices of GSO projection on the string worldsheet.

The difference between them amounts to a choice of chirality for the spacetime fermions,

particularly the two gravitini: in type IIA they have opposite chirality, giving N = (1, 1)

supersymmetry; in type IIB they have the same chirality, giving N = (2, 0) supersymmetry.

2If the string coupling is large, the perturbative expansion we use to define the S-matrix is not well
defined and we have to rely on path integral formulation of the string. String field theory provides such a
formulation.

3The β-functions can also vanish in d 6= 26 if one has a dilaton with a large gradient. This solution
does not describe our spacetime, which is approximately static and homogeneous, so we will only consider
string theory in the critical dimension.
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The two theories share their NS-NS sector, which contains a rank-two symmetric tensor, a

rank-two antisymmetric tensor and a scalar field; these are more commonly known as the

spacetime metric g, the B field and the dilaton φ. The R-R sector of each theory is filled

out by (p+ 1)-form potentials Cp+1 which give rise to (p+ 2)-form field strengths Fp+2,

where p is even for type IIA and odd for type IIB.

One can integrate a field strength over a non-trivial cycle to find the corresponding

conserved charge. A natural question to ask is what are the objects that carry these

charges? In analogy with standard electromagnetism, a (p+ 1)-form potential will couple

electrically to a (p+ 1)-dimensional hypersurface or magnetically to a (6− p)-dimensional

hypersurface [28,29]. The hypersurfaces that source R-R charge are known as Dp-branes [30].

D-branes correspond to endpoints of open strings: an open string with (9− p) Dirichlet

boundary conditions has ends that live on Dp-branes. Furthermore, the massless modes of

the open strings that end on the brane give rise to a gauge theory on the worldvolume of

the brane [31]. Strings themselves are (1 + 1)-dimensional hypersurfaces and so source a

two-form potential common to both type IIA and IIB, namely the B field. The B field

also couples magnetically to a (5 + 1)-dimensional hypersurface known as the NS5-brane.

Type I string theory can be obtained as an orientifold of type IIB string theory in the

presence of 32 half D9-branes to cancel anomalies [32,33]. The resulting theory contains

unoriented open and closed strings, and the bosonic spacetime degrees of freedom are the

metric, dilaton and the R-R two-form potential. From this, we see the theory has D1-,

D5- and D9-branes. The theory admits N = 1 supersymmetry in ten dimensions and

anomaly cancellation implies the presence of an SO(32) gauge group, coming from the 32

half D9-branes.

Heterotic string theory arises by taking the left-moving modes to be those of bosonic

string theory and the right-movers to be those of superstring theory. The extra modes of

the left-movers give one-form gauge potentials, where anomaly cancellation implies the

gauge group must be SO(32) or E8 × E8 [25, 34]. There are no open strings and so no

D-branes in this theory.

As we have mentioned, the five distinct string theories are thought to be connected by

a web of duality transformations, known as S- and T-dualities. These dualities connect

apparently distinct descriptions of the same physical system.

S-duality is a strong-weak duality that connects a strongly coupled description to a

weakly coupled description, so is non-perturbative in gs. For example, type IIB string theory

is self-dual under S-duality, so it’s weak and strong coupling limits are the same [35,36].

Type I string theory with string coupling gs is S-dual to the SO(32) heterotic string with

coupling 1/gs . [37]. M-theory is S-dual to both the type IIA and the E8 × E8 heterotic

strings [26,38–40].

T-duality exchanges small and large radii in the target space, so is non-perturbative

in α′. For example, the SO(32) and E8 × E8 heterotic strings are connected via T-

duality [41], as are type IIA and IIB when compactified on a circle [28,42]. One can also
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combine T-duality and S-duality to give a so-called U-duality transformation [26], which

is non-perturbative in both gs and α′.

As with the bosonic string, the superstrings’s target space must satisfy certain conditions

to maintain worldsheet Weyl invariance, namely that the β-functions for the worldsheet

couplings all vanish. To one-loop, the β-functions are simply the equations of motion for

the massless excitations of the string in the target space. The remarkable fact is that

the equations of motion are actually those of the known ten-dimensional supergravity

theories [43]. This is not a surprise. As the string length is taken to zero, we expect

to recover a point-particle limit, and indeed as α′ → 0 all superstring theories admit a

supergravity limit. Furthermore, despite us not having a definition of M-theory its low-

energy limit is thought to be the unique eleven-dimensional N = 1 supergravity [38,39,44].

In summary, we can study supergravity to better understand the low-energy behaviour of

string theory and M-theory.

The supergravity limit gives us access to the massless, perturbative degrees of freedom

of the corresponding string theory. Branes do not fall into this subsector. Taking type II

string theory for example, D-brane masses scale as 1/gs, so they are “heavy” in the weakly

coupled supergravity limit gs → 0 and no longer seen as perturbative degrees of freedom.

Despite this, we cannot ignore their effects as the massless degrees of freedom we are

interested in can interact with D-branes, which source R-R charge and are the endpoints of

open strings. Instead of fields, D-branes appear in supergravity as non-perturbative solitons

or solutions to the equations of motion [30,45]. M-theory also admits branes, the M2- and

M5-branes, which appear in eleven-dimensional supergravity as solutions to the equations

of motion. These brane solutions correspond to Bogomol’nyi–Prasad–Sommerfield (BPS)

states [27, 46]. In fact, they are half-BPS states and so are annihilated by half of the

supersymmetry generators.

If string theory is to provide a description of our universe, an obvious impediment

is the requirement that the theory lives in ten dimensions. At the energy scales we can

probe, the universe looks very much four-dimensional. The standard way to recover four

dimensions at low energies is to assume the ten-dimensional spacetime is a (possibly

warped) product R3,1 ×M , where R3,1 is four-dimensional Minkowski space and M is a

six-dimensional compact space. If the volume of M is small compared with the energy

scale of measurements, the resulting theory is effectively four-dimensional. This procedure

is known as compactification and is the string theory realisation of the Kaluza–Klein

mechanism. Importantly for us, the details of the four-dimensional effective theory depend

on the choice of internal space M . In particular, the presence of supersymmetry at the

compactification scale is fixed by the topological and differential structure of M . As we now

discuss, there are a number of reasons why we might want to focus on compactifications

that allow for supersymmetry.

Supersymmetry has been an important ingredient in particle phenomenology for some

time, with a preference for N = 1 supersymmetry that is spontaneously broken at low
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energies. Despite the lack of experimental evidence for its presence, we continue to

use supersymmetry in our models as it solves a number of problems with the standard

model. In the majority of grand unified theories (GUTs), the three gauge couplings of the

standard model should unify once above the GUT scale. Unfortunately, if we follow the

running of the gauge couplings within the standard model we find the couplings do not

meet. Supersymmetry alters the running of the couplings so that they meet, giving gauge

coupling unification and the possibility of deriving the standard model from a grand unified

theory. In addition, the modified running of the couplings may provide a mechanism

for electroweak symmetry breaking. Another problem is that, generically, we expect the

Higgs mass to receive loop corrections that push it up to the Planck scale [47 –49]. If we

want a 125 GeV Higgs, we are forced to tune the parameters of the standard model to

an unnatural level. Supersymmetry solves this hierarchy problem as the loop corrections

from bosonic and fermionic fields cancel each other [50, 51]. Supersymmetry also provides

natural dark matter candidates if the lightest supersymmetric particle is stable [52, 53].

These are some of the reasons to focus on understanding those compactifications that lead

to supersymmetric theories in four dimensions. More generally, as theorists we are also

interested in supersymmetric compactifications to any number of dimensions.

As we have mentioned, string theory admits a number of surprising dualities, but

testing such dualities is difficult. In most cases, we have only a perturbative description of

the relevant theories at weak coupling. The dualities however can map between weak and

strong coupling or perturbative and non-perturbative physics. For this reason, performing

calculations to check the general validity of these dualities is difficult, if not impossible

with our current knowledge. One way around this problem is to exploit supersymmetry.

In the presence of sufficient supersymmetry there are quantities that can be calculated

exactly on both sides of the duality and then compared for consistency. These quantities

are normally interpreted as counting BPS states [54–57]. The dualities have survived all

such checks to date and give a compelling reason to study supersymmetric backgrounds.

There has also been great interest in understanding supersymmetric backgrounds thanks

to the AdS/CFT correspondence [58–60]. The AdS/CFT correspondence conjectures that

type IIB string theory on a space that is the product of anti-de Sitter space (AdS) and a

compact manifold is equivalent to a conformal field theory (CFT) living on the boundary

of the AdS space. In a looser form, it relates string theory (or M-theory) on a geometry

which is asymptotically AdS to a field theory living on the boundary, giving an explicit

example of the holographic principle [61,62]. The original setup is a stack of N D3-branes

placed in flat R9,1, where the worldvolume of the D3-branes spans R3,1 and the transverse

directions are R6 = R+ × S5. At small string coupling, the gravitational backreaction is

negligible and the branes are described in terms of a U(N) superconformal field theory on

their worldvolume, coming from open strings stretching between the branes. For D3-branes,

this worldvolume theory is in fact N = 4 super Yang–Mills (SYM) [31]. At large string

coupling, the backreaction of the branes introduces five-form flux and a relative warp
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factor between the worldvolume and transverse directions, giving a black brane solution in

type IIB string theory. Near to the branes, in the near-horizon limit, the ten-dimensional

geometry approaches AdS5 × S5. The point is that these two descriptions of the branes

are actually the same. Super Yang–Mills and string theory are very different theories,

so it is important to understand the range of validity of each description. The ’t Hooft

coupling of the worldvolume theory is λ = g2
YMN , where the Yang–Mills coupling gYM of

the worldvolume theory is related to the string coupling of the bulk theory by g2
YM = 4πgs.

In the near-horizon limit, the radius of both AdS5 and S5 is R4 = 4πgsNα
′2 so that

λ =

(
R

`s

)4

, (1.3)

where `s =
√
α′ is the string length. Furthermore, the Planck length `P and the AdS5

radius are related by (
`P
R

)4

=
π2

√
2N

. (1.4)

In the supergravity approximation where `s � R, stringy corrections are absent leaving us

with type IIB supergravity that is dual to a strongly coupled gauge theory with λ� 1.

Conversely, strongly curved backgrounds for which the supergravity description breaks

down should be described by a weakly coupled gauge theory. The gauge theory simplifies

further in the limit N →∞ for fixed λ. This is known as the ’t Hooft limit and corresponds

to taking only planar diagrams in the gauge theory [63]. On the string side, from (1.4)

we see this corresponds to R� `P so that quantum gravity corrections are small, which

corresponds to taking only genus-zero string diagrams. For λ � 1 and N � 1, we

then have a strongly coupled gauge theory in the planar limit that is dual to classical

supergravity. The point to remember is that the ten-dimensional background is actually a

supersymmetric flux background as the D3-branes source N units of five-form flux that

thread AdS5 and the five-sphere. There are generalisations of this setup to geometries

that come from replacing R+ × S5 with conical Calabi–Yau spaces, where the compact

five-dimensional space is Sasaki–Einstein [64]. A better understanding of the most general

supersymmetric AdS flux backgrounds would give us a plethora of new examples and great

insight into the AdS/CFT correspondence. This alone may be considered reason enough

to study supersymmetric backgrounds.

String theory is a promising approach to understanding quantum gravity and has

many other applications, including quantum field theory, mathematics, condensed matter

physics and black-hole physics. In all of these areas, the presence of supersymmetry and

the existence of supersymmetric string backgrounds are key to understanding the physics

and making calculations tractable. In this thesis, we will focus on trying to understand

these supersymmetric backgrounds in the supergravity limit.
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1.3 Supergravity backgrounds

The first investigations into supergravity backgrounds focussed on those without flux that

preserve supersymmetry. Assuming a four-dimensional Minkowski factor, the required

spaces were found to be special holonomy manifolds [65,66]. The archetypal example is

a six-dimensional Calabi–Yau manifold [65] which admits a single covariantly constant

spinor, a Killing spinor, and so has SU(3) holonomy. In this case, the geometry can be

equivalently described by a holomorphic three-form Ω and a symplectic two-form ω, both

constructed as bilinears of the Killing spinor. The covariant constancy of the spinor then

translates to the integrability conditions dΩ = dω = 0. In particular, integrability of Ω

implies the manifold is complex, and the tools of complex and algebraic geometry can

then be used to construct examples and calculate important physical properties, such as

moduli spaces, particle spectra and couplings [67–69].

A large class of phenomenologically promising models come from combining these

spaces with the E8×E8 heterotic string, as compactifying this theory on a six-dimensional

Calabi–Yau manifold leads to an N = 1 effective theory in four dimensions with the

possibility of chiral fermions [65]. Moreover, the standard model gauge group can be

embedded in E8 × E8, leading to realistic string models [70]. In the standard embedding,

the SU(3) holonomy group of the Calabi–Yau threefold embeds in one of the E8 factors,

and the commutant of SU(3) inside E8 is an E6 gauge group that can accommodate the

required SU(3) × SU(2) × U(1). The particle content, such as the number of standard

model generations, is then fixed by topological data of the Calabi–Yau. One can also carry

out a similar program for M-theory on G2 manifolds with singularities [66,71–73].

Such compactifications generically lead to a number of massless scalar fields, known

as moduli. For the example of Calabi–Yau spaces, the moduli correspond to the possible

ways to deform either the Kähler structure or the complex structure of the threefold [69].

Generically, no potential is generated for such fields and so their VEVs are not fixed by

any dynamical mechanism. This is a problem as the fields can appear as couplings in

the low-energy effective action, leading to a large number of undetermined parameters

in the effective four-dimensional theory. Not only is this undesirable from an aesthetic

viewpoint, it is also at odds with observations: such massless fields can lead to long-range

forces, which we do not observe. Furthermore, such fields would dramatically change early

universe cosmology as the moduli would generically have VEVs of order the weak scale and

would dominate reheating, causing problems for large-scale structure formation [74,75].

To avoid these problems, one must introduce a potential for the moduli so that

they become massive and decouple from the effective low-energy physics. Ideally, this

potential should be dynamically generated so that the VEVs of the moduli are fixed by the

background and not by some arbitrary choice of potential. One way to do this is to include

fluxes on the internal space. These flux compactifications were originally an extension

of Calabi–Yau compactifications for the heterotic string [76–78] and then extended to
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M-theory in [79] (see [80] for a review). The use of fluxes to fix moduli was first studied

in [81], and it indeed seems that all moduli may be fixed in this way in some supergravity

limits [82–85].

Flux compactifications are also attractive as they allow us to obtain realistic models

from type II theories, since fluxes generically reduce the four-dimensional gauge group

and break supersymmetry [86, 87]. This has led to N = 1 models from flux-deformed

Calabi–Yau backgrounds and culminated in a whole new subfield known as F-theory [88].

In addition, fluxes generically lead to a warp factor for the four-dimensional spacetime,

which has been suggested as a way to explain gauge hierarchies [89].

Flux backgrounds are also important for the AdS/CFT correspondence. Generically

flux compactifications are dual to confining gauge theories, so they may provide a way to

describe QCD (or QCD-like theories) via string theory [90–92]. Furthermore, the most

studied examples of AdS/CFT are those for which the gravity solution is AdS times an

odd-dimensional sphere with a top-form flux [64]. Turning on extra fluxes while preserving

supersymmetry is then equivalent to deforming the gauge theory by marginal operators.

The full supergravity solutions dual to these deformed theories are known in only a few

cases [93], so a full understanding of supersymmetric flux backgrounds is essential for

testing AdS/CFT.

For a time, flux compactifications were thought to be a fruitless endeavour thanks to

a number of no-go theorems that ruled out compactifications to Minkowski or de Sitter

spacetimes when fluxes are present [89, 94–98]. The no-go theorems apply to generic

compactifications and do not assume supersymmetry. As an example, consider the Einstein

equation restricted to the four-dimensional spacetime

e−2∆R+ Tflux = 2∇2e2∆, (1.5)

where R is the Ricci scalar for the unwarped four-dimensional metric, Tflux is the contribu-

tion due to fluxes on the internal space and ∆ is the warp factor for the four-dimensional

metric. Upon integrating this equation over the internal compact space without boundary,

the right-hand side vanishes. Since Tflux is positive definite (it depends on the squares

of the fluxes) we must have R < 0 for consistency; this rules out both Minkowski and

de Sitter solutions. One can escape these results by including stringy corrections to the

Einstein equations or localised negative tension sources, such as orientifold planes, that

provide a negative contribution to Tflux. The possibility of avoiding the no-go theorems

reinvigorated the investigation of flux compactifications.

Having discussed the positives of flux compactifications, we must admit the program

has some problems. Despite the large body of work on flux compactifications, there are still

issues with constructing stable (or even metastable) de Sitter vacua. The most promising

way forward is the KKLT proposal [99] which suggests a way to produce metastable de

Sitter vacua with small positive cosmological constant. Unfortunately, there are now
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suspicions that the full backreacted solution is unstable [100, 101]. Furthermore, assuming

de Sitter vacua can be constructed, there is still the problem of the string landscape [102].

Given the possible choices of fluxes, branes and singularities, there are likely to be an

extremely large number of admissible vacua and, for the time being, we have no idea

whether there is some dynamical mechanism for vacuum selection. There has been some

work on statistical studies of the landscape [103], while a more ambitious approach is

to classify possible backgrounds. One possible application of the work in this thesis is

to the classification of generic flux backgrounds, particularly those that preserve eight

supercharges.

1.4 Generalised geometry

String theory is a theory of extended objects and this extra complexity can lead to new and

unexpected symmetries. In particular, its low-energy supergravity limit is not only a theory

of gravity, it also admits fluxes which are derived from local potentials that are defined

up to gauge transformations. Thanks to this, supergravity has not only diffeomorphism

invariance, but also p-form gauge symmetries. This extra structure hints that we should

come up with a new language that treats these symmetries on an equal footing, much as

the language of differential geometry is suited to the diffeomorphism invariance of gravity.

As we will see, this language is generalised geometry.

The conventional notion of a G-structure has already provided a useful way to analyse

flux backgrounds [97,104,105]. While the manifold M no longer has special holonomy, the

Killing spinor bilinears still define a set of tensors that are invariant underG ⊂ SO(d;R),

where d is the dimension of M . The fluxes then appear as an obstruction to integrability

of the G-structure. Formally this is encoded in the intrinsic torsion, and only when

this vanishes does the background have special holonomy. For generic backgrounds, the

structure is only locally defined since there can be points where the stabiliser group of the

Killing spinors changes.

A natural question is whether there is an analogous geometric description of generic

supersymmetric flux compactifications in terms of integrable structures. The basic point of

this thesis is that there is actually a natural geometry in which supersymmetry for a generic

flux background again corresponds to integrable, globally defined G-structures. In the

context of type II reductions to four dimensions, this defines the natural string-theoretic

generalisation of the notion of a Calabi–Yau manifold to backgrounds including both

NS-NS and R-R flux.4

A description in terms of integrable structures is important since it provides approaches

for tackling problems such as analysing the deformations and moduli spaces of arbitrary

4As we have mentioned, there are general “no-go” theorems [95,97,98,106,107] that, in the absence of
sources, exclude reductions on a compact space to a Minkowski or de Sitter backgrounds when fluxes are
present. Thus, the backgrounds in this thesis are generically either non-compact or have an anti-de Sitter
spacetime.
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flux backgrounds, as well as constructing new examples. We also note that it would not

only give generalisations of the classical target-space theories of the topological string A

and B models to include R-R modes, but also defines a corresponding pair of theories in

M-theory.

Focussing for the moment on N = 2, D = 4 backgrounds, in the case of NS-NS flux such

a reformulation has already appeared under the name of generalised complex geometry [108–

111]. Here one considers structures on a generalised tangent bundle E ' TM ⊕ T ∗M ,

admitting a natural O(d, d) metric. For a large class of supersymmetric backgrounds with

non-trivial two-form B field and dilaton φ, the holomorphic and symplectic forms generalise

to a pair of O(6, 6) pure spinors Φ± ∈ Γ(∧±T ∗M), each defining an SU(3, 3) ⊂ O(6, 6)

structure. The pure spinors satisfy compatibility conditions that imply that together

they define an SU(3)× SU(3) structure. The N = 2 Killing spinor equations then imply

dΦ± = 0, and one says the SU(3)×SU(3) structure is integrable [111]. Each such integrable

Φ± defines a generalised complex structure [108] and the integrable SU(3)×SU(3) structure

is known as a generalised Calabi–Yau metric structure [109]. This language has been

useful for a whole range of applications including addressing deformations [109,112–114],

topological strings and sigma models [115–119], T-duality and mirror symmetry [120–124],

non-geometric backgrounds [125,126], steps towards classifying flux backgrounds [127–131]

and the AdS/CFT correspondence [132–134].

Generalised complex geometry is ideal for reformulating the NS-NS sector of type II

supergravity, but the R-R fields do not enter on the same footing as the B field or dilaton.

To include R-R fluxes and M-theory compactifications, we need to consider Ed(d) × R+

or exceptional generalised geometry [135,136]. The generalised tangent space is further

extended to include the R-R gauge symmetries, such that it admits a natural action of

Ed(d) ×R+. This extension gives a unified geometrical description of type II and M-theory

restricted to a (d− 1)- or d-dimensional manifold respectively [137,138], invariant under

local transformations by the maximal compact subgroup H d of Ed(d) × R+. The bosonic

symmetries combine in a generalised Lie derivative and there is a generalised metric,

invariant under Hd, that encodes all the bosonic degrees of freedom. One can find a

generalised connection D that is the analogue of the Levi-Civita connection, such that the

full bosonic action is equal to the corresponding generalised Ricci scalar, and the fermion

equations of motion and supersymmetry variations can all be written in terms of D.

Exceptional generalised geometry is particularly suited to describing generic supersym-

metric backgrounds with flux [126,139–142]. In the case without flux, we know that the

underlying structure is that of special holonomy. A similar idea holds for backgrounds

with flux in generalised geometry. Minkowski backgrounds with any number of super-

symmetries are now known to be in correspondence with generalised special holonomy

spaces [143,144], while the same result is known to hold true for minimally supersymmetric

AdS backgrounds [145] and is suspected to hold for any number of supersymmetries. As

with conventional special holonomy, we can think of these spaces as having torsion-free
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generalised G-structures defined by a set of invariant tensors that satisfy some integrability

conditions. We will see that exceptional generalised geometry provides such a description.

The appearance of the exceptional groups can be understood by considering the

maximal N = 8, d = 4 supergravity. This theory has a global E7(7) and a local SU(8)

symmetry. These groups can be realised directly in eleven-dimensional supergravity by

assuming a 4 + 7 split of the underlying spacetime, leading to a breaking of Spin(10, 1) to

Spin(3, 1)× Spin(7) [146]. One can then enhance the Spin(7) to a local SU(8) symmetry,

where SU(8) is the maximal compact subgroup of E7(7). It has been shown that one

can repeat this for the other Ed(d) groups [147–150]. In a sense, exceptional generalised

geometry gives an infinite-dimensional extension of these supergravities where the action

of these hidden groups is geometrised.

We note that there is a long history of considering exceptional groups in supergravity,

in many cases by positing the existence of extra coordinates [146, 149, 151–156]. More

recently, there has been great interest in double field theory, where these extra coordinates

play a central role [157–166]. One aim of double field theory is to construct an extension of

supergravity in which T-duality is manifest. The inspiration for this is given by considering

string compactifications on a d-dimensional torus, where T-duality acts by exchanging the

momentum and winding modes of the string. One defines coordinates that are dual to the

winding modes, giving both the usual compact coordinates on the torus xm and another

set of coordinates x̃m that parametrise a dual torus. Taken together, we have a “doubled”,

2d-dimensional torus. The fields of the theory can then depend on all coordinates of

this extended space, and there is an action of the T-duality group O(d, d) on the fields.

However, these fields are constrained: to recover the known diffeomorphisms and gauge

transformations one must impose a “section condition” that removes the dependence

on half of the coordinates. Locally, after imposing the section condition, doubled field

theory reduces to generalised geometry. However, double field theory can describe more

complicated global configurations, such as T-folds where one can patch together the

doubled space using T-dualities, in addition to the usual transition functions [167–169].

The study of double field theory has not been restricted to torus compactifications,

however there are a number of problems with the theory on more general backgrounds [126,

166,170,171]. For toroidal backgrounds, the coordinates dual to the winding modes have a

clear physical interpretation. For more general backgrounds there are generically no non-

trivial cycles and so no windings modes. The question is then what the extra coordinates

correspond to physically and whether the doubled space has any interpretation.5 For this

reason, we will not comment further on the relation between our constructions and double

field theory.

5An alternative proposal which is consistent is that of Hull [166] in which the doubled space is physical
but the geometric structures exist only on the local quotient space.
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1.5 Plan of the thesis

We begin in chapter 2 with a brief review of supersymmetric backgrounds in supergravity,

focussing first on the case without flux. We then explain how the geometric description

of such spaces can be extended to generalised Calabi–Yau geometries in the presence of

NS-NS flux, and propose that the correct language for understanding the most general

flux backgrounds is exceptional generalised geometry.

In chapter 3 we define the analogue of Calabi–Yau geometry for generic D = 4, N = 2

flux backgrounds in type II supergravity and M-theory. We begin by discussing backgrounds

with a four-dimensional Minkowski spacetime and show that there are generalisations of

the complex and symplectic structures for generic flux backgrounds. Such “exceptional

Calabi–Yau” geometries are determined by two generalised objects that parametrise hyper-

and vector-multiplet degrees of freedom, where supersymmetry of the background is

equivalent to integrability of these generalised structures. We discuss how these ideas

follow from gauged supergravity and the concept of generalised intrinsic torsion, and how

they can be used to explore the moduli space of solutions. We then extend our construction

to D = 5 and D = 6 flux backgrounds preserving eight supercharges, where analogous

structures appear.

In chapter 4 we repeat our analysis for generic AdS flux backgrounds preserving eight

supercharges in D = 4 and D = 5. Again, they are described by a pair of globally defined,

generalised structures with integrability conditions that are equivalent to supersymmetry.

We give a number of explicit examples of such “exceptional Sasaki–Einstein” backgrounds

in type IIB supergravity and M-theory. In particular, we give the complete analysis of

the generic AdS5 M-theory backgrounds. We also briefly discuss the structure of the

moduli space of solutions. In all cases, one structure defines a “generalised Reeb vector”

that generates a Killing symmetry of the background corresponding to the R-symmetry

of the dual field theory, and in addition encodes the generic contact structures that

appear in the D = 4 M-theory and D = 5 type IIB cases. Finally, we investigate the

relation between generalised structures and quantities in the dual field theory, showing

that the central charge and R-charge of BPS wrapped-brane states are both encoded by

the generalised Reeb vector, as well as discussing how volume minimisation (the dual of a-

and F-maximisation) is encoded.

In chapter 5 we apply our formalism to the study of exactly marginal deformations

of N = 1 SCFTs that are dual to generic AdS5 flux backgrounds in type IIB or eleven-

dimensional supergravity and show there is a geometric interpretation of the known gauge

theory results. Focussing on Sasaki–Einstein backgrounds in type IIB supergravity we find

an explicit, first-order expression for the three-form flux dual to the marginal deformations.

We then show that our expression for the three-form flux matches those in the literature

and the obstruction conditions match the one-loop beta functions of the dual SCFT.

In chapter 6 we extend this analysis to d = 3, N = 2 superconformal field theories that
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arise on a stack of M2-branes at a conical singularity. The supergravity backgrounds are

of the form AdS4 ×M , where M is a seven-dimensional Sasaki–Einstein manifold. Again,

we find an explicit expression for the first-order four-form flux that is dual to the marginal

deformations. We also show that our expression for the four-form flux matches those in

the literature.

Finally, in chapter 7 we summarise the main points of this thesis and discuss some

open problems and directions for future work.
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Chapter 2

Supergravity backgrounds and

generalised geometry

In this chapter, we review supersymmetric backgrounds and generalised geometry. We

briefly summarise the standard D = 4, N = 2 example of Calabi–Yau backgrounds in type

II theories, discuss how the notion of Calabi–Yau extends when one includes NS-NS flux

and mention the problems that arise when one includes all fluxes. We finish with a short

review of generalised geometry in preparation for the next chapter.

2.1 Supersymmetric backgrounds

A supergravity background is a solution to the classical supergravity equations of motion. If

we are to connect with phenomenology or AdS/CFT, we should look for solutions which are

a (warped) product of an internal space M with a maximally symmetric external spacetime,

such as Minkowski or AdS. In order to preserve the Poincaré or AdS symmetry of the

external spacetime, we must set all fermionic fields to zero so the background is purely

bosonic. As we outlined in the previous chapter, supersymmetric backgrounds are a key

ingredient in both string phenomenology and the AdS/CFT correspondence. A background

is supersymmetric if all the supergravity fields (and hence the solution) are invariant under

the supersymmetry transformations. Recall that the supersymmetry transformations

depend upon a choice of supersymmetry parameter ε and take the schematic form

δ(boson) = ε(fermion), δ(fermion) = ε(boson). (2.1)

The variations of the bosonic fields always contain a fermionic field, and since we have set

these to zero the variations automatically vanish. The non-trivial conditions come from

the variations of the fermionic fields. Supersymmetry of the background is then equivalent

to the existence of a non-vanishing spinor ε for which the supersymmetry variations vanish.
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Generically, the variations take the form of differential and algebraic conditions

Dε = 0, Pε = 0,

where D is a supergravity connection and P is an endomorphism of the spinor bundle,

both given in terms of the metric, fluxes and any other bosonic fields. These equations are

known as the Killing spinor equations, and a background is supersymmetric if it admits

one or more solutions, known as Killing spinors.

The product form of the metric implies that the ten-dimensional supersymmetry

parameter ε schematically takes the form of a tensor product of a spinor η on Minkowski

or AdS and an internal spinor χ on M :

ε = η ⊗ χ.

The decomposition of the ten-dimensional spinor splits the Killing spinor equations into

conditions for η on the external spacetime and conditions for χ on M . We then say that the

background preserves a number of real supercharges equal to the real degrees of freedom

of η times the number of independent solutions of the Killing spinor equations on M . The

basic question is then how the existence of Killing spinors on M restricts its geometry and

fluxes.

2.1.1 Backgrounds without flux

The classic example of an N = 2 background is type II string theory with vanishing fluxes,

where M is a Calabi–Yau threefold. The background metric takes the form of a product

ds2
10 = ds2(R3,1) + ds2(M), (2.2)

and we have set all fluxes and the warp factor to zero. The only degrees of freedom on the

internal manifold are its metric, so that the effective four-dimensional theory that would

arise from compactification on this background depends upon the geometry of M alone.

With the aim of finding N = 2 supersymmetry in the effective four-dimensional theory,

the two ten-dimensional spinors decompose as

ε1 = η+
1 ⊗ χ

+
1 + η−1 ⊗ χ

−
1 ,

ε2 = η+
2 ⊗ χ

∓
2 + η−2 ⊗ χ

±
2 ,

(2.3)

where the ± subscripts denote chirality, the upper/lower choice of chirality refers to type

IIA/IIB, and ηi and χi are Weyl spinors in four and six dimensions, so that η−i and χ−i are

the conjugates of η+
i and χ+

i . Note that this is not the most general spinor ansatz [172],

but it will suffice for this chapter.

The mere existence of non-vanishing spinor fields on M imposes a topological condition,
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namely a reduction of the structure group of M to a subgroup of Spin(6) ' SU(4). Viewing

χ+
1 as a four-component Weyl spinor with norm |χ1|2 = χ̄+

1 χ
+
1 , the frames in which it

can be written as χ+
1 = (|χ1|, 0, 0, 0) form an SU(3) structure. The second internal spinor

χ+
2 can then be parallel, nowhere parallel or a mix of the two depending on the position

on the manifold M . If the second spinor is nowhere parallel to χ+
1 , the SU(3) frames in

which χ+
2 = (0, |χ2|, 0, 0) themselves form an SU(2) structure, and will lead to an N = 4

effective four-dimensional theory. Instead, we will consider the case where the two internal

spinors are parallel. In other words, there is a single non-vanishing spinor χ+ on M that

defines an SU(3) structure and two spinors η1,2 on the external spacetime, resulting in

eight supercharges and N = 2 supersymmetry in four dimensions.

Equivalently, one can think of the SU(3) structure in terms of the invariant tensors

defined by χ+. Normalising the spinor so that χ̄+χ+ = 1, the tensor Jmn = iχ̄+γmnχ
+

is a section of the endomorphism bundle of TM and satisfies J2 = −1, hence it defines

an almost complex structure. Furthermore, the metric is automatically Hermitian with

respect to this almost complex structure, and lowering an index of J with the metric defines

a two-form ωmn = −Jmn. One can also use the spinor to construct a nowhere-vanishing

three-form Ωmnp = χ̄+γmnpχ
−. Using Fierz identities, one can check the action of J on ω

and Ω implies that they are (1, 1)- and (3, 0)-forms, and so satisfy ω ∧Ω = 0. Furthermore,

the normalisation of χ+ implies 1
3!ω ∧ ω ∧ ω = 1

8 iΩ ∧ Ω̄. The forms ω and Ω are invariant

under Sp(6;R) and SL(3;C) subgroups of GL(6;R) respectively, and together they are

invariant under SU(3) ⊂ SO(6). The different structure groups embed as

GL(6;R) ⊃ Sp(6;R) for ω

∪ ∪
SL(3;C) for Ω ⊃ SU(3) for {ω,Ω}

(2.4)

Assuming the fluxes, warp factor and dilaton are set to zero, the Killing spinor equations

in spacetime are trivial. We simply take η+
i to be constant spinors. The Killing spinors

equations on the internal manifold reduce to

∇χ+ = 0.

In other words, the internal manifold M must admit covariantly constant spinors. This

means that the Levi-Civita connection ∇ is compatible with the SU(3) structure defined

by the spinors, and, since the Levi-Civita connection is torsion-free, the SU(3) structure

has vanishing intrinsic torsion. The internal manifold M must thus have SU(3) special

holonomy.

We can also understand this in terms of the invariant forms ω and Ω. The almost

complex structure is covariantly constant, ∇J = 0, since it is defined in terms of χ+ which

is itself covariantly constant, and so the almost complex structure is integrable. As ∇ is

torsion-free, we can replace ∂ with ∇ in the exterior derivative, from which we see the
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covariant constancy of J implies dω = 0. Thus, M is actually Kähler with Kähler form

ω. As Ω is constructed from χ+, we also have dΩ = 0 which implies Ω is a holomorphic

three-form. This means the components of the three-form in complex coordinates are

Ωijk = f(z)εijk, where f(z) is a holomorphic, nowhere-vanishing section of the canonical

line bundle. The Ricci form for the Hermitian metric compatible with ω and the Levi-Civita

connection is R = i∂∂̄ log
√
g. From the expression for Ω, we have that the norm of the

holomorphic three-form satisfies ‖Ω‖2 = |f(z)|2/√g, which together with ∂̄f = 0 implies

R = −i∂∂̄ log ‖Ω‖2. (2.5)

As ‖Ω‖2 is a globally defined, nowhere-vanishing function, R is exact and so the manifold

M has vanishing first Chern class.1 Kähler manifolds with vanishing first Chern class are

Calabi–Yau manifolds, which are known to admit a Ricci-flat metric in the same Kähler

class [173–176]. The definition of the structure in terms of spinors makes this obvious as,

since Ω is defined using χ+ which has constant norm, Ω has constant norm and thus R
actually vanishes.

In summary, one can build two differential forms as bilinears in χ+, a symplectic form

ω and a holomorphic three-form Ω, which together define a torsion-free SU(3) structure

on M . On a more practical level, the crucial points are that the manifold is complex,

allowing the use of algebraic geometry, and the existence theorem for the metric, which

guarantees that as long as the Ricci form is exact, there exists a Ricci-flat metric. Upon

including fluxes, we lose these mathematical tools. The SU(3) structure has torsion and

is not always globally defined. The structure can interpolate between SU(2) and SU(3)

depending on whether the internal spinors are parallel or not. To understand the general

case, we now discuss a simple generalisation of Calabi–Yau that allows for NS-NS flux

while retaining a geometric interpretation.

2.1.2 Generalising the notion of a Calabi–Yau structure

Generic flux solutions of the N = 2 Killing spinor equations can be thought of as string-

theory generalisations of the conventional notion of a Calabi–Yau manifold to backgrounds

including both NS-NS and R-R fluxes. The simplest extension is to consider generic NS-NS

backgrounds by including the dilaton and three-form flux H = dB.

The solution is characterised by a pair of spinors (χ+
1 , χ

+
2 ), each stabilised by a different

SU(3) subgroup of Spin(6) ' SU(4). Generically the common subgroup leaving both χ+
i

invariant is SU(2). However, since the norm between the spinors can vary over M , there

can be points where the spinors are parallel and the stabiliser group enhances to SU(3).

Backgrounds where this happens are called “type-changing” [108,109]. The presence of

1One can also see this from the relation c1(M) = c1(T 1,0M) = −c1(KM ), where c1 is the first Chern
class and KM is the canonical line bundle over M . Since Ω is a nowhere-vanishing section, KM is trivial.
A trivial bundle admits a flat connection, so c1(KM ) = 0 and hence the first Chern class of the manifold
vanishes.
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two spinors χ+
i means that the differential forms constructed from the spinor bilinears are

more intricate than in the Calabi–Yau case. The background can be characterised by two

polyforms [111]

Φ+ = e−φe−B(χ+
1 ⊗ χ̄

+
2 ) ∈ Γ(∧+T ∗M), (2.6)

Φ− = e−φe−B(χ+
1 ⊗ χ̄

−
2 ) ∈ Γ(∧−T ∗M), (2.7)

where ∧+T ∗M and ∧−T ∗M are the bundles of even- and odd-degree forms respectively.

The polyforms satisfy a pair of compatibility conditions (A.11) and the Killing spinor

equations are equivalent to the integrability conditions

dΦ+ = 0, dΦ− = 0, (2.8)

which define what is known as a generalised Calabi–Yau metric. A conventional Calabi–Yau

background is of course a special case, given by taking

Φ+ = e−φe−Be−iω, Φ− = i e−φe−BΩ, (2.9)

with B closed and φ constant. We see that Φ+ generalises the symplectic structure and

Φ− generalises the complex structure.

As we will now see, the geometric interpretation of these conditions is given by

generalised geometry [108–111].

2.2 Generalised geometry

Generalised geometry is the study of structures on a vector bundleE over a manifold M ,

where E is formed from the tangent bundle, cotangent bundle and products thereof. The

original formulation of generalised geometry was given by Hitchin [108] and codified by

Gualtieri [109] into what we now call O(d, d)× R+ generalised geometry or generalised

complex geometry. The original motivation was to define geometric structures that include

both complex and symplectic geometry as limiting cases. In this case, the larger vector

bundle is E ' TM ⊕ T ∗M which admits a natural O(d, d) metric on it sections, coming

from the obvious pairing of vectors with one-forms. This endows E with an O(d, d)

structure. Much like conventional vectors, one can define a bracket on sections of E to give

a generalisation of the Lie bracket, known as the Courant bracket. The automorphisms

of the Courant bracket are not only diffeomorphisms but also closed shifts of the B field,

or what we know as gauge transformations. In this way, the gauge symmetries of the

NS-NS sector of type II supergravity are built into the geometric description. Using the

generalisation of vectors and Lie brackets, one can proceed by analogy with conventional

differential geometry, defining connections on E and a generalised metric, which defines

an O(d)×O(d) ⊂ O(d, d) structure. The key point is that the structures that arise are
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directly applicable to physics, in particular to string theory and supergravity.

Let us return to the generalised Calabi–Yau metric example of the previous section and

briefly sketch how the pair of closed polyforms define a torsion-free structure in O(6, 6)×R+

generalised geometry [108, 109, 111]. The generalised tangent bundle E ' TM ⊕ T ∗M
admits a natural O(6, 6) metric η. The two polyforms Φ± can then be viewed as sections of

the positive and negative helicity Spin(6, 6) spinor bundles2 associated to E, each stabilised

by a different SU(3, 3) subgroup of Spin(6, 6). Therefore, each Φ± individually defines a

generalised SU(3, 3) structure. The compatibility conditions imply that their common

stability group is SU(3)× SU(3), so that the various structure groups embed as

O(6, 6)× R+ ⊃ SU(3, 3)+ for Φ+

∪ ∪
SU(3, 3)− for Φ− ⊃ SU(3)× SU(3) for {Φ+,Φ−}

(2.10)

Note that the two SU(3) stabiliser groups are precisely the groups preserving χ+
1 and

χ−2 in (2.3). The integrability conditions dΦ± = 0 are equivalent to the existence of a

torsion-free generalised connection compatible with the relevant SU(3, 3)± structure.

It is natural to ask how these structures and their integrability conditions are extended

when one considers generic backgrounds, for example including R-R fluxes. These are the

questions we address in chapter 3. In identifying the relevant objects in the generalised

geometry, and how they connect to conventional notions ofG-structures, it will be useful

to have a range of examples of N = 2 backgrounds. To this end, a number of simple

cases, with and without R-R fluxes and in both type II and M-theory, are summarised

in appendix A, along with more details of the Calabi–Yau and generalised Calabi–Yau

metric cases.

One can think of O(d, d)× R+ generalised geometry as geometrising the NS-NS sector

of supergravity. If we want to describe generic flux backgrounds with R-R fluxes in type II

theories or four-form flux in M-theory, the relevant extension is Ed(d) × R+ generalised

geometry.

2.3 Ed(d) × R+ generalised geometry

Ed(d) × R+ or exceptional generalised geometry is the study of structures on a vector

bundle known as a generalised tangent bundle E, where E admits a unique action of the

Ed(d) group [135,136]. We can define a generalised frame bundle F̃ for E as an Ed(d) ×R+

principal bundle. There is a generalised Lie derivative [136,137,178] which encodes the

infinitesimal symmetries, diffeomorphisms and gauge transformations, of the supergravity

theory, and one can use it to define generalised torsion and the analogue of the Levi-

Civita connection [137,138]. Generalised tensors are defined as sections of vector bundles

2In making this identification there is an arbitrary scaling factor that can be viewed as promoting the
O(6, 6) action to an O(6, 6)× R+ action, corresponding to the dilaton degree of freedom [124,177].
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transforming in some representation of Ed(d) × R+. A generalised G-structure is then

defined by a set of generalised tensors that are invariant under the action of a subgroup

G ⊂ Ed(d). Equivalently, it is a choice of G principal sub-bundle of the generalised frame

bundle P̃G ⊂ F̃ . The notion of an integrable generalised structure as one with vanishing

intrinsic torsion then follows in analogy to the conventional case [143]. We now summarise

the key points we need, relegating some details to appendix B.

For M-theory on a manifold M of dimension d ≤ 7, the generalised tangent bundle is

E ' TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M ⊕ (T ∗M ⊗ ∧7T ∗M). (2.11)

For a type II theory on a (d− 1)-dimensional manifold M , the generalised tangent bundle

is

E ' TM ⊕ T ∗M ⊕ ∧±T ∗M ⊕ ∧5T ∗M ⊕ (T ∗M ⊗ ∧6T ∗M), (2.12)

where ± refers to even- or odd-degree forms for type IIA or IIB respectively. For type

IIA, this is just a dimensional reduction of the M-theory case. For type IIB, this can be

rewritten in a way that stresses the SL(2;R) symmetry as

E ' TM ⊕ (S ⊗ T ∗M)⊕ ∧3T ∗M ⊕ (S ⊗ ∧5T ∗M)⊕ (T ∗M ⊗ ∧6T ∗M), (2.13)

where S is an R2 bundle transforming as a doublet of SL(2;R). In all cases the generalised

tangent bundle is an Ed(d) × R+ vector bundle. For example, for d = 7 it transforms in

the 561 representation, where the subscript denotes the R+ weight. By definition, a scalar

field of weight p, transforming in the representation 1p, is a section of (detT ∗M)p/(9−d).3

The generalised frame bundle F̃ is an Ed(d) × R+ principal bundle constructed from

frames for E. One defines generalised tensors as sections of the vector bundles associated

with different Ed(d)×R+ representations. Of particular interest is the adjoint bundle ad F̃ ,

corresponding to the adjoint representation of Ed(d) × R+. In M-theory we have

ad F̃ ' R⊕ (TM ⊗ T ∗M)⊕ ∧3T ∗M ⊕ ∧6T ∗M ⊕ ∧3TM ⊕ ∧6TM, (2.14)

while in type II

ad F̃ ' R⊕
[
R⊕ ∧6TM ⊕ ∧6T ∗M

]
⊕
[
(TM ⊗ T ∗M)⊕ ∧2T ∗M ⊕ ∧2TM

]
⊕
[
∧∓TM ⊕ ∧∓T ∗M

]
,

(2.15)

where the upper and lower signs refer to type IIA and type IIB respectively. For IIB this

3Since supersymmetric backgrounds are orientable, we can assume detT ∗M is trivial. A discussion of
fractional density bundles can be found in [179].
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can also be written as

ad F̃ ' R⊕ (TM ⊗ T ∗M)⊕ (S ⊗ S∗)0 ⊕ (S ⊗ ∧2TM)⊕ (S ⊗ ∧2T ∗M)

⊕ ∧4TM ⊕ ∧4T ∗M ⊕ (S ⊗ ∧6TM)⊕ (S ⊗ ∧6T ∗M),
(2.16)

where the subscript on (S ⊗ S∗)0 indicates that one takes the traceless part. For d = 7

these bundles transform in the 10 + 1330 representation, where the singlet is the part

generating the R+ action.

The generalised tangent bundle is actually defined as an extension, so that there is a

non-trivial patching between the tensor components. In M-theory, on the overlap of two

local patches Ui ∩ Uj of M , a generalised vector V ∈ Γ(E) is patched by

V(i) = edΛ(ij)+dΛ̃(ij)V(j), (2.17)

where Λ(ij) and Λ̃(ij) are locally two- and five-forms respectively, which can be identified as

sections of ad F̃ , so that edΛ(ij)+dΛ̃(ij) is the exponentiated adjoint action. The isomorph-

isms (2.11) and (2.14) depend on a pair of potentials A ∈ Γ(∧3T ∗M) and Ã ∈ Γ(∧6T ∗M)

via the exponentiated adjoint action

V = eA+ÃṼ , R = eA+ÃR̃ e−A−Ã, (2.18)

where V ∈ Γ(E) and R ∈ Γ(ad F̃ ), the “untwisted” objects Ṽ and R̃ are sections of

TM ⊕∧2T ∗M ⊕· · · and R⊕ (TM ⊗T ∗M)⊕· · · respectively, and A and Ã are patched by

A(i) = A(j) + dΛ(ij), Ã(i) = Ã(j) + dΛ̃(ij) − 1
2dΛ(ij) ∧A(j). (2.19)

The corresponding gauge-invariant field strengths

F = dA, F̃ = dÃ− 1
2A ∧ F, (2.20)

are precisely the supergravity objects defined in (B.24). The type II theories are similarly

patched. For type IIB we have

V(i) = e
dΛi

(ij)
+dΛ̃(ij)V(j), (2.21)

where Λi
(ij) and Λ̃(ij) are locally a pair of one-forms and a three-form respectively. The

relations between the twisted and untwisted objects are written as

V = eB
i+C Ṽ , R = eB

i+CR̃ e−B
i−C , (2.22)

with the corresponding three- and five-form field strengths given by

F i = dBi, F = dC + 1
2εijB

i ∧ F j , (2.23)
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where F 1 = H, F 2 = F3 and F are the usual supergravity field strengths, defined in (B.53).

We discuss how to include a non-zero axion-dilaton in appendix B.3, following [139].

The differential structure of the generalised tangent bundle is captured by a gen-

eralisation of the Lie derivative that encodes the bosonic symmetries of supergravity,

namely diffeomorphisms and form-field gauge transformations. Given a generalised vector

field V ∈ Γ(E), one can define the action of the generalised Lie derivative (or Dorfman

derivative) LV on any generalised tensor. For example, its action on generalised vectors is

given in (B.16) and (B.45), and on sections of ad F̃ in (B.17) and (B.46). The generalised

Lie derivative endows E with the structure of a Leibniz algebroid [180] and will play an

essential role in defining the integrability conditions on the generalised structures.
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Chapter 3

Exceptional Calabi–Yau

backgrounds

In this chapter we define the analogue of Calabi–Yau geometry for genericD = 4, N = 2

flux backgrounds in type II supergravity and M-theory. We show that solutions of the

Killing spinor equations are in one-to-one correspondence with integrable, globally defined

structures in E7(7) × R+ generalised geometry. Such “exceptional Calabi–Yau” geometries

are determined by two generalised objects that parametrise hyper- and vector-multiplet

degrees of freedom and generalise conventional complex, symplectic and hyper-Kähler

geometries. The integrability conditions for both hyper- and vector-multiplet structures

are given by the vanishing of moment maps for the “generalised diffeomorphism group”

of diffeomorphisms combined with gauge transformations. We give a number of explicit

examples and discuss the structure of the moduli spaces of solutions. We then extend our

construction to D = 5 and D = 6 flux backgrounds preserving eight supercharges, where

similar structures appear.

3.1 Introduction

We are searching for a generalisation of the notion of a Calabi–Yau manifold to back-

grounds including both NS-NS and R-R flux. We will show that exceptional generalised

geometry [135–138] gives precisely such a reformulation: the supersymmetric background

defines an integrable generalised structure, which we call an “exceptional Calabi–Yau”

(ECY) geometry.1 The tensors ω and Ω are replaced by a pair of generalised structures

that interpolate between complex, symplectic and hyper-Kähler geometries. With respect

to the N = 2 supersymmetry, one structure is naturally associated to hypermultiplets and

the other to vector multiplets, and the integrability conditions, defined using generalised

intrinsic torsion [143], have an elegant interpretation in terms of moment maps.

1In this thesis, we take “integrable” to mean first-order integrability or, equivalently, vanishing intrinsic
torsion. We have not made any investigations into whether first-order integrability implies full integrability
for the structures we consider, or even how to define obstructions to higher-order integrability.
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The two generalised structures defining generic N = 2, D = 4 backgrounds are invariant

under Spin∗(12) and E6(2) subgroups of the E7(7) × R+ acting on the generalised tangent

space. We refer to them as H and V structures respectively, standing for “hypermultiplet”

and “vector-multiplet”. If compatible, together they define an HV structure that is

invariant under SU(6). It is then natural to define an ECY geometry as one that admits

an integrable HV structure. Such structures were first introduced in the context of type II

theories in [181]. Since the supersymmetry parameters transform under H7 = SU(8) in the

exceptional generalised geometry, the SU(6) structure appears as SU(6) is the stabiliser

group of a pair of Killing spinors. Some steps towards rephrasing supersymmetry in terms

of integrable generalised structures in theN = 1 case, where the structure is SU(7), were

taken in [136] in M-theory and in [181] in type II. The full set of N = 1 conditions, written

using a particular generalised connection, were given in [182], and this was extended to

N = 2 in [172]. The four-dimensional effective theories in both N = 1 and N = 2 have

been considered in [136,181,183].

For each structure, we show that the integrability conditions correspond to the existence

of a torsion-free G-compatible generalised connection. This follows the analysis of [143]

where it was shown that there is a natural definition of intrinsic torsion for generalised

G-structures, and one can define generalised special holonomy as structures withG ⊂ Hd

and vanishing generalised intrinsic torsion. Supersymmetric backgrounds of type II and

eleven-dimensional supergravity in various dimensions are constrained to have generalised

special holonomy in both the Minkowski [143,144] and AdS [145] case. Here, we use the

same notion of generalised intrinsic torsion to prove that our integrability conditions are

equivalent to the Killing spinor equations.

As first noted in [181], the infinite-dimensional spaces of hypermultiplet and vector-

multiplet structures admit hyper-Kähler and special Kähler metrics respectively. Strikingly,

we find that the integrability conditions for each can be formulated as the vanishing of the

corresponding moment maps for the action of the generalised diffeomorphism group. The

moduli spaces of structures are then given by a hyper-Kähler or symplectic quotient. For

ECY geometries there is an additional integrability condition that involves both structures.

That differential conditions appear as moment maps on infinite-dimensional spaces is

a ubiquitous phenomenon [184, 185]. Examples include the Atiyah–Bott description

of flat gauge connections on a Riemann surface [186], the Donaldson–Uhlenbeck–Yau

equations [187–189], the Hitchin equations [190], and even the equations for Kähler–Einstein

metrics [191, 192]. In our case we see that there are also moment maps for geometries

defining generalisations of complex and symplectic structures that, in addition, use the

full (generalised) diffeomorphism group.

Physically the appearance of moment maps is natural. It is possible to reformulate the

full ten- or eleven-dimensional supergravity as a four-dimensionalN = 2 theory [123,181,

193]. The Spin∗(12) structures then naturally parametrise an infinite-dimensional space of

hypermultiplets, while the E6(2) structures encode an infinite-dimensional space of vector
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multiplets. This is the origin of our names for the two types of structures. The N = 2

theory will be gauged, and supersymmetry implies that the gauging defines a triplet of

moment maps on the hypermultiplets and a single moment map on the vector multiplets

(see for example [194]). This structure was already noted in [181], where it was pointed

out that the gauged symmetry was simply the R-R gauge transformations. However,

for generic backgrounds, as we show here, not only the R-R gauge transformations but

actually the whole set of generalised diffeomorphisms are gauged, including NS-NS gauge

transformations and conventional diffeomorphisms. The integrability conditions can then

be directly translated into the vanishing of the gaugino, hyperino and gravitino variations,

following a similar analysis for N = 1 backgrounds in [136,181,182,195]. In making this

translation we partly rephrase the standard conditions, as given in [196–198], showing that

the gaugino variation generically implies a vanishing of the vector-multiplet moment map.

Our formalism also applies to both type II and M-theory backgrounds in D = 5 and

D = 6 preserving eight supercharges. The hypermultiplet structure is always of the same

form, but the second generalised structure that is compatible with it is dependent on the

case in hand. As we discuss in the next chapter, AdS backgrounds can also be described

in this formalism.

Starting in section 3.2 we define the relevant generalised structures for N = 2, D = 4

backgrounds. We discuss the integrability conditions in section 3.3. We give a number

of examples that we hope will clarify some of the more abstract constructions. More

technical aspects, such as the equivalence of integrability with torsion-free G-structures,

the origin of the integrability conditions from gauged supergravity and the moduli space

of supersymmetric compactifications, are all in section 3.4. We discuss the extension to

D = 5, 6 backgrounds in section 3.5.

3.1.1 Supersymmetric backgrounds in type II and M-theory

We consider type II and M-theory spacetimes of the form RD−1,1 ×M , with a warped

product metric

ds2 = e2∆ds2(RD−1,1) + ds2(M), (3.1)

where ∆ is a scalar function on M . Initially we will assume D = 4 and hence M is

six-dimensional for type II and seven-dimensional for M-theory. For the type II theories we

use the string frame metric so that the warp factors for type II and M-theory are related

by ∆II = ∆M + 1
3φ, where φ is the dilaton. We allow generic fluxes compatible with the

Lorentz symmetry of R3,1. Thus for M-theory, of the eleven-dimensional four-form flux F
we keep the components

Fm1...m4 = Fm1...m4 , F̃m1...m7 = (?F)m1...m7 , (3.2)

where m = 1, . . . , 7 are indices on M , while for type II we use the democratic formalism [199]

and keep only the flux components that lie entirely on M .
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In M-theory, the eleven-dimensional spinors ε can be decomposed into four- and

seven-dimensional spinors η+
i and εi respectively according to

ε = η+
1 ⊗ ε1 + η+

2 ⊗ ε2 + c.c. (3.3)

where ± denotes the chirality of η±i and we add the charge conjugate. The internal spinor

ε is complex, and can be thought of as a pair of real Spin(7) spinors ε = Re ε+ i Im ε. The

Killing spinor equations read [200–203]

∇mε+ 1
288Fn1...n4(γm

n1...n4 − 8δm
n1γn2n3n4)ε− 1

12
1
6! F̃mn1...n6γ

n1...n6ε = 0,

γm∇mε+ (∂m∆)γmε− 1
96Fm1...m4γ

m1...m4ε− 1
4

1
7! F̃m1...m7γ

m1...m7ε = 0,
(3.4)

where ∇ is the Levi-Civita connection for the metric on M and γm are the Cliff(7;R)

gamma matrices. These imply that F̃ vanishes for Minkowski backgrounds [200], since it

can be supported only by a cosmological constant.

There are similar expressions for the Killing spinor equations in type II (see for

example [111]). In this case, there are a pair of real ten-dimensional spinors {ε1, ε2}. The

most general decomposition under Spin(3, 1)× Spin(6) is [172](
ε1

ε2

)
= η+

1 ⊗

(
χ+

1

χ̃∓1

)
+ η+

2 ⊗

(
χ̃+

2

χ∓2

)
+ c.c. (3.5)

where ± denotes the chirality, we add the charge conjugate and the upper and lower

signs refer to type IIA and IIB respectively. This choice of sign corresponds to the two

different embeddings of Spin(6) ' SU(4) ⊂ SU(8): one for type IIA and one for type IIB,

corresponding to the decompositions 8 = 4 + 4 and 8 = 4 + 4 respectively. We see the

internal spinors can be combined into two, complex, eight-component objects

ε1 =

(
χ+

1

χ̃∓1

)
, ε2 =

(
χ̃+

2

χ∓2

)
, (3.6)

which for type IIA is simply the lift to the d = 7 complex spinors of the M-theory case.

The standard spinor ansatz (2.3) corresponds to taking χ̃i = 0.

In both type II and M-theory, the gamma matrices generate an action of SU(8) on the

eight-component spinors εi. For N = 2 backgrounds we have two independent solutions, ε1

and ε2, to the Killing spinor equations. With respect to the SU(8) action, the solutions are

thus invariant under an SU(6) subgroup. In E7(7) × R+ generalised geometry this SU(8)

action is a local symmetry [137,138]. From this perspective, as stressed in [143,172,181],

we can view the N = 2 background as defining a generalised SU(6) structure

N = 2 background {ε1, ε2} ⇐⇒ generalised SU(6) structure. (3.7)
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Understanding how this SU(6) structure is defined and its integrability conditions, along

with the analogous structures in D = 5 and D = 6, will be the central goal of this chapter.

3.2 E7(7) structures

We now show that a generic N = 2, D = 4 background defines a pair of generalised

structures in E7(7) × R+ generalised geometry. For type II backgrounds this pair was first

identified in [181]. We will turn to the integrability conditions in the next section.

The idea of a generalised G-structure is as follows. In conventional geometry, the

generic structure group of the tangent bundle TM of a d-dimensional manifold M is

GL(d;R). The existence of a G-structure implies that the structure group reduces to

G ⊂ GL(d;R). It can be defined by a set of tensors {Ξ} that are stabilised by the action

of G, or alternatively as a principal G-sub-bundle PG of the GL(d;R) frame bundle F .

In generalised geometry, one considers an extended tangent bundle E which admits the

action of a group larger than GL(d;R). For us the relevant generalised geometry will

have an action of E7(7) × R+. One can define frames for E and a corresponding principal

E7(7)×R+ bundle, called the generalised frame bundle F̃ . A generalised G-structure is then

defined by a set of generalised tensors that are invariant under the action of a subgroup

G ⊂ E7(7) × R+. Equivalently, it is a principal G-sub-bundle P̃G, of the generalised frame

bundle F̃ .

The two generalised G-structures relevant to N = 2, D = 4 backgrounds are2,3

hypermultiplet structure, Jα G = Spin∗(12),

vector-multiplet structure, K G = E6(2).
(3.8)

We will often refer to these as H and V structures respectively. As we will see, we can

impose two compatibility conditions between the structures such that their common

stabiliser group is Spin∗(12) ∩ E6(2) = SU(6), defining

HV structure, {Jα,K} G = SU(6). (3.9)

We see that the generalisation of the embeddings (2.4) and (2.10) for Calabi–Yau and

generalised Calabi–Yau metrics respectively is given by

E7(7) × R+ ⊃ Spin∗(12) for Jα

∪ ∪
E6(2) for K ⊃ SU(6) for {Jα,K}

(3.10)

The SU(6) group is the same one that stabilises the pair of SU(8) Killing spinors {ε1, ε2}.

2In [181] these were denoted Kα and λ = 2 ReL respectively.
3Spin∗(12) is the double cover of SO∗(12), the latter corresponding to a particular real form of the

complex SO(12;C) Lie algebra [204].
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hyper vector

E Gframe G Ξ G Ξ

TM GL(6) Sp(6;R) ω SL(3;C) Ω

TM ⊕ T ∗M O(6, 6)× R+ SU(3, 3)+ Φ+ SU(3, 3)− Φ−

TM ⊕ T ∗M ⊕ ∧−T ∗M ⊕ . . . E7(7) × R+ Spin∗(12) Jα E6(2) K

Table 3.1: The (generalised) tangent bundles and G-structures in conventional, generalised
complex and exceptional generalised geometry for type IIB supergravity. We include the
group Gframe that acts on the (generalised) frame bundle, the reduced structure group G
of the symplectic, complex, generalised complex, vector- or hypermultiplet structure, and
the invariant object Ξ that defines the structure.

These structures are generalisations of the symplectic and complex structures on

Calabi–Yau manifolds in type II compactifications. Focussing on type IIB, in table 3.2

we list the (generalised) tangent bundles and structures that appear in conventional and

generalised O(d, d)×R+ and E7(7)×R+ geometries. We see that the H structure generalises

the symplectic structure ω (or the pure spinor Φ+), while the V structure generalises the

complex structure Ω (or the pure spinor Φ−). For type IIA the situation is reversed, and

the V and H structures generalise ω and Ω respectively.

Recall that the moduli spaces of (integrable) symplectic and complex structures of

Calabi–Yau manifolds are associated with N = 2, D = 4 hypermultiplets and vector

multiplets in type II theories. The same thing happens here: the moduli space of integrable

Spin∗(12) structures defines fields in hypermultiplets and that of integrable E6(2) structures

defines fields in vector multiplets, hence the names. In fact, one can also consider

the infinite-dimensional space of all such structures, without imposing any integrability

conditions, and these too can naturally be associated with hypermultiplets and vector

multiplets. As described in [123, 181, 193], one can view this structure as arising from

a rewriting of the full ten- or eleven-dimensional theory, analogous to the construction

in [146], but with only eight supercharges manifest. The local SO(9, 1) Lorentz symmetry

is broken and the degrees of freedom can be repackaged into N = 2, D = 4 multiplets.

However, since all modes are kept – there is no Kaluza–Klein truncation – the hyper- and

vector-multiplet spaces are infinite dimensional.

We now define H and V structures, discuss the infinite-dimensional spaces of structures,

and, in each case, show how the various examples of N = 2, D = 4 backgrounds given in

appendix A define Jα and K.

3.2.1 Hypermultiplet structures

The idea of a hypermultiplet structure (or H structure) was first introduced in [181] in the

context of type II theories. Formally we have:
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Definition. An E7(7) hypermultiplet structure is a Spin∗(12) ⊂ E7(7) × R+ generalised

structure.

In other words, it is a Spin∗(12) principal sub-bundle P̃Spin∗(12) of the generalised frame

bundle F̃ . More concretely, we can define the structure by choosing a set of invariant

generalised tensors. The relevant objects are a triplet of sections of a weighted adjoint

bundle

Jα ∈ Γ
(
ad F̃ ⊗ (detT ∗M)1/2

)
α = 1, 2, 3, (3.11)

such that they transform in the 1331 representation of E7(7) × R+. We require them

to define a highest weight su2 subalgebra of e7(7), which is the necessary and sufficient

condition for them to be invariant under Spin∗(12). We can write the algebra as

[Jα, Jβ] = 2κεαβγJγ , (3.12)

where κ is a section of (detT ∗M)1/2 and the commutator is simply the commutator in the

adjoint representation of E7(7) × R+, defined in (B.11) and (B.40). The norms of the Jα,

calculated using the e7(7) Killing form given in (B.31) and (B.60), are then fixed to be

tr(JαJβ) = −κ2δαβ. (3.13)

As described in [181], decomposing under the SU(8) subgroup4 of E7(7), one can view the

corresponding “untwisted” objects J̃α as being constructed from bilinears of the Killing

spinors εi of the form σijα εiε̄j , where σijα are the Pauli matrices.

A key point for us, first noted in [181], is that the infinite-dimensional space of H

structures admits a natural hyper-Kähler metric. To define the space of structures, note

that, at a particular point x ∈ M , the structure Jα|x is invariant under Spin∗(12) so it

can be viewed as fixing a point in the homogeneous space

Jα|x ∈W = E7(7) × R+/ Spin∗(12). (3.14)

One can then consider the fibre bundle of homogeneous spaces

W ZH

M

(3.15)

constructed by taking a quotient ZH = F̃ /G of the generalised frame bundle F̃ by the

structure group G = Spin∗(12). Choosing an H structure is equivalent to choosing a

section of ZH. Thus the infinite-dimensional space of all possible H structures is simply

4The actual subgroup is SU(8)/Z2 but the discrete group factors are not important for the work in this
thesis.
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the space of smooth sections,

space of hypermultiplet structures AH = Γ(ZH). (3.16)

Crucially, the fibres W of ZH are themselves pseudo-Riemannian hyper-Kähler spaces. In

fact W is a hyper-Kähler cone over a pseudo-Riemannian symmetric quaternionic-Kähler

space, also known as a Wolf space,

W/H∗ = E7(7)/(Spin∗(12)× SU(2)), (3.17)

where the action of the quaternions H∗ mods out by SU(2) × R+. The Riemannian

symmetric quaternionic-Kähler spaces were first considered by Wolf in [205] and classified

by Alekseevsky in [206], while the pseudo-Riemannian case was analysed by Alekseevsky

and Cortés [207], and (3.17) is indeed included in their list. Recall that one can always

construct a hyper-Kähler cone, known as the Swann bundle, over any quaternionic-Kähler

space [208]. In this case the cone directions are simply the SU(2) bundle together with

the overall R+ scaling. The hyper-Kähler geometry on W , as first described in [209], is

summarised in appendix E.2.

The hyper-Kähler geometry on AH is inherited directly from the hyper-Kähler geometry

of the W fibres of ZH. This is in much the same way that the infinite-dimensional space of

smooth Riemannian metrics on a compact d-dimensional manifold (which can be viewed as

the space of sections of a GL(d;R)/O(d) homogeneous fibre bundle) is itself a Riemannian

space [210–212]. The construction follows that on W . Concretely, consider a point σ ∈ AH,

corresponding to a choice of section σ(x) ∈ Γ(ZH). Equivalently, given a point σ ∈ AH

we have a triplet of sections Jα(x). Formally, one can think of Jα(x)[σ] as a triplet of

functions on AH taking values in the space of sections Γ(ad F̃ ⊗ (detT ∗M)1/2)

Jα : AH → Γ
(
ad F̃ ⊗ (detT ∗M)1/2

)
. (3.18)

The tangent space TσAH at σ is spanned by vectors v ∈ TσAH that can be viewed as a small

deformation of the structure Jα(x). Formally, we can define the change vα(x) in Jα(x),

given by v acting on the section-valued functions Jα, that is vα = v(Jα) = ıvδJα, where δ

is the exterior derivative on AH. By definition, vα(x) is a section of ad F̃ ⊗ (detT ∗M)1/2.

At each point σ it can always be written as

vα(x) = [R(x), Jα(x)], (3.19)

where R(x) is a section of the e7(7) ⊕ R adjoint bundle ad F̃ . Note that only elements

that are not in spin∗12 actually generate non-zero vα. Decomposing ad F̃ ' ad P̃Spin∗(12) ⊕
ad P̃⊥Spin∗(12) , where P̃Spin∗(12) is the generalised G-structure defined by Jα, this means
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formally we can also identify

TσAH ' Γ
(
ad P̃⊥Spin∗(12) ⊗ (detT ∗M)1/2

)
. (3.20)

Given two tangent vectors v, w ∈ TσAH, we then define a triplet of symplectic forms at

the point σ ∈ AH, such that the symplectic products between v and w are given by

Ωα(v, w) = εαβγ

ˆ
M

tr(vβwγ). (3.21)

Recall that vα(x) and wα(x) are sections of ad F̃⊗(detT ∗M)1/2. Thus tr(vβwγ) is a section

of detT ∗M and can indeed be integrated over M . These forms define the hyper-Kähler

structure.

The geometry on AH is actually itself a hyper-Kähler cone. There is a global SU(2)×R+

action that rotates and rescales the structures Jα. This means that one can define a

hyper-Kähler potential [208], a real function χ which is a Kähler potential for each of the

three symplectic structures. On AH it is given by the functional

χ = 1
2

ˆ
M
κ2, (3.22)

where κ2 is the density that depends on the choice of structure σ(x) ∈ Γ(ZH) through (3.12).

In terms of the Killing spinors εi, the global SU(2) symmetry corresponds to the fact that,

under the decompositions (3.3) and (3.5), the εi are determined only up to global U(2)

rotations of the pair of four-dimensional spinors η+
i . Thus the global SU(2) action on

Jα is simply part of the four-dimensional N = 2 R-symmetry. The global R+ rescaling

corresponds to shifting the warp factor ∆ in (3.1) by a constant, and then absorbing

this in a constant conformal rescaling of the flat metric ds2(R3,1). Modding out by these

symmetries, we see that the physical space of structures is actually an infinite-dimensional

quaternionic-Kähler space. As we have mentioned, this structure on AH can be viewed,

following [123,181,193], as a rewriting of the full ten- or eleven-dimensional supergravity

theory as a four-dimensional N = 2 theory coupled to an infinite number of hypermultiplets,

corresponding to the full tower of Kaluza–Klein modes parametrising AH. Physically,

the Swann bundle structure corresponds to coupling hypermultiplets to superconformal

gravity [213–215].

3.2.2 Vector-multiplet structures

Vector-multiplet structures (or V structures) were also first introduced in [181] in the

context of type II theories. Formally we have:

Definition. An E7(7) vector-multiplet structure is an E6(2) ⊂ E7(7) × R+ generalised

structure.
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In other words, it is an E6(2) principal sub-bundle P̃E6(2)
of the generalised frame bundle

F̃ . The corresponding invariant generalised tensor is a section of the generalised tangent

bundle

K ∈ Γ(E), (3.23)

which we recall transforms in the 561 representation of E7(7) × R+. This tensor is almost

generic, the only requirement is that it satisfies

q(K) > 0, (3.24)

where q is the quartic invariant of E7(7).
5 This ensures that the stabiliser group is E6(2) [216].

As will see below when we discuss the geometry of the space of V structures following [181],

one can use q(K) to construct a second invariant generalised vector K̂, and it is often

convenient to consider the complex object

X = K + iK̂. (3.25)

Decomposing under the SU(8) subgroup of E7(7), one can view the corresponding “untwisted”

objects X̃ as being constructed from bilinears of the Killing spinors εi of the form εijεiε
T
j =

ε1ε
T
2 − ε2εT1 .

In this case, the infinite-dimensional space of V structures admits a natural rigid (or

affine) special Kähler metric [181]. The structure K|x at a particular point x ∈M fixes a

point in the homogeneous space

K|x ∈ P = E7(7) × R+/E6(2). (3.26)

One can then consider the fibre bundle of homogeneous spaces

P ZV

M

(3.27)

constructed by taking a quotient ZV = F̃ /G of the generalised frame bundle F̃ by the

structure group G = E6(2). Choosing a V structure is equivalent to choosing a section of

ZV. Thus the infinite-dimensional space of all possible V structures is simply the space of

smooth sections,

space of vector-multiplet structures AV = Γ(ZV). (3.28)

The space of K is an open subset of Γ(E), thus we can identify the space of V structures

5Recall that E7(7) can be defined as the group preserving a symplectic invariant s and a symmetric
quartic invariant q. Given the R+ weight of E, note that q(K) ∈ Γ((detT ∗M)2).
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as

AV = {K ∈ Γ(E) : q(K) > 0}. (3.29)

Note that Γ(E) is a vector space, and hence we have a natural set of local flat coordinates

on AV, fixed by choosing a frame for E. The decomposition into conventional tensors as

in (B.6) and (B.35) is an example of such a choice.

The special Kähler metric onAV is again inherited from the special Kähler metric on

P , the homogeneous space fibres of ZV. (Special Kähler geometry is reviewed in [217, 218]

and summarised in appendix E.1.) Recall that one can always define a complex cone over

a local special Kähler manifold to give the corresponding rigid special Kähler manifold.

The Riemannian symmetric spaces that admit local special Kähler metrics were analysed

in [219,220] and include the case E7(−25)/(E6×U(1)). Here we need a pseudo-Riemannian

form based on E7(7), so the relevant space is

P/C∗ = E7(7)/(E6(2) ×U(1)). (3.30)

Here the C∗ action is generated by the U(1) bundle together with the overall R+ scaling. The

rigid special Kähler geometry on AV can be formulated in analogy to Hitchin’s construction

of the metric on the space of SL(3;C) structures [221] and SU(3, 3) structures [108]. The

space P is a “prehomogeneous vector space” [222], that is, it is an open orbit of E7(7)×R+

in the real 561 representation. The open subset is defined by the condition q(K) > 0.

Consider a point K ∈ AV. The vectors in the tangent space TKAV at K can be viewed

as a small deformation of K, which are just sections of E, hence TKAV ' Γ(E). Given

v, w ∈ TKAV, the fibre-wise E7(7) symplectic invariant s then defines a symplectic form Ω

on AV by

Ω(v, w) =

ˆ
M
s(v, w), (3.31)

where, since sections of E are weighted objects, s(v, w) is a section of detT ∗M and hence it

can be integrated over M . As reviewed in appendix E.1, special Kähler geometry requires

the existence of a flat connection preserving Ω. Here, the vector-space structure of Γ( E)

provides natural flat coordinates on AV, and hence defines a flat connection with respect

to which Ω is by definition constant. We can then use the quartic invariant to define a

function H that determines the complex structure and hence the metric (E.4). We define

the real Hitchin functional

H =

ˆ
M

√
q(K), (3.32)

where again the weight of K means that
√
q(K) ∈ Γ(detT ∗M). This defines a second

invariant tensor K̂ ∈ Γ(E) ' TKAV as the corresponding Hamiltonian vector field

ıK̂Ω = −δH, (3.33)

where δ is the exterior derivative on AV, and hence an invariant complex generalised vector
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X = K + iK̂. The two real invariants correspond to the two singlets in the decomposition

56 = 1 + 1 + 27 + 27 under E6(2) ⊂ E7(7). The metric on AV is given by the Hessian

HMN = − δH

δKMδKN
, (3.34)

where M = 1, . . . , 56 denote the components of K. The definition of the metric is equivalent

to choosing a complex structure given by IMN = −δK̂M/δKN , and implies that −H is the

Kähler potential for the special Kähler metric on AV.6 In these expressions we are using

the flat coordinates on AV defined by the vector space structure on Γ(E). To see the more

conventional description of special Kähler geometry in terms of a holomorphic prepotential

F , one needs to switch to a particular class of complex coordinates, as described in [218].

On any rigid special Kähler geometry there is a global C∗ symmetry, such that the

quotient space is, by definition, a local special Kähler geometry. On AV, the action of

C∗ is constant rescaling and phase-rotation of the invariant tensor X. The U(1) part is

simply the overall U(1) factor of the four-dimensional N = 2 R-symmetry, while, as for

the hypermultiplet structure, the R+ action is a reparametrisation of the warp factor ∆.

Modding out by this symmetry, the physical space of structures AV/C∗ is an infinite-

dimensional local special Kähler space. This is in line with the discussion of [123,181,193],

where we view AV/C∗ as the space of vector-multiplet degrees of freedom, coming from

rewriting the full ten- or eleven-dimensional supergravity theory as a four-dimensional

N = 2 theory. Physically, the cone structure on AV corresponds to coupling the vector

multiplets to superconformal gravity [213–215].

3.2.3 Exceptional Calabi–Yau structures

In the previous sections, we defined two generalised structures that give the extension

of complex and symplectic geometry of Calabi–Yau manifolds for generic flux solutions,

but alone these are not enough to characterise a supersymmetric background. Recall that

N = 2 backgrounds define a generalised SU(6) structure [143,181], this SU(6) being the

same group that stabilises the N = 2 Killing spinors. Formally we define:

Definition. An E7(7) HV structure is an SU(6) ⊂ E7(7) × R+ generalised structure.

In other words, an SU(6) principal sub-bundle P̃SU(6) of the generalised frame bundle F̃ .

If the SU(6) structure is integrable, we refer to it as “exceptional Calabi–Yau” or ECY.

For type II backgrounds it is the flux generalisation of a Calabi–Yau three-fold, while for

M-theory it is the generalisation of the product of a Calabi–Yau three-fold and S1.

As in the simpler Calabi–Yau case, to ensure that the background is indeed N = 2 we need

to impose a compatibility condition between the H and V structures such that together

they define a generalised SU(6) structure. The common stabiliser group Spin∗(12) ∩ E6(2)

of the pair {Jα,K} is SU(6) if and only if Jα and K satisfy two compatibility conditions.

6Note that our conventions for the E7(7) symplectic form mean that the metric here is 1
8

that in [181].
Also our normalisation of the quartic invariant is fixed relative to the symplectic form by the relation (E.7).
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Definition. The two structures Jα and K are compatible if together they define an SU(6) ⊂
E7(7) × R+ generalised structure. The necessary and sufficient conditions are [181]

Jα ·K = 0,

tr(JαJβ) = −2
√
q(K) δαβ,

(3.35)

where · is the adjoint action 133× 56→ 56, given in (B.10) and (B.39).7

These constraints can be thought of as the generalisations of the conditions (A.2) between

symplectic and complex structures on a Calabi–Yau manifold. Note that they are equivalent

to

J+ ·X = J− ·X = 0, (3.36)

where J± = J1 ± iJ2, and the normalisation condition

1
2 i s(X, X̄) = κ2, (3.37)

respectively, where κ is the factor appearing in (3.12) and s(·, ·) is the E7(7) symplectic

invariant, given in (B.30) and (B.59).

3.2.4 Examples of E7(7) structures

We now show how the examples of N = 2 supersymmetric backgrounds described in

appendix A each define H and V structures. We hope this will give a sense of the variety

of geometries that can be described. In the same way that generalised complex structures

can be thought of as interpolating between complex and symplectic structures, we will see

that H structures can interpolate between these and conventional hyper-Kähler structures.

Similarly, V structures cover a wide range of possibilities, interpolating between complex,

symplectic and simple product structures. We will also check that the structures are

compatible, and so define an HV or generalised SU(6) structure. Although we do not give

the details, the structures can be calculated explicitly as Killing spinor bilinears using the

decomposition of E7(7) under SU(8).

Throughout this section we will use the “musical isomorphism” to raise indices with the

background metric g on M . For example, if ω is a two-form, ω] is the corresponding bivector

(ω])mn = gmpgnqωpq. Note that when the flux is non-trivial, since the compatibility and

normalisation conditions are E7(7) × R+ covariant, we can always check them using the

untwisted structures. For example, the compatibility condition in M-theory is

Jα ·K = (eA+ÃJ̃αe−A−Ã) · (eA+ÃK̃) = eA+Ã(J̃α · K̃) = 0 ⇔ J̃α · K̃ = 0. (3.38)

For the following examples, one can check the su2 algebra (3.12) and normalisation (3.13)

of the Jα using (B.11) and (B.31) for M-theory, and (B.40) and (B.60) for type IIB. The

7The second compatibility condition in (3.35) implies that R+ actions on Jα and X are correlated.
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normalisation (3.37) of X (or K) can be checked using the symplectic invariant, given by

(B.30) for M-theory and (B.59) for type IIB. Finally, one can check compatibility of the

structures (3.36) using the adjoint action, given by (B.10) for M-theory and (B.39) for

type IIB.

Calabi–Yau manifolds in type IIB

Consider first type IIB on a Calabi–Yau manifold M . The H structure is defined by the

symplectic form ω on M . The decomposition of the adjoint bundle ad F̃ in this case

follows (2.16). The H structure is given by

J+ = 1
2κn

iω − 1
2 iκniω] + 1

12 iκniω ∧ ω ∧ ω + 1
12κn

iω] ∧ ω] ∧ ω],

J3 = 1
2κ τ̂

i
j − 1

4κω ∧ ω + 1
4κω

] ∧ ω],
(3.39)

where the SL(2;R) doublet ni = (−i, 1)i is a section of S, τ̂ = −iσ2 is a section of

(S ⊗ S∗)0, where σ2 is the second Pauli matrix, and the density is simply κ2 = vol6,

where vol6 = 1
3!ω ∧ ω ∧ ω is the volume form on M . Note that J3 can be thought of as a

combination of two U(1) actions embedded in E7(7), the first generated by τ̂ in sl2 and the

second generated by ω ∧ ω − ω] ∧ ω]. Since ω] = ω−1, Jα is completely determined by ω

alone.

Recall that in type IIB the generalised tangent bundle E has a decomposition into

tensors, given in (2.13). For a Calabi–Yau background, the V structure is defined by the

holomorphic three-form Ω simply as

X = Ω. (3.40)

We can also check the compatibility conditions given the form of Jα in (3.39). The adjoint

action (B.39) gives

J+ ·X ∝ −iniω]yΩ + niΩ ∧ ω, J− ·X ∝ −in̄iω]yΩ + n̄iΩ ∧ ω. (3.41)

These vanish if and only if ω ∧ Ω = ω ∧ Ω̄ = 0, from which we recover the standard

compatibility condition for an SU(3) structure.

CY3 × S1 in M-theory

For type IIA compactifications on Calabi–Yau three-folds, the complex structure should

define the H structure. If we add the M-theory circle to this case, we expect the holomorphic

three-form Ω and the complex structure I to appear in Jα – this is indeed the case. Using

the decomposition (2.14), we find

J+ = 1
2κΩ− 1

2κΩ],

J3 = 1
2κ I −

1
16 iκΩ ∧ Ω̄− 1

16 iκΩ] ∧ Ω̄],
(3.42)
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where the density is just the volume form κ2 = vol7 = 1
8 iΩ ∧ Ω̄ ∧ ζ.

The symplectic structure on the Calabi–Yau manifold determines the V structure.

Using the decomposition (2.11), we find

X = ζ] + iω − 1
2ζ ∧ ω ∧ ω − iζ ⊗ vol7 . (3.43)

Using the adjoint action (B.10) and the algebraic conditions ıζ]Ω = 0, ıζ]ω = 0 and

ω ∧ Ω = 0, it is straightforward to show that the compatibility conditions are satisfied.

Generalised Calabi–Yau metrics in type II

This is the case first considered in [181]. The H structure is determined by the SU(3, 3)±

structure pure spinors Φ− and Φ+ in type IIA and type IIB respectively. To see the

embedding it is natural to use the decomposition of E 7(7) under SL(2;R)×O(6, 6). The

adjoint bundle was given in (2.15). The three sets of terms in brackets correspond to the

decomposition 133 = (3,1) + (1,66) + (2,32∓), while the first term is just the singlet

(1,1) generating the R+ action.

The H structure is given by8

J+ = uiΦ∓,

J3 = κ(uiūj + ūiuj)− 1
2κJ

∓,
(3.44)

where the upper/lower choice of sign in Φ∓ gives the type IIA/IIB embedding, and we

have defined

ui =
1

2

(
−iκ

κ−1

)i
∈ Γ((detT ∗M)1/2 ⊗ (R⊕ ∧6TM)), (3.45)

with

κ2 = 1
8 i〈Φ±, Φ̄±〉, (3.46)

where ui = εiju
j , so that uiūi = − i

2 , and we are using the isomorphism ∧±TM '
∧6TM ⊗ ∧±T ∗M . The object J ±, transforming in the O(6, 6) adjoint representation

(1,66), is the generalised complex structure defined in (A.13). It is important to note that

the NS-NS B field is included in the definition of the pure spinors so that the objects Jα

are honest sections of the twisted bundle ad F̃ .

Using the adjoint action and the e7(7) Killing form in section 3 of [181], one can check

that the triplet satisfies the su2 algebra (3.12) and is correctly normalised (3.13). The

embedding reduces to the previous examples in that, for type IIA, the pure spinor Φ−

corresponding to the complex structure embeds in Jα and, for type IIB, we find Jα contains

the symplectic structure. Note that upon taking a conventional symplectic structure, we

expect this to reduce to the type IIB case of section 3.2.4. It is important to note that

the SL(2;R) factor in each case is different: for type IIB it is S-duality, while for the

8Note that with our conventions, the 32∓ component C∓ here is equal to
√

2 times the C∓ used in [181].
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generalised complex structure it is the commutant of the O(6, 6) action. Taking this into

account, it is straightforward to show the two cases match after including a constant SU(2)

rotation of the Jα.

The V structure is determined by the generalised complex structure as [181]

X = Φ±, (3.47)

where the upper/lower choice of sign in Φ± gives the type IIA/IIB embedding. Using

the symplectic invariant in section 3 of [181], rescaled by a factor of 1/4, one can check

this satisfies the normalisation condition (3.37). Notice that upon taking a conventional

complex structure, this does indeed reduce to the case of section 3.2.4.

For J+ in (3.44), the adjoint action in section 3 of [181] gives

J+ ·X ∝ ui〈Φ∓,ΓAΦ±〉, J− ·X ∝ ūi〈Φ̄∓,ΓAΦ±〉. (3.48)

These vanish if 〈Φ±,ΓAΦ∓〉 = 〈Φ̄±,ΓAΦ∓〉 = 0. We recover the compatibility conditions

(A.11) for {Φ+,Φ−} to define an SU(3)× SU(3) structure.

D3-branes on HK× R2 in type IIB

In this case, the hyper-Kähler geometry on M provides a natural candidate for realising

the su2 algebra. Using the structures defined in appendix A.4, we start by defining the

untwisted structure

J̃α = −1
2κ Iα −

1
2κωα ∧ ζ1 ∧ ζ2 + 1

2κω
]
α ∧ ζ

]
1 ∧ ζ

]
2, (3.49)

where κ2 = e2∆ vol6 includes the warp factor. The actual structure is a section of the

twisted bundle ad F̃ , and includes the four-form potential C and two-form potentials Bi

via the adjoint action as in (2.22)

Jα = eB
i+C J̃αe−B

i−C . (3.50)

We see explicitly that H structures can also encode hyper-Kähler geometries.

X essentially defines the structure of the R2 factor, since the hyper-Kähler structure

was already encoded in Jα. We first define the untwisted object

X̃ = n̄ie∆(ζ1 − iζ2) + in̄ie∆(ζ1 − iζ2) ∧ vol4, (3.51)

where ni = (−i, 1)i and 1
2ωα ∧ ωβ = δαβ vol4. The presence of five- and three-form flux

means the actual structure is a section of the twisted bundle E

X = eB
i+CX̃. (3.52)
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We can check the compatibility condition with Jα in (3.49). This can be done using the

twisted or untwisted forms, since the twisting is an E7(7) × R+ transformation. We find

J̃α · X̃ ∝ −n̄iIα · (ζ1 − iζ2)− in̄i(ω]α ∧ ζ
]
1 ∧ ζ

]
2)y
(
(ζ1 − iζ2) ∧ vol4

)
− in̄iIα ·

(
(ζ1 − iζ2) ∧ vol4

)
.

(3.53)

This vanishes as Iα · ζi = Iα · vol4 = 0 and ζ]i yωα = 0.

Wrapped M5-branes on HK× R3 in M-theory

The final example is that of wrapped M5-branes. As discussed in appendix A.5, the

geometry admits two different sets of Killing spinors depending on whether the M5-branes

wrap R2 or a Kähler two-cycle in the hyper-Kähler geometry. These lead to two different

H structures.

Let us consider the Kähler two-cycle case first. Using the structure defined in ap-

pendix A.5, we can define the untwisted H structure as

J̃α = −1
2κ rα + 1

2κω3 ∧ ζα − 1
2κω

]
3 ∧ ζ

]
α

− 1
4κ εαβγζβ ∧ ζγ ∧ vol4−1

4κ εαβγζ
]
β ∧ ζ

]
γ ∧ vol]4,

(3.54)

where κ = e2∆ vol7 and the tensors

rα = εαβγζ
]
β ⊗ ζγ ∈ Γ(TM ⊗ T ∗M), (3.55)

generate the SO(3) rotations on R3. The V structure is defined by the untwisted object

X̃ = e∆Ω + i e∆Ω ∧ vol3, (3.56)

where Ω = ω2 + iω1.

For M5-branes wrapped on R2, the untwisted structures are

J̃α = −1
2κ Iα −

1
2κωα ∧ ζ3 + 1

2κω
]
α ∧ ζ

]
3, (3.57)

where again κ2 = e2∆ vol7, and

X̃ = e∆(ζ]1 + iζ]2) + e∆(ζ1 + iζ2) ∧ ζ3 − e∆(ζ1 + iζ2) ∧ vol4

− i e∆(ζ1 + iζ2)⊗ vol7 .
(3.58)

In both cases there is a non-trivial four-form flux, so that the actual twisted structures

depend on the three-form potential A and, as in (2.18), are given by

Jα = eAJ̃αe−A, X = eAX̃. (3.59)
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It is easy to check that in both cases the algebra (3.12), normalisation and compatibility

conditions are all satisfied.

3.3 Integrability

Having given the algebraic definitions of hyper- and vector-multiplet structures, we now

need to find the differential conditions on them that imply the background is supersym-

metric. Formulations in terms of specific generalised connections have already appeared

in [172,181]. Here we would like to write conditions that use only the underlying differential

geometry, in the same way that dω = dΩ = 0 depends only on the exterior derivative.

The key ingredient will be the action of the group of generalised diffeomorphisms GDiff.

Infinitesimally, this action is generated by the generalised Lie derivative LV , and we will

see that all the conditions are encoded using this operator.

We will show that the hypermultiplet conditions arise as moment maps for the action

of GDiff on the space of structures AH. These maps were already partially identified

in [181]. As we prove in section 3.4, in the language of G-structures, they are equivalent

to requiring that the generalised Spin∗(12) structure is torsion-free. The vector-multiplet

condition similarly implies that the generalised E6(2) structure is torsion-free. Finally we

consider integrability for an HV structure. Given integrable H and V structures, there is

an additional requirement for the generalised SU(6) structure, defined by the pair {Jα,K},
to be torsion-free. In other words, the existence of compatible torsion-free Spin∗(12)

and E6(2) structures is not sufficient to imply that the SU(6) structure is torsion-free.

While not inconsistent with the general G-structure formalism, this is in contrast with

the Calabi–Yau case, where the combination of integrable and compatible symplectic and

complex structures is enough to imply the manifold is Calabi–Yau.

3.3.1 Integrability of the hypermultiplet structure

We now introduce moment maps for the action of generalised diffeomorphisms on the

infinite-dimensional space of H structures. An H structure is then integrable if the

corresponding moment maps vanish.

We denote the group of generalised diffeomorphisms – diffeomorphisms and form-field

gauge transformations – by GDiff. Infinitesimally it is generated by the generalised Lie

derivative LV , where V is a generalised vector, that is, a section of E. Thus roughly we

can identify the Lie algebra gdiff with the space of sections Γ(E). Actually this is not quite

correct since there is a kernel in the map Γ(E)→ gdiff. For example, in M-theory, on a local

patch Ui of M , we see from (B.16) that the component τ ∈ Γ(T ∗Ui ⊗ ∧7T ∗Ui) in V does

not contribute to LV . Similarly, if the components ω ∈ Γ(∧2T ∗Ui) and σ ∈ Γ(∧5T ∗Ui) are

closed they do not contribute. In what follows, it is nonetheless convenient to parametrise

elements of gdiff by V ∈ Γ(E) remembering that this map is not an isomorphism.
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Suppose that σ(x) ∈ AH is a particular choice of H structure parametrised by the

triplet Jα. The change in structure generated by gdiff is δJα = LV Jα, which can be viewed

as an element of the tangent space TσAH. Thus we have a map

ρ : gdiff→ TσAH, (3.60)

such that, acting on the triplet of section-valued functions Jα defined in (3.18), the vector

ρV generates a change in Jα

ρV (Jα) = LV Jα. (3.61)

Given an arbitrary vector field w ∈ TσAH, we have, from (3.21), that

ıρV Ωα(w) = Ωα(ρV , w) = εαβγ

ˆ
M

tr
(
(LV Jβ)wγ

)
. (3.62)

If π ∈ Γ(∧7T ∗M) is a top-form, so that it transforms in the 12 representation of E7(7)×R+,

then by definition ˆ
M
LV π =

ˆ
M
Lvπ = 0, (3.63)

where Lv is the conventional Lie derivative and v ∈ Γ(TM) is the vector component of

the generalised vector V ∈ Γ(E). Using the Leibniz property of LV , we then have

ıρV Ωα(w) = 1
2εαβγ

ˆ
M

tr
[
(LV Jβ)wγ − Jβ(LV wγ)

]
= −1

2εαβγ

ˆ
M

tr
[
wβ(LV Jγ) + Jβ(LV wγ)

]
= ıwδµα(V ),

(3.64)

where δ is the exterior derivative on AH, that is, a functional derivative such that by

definition ıwδJα = wα, and

µα(V ) := −1
2εαβγ

ˆ
M

tr(JβLV Jγ), (3.65)

is a triplet of moment maps. With this result we can define what we mean by an integrable

structure:

Definition. An integrable or torsion-free hypermultiplet structure Jα is one satisfying

µα(V ) = 0 for all V ∈ Γ(E), (3.66)

where µα(V ) is given by (3.65).

As we will show in section 3.4, these conditions are equivalent to Jα admitting a torsion-

free, compatible generalised connection. They are also the differential conditions on Jα

implied by the requirement that the background admits Killing spinors preservingN = 2
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supersymmetry in four dimensions.

3.3.2 Integrability of the vector-multiplet structure

The integrability condition for the vector-multiplet structure K also depends on the

generalised Lie derivative, but in a very direct way. Recall that K ∈ Γ(E), thus we can

consider the generalised Lie derivative along K, namely LK .

Definition An integrable or torsion-free vector-multiplet structure K is one satisfying

LKK = 0, (3.67)

or, in other words, K is invariant under the generalised diffeomorphism generated by itself.

As we will show in section 3.4, these conditions are equivalent to there being a torsion-

free generalised connection compatible with the generalised E6(2) structure defined by

K. Furthermore, it is easy to see that it implies LKK̂ = 0. In addition, using the

results of appendix C, we see that the generalised Lie derivative LXX, where X =

K + iK̂, is identically zero for any vector-multiplet structure K. Hence the integrability

condition (3.67) is equivalent to

LXX̄ = 0. (3.68)

Again, (3.67) is implied by the existence of N = 2 Killing spinors. In section 3.4.3, we will

show that (3.67) is actually equivalent to the vanishing of a moment map for the action of

GDiff on AV.

3.3.3 Exceptional Calabi–Yau structures

Finally, we can consider the integrability conditions for the HV structure, defined by a

compatible pair {Jα,K}.

Definition. An ECY geometry admits an integrable or torsion-free HV structure {Jα,K},
such that Jα and K are separately integrable and in addition

LXJα = 0, (3.69)

or, in other words, the Jα are also invariant under the generalised diffeomorphisms generated

by K and K̂.

As we will show in section 3.4, these conditions are equivalent to there being a torsion-free

generalised connection compatible with the generalised SU(6) structure, defined by {Jα,K}.
Using the results of [143], this implies that these conditions are equivalent to the existence

of N = 2 Killing spinors.
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It is important to note that the pair of compatible and integrable H and V structures

is not enough to imply that the existence of an ECY geometry. This is because there can

be a kernel in the torsion map, as can happen for conventional G-structures.9

3.3.4 Examples of integrable structures

We now return to our examples of supersymmetricN = 2 backgrounds and show in each

case that the relevant integrability conditions (3.66), (3.68) and (3.69) are satisfied. For

the examples of Calabi–Yau in type IIB and CY3 × S1 in M-theory, we show that the

conditions are necessary and sufficient using a decomposition into SU(3) torsion classes.

The torsion classes are more complicated for the other examples, and so we show only

that the supersymmetric backgrounds give examples of integrable structures. Instead, the

equivalence of integrability and N = 2 supersymmetry is shown using generalised intrinsic

torsion in section 3.4.

There are a number of convenient calculational tricks we will use. First note that in the

(J+, J−, J3) basis, the moment map conditions are naturally written as the combinations

µ3 := i
2

ˆ
M

tr(J−LV J+) = 0, µ+ := −i

ˆ
M

tr(J3LV J+) = 0, (3.70)

and LXJα is equivalent to LXJ+ = LXJ− = 0. We also note that, from the form of the

generalised Lie derivative (B.15) and the adjoint projection (B.14) (and the corresponding

expressions (B.44) and (B.43) in type IIB), acting on any generalised tensor α

LV α = Lvα−R · α, (3.71)

where R ∈ Γ(ad F̃ ), R · α is the adjoint action, v is the vector component of V , Lv is the

conventional Lie derivative and

R =

dω + dσ for M-theory,

dλi + dρ+ dσi for type IIB,
(3.72)

where we are using the standard decompositions of V given in (B.6) and (B.35). Using

the identity tr(A[B,C]) = tr(B[C,A]) and the algebra (3.12), this allows us to rewrite the

moment maps (3.65) as

µα(V ) = −1
2εαβγ

ˆ
M

tr
(
Jβ(LvJγ − [R, Jγ ])

)
= −1

2εαβγ

ˆ
M

tr(JβLvJγ)− 2

ˆ
M
κ tr(RJα).

(3.73)

The final tool is that, when the background has flux, it is often useful to write

9See appendix C of [98] for an explicit example of a non-integrable product structure defined by the
product of two compatible, integrable complex structures.
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the conditions using the untwisted structures J̃α and X̃. For this we need the twisted

generalised Lie derivative L̂Ṽ .10 This is just the induced action of LV on untwisted fields,

and is given in (B.25) for M-theory and (B.54) for type IIB. It has the same form as LV

but includes correction terms involving the fluxes due to the p-form potentials. This can

be written as a modified R in (3.73), given by

R̃ =

dω̃ − ıṽF + dσ̃ − ıṽF̃ + ω̃ ∧ F for M-theory

dλ̃i − ıṽF i + dρ̃− ıṽF − εij λ̃i ∧ F j + dσ̃i + λ̃i ∧ F − ρ̃ ∧ F i for type IIB
.

(3.74)

The conditions for integrability on the untwisted structures are simply

µa(Ṽ ) = −1
2εαβγ

ˆ
M

tr
(
J̃βL̂Ṽ J̃γ

)
= 0 ∀Ṽ , L̂X̃

¯̃X = 0, L̂X̃ J̃α = 0. (3.75)

Calabi–Yau in type IIB

Consider first the hypermultiplet structure (3.39). Parametrising Ṽ as in (B.35), we get

conditions for each component ṽ, λ̃i, ρ̃ and σ̃i. From the second term in (3.73), taking

each of the form-field components in turn, we find the non-zero moment maps are

µ+(λ̃i) ∝
ˆ
M
εijn

jκ2ω]ydλ̃i ∝
ˆ
M
εijn

jω ∧ ω ∧ dλ̃i ∝
ˆ
M
εijn

jdω ∧ ω ∧ λ̃i = 0,

µ+(σ̃i) ∝
ˆ
M
εijn

jκ2 vol]6ydσ̃i ∝
ˆ
M
εijn

jdσ̃i = 0,

(3.76)

where we use κ2 = vol6 so κ2ω] ∝ ω ∧ ω, and for ρ̃

µ3(ρ̃) ∝
ˆ
M
κ2(ω] ∧ ω])ydρ̃ ∝

ˆ
M
ω ∧ dρ̃ ∝

ˆ
M

dω ∧ ρ̃ = 0, (3.77)

where we use κ2ω] ∧ ω] ∝ ω. From this we recover dω = 0. For the vector component ṽ

the only non-zero contribution is

µ3(ṽ) ∝
ˆ
M
κω]yLṽ(κω)− Lṽ(κω])y(κω) + κ vol]6yLṽ(κ vol6)− Lṽ(κ vol]6)yκ vol6

∝
ˆ
M

1
2ω ∧ ω ∧ Lṽω + Lṽ vol6 = 0,

(3.78)

which can be seen to vanish using dω = 0, Lṽω = ıṽdω + dıṽω and integrating by parts.

Turning to the conditions onX given by (3.40), from (B.45) only the τ component of

the Dorfman derivative is non-trivial

LXX̄ = jΩ̄ ∧ dΩ = 0. (3.79)

10The nomenclature here is confusing: the twisted generalised Lie derivative acts on untwisted fields.
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Notice that the integrability condition is considerable weaker than requiring an integrable

SL(3;C) structure – it only requires that the (3, 1) part of dΩ vanishes. In the intrinsic

torsion language of [223], only the W5 component is set to zero, so that the underlying

almost complex structure is unconstrained.

The pair {Jα,K} define an integrable generalised SU(6) structure if they are individually

integrable and also satisfy (3.69). From (B.46), we have

LXJ+ ∝ iniω]ydΩ− niω ∧ dΩ = 0,

LXJ3 ∝ −1
2(ω] ∧ ω])ydΩ− j(ω] ∧ ω])yjdΩ + 1

21(ω] ∧ ω])ydΩ = 0,
(3.80)

which sets the remaining type-(2 , 2) components of dΩ to zero. Taken together, we have

dω = dΩ = 0, as expected.

CY3 × S1 in M-theory

Consider first the hypermultiplet structure (3.42). Parametrising Ṽ as in (B.6), the form

field components ω̃ and σ̃ in the second term in (3.73) give the non-zero moment maps

µ+(ω̃) ∝
ˆ
M
κ2Ω]ydω̃ ∝

ˆ
M
ζ ∧ Ω ∧ dω̃ ∝

ˆ
M

d(ζ ∧ Ω) ∧ ω̃ = 0,

µ3(σ̃) ∝
ˆ
M
κ2(Ω] ∧ Ω̄])ydσ̃ ∝

ˆ
M
ζ ∧ dσ̃ ∝

ˆ
M

dζ ∧ σ̃ = 0,

(3.81)

which give dζ = 0 and ζ ∧ dΩ = 0 as conditions, and where we have used κ2Ω] ∝ ζ ∧ Ω

and κ2Ω] ∧ Ω̄] ∝ ζ. In the intrinsic torsion language of [224], this fixes the components

{W1,W2,W5} and {R, V1, T1,W0} to zero. The vector contribution is

µ3(ṽ) ∝
ˆ
M
κ Ω̄]yLṽ(κΩ) + Lṽ(κΩ])y(κ Ω̄)

∝
ˆ
M
ζ ∧ Ω̄ ∧ LṽΩ + ζ ∧ Ω ∧ LṽΩ̄

∝
ˆ
M
ıṽζ dΩ ∧ Ω̄ = 0,

(3.82)

where we have used
´
Lṽκ2 = 0 and the previous conditions to reach the final line. This

fixes the torsion class E to zero.

Turning to the conditions on X given by (3.43), upon using the algebraic relations we

find (3.68) simplifies to dω ∧ ω = 0, which requires the torsion classes {W4, E + Ē, V2, T2}
to vanish. Notice that this is weaker than requiring an integrable Sp(6;R) structure. One

can also explicitly check that (3.67) and (3.68) constrain the same torsion classes, and that

LXX = 0 vanishes identically.

Finally, we have the additional condition that ensures the HV structure is integrable

and so defines an ECY geometry (3.69). Upon imposing the previous conditions, this

forces the remaining torsion classes to vanish. Taken together, we find ζ, ω and Ω are
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closed, and that ζ] is a Killing vector

Lζ]ω = 0, Lζ]Ω = 0. (3.83)

Generalised Calabi–Yau metrics in type II

Throughout we will use the expressions given in appendix B of [181], generalised to describe

both type IIA and IIB. The generalised vector decomposes as V = v + Λ + Λ̃ + τ + Λ±

where v is a vector, Λ a one-form, Λ̃ a five-form, τ is a one-form density and Λ± are sums

of even or odd forms. From the eB+B̃+C± action we conclude that in the splitting (3.73)

we have

R = dΛ + (dΛ̃)1...6v
ivj + vidΛ±, (3.84)

where vi = (1, 0), dΛ acts as a “B-transform”, and the upper sign refers to type IIA and

the lower to type IIB. Thus in the moment maps for Jα given in (3.44), we have the

non-zero contributions, using the trace formula given in section 3.1 of [181] and uivi = κ−1,

µ+(Λ±) ∝
ˆ
M
〈dΛ±,Φ∓〉 ∝

ˆ
M
〈Λ±,dΦ∓〉 = 0, (3.85)

and

µ3(Λ) ∝
ˆ
M
〈Φ∓, dΛ ∧ Φ∓〉 ∝

ˆ
M
〈dΦ∓,Λ ∧ Φ∓〉+ 〈Φ∓,Λ ∧ dΦ∓〉 = 0,

µ3(Λ̃) ∝
ˆ
M

dΛ̃ = 0,

(3.86)

where in the first line we have used the expression (A.13) for J ±AB . From these we recover

dΦ∓ = 0. For the vector component we have

µ3(v) ∝
ˆ
M
εij〈ūiΦ̄∓,Lv(uiΦ∓)〉 ∝

ˆ
M
〈Φ̄∓,LvΦ∓〉 = 0, (3.87)

where we have used the identity εij ū
iLvuj = 0. Using LvΦ∓ = ıvdΦ∓ + dıvΦ

∓ and

integration by parts, we see that this indeed vanishes.

For the conditions involving X given by (3.47), using (3.73) we have

LXα ∝ (vidΦ±) · α = 0, (3.88)

where α is any generalised tensor, · is the relevant adjoint action and we have imposed

dΦ± = 0. Hence (3.68) and (3.69) are both satisfied.

D3-branes on HK× R2 in type IIB

We have a non-trivial five-form flux F in this case, so it is convenient to use the untwis-

ted structures and twisted generalised Lie derivative. Focussing on J̃α given in (3.49),
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from (3.73) and (3.74), the only non-zero form-field contribution to the moment maps is

µα(ρ̃) ∝
ˆ
M
κ2(ω]α ∧ ζ

]
1 ∧ ζ

]
2)ydρ̃ ∝

ˆ
M

e2∆ωα ∧ dρ̃ ∝
ˆ
M

d
(
e2∆ωα

)
∧ ρ̃ = 0. (3.89)

We recover d(e2∆ωα) = 0. The ṽ condition is considerably more complicated and involves

the five-form flux F through the term ıṽF in (3.74). After some manipulation, using in

particular that εαβγ tr(IβLvIγ) = −εαβγ(ω]βyLvωγ), one finds

µα(ṽ) ∝
ˆ
M

e2∆ωα ∧ ıṽF + 2 e2∆εαβγd∆ ∧ ωβ ∧ ıṽωγ ∧ ζ1 ∧ ζ2. (3.90)

This vanishes for d∆ = −1
4 ? F , or more precisely it fixes the components of d∆ that are

transverse to ζ1,2.

For X̃ given in (3.51) and using (3.74), acting on any untwisted generalised tensor α̃

we have

L̂X̃ α̃ = −R̃ · α̃ = 0, (3.91)

since we have

R̃ = n̄id
(
e∆(ζ1 − iζ2)

)
+ in̄id

(
e∆(ζ1 − iζ2) ∧ vol4

)
+ n̄ie∆(ζ1 − iζ2) ∧ F = 0. (3.92)

We have used d(e∆ζi) = 0 and d(e4∆ vol4) = 0 so that the last two terms simplify to

4i d∆ ∧ (ζ1 − iζ2) ∧ vol4 = (ζ1 − iζ2) ∧ F, (3.93)

which vanishes for d∆ = −1
4 ? F , or more precisely it fixes the components of d∆ that are

in the direction of ζ1,2. Hence the conditions (3.68) and (3.69) are both satisfied.

We also note that it is simple to extend our description to include imaginary self-dual

three-form flux, as first considered in [225–227] and analysed in detail in the case of

hyper-Kähler manifolds times R2 in [228]. The metric, five-form flux and axion-dilaton

are of the same form as for our example, but the warp factor is no longer harmonic and

there is a non-zero three-form flux on M

F 1 + iF 2 = dγI(z) ∧ τI , (3.94)

where γI(z) are analytic functions of z = x+ iy, and τI are harmonic anti-self-dual two-

forms on the hyper-Kähler space. The moment maps are altered only in the ρ̃ component,

thanks to the −εij λ̃i ∧ F j contribution to R̃ in the presence of three-form flux, giving a

term ˆ
M

(λ̃1 ∧ ωα ∧ F 2 − λ̃2 ∧ ωα ∧ F 1), (3.95)

which vanishes as the wedge product of a self-dual two-form ωα with an anti-self-dual

two-form τI is zero. The L̂X̃ expression is also altered thanks to the same correction,
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giving an extra term

εijn̄
i(ζ1 − iζ2) ∧ F j = −(ζ1 − iζ2) ∧ (F 1 − iF 2). (3.96)

But this also vanishes as F 1 + iF 2 = γ′I(z)dz ∧ τI , and dz = e−∆(ζ1 + iζ2). Hence we still

have L̂X̃ α̃ = 0 for any tensor α̃.

Wrapped M5-branes on HK× R3 in M-theory

In both cases we have a non-trivial four-form flux F , and so it is convenient to use untwisted

structures and the twisted generalised Lie derivative.

We first consider M5-branes wrapping a Kähler two-cycle in the hyper-Kähler. Using

the form of J̃α given in (3.54), together with (3.73) and (3.74), the contribution to the

moment maps from σ̃ is

µα(σ̃) ∝
ˆ
M
κ2εαβγ(vol]4 ∧ζ

]
β ∧ ζ

]
γ)ydσ̃ ∝

ˆ
M

e2∆ζα ∧ dσ̃ ∝
ˆ
M

d(e2∆ζα) ∧ σ̃. (3.97)

We recover d(e2∆ζi) = 0 for i = 1, 2, 3. The terms in the moment maps due to ω̃ are

µα(ω̃) ∝
ˆ
M

1
2εαβγκ

2(vol]4 ∧ζ
]
β ∧ ζ

]
γ)y(ω̃ ∧ F )− κ2(ω]3 ∧ ζ

]
α)ydω̃

∝
ˆ
M

e2∆ζα ∧ F ∧ ω̃ + 1
2εαβγd(e2∆ω3 ∧ ζβ ∧ ζγ) ∧ ω̃.

(3.98)

This vanishes upon using the expressions for the flux F = e−4∆ ?d(e4∆ω3) and the exterior

derivatives of the ζi. Again, the ṽ condition is more complicated and involves the four-form

flux F through the term ıṽF in (3.74). After some manipulation, one finds

µα(ṽ) ∝
ˆ
M

12d∆ ∧ vol4 ∧ζα ∧ (ζ1 ∧ ıṽζ1 + ζ2 ∧ ıṽζ2 + ζ3 ∧ ıṽζ3)

+ εαβγω3 ∧ ζβ ∧ ζγ ∧ ıṽF
(3.99)

Again, this vanishes after imposing the conditions from (A.28).

Now consider the conditions that depend on X̃. For X̃ given in (3.56), acting on any

untwisted generalised tensor α̃ we have

LX̃ α̃ = −R̃ · α̃, (3.100)

where R̃ is given by

R̃ = d(e∆Ω) + d(i e∆Ω ∧ vol3) + e∆Ω ∧ F. (3.101)
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But R̃ itself vanishes as
d(e∆Ω) = 0,

d(i e∆Ω ∧ vol3) + e∆Ω ∧ F = 0,
(3.102)

where we have used the expressions for the flux F and the torsion conditions on ωα and ζi

from (A.28). Hence, both (3.68) and (3.69) are satisfied.

Next we consider M5-branes wrapping anR2 plane in R3. Using the form of J̃α given

in (3.57), together with (3.73) and (3.74), the non-zero form-field contribution to the

moment maps is

µα(ω̃) ∝
ˆ
M
κ2(ω]α∧ζ

]
3)ydω̃ ∝

ˆ
M

e2∆ωα∧ζ1∧ζ2∧dω̃ ∝
ˆ
M

d(e2∆ωα∧ζ1∧ζ2)∧ω̃. (3.103)

This vanishes after using the expressions in (A.31). Again, the ṽ condition is more

complicated and involves the four-form flux F through the term ıṽF in (3.74). After some

manipulation, one finds

µα(V ) =

ˆ
M

12εαβγe2∆d∆ ∧ ωβ ∧ vol3 ∧ıṽωγ − 4e2∆ωα ∧ ζ1 ∧ ζ2 ∧ ıṽF. (3.104)

This vanishes for ?F = e−4∆d(e4∆ζ1 ∧ ζ2), or more precisely it fixes the components of d∆

that are transverse to ζ1,2,3.

For X̃ given in (3.58), acting on any untwisted generalised tensor α̃ we have

LX̃ α̃ = L
e∆(ζ]1+iζ]2)

α̃− R̃ · α̃, (3.105)

where R̃ is given by

R̃ = d
[
e∆(ζ1 + iζ2) ∧ ζ3

]
− e∆(ζ]1 + iζ]2)yF − d

[
e∆(ζ1 + iζ2) ∧ vol4

]
+ e∆(ζ1 + iζ2) ∧ ζ3 ∧ F.

(3.106)

But R̃ vanishes as
d(e∆ζ1 ∧ ζ3) = 0,

ζ]1yF = 0,

d(e∆ζ1 ∧ vol4)− e∆ζ1 ∧ ζ3 ∧ F = 0,

(3.107)

with similar expressions for ζ2. The generalised Lie derivative along X̃ then reduces to the

Lie derivative along e∆(ζ]1 + iζ]2), and we note that ∆ does not depend on the coordinates

x or y, so that ζ]1,2yd∆ = 0. It is then simple to check that the Lie derivative along

e∆(ζ]1 + iζ]2) preserves both ¯̃X and Jα, and so both (3.68) and (3.69) are satisfied.
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3.4 Generalised intrinsic torsion, supersymmetry and mod-

uli spaces

In this section, we analyse the integrability conditions for the hyper- and vector-multiplet

structures using the notion of generalised intrinsic torsion, first introduced in generality

in [143] and for a specific heterotic extension of O(d, d)×R+ generalised geometry in [140].

This will allow us to do two things: first to show that each integrability condition is

equivalent to the existence of a torsion-free generalised connection compatible with the

relevant structure, and second to prove, using the results of [143], that the full set of

conditions defining an ECY geometry are equivalent to solving the N = 2 Killing spinor

equations.

We then show that the integrability conditions have a simple interpretation in terms

of rewriting the full ten- or eleven-dimensional supergravity theory in terms of anN = 2,

D = 4 gauged supergravity coupled to an infinite number of hyper- and vector-multiplets,

as considered in [123, 181, 193]. Finally we discuss some general aspects of the moduli

spaces of structures.

3.4.1 Generalised intrinsic torsion and integrability

We start by recalling the definition of generalised intrinsic torsion given in [143]. Let

P̃G ⊂ F̃ be a principal sub-bundle of the generalised frame bundle F̃ defining a generalised

G-structure. It is always possible to find a generalised connection D̂ that is compatible

with P̃G, however in general it will not be torsion-free. Recall that the generalised torsion

T of D̂ is defined, given any generalised tensor α and generalised vector V ∈ Γ(E), by [137]

T (V ) · α = LD̂V α− LV α, (3.108)

where the torsion is viewed as a map T : E → ad F̃ and T (V ) acts in the adjoint represent-

ation on α. Here LD̂V is the generalised Lie derivative with the partial derivative replaced

with the covariant derivative D̂, that is, acting on any generalised tensor α,

LD̂V α = (V · D̂)α− (D̂ ×ad V ) · α. (3.109)

Let W ⊂ E∗ ⊗ ad F̃ be the space of generalised torsions. For E7(7) × R+ generalised

geometry, we have [137]

W ' E∗ ⊕K, (3.110)

where the dual generalised tangent bundle E∗ transforms as 56−1 and K is the generalised

tensor bundle corresponding to the 912−1 representation. For other Ed(d) × R+ groups

the representations appearing in W are listed in [137].

By definition, any other generalised connection D̂′ compatible with P̃G can be written
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as D̂′ = D̂ + Σ, where

Σ = D̂ − D̂′ ∈ Γ(KG), with KG = E∗ ⊗ ad P̃G. (3.111)

We then define a map τ : KG →W as the difference of the torsions of D̂ and D̂′,

τ(Σ) = T − T ′ ∈ Γ(W ). (3.112)

In general, the map τ will not fill out the whole of W . Defining the image

WG = im τ ⊆W, (3.113)

we can then define the space of the generalised intrinsic torsion, in exact analogy to

ordinary geometry, as the part of W not spanned by WG, that is

WG
int = W/WG. (3.114)

Given any G-compatible connection D̂, we say that the generalised intrinsic torsion TGint, of

the generalised G-structure P̃G, is the projection of the torsion T onto WG
int. By definition

this is independent of the choice of D̂. It is the part of the torsion that cannot be changed

by varying our choice of compatible connection.

The intrinsic torsion TGint is the obstruction to finding a connection which is simultan-

eously torsion-free and compatible with the generalisedG-structure. Hence, if it vanishes

we say that P̃G is an integrable or torsion-free generalised G-structure.

Intrinsic torsion for hypermultiplet structures

Let us calculate the intrinsic torsion for a Spin∗(12) structure. Decomposing W under

SU(2)× Spin∗(12) we have11

W = 56 + 912 = 2(2,12) + (1,32) + (3,32) + (1,352) + (2,220), (3.115)

while for the space of Spin∗(12) connections we have

KSpin∗(12) =
(
(2,12)+(1,32)

)
×(1,66) = (2,12)+(2,220)+(1,32)+(1,352). (3.116)

This implies WSpin∗(12) ⊆ (2,12) + (1,32) + (1,352) + (2,220). Using the explicit form

of the map τ , we can show that this is actually an equality, hence

W
Spin∗(12)
int = (2,12) + (3,32). (3.117)

We will now show that the triplet of moment maps constrain the same representations.

11Since calculating intrinsic torsion reduces to linear algebra at a point in the manifold, in what follows
we do not distinguish between vector bundles and their representations.
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Since D̂ is compatible with the Spin∗(12) structure, by definition D̂Jα = 0. Using (3.108)

and (3.109), and integrating by parts to move D̂ from V to Jα, we have

µα(V ) ∝ εαβγ
ˆ
M

tr
(
Jβ
(
(V · D̂)Jγ − [(D̂ ×ad V ), Jγ ]− [T (V ), Jγ ]

))
∝
ˆ
M
κ tr
(
JαT (V )

)
+ κ tr

(
Jα(D̂ ×ad V )

)
∝
ˆ
M
κ tr
(
Jα T

Spin∗(12)
int (V )

)
+

ˆ
M

1
2T

Spin∗(12)
int (Jα · V ) · κ2,

(3.118)

where the second term in the last line comes from the torsion of D̂ when evaluating

the total derivative in the integration by parts. We have also used the fact that the

expression is independent of the choice of compatible connection D̂ and so only depends

on the intrinsic torsion T
Spin∗(12)
int . We see that the moment maps vanish if and only

if the (3,1) component of T
Spin∗(12)
int (V ) vanish for all V . Recall that V transforms in

the 56 = (2,12) + (1,32) representation. Given the decomposition (3.117), we see that

the (3,1) component of T
Spin∗(12)
int (V ) vanishes if and only if both the (2,12) and (3,32)

components of the intrinsic torsion vanish. Thus the vanishing of the moment maps is

equivalent to the existence of a torsion-free Spin∗(12) structure.

Intrinsic torsion for vector-multiplet structures

Repeating the analysis for vector-multiplet structures by decomposing under E6(2), we

have

W = 56 + 912 = 1 + 2 · 27 + 78 + 351 + c.c., (3.119)

while for the space of E6(2) connections we have

KE6(2)
= (1 + 27 + c.c.)× 78 = 27 + 78 + 351 + 1728 + c.c. (3.120)

This implies WE6(2)
⊆ 27 + 78 + 351 + c.c. Using the explicit form of the map τ , we can

show again that this is actually an equality, hence

W
E6(2)

int = 1 + 27 + c.c. (3.121)

We will now show that the LKK = 0 condition is equivalent to vanishing generalised

intrinsic torsion. Using (3.108), (3.109) and D̂K = 0, we have

LKK = LD̂KK − T (K) ·K = −TE6(2)

int (K) ·K. (3.122)

Since K is a singlet under E6(2) and LKK is a generalised vector transforming in the

56 = 1+27+c.c. representation, this condition implies that the 1+27+c.c. components of

T
E6(2)

int vanish. However, these are precisely the components in the intrinsic torsion (3.121).

Thus the vanishing of LKK is equivalent to the existence of a torsion-free E6(2) structure.
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Intrinsic torsion for HV structures

It was shown in [143, 144] that solutions of the N = 2 Killing spinor equations are in

one-to-one correspondence with torsion-free SU(6) structures. We now show that the full

set of integrability conditions on compatible pairs of structures {Jα,K} are equivalent

to vanishing SU(6) intrinsic torsion and hence to solutions of the N = 2 Killing spinor

equations.

Explicitly we have, decomposing under SU(2)× SU(6),

W = 56 + 912 = (1,1) + 2(1,15) + (1,21) + (1,35) + (1,105)

+ 3(2,6) + (2,20) + (2,84) + (3,1) + (3,15) + c.c.
(3.123)

From the analysis in [143] we have

W
SU(6)
int = (2,1)× (S + J) + c.c.

= (1,1) + (3,1) + 2(2,6) + (1,15) + (3,15) + (2,20) + c.c.,
(3.124)

where S+J = 8 + 56 = (2,1) + 2(1,6) + (2,15) + (1,20) are the representations in which

the Killing spinor equations transform. Note that we can also decompose the hyper- and

vector-multiplet intrinsic torsions as

W
Spin∗(12)
int = (2,6) + (3,1) + (3,15) + c.c.,

W
E6(2)

int = (1,1) + (2,6) + (1,15) + c.c.
(3.125)

Since the (2,20) is missing from these decompositions, it is immediately clear that having

an integrable hypermultiplet structure Jα and a compatible integrable vector-multiplet

structure K is not sufficient to imply we have an integrable SU(6) structure.

As we will now see, the missing components are set to zero by the extra conditions

LXJα = 0. As before, given an SU(6)-compatible generalised connection, from (3.108),

(3.109) and D̂K = D̂Jα = 0 we have

LXJα = LD̂XJα − [T (X), Jα] = −[T
SU(6)
int (X), Jα]. (3.126)

Since X is a singlet under SU(6) and LXJα transforms in the 133 representation, we see

that LXJα indeed includes the missing (2,20) component. In appendix C, we calculate

which components of the intrinsic torsion appear in which of the three supersymmetry

conditions (3.118), (3.122) and (3.126). The results are summarised in table 3.4.1.

We see that collectively the three integrability conditions on {Jα,K} are equivalent to

solving the N = 2 Killing spinor equations. Since an SU(6)-compatible connection is a

special case of both a Spin∗(12)- and an E6(2)-compatible connection, this decomposition

also provides a direct proof that there are indeed no unexpected kernels in the τ map in

these two cases, and that µα = 0 and LKK are equivalent to the existence of a torsion-free
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W
SU(6)
int component

Integrability condition (1,1) (3,1) (2,6) (2,6)′ (1,15) (3,15) (2,20)

µα = 0 × × ×
LKK = 0 × × ×
LXJα = 0 × × × × ×

Table 3.2: The components of the generalised intrinsic torsion W
SU(6)
int appearing in each

of the N = 2 supersymmetry conditions.

Spin∗(12) and E6(2) generalised structure respectively.

We also see that certain components of W
SU(6)
int appear in multiple conditions. The

µα(V ) and LKK conditions are complementary. However the LXJα condition shares

components with each of the other conditions. The relation between (1,1) components

comes from taking LX of the second compatibility condition in (3.35) and using LXX = 0

tr(JαLXJβ + JβLXJα) = −1
2 i s(X,LXX̄) δαβ, (3.127)

while the relation between (2,6)′ components comes from taking LX of the first condition

in (3.35)

(LXJα) ·K + Jα · LXK = 0. (3.128)

The relation between the (3,1) and (3,15) components arises from evaluating the moment

maps on X

µα(X) = −1
2εαβγ

ˆ
M

tr(JβLXJγ). (3.129)

Let us end this section by briefly noting how the conventional SU(3) intrinsic torsion,

which vanishes for type II Calabi–Yau backgrounds, embeds into the generalised case. The

combined SU(8) spinor (3.6) defines two different embeddings of Spin(6) ' SU(4)± ⊂ SU(8):

one for type IIA and one for type IIB, corresponding to the decompositions 8 = 4 + 4

and 8 = 4 + 4 respectively. There are hence two different embeddings of SU(3)± ⊂ SU(6),

giving the embeddings of the torsion classes defined in [223] for type IIA

W1 : 1C ⊂ (3,1), W2 : 8C ⊂ (3,15), W3 : 6 ⊂ (2,20),

W4 : 3 ⊂ (2,6)′, W5 : 3 ⊂ (2,6),
(3.130)

and for type IIB

W1 : 1C ⊂ (3,1), W2 : 8C ⊂ (2,20), W3 : 6 ⊂ (3,15),

W4 : 3 ⊂ (2,6), W5 : 3 ⊂ (2,6)′,
(3.131)

which in each case is consistent with the analysis of section 3.3.4.
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3.4.2 Supersymmetry conditions from gauged supergravity

As we have already noted, there is a natural physical interpretation of the spaces of hyper-

multiplet and vector-multiplet structures. We can view them as arising from a rewriting

of the full ten- or eleven-dimensional theory as in [146] but with only eight supercharges

manifest [123,181,193]. The local SO(9, 1) Lorentz symmetry is broken and the degrees

of freedom can be repackaged into N = 2, D = 4 multiplets. However, since all modes

are kept – there is no Kaluza–Klein truncation – the vector- and hypermultiplet spaces

AV and AH become infinite dimensional. As previously argued for N = 1 backgrounds in

O(6, 6) generalised geometry in [195] and in E7(7) generalised geometry in [136,181,182],

the integrability conditions can be similarly interpreted in a four-dimensional language.

The interactions of the four-dimensional theory are encoded in the gauging of isometries

on AH and AV, together with the concomitant moment maps, as summarised in [194].

From the form (3.65) of the hyper-Kähler moment maps, we see that we are gauging

generalised diffeomorphisms. The general conditions, coming from the vanishing of the

gaugino, hyperino and gravitino variations, for the four-dimensional theory to admit a

supersymmetric N = 2 Minkowski vacuum have been analysed in [196,197]. As we now

show, these translate directly into the three integrability conditions for Jα and K.

Recall that the scalar components of the hypermultiplets describe a quaternionic-Kähler

space. Let AH be the associated hyper-Kähler cone. Similarly, the scalar components

of the vector multiplets describe a local special Kähler space. Let AV be the associated

rigid special Kähler cone. The gauging is a product of an action of a group GH on the

quaternionic-Kähler space and of a group GV on the local special Kähler space, that each

preserve the corresponding structures. These can always be lifted to an action on AH that

preserves the triplet of symplectic forms and commutes with the SU(2) action on the cone,

and an action on AV that preserves the Kähler form and complex structure and commutes

with the U(1) action on the cone. Following [197], the conditions for a Minkowski vacuum

in a generic gauged N = 2 theory, lifted to AH and AV, can be written as

Θλ
Λµα,λ = 0, XΛΘλ

Λk
u
λ = 0, X̄ΛΘ̂λ̂

Λk̂
i
λ̂

= 0. (3.132)

Here λ parametrises the Lie algebra gH of GH while λ̂ parametrises the Lie algebra gV of GV,

and kλ and k̂λ̂ are the corresponding sets of vector fields generating the actions on AH and

AV (see also appendix E.1). The label u is a coordinate index on AH and i is a holomorphic

coordinate index on AV, so that k̂λ̂ is actually the holomorphic part of the real vector

generating the action. The µα,λ are a triplet of moment maps µα : AH → g∗H. As discussed

in appendix E.1, the complex vector XΛ is a particular non-zero holomorphic vector on AV,

written in flat coordinates, that defines the special Kähler geometry and also generates the

C∗ action on the cone. The indices Λ denote components in the natural flat coordinates

on AV. The matrices Θλ
Λ and Θ̂λ̂

Λ are the corresponding embedding tensors [229,230].

Let us now translate this formalism into the geometrical objects defined previously when
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AH and AV are the infinite-dimensional spaces of hyper- and vector-multiplet structures.

In this case, the gauging is by generalised diffeomorphisms GH = GV = GDiff. Recall that

we parametrised the Lie algebra gdiff by sections V ∈ Γ(E) even though there was actually

a kernel in this map. Furthermore, from (3.29), we saw that generalised vectors defined

flat coordinates on AV. Thus we can identify the embedding tensors with the map

Θ = Θ̂: Γ(E)→ gdiff. (3.133)

The vectors kλ and k̂λ̂ generate the action of GDiff on AH and AV, so we can view them

as maps

k : gdiff→ Γ(TAH), k̂ : gdiff→ Γ(TAV). (3.134)

Hence we can identify the composite maps k◦Θ and k̂◦Θ̂, acting on an arbitrary generalised

vector V , with

V ΣΘλ
Σkλ = LV Jα,

V ΣΘ̂λ̂
Σk̂λ̂ = LVX.

(3.135)

From appendix E.1, note that k̂ ◦ Θ̂ is just the set of generators XΛΞ
Σ acting on X.

Thus, as first noted in [140], in the infinite-dimensional gauging, we can identify a generic

combination of generators V ΛXΛΞ
Σ with the generalised Lie derivative LV . Similarly we

have

V ΣΘλ
Σµα,λ = µα(V ). (3.136)

Finally, recall from the discussion in section 3.2.2 that our notation is consistent and

the holomorphic vector field XΛ is indeed the complexified vector-multiplet structure

X = K + iK̂. Thus the three conditions (3.132) are precisely

µα(V ) = 0 for all V , LXJα = 0, LX̄X = 0. (3.137)

We see that the integrability conditions on the structures have a very simple inter-

pretation in terms of the gauged supergravity. This analysis is useful when looking for

integrability conditions in other situations, in particular the backgrounds in D = 5 and

D = 6 with eight supercharges which we discuss in later sections.

3.4.3 Moduli spaces

In this section, we will discuss some simple aspects of the moduli spaces of H, V and ECY

structures. In the Calabi–Yau case, these come from deformations of the complex and

symplectic structures. For example in type IIA, the H-structure moduli space describes

the complex moduli together with harmonic three-form potentials C, while the V-structure

moduli space describes the Kähler moduli. The main point here is that the H and V moduli

spaces appear as hyper-Kähler and symplectic quotients respectively, and so by construction

describe quaternionic and special Kähler geometries as required by supersymmetry.
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Moduli space of hypermultiplet structures

We have already seen that the differential conditions (3.66) that define integrable H

structures can be viewed as the vanishing of a triplet of moment maps for the action of the

generalised diffeomorphism group GDiff on the space AH. Acting on the moment maps

with the vector field ρW ∈ Γ(TAH), corresponding to an element of gdiff labelled by W ,

we have, using integration by parts and Leibniz,

ıρW δµα(V ) = −1
2εαβγ

ˆ
M

tr
[
(LWJβ)(LV Jγ) + JβLV (LWJγ)

]
= −1

2εαβγ

ˆ
M

tr
(
Jβ(LLVWJγ)

)
= µα(LVW ),

(3.138)

where we have used (3.63) and the Leibniz property. However the Lie bracket on gdiff is

[LV , LW ] = LLVW = LJV,W K, (3.139)

where JV,W K is the antisymmetric Courant bracket for E7(7) × R+ [136, 137]. Thus we

see that the moment maps (3.65) are equivariant. Since any two structures that are

related by a generalised diffeomorphism – a combination of diffeomorphism and gauge

transformation — are physically equivalent, the moduli space of integrable structures is

naturally a hyper-Kähler quotient, defined as

MH = AH///GDiff = µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/GDiff. (3.140)

By construction MH is also hyper-Kähler.

The space of structures AH is actually a hyper-Kähler cone, and for the quotient space

to also be a hyper-Kähler cone one needs to take the zero level set12 of the moment maps, as

we do, and ensure that the GDiff action commutes with the SU(2) action on the cone. We

can check that this is indeed that case. Under the SU(2) action we have δJα = εαβγθβJγ ,

or, in other words, the action is generated by a triplet of vectors ξα ∈ Γ(TAH) such that

ξα(Jβ) = εαβγJγ . (3.141)

Acting on the section-valued functions Jα, we see the Lie bracket is given by

[
ρV , ξ

α
]
(Jβ) = LV (εαβγJγ)− εαβγLV Jγ = 0. (3.142)

Hence the action of GDiff does indeed commute with the SU(2) action. This means that

MH is also a hyper-Kähler cone [208], and we identify the physical moduli space with the

base of the cone MH/H∗. By construction, as required by supersymmetry, this space is

12More generally, one requires that the level set is invariant under the SU(2) action.
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quaternionic-Kähler.

It is worth noting that the action of GDiff on µ−1
1 (0)∩µ−1

2 (0)∩µ−1
3 (0) is not generally

free. For example, in a type IIB Calabi–Yau background, the integrable structure Jα, given

in (3.39), is invariant under symplectomorphisms. Thus we expect that the moduli space

MH is not generically a manifold, but has a complicated structure as a union of hyper-

Kähler spaces [231]. We could still try to calculate the dimension ofMH in a neighbourhood

by considering the linear deformation away from a point σ ∈ AH corresponding to an

integrable structure Jα. The variation of the moment maps is just δµα, where δ is the

exterior derivative on AH, while the infinitesimal generalised diffeomorphisms are generated

by LV . We can identify gdiff with Γ(E) and TσAH with sections of a bundle ad P̃⊥Spin∗(12)

as in (3.20). We then have the exact sequence of maps

Γ(E)
L•Jα−−−→ Γ(ad P̃⊥Spin∗(12))

δµα−−→ Γ(E∗)⊗ R3.

Again, this is complicated by the existence of fixed points. From our examples, it appears

that generically the sequence is not elliptic, and hence the moduli space is not finite-

dimensional.

Moduli space of vector-multiplet structures

For the vector-multiplet structures we need to understand the constraint LKK = 0 on the

space of structures AV and again mod out by generalised diffeomorphisms. It turns out

that the integrability condition can again be interpreted as the vanishing of a moment map

as we now describe. In fact, this reformulation is not specific to this infinite-dimensional set

up, but applies to any flat, supersymmetric vacuum of gauged N = 2, D = 4 supergravity,

giving a new interpretation of the conditions derived in [196,197].

We have argued that from a gauged supergravity perspective the condition LKK

arises from a gauging of the generalised diffeomorphism group on AV. As discussed in

appendix E.1, there are a number of requirements of the action of the gauge group on

AV for it to preserve the special Kähler structure. First it must leave the symplectic

form invariant. Let ρV ∈ Γ(TAV) be the vector field on AV generating the action of a

generalised diffeomorphism parametrised by V ∈ Γ(E). Recall that the structure K can be

viewed as a coordinate on AV, as given in (3.29), thus associating TKAV ' Γ(E) we have

ρV = LVK ∈ Γ(TAV). (3.143)

Given an arbitrary vector field W ∈ Γ(TAV) we have, from (3.31), that

ıρV Ω(W ) = Ω(ρV ,W ) =

ˆ
M
s(LVK,W ). (3.144)
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Using (3.63) and the Leibniz property of LV we have

ıρV Ω(W ) = 1
2

ˆ
M
s(LVK,W )− s(K,LVW )

= −1
2

ˆ
M
s(W,LVK) + s(K,LVW )

= ıW δµ(V ),

(3.145)

where δ is the exterior derivative on AV and µ(V ) is a the moment map

µ(V ) := −1
2

ˆ
M
s(K,LVK). (3.146)

Thus the action of GDiff preserves the symplectic structure on AV.

Acting on the moment map by the vector field ρW , corresponding to an element of

gdiff labelled by W , we have

ıρW δµ(V ) = −1
2

ˆ
M
s(LWK,LVK) + s(K,LV LWK)

= −1
2

ˆ
M
s(K,LLVWK)

= µ(LVW ),

(3.147)

where we have used (3.63) and the Leibniz property. Thus from the Lie bracket (3.139)

on gdiff we see that the moment map (3.146) is equivariant. We also see, using (3.32)

and (3.63), that the Hitchin functional H is invariant under the action of ρV , since

LρVH = ρV (H) =

ˆ
M

(LVK)M
∂

∂KM

√
q(K) =

ˆ
M
LV
√
q(K) = 0. (3.148)

In addition, ρV = LVK is clearly linear inK and so maps flat coordinates to flat coordinates.

This is enough to show that the GDiff action also preserves the complex structure. Finally

recall that the coordinate KM (x) can also be regarded as the components of a vector field

and that the C∗ action on AV is generated by X = K + iK̂ = K− iI ·K ∈ Γ(TAV), where

I is the complex structure on AV. As a vector field we have LρVK = [ρV ,K] = 0 and

so, since LρV I = 0, we have [ρV , X] = 0 and hence the action of GDiff on AV commutes

with the C∗ action. These means that this gauging satisfies all the conditions necessary to

preserve the special Kähler structure.

We now show that the condition LKK = 0 is actually equivalent to the vanishing of the

moment map µ(V ) for all V . To do this we first note some identities using (B.16), (B.30)

and (3.63)

Ω(V,LV V ) = 1
4

ˆ
M
Lv(ıvτ) + 1

3d(ω3) + d(ıvω ∧ σ)− d(ıvσ ∧ ω) ≡ 0,

Ω(U,LVW )− Ω(W,LV U) =

ˆ
M
LV s(U,W ) ≡ 0.

(3.149)

77



Under the identification of V ΛXΛΞ
Σ with LV , these are just the representation con-

straint (E.13) and the first constraint of (E.12). These imply

µ(V ) = −1
2Ω(K,LVK) = Ω(V,LKK) =

ˆ
M
s(V,LKK), (3.150)

and hence we have the alternative definition for the integrability of K:

Definition. An integrable or torsion-free E7(7) vector-multiplet structure K is one satis-

fying

µ(V ) = 0 for all V ∈ Γ(E), (3.151)

where µ(V ) is given by (3.146).

This reformulation is actually generic for any gauged N = 2, D = 4 theory as we now

show. Using (E.9) and (E.11), we see that the third condition of (3.132) can be rewritten

as

X̄ΛΘ̂λ̂
Λk̂

i
λ̂
(∂iX

Γ)ΩΣΓ = X̄ΛXΛΞΣX
Ξ = 1

2XΛΞΣX
ΞX̄Σ = 2Θ̂λ̂

Λµλ̂, (3.152)

where we have used the identities (E.12), (E.13) and (E.14). We see that the condition

X̄ΛΘ̂λ̂
Λk̂

i
λ̂

= 0 is generically equivalent to the vanishing of the moment map µλ̂ = 0.

This reformulation gives a simple realisation of the moduli space of vector-multiplet

structures. Since any two structures related by a generalised diffeomorphism are equivalent,

it is naturally given by the symplectic quotient

MV = AV//GDiff = µ−1(0)/GDiff. (3.153)

By construction MV is also special Kähler. In fact it is a cone over a local special Kähler

space, as required by supersymmetry. As usual for symplectic quotients of Kähler spaces,

we can also viewMV as a quotient by the complexified groupMV = AV/GDiffC. As for

the case of hypermultiplet structures, generically GDiff does not act freely on µ−1(0) and

hence MV is not necessarily a manifold, but rather has a stratified structure [232].

Moduli space of ECYs

Finally we consider the moduli space of ECYs. We first define the space of compatible HV

structures, though without the restriction on the norms. Formally, this is

A = {(Jα,K) ∈ AH ×AV : Jα ·K = 0}. (3.154)

The moduli space of ECYs is then given by

M = {(Jα,K) ∈ A : µα = 0, µ = 0, LXJα = 0, κ2 = −2
√
q(K)}/GDiff. (3.155)

The reason for dropping the norm compatibility condition from the definition of A is that

it then has a fibred structure as we now discuss. One can imagine first choosing K and
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then Jα subject to the condition Jα ·K = 0, or vice versa. At each point x ∈M , we can

then view the coset E7(7)/SU(6) as a fibration in two different ways:

Spin∗(12)/SU(6) E7(7)/SU(6)

E7(7)/Spin∗(12)

E6(2)/SU(6) E7(7)/SU(6)

E7(7)/E6(2)

(3.156)

In both cases the fibres admit the appropriate geometry. Thus we can use exactly the same

construction as in sections 3.2.1 and 3.2.2 to define the corresponding infinite-dimensional

spaces of structures as hyper-Kähler and special Kähler manifolds. If we label these AJV
for the space of V structures given a fixed H structure Jα, and AKH for the space of H

structures given a fixed V structure K, the space A then has two different fibrations:

AJV A

AH

AKH A

AV

(3.157)

Even with this fibred structure on A, the structure of the moduli space M appears to

be very complicated. Nonetheless, N = 2 supergravity implies that it should become a

product of the hyper- and vector-multiplet moduli spaces. Let us now comment on how

this might translate into conditions on our structures. The product structure suggests

that, at least locally, the moduli space of hypermultiplet structures is independent of the

choice of vector-multiplet structure, and vice versa. One is tempted to conjecture that

M =MK
H ×MJ

V, (3.158)

with MK
H and MJ

V given by the quotients

MK
H = AKH ///GDiffK , MJ

V = AJV//GDiffJ , (3.159)

where GDiffK ⊂ GDiff is the subset of generalised diffeomorphisms preserving K and

GDiffJ ⊂ GDiff is the subset preserving Jα. The point here is that AKH and AJV admit

moment maps for GDiffK and GDiffJ respectively, in complete analogy to section 3.3. For

this to work the spaces MK
H and MJ

V must (locally) be independent of the choice of K

and Jα respectively.

We end with a few further comments. First, using the results of [143], the integrability

conditions on K and Jα are equivalent to the Killing spinor equations, and we identically

satisfy the Bianchi identities by defining the structure in terms of the gauge potentials.

We then recall that for warped backgrounds of the form (3.1), the Killing spinor equations

together with the Bianchi identities imply the equations of motion [98, 105, 143, 233].

Consequently, since the equations of motion onM are elliptic, the moduli spaceM must
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always be finite dimensional.

The second point relates to the generalised metric G. Recall that this defines an

SU(8) ⊂ E7(7) × R+ structure and encodes the bosonic fields of the supergravity theory,

restricted to M , along with the warp factor ∆ [135,137]. Since SU(6) ⊂ SU(8), the HV

structure {Jα,K} determines the generalised metric G. Given a Lie subalgebra g we can

decompose e7(7) ⊕ R = g⊕ g⊥. Decomposing into SU(2)× SU(6) representations we find

spin∗12
⊥ = (1,1) + (2,6) + (2, 6) + (2,20) + (3,1),

e6(2)
⊥ = 2(1,1) + (1,15) + (1,15) + (2,6) + (2,6),

su8
⊥ = (1,1) + (1,15) + (1,15) + (2,20),

su6
⊥ = 2(1,1) + (1,15) + (1,15) + (2,6) + (2,6) + (2,20) + (3,1).

(3.160)

Thus the deformations of {Jα,K} that do not change the generalised metric G are those

in the (1,1) + (2,6) + (2,6) + (3,1) representations. The first and last are the U(1) and

SU(2) symmetries acting on K and Jα respectively. It is easy to see that the moment maps

vanish only for constant rotations. The remaining (2,6) + (2,6) deformations correspond

to deforming the Killing spinors for a fixed background. If such solutions exist, they imply

that the background actually admits more supersymmetries than the N = 2 our formalism

picks out. We also note that these deformations appear in both the deformations of K

and Jα, and are related through the constraint Jα · K = 0. Thus we conclude that if

the background is honestly N = 2, then, up to a global SU(2) × U(1) rotation, there

is a unique structure {Jα,K} for each generalised metric G and, infinitesimally, we can

consider independent Jα and K deformations. This gives some credence to the conjecture

that the moduli space takes the form (3.158).

Finally we note that the conditions LXX̄ = LXJα = 0 imply that

LXG = 0, (3.161)

and so K and K̂ are generalised Killing vectors. This means there is a combination of

diffeomorphism and gauge transformations under which all the supergravity fields are

invariant. Hence, locally, one can always choose a gauge in which LX = Lv, where v is the

vector component of X. If the metric g has no conventional Killing vectors, then v = 0

and the integrability conditions involving X are equivalent to

LX(anything) = 0, (3.162)

independent of the choice of Jα, as we saw happen explicitly in a number of our examples.

In this case, an alternative approach to calculating M is to solve (3.162) and the moment

map conditions on Jα independently, impose the compatibility conditions, and then

quotient by GDiff.
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3.5 Ed(d) structures for D = 5, 6 supersymmetric flux back-

grounds

In this section we consider generic D = 5, 6 type II and M-theory flux backgrounds

preserving eight supercharges. In complete analogy with the D = 4 case, they define a pair

of integrable generalised structures, though now in E6(6) for N = 1, D = 5 backgrounds

and E5(5) ' Spin(5, 5) for N = (1, 0), D = 6 backgrounds. In both cases there is a H

structure naturally associated to hypermultiplet degrees of freedom. In D = 5 there is

also a V structure, though now the space of structures admits a very special real geometry

rather than a special Kähler geometry, in line with the requirements of N = 1, D = 5

gauged supergravity. In D = 6 we find the second structure is naturally associated to

N = (1, 0) tensor multiplets.

Since much of the analysis follows mutatis mutandis the D = 4 case, we will be

relatively terse in summarising the constructions.

3.5.1 E6(6) hyper- and vector-multiplet structures

For compactifications to D = 5, the relevant generalised geometry [137, 138] has an action

of E6(6) × R+. The generalised tangent bundle transforms in the 27′
1 representation and

decomposes under the relevant GL(d) group as (2.11) or (2.13), where the one-form density

terms are not present. The adjoint bundle transforms in the 10 + 780 representation and

decomposes as in (2.14) or (2.16), where the doublet of six-forms and six-vectors are not

present for type IIB. In both type II and M-theory, the spinors transform under the USp(8)

subgroup of E6(6) × R+. For N = 1 backgrounds in D = 5, the single Killing spinor is

stabilised by a USp(6) subgroup.

Structures and invariant tensors

The E6(6) generalised G-structures are defined as follows.

Definition Let G be a subgroup of E6(6). We define

• a hypermultiplet structure is a generalised structure with G = SU∗(6)

• a vector-multiplet structure is a generalised structure with G = F4(4)

• an HV structure is a generalised structure with G = USp(6)

As before, an H structure is defined by a triplet of sections Jα of a weighted adjoint bundle,

as in (3.11), such that they transform in the 783/2 representation of E6(6)×R+ and define

a highest weight su2 subalgebra of e6(6). The algebra and norms of the Jα are the same as

for the D = 4 case, given in (3.12) and (3.13). A V structure is defined by a generalised

vector13

K ∈ Γ(E), such that c(K,K,K) 6= 0, (3.163)

13There are two distinct E6(6) orbits preserving F4(4), distinguished by the sign of c(K,K,K) [216].
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where c is the E6(6) cubic invariant given in (B.29) and (B.58). Compatibility between

the vector- and hypermultiplet structures implies that the common stabiliser group

SU∗(6) ∩ F4(4) of the pair {Jα,K} is USp(6). The necessary and sufficient conditions are

Jα ·K = 0,

tr(JαJβ) = −c(K,K,K) δαβ,
(3.164)

where · is the adjoint action. Note that the second condition implies K is in the orbit

where c(K,K,K) > 0. They are equivalent to

J+ ·K = 0, c(K,K,K) = κ2, (3.165)

respectively, where κ is the factor appearing in (3.12). If the HV structure is integrable,

we again say it defines an ECY geometry since in M-theory it is the flux generalisation of

a compactification on a Calabi–Yau three-fold.

As with the D = 4 case, the infinite-dimensional space of H structures AH is the space

of smooth sections of a bundle over M with fibre W = E6(6) × R+/SU∗(6). This fibre is a

hyper-Kähler cone over a pseudo-Riemannian Wolf space [207]

W/H∗ = E6(6)/(SU∗(6)× SU(2)). (3.166)

The hyper-Kähler geometry on AH is again inherited directly from the hyper-Kähler

geometry on W . The details follow exactly the D = 4 case in section 3.2.1 upon exchanging

the relevant groups.

The infinite-dimensional space of V structures

AV = {K ∈ Γ(E) : c(K,K,K) > 0} (3.167)

can also be viewed as the space of smooth sections of a bundle over M with fibre P =

E6(6) × R+/F4(4). It admits a natural (rigid) very special real metric, which again is

inherited from the very special real metric on the homogeneous-space fibres.14 The

Riemannian symmetric spaces that admit (local) very special real metrics were analysed

in [236] and include the case E6(−26)/F4. Here we need a pseudo-Riemannian form based

on E6(6), where the relevant space is again a prehomogeneous vector space [222]

P/R+ = E6(6)/F4(4). (3.168)

The geometry on AV can be constructed as follows. Consider a point K ∈ AV. Given

u, v, w ∈ TKAV ' Γ(E), the fibre-wise cubic invariant c defines a cubic form on AV by

C(u, v, w) =

ˆ
M
c(u, v, w), (3.169)

14For reviews of very special real geometry see for example [234,235].
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where, since sections of E are weighted objects, we have c(u, v, w) ∈ Γ(detT ∗M) and

hence it can be integrated over M . The metric on AV is then defined as the Hessian of

C(K,K,K)

CMN =
δC

δKMδKN
. (3.170)

In these expressions we are using the flat coordinates on AV defined by the vector-space

structure of Γ(E). On any rigid very special real geometry there is a global R+ symmetry,

such that the quotient space is, by definition, a local very special real geometry. On AV,

the action of R+ is constant rescaling of the invariant tensor K. As for the hypermultiplet

structure, the R+ action is simply a physically irrelevant constant shift in the warp

factor ∆. Modding out by the symmetry, the physical space of structures AV/R+ is an

infinite-dimensional local very special real space.

In analogy with the D = 4 discussion of [123, 181, 193], we can view AV/R+ and

the quaternionic-Kähler base of AH as the infinite-dimensional spaces of vector- and

hypermultiplet degrees of freedom, coming from rewriting the full ten- or eleven-dimensional

supergravity theory as a five-dimensional N = 1 theory.

Integrability

The integrability conditions for the E6(6) generalised G-structures again arise from gauging

the generalised diffeomorphism group, and are almost identical to those in D = 4 given

in (3.66), (3.67) and (3.69), namely

µα(V ) = 0 for all V ∈ Γ(E), (3.171)

LKK = 0, (3.172)

LKJα = 0. (3.173)

In each case they are equivalent to the structure admitting a torsion-free, compatible

generalised connection: if the first condition holds, Jα defines a torsion-free SU∗(6)

structure; if the second condition holds, K defines a torsion-free F4(4) structure; if all

three conditions are satisfied, {Jα,K} define a torsion-free USp(6) structure. In the latter

case, using the results of [143], this implies that these conditions are equivalent to the

existence of an N = 1 Killing spinor. Again, the pair of compatible and integrable H and

V structures is not enough to imply that the HV structure is integrable.

Note that the condition LKK = 0 can be written in an equivalent form as follows.

Using the results and notation of [137], we have

LKK = LKK − JK,KK = ∂ ×E (K ×N K) = dK ′, (3.174)

where K ′ is the exterior derivative K ′ = δC ∈ Γ(E∗ ⊗ detT ∗M), on AV, of the invariant
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W
USp(6)
int component

Integrability condition (1,1) (3,1) (2,6) (2,6)′ (1,14) (3,14) (2,14′)

µα = 0 × × ×
LKK = 0 × × ×
LKJα = 0 × × × × ×

Table 3.3: The components of the generalised intrinsic torsionW
USp(6)
int appearing in each

of the N = 1, D = 5 supersymmetry conditions.

functional C(K,K,K). The condition (3.172) is then simply

dK ′ = 0. (3.175)

For example in M-theory, if K = v + ω + σ then

K ′ = ıvω+ıvσ− 1
2ω∧ω+jω∧σ− 1

4jσ∧ω ∈ Γ(T ∗M⊕∧4T ∗M⊕T ∗M⊗∧6T ∗M), (3.176)

and the conditions are simply

dK ′ = d(ıvω) + d(ıvσ − 1
2ω ∧ ω) = 0. (3.177)

To see that these differential conditions constrain the generalised intrinsic torsion for

the different generalised structures, we start by noting that for E6(6) × R+ generalised

geometry the space of generalised torsions is [137]

W = 27 + 351′. (3.178)

Repeating the analysis of section 3.4, we find, decomposing under SU(2)× SU∗(6),

W
SU∗(6)
int = (2,6) + (3,15), (3.179)

while decomposing under F4(4)

W
F4(4)

int = 1 + 26. (3.180)

The intrinsic torsion components of an HV or USp(6) structure, decomposed under

SU(2)×USp(6), along with which integrability conditions they constrain, are summarised

in table 3.5.1. We note that it is equal to (2,1)× (S + J), where S + J = 8 + 48 is the

USp(8) representation in which the Killing spinor equations transform. From the results

of [137], we see that, again, the Killing spinor equations are equivalent to the differential

conditions for an ECY or integrable USp(6) structure.

As in the D = 4 case, the integrability conditions have a direct interpretation in terms
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of D = 5 gauged supergravity. Following [197], the conditions for a Minkowski vacuum in

a generic gauged N = 1 theory can be written as15

Θλ
Iµα,λ = 0, hΛΘλ

Λk
u
λ = 0, hΛΘ̂λ̂

Λk̂
i
λ̂

= 0. (3.181)

The only difference compared with the D = 4 case is that the vector hΛ is now the

coordinate vector in the real special geometry on AV, written in flat coordinates, which

here we identify with K. The three conditions (3.181) then translate directly into the

three integrability conditions (3.171)–(3.173).

We can again consider the moduli spaces of structures. The integrability conditions

for the H structure are identical to those in D = 4, and again the moduli space is a

hyper-Kähler quotient, exactly as discussed in section 3.4.3. The arguments leading to the

identification of the moduli space of V structures are also similar to those of D = 4, and

so we simply summarise the relevant observations and results.

As discussed in [238], rigid very special real geometry requires the existence of a flat

torsion-free connection ∇̂ preserving a metric tensor Cmn that, with respect to the flat

coordinates, can be written as the Hessian of a cubic function C. For us, the vector-space

structure of Γ(E) defines natural flat coordinates on AV and the cubic function is given

by (3.169). The function is invariant under the action of generalised diffeomorphisms, and

since ρV = LVK is linear in K, it maps flat coordinates to flat coordinates. Thus GDiff

preserves the very special real structure. Furthermore, we observe that given an integrable

structure K such that LKK = 0, any other choice of structure related to K by the action

of GDiff is automatically integrable too. This means that integrability of the structure

is well defined under equivalence by GDiff, so that both the very special real structure

and the integrability condition descend to the quotient space. Thus the moduli space of

integrable vector-multiplet structures is

MV = {K ∈ AV : LKK = 0}/GDiff, (3.182)

which, as the R+ action generated by K commutes with GDiff, is a rigid very special real

space. As required by supersymmetry, it is a cone over a local very special real space. The

moduli space of ECYs is again more complicated, though all the comments made in the

D = 4 case also apply here.

Example: Calabi–Yau manifold in M-theory

Just for orientation, we consider the simplest example of a generalised USp(6) structure,

namely M-theory on a six-dimensional Calabi–Yau manifold M . In fact, assuming M has

only an SU(3) structure, supersymmetry implies that the metric is Calabi–Yau and that

15Note that the third condition comes from the term in W xAB proportional to εAB [237], which was
assumed to vanish in [197].
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the warp factor ∆ and four-form flux F vanish [239,240]. The goal here is to see how these

conditions arise from the integrability conditions on the H and V structures.

The untwisted H and V structures are encoded by Ω and ω respectively. We have

J̃+ = −1
2κΩ + 1

2κΩ],

J̃3 = 1
2κI −

1
16 iκΩ ∧ Ω̄− 1

16 iκΩ] ∧ Ω̄],
(3.183)

where I is the almost complex structure (A.4) and the E6(6)-invariant volume is κ2 =

e3∆ vol6, while

K̃ = −e∆ω. (3.184)

It is easy to check, using the expressions in appendix B, that Jα generate an su2 algebra

and that the structures satisfy the correct normalisation and compatibility conditions,

given (A.2). As previously, the actual structure will include the three-form potential A via

the adjoint action: Jα = eAJ̃αe−A and K = eAK̃. In what follows it will be easiest to use

the untwisted forms with the twisted Dorfman derivative in the differential conditions.

The hypermultiplet structure is integrable if the triplet of moment maps vanish. We

start with µ3. The moment map is a sum of terms that depend on arbitrary ṽ, ω̃ and σ̃.

Considering each component in turn we find

µ3(σ̃) ∝
ˆ
M
κ2(Ω̄] ∧ Ω])ydσ̃ ∝

ˆ
M

e3∆dσ̃ ∝
ˆ
M

d(e3∆) ∧ σ̃, (3.185)

µ3(ω̃) ∝
ˆ
M
κ2(Ω̄] ∧ Ω])y(ω̃ ∧ F ) ∝

ˆ
M

e3∆ω̃ ∧ F. (3.186)

These imply d∆ = F = 0. Using the fact that ∆ is constant, the ṽ component of µ3 and

the ω̃ component of µ+ simplify to

µ3(ṽ) ∝
ˆ
M
κ2(Ω̄]yLṽΩ− Ω]yLṽΩ̄) ∝

ˆ
M

e3∆(ıṽΩ̄ ∧ dΩ− ıṽΩ ∧ dΩ̄),

µ+(ω̃) ∝
ˆ
M

e3∆Ω ∧ dω̃ ∝
ˆ
M

e3∆dΩ ∧ ω̃.

The first requires the (3, 1) component of dΩ to vanish or, in the language of [223], the

W5 component of the SU(3) torsion is set to zero, while the second vanishes if and only

if dΩ vanishes, that is, W1 = W2 = W5 = 0. Finally, the σ̃ component of µ+ vanishes

identically, while the ṽ term vanishes if F vanishes. Together, we see that the integrability

of the hypermultiplet structure requires a constant warp factor, a vanishing four-form flux

and that Ω is closed.

For the V structure we have

L̂K̃K̃ = −ω ∧ dω = 0, (3.187)

which requires the W4 component of the SU(3) torsion to vanish. Note that requiring K
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to define a integrable F4(4) structure is considerably weaker than the condition for ω to

define an integrable symplectic structure. Finally, the LKJα = 0 condition required for an

integrable USp(6) structure is equivalent to

L̂KJ+ ∝ jΩ]yjdω − 1
31Ω]ydω − dω ∧ Ω = 0. (3.188)

One can show this vanishes if and only if dω vanishes, that is W1 =W3 =W4 = 0.

We have shown that for this restricted SU(3) ansatz, integrability of the generalised

USp(6) structure requires M to be Calabi–Yau, that is dω = dΩ = 0, with a constant

warp factor and a vanishing four-form flux.

3.5.2 E5(5) hyper- and tensor-multiplet structures

For compactifications to D = 6 the relevant generalised geometry [137,138] has an action

of E5(5) × R+ ' Spin(5, 5)× R+. The generalised tangent bundle transforms in the 161

representation and decomposes under the relevant GL(d) group as (2.11) or (2.13), where

the doublet of five-forms are not present for type IIB and the one-form density terms are

not present for type IIB or M-theory. The adjoint bundle transforms in the 10 + 450

representation and decomposes as in (2.14) or (2.16), where the six-forms and six-vectors

are not present for type IIB or M-theory. In both type II and M-theory, spinors transform

under a USp(4) × USp(4) ' Spin(5) × Spin(5) subgroup of E5(5) × R+. For N = (1, 0)

backgrounds, the Killing spinor is stabilised by an SU(2)×USp(4) subgroup.

Structures and invariant tensors

The E5(5) generalised G-structures are defined as follows.

Definition. Let G be a subgroup of E5(5). We define

• a hypermultiplet structure is a generalised structure with G = SU(2)× Spin(1, 5)

• a tensor-multiplet structure is a generalised structure with G = Spin(4, 5)

• an HT structure is a generalised structure with G = SU(2)×USp(4)

As before, the H structure is defined by a triplet of sections Jα of a weighted adjoint

bundle, as in (3.11), such that they transform in the 452 representation of E5(5) ×R+ and

define a highest weight su2 subalgebra. The algebra and norms of the Jα are the same as

for the D = 4 case, given in (3.12) and (3.13).

The T or tensor-multiplet structure is new. It is defined by choosing a section of

the bundle N transforming in the 102 representation of E5(5) × R+. For M-theory on a

five-dimensional manifold M ,

N ' T ∗M ⊕ ∧4T ∗M, (3.189)
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while for type IIB on a four-dimensional manifold M it is

N ' S ⊕ ∧2T ∗M ⊕ S ⊗ ∧4T ∗M. (3.190)

The invariant generalised tensor for a Spin(4, 5) structure is a section of N :

Q ∈ Γ(N) such that η(Q,Q) > 0, (3.191)

where η is the SO(5, 5) metric given in (B.28) and (B.57).

A pair of compatible structures define an SU(2)×USp(4) structure and satisfy

Jα ·Q = 0,

tr(JαJβ) = −η(Q,Q) δαβ,
(3.192)

where · is the adjoint action. They are equivalent to

J+ ·Q = 0, (3.193)

and the normalisation condition

η(Q,Q) = κ2, (3.194)

respectively, where κ is the factor appearing in (3.12). If the HT structure is integrable,

we again say it defines an ECY geometry since it preserves eight supercharges and is

the analogue of the corresponding structures in D = 4 and D = 5. In this case, there is

no example without flux that is a Calabi–Yau space so the nomenclature is somewhat

misleading, although the simplest flux example discussed in section 3.5.2 does have an

underlying Calabi–Yau two-fold.

As before, the infinite-dimensional space of H structures AH is the space of smooth

sections of a bundle over M with fibre W = E5(5) × R+/(SU(2)× Spin(1, 5)). This fibre is

a hyper-Kähler cone over a pseudo-Riemannian Wolf space [207]16

W/H∗ = SO(5, 5)/(SO(4)× SO(1, 5)). (3.195)

The hyper-Kähler geometry on AH is again inherited directly from the hyper-Kähler

geometry of W . The details of this exactly follow the D = 4 case in section 3.2.1 upon

exchanging the relevant groups.

The infinite-dimensional space of T structures

AT = {Q ∈ Γ(N) : η(Q,Q) > 0} (3.196)

can also be viewed as the space of smooth sections of a homogeneous-space bundle

16Recall E5(5) ' Spin(5, 5), Spin(4) ' SU(2)× SU(2) and USp(2) ' SU(2), and note we have not been
careful here to keep track of any discrete group factors.
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ZT over M with fibre P = E5(5) × R+/Spin(4, 5) ' SO(5, 5) × R+/SO(4, 5) ' R5,5. It

admits a natural flat metric, which again is inherited from the flat metric on the fibres

P . In N = (1, 0) gauged supergravity, the scalar fields in the tensor multiplets describe

Riemannian geometries of the form SO(n, 1)/SO(n), where the cone over this space is just

flat Rn,1 [241]. Here our fibres P are isomorphic to R5,5 with a flat pseudo-Riemannian

metric, with the base of the cone given by the hyperboloid

P/R+ = SO(5, 5)/SO(4, 5), (3.197)

where the R+ action is just the overall scaling. The flat metric is given by the quadratic

form on AT

Σ(v, w) =

ˆ
M
η(v, w), (3.198)

where v, w ∈ Γ(TQAT) ' Γ(N), and since sections of N are weighted objects, we have

η(v, w) ∈ Γ(detT ∗M) and hence it can be integrated over M . The flat metric on AT is

simply Σ. On AT, the action of R+ is constant rescaling of the invariant tensor Q. As

for the hypermultiplet structure, the R+ action is simply a reparametrisation of the warp

factor ∆. Modding out by the symmetry, the physical space of structures AT/R+ is an

infinite-dimensional hyperbolic space.

As in the discussion of [123, 181, 193], we view AT/R+ and the quaternionic-Kähler

base of AH as an infinite-dimensional spaces of tensor- and hypermultiplet degrees of

freedom, coming from rewriting the full ten- or eleven-dimensional supergravity theory as

a six-dimensional N = (1, 0) theory.

Integrability

The integrability conditions again arise from gauging the generalised diffeomorphism group

and, for the H structures, are identical to those in D = 4, 5 given in (3.66), namely

µα(V ) = 0 for all V ∈ Γ(E), (3.199)

which is equivalent to the structure admitting a torsion-free, compatible generalised

connection.

The integrability condition for the T structure Q is new and does not require the

generalised Lie derivative. Instead, it appears in much the same way as the integrability of

the pure spinors Φ± describing generalised complex structures in O(d, d)×R+ generalised

geometry. Recall that the usual derivative operator ∂ embeds in E∗ which transforms in

the 16c−1 representation of Spin(5, 5). We can use the 16c−1 × 102 → 161 action to form

the projection E∗ ⊗N → E, given in (B.22) and (B.51). This means there is a natural

action of d on Q which results in a generalised vector, and furthermore, in this case, it is

covariant. We then have
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Definition. An integrable or torsion-free tensor-multiplet structure Q is one satisfying

dQ = 0, (3.200)

or in other words Q is closed under the exterior derivative.

These conditions are equivalent to there being a torsion-free generalised connection com-

patible with the generalised Spin(4, 5) structure defined by Q. We can also consider the

integrability conditions for the HT generalised structure defined by the compatible pair

{Jα, Q}.

Definition. An ECY geometry admits an integrable or torsion-free HT structure {Jα, Q}
such that Jα and Q are separately integrable. There are no further conditions.

In contrast to the case of compatible V and H structures, the existence of a pair of

compatible and integrable H and T structures is enough to imply that the HT structure

is integrable. These conditions are equivalent to there being a torsion-free generalised

connection compatible with the generalised SU(2)×USp(4) structure defined by {Jα, Q}.
Using the results of [143], this implies that the conditions are equivalent to the existence

of an N = (1, 0) Killing spinor.

To see that these differential conditions constrain the appropriate generalised intrinsic

torsion for the different generalised structures, we start by noting that for E5(5) × R+

generalised geometry the space of generalised torsions is [137]

W = 16c + 144c. (3.201)

Repeating the analysis of section 3.4, we find, decomposing under SU(2)×SU(2)×Spin(1, 5)

where the first factor is the SU(2) generated by Jα,

W
SU(2)×Spin(1,5)
int = (2,1,4c) + (3,2,4), (3.202)

while decomposing under Spin(4, 5)

W
Spin(4,5)
int = 16. (3.203)

The intrinsic torsion components of an HT or SU(2)×USp(4) structure, decomposed under

SU(2) × SU(2) × USp(4), along with which integrability conditions they constrain, are

summarised in table 3.5.2. We note that the intrinsic torsion is equal to (2,1,1)×(S−+J−),

where S− + J− = (1,4) + (5,4) are the USp(4) × USp(4) representations in which the

Killing spinor equations transform for N = (1, 0) supersymmetry [143]. Again, from the

results of [137], the Killing spinor equations are equivalent to the differential conditions

for an integrable SU(2)×USp(4) structure.

As in the D = 4 and D = 5 cases, the integrability conditions have a interpretation

in terms of D = 6 gauged supergravity as we now sketch. The gauging of D = 6
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W
SU(2)×USp(4)
int component

Integrability condition (1,2,4) (2,1,4) (2,1,4)′ (3,2,4)

µα = 0 × ×
dQ = 0 × ×

Table 3.4: The components of the generalised intrinsic torsion W
SU(2)×USp(4)
int appearing in

each of the N = (1, 0), D = 6 supersymmetry conditions.

supergravity coupled to tensor-, vector- and hypermultiplets using the embedding tensor

formalism is discussed in the context of “magical supergravities” in [242]. The conditions

for a supersymmetric Minkowski background coming from the vanishing of the gaugino

variations read17

Θλ
Λµα,λ = 0, LIθΛ

I = 0. (3.204)

The key difference compared with the D = 4 case is that the vector LI is now the coordinate

vector on the flat tensor-multiplet spaceAT. Note that the first condition was previously

discussed in [197]. In making the translation to the integrability conditions we note that

LI corresponds to Q, while the matrix θΛ
I is a map

θ : Γ(N)→ Γ(E), (3.205)

which we can identify with the action of the exterior derivative d discussed above, so that

LIθI = dQ. (3.206)

Hence the conditions (3.204) are precisely (3.199) and (3.200). Note that there are number

of conditions on θΛ
I , as well as on the intertwiner between Γ(N), Γ(E) and Γ(E∗), related

to the tensor hierarchy and necessary for the supersymmetry algebra to close. It would

be interesting to see how these are satisfied by the exterior derivative d in the infinite-

dimensional case. The fact that the geometry on each fibre SO(5, 5)× R+/SO(4, 5) of the

homogeneous-space bundle ZT is a pseudo-Riemannian variant of that appearing in one of

the magical supergravity theories suggests that the structure will essentially be inherited

fibre-wise.

The moduli spaces in this case are much the same as the previous examples we have

seen. The moduli space of H structures is again as discussed in section 3.4.3. The space of

T structures AT admits a flat geometry, defined by the metric Σ. Again, the vector-space

structure of Γ(N) defines natural flat coordinates on AT and hence a flat connection

that, by definition, preserves Σ. GDiff preserves the flat structure, and furthermore an

17Note we use a different index notation from [242] to match the notation used in D = 4 and D = 5.
Also, the first term in (3.204) comes contracted with a matrix mΣΛ in the gaugino variation, but using the
fact that m2 ∝ (LILI)1 we see that this term can only vanish if the first term in (3.204) vanishes.
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integrable structure Q remains integrable under the action of GDiff. Thus the moduli

space of integrable tensor-multiplet structures is

MT = {Q ∈ AT : dQ = 0}/GDiff, (3.207)

which is again flat. As required by supersymmetry, it is a cone over a hyperbolic space.

As for the previous cases, generically GDiff does not act freely on AT and hence MT is

not necessarily a manifold. The moduli space of ECYs is again more complicated, though

all the comments made in the D = 4 case also apply here.

Example: NS5-branes on a hyper-Kähler space in type IIB

The standard NS5-brane solution is a warped product of six-dimensional Minkowski space

with a flat four-dimensional transverse space and preserves sixteen supercharges [243].

Exchanging the flat transverse space for a four-dimensional hyper-Kähler space breaks

supersymmetry further, leaving eight supercharges [77]. Thus, we expect it can be

formulated as an integrable SU(2) × USp(4) structure within E5(5) × R+ generalised

geometry. The metric takes the standard form (3.1) with D = 6, and the four-dimensional

space M admits an SU(2) structure, with a triplet of two-forms ωα as in (A.19), and a

canonical volume form 1
2ωα∧ωβ = δαβ vol4. The solution also has non-trivial NS-NS three-

form flux H and dilaton φ, but the warp factor ∆ is zero. The solution is supersymmetric

if the SU(2) structure and three-form flux satisfy [77,98]

d(e−2φωα) = 0, ?H = −e2φd(e−2φ). (3.208)

Recall that in type II theories there are two types of ten-dimensional spinors. The NS5-brane

solutions are an example of a pure NS-NS geometry preserving eight supercharges where

the preserved Killing spinors are all of one type: they have ∇+ special holonomy in the

language of [98]. As such they cannot be described by generalised complex structures [111].

For this reason it is interesting to see how they do appear in the E5(5) × R+ generalised

geometry. (Note that we described the same solution wrapped on R2 in E7(7) × R+

generalised geometry in terms of the wrapped M5-brane background of appendix A.5.)

Embedding in type IIB, the H structure is determined by the ωα, such that the

untwisted objects are

J̃α = −1
2κIα + 1

2κu
iωα + 1

2κv
iω]α, (3.209)

where (Iα)mn = −(ωα)mn is the triplet of almost complex structures, ui = (−1, 0) and

vi = (0,−1), and κ2 = e−2φ vol4 is the E5(5)-invariant volume. The untwisted T structure

depends only on the volume form and dilaton through

Q̃ = ui + e−2φvi vol4, (3.210)
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where u and v are the same as above. It is easy to check from the results of appendix B that

the Jα generate an su2 algebra, and that the normalisation and compatibility conditions are

satisfied. The NS-NS three-form flux H embeds in the first component of F i3 (see (2.23)).

Thus, as previously, the actual structures will include the NS-NS two-form potential via

the adjoint action: Jα = eB
1
J̃αe−B

1
and Q = eB

1
Q̃. In what follows it will be easiest to

use the untwisted forms with the twisted Dorfman derivative in the differential conditions.

For the moment maps the λ̃i terms give

µα(λ̃i) ∝
ˆ
M

e−2φωα ∧ dλ̃1, (3.211)

which vanishes for d(e−2φωα) = 0, completely fixing the intrinsic torsion of the underlying

SU(2) structure. Using this condition, the ṽ terms simplify to

µα(ṽ) ∝
ˆ
M
εαβγe−2φdφ ∧ ωβ ∧ ıṽωγ − e−2φωα ∧ ıṽH. (3.212)

This vanishes for ?H = −e2φd(e−2φ). In terms of the untwisted objects, the integrability

of the T structure is given by

dF iQ̃ = 0, (3.213)

where the action of dF i on Q̃ ∈ Γ(N) is defined in (B.56). Using the explicit form of Q̃,

we have

dF iQ̃ = dui + εiju
iF j (3.214)

The one-form term vanishes as ui has constant entries. The three-form term also vanishes

as the contraction of ui with F j picks out F 2 = F3, which is zero for the NS5-brane

background.

Finally, note that we can embed the D5-brane solution in a similar way. The dilaton

now appears as a warp factor ∆, so the E5(5)-invariant volume is κ2 = vol4. We also take

ui = (0, 1) and vi = (−1, 0), and drop the factor of e−2φ in Q̃. The moment maps then

vanish if

d(eφωα) = 0, F3 = −2 ? d(e−φ). (3.215)

The first of these is the correct differential condition for the SU(2) structure. The second

is the correct three-form flux, coming from the dual of the seven-form flux due to the D5-

brane [98]. The integrability of the T structure takes the same form as for the NS5-brane,

but now the contraction of ui with F j picks out F 1 = H, which is zero for the D5-brane

background.

3.6 Summary

In this chapter we have given a new geometrical interpretation of generic flux backgrounds in

type II supergravity and M-theory, preserving eight supercharges in D = 4, 5, 6 Minkowski
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spacetime, as integrable G-structures in Ed(d)×R+ generalised geometry. As in conventional

geometry, integrability was defined as the existence of a generalised torsion-free connection

that is compatible with the structure, or equivalently as the vanishing of the generalised

intrinsic torsion, defining what we called an “exceptional Calabi–Yau” (ECY) space.

We found the differential conditions on the structures implied by integrability, and

showed that they took a simple form in terms of the generalised Lie derivative or mo-

ment maps for the action of the generalised diffeomorphism group. As for Calabi–Yau

backgrounds, supersymmetric solutions are described as the intersection of two separate

structures that can be associated to hypermultiplet and vector-multiplet degrees of freedom

in the corresponding gauged supergravity. We saw how the simple examples of Calabi–Yau,

generalised Calabi–Yau and hyper-Kähler structures appear in our formalism, as well as

various other simple supersymmetric flux backgrounds.

We saw that the spaces of hypermultiplet and vector-multiplet structures admit hyper-

Kähler and special Kähler metrics respectively. The integrability conditions for each took

the form of a moment map for the action of the generalised diffeomorphism group, so that

the moduli spaces of structures is given by a hyper-Kähler or symplectic quotient.
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Chapter 4

Exceptional Sasaki–Einstein

backgrounds

In this chapter we analyse generic AdS flux backgrounds preserving eight supercharges in

D = 4 and D = 5 dimensions using exceptional generalised geometry. We show that they

are described by a pair of globally defined generalised structures, identical to those that

appear for Minkowski flux backgrounds but with different integrability conditions. We give

a number of explicit examples of such “exceptional Sasaki–Einstein” backgrounds in type

IIB supergravity and M-theory. In particular, we give the complete analysis of the generic

AdS5 M-theory backgrounds. We also briefly discuss the structure of the moduli space of

solutions. In all cases, one structure defines a “generalised Reeb vector” that generates a

Killing symmetry of the background corresponding to the R-symmetry of the dual field

theory, and in addition encodes the generic contact structures that appear in the D = 4

M-theory and D = 5 type IIB cases. Finally, we investigate the relation between generalised

structures and quantities in the dual field theory, showing that the central charge and

R-charge of BPS wrapped-brane states are both encoded by the generalised Reeb vector,

as well as discussing how volume minimisation (the dual of a- and F-maximisation) is

encoded.

4.1 Introduction

Supersymmetric AdS backgrounds are of central importance to gauge/gravity duality.

In the simplest examples, corresponding to branes at conical singularities where only

a top-form field strength is non-zero, they describe familiar geometries [64], such as

Sasaki–Einstein or weak-G2 spaces. However, backgrounds with generic fluxes are much

more complicated and at first glance have no simple geometrical description. Significant

progress has been made analysing them using G-structures [97,98,104,105], for example

as means of classifying AdS4 and AdS5 solutions with eight supercharges in both type II

theories [244] and M-theory [240,245]. More generally one can use generalised geometry [108–
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110] to characterise the type II backgrounds, as for example in [130, 132, 246]. In both

cases the geometry is defined by set of invariant tensors, typically only locally defined,

satisfying some first-order differential equations that capture the lack of integrability of

the structure in terms of the form-field flux. It is natural then to ask if there is a single

notion of geometry that captures the known examples in terms of a global, integrable

structure, perhaps also in a way adapted to the degrees of freedom of the dual theory.

As we saw in the previous chapter, the answer is to use Ed(d) × R+ generalised

geometry [135–138]: generic Minkowski flux backgrounds in D = 4, 5, 6 preserving eight

supercharges can be formulated as “exceptional Calabi–Yau” geometries. In this chapter

we will give the extension of this formalism for “exceptional Sasaki–Einstein” geometries,

that is, generic type II and M-theory AdS backgrounds in D = 4, 5 preserving eight

supercharges. The generalised structures are identical to those that appear for Minkowski

backgrounds, however the integrability conditions are modified in a way that depends on

the cosmological constant, and is equivalent to the presence of singlet intrinsic torsion

for the corresponding generalised connection [145]. In each case the vector-multiplet

structure is defined by an invariant generalised vector which is Killing: it generates a

combination of diffeomorphisms and gauge transformations that leave the background

invariant, corresponding in this case to the R-symmetry of the dual field theory. By

analogy to the Sasaki–Einstein case we refer to it as the “generalised Reeb vector”. The

formalism also allows one to analyse the structure of the moduli space of backgrounds.

In particular we find that the space of integrable hypermultiplet structures appears as a

Kähler slice of a hyper-Kähler quotient of the original space of structures, in a way closely

related to the “HK/QK correspondence” of Haydys [247]. This mirrors the analysis of

gauged D = 4, 5 supergravity [198,248] precisely because the structures can be thought

of as describing a rewriting of the ten- or eleven-dimensional supergravity as a D = 4, 5

theory coupled to an infinite number of hyper- and vector-multiplets [181].

We analyse three explicit cases to show how known supersymmetric AdS flux back-

grounds appear in our formalism. For D = 5 in type IIB, we consider the Sasaki–Einstein

solutions, and also give the form of the generalised Reeb vector for the generic backgrounds

in terms of spinor bilinears defined in [244]. ForD = 5 in M-theory, we give a completely

general analysis, showing how the structures are defined in terms of the bilinears of [240],

and also that the integrability conditions are satisfied. Finally, forD = 4 in M-theory we

again consider the Sasaki–Einstein solutions, and give the form of the generalised Reeb

vector for the generic backgrounds in terms of bilinears of [245].

One striking feature that emerges is the role played by the generalised Reeb vector.

It is already known that, remarkably, the generic D = 5 type IIB and D = 4 M-theory

backgrounds admit contact structures [134,245,249], which encode both the central charge a

(or free energy F) of the theory and the R-charges of operators dual to wrapped branes. This

structure appears very naturally in the exceptional Sasaki–Einstein description: it is simply

the generalised Reeb vector. As we discuss, this also leads to a very natural conjecture,
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following the work of [250], for the generic notion of “volume minimisation” [251,252], the

gravity dual of a- and F-maximisation in the field theory [253–255].

This chapter is organised as follows. We begin in section 4.2 by reviewing the generalised

structures that appear for D = 4, 5 Minkowski backgrounds preserving eight supercharges,

and then recall the integrability conditions on the structures. We then move onto the main

result, namely the extension of the integrability conditions for AdS backgrounds. We leave

the interpretation of the conditions and a discussion of the moduli spaces of integrable

structures to section 4.3. We provide some concrete examples of supersymmetric AdS

backgrounds in sections 4.4 and 4.5 and show they do indeed define integrable structures.

In section 4.6, we comment on the relation between vector-multiplet structures and several

field theory quantities, in particular the central charge and free energy, the dimension of

operators dual to wrapped branes and the dual of a- and F-maximisation.

4.2 Generalised structures for AdS

We begin by reviewing the generalised structures that define D = 4, 5 backgrounds

preserving eight supercharges. These were defined in the previous chapter for Minkowski

vacua, but are equally applicable to AdS. The only difference is in the integrability

conditions, and one of the main results of this chapter is to give the conditions relevant to

AdS. We provide some concrete examples, including the case of completely general fluxes

in M-theory giving an AdS5 vacuum. We leave the interpretation of the conditions and a

discussion of the moduli spaces of integrable structures to section 4.3.

4.2.1 Hyper- and vector-multiplet structures in Ed(d) generalised geo-

metry

We consider type II and M-theory solutions of the form AdSD ×M , where M is (10−D)-

dimensional for type II and (11−D)-dimensional for M-theory. We assume the metric is a

warped product

ds2 = e2∆ds2(AdSD) + ds2(M), (4.1)

where ∆ is a scalar function on M . We take m to be the inverse AdS radius, so that the

Ricci tensor is normalised to Rµν = −(D − 1)m2gµν , where g is the metric on AdSD, and

the cosmological constant is Λ = −1
2(D − 1)(D − 2)m2. As in the previous chapter, we

allow generic fluxes compatible with the AdS symmetry of the external spacetime and use

the string frame metric for type II solutions.

We showed in the previous chapter that a generic Minkowski background preserving

eight supercharges is completely characterised by a pair of generalised G-structures in

exceptional generalised geometry. These structures were first defined in [181], in the

context of type II theories. The pairs of structures that appear for N = 2, D = 4 and

N = 1, D = 5 backgrounds were named hypermultiplet and vector-multiplet structures,
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Gframe H structure V structure HV structure

D = 4 E7(7) × R+ Spin∗(12) E6(2) SU(6)

D = 5 E6(6) × R+ SU∗(6) F4(4) USp(6)

Table 4.1: The generalised G-structures with G ⊂ E7(7) and G ⊂ E6(6) that define
eight-supercharge backgrounds in D = 4 and D = 5 respectively.

or H and V structures for short, since they are associated to hyper- and vector-multiplet

scalar degrees of freedom in D dimensions. The relevant structure groups defined by the

H and V structures are summarised in table 4.2.1.

The hypermultiplet structure is defined by a triplet of sections of a weighted adjoint

bundle

H structure : Jα ∈ Γ
(
ad F̃ ⊗ (detT ∗M)1/2

)
α = 1, 2, 3, (4.2)

which define a highest weight su2 subalgebra of ed(d) and are normalised using the ed(d)

Killing form such that

[Jα, Jβ] = 2κεαβγJγ , tr(JαJβ) = −κ2δαβ. (4.3)

Similarly, the vector-multiplet or V structure is defined by a section of the generalised

tangent bundle E

V structure : K ∈ Γ(E), (4.4)

which has a positive norm with respect to the E7(7) quartic invariant q(K) > 0 or the

E6(6) cubic invariant c(K) > 0.1 In D = 4, one can use the quartic invariant as a Hitchin

function to define a second invariant tensor K̂ and combine the two into a complex object

X = K + iK̂. (4.5)

Explicitly, K̂ is defined by the relation

s(V, K̂) = 2q(K)−1/2q(V,K,K,K). (4.6)

for arbitrary V ∈ Γ(E).

Finally the pair of structures {Jα,K} define an HV structure if they are compatible,

1Recall that for E7(7) there is a symmetric quartic invariant q(V1, V2, V3, V4) and a symplectic invariant
s(V1, V2) and for E6(6) a symmetric cubic invariant c(V1, V2, V3). We use the shorthand q(V ) = q(V, V, V, V )
and c(V ) = c(V, V, V ).
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that is, if they satisfy the conditions

HV structure : Jα ·K = 0, tr(JαJβ) =

−2
√
q(K)δαβ D = 4,

−c(K)δαβ D = 5,
(4.7)

where for D = 4 from (4.6) we also have
√
q(K) = 1

2s(K, K̂).

Given a pair of globally defined spinors on M , one can construct “untwisted” structures

{J̃α, K̃} in terms of spinor bilinears. The full structures include the potentials for the

appropriate form fields and are given by the exponentiated adjoint action on the untwisted

objects, thus in M-theory we have

Jα = eA+ÃJ̃αe−A−Ã, K = eA+ÃK̃, (4.8)

where A is the three-form potential and Ã is the dual six-form potential, and for type IIB

Jα = eB
i+C J̃αe−B

i−C , K = eB
i+CK̃, (4.9)

where Bi is the SL(2;R) doublet of two-form potentials and C is the four-form potential.

In this case one also needs to include dressing by the IIB axion and dilaton, as described

in appendix B. Since these transformations are in Ed(d), the algebra, normalisation and

compatibility conditions (4.3) and (4.7) can be checked using either the twisted or untwisted

objects.

4.2.2 Exceptional Sasaki–Einstein geometry

We now describe the integrability conditions on the HV structure for the case of a

supersymmetric AdS background preserving eight supercharges. As discussed in [143, 145],

the difference from the Minkowski case is that there is a constant singlet component of the

generalised intrinsic torsion, resulting in a background with weak generalised holonomy.

This leads to a simple modification of the Minkowski conditions given in the previous

chapter.

Recall that the space of H structures has a natural hyper-Kähler cone geometry and

admits a triplet of moment maps for the action of the generalised diffeomorphism group

GDiff, that is, the diffeomorphism and gauge transformation symmetries of the underlying

supergravity theory. Infinitesimal transformations are generated by the generalised Lie

derivative LV and so are parametrised by generalised vectors V ∈ Γ(E). The moment

maps for a given element in gdiff parametrised by V are given by

µα(V ) = −1
2εαβγ

ˆ
M

tr(JβLV Jγ). (4.10)

For Minkowski backgrounds, supersymmetry implied that the moment maps vanished. For

99



AdS backgrounds they take a fixed non-zero value. Let us define the real functions

D = 4 : γ(V ) := 2

ˆ
M
q(K)−1/2q(V,K,K,K), (4.11)

D = 5 : γ(V ) :=

ˆ
M
c(V,K,K). (4.12)

Note that the first definition can also be written in terms of K̂ using (4.6).

We can then define the exceptional generalised geometry analogue of a Sasaki–Einstein

structure, corresponding to an AdS background with generic fluxes. We have

Definition. An exceptional Sasaki–Einstein (ESE) structure is an HV structure {Jα,K}
satisfying

µα(V ) = λαγ(V ) for all V ∈ Γ(E), (4.13)

LKK = 0, (4.14)

LKJα = εαβγλβJγ , LK̂Jα = 0, (4.15)

where γ(V ) is given by (4.11) and (4.12), and λα are real constants related to the inverse

AdS radius by |λ| = 2m for D = 4 and |λ| = 3m for D = 5, where |λ|2 = λ2
1 + λ2

2 + λ2
3.

The second condition in (4.15) is relevant only for D = 4.

The integrability condition for the vector-multiplet structure (4.14) is unchanged from the

Minkowski case. As shown in appendix C, for D = 4 this is equivalent to LXX̄ = 0, as

LXX vanishes identically. The other two conditions now have right-hand sides, determined

by the singlet torsion. Note that the third condition (4.15) simply states that the action of

LK is equivalent to an SU(2) rotation of the Jα. Note also that this condition is consistent

with the moment map conditions when taking V = K (and V = K̂ in D = 4). As shown

in appendix F, for ESE spaces, the second compatibility constraint in (4.7) is actually a

consequence of the integrability conditions.

Recall that for D = 4 there is a global U(1) R-symmetry that acts on X, taking

X → X ′ = eiαX. Strictly, one should write the condition (4.15) replacing K with ReX ′

and K̂ with ImX ′. However, the point is that one can always choose a gauge where the

condition takes the form (4.15). In a similar way one can use the SU(2) global R-symmetry

to set λ1,2 = 0. (The only unbroken part of the R-symmetry is then a U(1) preserving λ3.)

The conditions (4.10) can then be written as

µ3(V ) = λ3γ(V ), µ+(V ) = 0, for all V ∈ Γ(E), (4.16)

while the conditions (4.15) read

D = 4 : LKJ+ = iλ3J+, LK̂J+ = 0, (4.17)

D = 5 : LKJ+ = iλ3J+. (4.18)
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These are the forms we will use when checking the integrability for various examples.

We can immediately deduce various properties from the integrability conditions. The

first is that the ESE space is generalised Einstein. Recall that the HV structure {Jα,K}
determines the generalised metric G that encodes the supergravity degrees of freedom

on M . Given a generalised metric one can construct a unique generalised Ricci tensor

following [137]. Using the generalised intrinsic torsion of the ESE background, which we

discuss in section 3.4, and the results of [145], we find that the generalised Ricci tensor

satisfies the generalised Einstein equation2

RMN =
(D − 1)(D − 2)

dE
m2GMN , (4.19)

where M and N are indices running over the dual generalised tangent space E∗ and dE is

the dimension of E.

Next we note that since LKK = 0 and LKJα is equal to an SU(2) R-symmetry rotation,

which simply rotates the Killing spinors but leaves the supergravity degrees of freedom

unchanged, we can conclude that LKG = 0 and so

LKG = 0 ⇔ K is a generalised Killing vector, (4.20)

as is also the case for Minkowski backgrounds. Note that for the D = 4 solutions, K̂ is

also generalised Killing. Let us decompose K into vector and form components

K =

ξ + ω + σ + τ M theory,

ξ + λi + ρ+ σi + τ type IIB,
(4.21)

where ξ is the vector component. The generalised Killing vector condition in M-theory is

equivalent to

Lξg = 0, LξA− dω = 0, LξÃ− dσ + 1
2dω ∧A = 0, (4.22)

where A is the three-form potential and Ã is the dual six-form potential. In type IIB it is

equivalent to

Lξg = 0, LξC = dρ− 1
2εijdλ

i ∧Bj ,

LξBi = dλi, LξB̃i = dσi + 1
2dλi ∧ C − 1

2dρ ∧Bi + 1
12B

i ∧ εklBk ∧ dλl,
(4.23)

where Bi is the SL(2;R) doublet of two-form potentials, B̃i are their six-form duals and

C is the four-form potential. In each case, the form components give compensating

gauge transformations so that the field strengths (F = dA etc.) are invariant under

the diffeomorphism generated by ξ. We immediately see that if ξ = 0 then all the

2We are using RMN = R0
MN + 1

dE
GMNR, where R0 and R are the generalised tensors defined in [137].
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form components are closed and hence LK acting on any generalised tensor vanishes.

However, this is in contradiction with the condition (4.15). Hence we conclude that ξ

is non-zero and the solution admits a Killing vector that also preserves all the fluxes.

Furthermore from (4.15) we see that it generates the unbroken U(1) ⊂ SU(2) R-symmetry.

On Sasaki–Einstein spaces this vector is known as the Reeb vector. Thus we are led to

define

Definition. We call K the generalised Reeb vector of the exceptional Sasaki–Einstein

geometry, noting that its vector component ξ ∈ Γ(TM) is necessarily non-vanishing.

The fact that K is generalised Killing means that, in the untwisted frame where there

are no potentials in the generalised metric, the corresponding “twisted” generalised Lie

derivative must reduce to just a conventional Lie derivative, that is

L̂K̃ = Lξ, (4.24)

where ξ is the vector component of K̃ (and hence also of K). Acting on an arbitrary

untwisted generalised tensor α̃, the twisted generalised Lie derivative takes the form

L̂Ṽ α̃ = Lvα̃− R̃ · α̃, (4.25)

where R̃ is a tensor in the adjoint representation of Ed(d), R̃ · α̃ is the adjoint action, v is

the vector component of Ṽ , Lv is the conventional Lie derivative and

R̃ =

dω̃ − ıṽF + dσ̃ − ıṽF̃ + ω̃ ∧ F for M-theory,

dλ̃i − ıṽF i + dρ̃− ıṽF − εij λ̃i ∧ F j + dσ̃i + λ̃i ∧ F − ρ̃ ∧ F i for type IIB.

(4.26)

The condition (4.24) thus means that the corresponding tensor R̃ vanishes. The condi-

tions (4.14) and (4.15) can then be written as

LξJ̃α = εαβγλβJ̃γ , LξK̃ = 0. (4.27)

In what follows it will sometimes be simpler when checking solutions to use these forms of

the conditions.

Finally, we note that there is a consistency condition on K implied by the moment

map conditions (4.13). Strictly, there is a kernel in the map L• : Γ(E)→ gdiff, meaning

that two different generalised vectors can generate the same generalised diffeomorphism.

In other words, we have LV = LV+∆, which holds if

∆ =

ω + σ + τ with dω = dσ = 0 in M-theory,

λi + ρ+ σi + τ with dλi = dρ = dσi = 0 in type IIB.
(4.28)
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Thus for the conditions (4.13) to make sense we need

γ(∆) = 0, (4.29)

which is a differential condition on K. In fact it is implied by the conditions (4.14)

and (4.15). Note first that these conditions are satisfied by both K and K+∆. As we have

already mentioned, substituting (4.15) into the expression for the moment maps (4.10)

gives

µα(K) = λα

ˆ
M
κ2 = λαγ(K), (4.30)

where the second equality follows from the second of the compatibility conditions (4.7).

From the homogeneity of q and c, we note that upon taking the functional derivative,

where M runs over all the components of the generalised vector, we have

VM δγ(K)

δKM
= (D − 2)γ(V ). (4.31)

Then note that, using µα(K + ∆) = µα(K) and (4.30), we have

0 = ∆M δµα(K)

δKM
= λα(D − 2)γ(∆), (4.32)

and hence indeed γ(∆) = 0. Note that this derivation did not use the moment map

conditions (4.13) themselves, only the conditions (4.14) and (4.15) involving LK .

Finally, in the D = 4 case K̂ is also generalised Killing. However, from the condition

γ(∆) = 0 and (4.6), we have

γ(τ) =

ˆ
M
s(τ, K̂) = 0, (4.33)

for all τ for both type IIB and M-theory. From the form of the symplectic invariant given

in (B.30) and (B.30), this implies that the vector component of K̂ vanishes. Since K̂ is

Killing this means

LK̂(anything) = 0, (4.34)

or in other words, K̂ is in the kernel of the map L• : Γ(E) → gdiff, satisfying the same

conditions as ∆ in (4.28). As such, it generates a trivial generalised diffeomorphism and

hence the generalised metric is not invariant under a second symmetry; onlyK generates

a non-trivial transformation.

4.2.3 Generalised intrinsic torsion

As conjectured in [143] and proven in [145], the Killing spinor equations for generic AdS

flux backgrounds preserving eight supercharges are in one-to-one correspondence with HV
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structures with constant singlet generalised intrinsic torsion.3 In each case the non-zero

torsion was in the (3,1) of SU(2)×G, where G is the HV structure group, which breaks

the SU(2) R-symmetry to U(1). These were called spaces with weak generalised special

holonomy, in analogy with conventional G-structures. This is in contrast to Minkowski

backgrounds where all components of the intrinsic torsion vanished. Note that there are

no singlets in the generalised intrinsic torsion for D = 6, giving the standard result that

there are no N = (1, 0) AdS solutions in six dimensions.

In order to prove that our conditions (4.13), (4.14) and (4.15) are equivalent to the

conditions for supersymmetry, we need to check that they indeed admit a constant non-zero

singlet in the (3,1) component of the intrinsic torsion. To do this we can simply repeat

the calculations of section 3.4. One immediately notes that the (3,1) component appears

in the moment maps and LKJα, but not LKK. This explains why the LKK = 0 condition

is unchanged from the Minkowski case. By definition, the right-hand side of (4.15) is a

constant singlet in (3,1) as it is a constant linear combination of Jα. Consistency with the

moment maps then implies (4.13) for V = K. This proves that the integrability conditions

are indeed equivalent to the Killing spinor equations.

4.3 Gauged supergravity and moduli spaces

4.3.1 Integrability conditions from gauged supergravity

As stressed in [181] and the previous chapter, the infinite-dimensional spaces AH and

AV of hyper- and vector-multiplet structures correspond to a rewriting of the ten- or

eleven-dimensional supergravity theory so that only eight supercharges are manifest [146].

The local Lorentz symmetry is broken and the fields of the theory can be reorganised into

N = 2, D = 4 or N = 1, D = 5 multiplets without making a Kaluza–Klein truncation. One

can then interpret the integrability conditions in terms of conventional gauged D = 4 or

D = 5 supergravity with an infinite-dimensional gauging by GDiff. The general conditions

for supersymmetric vacua have been given in [196,197,248], and we showed in the previous

chapter that for Minkowski backgrounds these conditions are precisely the integrability

conditions on the generalised structures.

Let us now briefly show that the same is true for the AdS backgrounds. Following [197],

a generic gauged N = 2, D = 4 theory admits an AdS vacua provided

Θλ
Λµα,λ = −1

2eK
v/2ΩΛΣ Im(µ̂X̄Σ)aα, X̄ΛΘ̂λ̂

Λk̂
i
λ̂

= 0, XΛΘλ
Λk

u
λ = caα(ξα)u,

(4.35)

where |µ̂| ∝ m, aα is unit-norm vector parametrising S2, Kv is the Kähler potential and

ΩΛΣ the symplectic structure on the space of vector multiplets AV. We have written the

3Strictly for D = 4 only the N = 1 case was considered in [145]. However, combined with the comments
about N = 2 in [143], the results of [145] are sufficient to prove that forN = 2 there is a constant singlet
torsion transforming in a triplet of SU(2).
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last condition not on the quaternionic-Kähler space, but on the corresponding hyper-Kähler

cone. Any Killing vector preserving the quaternionic-Kähler structure on the base lifts to

a vector that rotates the three complex structures on the cone. Thus (ξα)u are the three

vectors generating the su2 action the cone, normalised such that ξα · ξβ = δαβ. There

is a consistency condition between the first and third conditions that arises from the

identity kλ · ξα = −2µα,λ [213, 215]. This is the same consistency we already noted for the

integrability conditions (4.15) and (4.14). Contracting the third expression in (4.35) with

ξα and the first expression with XΛ, we find

c = eK
v/2ΩΛΣX

Λ Im(µ̂X̄Σ). (4.36)

We can then choose µ̂ to be real using the U(1) action on X. Using the identifications

between terms in the N = 2 expressions and the H and V geometries discussed in

section 3.4, we see that, using (4.6) and for real µ̂, the three conditions in (4.35) exactly

match (4.13), (4.14) and (4.15) respectively. Explicitly we can identify

V ΛΘλ
Λµα,λ = µα(V ),

ΩΛΣV
Λ Im(µ̂X̄Σ)aα = aαΩ(V, K̂) = aαγ(V ),

X̄ΛΘ̂λ̂
Λk̂λ̂ = LX̄X,

(4.37)

and e−K
v

= iΩ(X, X̄). While acting on the section-valued functions Jα, we have

aβξ
β(Jα) = −εαβγaβJγ ,

XΛΘλ
Λkλ(Jα) = LXJα.

(4.38)

It is straightforward to see that conditions in D = 5 can similarly be matched to the

gauged supergravity expressions for AdS vacua given in [197].

4.3.2 Moduli spaces of ESE backgrounds

We now turn to analysing the structure of the moduli space of exceptional Sasaki–Einstein

backgrounds satisfying the integrability conditions (4.13)–(4.15). Given the relation to

gauged supergravity discussed above, we can use known results on the form of the moduli

space of AdS vacua in these theories [198, 248]. For example, for N = 2, D = 4 gauged

supergravity, it was shown in [198] that the vector-multiplet moduli space is a real subspace

of the local special Kähler manifold AV/C∗, while the hypermultiplet moduli space is a

Kähler submanifold of the quaternionic manifold AH/H∗, at least in the so called “minimal”

solution. More generally, the combined moduli space is no longer a product.

In fact, the situation here is more complicated because we have to impose the com-

patibility conditions (4.7) between the H and V structures. This means that even before

imposing the integrability conditions, the space A of HV structures is not actually a

product AV ×AH. Nonetheless, as we have described, if we drop the normalisation part
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of the compatibility condition, we can view A as a fibration of a hyper-Kähler cone space

over a special Kähler space (or vice versa). The same structure arises for D = 5 but now

we have a hyper-Kähler cone over a very special real manifold (or vice versa).

Focussing for definiteness on D = 5, though an analogous analysis applies to D = 4,

we can use this fibration picture to analyse the form of the moduli space. Let us first fix a

generalised Reeb vector K ∈ AV satisfying the integrability condition LKK = 0. We can

now consider the space of H structures AKH ⊂ AH compatible with the fixed K, that is

AKH = {Jα ∈ AH : Jα ·K = 0} . (4.39)

We can drop the normalisation condition κ2 = c(K) since, as we show in appendix F, it is

a consequence of the supersymmetry conditions. At each point on the manifold M , the

space of possible Jα is given by the hyper-Kähler cone

W = F4(4) × R+/USp(6), W/H∗ is a Wolf space, (4.40)

and in complete analogy to the construction of AH we find that the infinite-dimensional

space AKH is itself a hyper-Kähler cone. We are now left with imposing the remaining two

supersymmetry conditions

µα(V ) = λαγ(V ), LKJα = εαβγλβJγ . (4.41)

We would like to have geometrical interpretations of both conditions. Recall first

that since AKH is a hyper-Kähler cone it admits a free SU(2) action generated by a triple

of vectors ξα ∈ Γ(TAKH ). The action of GDiff is triholomorphic (it preserves all three

symplectic structures) and is generated by a vector ρV ∈ Γ(TAKH ) for each V ∈ E. By

definition, acting on the Jα we have

ρV (Jα) = LV Jα, ξα(Jβ) = εαβγJγ . (4.42)

Because of the “source” term λαγ(V ) in the moment maps, only a subgroup U(1) ⊂ SU(2)

of transformations leave the moment map conditions invariant. This group is generated by

r = λαξ
α and preserves one linear combination of complex structures I = λαI

α on AKH .

Restricting to V = K, the vector ρK generates a one-dimensional subgroup GK ⊂ GDiff

corresponding to the generalised diffeomorphisms generated by K. As we showed in

section 3.4, these two actions commute.

We can now interpret the condition (4.15) as a vector equation

ρK − r = 0, (4.43)

that is, it restricts us to points on AKH that are fixed points of a combined action of GK

and U(1). (Note that generically we expect that fixed points will only exist for certain
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choices of K satisfying LKK = 0.) We define

NH =
{
p ∈ AKH : ρK(p)− r(p) = 0

}
. (4.44)

Since both ρK and r preserve the complex structure I, both are real holomorphic vectors

and hence NH is a Kähler subspace of AKH with respect to I.

Let us now turn to the moment maps. We would like to view them as defining a hyper-

Kähler quotient. Thought of as single map µ : AKH → gdiff∗ × R3, for AdS backgrounds,

the level set defined by (4.13) is µ−1(Λα), where the element Λα ∈ gdiff∗ × R3 is given by

the functional derivative Λα = λαδγ/δV . But since γ(V ) depends on K we see that it is

not invariant under the full generalised diffeomorphism group. A hyper-Kähler quotient is

well defined only on a level set that is invariant under the action of the quotient group.

However, we can define a subgroup of generalised diffeomorphisms GDiffK ⊂ GDiff as

those that leave K invariant, that is the stabiliser group,

GDiffK = {Φ ∈ GDiff : Φ ·K = K}, (4.45)

so that infinitesimally, V parametrises an element of the corresponding algebra gdiffK if

LVK = 0. Since LKK = 0 note that GK ⊂ GDiffK . For a fixed K, any two H structures

related by an element of GDiffK are equivalent. If we restrict to the subgroup GDiffK ,

then we can view the moment maps as a hyper-Kähler quotient.4 Since the moment map

conditions break the SU(2) action to U(1), although the quotient space is by definition

hyper-Kähler, it is not a hyper-Kähler cone, that is, there is no longer an underlying

quaternionic-Kähler space.

Combining the quotient with the fixed-point conditions (4.43) we then have two

possibilities: either take a quotient and then impose (4.43) or impose (4.43) and then take

a quotient. Doing the latter we note that the fixed-point condition already imposes that

we are on a Kähler subspace, so there is no notion of a hyper-Kähler quotient. However, we

show in appendix F that, restricting to GDiffK on NH, two of the moment map conditions

are identically satisfied. Thus we are actually only taking a symplectic quotient with a

moment map given by µ(V ) = λαµα(V ). Thus we have the diagram

AKH NH

M′H MH

ρK−r=0

HK quotient sympl. quotient

r′=0

(4.46)

4The one caveat is that the conditions (4.13) are satisfied for arbitrary V parametrising all of gdiff
not just V with LVK = 0 parametrising gdiffK . Thus we need to be sure the conditions arising from the
moment maps with restricted V , together with the other supersymmetry conditions (4.14) and (4.15), are
sufficient. Although we have not found a general proof, we can see this is true in a number of explicit
examples. This is not surprising, since the moment maps only constrain a relatively small independent
component (2,6) of the intrinsic torsion.

107



where M′H = AKH ///GDiffK is a hyper-Kähler manifold, and the final moduli space

MH = NH//GDiffK is Kähler.

The vector r′ in (4.46) generates the U(1) action on the quotient space M′H. Since the

action of ρK is modded out on the quotient space, it is trivial and so the condition becomes

just r′ = 0. However, since r′ is still real holomorphic with respect to I, we see that going

via M′H, the space MH is again Kähler. One caveat to taking the hyper-Kähler quotient

first is that there might be additional solutions to r′ = 0. Since r is freely acting, we

have r′ = 0 whenever there is a generalised diffeomorphism such that LV Jα = εαβγλβJγ .

However, since LVK = 0 as V ∈ gdiffK , we see that such V are generalised Killing vectors.

Thus, provided K is the only generalised Killing vector, we can take either path in the

diagram (4.46).

We can slightly refine the construction to make a connection to the “HK/QK corres-

pondence” of Haydys [247], which physically is related to the c-map. This also helps the

analysis in the case where there are fixed points. Given V satisfying LVK = 0, acting on

any generalised tensor α we have

[LV , LK ]α = LLVKα = 0. (4.47)

Thus GK is in the centre of GDiffK and as such is a normal subgroup. Thus we can define

the quotient group GDiff0
K = GDiffK/GK and write GDiffK as a semi-direct product

GDiffK = GK o GDiff0
K . (4.48)

We can then perform the hyper-Kähler quotient in two stages: first by the action of GK

and then by GDiff0
K , as described in symplectic case, for example, in [256]. We can then

add one more level to the diagram (4.46)

AKH NH

PH QH

M′H MH

ρK−r=0

•///GK •//GK

r′=0

•///GDiff0
K •//GDiff0

K

r′=0

(4.49)

Consider the path through the diagram with two commuting Abelian actions on AKH
given by GK and U(1) ⊂ SU(2), with the latter preserving only one linear combination

of the three complex structures. This is exactly the set up that appears in the HK/QK

correspondence [247]: the hyper-Kähler manifold is PH while the quaternionic-Kähler

manifold is AKH /H∗.
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4.4 AdS5 backgrounds as ESE spaces

We now discuss the structure of exceptional Sasaki–Einstein (ESE) backgrounds for AdS5.

The generic flux backgrounds for type IIB were analysed in [244], and for M-theory in [240].

Here we first show how the standard type IIB Sasaki–Einstein reduction with five-form

flux embeds as an ESE background, and comment on how this extends to the generic case.

We then give the ESE form of the generic M-theory background, showing explicitly how

the integrability conditions reproduce those given in [240].

4.4.1 Sasaki–Einstein in type IIB

Backgrounds of the form AdS5×M , where the five-dimensional space M is Sasaki–Einstein

and there is a non-trivial self-dual five-form flux, are supersymmetric solutions of type

IIB supergravity preserving at least eight supercharges [257]. The metric is a product of

the form (4.1) with D = 5 and a constant warp factor, which we take to be zero. Five-

dimensional Sasaki–Einstein spaces admit a nowhere-vanishing vector field ξ, known as the

Reeb vector and a pair of two-forms Ω and ω, that together define an SU(2) ⊂ GL(5;R)

structure (for a review see for example [258,259]). They satisfy the algebraic conditions

Ω ∧ Ω̄ = 2ω ∧ ω, ıξΩ = ıξω = 0, ıξσ = 1, (4.50)

where σ is the one-form constructed from ξ by lowering the index with the metric (that is

ξ = σ]). In addition one has the differential conditions

dσ = 2mω, dΩ = 3imσ ∧ Ω, (4.51)

where m is the inverse AdS5 radius, usually normalised to m = 1. Such a compactification

is supersymmetric provided there is a five-form flux given by

dC = F = 4m vol5, (4.52)

where vol5 = −1
2σ ∧ ω ∧ ω.

Note that these conditions imply that the Reeb vector ξ is a Killing vector that

preserves σ and ω, but rotates Ω by a phase

Lξσ = Lξω = Lξg = 0, LξΩ = 3imΩ. (4.53)

The rotation of Ω corresponds to the R-symmetry of the solution. In what follows we also

need the (transverse) complex structure

Imn = −ωmn = i
4(Ω̄mpΩnp − ΩmpΩ̄np), (4.54)

which satisfies IpmΩpn = iΩmn.
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The Sasaki–Einstein geometry defines an “untwisted” HV structure invariant under

SU∗(6)

J̃+ = 1
2κu

iΩ + 1
2κv

iΩ],

J̃3 = 1
2κI + 1

2κτ̂
i
j + 1

8κΩ] ∧ Ω̄] − 1
8κΩ ∧ Ω̄,

(4.55)

where ui = (−i, 1)i, vi = (−1,−i)i, τ̂ is given in terms of the second Pauli matrix τ̂ = −iσ2,

and the E6(6)-invariant volume is κ2 = vol5. The V structure invariant under F4(4) is given

by

K̃ = ξ − σ ∧ ω. (4.56)

Using the adjoint action and the e6(6) Killing form from appendix B, one can check that

J̃α satisfy the su2 algebra and are correctly normalised as in (4.3), while using the cubic

invariant from appendix B and the algebraic conditions (4.50), one can check that K̃ and

J̃α satisfy the compatibility conditions (4.7), so that together {Jα,K} define a USp(6)

structure. The full “twisted” structures include the four-form potential C as in (4.9),

however, in what follows, it will actually be easier to work with the untwisted structures

and use the twisted generalised Lie derivative in the differential conditions.

Let us now see how the integrability conditions on σ, ω, Ω and F arise. We turn first

to the moment map conditions (4.16). Let Ṽ be an untwisted generalised vector. Using

the untwisted K̃, we see that the function (4.12) takes the form

γ(Ṽ ) = 1
3

ˆ
M
ıṽσ vol5 +ω ∧ ρ̃, (4.57)

where ṽ and ρ̃ are the vector and three-form components of Ṽ . As the moment map

condition must hold for an arbitrary generalised vector, we can consider each component

of Ṽ in turn. We begin with the ρ̃ components of µ3:

µ3(ρ̃)− λ3γ(ρ̃) = −1
8

ˆ
M
κ2(Ω] ∧ Ω̄])ydρ̃− 1

3λ3

ˆ
M
ρ̃ ∧ ω

=

ˆ
M

1
2dρ̃ ∧ σ − 1

3λ3ρ̃ ∧ ω,
(4.58)

which vanishes for dσ = 2
3λ3ω. Next we consider the µ+ condition, which gives

µ+(Ṽ ) ∝
ˆ
M
κ2Ω]yd(λ̃1 + iλ̃2)

∝
ˆ
M

(Ω]y vol5) ∧ d(λ̃1 + iλ̃2)

∝
ˆ
M

d(σ ∧ Ω) ∧ (λ̃1 + iλ̃2).

(4.59)

Using dσ ∝ ω from the previous condition, this vanishes for σ ∧ dΩ = 0. Finally we have
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the ṽ components of µ3:

µ3(ṽ)− λ3γ(ṽ) = 1
8

ˆ
M

iLṽΩ ∧ σ ∧ Ω̄− iLṽΩ̄ ∧ σ ∧ Ω− 4ıṽF ∧ σ − 1
3λ3

ˆ
M
ıṽσ vol5

=

ˆ
M
ıṽσ
(

1
4 i dΩ ∧ Ω̄− 1

2F −
1
3λ3 vol5

)
,

(4.60)

where we have simplified using the previous conditions. Requiring that the expression

above vanishes for all ṽ fixes the flux to F = 1
2 i dΩ ∧ Ω̄− 2

3λ3 vol5.

For the vector-multiplet structure (4.14), using the expression for the twisted Dorfman

derivative, we find

L̂K̃K̃ = Lξξ + Lξ(−σ ∧ ω)− ıξ
(
d(−σ ∧ ω)− ıξF5

)
= −dω, (4.61)

which vanishes if ω is closed. Finally, the condition (4.18) on LKJα, combined with the

conditions from the hyper- and vector-multiplet structures, fixes the remaining SU(2)

torsion classes and the five-form flux in terms of the cosmological constant. Setting

λ3 = 3m, we have

dσ = 2mω, dΩ = 3imσ ∧ Ω, F = 4m vol5 . (4.62)

We see that we reproduce the full set of Sasaki–Einstein integrability conditions (4.51).

In summary, we have shown that a background consisting of a five-dimensional manifold

with an SU(2) structure, and generic five-form flux defines a generalised USp(6) HV

structure. Furthermore, requiring that the HV structure is ESE implies that the SU(2)

structure is Sasaki–Einstein and the five-form flux takes the correct supersymmetric value.

4.4.2 Generic fluxes in type IIB

Although we will not give the full analysis, let us makes some comments on the case of

generic fluxes in type IIB, first considered in [244] and recently reformulated in terms

of generalised connections in [142]. In this case, the Killing spinors defines a local U(1)

structure and there are a large number of tensors that can be defined in terms of spinor

bilinears. The H and V structures for generic backgrounds, as in the Sasaki–Einstein case,

can again be written in terms of appropriate spinor bilinears. In particular, it is relatively

easy to show that the untwisted V structure takes the form

K̃ = ξ + e2∆′λi + e4∆′ρ, (4.63)
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where, in terms of the fermion bilinears of [244], we have5

ξ = K]
5, λ1 = eφ/2 ReK3, λ2 = Aeφ/2 ReK3 +e−φ/2 ImK3, ρ = −?V, (4.64)

where ξ is again the Killing vector for the R-symmetry. As we pointed out in (4.24), the

fact that K is a generalised Killing vector means that the generalised Lie derivative along

K̃ reduces to a conventional Lie derivative along the Killing direction. For this to be true,

the tensor R̃, defined in (4.26), must vanish. This follows from the differential conditions

d(e2∆′K3) = iQ ∧K3 − e2∆P ∧ K̄3 − iK5G, (4.65)

d(e4∆′ ? V ) = −ıξF + i
2e2∆(G ∧ K̄3 − Ḡ ∧K3), (4.66)

where G is the complex three-form flux and the other forms are defined in [244]. These

conditions are most easily derived directly from the Killing spinor equations.

Recall that there is also a complex bilinear two-form W satisfying

D(e6∆′W ) + P ∧ e6∆′W̄ =
f

4m
G, (4.67)

where f is a constant related to the five-form flux on M . This condition implies that

B1 + iB2 = (4m/f)e6∆′W are potentials for the three-form flux G [134]. Using these

potentials in (4.9), and the explicit forms of the bilinears given in [244], we then find that

the full twisted V structure is given by6

K = ξ − σ ∧ ω + ıξC, (4.68)

where dσ = (8m2/f)ω, C is the four-form potential for the five-form flux F = dC− 1
2F

i∧Bj .

In the notation of [244], σ and ω are defined as

σ =
4m

f
e4∆′K4, ω = −e4∆′V. (4.69)

We see that the form of K is identical to the Sasaki–Einstein case. Furthermore, in [134,249],

it was shown that σ is a contact structure, even in the case of generic flux, and ξ is the

corresponding Reeb vector. The corresponding contact volume is

1
2σ ∧ dσ ∧ dσ = −64m4

f2
e3∆′ vol5 = −64m4

f2
c(K), (4.70)

where vol5 is the volume of M in the Einstein frame, and we see that it is the E6(6)-invariant

volume up to a constant.

5Note that ∆′ = ∆− 1
4
φ is the warp factor in the Einstein frame, corresponding to that used in [244].

6Note that this includes the dressing by the axion-dilaton degrees of freedom. There is a slight subtlety
that here we first twist by the Bi potentials defined by W and then dress by the axion-dilaton, whereas
previously the transformations were made in the opposite order. Thus strictly the potentials defined by W
differ from those we have been using by the axion-dilaton dressing.
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4.4.3 Generic fluxes in M-theory

We now consider the most general supersymmetric solutions of eleven-dimensional su-

pergravity of the form AdS5 ×M , as first discussed in [240]. In this case, the internal

six-dimensional space M has a local SU(2) structure characterised by tensor fields con-

structed as bilinears of the Killing spinor on M . The metric on M always admits a Killing

vector corresponding to the R-symmetry of the dual N = 1 superconformal field theory. As

we will see, in this case, the embedding of the SU(2) structure into the H and V structures

is fairly intricate.

Let us start by summarising the structure of the solution and the relevant spinor

bilinears. The metric is a warped product of the form (4.1) with D = 5. Locally, the

internal metric can be written as

ds2(M) = ds2
SU(2) + ζ1

1 + ζ2
2 , (4.71)

where the SU(2) structure on ds2
SU(2) is captured by a complex two-form Ω and a real

fundamental two-form ω. The volume form is given by

vol6 = 1
2ω ∧ ω ∧ ζ1 ∧ ζ2 = 1

4Ω ∧ Ω̄ ∧ ζ1 ∧ ζ2. (4.72)

We also have an almost complex structure for ds2
SU(2) given by

Imn = −ωmn = 1
4 i(Ω̄mpΩnp − ΩmpΩ̄np). (4.73)

The set of spinor bilinears defined in [240] are7

sin θ = ε̄+ε−, Y = ω − sin θ ζ1 ∧ ζ2 = −iε̄+γ(2)ε
+,

ζ̃1 = cos θ ζ1 = ε̄+γ(1)ε
+, Y ′ = ζ1 ∧ ζ2 − sin θ ω = iε̄+γ(2)ε

−,

ζ̃2 = cos θ ζ2 = iε̄+γ(1)ε
−, X = −Ω ∧ (sin θ ζ1 − iζ2) = ε+Tγ(3)ε

+,

Ω̃ = cos θΩ = ε+Tγ(2)ε
−, V = cos θ ω ∧ ζ2 = ε̄+γ(3)ε

−,

(4.74)

where γ are gamma matrices for Cliff(6) in an orthonormal frame for M and the Killing

spinor on M is split into ε+ and ε−, where ε− ∝ γ7ε
+. In the following we will also need

four other, related bilinears

−i ? X = ε+Tγ(3)ε
−, ?V = iε̄+γ(3)ε

+,

1
3!Y ∧ Y ∧ Y = iε̄+γ(6)ε

+, Z = − ? ζ̃1 = iε̄+γ(5)ε
−.

(4.75)

The differential conditions on the SU(2) structure derived from the Killing spinor

7Note that, compared with [240], we have relabelled λ to ∆, ζ to θ and Ki to ζi. We have also absorbed
an overall warp factor into ds2(M).
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equations are given in (B.9) – (B.16) of [240]: we reproduce those that we need here8

d(e3∆ sin θ) = 2me2∆ζ̃1, d(e5∆ζ̃2) = ?F + 4me4∆Y,

d(e3∆X) = 0, d(e3∆V ) = e3∆ sin θ F + 2me2∆ ? Y ′.
(4.76)

One can use the Killing spinor equations to derive additional identities for forms that were

not considered in [240] (but are implied by the conditions therein). We find

d(e∆Y ′) = −ıξF, d(e∆Z) = e∆Y ′ ∧ F, (4.77)

where ξ = e∆ζ̃]2 is the Killing vector that preserves the full solution

LξF = Lξ∆ = Lξg = 0, (4.78)

and generates the U(1) R-symmetry. Since the R-symmetry maps ε± to eiαε±, Lie

derivatives of the spinor bilinears vanish except for

LξΩ̃ = 3imΩ̃, LξX = 3imX, (4.79)

as can be derived from the conditions in [240].

Embedding as a generalised structure

The untwisted HV structure is defined in terms of the spinor bilinears as follows. For the

SU∗(6) structure we have

J̃+ = 1
2κ
(
Ω̃R − i ? X + i ? X]

)
,

J̃3 = −1
2κYR + 1

2κ
(
ζ̃1 ∧ Y − ζ̃]1 ∧ Y

]
)
− 1

2κ
(

1
3!Y ∧ Y ∧ Y + 1

3!Y
] ∧ Y ] ∧ Y ]

)
,

(4.80)

where κ2 = e3∆ vol6 is the E6(6)-invariant volume and Ω̃R and YR are sections of TM⊗T ∗M ,

constructed by raising the first index of the corresponding two-form with the metric, that is

(Ω̃R)mn = gmpΩ̃pn and (YR)mn = gmpYpn. The F4(4) structure is given by the generalised

Reeb vector

K̃ = ξ − e∆Y ′ + e∆Z. (4.81)

Using the adjoint action, e6(6) Killing form and cubic invariant given in appendix B, one

can check the Jα satisfy an su2 algebra and that both structures are correctly normalised.

To be sure that together they define an USp(6) structure we also need to check the first

compatibility condition in (4.7), or equivalently J̃+ · K̃ = 0. Splitting into vector, two-form

8As mentioned, we have absorbed an overall warp factor into the metric on M , so that the powers of ∆
appearing here are different to those in [240].
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and five-form components, we find

J̃+ · K̃
∣∣
TM
∝ Ω̃R · ζ̃]2 − i(?X)]yY ′ = 0,

J̃+ · K̃
∣∣∧2T ∗M

∝ Ω̃R · Y ′ + iζ̃]2y(?X)− i(?X)]yZ = 0,

J̃+ · K̃
∣∣∧5T ∗M

∝ Ω̃R · Z + i(?X) ∧ Y ′ = 0,

(4.82)

where we have used the expressions for the spinor bilinears in terms of the SU(2) structure

to see that each term vanishes. The full structures will be twisted by the three-form gauge

potential A as in (4.8). However, it is again actually easier to work with the untwisted

structures and use the twisted generalised Lie derivative in the differential conditions.

Integrability

We now turn to the integrability conditions starting with the moment maps (4.16). Let

Ṽ = ṽ+ ω̃+ σ̃ be an untwisted generalised vector. The function (4.12) then takes the form

γ(Ṽ ) = −1
3

ˆ
M

e2∆
(
ζ̃1 ∧ σ̃ + ?Y ′ ∧ ω̃ − ıṽY ′ ∧ Z

)
. (4.83)

We first consider µ3. The moment map is a sum of terms that depend on arbitrary ṽ, ω̃

and σ̃, so we can consider each component in turn. The σ̃ component is

µ3(σ̃)− λ3γ(σ̃) = 1
16 i

ˆ
M
κ2
(
?X̄] ∧ ?X]

)
ydσ̃ + 1

3λ3

ˆ
M

e2∆ζ̃1 ∧ σ̃

= 1
2

ˆ
M

e3∆ sin θ dσ̃ + 1
3λ3

ˆ
M

e2∆ζ̃1 ∧ σ̃

= −1
2

ˆ
M

d(e3∆ sin θ) ∧ σ̃ + 1
3λ3

ˆ
M

e2∆ζ̃1 ∧ σ̃.

(4.84)

Remembering that λ3 = 3m, this vanishes for

d(e3∆ sin θ) = 2me2∆ζ̃1. (4.85)

This is the first differential condition in (4.76). The ω̃ component is

µ3(ω̃)− λ3γ(ω̃) = 1
16 i

ˆ
M
κ2
(

i
( ¯̃ΩR · ?X] + Ω̃R · ?X̄]

)
ydω̃ +

(
?X̄] ∧ ?X]

)
y(ω̃ ∧ F )

)
+ 1

3λ3

ˆ
M

e2∆ ? Y ′ ∧ ω̃

= −1
2

ˆ
M

(
e3∆V ∧ dω̃ − sin θe3∆ω̃ ∧ F

)
+ 1

3λ3

ˆ
M

e2∆ ? Y ′ ∧ ω̃

= −1
2

ˆ
M

(
d(e3∆V ) ∧ ω̃ − sin θe3∆ω̃ ∧ F

)
+ 1

3λ3

ˆ
M

e2∆ ? Y ′ ∧ ω̃.

(4.86)
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This vanishes for

d(e3∆V ) = e3∆ sin θF + 2me2∆ ? Y ′. (4.87)

This is the fourth differential condition in (4.76). The ṽ component is rather long but can

be shown to vanish as a result of the differential conditions in (4.76). For the µ+ moment

map, the contribution from terms containing σ̃ vanishes without imposing any differential

conditions. The contribution from the ω̃ terms simplifies to

µ+(ω̃) = − i
2

ˆ
M

e3∆X ∧ dω̃ = − i
2

ˆ
M

d(e3∆X) ∧ ω̃. (4.88)

This vanishes after imposing the third differential condition in (4.76)

d(e3∆X) = 0. (4.89)

The ṽ component is again somewhat involved but can be shown to vanish as a result of

the conditions in (4.76).

For the vector-multiplet structure we first use the condition (4.24), which, substituting

for K̃ in (4.26), gives

R̃ = −d(e∆Y ′)− ıξF + d(e∆Z)− e∆Y ′ ∧ F = 0, (4.90)

which reproduces the two equations in (4.77). We then have

L̂K̃K̃ = LξK̃ = 0, (4.91)

since the bilinears ξ = e∆ζ]2, Y ′ and Z are all invariant. Finally we have the condition (4.18)

which, given (4.79), reads

L̂K J̃+ = LξJ̃+ = 3imJ̃+, (4.92)

in agreement with λ3 = 3m.

In summary, we have shown that the most general AdS5 solutions of eleven-dimensional

supergravity do indeed define an exceptional Sasaki–Einstein space.

4.5 AdS4 backgrounds as ESE spaces

We now discuss the structure of exceptional Sasaki–Einstein (ESE) backgrounds for AdS4.

We first show how the standard M-theory Sasaki–Einstein reduction with seven-form flux

embeds as an ESE background, and comment on how this extends to the generic case,

given in [245].
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4.5.1 Sasaki–Einstein in M-theory

We now briefly discuss the structure of exceptional Sasaki–Einstein (ESE) backgrounds

for AdS4, focussing on the example of conventional Sasaki–Einstein geometry in M-theory.

These are supersymmetric solutions preserving at least eight supercharges [64], and are

dual to a three-dimensional superconformal field theory living on a stack of M2-branes

placed at the tip of the corresponding Calabi–Yau cone.

The metric is a product of the form (4.1) with D = 4 and a constant warp factor, which

we take to be zero. Seven-dimensional Sasaki–Einstein spaces admit a nowhere-vanishing

vector field ξ, known as the Reeb vector, a complex three-form Ω and real two-form ω,

which together define an SU(3) ⊂ GL(7;R) structure. They satisfy the algebraic conditions

1
8 iΩ ∧ Ω̄ = 1

3!ω ∧ ω ∧ ω, ıξΩ = ıξω = 0, ıξσ = 1, (4.93)

where σ is the one-form constructed from ξ by lowering the index with the metric. In

addition one has the differential conditions

dσ = mω, dΩ = 2imσ ∧ Ω, (4.94)

where m is the inverse AdS4 radius, usually normalised to m = 2. Such a compactification

is supersymmetric provided there is a seven-form flux given by

dÃ = F̃ = −3m vol7, (4.95)

where vol7 = 1
3!σ ∧ ω ∧ ω ∧ ω. (Recall that F̃ is the Hodge-dual of the four-form flux

F = 6m vol(AdS4) in eleven-dimensions.) These conditions imply that the Reeb vector ξ

is a Killing vector that preserves σ and ω, but rotates Ω by a phase

Lξσ = Lξω = Lξg = 0, LξΩ = 2imΩ. (4.96)

The rotation of Ω corresponds to the R-symmetry of theN = 2 solution. In what follows

we also need the (transverse) complex structure

Imn = −ωmn = 1
8 i(Ω̄mpqΩnpq − ΩmpqΩ̄npq), (4.97)

which satisfies IqmΩqnp = iΩmnp. For simplicity of presentation, we assume that the

four-form flux and warp factor vanish, though one can show that these also follow from

the integrability conditions.

The HV structure defined by the SU(3) structure is actually the same as the example

considered the previous chapter, namely a Calabi–Yau threefold times a circle. The

difference between the two is in the differential conditions on the SU(3) invariant forms.
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We have the untwisted tensors

J̃+ = κ
2 Ω− κ

2 Ω],

J̃3 = κ
2 I −

κ
2

i
8Ω ∧ Ω̄− κ

2
i
8Ω] ∧ Ω̄],

(4.98)

where κ2 = vol7 is the E7(7)-invariant volume and

X̃ = ξ + iω − 1
2σ ∧ ω ∧ ω − iσ ⊗ vol7 . (4.99)

Using the adjoint action, the symplectic invariant and the e7(7) Killing form, one can check

that J̃α generate an su2 algebra and that both structures are correctly normalised and are

compatible, as in (4.3) and (4.7).

We now show how the integrability conditions on the SU(3) structure arise by requiring

{Jα,K} to be ESE. Starting with the moment maps (4.16), we note that if Ṽ = ṽ+ω̃+σ̃+ τ̃

is an arbitrary untwisted generalised vector, then

γ(Ṽ ) =

ˆ
M
s(Ṽ ,

˜̂
K) = −1

4

ˆ
M

(ıṽσ vol7 +σ̃ ∧ ω). (4.100)

Starting with µ3, the terms that depend on σ̃ are

µ3(σ̃)− λ3γ(σ̃) = − 1
16 i

ˆ
M
κ2(Ω̄] ∧ Ω])ydσ̃) + 1

4λ3

ˆ
M
σ̃ ∧ ω

= −1
2

ˆ
M

dσ̃ ∧ σ + 1
4λ3

ˆ
M
σ̃ ∧ ω

= −1
2

ˆ
M
σ̃ ∧ dσ + 1

4λ3

ˆ
M
σ̃ ∧ ω,

(4.101)

which vanishes for dσ = 1
2λ3ω. The µ+ moment map is

µ+(Ṽ ) = −1
2 i

ˆ
M
−1

4κ
2 tr
(
I · (jΩ]yjdω̃)

)
+ 1

24κ
2(ω] ∧ ω] ∧ ω])y(dω̃ ∧ Ω)

= −1
8 i

ˆ
M

3iκ2Ω]ydω̃ + σ ∧ dω̃ ∧ Ω

= 1
2 i

ˆ
M
σ ∧ Ω ∧ dω̃,

(4.102)

which, using dσ ∝ ω from above, vanishes for σ ∧ dΩ = 0. In the language of [224], this

fixes the torsion classes {W1,W2,W5} to zero. Finally, the ṽ components of µ3 are

µ3(ṽ)− λ3γ(ṽ) = − 1
16 i

ˆ
M
κΩ̄]yLṽ(κΩ) + Lṽ(κΩ])yκΩ̄− κ2(Ω̄] ∧ Ω])yıṽF̃

− 1
4λ3

ˆ
M
ıṽσ vol7

= 1
8

ˆ
M

(
ıṽσ dΩ ∧ Ω̄ + 4 ıṽσ F̃

)
− 1

4λ3

ˆ
M
ıṽσ vol7,

(4.103)
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where we have used the previous results to reach the final line. Requiring this to vanish

fixes the flux to F̃ = 1
2λ3 vol7−1

4dΩ ∧ Ω̄.

For the vector-multiplet structure, using the expression for the twisted generalised Lie

derivative (4.25) and (4.26), we find

L̂K̃K̃ = Lξξ + Lξ(−1
2σ ∧ ω ∧ ω)− ıξ

(
d(−1

2σ ∧ ω ∧ ω)− ıξF̃
)

= −dω ∧ ω, (4.104)

so that integrability implies dω ∧ ω = 0. In the language of [224], the torsion classes

corresponding to {W4, E + Ē, V2, T2} must vanish. Finally, the conditions from (4.17)

combined with those from the H and V structures fix the remaining SU(3) torsion classes

to S = 0 and E = iλ3, so that, with λ3 = 2m, we have

dσ = mω, dΩ = 2imσ ∧ Ω, F̃ = −3m vol7 . (4.105)

We see we reproduce the full set of Sasaki–Einstein integrability conditions.

In summary, we have shown that a background consisting of a seven-dimensional

manifold with an SU(3) structure and generic seven-form flux defines a generalisedSU(6)

structure. Furthermore, requiring that the HV structure is ESE implies the manifold must

be Sasaki–Einstein and the seven-form flux matches that of the standard supersymmetry-

preserving solution.

4.5.2 Generic fluxes in M-theory

Although we will not give the full analysis, let us now discuss some aspects of how the

previous analysis extends to the case of generic fluxes in M-theory, first considered in [245].

In this case, the Killing spinors define a local SU(2) structure. The H and V structures for

generic backgrounds, as in the Sasaki–Einstein case, can be written in terms of appropriate

spinor bilinears. Assuming the seven-form F̃ is non-zero, it is relatively straightforward to

show that the complex untwisted V structure takes the form

X̃ = ξ + e3∆Y + e6∆Z − i e9∆τ, (4.106)

where, in terms of the fermion bilinears, using the notation of [245], we have

ξ = iχ̄c+γ
(1)χ−, Y = iχ̄c+γ(2)χ−, Z = ?Y, τ = ξ[ ⊗ vol7 . (4.107)

The tensors Y and Z are generically complex, but, as shown in [245], ξ is real, so there is

no vector component in the imaginary part of X, consistent with the general argument

given at the end of section 4.2.2. The generalised Lie derivative along the real part of X̃

generates the R-symmetry, and so must reduce to a conventional Lie derivative along ξ.
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We indeed find that the tensor R̃, defined in (4.26), vanishes due to

d(e3∆Y ) = ıξF, (4.108)

d(e6∆Z) = ıξF̃ − e3∆Y ∧ F, (4.109)

where the first is given in [245] and the second can be derived from the Killing spinor

equations.

Recall also that there is also a spinor bilinear three-form satisfying

d
(
e6∆ Im(χ̄c+γ(3)χ−)

)
=

f̃

3m
F. (4.110)

Compared with the expression given in [245], we have reinstated the inverse AdS radius m

(set to m = 2 in [245]), and f̃ (denoted by m in [245]) parametrises the seven-form flux,

namely F̃ = −f̃ vol7. We see (3m/f̃)e6∆ Im(χ̄c+γ(3)χ−) is a potential for the four-form

flux F . Using this potential in (4.8) and the explicit forms of the bilinears given in [245],

we then find that the full twisted V structure is given by

X = eÃ
[
ξ + iω − 1

2σ ∧ ω ∧ ω − iσ ⊗
(

1
3!σ ∧ ω ∧ ω ∧ ω

)]
, (4.111)

where dσ = (3m2/f̃)ω. In particular, the real part is given by

K = ξ − 1
2σ ∧ ω ∧ ω + ıξÃ. (4.112)

We see that the form of X matches that of the Sasaki–Einstein case (4.99). It was

shown in [245] that σ is a contact structure, even in the case of generic flux, and ξ is the

corresponding Reeb vector. The corresponding contact volume is

1
3!σ ∧ dσ ∧ dσ ∧ dσ =

27m6

f̃3

(
3m2

f̃

)3
e9∆ vol7 =

27m6

f̃3
2
√
q(K), (4.113)

where vol7 is the volume of M . Again it is simply a constant times the E7(7)-invariant

volume.

4.6 Central charges, BPS wrapped branes and volume min-

imisation

Of the many field theory properties that can be determined from the dual geometry, two of

the most studied are the central charge a or free energy F of the theory and the conformal

dimension of operators that arise from supersymmetric wrapped branes. The key point of

this section is that they are all encoded, in a universal way, by the generalised Reeb vector

K. This also leads to a conjecture as to how the dual description of a-maximisation in

D = 4 and F-maximisation in D = 3 appears.
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We have considered three ESE geometries in this chapter: AdS5 in type IIB and

M-theory and AdS4 in M-theory. The generic generalised Reeb vector in each case is given

by

K =


ξ − σ ∧ ω + ıξC, AdS5 in type IIB,

ξ − e∆Y ′ + e∆Z + ıξA−A ∧ e∆Y ′, AdS5 in M-theory,

ξ − 1
2σ ∧ ω ∧ ω + ıξÃ, AdS4 in M-theory,

(4.114)

where in the last case we are assuming the seven-form flux F̃ is non-trivial and in the first

that five-form flux F is non-trivial. Each K is a generalised Killing vector that generates

the global R-symmetry of the dual field theory. It is a combination of diffeomorphism

(parametrised by ξ) and gauge transformation (parametrised by the p-form components),

under which the transformations of the metric g and gauge potentials vanish, as in (4.22)

and (4.23). For AdS5 in type IIB [134, 249] and AdS4 in M-theory [245], the generic

geometry admits a canonical contact structure σ. As we have already noted, it is striking

that this structure is equivalent to specifying the generalised Reeb vector K, where the

integrability arises from requiring that K is generalised Killing.

For AdS5 solutions the central charge a of the dual field theory is given by [260]

a =
π

8m3G5
, (4.115)

where G5 is the effective five-dimensional Newton’s constant. Using the results of [249]

and [261], one finds that for both the generic type IIB and M-theory background the

inverse of G5 is given by the integral of the E6(6)-invariant volume

G−1
5 ∝

ˆ
M

e3∆ vol =

ˆ
M
c(K). (4.116)

As review in appendix G, quantising so we have N units of background flux and fixing

this integer N in the expression for a reverses the dependence on the invariant volume.

This leads to a universal expression for the central charge in terms of the generalised Reeb

vector, applicable to both type IIB and M-theory

a−1 ∝
ˆ
M
c(K), (4.117)

where in type IIB the constant of proportionality scales asN−2 and in M-theory as N−3.

Recall that for type IIB, c(K) is proportional to the contact volume 1
2σ ∧ dσ ∧ dσ.

A similar formula for the free energy of the field theory on a three-sphere can be derived

for generic AdS4 backgrounds following [245]. The real part of the free energy is equal to

the gravitational free energy and is given by

F =
π

2m2G4
, (4.118)
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where the four-dimensional Newton’s constant is given by the E7(7)-invariant volume

G−1
4 ∝

ˆ
M

e2∆ vol7 =

ˆ
M

2
√
q(K). (4.119)

Fixing the quantised background flux then gives, as in [255],

F−2 ∝
ˆ
M

√
q(K), (4.120)

where the constant of proportionality scales as N−3. Again,
√
q(K) is proportional to

the contact volume, 1
3!σ ∧ dσ ∧ dσ ∧ dσ. Although we have not considered type IIB AdS4

backgrounds, we expect that the same formula for the free energy holds since q(K) (and

c(K) in the AdS5 case) are U-duality invariants.

Let us now discuss how the properties of chiral operators in the dual SCFT coming

from wrapped branes are encoded by K. For definiteness, we will focus on AdS5 in type

IIB. A probe D3-brane wrapping a supersymmetric three-cycle Σ3 in M5 gives rise to

a BPS particle in AdS5. The particle appears as the excitation of a field that couples

to a chiral primary operator O3, and thus the probe D3-brane corresponds to a BPS

operator in the dual field theory. The (warped) volume of the wrapped D3-brane is then

associated to the conformal dimension of the operator ∆(O3), which in turn is proportional

to the R-charge. In order for the three-cycle to be supersymmetric, it must be calibrated

by a (generalised) three-form calibration. There are many ways to find this calibration,

including using spinor bilinears of the full ten-dimensional Killing spinors or checking the

κ-symmetry conditions directly.

A similar story applies to probe M2-branes wrapping supersymmetric two-cycles in M6

and probe M5-branes wrapping supersymmetric five-cycles in M7, corresponding to chiral

primary operators in the dual four- and three-dimensional SCFTs. For all three cases, the

relevant calibration form is known and the conformal dimensions of the corresponding

operators are given by

D3-branes in AdS5 [134,249]: ∆(O3) = −TD3

m

ˆ
Σ3

σ ∧ ω,

M2-branes in AdS5 [261]: ∆(O2) =
TM2

m

ˆ
Σ2

e∆Y ′,

M5-branes in AdS4 [245]: ∆(O5) = −TM5

m

ˆ
Σ5

1
2σ ∧ ω ∧ ω,

(4.121)

where T• is the tension of the brane wrapping the cycle. From (4.114) we see that the

relevant calibration form appears in the generalised Reeb vector K, implying that the

components of K are the (generalised) calibrations that define supersymmetric cycles.

This is not surprising since K is defined as a bilinear of the Killing spinors and imposing

that LK reduces to Lξ requires the components of K to satisfy equations that resemble
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generalised calibration conditions. For backgrounds with non-trivial fluxes, the calibration

condition is equivalent to asking that the energy of the wrapped brane is minimised. This

suggests that the generalised calibration should be given by the twisted K. Notice however

that, for the branes we discussed above, most of the potentials have vanishing pull-back

on the wrapped cycle and hence do not contribute to the conditions (4.121). We leave for

future work a more detailed analysis of how calibrations appear in this language.

As we have seen, the generalised Reeb vector K encodes the central charge or free

energy of the dual field theory. For some time, a classic problem in four-dimensional

N = 1 SCFTs was to find the correct U(1) symmetry that gives the R-symmetry as the

theory flows from the UV to the IR. A general procedure for determining this was given

by Intriligator and Wecht [253], namely a-maximisation. For three-dimensional N = 2

theories the analogous procedure consists of maximising the free energy [254,255]. (Both

cases can also be thought of as minimising the coefficient τRR of the two-point function

of the R-symmetry current [262].) The bulk version of this process is known as volume

minimisation [251, 252], and was originally derived for Sasaki–Einstein backgrounds, but a

version also appears to hold for the case of generic type IIB backgrounds [250]. The idea

is to relax the supersymmetry conditions slightly and show that the resulting supergravity

action depends only on the choice of Reeb vector, ξ. The actual supersymmetric background

then appears after minimising over the possible choices of ξ.

This leads to a natural question: what is the dual of a-maximisation (or F -maximisation)

in our language? Comparing with [250–252] there is a very natural candidate for relaxing the

supersymmetry conditions, namely simply to drop the normalisation conditions κ2 = c(K)

in D = 5 and κ2 = 2
√
q(K) in D = 4, defining a notion of an “exceptional Sasaki

structure”. Following the analogous analysis to that given in appendix F, we find this

requires that the moment map conditions are slightly modified, giving

Definition. An exceptional Sasaki structure is a pair {Jα,K} of H and V structures

satisfying Jα ·K = 0 and the integrability conditions

µα(V ) = λα

ˆ
M
φ(V ) ∀V ∈ Γ(E), (4.122)

LKK = 0, (4.123)

LKJα = εαβγλβJγ , LK̂Jα = 0, (4.124)

where φ(V ) is given by

φ(V ) =

κ2q(V,K,K,K)/q(K), for D = 4

κ2c(V,K,K)/c(K), for D = 5
(4.125)

where tr(JαJβ) = −κ2δαβ and λα are real constants, as in the definition of an ESE

structure. The condition LK̂Jα = 0 is relevant only for D = 4.
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An interesting open question is whether in the D = 5 type IIB case this agrees with the

notion of a generalised Sasaki structure defined in [250]. The natural conjecture is then

that, over the space of such structures, the supergravity action restricted to the internal

space M is given by

Ssugra ∝
ˆ
M

√
q(K), and Ssugra ∝

ˆ
M
c(K), (4.126)

for D = 4 and D = 5 respectively, and so depends only on the generalised Reeb vector.

Extremising over the space of K then selects the generalised Reeb vector that corresponds

to the actual R-symmetry.

Motivation for this formulation comes from the fact, already noted in section 4.3.1,

that the supersymmetry conditions for an ESE structure can be interpreted in terms

of gauged D = 4 or D = 5 supergravity with infinite dimensional spaces of hyper- and

vector-multiplets. Various authors have considered the dual of a- and F -maximisation from

the point of view of a conventional dual gauged D = 5 or D = 4 supergravity [263–265],

and showed explicitly that they correspond to extremising over the space of possible R-

symmetries either, in D = 5, the cubic function that determines the real special geometry

of the vector multiplets [263, 264], or, in D = 4, the real function that determines the

special Kähler geometry of the vector multiplets [265]. In our language, this corresponds to

varying K and extremising the integral of either c(K) or
√
q(K), exactly as we conjecture

above.

Showing that such a procedure works would provide the dual of a- and F -maximisation

not only for an arbitrary flux background, generalising the Sasaki–Einstein cases in IIB

on AdS5 and M-theory on AdS4, but also for the generic M-theory AdS5 background for

which no notion of volume minimisation exists. It may also provide insight into exactly

what space of solutions one is extremising over in the flux case.

4.7 Summary

In this chapter we have given a new geometrical interpretation of generic AdS flux

backgrounds preserving eight supercharges within generalised geometry. These “exceptional

Sasaki–Einstein” (ESE) geometries are the natural string generalisations of Sasaki–Einstein

spaces in five and seven dimensions. The geometries always admit a “generalised Reeb

vector” that generates an isometry of the background corresponding to the R-symmetry of

the dual field theory. In the language of [145], ESE spaces are weak generalised holonomy

spaces, and the cone over such a space has generalised special holonomy. We have included

a number of examples of ESE spaces including conventional Sasaki–Einstein in five and

seven dimensions, as well as the most general AdS5 solutions in M-theory. We also discussed

the structure of the moduli spaces of ESE spaces, pointing out an interesting connection

to the “HK/QK correspondence” [247].
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A particular advantage of the formalism is that the generalised H and V structures

defining the background are associated to hypermultiplet and vector-multiplet degrees of

freedom in the corresponding gauged supergravity, providing a natural translation between

bulk and boundary properties. We showed for example that the V structure, which is

defined by the generalised Reeb vector K, encodes the contact structure that appears

in generic D = 5 IIB and D = 4 M-theory backgrounds [134, 245, 249]. Furthermore K

determines the central charge in D = 5 and free energy in D = 4 of the dual theory, and

is a calibration for BPS wrapped branes giving the dimension of the dual operators. In

the examples with contact structures, this framework allows one to calculate properties

of the field theory using the relation between the contact volume and the choice of Reeb

vector [134, 245,249]. The special role of K also led us, following [250], to a conjecture for

the generic form of volume minimisation [251,252].
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Chapter 5

Marginal deformations of d = 4,

N = 1 SCFTs

In this chapter we apply exceptional generalised geometry to the study of exactly marginal

deformations of N = 1 SCFTs that are dual to generic AdS5 flux backgrounds in type

IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are

parametrised by the space of chiral primary operators of conformal dimension three, while

exactly marginal deformations come from quotienting this space by the complexified global

symmetry group. We show how the supergravity analysis gives a geometric interpretation of

the gauge theory results. The marginal deformations arise from deformations of generalised

structures that solve moment maps for the generalised diffeomorphism group and have the

correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the

only symmetry of the background, all marginal deformations are exactly marginal. If the

background possesses extra isometries, there are obstructions that come from fixed points

of the moment maps. The exactly marginal deformations are then given by a further

quotient by these extra isometries.

Our analysis holds for any N = 1 AdS5 flux background. Focussing on the particular

case of type IIB Sasaki–Einstein backgrounds we recover the result that marginal deforma-

tions correspond to perturbing the solution by three-form flux at first order. In various

explicit examples, we show that our expression for the three-form flux matches those in

the literature and the obstruction conditions match the one-loop beta functions of the

dual SCFT.

5.1 Introduction

The AdS/CFT correspondence allows the study of a wide class of superconformal field

theories in four dimensions, many of which are realised as the world-volume theories of

D3-branes at conical singularities of Calabi–Yau manifolds. The best known examples are

N = 4 super Yang–Mills and the Klebanov–Witten model, which are obtained by stacking
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D3-branes in flat space or at the tip of the cone over T1,1 respectively.

An interesting feature of N = 1 superconformal field theories (SCFTs) is that they may

admit exactly marginal deformations, namely deformations that preserve supersymmetry

and conformal invariance. A given N = 1 SCFT can then be seen as a point on a

“conformal manifold” in the space of operator couplings. The existence and dimension of

the conformal manifold for a given theory can be determined using N = 1 supersymmetry

and renormalisation group arguments [266–269]. For instance, N = 4 super Yang–Mills

admits two exactly marginal deformations, the so-called β- and cubic deformations.1 Even

in this simple case, it is difficult to determine the precise geometry of the conformal

manifold.

Using AdS/CFT, the same questions can be asked by studying deformations of the

supergravity background dual to the given SCFT. For N = 4 super Yang–Mills, the

supergravity dual of the full set of marginal deformations is known only perturbatively.

In [270], the first-order perturbation was identified with the three-form fluxes of type

IIB, and the corresponding linearised solution was given in [225]. The second-order

solution, including the back-reacted dilaton and metric, was constructed in [271], which

also identified an obstruction to the third-order solution, corresponding to the vanishing of

the gauge theory beta functions. This required considerable effort, and it seems unlikely

one can reconstruct the full solution from a perturbative analysis. More promisingly,

using duality transformations, Lunin and Maldacena were able to build the full analytic

supergravity dual of the β-deformation [93]. The same transformation applied to T1,1 or

Yp,q manifolds gives the gravity duals of the β-deformation of the Klebanov–Witten theory

and more general N = 1 quiver gauge theories [93]. For the other marginal deformations

of Yp,q models, the identification of the gravity modes dual to them can be found in [272],

but no finite-deformation gravity solutions are known.

The Lunin–Maldacena (LM) solution has a nice interpretation in generalised complex

geometry [132, 133], a formalism that allows one to geometrise the NS-NS sector of

supergravity [108, 109]. One considers a generalisation of the tangent bundle of the

internal manifold, given by the sum of the tangent and cotangent bundles. The structure

group of this generalised tangent bundle is the continuous T-duality group O(d, d). The

transformation that generates the LM solution is then identified as a bi-vector deformation

inside O(d, d) [132]. However, this is not the case for the other marginal deformation of

N = 4. In order to capture all exactly marginal deformations, one is tempted to look at

the full U-duality group. This requires considering exceptional or Ed(d) × R+ generalised

geometry [135,136], where the U-duality groups appear as the structure groups of even

larger extended tangent bundles.

The relevant structures for AdS5 compactifications are a hypermultiplet (or H) structure

Jα and a vector-multiplet (or V) structure K. These structures are naturally associated

with the hypermultiplet and vector-multiplet degrees of freedom of the five-dimensional

1There is also a third exactly marginal deformation that is simple changing the gauge coupling.
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gauged supergravity on AdS5, hence their names. Together they are invariant under

a USp(6) subgroup of E6(6) × R+ and also admit a natural action of the USp(2) local

symmetry of N = 1 supergravity in five dimensions.2 Although our specific examples will

focus on type IIB geometries, the same analysis applies equally to generic N = 1 AdS5

solutions of type IIB or eleven-dimensional supergravity.

This generalised geometric description of the internal geometry translates naturally to

quantities in the dual field theory, which is particularly useful when analysing marginal de-

formations. Indeed, since hypermultiplets and vector multiplets of the gauged supergravity

correspond to chiral and vector multiplets of the dual SCFT [263], the deformations of

the H and V structures map directly to superpotential and Kähler deformations of the

dual SCFT. Using the properties of theN = 1 superconformal algebra, Green et al. [269]

showed that marginal deformations can only be chiral operators of (superfield) dimension

three and that the set of exactly marginal deformations is obtained by quotienting the

space of marginal couplings by the complexified global symmetry group. The main result

of this chapter will be to reproduce these features from deformations of generic solutions

on the supergravity side: the supersymmetric deformations must preserve the V structure

but can deform the H structure. In addition, the exactly marginal deformations are a

symplectic quotient of the marginal deformations by the isometry group of the internal

manifold. This corresponds to the global symmetry group of the dual field theory.

The chapter is organized as follows: we begin in section 5.2 with a discussion of marginal

deformations of N = 1 SCFTs focussing on a number of classic examples that are dual to

AdS5×M type IIB backgrounds, where M is a Sasaki–Einstein manifold. In section 5.3, we

review the reformulation of AdS5 backgrounds in terms of exceptional generalised geometry.

We then describe how the moduli space of generalised structures appears and outline how

this reproduces the findings of [267–269]. For concreteness, in section 5.4 we specialise

to type IIB Sasaki–Einstein backgrounds. We find the explicit linearised supersymmetric

deformations corresponding to the operators in the chiral ring, matching the Kaluza–Klein

analysis of [273], and recover the result that the supersymmetric deformations give rise

to three-form flux perturbations [225]. In section 5.5, we give the explicit examples of

S5, T1,1 and Yp,q, and show that our expression for the three-form flux on S5 matches

the supergravity calculation of Aharony et al. [271], and reproduces the flux of the LM

solution for generic Sasaki–Einstein manifolds.

5.2 Marginal deformations of N = 1 SCFTs

Conformal field theories can be seen as fixed points of the renormalisation group flow

where the beta functions for all couplings vanish. Generically, since there are as many

beta functions as there are couplings, CFTs correspond to isolated points in the space of

2We use the nomenclature N = 1 to denote backgrounds with eight supercharges in five dimensions, as
this is the minimal amount of supersymmetry.
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couplings. This is not the case for supersymmetric field theories, where non-renormalisation

theorems force the beta functions for the gauge and superpotential couplings to be linear

combinations of the anomalous dimensions of the fundamental fields [266]. If global

symmetries are present before introducing the marginal deformations, the number of

independent anomalous dimensions will be smaller than the number of couplings and not

all beta functions will be independent. The theory then admits a manifold of conformal

fixed points,Mc. This is equivalent to saying that a given SCFT at a point p ∈Mc admits

exactly marginal deformations, namely deformations that preserve conformal invariance at

the quantum level. The dimension of the conformal manifold is given by the difference

between the number of classically marginal couplings and the number of independent beta

functions. The two-point functions of the exactly marginal deformations at each point

p ∈Mc defines a natural metric on Mc called the Zamolodchikov metric.

Recently, developing the argument in [267], the authors of [269] proposed an alternative

method to analyse the N = 1 exactly marginal deformations of four-dimensional SCFTs,

which does not use explicitly the beta functions for the superpotential couplings, but

instead relies on the properties of the N = 1 algebra. Take a four-dimensional N = 1

SCFT at some point p in the conformal manifold, and consider all possible marginal

deformations. These are of two types: “Kähler deformations” which are perturbations

of the form
´

d4θ V where V is a real primary superfield of mass dimension ∆ = 2, and

“superpotential” deformations which have the form
´

d2θO where O is a chiral primary

superfield with ∆ = 3.3 The results of [269] are that:

• there are no marginal Kähler deformations since they correspond to conserved

currents;

• there is generically a set of marginal superpotential deformations Oi, with the generic

deformation W = hiOi parametrised by a set of complex couplings {hi};

• if the undeformed theory has no global symmetries other than the U(1)R R-symmetry,

all marginal deformations are exactly marginal;

• however if the original SCFT has a global symmetry G that is broken by the generic

deformation W = hiOi, then the conformal manifold, near the original theory, is

given by the quotient of the space of marginal couplings by the complexified broken

global symmetry group

Mc = {hi}/GC, (5.1)

where Mc is Kähler with the Zamolodchikov metric.

The reduction (5.1) can be viewed as a symplectic quotient for the real group G, where

setting the moment maps to zero corresponds to solving the beta function equations for

3Here we give the mass dimension of the operator written as an N = 1 superfield. In component
notation, in both cases the contribution to the Lagrangian has dimension ∆ = 4.
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the deformations. Note also that the vector space of couplings hi (modulo GC) parametrise

the tangent space TpMc at the particular SCFT p ∈Mc, and so define local coordinates

on the conformal manifold near p. Thus, as written (5.1), is only a local definition.

More generally one can also consider operators O = A + θψ + θ2FA that are chiral

primary superfields of any dimension, modulo the relations imposed by the F-terms of

the SCFT. The lowest components A form the chiral ring under multiplication A′′ = AA′

subject to the F-term relations, whereas the θ2-components satisfy FA′′ = AFA′ +A′FA,

and hence transform as a derivation on the ring (specifically like a differential “dA”). In

what follows it will be useful to define the infinite-dimensional complex space of couplings

{γi, γ′i} corresponding to deforming the Lagrangian by a term ∆ = γiFAi + γ′iAi for

generic chiral ring elements Ai and θ2-components FAi . The γi terms are supersymmetric,

while the γ′i terms break supersymmetry, and generically neither are marginal. One of

our results is that the supergravity analysis implies that there is a natural hyper-Kähler

structure on this space, since the pair (γi, γ′i) arise from the scalar components of a

hypermultiplet in the bulk AdS space. More precisely, if there is a global symmetry G,

one naturally considers the space defined by the hyper-Kähler quotient4

M̃ = {γi, γ′i}///G. (5.2)

The conformal manifold is then a finite-dimensional complex submanifold of M̃

Mc ⊂ M̃, (5.3)

with the Ai couplings γ′i set to zero and only the exactly marginal γi coefficients (denoted

hi above) non-zero.

We now give three examples of SCFTs whose conformal manifolds have been analysed

and whose gravity duals will be discussed in the rest of the chapter.

5.2.1 N = 4 super Yang–Mills

The most studied example of a SCFT in four dimensions is N = 4 super Yang–Mills. The

fields of the theory are – besides gauge fields – six scalars and four fermions, all in the

adjoint representation of the gauge group SU(N) and transforming non-trivially under the

SU(4) R-symmetry. In N = 1 notation, these fields arrange into a vector multiplet and

three chiral superfields Φi. The theory has a superpotential

WN=4 = 1
6hεijk tr(ΦiΦjΦk), (5.4)

which is antisymmetric in the fields, and the coupling is fixed by N = 4 supersymmetry to

be equal to the gauge coupling, h = τ . In this notation, only the SU(3)×U(1) subgroup

of the R-symmetry is manifest.

4For more on this hyper-Kähler quotient see section 5.3.2.
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The marginal deformations compatible with N = 1 supersymmetry are given by the

chiral operators

W = 1
6hεijk tr(ΦiΦjΦk) + 1

6fijk tr(ΦiΦjΦk), (5.5)

where fijk is a complex symmetric tensor of SU(3) and h is a priori different from the gauge

coupling τ . In all there are eleven complex marginal deformations. The superpotential

(5.5) breaks the global SU(3) symmetry, leaving the U(1)R symmetry of N = 1 theories.

Therefore, the conformal manifold is

Mc = {h, fijk}/SU(3)C, (5.6)

with complex dimension dim(Mc) = 11 − 8 = 1 + 2. The first deformation is an SU(4)

singlet corresponding to changing both τ and h, the other two are true superpotential

deformations.

The same conclusions can be reached by studying the beta functions of the deformed

theory [266,271]. One can show that the beta function equations for the gauge coupling and

the superpotential deformations are proportional to the matrix of anomalous dimensions.

At one loop, this (or more precisely its traceless part) is

γi
j =

N2 − 4

64Nπ2
(fiklf̄

jkl − 1
3δi

jfklmf̄
klm) = 0, (5.7)

corresponding to the SU(3) moment maps, when we view (5.6) as a symplectic quotient.

This equation imposes eight real conditions on fijk. One can remove another eight real

degrees of freedom using an SU(3) rotation of the fields Φi. Together, these reduce the

superpotential deformation to [266]

W = 1
6hεijk tr(ΦiΦjΦk) + fβ tr(Φ1Φ2Φ3 + Φ3Φ2Φ1) + fλ tr

(
(Φ1)3 + (Φ2)3 + (Φ3)3

)
. (5.8)

The coupling fβ is the so-called β-deformation,5 and fλ is often called the cubic deformation.

As mentioned above, the first term in this expression is to be interpreted as changing h

and τ together.

One can go beyond the one-loop analysis. The deformed theory has a discrete Z3 × Z3

symmetry, which forces the matrix of anomalous dimensions of the Φi to be proportional

to the identity. One can then show that the beta function condition (at all loops) reduces

to just one equation, thus again giving a three-dimensional manifold of exactly marginal

deformations. Since this will be relevant for the gravity dual, we stress that the only

obstruction to having exactly marginal deformations is the one-loop constraint (5.7).

5This term can also be written as tr(eiπβΦ1Φ2Φ3 − e−iπβΦ3Φ2Φ1) where β is complex [93].
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5.2.2 Klebanov–Witten theory

The Klebanov–Witten theory is the four-dimensional SCFT that corresponds to the

world-volume theory of N D3-branes at the conifold singularity [257]. This is an N = 1

SU(N) × SU(N) gauge theory with two sets of bi-fundamental chiral fields Ai and Bi

(i = 1, 2) transforming in the (N ,N) and (N ,N) respectively. The superpotential is

W = hεαβεα̇β̇ tr(AαBα̇AβBβ̇), (5.9)

and preserves an SU(2)× SU(2)×U(1)R global symmetry, under which the chiral fields

transform as (2,1,1/2) and (1,2,1/2) respectively. The R-charges of the fields Ai and

Bi are such that the superpotential has the standard charge +2. The superpotential is

not renormalisable, suggesting that the theory corresponds to an IR fixed point of an RG

flow. Indeed, one can show that this theory appears as the IR fixed point of the RG flow

generated by giving mass to the adjoint chiral multiplet in the Z2 orbifold of N = 4 super

Yang–Mills [257].

Classically, the marginal deformations of the KW theory are given by the following

chiral operators

W = hεαβεα̇β̇ tr(AαBα̇AβBβ̇) + fαβ,α̇β̇ tr(AαBα̇AβBβ̇)

+ τ
[
tr(W1W1)− tr(W2W2)

]
,

(5.10)

where the tensor fαβ,α̇β̇ is symmetric in the indices αβ and α̇β̇, and therefore transforms

in the (3,3) of the SU(2)× SU(2) global symmetry group. The deformation τ does not

break the global symmetry of the theory and corresponds to a shift in the difference of the

gauge couplings (1/g2
1 − 1/g2

2).

The exactly marginal deformations of the KW theory were found in [274]. Only three

components of the fαβ,α̇β̇ term are exactly marginal, so we have five exactly marginal

deformations in total. This is in agreement with the dimension of the conformal manifold,

given by

Mc = {h, fαβ,α̇β̇, τ}/(SU(2)× SU(2))C. (5.11)

One reaches the same conclusions by studying the beta functions of the deformed

theory [257]. These are equivalent to the SU(2)× SU(2) moment maps, which take the

form

γαβ = fαγα̇β̇ f̄βγα̇β̇ −
1
2δ
α
βf

τγα̇β̇ f̄τγα̇β̇ = 0,

γα̇β̇ = fαβα̇γ̇ f̄αββ̇γ̇ −
1
2δ
α̇
β̇
fαβτ̇ γ̇ f̄αβτ̇ γ̇ = 0.

(5.12)

These remove six real degrees of freedom. We can also redefine the couplings using the

SU(2) × SU(2) symmetry to remove another six real degrees of freedom, leaving three
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complex parameters. The exactly marginal deformations are then given by

W = hεαβεα̇β̇ tr(AαBα̇AβBβ̇) + τ
[
tr(W1W1)− tr(W2W2)

]
+ fβ(A1B1̇A2B2̇ +A1B2̇A2B1̇) + f2(A1B1̇A1B1̇ +A2B2̇A2B2̇)

+ f3(A1B2̇A1B2̇ +A2B1̇A2B1̇).

(5.13)

The deformation parametrised by fβ is the β-deformation for the KW theory, since it

is the deformation that preserves the Cartan subgroup of the global symmetry group

(U(1)×U(1) in this case).

5.2.3 Yp,q gauge theories

The KW theory is the simplest example of an N = 1 quiver gauge theory in four dimensions.

A particularly interesting class of these theories arise as world-volume theories of D3-branes

probing a Calabi–Yau three-fold with a toric singularity, where the singular Calabi–Yau

spaces are cones over the infinite family of Sasaki–Einstein Yp,q manifolds [275,276].6 These

theories have rather unusual properties, such as the possibility of irrational R-charges.

The field theories dual to the infinite family of geometries were constructed in [277], which

we review quickly.

The properties of the dual field theories can be read off from the associated quiver.

The fields theories have 2p gauge groups with 4p+ 2q bi-fundamental fields. Besides the

U(1)R, they have an SU(2)×U(1)F global symmetry. The 4p+ 2q fields split into doublets

and singlets under SU(2): p doublets labelled U , q doublets labelled V , p − q singlets

labelled Z and p+ q singlets labelled Y . The general superpotential is

W = hεαβ

(
q∑

k=1

(Uαk V
β
k Y2k−1 + V α

k U
β
k+1Y2k) +

p∑
j=q+1

ZjU
α
j+1Y2j−1U

β
j

)
, (5.14)

where the α and β indices label the global SU(2). The R-charges of the fields are

rU = 2
3pq
−2
(
2p− (4p2 − 3q2)1/2

)
,

rV = 1
3q
−1
(
3q − 2p+ (4p2 − 3q2)1/2

)
,

rY = 1
3q
−2
(
−4p2 + 3q2 + 2pq + (2p− q)(4p2 − 3q2)1/2

)
,

rZ = 1
3q
−2
(
−4p2 + 3q2 − 2pq + (2p+ q)(4p2 − 3q2)1/2

)
,

(5.15)

while their charges under the additional U(1)F symmetry are respectively 0, 1, −1 and 1.

6The integer numbers p and q satisfy 0 ≤ q ≤ p. Note that Y1,0 = T1,1, the five-dimensional manifold
in the KW theory.
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The marginal deformations of these theories are given by [274]

W = (hεαβ + fαβ)

(
q∑

k=1

(Uαk V
β
k Y2k−1 + V α

k U
β
k+1Y2k) +

p∑
j=q+1

ZjU
α
j+1Y2j−1U

β
j

)
τ Ogauge,

(5.16)

where fαβ is symmetric and Ogauge is an operator involving differences of gauge couplings.

Note that W preserves U(1)F, but the fαβ terms break the SU(2) to U(1). The SU(2)

moment maps giving the beta functions are

εabcf
bf̄ c = 0, (5.17)

where fαβ = fa(σa)αβ, which has the solution fa = raeiφ. Modding out by the SU(2)

action leaves a single deformation that is exactly marginal, namely the analogue of the

β-deformation for the Yp,q theories. As mentioned previously, the β-deformation breaks the

global symmetry to its Cartan generators. Thus one can take f3 non-zero, or equivalently

f11 = −f22 ≡ fβ. (5.18)

Note that the counting is in agreement with the dimension of the conformal manifold,

given by

Mc = {h, fαβ, τ}/SU(2)C = {h, fβ, τ}. (5.19)

Naively the quotient gives the wrong counting. However fαβ does not completely break

SU(2) but instead preserves a U(1), meaning that the quotient removes only two complex

degrees of freedom.

5.3 Deformations from exceptional generalised geometry

According to AdS/CFT, the supergravity dual of a given conformal field theory in four

dimensions is a geometry of the form AdS5 × M , where the AdS5 factor reflects the

conformal invariance of the theory. The duals of exactly marginal deformations that

preserve N = 1 supersymmetry are expected to be of the same form, but with a different

geometry on the internal manifold. Generically, the solution will also have non-trivial

fluxes and dilaton, if present. These solutions should be parametrically connected to the

undeformed solution, so that the moduli space of exactly marginal deformations of the

gauge theory is mapped to the moduli space of AdS5 vacua.

Finding the full supergravity duals of exactly marginal deformations is not an easy task;

few exact solutions are known, and those that are were found using solution-generating

techniques based on dualities [93]. The idea we pursue is to exploit as much of the

symmetry structure of supergravity as possible to look for the generic exactly marginal

deformations. As we have outlined, this is most naturally done in the context of generalised

geometry.
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In this section, we outline the general results applicable to arbitrary AdS5 supergravity

backgrounds, whether constructed from type II or eleven-dimensional supergravity. In

particular, we find the supergravity dual of the field theory results of [269]. In the following

section, we discuss the specific case of type IIB compactifications on Sasaki–Einstein

manifolds, giving considerably more detail.

5.3.1 Generalised structures and deformations

Consider a generic supersymmetric solution of the form AdS5×M , where M can be either

five- or six-dimensional depending on whether we are compactifying type II or eleven-

dimensional supergravity. We allow all fluxes that preserve the symmetry of AdS5. We

are looking for the duals of N = 1 SCFTs in four dimensions and so the dual supergravity

backgrounds preserve eight supercharges, that is N = 1 in five dimensions. As we have

seen, a background preserving eight supercharges is completely determined by specifying

a pair of generalised structures: a “vector-multiplet structure” K and a “hypermultiplet

structure” Jα, a triplet of objects labelled by α = 1, 2, 3. Supersymmetry implies that the

structures K and Jα satisfy three differential conditions, given in (4.13)–(4.15). The two

of particular relevance to us are

µα(V ) = λα

ˆ
c(K,K, V ) ∀V, (5.20)

LKJα = εαβγλβJγ , (5.21)

where the triplet of functions µα(V ) are defined to be

µα(V ) := −1
2εαβγ

ˆ
tr(Jβ LV Jγ). (5.22)

The third condition is

LKK = 0. (5.23)

The constants λα are related to the AdS5 cosmological constant and can always be fixed to

λ1 = λ2 = 0, λ3 = 3. (5.24)

As we showed in (4.20), K is a “generalised Killing vector”, that is LK generates a gener-

alised diffeomorphism that leaves the solution invariant, and this symmetry corresponds to

the R-symmetry of the SCFT. In analogy to the Sasaki–Einstein case, we sometimes refer

to K as the “generalised Reeb vector”. In addition, the functions µα can be interpreted as

a triplet of moment maps for the group of generalised diffeomorphisms acting on the space

of Jα structures. As such we will often refer to (5.20) as the moment map conditions.

To find the marginal deformations of theN = 1 SCFT we need to consider perturbations

of the structures K and Jα that satisfy the supersymmetry conditions, expanded to first
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order in the perturbation. These are of two types,7 which correspond to the two types

of deformation in the SCFT. The easiest way to justify this identification is to note that,

from the point of view of five-dimensional supergravity, fluctuations of K live in vector

multiplets and those of Jα live in hypermultiplets. According to the AdS/CFT dictionary,

vector multiplets and hypermultiplets correspond to real primary superfields and chiral

primary superfields in the SCFT [263].

Let us first consider the Kähler deformations, where we hold Jα fixed and deform K.

Looking at the moment maps (5.20), we see the left-hand side depends only on Jα and so

does not change, but the right-hand side can vary, thus we must have

ˆ
c(K, δK, V ) = 0 ∀V. (5.25)

The K tensor is invariant under an F4(4) ⊂ E6(6) subgroup. Decomposing into F4(4)

representations, we find 27 = 1 + 26 and a singlet in the tensor product 26×26 = 1 + . . ..

Writing

δK = aK +K26, V = bK + V26, (5.26)

the terms that form a singlet in the cubic invariant are

ˆ
ab c(K,K,K) +

ˆ
c(K,K26, V26) = 0. (5.27)

The first term is generically non-vanishing, so we must take a = 0 implying there is no

singlet component in δK. We cannot simply scale K. For the second term, we know the

F4 Dynkin diagram has no symmetries, so the fundamental representation is equivalent to

its dual. This means the singlet in 26×26 appears in the symmetric or the antisymmetric

product. If the singlet were to appear in the antisymmetric product, c(K,K26, V26) would

vanish identically as the cubic invariant is itself symmetric and K26 would be unconstrained.

For F4 the singlet appears in the symmetric product [278].8 Thanks to Weyl’s unitary

trick, the real forms that have the same complexification as F4 also admit an invariant

symmetric product. This is the case for F4(4). This means K26 × V26 is symmetric and is

generically non-zero in c(K,K26, V26). Given that it must vanish for any V26, K26 must

itself vanish. Together these mean δK = 0, so there are no deformations of K that satisfy

the moment maps. This matches the field theory analysis that there are no deformations

of Kähler type.

For the superpotential deformations we can solve (5.20) and (5.21) to first order in

δJα. We do this in two steps. First we solve the linearised moment map conditions (5.20).

7There is actually a third type where both δJα 6= 0 and δK 6= 0, but in this case none of the supergravity
fields are perturbed; instead it corresponds to a deformation of the Killing spinors, implying the background
admits more than eight supersymmetries. For this reason it will not interest us here.

8One can find a basis for f4 in terms of matrices in so26 that stabilise a certain cubic polynomial in 26
dimensions [279]. This means the 26 representation is real and that f4 inherits a symmetric bilinear from
so26.
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This gives an infinite number of solutions which correspond to θ2-components and fields in

the chiral ring of the dual gauge theory; generically these are not marginal. Imposing the

first-order generalised Lie derivative condition (5.21) will select a finite number of these

modes that are massless in AdS5 and correspond to the actual marginal deformations.

5.3.2 Exactly marginal deformations and fixed points

We now turn to how the supergravity structure encodes the SCFT result that all marginal

deformations are exactly marginal unless there is an additional global symmetry group G.

The key point, as we will see, is that the differential conditions (5.20) appear as moment

maps for the generalised diffeomorphisms.

A priori, to see if the marginal deformations are exactly marginal one needs to satisfy

the equations (5.20) and (5.21) not just to first order, but to all orders in the deformation.

In general this is a complicated problem: typically there can be obstructions at higher

order that mean not all marginal deformations are actually exactly marginal. For example,

a detailed discussion of deformations of N = 4 up to third order is given in [271].

However, viewing the conditions (5.20) as a triplet of moment maps provides an elegant

supergravity dual of the field theory result that does not require detailed case-by-case

calculations. We discussed the generic situation in section 4.3.2, which we now review.

Moment maps arise when there is a group action preserving a symplectic or hyper-Kähler

structure. Here the µα correspond to the action of generalised diffeomorphisms acting

on the structure Jα. Thus to get physically distinct solutions we need to satisfy the

moment map conditions (5.20) and then identify solutions that are related by a generalised

diffeomorphisms. Formally this defines a subspace of hypermultiplet structures

M̃ = {Jα : µα = λαγ}/GDiffK , (5.28)

where γ is the function

γ(V ) =

ˆ
c(K,K, V ), (5.29)

and GDiffK is the subgroup of generalised diffeomorphisms that leave K invariant. In

other words, we are considering the moduli space of solutions for Jα for fixed K. By

construction (5.28) defines a hyper-Kähler quotient and hence M̃ is hyper-Kähler. The

condition (5.21) then defines a Kähler subspace Mc ⊂ M̃. We can also consider first

imposing (5.21) and then the moment maps (5.20). Let AKH be the space of H-structures

Jα(x) for fixed K. Imposing (5.21) defines a Kähler subspace NH ⊂ AKH . The moment

map conditions then take a symplectic quotient of NH rather than a hyper-Kähler quotient.
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We then have the following picture

AKH NH

M̃ Mc

(5.21)

HK quotient (5.20) sympl. quotient (5.20)

(5.21)

(5.30)

A nice property of moment map constructions is that generically there are no obstruc-

tions to the linearised problem: every first-order deformation around a given point p ∈ M̃
in the hyper-Kähler quotient (or alternatively p ∈Mc for the symplectic quotient) can be

extended to an all-order solution. The only time this fails is if the symmetry group at p

defining the moment map has fixed points. In our context this means there are generalised

diffeomorphisms that leave the particular Jα and K structures invariant, so that one can

find a V such that the generalised Lie derivatives vanish

LV Jα = LVK = 0. (5.31)

From equation (4.20) and the discussion preceding it, these imply LVG = 0 so that V is

a generalised Killing vector and the vector component of V is a Killing vector. These V

generate isometries of the background (beyond the U(1)R R-symmetry), corresponding to

the global symmetry group G of the dual field theory.9 Thus we directly derive the result

that every marginal deformation is exactly marginal in the absence of global symmetries.

Suppose now that the global symmetry group G is non-trivial. By construction, those

V that generate G fall out of the linearised moment map conditions – they trivially solve

the moment maps as LV Jα = 0. Thus to solve the full non-linear problem, one must

somehow impose these additional conditions. It is a standard result in symplectic (or

hyper-Kähler) quotients that the missing equations correspond to a quotient by the global

group G on the space of linearised solutions. Suppose {γi, γ′i} are coordinates on the

space of linearised deformations, corresponding to couplings of operators FAi and Ai.

Imposing (5.21) then restricts to the marginal operators {hi} ⊂ {γi, γ′i}. By construction,

there is a flat hyper-Kähler metric on {γi, γ′i} and a flat Kähler metric on {hi}. In addition

there is a linear action of G on each space that preserves these structures. The origin is a

fixed point of G owing to the fact that we are expanding about a solution with a global

symmetry. The moduli space of finite deformations then corresponds to a quotient of each

9For example, for M = S5 the isometry group is SO(6) ' SU(4) ⊃ U(1)R × SU(3), so V would give the
Killing vectors that generate SU(3).

139



space by G (at least in the neighbourhood of the original solution). Thus we have

{γi, γ′i} {hi}

M̃ Mc

(5.21)

HK quotient by G sympl. quotient by G

(5.21)

(5.32)

This structure is discussed in little more detail in section 5.4.4. We see that we directly

recover the field theory result (5.1) that the conformal manifold is given byMc = {hi}//G =

{hi}/GC.10

Note that interpreting the supersymmetry conditions in terms of moments maps nicely

mirrors the field theory analysis of the moduli space of marginal deformations. Indeed

imposing (5.21) and solving the linearised moment maps (5.20) is equivalent to restricting

to chiral operators of dimension three that satisfy the F-term conditions. The further

symplectic quotient by the isometry group G then corresponds to imposing the D-term

constraints and modding out by gauge transformations.

5.4 The case of D3-branes at conical singularities

The results summarized in the previous section are completely general and apply to

any AdS5 flux background. To make the discussion more concrete we will focus on

deformations of N = 1 SCFTs that are realised on the world-volume of D3-branes at the

tip of a Calabi–Yau cone over a Sasaki–Einstein (SE) manifold M .

Before turning to the generalized geometric description of the supergravity duals, we

present their description in terms of “conventional” geometry.

5.4.1 The undeformed Sasaki–Einstein solution

In the ten-dimensional type IIB solution dual to the undeformed SCFT, the metric takes

the form11

ds2
10 = e2∆ds2(R3,1) + e−2∆ds2(CY)

= r2ηµνdxµdxν +
1

r2

(
dr2 + r2ds2(SE)

)
= ds2(AdS5) + ds2(SE),

(5.33)

where the radial direction of the Calabi–Yau cone together with the four-dimensional

warped space form AdS5. In the second and third line we have used the explicit form of

the warp factor for AdS5, e∆ = r. The solution has constant dilaton, eφ = 1, and five-form

10The space of marginal operators {hi} is Kähler, so the symplectic and complexified quotients agree.
11In these conventions the radius of AdS5 is R = 1, so the cosmological constant is Λ = −6.

140



flux given by

F5 = 4(volAdS + vol5), (5.34)

where vol5 is the volume form on M . The metric on the Sasaki–Einstein manifold locally

takes the form

ds2(SE) = σ2 + ds2(KE), (5.35)

where σ is called the contact form and the four-dimensional metric is Kähler–Einstein

(KE), with symplectic two-form given by

ω = 1
2dσ. (5.36)

There is also a holomorphic (2,0)-form Ω, compatible with ω

ω ∧ Ω = 0, ω ∧ ω = 1
2Ω ∧ Ω̄, (5.37)

satisfying

dΩ = 3iσ ∧ Ω. (5.38)

The five-dimensional volume form is then vol5 = −1
2σ ∧ ω ∧ ω.12 The forms σ, Ω and ω

define an SU(2) structure on the Sasaki–Einstein manifold. The complex structure I for

the Kähler–Einstein metric can be written as

Imn = −ωmn = 1
4 i(Ω̄mpΩnp − ΩmpΩ̄np), (5.39)

which satisfies IpmΩpn = iΩmn.

The R-symmetry of the field theory is realised in the dual geometry by the Reeb vector

field ξ, satisfying

ıξσ = 1, ıξdσ = 0. (5.40)

Locally we can introduce a coordinate ψ such that

σ = 1
3(dψ + η), ξ = 3∂ψ. (5.41)

If a tensor X satisfies LξX = iqX, we say it has charge q under the action of the Reeb

vector. The objects defining the SU(2) structure on M have definite charge

Lξσ = Lξω = LξI = 0, LξΩ = 3iΩ. (5.42)

The R-charge r is related to q by q = 3r/2. For example, Ω is charge +3 under the Reeb

vector and has R-charge +2.

12These conventions are chosen to match [244].
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The contact and Kähler structures allow a decomposition of the exterior derivative as

d = ∂ + ∂̄ + σ ∧ Lξ, (5.43)

where ∂̄ is the tangential Cauchy-Riemann operator, which satisfies [280,281]

∂̄2 = ∂2 = 0, ∂∂̄ + ∂̄∂ = −2ω ∧ Lξ. (5.44)

For calculations, it is useful to introduce a frame such that the complex, symplectic and

contact structure have the following form

Ω = (e2 + ie5) ∧ (e4 + ie3),

ω = e2 ∧ e5 + e4 ∧ e3,

σ = e1.

(5.45)

If the SE manifold is “regular” the Reeb vector defines a U(1) fibration over a

Kähler–Einstein base. This is the case for S5 and T1,1, dual to N = 4 SYM and the N = 1

KW theory, where the base manifolds are respectively CP2 and CP1 × CP1. The Yp,q

spaces are generically not fibrations.

5.4.2 Embedding in exceptional generalised geometry

Let us quickly review the description of supersymmetric AdS5×M solutions in E6(6)×R+

generalised geometry following the presentation in chapter 4. Although we will focus on

type IIB for definiteness, we stress that the construction is equally applicable to solutions

of eleven-dimensional supergravity. In particular, one could apply our methods to the

generic M-theory AdS5 solution of [240], which we embedded in E6(6) × R+ generalised

geometry in the previous chapter.

The generalised structures K and Jα transform under E6(6) × R+ as an element of the

27′ and a triplet of elements in the 78. The Jα form an SU(2) triplet under the E6(6)

adjoint action, corresponding to the R-symmetry of the N = 1 supergravity

[Jα, Jβ] = 2κεαβγJγ , (5.46)

where κ2 is the volume form on M for an unwarped solution with vanishing dilaton. The

normalisations of K and Jα are fixed by

c(K,K,K) = κ2, tr(JαJβ) = −κ2δαβ, (5.47)

where c is the cubic invariant of E6(6), and tr is the trace in the adjoint representation

(see (B.58) and (B.60)). The two structures are compatible, which means they satisfy

Jα ·K = 0, (5.48)
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where · is the adjoint action on a generalised vector: 78× 27′ → 27′ (see (B.39)).

The generalised structures K and Jα are combinations of the geometric structures on

M built from bilinears of the N = 1 Killing spinors [142]. For Sasaki–Einstein manifolds,

these are the Reeb vector ξ, the symplectic form ω and the holomorphic two-form Ω. We

gave the form of K and Jα in section 4.4.1, which we reproduce here13

K = ξ − σ ∧ ω,

J+ = 1
2κu

i(Ω− iΩ]),

J3 = 1
2κ
(
I − iσ2 − 1

4Ω ∧ Ω̄ + 1
4Ω] ∧ Ω]

)
,

(5.49)

where J+ = J1 + iJ2, σ2 is the second Pauli matrix and the SL(2;R) vector is ui = (−i, 1).

Note that K depends only on the Reeb vector and the contact structure, whereas Jα

depends only on the complex structure of the Kähler–Einstein metric.

Supersymmetry conditions

For a supersymmetric compactification to AdS5, the structures K and Jα must satisfy the

differential conditions (5.20)–(5.23). We showed this to be the case in section 4.4.1: the

first two reduce to (5.36), (5.38) and (5.42), thus fixing the constants λα as in (5.24), while

condition (5.23) gives no extra equations. Note that since the deformations we are after

leave the structure K invariant, the latter condition will play no role in the following. As

we discussed in section 4.3.1, the supersymmetry conditions can be viewed as the internal

counterpart of the supersymmetry conditions in five-dimensional gauged supergravity [197]:

(5.20) comes from the gravitino and gaugino variations (as does (5.23)), while (5.21) is

related to the hyperino variation (recall K is associated to the vector multiplets, while Jα

is associated to the hypermultiplets).

The key ingredient in the supersymmetry conditions is the generalised Lie derivative L.

This encodes the differential geometry of the background, unifying the diffeomorphisms

and gauge symmetries of the supergravity. Given two generalised vectors V and V ′ the

generalised Lie derivative is given by (B.45). This can be extended to an action on any

generalised tensor. For example, the action on the adjoint representation is given in (B.46).

One always has the choice to include the supergravity fluxes in the structures K and Jα

or as a modification of the generalised Lie derivative. Here the latter option turns out to

be more convenient. This defines a “twisted generalised Lie derivative” L̂, which takes the

same form as (B.45) but with the substitutions

dλi → dλi − ıvF i3, dρ→ dρ− ıvF5 − εijλi ∧ F j3 . (5.50)

In the remainder of this chapter, we will use exclusively the untwisted structures and the

13Note that we are using the “untwisted” structures but have dropped the tildes. In what follows, we
will use the untwisted structures and the twisted Dorfman derivative.
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twisted Dorfman derivative. In order to avoid cluttered notation, we drop the tildes from

untwisted structures and the hat from the twisted Dorfman derivative.

As we emphasised in section 4.3.2, there is a natural hyper-Kähler geometry on the

space of Jα structures. There is also an action of generalised diffeomorphisms taking one

Jα into another. This action preserves the hyper-Kähler structure. The conditions (5.20)

can then be viewed as moment maps for the action of the generalised diffeomorphisms.

By construction the space M̃ of solutions to this condition in (5.28) is also hyper-Kähler.

The generalised Lie derivative condition (5.21) takes a Kähler slice of this space. For the

SE structure (5.49) and five-form flux given in (5.34) we have

LK = Lξ, (5.51)

and thus LK generates the U(1)R symmetry. Recall from (4.24) that this is actually a

general result: the slice taken by condition (5.21) essentially fixes the R-charge of J+ to

be +3, and J3 to be zero.

5.4.3 Linearised deformations

The structures K and Jα lie in orbits of the E6(6) action. The linearised deformations A
are therefore elements in the adjoint of E6(6), which take us from a given point in these

orbits corresponding to the original solution (in the case of Sasaki–Einstein, this is (5.49)),

to another point in the orbit corresponding to the structures of the deformed geometry.

We have seen from the gauge theory that we expect the marginal deformations A to leave

the structure K invariant, while deforming Jα. This implies

δK = A ·K = 0 , δJα = [A, Jα] 6= 0. (5.52)

As we will discuss in more detail in appendix H, the deformations A are doublets under

the SU(2) generated by Jα

A =

(
A(r)
−

A(r−2)
+

)
, (5.53)

with A− = [J+,A+].14 The signs ± denote the charge under J3, [J3,A±] = ±iA±, and r

is the charge under the action of LK corresponding to their R-charge

LKA(r)
± = 3

2 irA(r)
± . (5.54)

The difference in the R-charge of the two components follows from (5.21), (5.54) and the

definition A− = [J+,A+].

We now need to find pairs of solutions for A± satisfying the linearised supersymmetry

conditions and, for definiteness, R-charge r ≥ 0. In the next subsection, we start by

14Strictly speaking, this should be A− = κ−1[J+,A+], but we have dropped the factors of κ for ease of
presentation in this section.
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first finding solutions to the linearised moment maps. We then have to mod out by

the symmetry, identifying deformations that are related by diffeomorphisms or form-

field gauge transformations as corresponding to the same physical deformation. This

process corresponds to finding the bulk modes dual to the bosonic components of all

chiral superfields: namely the chiral ring operators Ai (associated to A−) and the related

supersymmetric deformations of the Lagrangian FAi (associated to A+). Then in the

following subsection, we turn to finding the subset of marginal deformations. The technical

details are discussed in appendix H. Here we outline the procedure and present the results.

The chiral ring

The linearised moment map equations are given by15

δµα(V ) =

ˆ
κ tr(Jα, LVA) = 0 ∀V ∈ 27′, (5.55)

where we are using the fact that the deformation leaves K invariant.

We start by looking for A+ that solve (5.55). The A+ deformations can be distinguished

by which components of the E6(6) × R+ adjoint are non-zero. They fall into two classes

Ǎ+ = Bi + βi, Â+ = aij , (5.56)

where the first contains only two-forms and the corresponding bi-vectors, and the second

contains only sl2 entries.

As shown in appendix H.2, the two-form part of the Ǎ+ solutions to (5.55) consists of

two independent terms

Bi = −1
2 iūi

[
fΩ̄ + 1

2q(q−1)∂(∂fyΩ̄) + i
qσ ∧ (∂fyΩ̄)

]
− iūiδ, (5.57)

where Ω and σ are the holomorphic two-form and the contact form on the SE manifold,

and the SL(2;R) vector is ui = (−i, 1). The expression ∂fyΩ̄ is equivalent to (∂f)mΩ̄mn

in indices. The bi-vector part of the solution is obtained by raising indices with the SE

metric. The term in the brackets is completely determined by a function f on the SE

manifold satisfying

∂̄f = 0, Lξf = iqf. (5.58)

Note that f is holomorphic with respect to ∂̄ if and only if it is the restriction of a

holomorphic function on the Calabi–Yau cone over the Sasaki–Einstein base [273]. The

second term depends only on a primitive (1, 1)-form δ on the KE base that is closed under

both ∂ and ∂̄

δ ∧ ω = 0, ∂δ = ∂̄δ = 0. (5.59)

15As we discuss in appendix H.2, the actual deformation is by A = ReA+ so that the deformed structures
are real. This do not affect the discussion that follows.
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Imposing that the deformation Ǎ+ has fixed R-charge r − 2, and using (5.42), gives

Lξf = 3
2 irf, Lξδ = 3

2 i(r − 2)δ, (5.60)

so that f is a homogeneous function on the Calabi–Yau cone of degree 3
2r.

Let us now consider Â+. Its only non-zero components are aij ∈ sl2, which are again

determined by a function f̃ on the manifold

Â+ = −1
2 f̃ ū

iūj , (5.61)

where ūi = εij ū
j and the function f̃ is holomorphic

∂̄f̃ = 0. (5.62)

The deformations of fixed R-charge r − 2 satisfy

Lξ f̃ = 3
2 i(r − 2)f̃ , (5.63)

so that f̃ is a homogeneous function on the Calabi–Yau cone of degree 3
2(r − 2).

For each solution A+, one can generate an independent solution A− by acting with

J+. Indeed, any deformation of the form A− = [J+,A+] is automatically a solution of the

moment maps, provided A+ is. The explicit form of these deformations for Ǎ− and Â− is

given in (H.11) and (H.13). Thus the solutions of the linearised moment maps consist of

an infinite set of deformations A+ labelled by their R-charge r, which are generated by

the two holomorphic functions, f and f̃ , and a (1,1)-form, δ, and another independent set

of deformations A− generated by f ′, f̃ ′ and δ′. Together these give the general solution to

the deformation problem. Arranging these deformations as in (5.53), we find three types

of multiplets, schematically,(
A(r)
−

A(r−2)
+

)
∼

(
f ′

f

)
,

(
f̃ ′

f̃

)
,

(
δ′

δ

)
, (5.64)

with charge r given respectively by r > 0, r ≥ 2 and r = 2.

Let us now identify what these solutions correspond to physically. For this it is

convenient to compute the action of the linearised deformations on the bosonic fields of

type II supergravity and then interpret the multiplets (5.64) in terms of Kaluza–Klein

modes on the Sasaki–Einstein manifold. One way to read off the bosonic background is

from the generalised metric G. This is defined in (H.39) and encodes the metric, dilaton,

the NS-NS field B2 and the R-R fields C0, C2 and C4. As discussed in appendix H.2.1,

the two-form and bi-vector deformations f and their partners f ′ at leading order generate

NS-NS and R-R two-form potentials, and a combination of internal four-form potential
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and metric16(
f ′

f

)
∼

(
C4 + gaa

C2 − iB2

)
∝

(
1
2f
′Ω ∧ Ω̄ + i

2qΩ ∧ σ ∧ (∂f ′yΩ̄) + . . .

fΩ̄ + 1
2q(q−1)∂(∂fyΩ̄) + i

qσ ∧ (∂fyΩ̄)

)
. (5.65)

Similarly one can show that the holomorphic function f̃ and its partner f̃ ′ correspond to

the axion-dilaton, and NS-NS and R-R two-form potentials(
f̃ ′

f̃

)
∼

(
C2 − iB2

C0 − iφ

)
∝

(
f̃ ′Ω

f̃

)
. (5.66)

Finally the two-form and bi-vector deformations δ and its partner δ′ generate NS-NS and

R-R two-form potentials and a component of the internal metric(
δ′

δ

)
∼

(
gmn

C2 − iB2

)
∝

(
(jΩ]yjδ′ + jδ′]yjΩ)mn

δ

)
. (5.67)

The Kaluza–Klein (KK) spectrum for a generic Sasaki–Einstein background was

analysed in [273] by solving for eigenmodes of the Laplacian on the manifold. The states

arrange into long and short multiplets of N = 1 supergravity in five dimensions. Our

multiplets (5.65), (5.66) and (5.67) are indeed the short multiplets of [273].

In terms of the bulk five-dimensional supergravity, each (A(r)
− ,A(r−2)

+ ) doublet of fixed

R-charge corresponds to a different hypermultiplet. In the dual field theory the A(r−2)
+ piece

corresponds to the θ2-component of a chiral superfield while the A(r)
− piece corresponds to

the lowest component [263]. We then have the following mapping between supergravity

and field theory multiplets(
f ′

f

)
∼ trOf , superpotential deformations, r > 0,

(
f̃ ′

f̃

)
∼ trWαW

αOf̃ , coupling deformations, r ≥ 2,

(
δ′

δ

)
∼ Ogauge, difference in gauge couplings, r = 2.

(5.68)

For S5 the first two sets of multiplets corresponds to the operators tr(Φk) and tr(WαW
αΦk),

where Φ denotes any of the three adjoint chiral superfields of N = 4 SYM, and the

last multiplet is not present. For T1,1, one has tr(Of ) = tr(AB)k, tr(WαW
αOf̃ ) =

tr
[
(W 2

A+W 2
B)(AB)k

]
and Ogauge = tr(W 2

A−W 2
B) where A and B denote the two doublets

16The full form of the four-form potential and metric is given by (H.11) with ν̄′ = i
2q
∂f ′yΩ̄ and

ω̂′ = 1
4q(q−1)

∂(∂f ′yΩ̄).
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of bi-fundamental chiral superfields. In analogy with the T1,1 case, for a generic SE the

operators Of and Of̃ are products of chiral bi-fundamental superfields of the theory, while

Ogauge corresponds to changing the relative couplings of the gauge groups.

The tower of deformations gives the space M̃ defined in (5.2). In particular, the

A− = (f ′, f̃ ′, δ′) ∼ Ai deformations parametrise the chiral ring, while A+ = (f, f̃ , δ) ∼ FAi
parametrise the superpotential deformations.

Marginal deformations

The marginal deformations are a subspace of solutions in M̃ that also satisfy the second

differential condition (5.21). At first order in the deformation, this is

[LKA, Jα] = 0, (5.69)

where we have used again the fact that the deformations leave K invariant. Since the

commutators with Jα are non-zero, this condition amounts to the requirement

LKA = 0 ⇒ LξA = 0. (5.70)

In other words, the R-charge of A vanishes. Comparing with (5.64) we see that the A−
components always have positive R-charge and therefore are not solutions of (5.69). Thus

marginal deformations can only be given by the A(r−2)
+ components with r = 2. This is

consistent, because, as we have mentioned, the A+ components correspond to deforming

the SCFT by θ2 terms, which are supersymmetric, whereas the A− terms correspond to the

lowest component of a chiral superfield and so do not give supersymmetric deformations.

From (5.60) and (5.63) we see that the A(0)
+ components (r = 2) are17

f of degree 3, f̃ = constant, δ ∈ H1,1
prim(M), (5.71)

corresponding precisely to superpotential deformations with ∆ = 3, a change in the original

superpotential (and at the same time of the sum of coupling constants), and a change in

the relative gauge couplings respectively.

Linearised supergravity solution

We want now to compute the supergravity solutions at linear order. As discussed in detail

in appendix H.2.1, this can be done by looking at the action of the marginal deformations

Ǎ+ and Â+ on the generalised metric, which encodes the bosonic fields of type IIB

supergravity. We first consider the effect of a Ǎ+ deformation to linear order. As already

mentioned, such a deformation generates NS-NS and R-R two-form potentials, given by

C2 − iB2 = −i
(
fΩ̄ + 1

12∂(∂fyΩ̄) + 1
3 iσ ∧ (∂fyΩ̄)

)
− 2iδ. (5.72)

17H1,1
prim(M) denotes the cohomology of primitive (1, 1)-forms.
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Taking an exterior derivative, the complexified flux G3 = d(C2 − iB2) to leading order is

G3 = −4
3 i∂f ∧ Ω̄ + 4fσ ∧ Ω̄− 1

3σ ∧ ∂(∂fyΩ̄). (5.73)

The (1,1)-form δ ∈ H2(M) is closed and therefore does not contribute to the flux. On

the Calabi–Yau cone, it is well-known that superpotential deformations correspond to

imaginary anti-self-dual (IASD) flux [225]. The G3 here is the component of the IASD

flux restricted to the Sasaki–Einstein space.

Now consider the effect of a marginal Â+ deformation to linear order. As we show in

appendix H.2.2, such a deformation allows for non-zero, constant values of the axion and

dilaton, given by

f̃ = C0 − iφ. (5.74)

We stress that this calculation and the expressions for the leading-order corrections

to the solution (5.73) for the NS-NS and R-R three-form flux and the axion-dilaton in

(5.74) are valid for any Sasaki–Einstein background. One simply needs to plug in the

expressions for the holomorphic form and contact structure of the given Sasaki–Einstein

space. These objects are given in terms of a frame in (5.45). We will give the explicit form

of the frame for the examples of S5, T1,1 and the Yp,q manifolds, and compare the flux

with some known results in section 5.5.

5.4.4 Moment maps, fixed points and obstructions

The linearised analysis above has identified the supergravity perturbations dual to marginal

chiral operators in the SCFT. However, this is not the end of the story. Really we would

like to find the exactly marginal operators. In the gravity dual this means solving the

supersymmetry equations not just to first order but to all orders. In general there are

obstructions to solving the supersymmetry conditions to higher orders, and not all marginal

deformations are exactly marginal [271]. As we saw in section 5.2, in the field theory these

obstructions are related to global symmetries [269].

As we discussed in section 5.3.2, the fact that the supergravity conditions in exceptional

generalised geometry appear as moment maps gives an elegant interpretation of the field

theory result. This analysis was completely generic, equally applicable to type II and

eleven-dimensional supergravity backgrounds. We will now give a few more details, using

the Sasaki–Einstein case as a particular example.

The key point is that generically there are no obstructions to extending the linearised

solution of a moment map to an all-orders solution. The only case when this fails is

when one is expanding around a point where some of the symmetries defining the moment

map have fixed points (see for instance [185]). Since here the moment maps are for the

generalised diffeomorphisms, we see that there are obstructions only when the background

is invariant under some subgroup G of diffeomorphisms and gauge transformations, called

the stabiliser group. Such transformations correspond to additional global symmetries
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in the SCFT. Furthermore, one can use a linear analysis around the fixed point to show

that the obstruction appears as a further symplectic quotient by the symmetry group G.

This mirrors the field theory result that all marginal deformations are exactly marginal

unless there is an enhanced global symmetry group and that the space of exactly marginal

operators is a symplectic quotient of the space of marginal operators.

To see this in a little more detail let us start by reviewing how the conditions (5.20)

appear as moment maps and how the obstruction appears. We will first consider M̃, the

space of chiral ring elements and θ2-components, and then at the end turn to the actual

marginal deformations. As we stressed above, this discussion is completely generic and

not restricted to Sasaki–Einstein spaces. One first considers the space AKH of all possible

hypermultiplet structures compatible with a fixed K, in other words

AKH = {Jα(x) : Jα ·K = 0}. (5.75)

Since each point p ∈ AKH is a choice of structure defined by a triplet of functions Jα(x) on

M , the space AKH is infinite dimensional. Nonetheless it is hyper-Kähler. A tangent vector

v at the point p can be thought of as a small change in the structure

vα(x) = δJα(x) = [A(x), Jα(x)] ∈ TpAKH , (5.76)

where A(x) is some E6(6) × R+ element. The hyper-Kähler structure is characterised by a

triplet of closed symplectic forms, Ωα. These symplectic structures Ωα are defined such

that, given a pair of tangent vectors v, v′ ∈ TpAKH , the three symplectic products are given

by

Ωα(v, v′) = εαβγ

ˆ
tr(vβv

′
γ) = 2

ˆ
κ tr
(
[A,A′]Jα

)
. (5.77)

The generalised diffeomorphism group acts on Jα(x) and hence on AKH . Furthermore its

action leaves the symplectic forms Ωα invariant. Infinitesimally, generalised diffeomorphisms

are generated by the generalised Lie derivative so that δJα = LV Jα ∈ TpAKH . Thus, just

as vector fields parametrise the Lie algebra of conventional diffeomorphisms via the Lie

derivative, one can view the generalised vectors V as parametrising the Lie algebra gdiff

of the generalised diffeomorphism group.18 One can then show that the µα(V ) in (5.20)

are precisely the moment maps for the action of the generalised diffeomorphism group on

AKH . As written they are three functions on AKH × gdiff where Jα gives the point in AKH
and V parametrises the element of gdiff, but they can equally well be viewed as a single

map µ : AKH → gdiff∗ ×R3 where gdiff∗ is the dual of the Lie algebra. Solving the moment

map conditions (5.20) and modding out by the generalised diffeomorphisms to obtainM̃
as in (5.28) is a hyper-Kähler quotient. As discussed in section 4.3.2, one subtlety is that,

18Note from (4.26) that shifting the form components λi and ρ of V by exact terms does not change
LV , furthermore it is independent of σi. Thus different generalised vectors can parametrise the same Lie
algebra element.
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in order to define a quotient, the right-hand side of the conditions λαγ, given in (5.29)

and which depends on K, must be invariant under the action of the group. Thus the

quotient is really defined not for the full generalised diffeomorphism group, but rather the

subgroup GDiffK that leaves K invariant. Infinitesimally V parametrises an element of

the corresponding Lie algebra gdiffK if LVK = 0. Thus we have the quotient (5.28).

The linearised analysis of the last section first fixes a point p ∈ AKH corresponding to

the Sasaki–Einstein background satisfying the moment map conditions, and then finds

deformations of the structure δJα ∈ TpAKH for which the variations of the moment maps

δµα(V ) vanish for all V . If we view δµα as a single map δµ : TpAKH → gdiff∗K × R3, the

linearised solutions live in the kernel. Suppose now that p is fixed under some subset

of generalised diffeomorphisms, that is we have a stabiliser group G ⊂ GDiffK . The

corresponding Lie subalgebra g ⊂ gdiffK is

g = {V ∈ gdiffK : LV Jα = 0}. (5.78)

At a generic point in AKH satisfying the moment map conditions, all elements of GDiffK

act non-trivially and so the stabiliser group is trivial. Thus solving δµα(V ) = 0 we get

a constraint for every V ∈ gdiffK . In contrast, at the point p, we miss those constraints

corresponding to V ∈ g. Thus we see that the obstruction to extending the first-order

deformation to all orders lies precisely in g∗ × R3, that is, it is the missing constraints.

Put more formally,19 the embedding i : g→ gdiffK induces a map i∗ : gdiff∗K → g∗ on the

dual spaces and, at p, we have an exact sequence

TpAKH gdiff∗K × R3 g× R3δµ i∗ . (5.79)

The map δµ is not onto and the obstruction is its cokernel g∗ × R3.

The standard argument for moment maps at fixed points actually goes further. Let

U be the vector space of linearised solutions δµα(V ) = 0 at p, up to gauge equivalence.

For the Sasaki–Einstein case it is the space of solutions, dual to the couplings of the

operators (Ai, FAi), given in (5.68). Formally U is defined as follows. Recall that the space

of solutions is ker δµ ⊂ TpAKH . The action of GDiffK on p ∈ AKH defines an orbit O ⊂ AKH ,

and modding out by the tangent space to the orbit TpO at p corresponds to removing

gauge equivalence, so that

U = ker δµ/TpO. (5.80)

The moment map construction means that the hyper-Kähler structure on TpAKH descends

to U . By definition, the stabiliser group G acts linearly on TpAKH and this also descends

to U . Furthermore it preserves the hyper-Kähler structure. Thus we can actually define

moment maps µ̃α for the action of G on U . The standard argument is then that the space

of unobstructed linear solutions can be identified with the hyper-Kähler quotient ofU by

19See for example the note in section 5 of [185].
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G, so near p we have

M̃ = U///G := {A ∈ U : µ̃α = 0}/G, (5.81)

just as in (5.2). The idea here is that if we move slightly away from p we are no longer

at a fixed point and there are no missing constraints. Thus we really want to take the

hyper-Kähler quotient in a small neighbourhood of AKH near p. However we can use the

tangent space TpAKH to approximate the neighbourhood. The moment map on TpAKH can

be thought of in two steps: first we impose δµα = 0 at the origin and mod out by the

corresponding gauge symmetries, reducing TpAKH to the space U . However this misses the

conditions coming from the stabiliser group G which leaves the origin invariant. Imposing

these conditions takes a further hyper-Kähler quotient of U by G. Finally, note that since

G acts linearly on U , the obstruction moment maps µ̃α are quadratic in the deformation A.

This exactly matches the analysis in [271], where in solving the deformation to third-order

the authors found a quadratic obstruction. What is striking is that we have been able to

show how the obstructions appear for completely generic supersymmetric backgrounds.

This discussion has been somewhat abstract. Let us now focus on the simple case of

S5 to see how it works concretely. The full isometry group is SO(6) ' SU(4). However,

only an SU(3) subgroup preserves Jα and K, hence

for S5 the stabiliser group is G = SU(3).

Rather than consider the full space of linearised solutions (5.68), for simplicity we will just

focus on f and f ′, and furthermore assume both functions are degree three: Lξf = 3if

and Lξf ′ = 3if ′. In terms of holomorphic functions on the cone C3, this implies both

functions are cubic

f = f ijkzizjzk, f ′ = f ′ijkzizjzk. (5.82)

The coefficients (f ijk, f ′ijk) parametrise a subspace in the space of linearised gauge-fixed

solutions U . Using the expressions (5.56) and (5.77) one can calculate the hyper-Kähler

metric on the (f ijk, f ′ijk) subspace. Alternatively, one notes that the hyper-Kähler

structure on AKH descends to a flat hyper-Kähler structure the subspace, parametrised by

f ijk and f ′ijk as quaternionic coordinates. We then find the three symplectic forms

Ω3 = 1
2 i df ijk ∧ df̄ijk − 1

2 i df ′ijk ∧ df̄ ′ijk,

Ω+ = df ijk ∧ df̄ ′ijk,
(5.83)

where Ω+ = Ω1 + iΩ2 and indices are raised and lowered using δij . The SU(3) group acts

infinitesimally as

δf ijk = a[i
lf
jk]l,

δf ′ijk = a[i
lf
′jk]l,

(5.84)
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where tr a = 0 and a† = −a. This action is generated by the vectors

ρ(a) = aij
(
f jkl∂ikl − f̄ikl∂̄jkl + f ′jkl∂′ikl − f̄ ′ikl∂̄′jkl

)
, (5.85)

where ∂ijk = ∂/∂f ijk and ∂′ijk = ∂/∂f ′ijk. It is then easy to solve for the (equivariant)

moment maps µ̃α(a) satisfying iρ(a)Ωα = dµ̃α(a), to find

µ̃3(a) = 1
2 iaij

(
f jklf̄ikl − f ′jklf̄ ′ikl

)
,

µ̃+(a) = aijf
jklf̄ ′ikl.

(5.86)

Solving the moment maps µ̃α(a) = 0 for all aij gives

1
2 i
(
f iklf̄jkl − 1

3δ
i
jf
klmf̄klm − f ′iklf̄ ′jkl + 1

3δ
i
jf
′klmf̄ ′klm

)
= 0,

f iklf̄ ′jkl − 1
3δ
i
jf
klmf̄ ′klm = 0.

(5.87)

Imposing these conditions and modding out by SU(3) then gives the unobstructed de-

formations living in M̃. If we actually included all the modes in (f, f ′) we would find

polynomials with arbitrary coefficients f i1...ip but the construction would be essentially

the same. This also applies to the (f̃ , f̃ ′) modes. Since H2(S5) = 0 there are no (δ, δ′)

solutions on S5.

So far we have discussed how the existence of fixed points leads to obstructions in the

construction of the space M̃. However ultimately we would like to find the unobstructed

exactly marginal deformationsMc. Returning to the generic case, recall that the marginal

deformations corresponded to a subspace given by the A(0)
+ components of the full set of

deformations, satisfying the condition (5.70). (In the Sasaki–Einstein case these are given

in (5.71).) Let us denote this subspace by Uc ⊂ U . Since LKJα is a holomorphic vector

on M̃ with respect to one of the complex structures (see section 4.3.2), Uc is a Kähler

subspace. Furthermore, taking the hyper-Kähler quotient by G and then restricting to the

marginal deformations is the same as restricting to the marginal deformations and then

taking a symplectic quotient byG using only the moment map λαµ̃α. In other words the

diagram

U Uc

M̃ = Uc///G Mc = Uc//G

(5.88)

commutes. This is because the action of LK which enters the generalised Lie derivative

condition (5.21) commutes with the action of LV generating G.20 Given Uc//G = Uc/GC,

we see that we reproduce the field theory result (5.2).

It is simple to see how this works in the case of S5. The marginal modes correspond to

20We have [LV , LK ] = LLV K = 0 since by definition LVK = 0 if V is in the stabiliser group G.
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f ′ = f̃ ′ = 0, while f is restricted to be degree three and f̃ constant (recall δ and δ′ are

absent on S5). Since constant f̃ is invariant under SU(3), the moment map conditions

µ̃α = 0 on the marginal modes reduce to a single condition that comes from µ̃3 (given

λ1 = λ2 = 0), namely
1
2 i
(
f iklf̄jkl − 1

3δ
i
jf
klmf̄klm

)
= 0, (5.89)

since the µ̃+ moment map is satisfied identically as f ′ = f̃ ′ = 0. Comparing with

section 5.2, we see that we indeed reproduce the field theory result that the exactly

marginal deformations are a symplectic quotient of the marginal deformations by the

global symmetry group G.

5.5 Examples

In the previous section we derived the first-order supergravity solution dual to exactly

marginal deformations on any Sasaki–Einstein background. We now apply this to the

explicit examples of the supergravity backgrounds dual to N = 4 super Yang–Mills, the

N = 1 Klebanov–Witten theory and N = 1 Yp,q gauge theories.

5.5.1 N = 4 super Yang–Mills

The Sasaki–Einstein manifold that appears in the dual to N = 4 SYM is S5, whose

four-dimensional Kähler–Einstein base is CP2. The metric on S5 can be written as21

ds2(S5) = dα2 + s2
αdθ2 + c2

αdφ2
1 + s2

αc
2
θdφ

2
2 + s2

αs
2
θdφ

2
3, (5.90)

where the coordinates are related to the usual complex coordinates onC3, pulled back to

S5, by

z1 = cαeiφ1 , z2 = sαcθe
iφ2 , z3 = sαsθe

iφ3 . (5.91)

We can take the following frame for S5

e1 = c2
αdφ1 + c2

θs
2
αdφ2 + s2

αs
2
θdφ3,

e2 + ie5 = e3iψ/2(dα− icαsαdφ1 + icαc
2
θsαdφ2 + icαsαs

2
θdφ3, )

e4 + ie3 = e3iψ/2(sαdθ − icθsαsθdφ2 + icθsαsθdφ3),

(5.92)

where 3ψ = φ1 + φ2 + φ3. The complex, symplectic and contact structures are defined

in terms of the frame in (5.45). One can check they satisfy the correct algebraic and

differential relations (5.40)–(5.42).

The marginal deformations are given in terms of a function f which is of charge

three under the Reeb vector and the restriction of a holomorphic function on C3. In our

21Here sα and cα are shorthand for sinα and cosα, and similarly for θ.
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parametrisation the Reeb vector field is

ξ = 3∂ψ = ∂φ1 + ∂φ2 + ∂φ3 , (5.93)

and the coordinates zi have charge +1

Lξzi = izi. (5.94)

Thus, f must be a cubic function of the zi. An arbitrary cubic holomorphic function on

C3 has ten complex degrees of freedom and can be written as

f = f ijkzizjzk, (5.95)

where f ijk is a complex symmetric tensor of SU(3) with ten complex degrees of freedom.

This is the same structure as the superpotential deformation (5.5). As mentioned before,

not all components of f correspond to exactly marginal deformations because we still

need to take into account the broken SU(3) global symmetry. This imposes the further

constraint

f iklf̄jkl − 1
3δ
i
jf
klmf̄klm = 0, (5.96)

which removes eight real degrees of freedom. We can also redefine the couplings using the

SU(3) symmetry to remove another eight real degrees of freedom, leaving a two-complex

dimensional space of exactly marginal deformations. Thus, there are two independent

solutions

fβ ∝ z1z2z3, (5.97)

and

fλ ∝ z3
1 + z3

2 + z3
3 , (5.98)

corresponding to the β-deformation and the cubic deformation in (5.8).

The supergravity dual of the β-deformation was worked out in [93]. One can check

that using our frame for S5 and taking

fβ = −3
2γz1z2z3, (5.99)

where γ is real, our expression (5.73) for the three-form fluxes reproduces those in the

first-order β-deformed solution [93]. To generate the complex deformation of LM, we

promote γ to γ − iσ, where both γ and σ are real. This reproduces the LM fluxes with

τ = i. The full complex deformation with general τ can be obtained using the SL(2;R)

frame from [139].

Unlike the β-deformation, the supergravity dual of the cubic deformation is known

only perturbatively. Aharony et. al have given an expression for the three-form flux for

both the β and cubic deformations to first order [225]. Again, one can check that our
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expression reproduces this flux for both fβ and fλ.

We saw that the marginal deformations (5.71) also allow for closed primitive (1, 1)-forms

that do not contribute to the flux. If such terms are not exact – if they are non-trivial in

cohomology – they give additional marginal deformations. On CP2, the base of S5, there

are no closed primitive (1, 1)-forms that are not exact, and so the marginal deformations

are completely determined by the function f .

5.5.2 Klebanov–Witten theory

A similar analysis can be performed for deformations of the Klebanov–Witten theory. In

this case the dual geometry is T1,1, the coset space SU(2)× SU(2)/U(1) with the topology

of S2 × S3. T1,1 can also be viewed as a U(1) fibration over CP1 × CP1 with metric [282]

ds2(T1,1) = 1
9(dψ + cos θ1dφ1 + cos θ2dφ2)2 + 1

6

∑
i=1,2

(dθ2
i + sin2 θidφ

2
i ). (5.100)

Each SU(2) acts on one CP1, and the U(1) acts as shifts of ψ. The Reeb vector field is

ξ = 3∂ψ. (5.101)

As with S5, a holomorphic function on the cone over T1,1 determines the marginal

deformations. In this case, the cone is the conifold, defined by

z2
1 + z2

2 + z2
3 + z2

4 = 0, zi ∈ C4. (5.102)

The conifold equation can also be written as

detZij = 0, (5.103)

where Zij = σaijza, σ
a = (σ, i1) and σ are the Pauli matrices. We can choose complex

coordinates Aα and Bα̇ (α = 1, 2), corresponding to each CP1, which are dual to the chiral

fields of the gauge theory

Z =

(
z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

)
=

(
A1B1 A1B2

A2B1 A2B2

)
. (5.104)
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The complex coordinates za can be parametrised by

z1 =
1

2

(
sin

θ1

2
sin

θ2

2
ei(ψ−φ1−φ2)/2 − i cos

θ1

2
cos

θ2

2
ei(ψ+φ1+φ2)/2

)
,

z2 =
1

2i

(
sin

θ1

2
sin

θ2

2
ei(ψ−φ1−φ2)/2 + i cos

θ1

2
cos

θ2

2
ei(ψ+φ1+φ2)/2

)
,

z3 =
1

2

(
cos

θ1

2
sin

θ2

2
ei(ψ+φ1−φ2)/2 + i sin

θ1

2
cos

θ2

2
ei(ψ−φ1+φ2)/2

)
,

z4 = − 1

2i

(
cos

θ1

2
sin

θ2

2
ei(ψ+φ1−φ2)/2 − i sin

θ1

2
cos

θ2

2
ei(ψ−φ1+φ2)/2

)
,

(5.105)

from which we see they have charge 3/2 under the Reeb vector field

Lξza = 3
2 iza. (5.106)

We can take the following frame for T1,1

e1 = 1
3(dψ + cos θ1dφ1 + cos θ2dφ2),

e2 + ie5 = 1√
6
eiψ/2(i dθ1 + sin θ1dφ1),

e4 + ie3 = 1√
6
eiψ/2(i dθ2 + sin θ2dφ2).

(5.107)

The complex, symplectic and contact structures are defined in terms of the frame in (5.45).

One can check they satisfy the correct algebraic and differential relations (5.40)–(5.42).

The function f defining the marginal deformations is of weight three under the Reeb

vector and a restriction of a holomorphic function on the conifold. Thus f must be a

quadratic function of the za, namely

f = fabzazb = fαβ,α̇β̇AαBα̇AβBβ̇, (5.108)

where fab is symmetric and traceless (by condition (5.102)), or analogously fαβ,α̇β̇ is

symmetric in αβ and α̇β̇. These deformations are the SU(2)×SU(2)-breaking deformations

in (5.10) and generically give nine complex parameters. We remove six real degrees of

freedom when solving the moment maps to account for the broken SU(2)×SU(2) symmetry.

The moment maps are precisely the beta function conditions given in (5.12). We can also

redefine the couplings using SU(2)× SU(2) rotations to remove another six real degrees

of freedom, leaving a three-complex dimensional space of exactly marginal deformations

labelled fβ, f2 and f3 in (5.13). We have

fβ ∝ z2
1 + z2

2 − z2
3 − z2

4 ,

f2 ∝ z2
3 − z2

4 ,

f3 ∝ z2
1 − z2

2 .

(5.109)

The first of these is the β-deformation for the KW theory. The supergravity dual of the
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β-deformation was worked out in [93]. One can check that using our frame for T1,1 and

taking

f = 1
3 iγ(z2

1 + z2
2 − z2

3 − z2
4), (5.110)

our expression (5.73) reproduces the three-form fluxes that appear in the first-order β-

deformed solution [93]. To our knowledge, the fluxes for the other deformations were not

known before.

Unlike CP2, CP1 × CP1 admits a primitive, closed (1, 1)-form that is not exact (spe-

cifically the difference of the Kähler forms on each CP1), giving one more exactly marginal

deformation, corresponding to a shift of the B-field on the S2. On the gauge theory

side, this corresponds to the SU(2)× SU(2)-invariant shift in the difference of the gauge

couplings in (5.10). Together with h, coming from the superpotential itself, one finds a

five-dimensional conformal manifold.

5.5.3 Yp,q gauge theories

We can repeat the analysis of the Klebanov–Witten theory for the N = 1 quiver gauge

theories of section 5.2.3. The dual geometries are the family of Sasaki–Einstein spaces

known as Yp,q, which have topology S2×S3 (recall 0 ≤ q ≤ p and Y1,0 = T1,1). The metric

is [276]

ds2(Yp,q) = 1
6(1− y)(dθ2 + sin2 θdφ) + w(y)−1q(y)−1dy2 + 1

36w(y)q(y)(dβ + cos θdφ)2

+ 1
9

(
dψ − cos θdφ+ y(dβ + cos θdφ)

)2
,

(5.111)

where the functions w(y) and q(y) are

w(y) =
2(a− y2)

1− y
, q(y) =

a− 3y2 + 2y3

a− y2
, (5.112)

and a is related to p and q by

a =
1

2
− p2 − 3q2

4p3

√
4p2 − 3q2. (5.113)

The Reeb vector field is

ξ = 3∂ψ. (5.114)

As with S5, a holomorphic function on the cone over Yp,q determines the marginal

deformations. The complex coordinates that define the cone for a genericYp,q are known

but rather complicated [283]. However, we need only the coordinates that can contribute

to a holomorphic function with charge +3 under the Reeb vector – fortunately there are
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only three such coordinates

b1 = ei(ψ−φ) cos2 θ

2

3∏
i=1

(y − yi)1/2,

b2 = ei(ψ+φ) sin2 θ

2

3∏
i=1

(y − yi)1/2,

b3 = eiψ sin
θ

2
cos

θ

2

3∏
i=1

(y − yi)1/2.

(5.115)

The yi are the roots of a certain cubic equation and are given in terms of p and q as

y1 = 1
4p
−1
(
2p− 3q − (4p2 − 3q2)1/2

)
,

y2 = 1
4p
−1
(
2p+ 3q − (4p2 − 3q2)1/2

)
,

y3 = 3
2 − y1 − y2.

(5.116)

The coordinates ba actually have charge +3 under the Reeb vector

Lξba = 3iba, (5.117)

and so the holomorphic function that encodes the marginal deformations will be a linear

function of the ba.

We can take the following frame for any Yp,q

e1 = 1
3

(
dψ − cos θdφ+ y(dβ + cos θdφ)

)
,

e2 + ie5 = eiψ/2

(
1− y

6

)1/2

(dθ + i sin θdφ),

e4 + ie3 = eiψ/2w(y)−1/2q(y)−1/2
(
dy + 1

6 iw(y)q(y)(dβ + cos θdφ)
)
.

(5.118)

The complex, symplectic and contact structures are defined in terms of the frame in (5.45).

One can check they satisfy the correct algebraic and differential relations (5.40)–(5.42).

The function f defining the marginal deformations is of weight three under the Reeb

vector and a restriction of a holomorphic function on the cone. Thus f must be a linear

combination of the ba, namely

f = faba. (5.119)

These deformations are the SU(2)-breaking deformations in (5.16) and generically give

three complex parameters. We remove two real degrees of freedom when solving the

moment maps to account for the broken SU(2) symmetry (leaving a U(1) unbroken). The

moment maps are precisely the beta function conditions given in (5.17). We can also

redefine the couplings using SU(2) rotations to remove another two real degrees of freedom,

leaving a one-complex-dimensional space of exactly marginal deformations. The single
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independent solution is

fβ ∝ b3. (5.120)

This is the β-deformation for the quiver gauge theory. The supergravity dual of the

β-deformation for Yp,q was worked out in [93]. One can check that using the frame for

Yp,q given in (5.118) and taking (5.120), our expression (5.73) reproduces the three-form

fluxes that appear in the first-order β-deformed solution [93]. Together with h and τ (dual

respectively to the axion-dilaton and the B-field on the S2), one finds a three-dimensional

conformal manifold.

5.6 Summary

In this chapter we have used exceptional generalised geometry to analyse exactly marginal

deformations of d = 4, N = 1 SCFTs that are dual to AdS5 backgrounds in type II or eleven-

dimensional supergravity. In the gauge theory, marginal deformations are determined by

imposing F-term conditions on operators of conformal dimension three and then quotienting

by the complexified global symmetry group. We have shown that the supergravity analysis

gives a geometric interpretation of this gauge theory result. The marginal deformations are

obtained as solutions of moment maps for the generalised diffeomorphism group that have

the correct charge under the Reeb vector, which generates the U(1)R symmetry. If this is

the only symmetry of the background, all marginal deformations are exactly marginal. If

the background possesses extra isometries, there are obstructions that come from fixed

points of the moment maps. The exactly marginal deformations are then given by a further

quotient by these extra isometries.

For the specific case of Sasaki–Einstein backgrounds in type IIB we showed how

supersymmetric deformations can be understood as deformations of generalised structures

which give rise to three-form flux perturbations at first order. Using explicit examples, we

checked that our expression for the three-form flux matches those in the literature and the

obstruction conditions match the one-loop beta functions of the dual SCFT.
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Chapter 6

Marginal deformations of d = 3,

N = 2 SCFTs

In the previous chapter, we set out how to find marginal deformations of d = 4, N = 1

superconformal field theories by considering the dual AdS5 solutions in type IIB super-

gravity. Deformations of the field theory appeared as deformations of the hypermultiplet

structure, and the marginal deformations were those that have the correct charge under

the generalised Reeb vector. The exactly marginal deformations were selected following

an analysis of the fixed points of the moment maps, and taking a further quotient by the

stabiliser group, corresponding to the broken global symmetry group.

As we emphasised, this approach is completely general and applies to deformations of

arbitrary backgrounds. In particular, our analysis also applies to N = 2 AdS4 solutions in

M-theory. Deformations of these backgrounds are dual to marginal deformations of d = 3,

N = 2 superconformal field theories. In this chapter, we analyse theories that arise on a

stack of M2-branes at a conical singularity. The backgrounds are of the form AdS4 ×M ,

where M is a seven-dimensional Sasaki–Einstein manifold. Again, we find a first-order

expression for the four-form flux that is dual to marginal deformations of the field theory

and compare with known results in the literature.

6.1 Introduction

The AdS/CFT correspondence relates supergravity on backgrounds with an AdS factor to

the conformal field theory living on the boundary. Usually one considers the field theory

to be superconformal, with supersymmetry allowing the calculation of protected quantities.

One is then interested in deformations by operators that preserve the superconformal

symmetry. Classically, such operators are known as marginal. If the operators also preserve

the symmetry at the quantum level, they are known as exactly marginal deformations.
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In the space of marginal couplings, the exactly marginal directions are said to define the

conformal manifold Mc.

Exactly marginal deformations of the SCFT appear in the supergravity dual as a

continuous family of AdS solutions. Aharony et al. performed a perturbative analysis

of AdS5 × S5 that identified the marginal deformations and found an obstruction at

third order in the deformation reminiscent of the one-loop beta-function [271]. Later,

Lunin and Maldacena proposed a method for generating AdS solutions from backgrounds

possessing at least two U(1) isometries [93]. The new solutions are dual to exactly marginal

deformations of the SCFT known as β-deformations. Unlike the perturbative approach,

the solution-generating technique gives the full analytic supergravity backgrounds to all

orders in the deformation. Ideally one would like to find the analytic solutions dual to the

other marginal deformations.

The solution-generating technique of Lunin and Maldacena also applies to M-theory

backgrounds with three U(1) isometries, where it has been used to find new AdS4 solutions

by deforming S7, Q1,1,1, M1,1,1 and others [93,284,285]. Unlike AdS5 × S5, there has not

been a perturbative analysis of the marginal deformations ofAdS4 × S7, however there is

some guidance from the dual field theory. The S7 solution preserves N = 8 supersymmetry,

or 32 supercharges, and arises as the near-horizon limit of a stack of M2-branes in flat

space. The dual three-dimensional CFT living on the branes has an SO(8) global symmetry

coming from the eight directions transverse to the branes. Although the theory does

not have a Lagrangian description, there has been a proposal for the number of exactly

marginal deformations [267]. The couplings that preserve eight supercharges define a

conformal manifold

Mc = 35/SU(4)C = 35//SU(4), (6.1)

where SU(4) is the broken global symmetry group, and 35 is the rank-four symmetric tensor

of SU(4). From this we expect the exactly marginal deformations to be determined by 20

complex functions. The existence of a conformal manifold for N = 2 Chern–Simons-matter

theories was first found in [286–289] following explicit calculations, and the calculation

was extended to an all-orders weak-coupling argument in [290].

The analysis of the conformal manifold was systematised in [269] for N = 1, d = 4

SCFTs that may be strongly coupled; we reviewed the results of this work in section 5.2.

The use of the superconformal algebra to constrain the allowed deformations generalises to

N = 2 theories in three dimensions as the multiplets are similar in structure to those of the

four-dimensional theories. In this case, the marginal deformations of the superpotential are

given by chiral primary superfields of dimension ∆ = 2. The other possible deformations

come from real primary superfields of dimension ∆ = 1, but these are conserved currents

and so there are no deformations. This mirrors the analysis in the d = 4 case: the

conformal manifold, near to the undeformed theory, is again simply the quotient of the

space of marginal couplings by the complexified broken global symmetry group.

In this chapter, we use the language of generalised geometry to find supersymmetric
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deformations of AdS4 times Sasaki–Einstein backgrounds in M-theory. The deformations

turn on a four-form flux perturbation that is dual to a marginal deformation in the field

theory. Our analysis applies to any Sasaki–Einstein background preserving at least eight

supercharges, including S7 and the previously mentioned examples. We find the marginal

deformations are encoded in a function of charge four under the Reeb vector that is

holomorphic on the Calabi–Yau cone over the Sasaki–Einstein manifold. In particular, for

S7 we find the marginal deformations are defined by a quartic function of the complex

coordinates zi on C4. Such a quartic function generically has 35 complex degrees of

freedom. The obstruction appears in our formalism as an extra symplectic quotient that

reduces this to 20 complex degrees of freedom, agreeing with the counting from the dual

field theory. We also carry out the same analysis for Q1,1,1 and M1,1,1.

We begin in section 6.2 by finding the algebraic form of the linearised deformation. We

then examine the differential conditions imposed by integrability and give the four-form flux

generated by the deformation. The expression for the flux is valid for any Sasaki-Einstein

background and includes the linearised fluxes found using the solution-generating technique

of Lunin and Maldacena as a special case. In section 6.3 we look at the examples of S7,

Q1,1,1 and M1,1,1 and find agreement with the known results.

6.2 Linearised deformations

Backgrounds of the form AdS4 ×M , where M is a seven-dimensional Sasaki–Einstein

manifold, are supersymmetric solutions of eleven-dimensional supergravity preserving at

least eight supercharges [64]. They are dual to the three-dimensional superconformal field

theory living on a stack of M2-branes placed at the tip of the corresponding Calabi-Yau

cone.1 As we showed in section 4.5, these solutions can be formulated as SU(6) structures

with singlet torsion within E7(7) × R+ generalised geometry. We now want to investigate

the possible deformations of this structure that are still integrable. In other words, we

look for deformations of the supergravity background that preserve eight supercharges.

We expect these to be dual to exactly marginal deformations in the field theory.

Jα and K define Spin∗(12) and E6(2) structures respectively and together they define

an SU(6) structure. As marginal deformations of the field theory are dual to deformations

of the hypermultiplets in supergravity, we should vary Jα while keeping K fixed. Thus we

want

δK = A ·K = 0, δJα = [A, Jα] 6= 0, (6.2)

for some A ∈ Γ(ad F̃ ). As the deformations leave the E6(2) structure invariant, at a point

1The most studied example of M-theory on AdS4 × S7/Zk is dual to the Chern–Simons-matter theory
living on a stack of M2-branes probing a C4/Zk singularity [291]. Of these only S7 and S7/Z2 are
Sasaki–Einstein. The supersymmetry parameters transform in the 8 of SU(8). This breaks under SU(6) as
8 = 6 + 1 + 1. Viewing S7 as Sasaki–Einstein picks out the two supercharges that are singlets under the
SU(6) structure. These are not the supercharges that are picked out in ABJM theory, which live in the6
instead. Thus we can view S7 and S7/Z2 as Sasaki–Einstein, but not further quotients.
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on the internal manifold A parametrises an element of E6(2)/SU(6). The adjoint of E6(2)

decomposes under SU(6)× SU(2) as

78 = (1,3)⊕ (35,1)⊕ (20,2). (6.3)

The first term corresponds to SU(2) rotations of the triplet Jα. The second term is the

adjoint of SU(6), which leaves both Jα and K invariant by definition. Therefore, the

deformations are in the (20,2) and form a doublet under the SU(2) defined by Jα. We

are free to choose them to be eigenstates of J3

[J3,Aλ] = iλκAλ. (6.4)

The non-zero eigenstates correspond to λ = 0, 1, 2. The λ = ±2 eigenstates correspond to

J±. The λ = 0 eigenstates are in SU(6), so will leave Jα and K invariant. The deformations

we seek are the λ = ±1 eigenstates, which we refer to as A±. We note that we can find an

eigenstate with eigenvalue −iκ from A+ by acting with J+ thanks to the Jacobi identity

[J3, κ
−1[J±,A±]] = ∓iκ[J±,A±]. (6.5)

Complex conjugation gives an eigenstate with the opposite eigenvalue. We notice that

LK commutes with the action of J3 (as LKJ3 = 0) so we can also label states by their

R-charge. We organise the states into doublets

A =

(
A(r)
−

A(r−2)
+

)
, r ≥ 0, (6.6)

where doublets with r ≤ 0 are related by complex conjugation.

To find the explicit form of the eigenstates, it is useful to note that the action of J3

splits into separate actions on {a, α} and {r, ã, α̃}. We then organise the eigenstates as

A+ = a+ α, A− = κ−1[J+,A+] = r + ã+ α̃. (6.7)

Using this as a basis, the modes {A+,A∗−} give the possible +iκ eigenstates. Using the

algebraic conditions on ω, Ω and I, it is simple to show that the A+ eigenstate is

A+ =
[
φ+ fΩ̄ + σ ∧ (ν]yΩ̄)

]
+
[
φ] + fΩ̄] + ξ ∧ (Ω̄]yν)

]
, (6.8)

where φ is a (1, 2)-form, f is a function, Ω̄ is the conjugate of the complex three-form,

σ is the contact form and ν is a (1, 0)-form. Notice that the components are related by

amnp = αmnp, where we lower the indices of α using the undeformed metric.2 The A−
mode in the same doublet as A+ is given by A− = κ−1[J+,A+].

2The three-form components of the USp(8) Lie algebra embed in E7(7) as amnp = −αmnp, so the
deformation is not in usp8.
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6.2.1 Supersymmetry conditions

We are looking for deformations of the Sasaki–Einstein background that preserve super-

symmetry, so that the deformed K and Jα still define a torsion-free SU(6) structure. At

linear order in the deformation, the supersymmetry conditions reduce to

δµα(V ) =

ˆ
κ tr(JαLVA) = 0 ∀V ∈ 56, (6.9)

[LKA, Jα] = 0. (6.10)

As the deformed structures should be real, we take the deformation to be A = ReA+,

where ReA+ = 1
2(A+ +A∗+). In this section we give the derivation of the constraints that

these equations impose on A+.

For what follows, it is useful to note that the contractions of the components of A+

with the volume form are (
ξ ∧ (Ω̄]yν)

)
y vol7 = iν ∧ Ω̄,

fΩ̄]y vol7 = −ifσ ∧ Ω̄,

φ]y vol7 = iσ ∧ φ.

(6.11)

We also use the identities

vol7(αya) = (αy vol7) ∧ a, vol7(α̃yã) = (α̃y vol7) ∧ ã, (6.12)

where a, α, ã and α̃ are an arbitrary three-form, three-vector, six-form and six-vector

respectively.

Moment map conditions

The calculation of the conditions follows closely that of appendix H.2. For example, the

variation of µ3 is of a similar form as that for the previous AdS5 case:

ˆ
κ tr(J3LVA) =

ˆ
κ tr(J3[dω,A]) ∝

ˆ
κ tr(dω[J3,A]). (6.13)

We then note that [J3,A] ∝ A+ −A−, which gives

ˆ
κ tr(dω[J3,A]) ∝

ˆ
κ2 Imαydω ∝

ˆ
d(Imαy vol7) ∧ ω, (6.14)

where α is the three-vector component of A+. As this should vanish for arbitrary ω, we

require

d(Imαy vol7) = 0. (6.15)
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Using the explicit form of A+ (6.8) and the contractions of its components with the

volume (6.11), the conditions from δµ3 = 0 and δµ+ = 0 reduce to

∂φ+ ∂̄φ̄ = 0,

∂ν = 0,

∂̄φ+ 4iν ∧ Ω̄ = 0,

∂̄ν − 2fω = 0,

Lξν + ∂f = 0,

∂̄f = 0,

∂̄(νyΩ̄) + 6ifΩ̄ = 0,

(6.16)

where we have simplified some of the relations using

v ∧ Ω̄ + iω ∧ (vyΩ̄) = 0, (6.17)

where v is an arbitrary (1, 0)-form with respect to I.

We now want to solve the system of differential equations to find the general form of

the deformation. Following a method similar to that in appendix H.2, one can show that

a solution is given by

∂̄f = 0, Lξf = iqf, ν =
i

q
∂f, φ =

1

2q(q − 1)
∂(∂fyΩ̄). (6.18)

One can check this solves the system of equations using

∂̄(∂fyΩ̄) = −6qfΩ̄, (6.19)

where f is a holomorphic with respect to ∂̄ and has charge +q under the Reeb vector field.

One can also include in φ a (1, 2)-form χ that is closed. The three-form component of the

deformation is then

A+ = fΩ̄ +
i

q
σ ∧ (∂fyΩ̄) +

1

2q(q − 1)
∂(∂fyΩ̄) + χ, (6.20)

where ∂̄f = 0, Lξf = iqf and dχ = 0. The three-vector component is given by substituting

(6.18) into (6.8) or by raising the indices of the three-form component using the undeformed

metric.

Lie derivative along K

Now that we have satisfied the moment map conditions we must impose the Dorfman

derivative condition. At first order this is given by (6.10). The commutators are non-zero

for both J+ and J3 so that the condition reduces to LKA = 0. As K is a generalised

Killing vector, the Dorfman derivative along K reduces to a Lie derivative along the Reeb

vector field ξ, so the deformation condition is

LξA = 0.
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We see that the deformation must have charge zero under the Reeb vector field. From the

explicit form A+, we see f is charge +4 and the closed term χ is charge zero. These are

the conditions for a deformation to be marginal.

6.2.2 Fluxes

As for the previous type IIB case, the three-vector component of the deformation can be

traded for a three-form deformation by considering its action on the generalised metric.

The three-form potential induced by a first-order deformation by a three-form a and a

three-vector α is

Amnp = amnp + αmnp = 2amnp,

where we lower the indices of the three-vector using the undeformed metric. Obviously,

this procedure becomes more complicated at higher orders in the deformation due to

contractions between the three-form and three-vector terms that can correct the metric,

warp factor and fluxes.

The real deformation will generate a three-form potential of the form

A = 2 Re
(
fΩ̄ + 1

4 iσ ∧ (∂fyΩ̄) + 1
24∂(∂fyΩ̄) + χ

)
. (6.21)

The flux due to A is

F = Re
(

3
2∂f ∧ Ω̄− i

4σ ∧ ∂(∂fyΩ̄) + 6ifσ ∧ Ω̄
)
. (6.22)

This flux is valid for the marginal deformations of any seven-dimensional Sasaki–Einstein

background and, as we will discuss, it reproduces the first-order fluxes of the β-deformation

of Lunin and Maldacena [93].

6.3 Examples

In the previous section we used the existence of a torsion-free generalised structure to derive

the first-order fluxes that are dual to exactly marginal deformations for any Sasaki–Einstein

background. We now give the explicit examples of the supergravity backgrounds where

the internal space is S7, Q1,1,1 or M1,1,1. In what follows, it proves useful to take an

orthonormal frame on M in which the invariant objects defining the Sasaki–Einstein

structure are

Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6), ω = e12 + e34 + e56, σ = e7. (6.23)

6.3.1 S7

As an AdS4 background in M-theory, the seven-sphere S7 preserves 32 supercharges. When

viewed as a Sasaki-Einstein manifold, we pick out eight of these supercharges – it is these
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supercharges that will be preserved by the first-order flux we have given. We can view S7

as a U(1) fibration over CP3, a six-dimensional Kähler–Einstein base. The metric on S7

can be written as3 [93]

ds2(S7) = dθ2 + s2
θdα

2 + s2
θs

2
αdβ2 + c2

θdφ
2
1 + s2

θc
2
αdφ2

2 + s2
θs

2
αc

2
βdφ2

3 + s2
θs

2
αs

2
βdφ2

4. (6.24)

We can introduce an explicit frame in terms of the coordinates on S7:

e1 + ie2 = e4iψ/3(dθ − isθcθdφ1 + isθcθc
2
αdφ2 + isθcθc

2
βs

2
αdφ3 + isθcθs

2
αs

2
βdφ4),

e3 + ie4 = e4iψ/3(sθdα− isαcαsθdφ2 + isαcαsθc
2
βdφ3 + isαcαsθs

2
βdφ4),

e5 + ie6 = e4iψ/3(sαsθdβ − isβcβsθsαdφ3 + isαsβcβsθdφ4),

e7 = c2
θdφ1 + s2

θc
2
αdφ3 + s2

αs
2
θc

2
βdφ3 + s2

θs
2
αs

2
βdφ4,

(6.25)

where 4ψ = φ1 +φ2 +φ3 +φ4. Using this frame, one can check that the complex, symplectic

and contact structures given in (6.23) satisfy the algebraic and differential conditions

(4.93), (4.94) and (4.96).

Up to closed three-forms, the marginal deformations are parametrised by a holomorphic

function f that descends from the Calabi–Yau cone over S7. The function f is of charge

four under the Reeb vector. In our parametrisation, the Reeb vector field is

ξ = 4∂ψ = ∂φ1 + ∂φ2 + ∂φ3 + ∂φ4 . (6.26)

The cone over S7 is C4, and the coordinates on S7 are related to the usual complex

coordinates on C4 by

z1 = cθe
iφ1 , z2 = sθcαeiφ2 , z3 = sθsαcβeiφ3 , z4 = sθsαsβeiφ4 , (6.27)

where the coordinates zi have charge +1 under the Reeb vector field

Lξzi = izi. (6.28)

Thus f must be a quartic function of the zi. The general form of such a function is

f = f ijklzizjzkzl, (6.29)

where f ijkl is a complex symmetric tensor of SU(4). There are generically 35 complex

degrees of freedom in such a symmetric rank-four tensor, corresponding to the the 35

marginal deformations previously discussed by Kol [267]. Requiring our first-order per-

turbation to extend to higher orders forces us to consider if there are fixed-point isometries

at the S7 point in the space of couplings. We can think of S7 as a U(1) fibration over

a CP3 base, where the SU(4) that acts on the base leaves the S7 solution invariant. In

3We are using sα and cα as shorthand for sinα and cosα, and similarly for β and θ.
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other words, S7 = SU(4)/SU(3) where the action of SU(4) preserves the U(1) fibration.

This is not true of the other presentations of S7 as a homogeneous space. This means

we have an SU(4)’s worth of fixed-point symmetries, where the marginal deformations

defined by f generically break this SU(4). To account for this we construct a moment

map for the SU(4) action on the space of couplings and perform a symplectic reduction.

The deformations that survive are those that extend to higher orders, namely the exactly

marginal deformations. These deformations satisfy

f iklmf̄jklm − 1
4δ
i
jf
klmnf̄klmn = 0. (6.30)

This removes 15 real degrees of freedom and we can use the SU(4) action to remove another

15 real degrees of freedom, leaving 20 complex parameters, in agreement with the counting

given by Kol [267]. Recall that H3(S7) = 0 and so there are no marginal deformations due

to closed (1, 2)-forms χ.

The β-deformed S7 solution was first given in [93], which we reproduce in appendix I.

Taking f ∝ iγz1z2z3z4, where γ is real, and using our frame for S7, one can check that our

expression (6.22) reproduces the four-form flux of the first-order β-deformed S7 solution.

Notice that we can also take f ∝ γz1z2z3z4, where we have dropped a factor of i compared

with the LM solution. This will also solve the moment map conditions and thus is a

marginal deformation, similar to the full complex β-deformation of N = 4.

6.3.2 Q1,1,1

As an AdS4 background in M-theory, the Sasaki–Einstein manifold Q1,1,1 preserves eight

supercharges. Viewing Q1,1,1 as a U(1) fibration over CP1 × CP1 × CP1, the metric4 can

be written as [292,293]

ds2(Q1,1,1) = 1
16

(
dψ +

3∑
i=1

cos θidφi

)2

+ 1
8

3∑
i=1

(dθ2
i + sin2 θidφ

2
i ). (6.31)

We can introduce an explicit frame in terms of the coordinates on Q1,1,1:

e1 + ie2 = 1
2
√

2
eiψ/3(i dθ1 + sin θ1dφ1),

e3 + ie4 = 1
2
√

2
eiψ/3(i dθ2 + sin θ2dφ2),

e5 + ie6 = 1
2
√

2
eiψ/3(i dθ3 + sin θ3dφ3),

e7 = 1
4(dψ + cos θ1dφ1 + cos θ2dφ2 + cos θ3dφ3).

(6.32)

Using this frame, one can check that the complex, symplectic and contact structures given

in (6.23) satisfy the algebraic and differential conditions (4.93), (4.94) and (4.96).

Up to closed three-forms, the deformation is parametrised by a holomorphic function

4The metric has been scaled to ensure Rµν = 6gµν .
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f that descends from the Calabi–Yau cone over Q1,1,1. The deformations are marginal if f

is of weight four under the Reeb vector. In our parametrisation, the Reeb vector is

ξ = 4∂ψ. (6.33)

The cone over Q1,1,1 is described by an embedding in C8 using eight complex coordinates

wi that satisfy nine constraint equations. The explicit form of the coordinates is [294]

w1 = e
i
2

(ψ+φ1+φ2+φ3)cθ1/2cθ2/2cθ3/2, w2 = e
i
2

(ψ−φ1−φ2−φ3)sθ1/2sθ2/2sθ3/2,

w3 = e
i
2

(ψ+φ1−φ2−φ3)cθ1/2sθ2/2sθ3/2, w4 = e
i
2

(ψ−φ1+φ2+φ3)sθ1/2cθ2/2cθ3/2,

w5 = e
i
2

(ψ+φ1+φ2−φ3)cθ1/2cθ2/2sθ3/2, w6 = e
i
2

(ψ−φ1+φ2−φ3)sθ1/2cθ2/2sθ3/2,

w7 = e
i
2

(ψ+φ1−φ2+φ3)cθ1/2sθ2/2cθ3/2, w8 = e
i
2

(ψ−φ1−φ2+φ3)sθ1/2sθ2/2cθ3/2.

(6.34)

The embedding coordinates wi are charge +2 under the Reeb vector field, so the general

form of the function f is

f = f ijwiwj , (6.35)

where f ij is symmetric with complex entries. There are generically 36 complex degrees of

freedom in such a symmetric rank-two tensor, but 9 of them will not contribute to f due

to the constraints on the wi. Thus there are 27 complex degrees of freedom corresponding

to 27 marginal deformations. We can also use homogeneous coordinates Aa, Bȧ and Cä

that are related to the wi by [295]

w1 = A1B2C1, w2 = A2B1C2, w3 = A1B1C2, w4 = A2B2C1,

w5 = A1B1C1, w6 = A2B1C1, w7 = A1B2C2, w8 = A2B2C2.
(6.36)

We can then write the generic deformation as

f = fab,ȧḃ,äb̈AaBȧCäAbBḃCb̈, (6.37)

where fab,ȧḃ,äb̈ is symmetric in (ab), (bḃ) and (äb̈). We can think of Q1,1,1 as a U(1) fibration

over a CP1 × CP1 × CP1 base, so there is an SU(2)3 isometry that leaves the solution

invariant, and we have an SU(2)3 of fixed-point symmetries. Again, we want to take a

symplectic reduction of the space of couplings by the action of SU(2)3. The moment map

for the first SU(2) action is

µSU(2) = fac,ȧḃ,äb̈f̄bc,ȧḃ,äb̈ −
1
2δ
a
bf
cd,ȧḃ,äb̈f̄cd,ȧḃ,äb̈, (6.38)

and the others follow by swapping undotted for dotted or double-dotted indices. The

conformal manifold of exactly marginal deformations that preserve eight supercharges is
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given by the symplectic reduction

Mc = {fab,ȧḃ,äb̈}//SU(2)3. (6.39)

The three moment maps for SU(2) gives 9 real conditions on the fab,ȧḃ,äb̈, and we can

remove another 9 degrees of freedom using SU(2)3 rotations of the couplings. In addition,

H3(Q1,1,1) = 0 and so there are no marginal deformations due to closed (1, 2)-forms χ.

Thus, the conformal manifold is 27− 9 = 18 complex dimensional.

The β-deformed Q1,1,1 solution was first given in [284, 285], which we reproduce in

appendix I. Taking f ∝ γw1w2 = γA1A2B1B2C1C2, where γ is real, and using our frame

for Q1,1,1, one can check that our expression (6.22) reproduces the four-form flux of the

first-order β-deformed solution.

6.3.3 M1,1,1

As an AdS4 background in M-theory, the Sasaki–Einstein manifold M1,1,1 preserves eight

supercharges. Following the presentation in [296], the metric on M1,1,1 can be written as

ds2(M1,1,1) = 3
4

(
dµ2 + 1

4s
2
µc

2
µ(dψ + cθ̃dφ̃)2 + 1

4s
2
µ(dθ̃2 + s2

θ̃
dφ̃2)

)
+ 1

8(dθ2 + s2
θdφ

2) + 1
64(dτ + λ+ 2cθdφ)2,

(6.40)

where λ = 1
2(1 + 3 cos 2µ)dψ − 3 cos θ̃ sin2 µdφ̃.5 We can introduce an explicit frame in

terms of the coordinates on M1,1,1:

e1 + ie2 =
√

3
2 eiτ/6

(
dµ− 1

4 i sin 2µ(dψ + cos θ̃dφ̃)
)
,

e3 + ie4 =
√

3
4 eiτ/6 sinµ(dθ̃ + i sin θ̃dφ̃),

e5 + ie6 = 1
2
√

2
eiτ/6(dθ − i sin θdφ),

e7 = 1
8(dτ + λ+ 2 cos θdφ).

(6.41)

Using this frame, one can check that the complex, symplectic and contact structures given

in (6.23) satisfy the algebraic and differential conditions (4.93), (4.94) and (4.96).

Up to closed three-forms, the deformation is parametrised by a holomorphic function

f that descends from the Calabi–Yau cone over M1,1,1. The deformations are marginal if

f is of weight four under the Reeb vector. In our parametrisation, the Reeb vector is

ξ = 8∂τ . (6.42)

The cone over M1,1,1 is described by an embedding in C30 [297]. Instead we use homogeneous

coordinates Ui and Va which are charge +8/9 and +2/3 respectively under the Reeb vector

5Note that the λ we use differs from that of [284,296] by 2dψ.
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field [285], so the general form of the function f is

f = f ijk,abUiUjUkVaVb, (6.43)

where f ijk,ab is symmetric on (ijk) and (ab) with complex entries, transforming in the

(10,3) of SU(3) × SU(2). There are generically 30 complex degrees of freedom in such

a tensor, thus there are 30 complex degrees of freedom corresponding to 30 marginal

deformations.

Again we consider if there are fixed-point isometries at theM1,1,1 point in the moduli

space of couplings. M1,1,1 is a U(1) fibration over a CP2 × CP1 base, so there is an

SU(3) × SU(2) isometry that acts on the base, leaving the solution invariant. We can

construct a moment map for the SU(3) × SU(2) action on the space of couplings and

perform a symplectic reduction. The moment maps are

µSU(3) = f ikl,abf̄jkl,ab − 1
3δ
i
jf
klm,abf̄klm,ab,

µSU(2) = f ijk,acf̄ikl,bc − 1
2δ
a
bf
ijk,cdf̄ijk,cd.

The conformal manifold of exactly marginal deformations that preserve eight supercharges

is given by the symplectic reduction

Mc = {f ijk,ab}//SU(3)× SU(2). (6.44)

The moment maps give 8 + 3 real conditions on the f ijk,ab, and we can remove another 11

degrees of freedom using rotations of the couplings. In addition, H3(M1,1,1) = 0 and so

all global three-forms are trivial in cohomology [297]. This means there are no marginal

deformations due to closed (1 , 2)-forms χ. Thus, the conformal manifold is 30 − 11 = 19

complex dimensional.

The β-deformed M1,1,1 solution was first given in [284, 285], which we reproduce in

appendix I. Taking f ∝ iγeiτ/2 sin θ sin θ̃ sin2 µ cosµ, where γ is real, and using our frame

for M1,1,1, one can check that our expression (6.22) reproduces the four-form flux of the

first-order β-deformed solution.

6.4 Summary

In this chapter we have used exceptional generalised geometry to analyse exactly marginal

deformations of d = 3, N = 2 SCFTs that are dual to AdS4 backgrounds in eleven-

dimensional supergravity. In the gauge theory, marginal deformations are determined by

imposing F-term conditions on operators of conformal dimension two and then quotienting

by the complexified global symmetry group. We have shown that the supergravity analysis

gives a geometric interpretation of this gauge theory result. The marginal deformations are

obtained as solutions of moment maps for the generalised diffeomorphism group that have
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the correct charge under the Reeb vector, which generates the U(1)R symmetry. If this is

the only symmetry of the background, all marginal deformations are exactly marginal. If

the background possesses extra isometries, there are obstructions that come from fixed

points of the moment maps. The exactly marginal deformations are then given by a further

quotient by these extra isometries.

For the specific case of Sasaki–Einstein backgrounds, we showed how supersymmetric

deformations can be understood as deformations of generalised structures which give rise

to four-form flux perturbations at first order. Using explicit examples, we checked that

our expression for the four-form flux matches those in the literature.
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Chapter 7

Discussion

In this thesis, we have presented the idea that generalised geometry provides a geometrical

interpretation of generic flux backgrounds in type II supergravity and M-theory. We

focussed on backgrounds preserving eight supercharges in D = 4, 5, 6 Minkowski or

D = 4, 5 AdS spacetimes and showed they define integrable G-structures in Ed(d) × R+

generalised geometry. As in conventional geometry, integrability is defined as the existence

of a generalised torsion-free connection that is compatible with the structure, or equivalently

as the vanishing of the generalised intrinsic torsion (or a non-vanishing singlet component

in the AdS case). This led to us defining what we called “exceptional Calabi–Yau” (ECY)

spaces and “exceptional Sasaki–Einstein” (ESE) spaces, which provide the natural flux

generalisations of Calabi–Yau and Sasaki–Einstein spaces. For both ECY and ESE spaces,

we found the differential conditions on the structures implied by integrability, and showed

that they took a simple form in terms of the generalised Lie derivative or moment maps

for the action of the generalised diffeomorphism group. As for Calabi–Yau backgrounds,

supersymmetric solutions are described as the intersection of two separate structures. We

also discussed the structure of the moduli spaces of ECY and ESE spaces, and pointed

out an interesting connection to the “HK/QK correspondence” [247].

We saw how examples of ECY geometries are given by the simple examples of

Calabi–Yau, generalised Calabi–Yau and hyper-Kähler spaces as well as various other

supersymmetric flux backgrounds.

In the ESE case, we saw that such geometries always admit a “generalised Reeb vector”

that generates an isometry of the background corresponding to the R-symmetry of the

dual field theory. In the language of [145], ESE spaces are weak generalised holonomy

spaces, and the cone over such a space has generalised special holonomy. We have included

a number of examples of ESE spaces including conventional Sasaki–Einstein in five and

seven dimensions, as well as the most general AdS5 solutions in M-theory.

A particular advantage of the formalism is that the H and V structures defining the

background are associated to hypermultiplet and vector-multiplet degrees of freedom in the

corresponding gauged supergravity. This provides a natural translation between bulk and
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boundary properties. We showed for example that the V structure, which is defined by the

generalised Reeb vector K, encodes the contact structure that appears in generic D = 5

type IIB and D = 4 M-theory backgrounds [134,245,249]. Furthermore, K determines the

central charge in D = 5 and free energy in D = 4 of the dual theory, and is a calibration

for BPS wrapped branes giving the dimension of the dual operators.

As we saw, a key application of our formalism is to the AdS/CFT correspondence and

we took some first steps in this direction. We used Ed(d) × R+ generalised geometry to

analyse exactly marginal deformations of N = 1 SCFTs that are dual to AdS5 backgrounds

in type II or eleven-dimensional supergravity. In the gauge theory, marginal deformations

are determined by imposing F-term conditions on operators of conformal dimension three

and then quotienting by the complexified global symmetry group. We showed that the

supergravity analysis gives a geometric interpretation of this gauge theory result. The

marginal deformations are obtained as solutions of moment maps for the generalised

diffeomorphism group that have the correct charge under the Reeb vector, which generates

the U(1)R symmetry. If this is the only symmetry of the background, all marginal

deformations are exactly marginal. If the background possesses extra isometries, there

are obstructions that come from fixed points of the moment maps. The exactly marginal

deformations are then given by a further quotient by these extra isometries. For the

specific case of Sasaki–Einstein backgrounds in type IIB we showed how supersymmetric

deformations can be understood as deformations of generalised structures which give rise

to three-form flux perturbations at first order. Using explicit examples, we showed that

our expression for the three-form flux matches those in the literature and the obstruction

conditions match the one-loop beta functions of the dual SCFT.

Finally, we extended our analysis to AdS4 backgrounds in eleven-dimensional super-

gravity. We showed how deformations of generalised structures give rise to supersymmetry-

preserving four-form flux perturbations at first order and how higher-order obstructions

again come from fixed points of the moment maps. Using explicit examples, we showed

that our expression for the four-form flux matches those in the literature.

7.1 Future directions

There are many directions for future study. The obvious extension is to find the analogous

structures for backgrounds with different amounts of supersymmetry. In Ed(d) ×R+ gener-

alised geometry the supersymmetry parameters transform under the maximal compact

subgroup Hd. As shown in [143,144], supersymmetric backgrounds preserving N supersym-

metries are given by integrable G-structures where G ⊂ Hd is the stabiliser group of the N
Killing spinors. Thus, for example, D = 4, N = 1 backgrounds define an SU(7) ⊂ SU(8)

structure [136], which in M-theory would give the flux generalisation of a G2 structure.

This viewpoint should give insight into the moduli space of N = 1 flux compactifica-

tions. We have also seen that the structures are naturally associated to multiplets in the
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D-dimensional theory, and furthermore that the integrability conditions can be deduced

from the standard form of the D-dimensional gauged supergravity. This should provide a

relatively simple prescription for deriving the conditions for other examples.

We discussed some general properties of the moduli spaces, notably that they arise

as hyper-Kähler and symplectic quotients and that the full moduli space has a fibred

structure. However, for Calabi–Yau compactifications it is known that the moduli space

splits and is simply a product of the hypermultiplet and vector-multiplet moduli spaces. It

is still an open problem to understand how the moduli space of ECYs splits into a product

of a hyper-Kähler space and a special Kähler space.

As we have seen, integrability of the H structure generically is captured by a moment

map. Typically, the vanishing of a moment map is closely allied to a notion of stability (see

for example [185]), which, if it exists, would here define integrable complex or symplectic

structures (and their generalisations) under the action of some quaternionic version of the

full generalised diffeomorphism group.

There is a natural question about reduction of structures, similar to that for generalised

complex geometry [298]: how, given a generalised Killing vector, structures with eight

supercharges on M define structures on a space of one dimension lower. Physically this

would realise the r-map of [234]. In the AdS case, K is always a generalised Killing vector

and the cone over an ESE space has generalised special holonomy. In the conventional

Sasaki–Einstein case one can use the Reeb vector to define a symplectic reduction of the

Calabi–Yau cone. Locally, this gives a four-dimensional geometry that is Kähler–Einstein.

When one moves to generalised complex geometry, there is an analogous result using the

theory of generalised quotients that the transverse space admits a generalised Hermitian

structure [134]. It would be interesting to understand how this carries over to exceptional

generalised geometry by developing a theory of generalised quotients.

Conventional generalised complex geometry is known to capture the A and B topological

string models on backgrounds with H flux [115, 116, 119]. The geometries defined here

should encode some extension to M-theory or with the inclusion of R-R flux. It was

previously proposed [299, 300] that the relevant topological M-theory was related to

Hitchin’s formulation of G2 structures [301], which combines both the A and B model.

Here we have a slightly different picture with two candidate structures in M-theory.

Note that in principle either the H structures or the V structures could be viewed as

generalisations of the A and B models, with mirror symmetry mapping H (or V) structures

in IIA to H (or V) structures in IIB. However, the integrability conditions on the V

structure are considerably weaker – for example, for a generalised complex structure they

do not imply that dΦ± = 0. In this case it would appear one would need to choose a fixed

background Jα and impose the LXJα condition. The hypermultiplet structure integrability,

on the other hand, does imply dΦ± = 0, and hence these give the natural candidates for

generalisations of the topological string models. It would be particularly interesting to

consider the quantisation of these models, as in [116] though now with a hyper-Kähler
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rather than symplectic space of structures.

In the AdS examples with contact structures, one can calculate properties of the field

theory using the relation between the contact volume and the choice of Reeb vector [134,

245,249]. The special role of K also led us, following [250], to a conjecture for generic form

volume minimisation [251,252]. It would be particularly interesting to see if we can extend

these techniques to the case of D = 5 M-theory backgrounds using the generalised Reeb

vector. Moreover, it should be possible to use generalised intrinsic torsion to show that the

supergravity actions are given by the integral of the Ed(d)-invariant volume, as in (4.126).

An important question both for phenomenology and the AdS/CFT correspondence

is to identify the deformations of the structures. Our analysis holds for any N = 1

AdS5 background so it would be interesting to apply it to one of the few examples of

non-Sasaki–Einstein backgrounds, such as the Pilch–Warner solution [302]. This is dual

to a superconformal fixed point of N = 4 super Yang–Mills deformed by a mass for one

of the chiral superfields. More generally, one expects that the deformation problem is

described by some underlying differential graded Lie algebra (DGLA) with cohomology

classes capturing the first-order deformations and obstructions, as described for example

in [303]. For H structures in IIA, this would be some generalisation of the Dolbeault

complex. Such extensions appear in generalised complex geometry [109, 304, 305], but

this would go further to include R-R degrees of freedom. In the generalised complex

structure case, starting from a conventional complex structure, it is known that the extra

deformations can be associated with gerbe and non-commutative deformations of the

algebraic geometry [109,115]. An open question is how to understand the corresponding R-

R deformations when they exist. Furthermore, in the AdS context solving the deformation

problem gives a way of finding the exactly marginal deformations in the dual field theory.

One might hope that understanding the underlying DGLA structure may help identify

the all-order supergravity backgrounds dual to the deformations; so far only the dual of

the β-deformation has been obtained. With these in hand, one would be able to perform

many non-trivial checks of the AdS/CFT correspondence, including calculating the metric

on the conformal manifold.

There are also applications to phenomenology. Supersymmetric deformations of the

geometry give rise to moduli fields in the low-energy effective action obtained after

compactifying on the internal manifold. Determining the number and nature of moduli

fields that arise in flux compactifications is difficult in general as we lose many of the

mathematical tools used in Calabi–Yau compactifications. In our formalism, fluxes and

geometry are both encoded by the generalised structure whose deformations will give

all the moduli of the low-energy theory. Generalised geometry points to a new set of

tools to understand these deformations, such as generalisations of cohomology and special

holonomy.
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Appendix A

Examples of N = 2, D = 4

backgrounds

In this appendix, we shall summarise a number of simple N = 2 backgrounds in both type

II and M-theory, with and without fluxes. We use these to provide concrete examples of

E7(7) structures in section 3.2.4 and to show how the usual supersymmetry conditions are

recovered from integrability conditions in section 3.3.4.

A.1 Calabi–Yau manifolds in type II and SU(3) structures

Calabi–Yau manifolds admit a single covariantly constant spinorχ+ defining an SU(3) ⊂
Spin(6) ' SU(4) structure. In this case, the two SU(8) Killing spinors of (3.6) are given

by [172]

ε1 =

(
χ+

0

)
, ε2 =

(
0

χ−

)
, (A.1)

Equivalently it admits a symplectic form ω and a holomorphic three-form Ω that are

compatible, which translates to

ω ∧ Ω = 0, 1
3!ω ∧ ω ∧ ω = 1

8 iΩ ∧ Ω̄. (A.2)

One can choose a frame {ea} for the metric on M where the invariant forms take the form

ω = e12 + e34 + e56, Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6), (A.3)

where eab = ea ∧ eb. Raising an index on ω defines an almost complex structure I on the

six-dimensional space

Imn = −ωmn = 1
8 i(Ω̄mpqΩnpq − ΩmpqΩ̄npq), IqmΩqnp = iΩmnp. (A.4)

In the language ofG-structures, ω and Ω define Sp(6;R) and SL(3;C) structures respectively.
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The compatibility conditions (A.2) imply that the common subgroup is given by Sp(6;R)∩
SL(3;C) = SU(3). The fact that χ is covariantly constant is equivalent to the integrability

conditions

dω = 0, dΩ = 0. (A.5)

A.2 CY3 × S1 in M-theory

Let us also briefly note the form of the M-theory lift of the type IIA Calabi–Yau background.

The seven-dimensional internal space is a product M = MSU(3) × S1 with metric

ds2(M) = ds2(MSU(3)) + ζ2, (A.6)

where ζ = dy, with y the coordinate on the M-theory circle, and ds2(MSU(3)) is the IIA

Calabi–Yau metric on MSU(3). The Killing spinors take the same form as (A.1) but are

now viewed as complex Spin(7) spinors. They again determine an SU(3) structure, which

can equivalently be defined by the triplet of forms {ω,Ω, ζ}. If we raise an index to define

the vector ζ] = ∂y, we have the compatibility conditions

1
3!ω ∧ ω ∧ ω = 1

8 iΩ ∧ Ω̄, ω ∧ Ω = 0, ıζ]ω = 0, ıζ]Ω = 0, (A.7)

and the integrability conditions

dω = 0, dΩ = 0, dζ = 0. (A.8)

Note that they imply ζ] is a Killing vector.

A.3 Generalised Calabi–Yau metrics in type II and pure

spinors

Returning to type II, we now consider the case where we include non-trivial H = dB flux

and dilaton. For simplicity, the warp factor is taken to vanish. The two SU(8) Killing

spinors of (3.6) are given by1

ε1 =

(
χ+

1

0

)
, ε2 =

(
0

χ−2

)
. (A.9)

The background can then be characterised using O(d, d) × R+ generalised geometry

following [111].

1As mentioned in [172], this is not the most general spinor ansatz. There are pure NS-NS, N = 2
backgrounds where the Killing spinors do not take the form (A.9), and hence are not described by generalised
complex structures.
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The generalised tangent bundle E ' TM ⊕ T ∗M admits a natural O(d, d) metric η.

The background is defined by two complex polyforms, taking d = 6,

Φ± ∈ Γ(∧±T ∗M), (A.10)

which can then be viewed as sections of the positive and negative helicity Spin(6, 6)× R+

spinor bundles, where the R+ factor acts by a simple rescaling. The generalised spinors

are not generic but are “pure” meaning they are stabilised by an SU(3, 3) ⊂ Spin(6, 6)

subgroup. They also satisfy the consistency conditions

〈Φ+, Φ̄+〉 = 〈Φ−, Φ̄−〉, 〈Φ+, V · Φ−〉 = 〈Φ̄+, V · Φ−〉 = 0 ∀V, (A.11)

where, given V = ξ + λ ∈ Γ(TM ⊕ T ∗M), one defines the Clifford action V · Φ± =

V AΓAΦ± = ıξΦ
± + λ ∧ Φ±. In addition, 〈·, ·〉 is the Spin(6, 6)-invariant spinor bilinear, or

Mukai pairing, given by

〈Ψ,Σ〉 =
∑
p

(−)[(p+1)/2]Ψ(p) ∧ Σ(6−p), (A.12)

where Ψ(p) denotes the p-form component of Ψ and [p] is the integer part of p.

Each pure spinor defines an (almost) generalised complex structure J ± ∈ Γ(ad F̃ ),

where ad F̃ ' Γ((TM ⊗ T ∗M)⊕ ∧2T ∗M ⊕ ∧2TM) is the principal O(6, 6) frame bundle

for E. The generalised complex structures are given by

J ±AB = i
〈Φ±,ΓABΦ̄±〉
〈Φ±, Φ̄±〉

, (A.13)

where ΓA are O(6, 6) gamma matrices with A = 1, . . . , 12, and indices are raised and

lowered using the O(6, 6) metric. Note that acting on pure spinors it has the property

1
4J
±
ABΓABΦ± = 3iΦ±. (A.14)

The integrability conditions are

dΦ+ = 0, dΦ− = 0, (A.15)

which define what is known as a generalised Calabi–Yau metric [109]. These conditions

imply that each almost generalised complex structure is separately torsion-free. Each is

also equivalent to the existence of a torsion-free generalised connection compatible with

the SU(3, 3)± structure defined by Φ±.
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A.4 D3-branes on HK× R2 in type IIB

Let us now turn to three further flux examples. The first corresponds to D3-branes in

type IIB at a point in a space M = MSU(2) × R2, where MSU(2) is a four-dimensional

hyper-Kähler space. This is in the class of the solutions first given in [225–227] and

analysed in detail for M = MSU(2) × R2 in [228]. We have a conformal factor ∆ and an

R-R five-form flux F , and in general also an imaginary self-dual three-form flux. The

metric on M takes the form

ds2 = ds̃2(MSU(2)) + ζ2
1 + ζ2

2 , (A.16)

where ds̃2(MSU(2)) is an SU(2)-structure metric on MSU(2) and

ζ1 = e−∆dx, ζ2 = e−∆dy. (A.17)

The type IIB axion-dilaton τ = C0 + i eφ is constant, and for convenience we take τ = i.

The two SU(8) Killing spinors take the form

ε1 =

(
χ+

1

iχ+
1

)
, ε2 =

(
−iχ+

2

χ+
2

)
. (A.18)

The two spinors χ+
i define a conventional SU(2) structure, which is simply the one defined

by the hyper-Kähler geometry. It is determined by a triplet of symplectic forms ωα and

the pair of one-forms {ζ1, ζ2}. One can always choose a frame {ea} for the metric on M

where these take the form

ω1 = e14 + e23, ω2 = e13 − e24, ω3 = e12 + e34,

ζ1 = e5, ζ2 = e6.
(A.19)

The corresponding triplet of complex structures is given by (Iα)mn = −(ωα)mn, such that

for Ω = ω2 + iω1, we have (I3)pmΩpn = iΩmn. The volume form on M is defined by

1
2ωα ∧ ωβ ∧ ζ1 ∧ ζ2 = δαβ vol6 . (A.20)

If we include only five-form flux, the integrability conditions for the structure are

d(e∆ζi) = 0, d(e2∆ωα) = 0, d∆ = −1
4 ? F, (A.21)

where F is the component of the five-form flux on M and ? is the six-dimensional Hodge

duality operator, calculated using the metric (A.16). If one also includes a non-zero

three-form flux on M , it has to have the form [228]

H + iF3 = dγI(z) ∧ τI , (A.22)
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where γI(z) are analytic functions of z = x+iy and τI are harmonic anti-self-dual two-forms

on the hyper-Kähler space. The functions γI(z) are constrained by a differential equation

arising from the Bianchi identity for F .

A.5 Wrapped M5-branes on HK× R3 in M-theory

For our final two examples, we consider the M-theory backgrounds corresponding to

wrapped M5-branes in a seven-dimensional geometry that is a product of a four-dimensional

hyper-Kähler space with R3. There are two possibilities: the branes can either wrap a

Kähler two-cycle in the four-dimensional hyper-Kähler space or wrap an R2 plane in R3.

In each case, the spacetime is a product M = MSU(2) × R3 with the metric

ds2 = ds̃2(MSU(2)) + ζ2
1 + ζ2

2 + ζ2
3 , (A.23)

where MSU(2) admits an SU(2) structure, ds̃2(MSU(2)) is the metric determined by the

structure, ζi are one-forms, and there is a non-trivial four-form flux F . Crucially, because

of the back-reaction of the wrapped brane, the SU(2) structure has torsion, in other words

the metric is no longer hyper-Kähler.

One can choose a frame {ea} for the metric on M such that the forms determining the

SU(2) structure are given by

ω1 = e14 + e23, ω2 = e13 − e24, ω3 = e12 + e34,

ζ1 = e5, ζ2 = e6, ζ3 = e7.
(A.24)

The corresponding triplet of complex structures is given by (Iα)mn = −(ωα)mn, while the

volume form on M is defined by

1
2ωα ∧ ωβ ∧ ζ1 ∧ ζ2 ∧ ζ3 = δαβ vol7 . (A.25)

The integrability conditions differ in the two cases. Consider first the case where the

M5-brane wraps a Kähler cycle, calibrated by ω3, in the hyper-Kähler manifold. The

metric takes the form [306,307]

ds2 = ds̃2(MSU(2)) + e−4∆
(
dx2 + dy2 + dz2

)
, (A.26)

so that

ζ1 = e−2∆dx, ζ2 = e−2∆dy, ζ3 = e−2∆dz. (A.27)

The remaining conditions can then be written as

d(e∆ω1) = d(e∆ω2) = 0, d(e4∆ω3) = e4∆ ? F,

d(e4∆ω3 ∧ ζ1 ∧ ζ2 ∧ ζ3) = 0,
(A.28)
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where ? is the Hodge duality operator calculated using the metric (A.23). Note that

the integrability conditions preserve the SO(3) symmetry between the ζα but break the

symmetry between the ωα.

For an M5-brane wrapping R2, the metric takes the form

ds2 = e−4∆ds̃2
HK(MSU(2)) + e2∆

(
dx2 + dy2) + e−4∆dz2. (A.29)

where ds̃2
HK(MSU(2)) is a hyper-Kähler metric on MSU(2), and

ζ1 = e∆dx, ζ2 = e∆dy, ζ3 = e−2∆dz. (A.30)

In addition
d(e4∆ω1) = d(e4∆ω2) = d(e4∆ω3) = 0,

d(e4∆ζ1 ∧ ζ2) = e4∆ ? F, d(e4∆ζ3 ∧ vol4) = 0,
(A.31)

where 1
2ωα ∧ωβ = δαβ vol4. Now the symmetry between the ζα is broken but that between

the ωα is preserved.

These examples are interesting because we have the same SU(2) structure in each

case but very different integrability conditions. A seven-dimensional SU(2) structure

in M-theory actually admits four independent globally defined spinors.2 In the two

examples, different pairs of spinors are picked out by the Killing spinor equations. When

we turn to generalised geometry, we will see that these different choices give two very

different embeddings of the SU(2) structure into the generalised structure. Note that,

dimensionally reducing along ζ3, these solutions also correspond to wrapped NS5-branes

in type IIA. In the first case of branes wrapped on a Kähler cycle, the ten-dimensional

Killing spinors actually take the form (A.9), and so these geometries are included in the

class of SU(3)× SU(3) NS-NS backgrounds described in appendix A.3. However, when

the brane is wrapped on R2, the Killing spinors take the form

ε1 =

(
χ+

1

0

)
, ε2 =

(
χ+

2

0

)
, (A.32)

and, although the background is purely NS-NS, we see that it is not described by an

torsion-free SU(3)× SU(3) structure, an exceptional case first noted in [111].

2This counting is reflected in the fact that compactifying M-theory on K3 × T3 breaks half the
supersymmetry.
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Appendix B

Ed(d) × R+ representations

B.1 Notation

Our notation follows [138]. Wedge products and contractions are given by

(v ∧ u)a1...ap+p′ :=
(p+ p′)!

p!p′!
v[a1...uap+1...ap+p′ ],

(λ ∧ ρ)a1...aq+q′
:=

(q + q′)!

q!q′!
λ[a1...aqρaq+1...aq+q′ ]

,

(vyλ)a1...aq−p :=
1

p!
vb1...bpλb1...bpa1...aq−p if p ≤ q,

(vyλ)a1...ap−q :=
1

q!
va1...ap−qb1...bqλb1...bq if p ≥ q,

(jvyjλ)ab :=
1

(p− 1)!
vac1...cp−1λbc1...cp−1 ,

(jλ ∧ ρ)a,a1...ad :=
d!

(q − 1)!(d+ 1− q)!
λa[a1...aq−1

ρaq ...ad].

(B.1)

Given a basis {êa} for TM and a dual basis {ea} for T ∗M , there is a natural gld action

on tensors. For example, the action on a vector and a three-form is

(r · v)a = rabv
b, (r · λ)abc = −rdaλdbc − rdbλadc − rdcλabd. (B.2)

When writing the components of generalised tensors, we sometimes use the notation that

(. . .)(p) and (. . .)(q) denote p-form and q-vector components respectively. For a p-form ρ,

we denote by ρ] the p-vector obtained by raising the indices of ρ using the conventional

metric on the manifold.

We define the Hodge star as

? ea1...ap =
1

q!
ε
a1...ap

b1...bq
eb1...bq . (B.3)

With a Euclidean metric we have ε1...d = ε1...d = 1, so that ?1 = vol and ? vol = 1. With
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a mostly plus Minkowski metric we have ε0...d−1 = −ε0...d−1 = 1, so that ?1 = vol and

? vol = −1. In particular this choice implies

(λ]yρ) vold = ρ ∧ ?λ. (B.4)

B.2 Ed(d) × R+ for M-theory

We review from [138] a construction of Ed(d) × R+ using the GL(d) subgroup appropriate

to M-theory, including useful representations, tensor products and the generalised Lie

derivative.

On a d-dimensional manifold M , the generalised tangent bundle is

E ' TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M ⊕ (T ∗M ⊗ ∧7T ∗M). (B.5)

We write sections of this bundle as

V = v + ω + σ + τ, (B.6)

where v ∈ Γ(TM), ω ∈ Γ(∧2T ∗M), σ ∈ Γ(∧5T ∗M) and τ ∈ Γ(T ∗M ⊗ ∧7T ∗M). The

adjoint bundle is

ad F̃ ' R⊕ (TM ⊗ T ∗M)⊕ ∧3T ∗M ⊕ ∧6T ∗M ⊕ ∧3TM ⊕ ∧6TM. (B.7)

We write sections of the adjoint bundle as

R = l + r + a+ ã+ α+ α̃, (B.8)

where l ∈ R, r ∈ Γ(EndTM), a ∈ Γ(∧3T ∗M) etc. We take {êa} to be a basis for TM with

a dual basis {ea} on T ∗M so there is a natural gld action on tensors. The ed(d) subalgebra

is generated by setting l = raa/(9− d). This relation fixes the weight of generalised tensors

under the R+ factor, so that a scalar of weight k is a section of (detT ∗M)k/(9−d)

1k ∈ Γ
(
(detT ∗M)k/(9−d)

)
. (B.9)

We define the adjoint action of R ∈ Γ(ad F̃ ) on V ∈ Γ(E) to be V ′ = R · V . The

components of V ′ are

v′ = lv + r · v + αyω − α̃yσ,

ω′ = lω + r · ω + vya+ αyσ + α̃yτ,

σ′ = lσ + r · σ + vyã+ a ∧ ω + αyτ,

τ ′ = lτ + r · τ − jã ∧ ω + ja ∧ σ.

(B.10)
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We define the adjoint action of R on R′ to be R′′ = [R,R′]. The components of R′′ are

l′′ = 1
3(αya′ − α′ya) + 2

3(α̃′yã− α̃yã′),

r′′ = [r, r′] + jαyja′ − jα′yja− 1
31(αya′ − α′ya)

+ jα̃′yjã− jα̃yjã′ − 2
31(α̃′yã− α̃yã′),

a′′ = r · a′ − r′ · a+ α′yã− αyã′,

ã′′ = r · ã′ − r′ · ã− a ∧ a′,

α′′ = r · α′ − r′ · α+ α̃′ya− α̃ya′,

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′.

(B.11)

The dual of the generalised tangent bundle is E∗. We embed the usual derivative

operator in the one-form component of E∗ via the map T ∗M → E∗. In coordinate indices

M , one defines

∂M =

∂m for M = m,

0 otherwise.
(B.12)

We then define a projection to the adjoint as

×ad : E∗ ⊗ E → ad F̃ . (B.13)

Explicitly, as a section of ad F̃ we have

∂ ×ad V = ∂ ⊗ v + dω + dσ. (B.14)

The generalised Lie (or Dorfman) derivative is defined as

LVW = V B∂BW
A − (∂ ×ad V )ABW

B. (B.15)

This can be extended to act on tensors by using the adjoint action of ∂×ad V ∈ Γ(ad F̃ ) in

the second term. We will need explicit expressions for the Dorfman derivative of sections

of E and ad F̃ . The Dorfman derivative acting on a generalised vector is

LV V
′ = Lvv′ + (Lvω′ − ıv′dω) + (Lvσ′ − ıv′dσ − ω′ ∧ dω)

+ (Lvτ ′ − jσ′ ∧ dω − jω′ ∧ dσ).
(B.16)

The Dorfman derivative acting on a section of the adjoint bundle is

LVR = (Lvr + jαyjdω − 1
31αydω − jα̃yjdσ + 2

31α̃ydσ)

+ (Lva+ r · dω − αydσ) + (Lvã+ r · dσ + dω ∧ a)

+ (Lvα− α̃ydω) + (Lvα̃).

(B.17)

For E5(5), we also need the vector bundle transforming in the 102 representation of
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Spin(5, 5)× R+. We define this bundle as

N ' T ∗M ⊕ ∧4T ∗M. (B.18)

We write sections of this bundle as

Q = m+ n, (B.19)

where m ∈ Γ(T ∗M) and n ∈ Γ(∧4T ∗M). We define the adjoint action of R ∈ Γ(ad F̃ ) on

Q ∈ Γ(N) to be Q′ = R ·Q, with components

m′ = 2lm+ r ·m− αyn,

n′ = 2ln+ r · n− a ∧m.
(B.20)

Using 16c × 10→ 16, we define a projection to E as

×E : E∗ ⊗N → E. (B.21)

Explicitly, as a section of E, this allows us to define

dQ := ∂ ×E Q = dm+ dn. (B.22)

We define a patching of the bundle E such that on the overlaps of local patches Ui ∩Uj
we have

V(i) = edΛ(ij)+dΛ̃(ij)V(j), (B.23)

where Λ(ij) and Λ̃(ij) are locally two- and five-forms respectively. This defines the gauge-

invariant field strengths as

F = dA, F̃ = dÃ− 1
2A ∧ F. (B.24)

The twisted Dorfman derivative L̂Ṽ of an untwisted generalised tensor µ̃ is defined as

L̂Ṽ µ̃ = e−A−ÃL
eA+ÃṼ

(eA+Ãµ̃). (B.25)

The twisted Dorfman derivative L̂Ṽ is given by the same expression as the usual Dorfman

derivative with the substitutions

dω → dω̃ − ıṽF, dσ → dσ̃ − ıṽF̃ + ω̃ ∧ F. (B.26)

The projection ∂ ×E Q also simplifies in a similar fashion allowing us to define

dFQ := e−A
(
∂ ×E (eAQ)

)
= dm+ dn− F ∧m. (B.27)
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The quadratic invariant for E5(5) is

η(Q,Q) = −m ∧ n. (B.28)

The cubic invariant for E6(6) is

c(V, V, V ) = −(ıvω ∧ σ + 1
3!ω ∧ ω ∧ ω). (B.29)

The symplectic invariant for E7(7) is

s(V, V ′) = −1
4(ıvτ

′ − ıv′τ + σ ∧ ω′ − σ′ ∧ ω). (B.30)

The ed(d) Killing form is

tr(R,R′) = 1
2

(
1

9−d tr(r) tr(r′) + tr(rr′) + αya′ + α′ya− α̃yã′ − α̃′yã
)
. (B.31)

The form of the Ed(d)-invariant volume κ2 depends on the compactification ansatz. For

compactifications of the form

g11 = e2∆g11−d + gd, (B.32)

the invariant volume is

κ2 = e(9−d)∆√gd. (B.33)

B.3 Ed+1(d+1) × R+ for type IIB

We provide details of the construction of Ed+1(d+1)×R+ using the GL(d)×SL(2) subgroup

appropriate to type IIB supergravity, including useful representations, tensor products

and the generalised Lie derivative.

On a d-dimensional manifold M , the generalised tangent bundle is

E ' TM ⊕ T ∗M ⊕ (T ∗M ⊕ ∧3T ∗M ⊕ ∧5T ∗M)⊕ ∧5T ∗M ⊕ (T ∗M ⊗ ∧6T ∗M)

' TM ⊕ (T ∗M ⊗ S)⊕ ∧3T ∗M ⊕ (∧5T ∗M ⊗ S)⊕ (T ∗M ⊗ ∧6T ∗M),
(B.34)

where S transforms as a doublet of SL(2). We write sections of this bundle as

V = v + λi + ρ+ σi + τ, (B.35)

where v ∈ Γ(TM), λi ∈ Γ(T ∗M ⊗ S), ρ ∈ Γ(∧3T ∗M), σ ∈ Γ(∧5T ∗M ⊗ S) and τ ∈
Γ(T ∗M ⊗ ∧6T ∗M). The adjoint bundle is

ad F̃ = R⊕ (TM ⊗ T ∗M)⊕ (S ⊗ S∗)0 ⊕ (S ⊗ ∧2TM)⊕ (S ⊗ ∧2T ∗M)

⊕ ∧4TM ⊕ ∧4T ∗M ⊕ (S ⊗ ∧6TM)⊕ (S ⊗ ∧6T ∗M),
(B.36)
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where the subscript on (S ⊗ S∗)0 denotes the traceless part. We write sections of the

adjoint bundle as

R = l + r + a+ βi +Bi + γ + C + α̃i + ãi, (B.37)

where l ∈ R, r ∈ Γ(EndTM), etc. We take {êa} to be a basis for TM with a dual basis

{ea} on T ∗M so there is a natural gld action on tensors.

The ed+1(d+1) subalgebra is generated by setting l = raa/(8− d). This fixes the weight

of generalised tensors under the R+ factor, so that a scalar of weight k is a section of

(detT ∗M)k/(8−d)

1k ∈ Γ
(
(detT ∗M)k/(8−d)

)
. (B.38)

We define the adjoint action of R ∈ Γ(ad F̃ ) on V ∈ Γ(E) to be V ′ = R · V . The

components of V ′ are

v′ = lv + r · v + γyρ+ εijβ
iyλj + εijα̃

iyσj ,

λ′i = lλi + r · λi + aijλ
j − γyσi + vyBi + βiyρ− α̃iyτ,

ρ′ = lρ+ r · ρ+ vyC + εijβ
iyσj + εijλ

i ∧Bj + γyτ,

σ′i = lσi + r · σi + aijσ
j − C ∧ λi + ρ ∧Bi + βiyτ + vyãi,

τ ′ = lτ + r · τ + εijjλ
i ∧ ãj − jρ ∧ C − εijjσi ∧Bj .

(B.39)

We define the adjoint action of R on R′ to be R′′ = [R,R′]. The components of R′′ are

l′ = 1
2(γyC ′ − γ′yC) + 1

4εkl(β
kyB′l − β′kyBl) + 3

4εij(α̃
iyã′j − α̃′iyãj),

r′′ = (r · r′ − r′ · r) + εij(jβ
iyjB′j − jβ′iyjBj)− 1

41εkl(β
kyB′l − β′kyBl)

+ (jγyjC ′ − jγ′yjC)− 1
21(γyC ′ − γ′yC)

+ εij(jα̃
iyjã′j − jα̃′iyjãj)− 3

4εij(α̃
iyã′j − α̃′iyãj),

a′′ij = (a · a′ − a′ · a)ij + εjk(β
iyB′k − β′iyBk)− 1

2δ
i
jεkl(β

kyB′l − β′kyBl)

+ εjk(α̃
iyã′k − α̃′iyãk)− 1

2δ
i
jεkl(α̃

kyã′l − α̃′kyãl),

β′′i = (r · β′i − r′ · βi) + (a · β′ − a′ · β)i − (γyB′i − γ′yBi)− (α̃iyC ′ − α̃′iyC),

B′′i = (r ·B′i − r′ ·Bi) + (a ·B′ − a′ ·B)i + (βiyC ′ − β′iyC)− (γyã′i − γ′yãi),

γ′′ = (r · γ′ − r′ · γ) + εijβ
i ∧ β′j + εij(α̃

iyB′j − α̃′iyBj),

C ′′ = (r · C ′ − r′ · C)− εijBi ∧B′j + εij(β
iyã′j − β′iyãj),

α̃′′i = (r · α̃′i − r′ · α̃i) + (a · α̃′ − a′ · α̃)i − (βi ∧ γ′ − β′i ∧ γ),

ã′′i = (r · ã′i − r′ · ãi) + (a · ã′ − a′ · ã)i + (Bi ∧ C ′ −B′i ∧ C).

(B.40)

The dual of the generalised tangent bundle is E∗. We embed the usual derivative

operator in the one-form component of E∗ via the map T ∗M → E∗. In coordinate indices
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M , one defines

∂M =

∂m for M = m,

0 otherwise.
(B.41)

We then define a projection to the adjoint as

×ad : E∗ ⊗ E → ad F̃ . (B.42)

Explicitly, as a section of ad F̃ we have

∂ ×ad V = ∂ ⊗ v + dλi + dρ+ dσi. (B.43)

The generalised Lie (or Dorfman) derivative is defined as

LVW = V B∂BW
A − (∂ ×ad V )ABW

B. (B.44)

This can be extended to act on tensors by using the adjoint action of ∂×ad V ∈ Γ(ad F̃ ) in

the second term. We will need explicit expressions for the Dorfman derivative of sections

of E and ad F̃ . The Dorfman derivative acting on a generalised vector is

LV V
′ = Lvv′ + (Lvλ′i − ıv′dλi) + (Lvρ′ − ıv′dρ+ εijdλ

i ∧ λ′j)

+ (Lvσ′i − ıv′dσi + dρ ∧ λ′i − dλi ∧ ρ′)

+ (Lvτ ′ − εijjλ′i ∧ dσj + jρ′ ∧ dρ+ εijjσ
′i ∧ dλj).

(B.45)

The Dorfman derivative acting on a section of the adjoint bundle is

LVR = (Lvl + 1
2γydρ+ 1

4εklβ
kydλl + 3

4εklα̃
kydσl)

+ (Lvr + jγyjdρ− 1
21γydρ+ εijjβ

iyjdλj − 1
41εklβ

kydλl

+ εijjα̃
iyjdσj − 3

41εklα̃
kydσl)

+ (Lvaij + εjkβ
iydλk − 1

2δ
i
jεklβ

kydλl + εjkα̃
iydσk − 1

2δ
i
jεklα̃

kydσl)

+ (Lvβi − γydλi − α̃iydρ)

+ (LvBi + r · dλi + aijdλ
j + βiydρ− γydσi)

+ (Lvγ + εijα̃
iydλj)

+ (LvC + r · dρ+ εijdλ
i ∧Bj + εijβ

iydσj) + (Lvα̃i)

+ (Lvãi + r · dσi + aijdσ
j − dλi ∧ C +Bi ∧ dρ).

(B.46)

For E5(5), we also need the vector bundle transforming in the 102 representation of

Spin(5, 5)× R+. We define this bundle as

N ' S ⊕ ∧2T ∗M ⊕ S ⊗ ∧4T ∗M. (B.47)
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We write sections of this bundle as

Q = mi + n+ pi, (B.48)

where mi ∈ Γ(S), n ∈ Γ(∧2T ∗M) and pi ∈ Γ(S ⊗ ∧4T ∗M). We define the adjoint action

of R ∈ Γ(ad F̃ ) on Q ∈ Γ(N) to be Q′ = R ·Q, with components

m′i = 2lmi + aijm
j + βiyn− γypi,

n′ = 2ln+ r · n+ εijβ
iypj + εijm

iBj ,

p′i = 2lpi + r · pi + aijp
j +Bi ∧ n−miC.

(B.49)

Using 16c × 10→ 16, we define a projection to E as

×E : E∗ ⊗N → E. (B.50)

Explicitly, as a section of E, this allows us to define

dQ := ∂ ×E Q = dmi + dn. (B.51)

We define a patching of the bundle such that on the overlaps of local patchesUi ∩ Uj
we have

V(i) = e
dΛi

(ij)
+dΛ̃(ij)V(j), (B.52)

where Λi
(ij) and Λ̃(ij) are locally one- and three-forms respectively. This defines the

gauge-invariant field strengths as

F i = dBi, F = dC − 1
2εijF

i ∧Bj . (B.53)

We embed the NS-NS and R-R three-form fluxes as F 1
3 = H and F 2

3 = F3.

The twisted Dorfman derivative L̂V of an untwisted generalised tensor µ̃ is defined by

L̂Ṽ µ̃ = e−B
i−CL

eB
i+C Ṽ

(eB
i+C µ̃). (B.54)

The twisted Dorfman derivative L̂V is given by the same expression as the usual Dorfman

derivative but with the substitutions

dλi → dλ̃i − ıṽF i,

dρ→ dρ̃− ıṽF − εij λ̃i ∧ F j ,

dσi → dσ̃i + λ̃i ∧ F − ρ̃ ∧ F i.

(B.55)

The projection ∂ ×E Q also simplifies in a similar fashion allowing us to define

dF iQ := e−B
i(
∂ ×E (eB

i
Q)
)

= dmi + dn+ εijm
iF j . (B.56)

192



The quadratic invariant for E5(5) is

η(Q,Q) = εijm
ipj − 1

2n ∧ n. (B.57)

The cubic invariant for E6(6) is

c(V, V, V ) = −1
2(ıvρ ∧ ρ+ εijρ ∧ λi ∧ λj − 2εijıvλ

iσj). (B.58)

The symplectic invariant for E7(7) is

s(V, V ′) = −1
4

(
(ıvτ

′ − ıv′τ) + εij(λ
i ∧ σ′j − λ′i ∧ σj)− ρ ∧ ρ′

)
. (B.59)

The ed+1(d+1) Killing form is

tr(R,R′) = 1
2

(
1

8−d tr(r) tr(r′) + tr(rr′) + tr(aa′) + γyC ′ + γ′yC + εij(β
iyB′j + β′iyBj)

+ εij(α̃
iyã′j + α̃′iyãj)

)
.

(B.60)

The form of the Ed+1(d+1)-invariant volume κ2 depends on the compactification ansatz.

For compactifications of the form

g10 = e2∆g10−d + gd, (B.61)

the invariant volume includes a dilaton dependence and is given by

κ2 = e−2φe(8−d)∆√gd. (B.62)

We can include non-zero axion C0 and dilaton φ in our formalism using the SL(2)

frame given in [139]. Let f̂ i
î

be an SL(2) frame written in terms of a parametrisation of

SL(2)/SO(2) as

f̂ i
î

=

(
eφ/2 0

C0eφ/2 e−φ/2

)
. (B.63)

Comparing with the split frame of [139], we see we can write a generalised vector as

V = v + e−φ/2λi + e−φρ+ e−3φ/2σi, (B.64)

where λi = f̂ i
î
λî etc., and λî contains no explicit axion-dilaton dependence. Using this we

can determine where the dilaton appears in the adjoint for Ed(d) and Q for E5(5)

R = l + r + aij + eφ/2βi + e−φ/2Bi + eφγ + e−φC + e3φ/2α̃i + e−3φ/2ãi,

Q = e−φ/2mi + e−φn+ e−3φ/2pi.
(B.65)
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Looking back to J̃α and Q̃ for the NS5-brane solution in (3.209) and (3.210), we see they

are indeed of this form. The various powers of the dilaton correspond to the exponentiated

action of the adjoint element given by

l + r =
φ

4
(−1 + 1). (B.66)
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Appendix C

Intrinsic torsion for SU(6)

Following [143,144], we first calculate the intrinsic torsion space W
SU(6)
int for generalised

SU(6) structures. Decomposing under SU(2) × SU(6) the space of generalised torsions

decomposes as

W = 56 + 912 = (1,1) + 2(1,15) + (1,21) + (1,35) + (1,105)

+ 3(2,6) + (2,20) + (2,84) + (3,1) + (3,15) + c.c.
(C.1)

The space of SU(6) connections is given by

KSU(6) =
(
(1,1) + (2,6) + (1,15) + c.c.

)
× (1,35)

= (1,15) + (1,21) + (1,35) + (1,105)

+ (1,384) + (2,6) + (2,84) + (2,120) + c.c.

(C.2)

Thus we have

W
SU(6)
int ⊇ (1,1) + (1,15) + 2(2,6) + (2,20) + (3,1) + (3,15) + c.c., (C.3)

where equality holds if there are no unexpected kernels in the map τ : KSU(6) →W . To

see that this is indeed the case, we need the explicit map. In SU(8) indices, sections of

KSU(8) are given by

Σ̂ = (Σ̂ γ
αβ δ,

¯̂
Σαβγ

δ, ) ∈ (28 + 28)× 63, (C.4)

where the elements are antisymmetric on α and β and traceless on contracting γ with δ.

The space W decomposes as

W = 56 + 912 = 28 + 36 + 420 + c.c., (C.5)

and the map τ is

τ(Σ̂)αβ = Σ̂ γ
αγ β ∈ 36 + 28,

τ(Σ̂)αβγ
δ = 3Σ̂0 δ

[αβ γ] ∈ 420,
(C.6)
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where the “0” superscript on Σ̂0 δ
[αβ γ] means it is completely traceless. The 28 and 36

representations correspond to the symmetric and antisymmetric parts of τ(Σ̂)αβ. There

are similar expressions for the conjugate representations in terms of
¯̂
Σ.

Turning to SU(6) connections, let Σ be a section of KSU(6). We can split the spinor

indices α into a = 1, . . . , 6 and i = 7, 8 so that the non-zero components are

Σab
c
d ∈ (1,15)× (1,35),

Σai
c
d = −Σia

c
d ∈ (2,6)× (1,35),

Σij
c
d ∈ (1,35),

(C.7)

and similarly for the conjugate Σ̄. We then find the non-zero components of τ(Σ) are

τ(Σ)ab = Σac
c
b ∈ (1,15) + (1,21),

τ(Σ)ib = Σic
c
b ∈ (2,6),

τ(Σ)abc
d = 3Σ[ab

d
c] + Σ[a|e|

e
bδ
d
c] ∈ (1,105) + (1,15),

τ(Σ)abi
c = 2Σi[a

c
b] + 2

3Σie
e
[aδ

c
b] ∈ (2,84) + (2,6),

τ(Σ)aij
c = Σij

c
a ∈ (1,35),

τ(Σ)abi
j = 1

3Σ[a|c|
c
b]δ

j
i ∈ (1,15),

τ(Σ)aij
k = −1

3Σ[i|c
c
aδ
k
j] ∈ (2,6),

(C.8)

and hence Wint is indeed given by an equality in (C.3). Note in addition that

τ(Σ)abi
i − 2

3τ(Σ)[ab] = 0, τ(Σ)aij
j + 1

6τ(Σ)ia = 0. (C.9)

We now turn to showing which components of the intrinsic torsion enter each of the

integrability conditions on the pair {Jα, X}. For this it is useful to have an expression for

T (V ) for SU(6) connections. We first note that the compatible SU(6) connection D̂ must

also be an SU(8) connection and hence can be written as

D̂ = D + Σ̂, (C.10)

where Σ̂ ∈ KSU(8) and D is a torsion-free SU(8) connection. (That such connections exist

is central to the formulation of supergravity in terms of generalised geometry: they are

the analogues of the Levi-Civita connection of conventional gravity [137,138].) Since D is

torsion-free, the torsion of D̂ is given by

T = τ(Σ̂). (C.11)

We can then calculate T (V ). Writing V = (V αβ, V̄αβ) for the decomposition 56 = 28 + 28

and T (V ) = (T (V )0, T (V )αβ, T (V )αβγδ) for the decomposition of the adjoint 1 + 133 =
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1 + 63 + 70, we define the adjoint action on a generalised vector W as[
T (V ) ·W

]αβ
= T (V )0W

αβ + T (V )αγW
γβ + T (V )βγW

αγ + T (V )αβγδW̄γδ,[
T (V ) ·W

]
αβ

= T (V )0W̄αβ − T (V )γαW̄γβ − T (V )γβW̄αγ + T̄ (V )αβγδW
γδ.

(C.12)

From the form of the generalised Lie derivative in SU(8) indices given in appendix D

of [126], we find

T (V )0 = 1
32V

αβτ(Σ̂)αβ + c.c.,

T (V )αβ = 1
32V

γγ′
(
τ(Σ̂)γγ′β

α + 5
3τ(Σ̂)βγδ

α
γ′ +

1
3τ(Σ̂)γβδ

α
γ′ +

1
6τ(Σ̂)γγ′δ

α
β

)
+ c.c.,

T (V )αβγδ = −1
8V

εε′
(
τ̄(Σ̂)[αβγ

εδ
δ]
ε′ − τ̄(Σ̂)[αβδγε δ

δ]
ε′

)
− ?(c.c.),

(C.13)

where ?(c.c.) is the Hodge dual of the conjugate expression.

We also have expressions for the structures X and Jα in terms of the spinor indices. For

X the non-zero component is the singlet in the 28 = (1,1) + (2,6) + (1,15) representation

Xαβ = (T ij , T ia, T ab) ∝ (εij , 0, 0), (C.14)

while for Jα it is the triplet in the 63 = (1,1)+(3,1)+(2,6)+(2,6)+(1,35) representation

(Jα)αβ =
(
(Jα)0δ

i
j , (Jα)ij , (Jα)ia, (Jα)ia, (Jα)ab

)
∝
(
0, (σα)ij , 0, 0, 0

)
, (C.15)

where σα are the Pauli matrices. Substituting into the generalised Lie derivative in SU(8)

indices, we find

LXX ≡ 0 identically, (C.16)

simply from the form of the X given in (C.14).

For the moment maps, since κ2 has weight two, the condition (3.118) on the intrinsic

torsion can be written as

tr
(
JαT (V )

)
+ T (Jα · V )0 ∝ 1

2V
γγ′σα

j
i τγγ′j

i + 1
6V

γiσα
j
i(5τjγ + τγj)

+ V γiσα
j
i(τγj − τjγ) + c.c., (C.17)

where we abbreviate τ(Σ̂)αβ and τ(Σ̂)αβγ
δ as ταβ and ταβγ

δ. This vanishes for all V if and

only if

σα
j
i τabj

i = 0 ∈ (3,15),

(τaij
j + 1

6τia)−
7
6τai = 0 ∈ (2,6),

τ(ij) = 0 ∈ (3,1).

(C.18)

Note, comparing with (C.9), that the (2,6) representation appearing in the second line

is indeed independent of the (2,6) component of the torsion generated by an SU(6)
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generalised connection.

The non-zero components of T (X) are

T (X)0 ∝ εijτij , T (X)ij ∝ −2εikτ(jk) − 1
2(εklτkl)δ

i
j ,

T (X)ia ∝ εklτakli − 1
3ε
ik(5τak + τka), T (X)ab ∝ εklτbkla + 1

6(εklτkl)δ
a
b ,

T̄ (X)abij ∝ εikτ̄abjk − εjkτ̄abik + 2
3ε
ij τ̄ [ab], T̄ (X)abci ∝ εikτ̄abck,

(C.19)

so the non-zero components of T (X) · X̄ are(
T (X) · X̄

)
ij
∝ 4τ[ij] ∈ (1,1),(

T (X) · X̄
)
ia
∝ 2(τaij

j + 1
6τia) + 5

3τai ∈ (2,6)′,(
T (X) · X̄

)ab ∝ −2(τ̄abii − 2
3 τ̄

ab) ∈ (1,15).

(C.20)

Note again that the linear combination of torsions in the second and third lines are

independent of those appearing in an SU(6) generalised connection, and further that the

combination in the second line is different from the one in the second line of (C.18), and

hence we denote it (2,6)′. Similarly, the non-zero components of [T (X), Jα] are

[T (X), Jα]i j ∝ (εklτkl)σα
i
j − 2εikτ(lk)σα

l
j + 2εlkτ(jk)σα

i
l ∈ (1,1) + (3,1),

[T (X), Jα]i a ∝
(
2(τaij

j + 1
6τia) + 5

3τai
)
σα

i
jε
jk ∈ (2,6)′,

[T (X), Jα]abci ∝ −εjkτ̄abckσαij ∈ (2,20),

[T (X), Jα]abij ∝ 2τ̄abjkε
lkσα

i
l ∈ (3,15).

(C.21)

Note that the combination of torsions appearing in the second line is the same as the

combination appearing in the second line of (C.20).
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Appendix D

Moment maps and quotients

In this appendix, we briefly review the notion of moment maps, and symplectic and hyper-

Kähler quotients, including the infinite-dimensional example of flat gauge connections on

a Riemann surface due to Atiyah and Bott [186].

Consider a manifold Y with a symplectic form Ω that is closed, dΩ = 0. Suppose there

is an action of a Lie group G on Y that preserves the symplectic structure – that is G acts

on Y via symplectomorphisms. An element g in the Lie algebra g of G induces a vector

field ρg on Y . As the group G acts via symplectomorphisms, the Lie derivative of Ω with

respect to ρg vanishes. Together with dΩ = 0, this implies dıρgΩ = 0 and so ıρgΩ is closed.

A moment map for the action of the group G on the manifold Y is a map µ : Y × g→ R
such that, for all g ∈ g,

dµ(g) = ıρgΩ. (D.1)

The moment map is defined up to an additive constant of integration. If g∗ is the dual of

the Lie algebra g, one can also view µ as a map from Y to g∗. If G is non-Abelian one

can fix the constant by requiring that the map is equivariant, that is, that µ commutes

with the action of G on Y . Still viewing µ as a map from Y to g∗, one can then form the

symplectic quotient

Y//G = µ−1(0)/G. (D.2)

This quotient space inherits a symplectic structure from Y and is a manifold if G acts

freely on Y . (Generically the reduced space is not a manifold, but is a “stratified space”.)

On a hyper-Kähler manifold Y , one can consider an action of G that preserves all three

symplectic forms Ωα. Instead of a single moment map, one can then consider a triplet of

maps µα : Y → g∗ satisfying

dµα(g) = ıρgΩα. (D.3)

Choosing them to be equivariant, one can then define the hyper-Kähler quotient [308]

Y///G = µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/G. (D.4)
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This space inherits a hyper-Kähler structure from Y , and the quotient is a manifold if G
acts freely.

We can also consider the case where both the group and the symplectic space are infinite

dimensional. A well-known example is the work of Atiyah–Bott [186]. Let G be a compact

Lie group and P be a principal G-bundle over a compact Riemann surface Σ. The group of

gauge transformations G is the set of G-equivariant diffeomorphisms of P . Infinitesimally

it is generated by sections of the adjoint bundle adP , that is Lie(G) = Γ(adP ). Let Y be

the infinite-dimensional space of connections on P . The curvature of a connection A ∈ Y
is

F = dA+ 1
2 [A,A]. (D.5)

One can associate the tangent space TAY at A ∈ Y with the space of adP -valued one-forms

Ω1(Σ, adP ). Given two elements α, β ∈ TAY , one can define a symplectic product

Ω(α, β) =

ˆ
Σ

tr(α ∧ β), (D.6)

where tr is a gauge-invariant inner product on g, for example the Killing form if g is

semi-simple. To see that Ω is non-degenerate note that, given a metric on Σ, we have

Ω(α, ?α) =

ˆ
Σ

tr(α ∧ ?α) = ‖α‖2 ≥ 0, (D.7)

and so Ω(α, ?α) = 0 if and only if α = 0. Furthermore, any connection A can be written

as A = A(0) + α for some fixed connection A(0) and α ∈ Ω1(Σ, adP ) (in other words Y

is an affine space modelled on Ω1(Σ, adP )), meaning that in this parametrisation Ω is

independent of A and hence, in particular, Ω is a closed two-form on Y .

The moment map for the G-action on Y is µ = F . To see this note that, given an element

Λ of Lie(G) ' Γ(adP ), the induced vector field on Y is just the gauge transformation of

A, namely

ρΛ = dΛ + [A,Λ]. (D.8)

Thus we have, for any α ∈ Γ(TY ),

ıρΛΩ(α) = Ω(ρΛ, α) =

ˆ
Σ

tr
[
(dΛ + [A,Λ]) ∧ α

]
=

ˆ
Σ

tr
[
Λ ∧ (dα+ [A,α])

]
= ıα

(
δ

ˆ
Σ

tr ΛF

)
,

(D.9)

where δ is the exterior derivative on Y , that is, in coordinates, the functional derivative

δ/δAm(x). Viewed as a map µ : Y → Lie(G)∗, we see that µ = F .

This map is equivariant, and so we may form the symplectic reduction by quotienting

by the space of gauge transformations G

Y//G = µ−1(0)/G. (D.10)
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This is the moduli space of flat connections, that is A ∈ Y such that F = 0 modulo gauge

equivalence. The space of connections Y and the group of gauge transformations G are

infinite dimensional, but the moduli space is actually finite dimensional.
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Appendix E

Special geometries

E.1 Special Kähler geometry

There are a number of different ways to define rigid (or affine) special Kähler geometry [217,

218,309]. The most appropriate to our needs follows [218], stating that it is a 2n-dimensional

Kähler manifold AV with a flat, torsion-free connection ∇̂ satisfying

∇̂mΩnp = 0, ∇̂[mIpn] = 0, (E.1)

where Ω is the Kähler form and I is the complex structure. Note that ∇̂ is not the

Levi-Civita connection, since these conditions do not imply ∇̂ is metric compatible.

Locally, by the Poincaré Lemma, the condition on I can be integrated. The usual

formulation is to note that, since ∇̂ is torsion-free, one also has ∇̂[mδ
k
n] = 0, thus locally

there exists a complex vector field X such that

∇̂nXm = δmn − iImn. (E.2)

Writing the real and imaginary parts as

Xm = xm + ix̂m, (E.3)

so that ∇nxm = δmn and ∇nx̂m = −Imn, one notes that the metric is given by gmn =

ΩmpIpn = −Ωmp∇̂nx̂p = −∇̂n(Ωmpx̂
p). But since gmn is symmetric, this means there

exists a local real function H such that the metric is given by the Hessian

gmn = −∇̂m∇̂nH, (E.4)

and Ωmnx̂
n = ∇̂mH = ∂mH. Note that in these conventions, following [218], H is equal

to minus the Kähler potential.

The fact that ∇̂ is torsion-free and flat means one can always introduce real coordinates

such that ∇̂m = ∂/∂xm. This notation is consistent with (E.3) since the condition
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∇n ReXm = δmn means that in flat coordinates we can always locally identify ReXm with

the coordinate xm. It is conventional to use a different index notation xΣ to distinguish

flat coordinates (or equivalently Σ is the index for a flat frame). If one requires that the

symplectic structure takes a standard form in the flat coordinates, then the choice of xΣ is

determined up to affine symplectic transformations

x′Σ = PΣ
Ξx

Ξ + cΣ, (E.5)

where P ∈ Sp(2n;R) and c is constant. Note that in flat coordinates gΣΞ = −∂Σ∂ΞH.

Since ∇̂ is not the Levi-Civita connection, one cannot introduce coordinates that are both

flat and complex. However, one can go halfway and define so-called “special coordinates”

XI such that

X = XΣ ∂

∂λΣ
= XI ∂

∂xI
− FI

∂

∂yI
, (E.6)

where xΣ = (xI , yI) are flat Darboux coordinates (that is ones where Ω = dxI ∧ dyI),

implying that xI = ReXI and yI = −ReFI . Furthermore, the condition (E.2) implies

that there is a local holomorphic function F (XI), called the prepotential, such that

FI = ∂F/∂XI .

Again following [218], one can define a local (or projective) special Kähler manifold in

terms of the complex cone over it, in analogy to the way a quaternionic-Kähler manifold

defines a hyper-Kähler cone. Suppose AV is a rigid special Kähler manifold such that there

is a globally defined holomorphic complex vector field X satisfying (E.2) that generates a

C∗ action that preserves the structure. Then the rigid Kähler structure on Y descends to

a local special Kähler structure on the quotient space AV/C∗.1 One can also show that,

as a function of any set of flat coordinates, H is homogeneous of degree two. Furthermore,

the Kähler potential K on AV/C∗ is given by

e−K = H = 1
4 iΩ(X, X̄), (E.7)

where we use the homogeneity of H to derive the last equality.

In gauged N = 2 supergravity one identifies an action of a group GV on AV/C∗, which

can be lifted to an action on AV that commutes with the C∗ action. Supersymmetry

requires that the action of GV preserves the special Kähler structure. If k̂λ̂ ∈ Γ(TAV) is

the vector field corresponding to the action of an element of the Lie algebra λ̂ ∈ gV, then

one first requires

Lk̂λ̂Ω = 0, Lk̂λ̂I = 0, (E.8)

or, in other words, that k̂λ̂ is a real holomorphic Killing vector. In addition, it must map

flat coordinates to flat coordinates by a symplectic rotation, equivalent to the condition,

1Strictly, the fermions provide an additional integral condition on the cohomology of the Kähler form
on the quotient [217].
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in components, that it is linear in xΣ, that is

k̂Σ
λ̂

= pλ̂
Σ

Ξx
Ξ, (E.9)

where pλ̂ ∈ spn(R). It is easy to see that the corresponding moment map is given by

µλ̂ = 1
2pλ̂ΣΞx

ΣxΞ, (E.10)

where pλ̂ΣΞ = pλ̂
Λ

ΞΩΛΣ. The particular gauging of the N = 2 theory is encoded in an

embedding tensor Θ̂λ̂
Λ [229,230]. This can be used to define a set of (constant) generators

in spn(R)

XΛΞ
Σ = Θ̂λ̂

Λpλ̂
Σ

Ξ, (E.11)

so that, by definition, they must satisfy [229]

XΛ[ΞΣ] = 0, XΛ1Γ
ΣXΛ2Ξ

Γ −XΛ2Γ
ΣXΛ1Ξ

Γ = XΛ1Λ2
ΓXΓΞ

Σ, (E.12)

where XΛΞΣ = XΛΞ
ΓΩΓΣ. They also satisfy a “representation constraint”

X(ΛΞΣ) = 0. (E.13)

Finally, we note that contracting the moment map (E.10) with the embedding tensor

gives Θ̂λ̂
Λµλ̂ = 1

2XΛΞΣx
ΞxΣ. Using the condition XΛΞΣX

ΞXΣ = 0 given in [230], which is

a consequence of k̂λ̂ being holomorphic, we have

Θ̂λ̂
Λµλ̂ = 1

4XΛΞΣX
ΞX̄Σ. (E.14)

E.2 Hyper-Kähler geometry of Wolf spaces

A Wolf space is a symmetric quaternionic-Kähler space W/H∗ = G′/(G × SU(2)) (as

always we are ignoring discrete factors). The Riemannian case was first studied by Wolf

in [205] and classified by Alekseevsky in [206], while the pseudo-Riemannian case, of

relevance here, was analysed by Alekseevsky and Cortés in [207]. It is known that every

quaternionic-Kähler manifold admits a bundle over it whose structure group is SU(2) [310].

More importantly, there exists a tri-Sasaki structure on this bundle [311] and hence the

cone over the SU(2) bundle is hyper-Kähler [208]. The geometry on this “Swann bundle”

W for Wolf spaces has been explicitly constructed in [209].

We can construct the tri-Sasaki and hyper-Kähler structures as follows. The tri-Sasaki

space over the Wolf space is simply the symmetric space S = G′/G. As for any symmetric

space, given an element k ∈ G′ one can decompose the right-invariant one-form θ as

θ = kdk−1 = π +A, (E.15)
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where π ∈ g′ 	 g and A ∈ g. The one-forms π descend to one-forms on S, while A

transforms as a G-connection. Since S is the tri-Sasaki space over the Wolf space, G′

contains an SU(2) factor whose centraliser is G. We can then define a triplet of maps

̂α : G′ → g′ as parametrising the orbit

̂α(k) = k̂(0)
α k−1, (E.16)

where ̂
(0)
α is some fixed set of su2 ⊂ g′ generators, stabilised by G. We normalise such

that ̂α satisfy the algebra

[̂α, ̂β] = 2εαβγ ̂γ . (E.17)

By definition ̂α(kg) = ̂α(k) for all g ∈ G. Thus ̂α descend to a triplet of g′-valued

functions on S = G′/G

̂α : S → g′, (E.18)

where, by definition, there is a one-to-one correspondence between points in S and points

on the orbit in g′. The exterior derivative of ̂α on S is

d̂α = (dk)k−1̂α + ̂αkdk−1

= [̂α, θ]

= [̂α, π],

(E.19)

where we have used [̂α, A] = 0 as the ̂α are stabilised by G.

The tri-Sasaki structure is defined by a triplet of one-forms whose derivatives give a

triplet of symplectic forms on the base of the SU(2) fibration. Following the discussion

in [312], the one-forms are given by

η̂α = −1
2εαβγ tr(d̂β · ̂γ)

= tr(π · ̂α),
(E.20)

which are clearly the right-invariant forms projected onto the su2 subalgebra.

Now consider the metric cone over the tri-Sasaki space W = G′ × R+/G, with cone

coordinate r. The one-forms on the cone are inherited from those on the base as [312]

ηα = r2η̂α. (E.21)

From the definition of η̂α in terms of the ̂α, this can be viewed as taking the triplet of

functions jα : W → g′ on the cone to be

jα = r̂α. (E.22)
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An exterior derivative gives the symplectic forms

ωα = 1
2dηα

= 1
2εαβγ tr(djβ ∧ djγ).

(E.23)

Note that the symplectic forms are manifestly closed. Given two vector fields v, w ∈ Γ(W ),

if we define the triplet of functions vα = ıvdjα, then

ωα(v, w) = εαβγ tr(vβwγ). (E.24)

Any change in the functions jα defining a point in W can be generated by the adjoint

action of av ∈ g′, so we can also view vector fields as vα = [av, jα]. We then have

ωα(v, w) = εαβγ tr
(
[av, jβ][aw, jγ ]

)
= 2 tr

(
[av, aw]jα

)
.

(E.25)

This is the analogue of the Kirillov–Kostant–Souriau symplectic structure on coadjoint

orbits, as discussed in [209].
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Appendix F

Two results on normalisations and

the supersymmetry conditions

We first show that the D = 5 normalisation condition κ2 = c(K) is implied by the

supersymmetry conditions for ESE spaces. Consider the set of generalised vectors of the

form V = fK where f is an arbitrary function. Using the standard form of the generalised

Lie derivative given in [137], we have

LfKJα = fLKJα −
[
(df ×ad K), Jα

]
, (F.1)

where ×ad is the projection to the adjoint bundle ×ad : E∗ ⊗ E → ad F̃ . Since Jα ·K = 0,

we have tr
(
(df ×ad K)Jα

)
= 0 and hence

εαβγ tr
(
Jβ[df ×ad K,Jγ ]

)
= −εαβγ tr

(
(df ×ad K)[Jβ, Jγ ]

)
= −2κ tr

(
(df ×ad K)Jα

)
= 0.

(F.2)

Thus

µα(fK) = −1
2εαβγ

ˆ
M
f tr(JβLKJγ) = λα

ˆ
M
fκ2, (F.3)

where we have used the supersymmetry condition LKJα = εαβγλβJγ . But we also have

γ(fK) =

ˆ
M
c(fK,K,K) =

ˆ
M
fc(K). (F.4)

Hence the moment map conditions (4.13) imply that

ˆ
M
fκ2 =

ˆ
M
fc(K), for all f (F.5)

which implies the normalisation condition κ2 = c(K). The analogous calculation in D = 4

shows that the normalisation condition κ2 = 2
√
q(K) is similarly a consequence of the
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integrability conditions.

Focussing again on D = 5, for definiteness we set λ1,2 = 0. We now show that for the

action of GDiffK , that is those generalised diffeomorphisms that preserve K, the moment

map conditions µ+(V ) = 0 are implied by the fixed-point conditions LKJα = εαβγλβJγ ,

which read

LKJ± = ±iλ3J±, LKJ3 = 0. (F.6)

Acting on the first condition with LV we have

iλ3 LV J+ = LV (LKJ+) = LLVKJ+ + LK(LV J+) = LK(LV J+), (F.7)

since we have LVK = 0 for elements of the Lie algebra gdiffK . Substituting into the µ+

moment maps we have

µ+(V ) := −i

ˆ
M

tr(J3LV J+)

= −λ−1
3

ˆ
M

tr(J3LKLV J+) = λ−1
3

ˆ
M

tr
(
(LKJ3)(LV J+)

)
= 0,

(F.8)

where we have used the second condition in (F.6).
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Appendix G

Flux quantisation, central charges

and free energy

We briefly review the derivation of the central charge from [249] and [261]. The central

charge a is given in terms of the effective five-dimensional Newton’s constant as [260]

a =
π

8m3G5
, (G.1)

where G5 in type IIB is given by

G−1
5,IIB =

32π2

(2π`s)8g2
s

ˆ
M

e3∆′ vol5 =
32π2

(2π`s)8g2
s

ˆ
M
c(K), (G.2)

while for M-theory it is given by

G−1
5,M =

32π2

(2π`11)9

ˆ
M

e3∆ vol6 =
32π2

(2π`11)9

ˆ
M
c(K). (G.3)

The corresponding flux quantisation conditions are

N =
1

(2π`s)4gs

ˆ
M

dC ∈ Z type IIB,

NΣ =
1

(2π`11)3

ˆ
Σ

dA ∈ Z M-theory,

(G.4)

where Σ is any four-cycle in M . From the five-dimensional part of Einstein’s equations

we note that dC and dA must both scale as the inverse AdS radius m. Defining the

dimensionless volumes

V5 = m5

ˆ
M

e3∆′ vol5, V6 = m6

ˆ
M

e3∆ vol6, (G.5)

211



we expect the scaling dependence

N ∼ 1

m4`4sgs
V5, NΣ ∼

1

m3`311

V
2/3

6 . (G.6)

More generally, as in [249] and [261], one can solve explicitly for dC and dA in terms of

the structure and find exact expressions for the flux quantisation. We also have

aIIB ∼
1

m8`8sg
2
s

V5, aIIB ∼
1

m9`911

V6. (G.7)

Solving for m then gives

aIIB ∼
N2

V5
, aM ∼

N3
Σ

V6
, (G.8)

and hence a−1 scales as
´
M c(K) in both cases.

For M-theory AdS4 backgrounds, we follow [245]. The free energy of the field theory is

given by [313]

F =
π

2m2G4
, (G.9)

where the effective four-dimensional Newton’s constant is

G−1
4,M =

32π2

(2π`11)9

ˆ
M

e2∆ vol7 =
32π2

(2π`11)9

ˆ
M

2
√
q(K). (G.10)

The flux quantisation condition gives

N =
1

(2π`11)6

ˆ
M

dÃ ∈ Z. (G.11)

Via the same scaling arguments as above, defining the dimensionless volume

V7 = m7

ˆ
M

e2∆ vol7, (G.12)

we find (the exact relations are given in [245])

N ∼ 1

m6`611

V7, F ∼ 1

m9`911

V7, (G.13)

so that solving for m gives, as in [255],

F ∼ N3/2

V
1/2

7

, (G.14)

and hence F−2 scales as
´
M

√
q(K).
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Appendix H

Supersymmetry conditions and

deformations

In this appendix we give a detailed discussion of the deformations of the Sasaki–Einstein

structure and of the derivation of the constraints from supersymmetry. We start with a

brief description of the generalised structures and then move to their deformations and

the conditions that supersymmetry imposes on them.

H.1 Embedding of the linearised deformations in general-

ised geometry

Here we will justify the choice of (5.56) for the linearised deformation. As already mentioned,

K is left invariant by an F4(4) subgroup of E6(6) while the triplet Jα is left invariant by

SU∗(6). Together Jα and K are invariant under a common USp(6) subgroup. We argued

in section 5.3.1 that the dual of marginal deformations should leave K invariant, but

modify the Jα. This means that at a point on the internal manifold they must be elements

of the coset F4(4)×R+/USp(6). The 52 (adjoint) representation of F4(4) decomposes under

USp(6)× SU(2) as

52 = (1,3)⊕ (21,1)⊕ (14,2). (H.1)

The first term corresponds to the triplet Jα and its action simply rotates the Jα among

themselves. The second term is the adjoint of USp(6), which leaves both K and Jα

invariant. Therefore, the deformations are in the (14,2) and form a doublet under the

SU(2) defined by Jα. We can choose them to be eigenstates of J3

[J3,A±λ] = ±iλκA±λ. (H.2)

The non-trivial eigenstates correspond to λ = 0, 1, 2. From the SU(2) algebra (5.46) we

see that the eigenstates with λ = 2 are J± themselves. The eigenstates with eigenvalue

zero are in USp(6), or in other words they leave Jα and K invariant, and we will therefore
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not consider them. To simplify notation we will call the λ = ±1 eigenstates A±. We note

that we can generate an eigenstate with eigenvalue −iκ from A+ by acting with J+, as

the Jacobi identity implies

[J3, κ
−1[J±,A±]] = ∓iκ[J±,A±]. (H.3)

We also note that complex conjugation also gives the eigenstate with opposite eigenvalue.

Since L̂K commutes with the action of J3 we can also label states by their R-charge as

in (5.54), so that we have doublets

A =

(
A(r)
−

A(r−2)
+

)
, r ≥ 0. (H.4)

We have chosen r ≥ 0 for definiteness. Those doublets with r ≤ 0 will be related by

complex conjugation. (Note this convention leads to a slight over-counting for 0 ≤ r ≤ 2,

since the doublets with charge r have complex conjugates with charge −r + 2. However, it

is the most convenient form to adopt for out purposes.)

To compute the eigenstates with λ = 1 it helps to note that the E6(6) action of J3 acts

separately on {Bi, βi}, aij and {r, C, γ, l} (see (B.40)). Using this we can organise the

eigenstates as

Ǎ+ = Bi + βi, Ǎ− = [J+, Ǎ+] = r + C + γ + l, (H.5)

Â+ = aij , Â− = [J+, Â+] = B′i + β′i. (H.6)

As complex conjugation gives the eigenstate with opposite eigenvalue, using this basis, the

modes {Ǎ+, Ǎ∗−, Â+, Â∗−} fill out the possible +iκ eigenstates. In fact we will find that,

with this basis, imposing r ≥ 0 actual restricts to only Ǎ+ and Â+.

One can use the forms defining the SU(2) structure on a SE manifold – Ω, ω and σ –

and the corresponding vectors to decompose the eigenstates. It is straightforward to verify

that the eigenstate Ǎ+ is given by

Ǎ+ = −1
2 iūi

[
fΩ̄ + 2(pω + ω̂ + σ ∧ ν̄)

]
− 1

2 ū
i
[
fΩ̄] − 2(pω] − ω̂] − ξ ∧ ῡ)

]
, (H.7)

where ui = (−i, 1), ν̄ is a (0,1)-form, ῡ is a (1,0)-vector on the base, ω̂ is a primitive

(1,1)-form on the base, and p and f are arbitrary complex functions on the SE manifold.

The ω] and ω̂] terms in the bi-vector are obtained from the two-forms by raising indices

with the metric gmn.

The requirement that the deformation leaves K invariant (Ǎ+ ·K = 0) translates to

constraints on the components of Ǎ+, namely

σ ∧ ω ∧Bi = 0, ıξB
i = βiy(σ ∧ ω), (H.8)
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which impose p = 0 and ῡ = ν̄]. Thus the Ǎ+ deformation that leaves K invariant is

Ǎ+ = −1
2 iūi

[
fΩ̄ + 2(ω̂ + σ ∧ ν̄)

]
− 1

2 ū
i
[
fΩ̄] + 2(ω̂ + ξ ∧ ν̄)

]
, (H.9)

where we have omitted the vector symbols ] and it is understood that all terms in the

bi-vector part are obtained by raising the GL(5) indices of the corresponding forms with

the metric gmn. Note that the two-form and bi-vector components are related by

Bi = −εij(gβjg), (H.10)

where we lower the indices of the bi-vector with the undeformed metric g. The Ǎ− mode

in the same multiplet as Ǎ+ is given by Ǎ− = κ−1[J+, Ǎ+] and has the following form

Ǎ− =
(

2if ′14 − if ′1 + i
(
jΩ]yj(ω̂′ + σ ∧ ν̄ ′) + j(ω̂′ + ξ ∧ ν̄ ′)yjΩ

))
+ (1

2f
′Ω ∧ Ω̄ + Ω ∧ σ ∧ ν̄ ′) + (1

2f
′Ω] ∧ Ω̄] + Ω] ∧ ξ ∧ ν̄ ′) + if ′,

(H.11)

where we should regard f ′ as distinct from f .

Similarly, we can construct the Â+ deformation that leaves K invariant. It has only

aij components, given by

Â+ = −1
2 f̃ ū

iūj . (H.12)

The Â− mode in the same multiplet as Â+ is given by Â− = κ−1[J+, Â+] and has the

following form

Â− = (−1
2 iūif̃ ′Ω) + (−1

2 ū
if̃ ′Ω]), (H.13)

where again we should regard f̃ ′ as distinct from f̃ . We see this is of the form Bi + βi as

expected from (H.6).

H.2 Supersymmetry conditions

We are interested in deformations of the Sasaki–Einstein background that preserve super-

symmetry. This is equivalent to requiring that the deformed structures are integrable, that

is the new Jα and K must satisfy (5.20) and (5.21). At linear order in the deformation

these conditions reduce to

δµα(V ) =

ˆ
κ tr(Jα, LVA) = 0 ∀V ∈ 27′, (H.14)

[LKA, Jα] = 0. (H.15)

As we want the deformed structures to be real, we take the deformation to be A = ReA+,

where ReA+ = 1
2(A+ +A∗+). In this section we give the derivation of the constraints that

these equations impose on the deformations Ǎ+. For the other deformations we give only

the final results for the constraints, which can be derived in a similar fashion.
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Moment map conditions

Let us first consider the deformation Ǎ+ and the conditions from δµ3 = 0. Given the

form of J3 (5.49), only the aij , r
m
n, Cmnpq and γmnpq components of the generalised Lie

derivative contribute. The relevant terms are

LV Ǎ+ = (εijjβ
iyjdλj − 1

41εklβ
kydλl)

+ (εjkβ
iydλk − 1

2δ
i
jεklβ

kydλl) + (εijdλ
i ∧Bi)

= −[dλi, Ǎ+],

(H.16)

where Bi and βi are the two-form and bi-vector components of Ǎ+. We use this and

rearrange the trace to give

ˆ
κ tr(J3, LV Ǎ+) ∝

ˆ
κ tr
(
J3, [dλ

i, Ǎ+]
)
∝
ˆ
κ tr
(
dλi, [J3, Ǎ+]

)
, (H.17)

with a similar expression for Ǎ∗+. Using that Ǎ+ is an eigenstate of J3 with eigenvalue

+iκ and the form of the trace (B.60), this simplifies to

ˆ
κ tr
(
dλi, [J3, Ǎ+]

)
∝
ˆ
κ2εijβ

iydλj

∝
ˆ
εijd(βiy vol5) ∧ λj ,

(H.18)

where we have used vol5(βiydλj) ∝ (βiy vol5)∧dλj . When combined with the contribution

from LV Ǎ∗+, this should hold for arbitrary λj and so we require

d
[(
βi − (βi)∗

)
y vol5

]
= 0. (H.19)

Using the explicit form of Ǎ+ (H.9), this condition gives

∂(ν̄yΩ) = 0,

∂ω̂ = 0,

∂f ∧ Ω̄ + 3
2 iΩ̄ ∧ (ν̄yΩ) = 2∂̄ω̂ + 1

2 Ω̄ ∧ Lξ(ν̄yΩ).

(H.20)

The analysis of δµ+ follows from similar manipulations. For δµ+ there are terms that

must vanish for arbitrary v and ρ. The terms in ρ give

2∂f = Lξ(ν̄yΩ),

∂̄f = 0,

∂(ν̄yΩ) = 0,

∂̄(ν̄yΩ) = −4fω.

(H.21)
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The terms in v give

∂̄ν̄ = −2ifΩ̄,

∂̄f = 0,

4ω ∧ ν̄ + 4∂̄ω̂ + 1
2 Ω̄ ∧ Lξ(ν̄yΩ) = 2iΩ̄ ∧ (ν̄yΩ) + Ω̄ ∧ ∂f.

(H.22)

Taken together, the moment map conditions on the deformation Ǎ+ are

∂(ν̄yΩ) = 0, (H.23)

∂ω̂ = 0, (H.24)

2∂f = Lξ(ν̄yΩ), (H.25)

∂̄f = 0, (H.26)

∂̄(ν̄yΩ) = −4fω, (H.27)

∂̄ν̄ = −2ifΩ̄, (H.28)

∂̄ω̂ = −3ω ∧ ν̄. (H.29)

Note that we have simplified some expressions using

4ω ∧ v̄ = −iΩ̄ ∧ (v̄yΩ), ω ∧ (v̄yΩ) = −iΩ ∧ v̄, (H.30)

where v̄ is an arbitrary (0,1)-form with respect to I.

We want to solve the system (H.23)–(H.29) of differential equations to derive the form

of the deformation. From (H.23) we know ν̄yΩ is closed under ∂, and so it may be written

as the sum of a ∂-closed term and a ∂-exact term. However, we also have H1,0
∂ (M) = 0 for

a five-dimensional Sasaki–Einstein space M , and so only a ∂-exact term is needed. We

make an ansatz

ν̄yΩ = −2i

q
∂f, (H.31)

where f has a well-defined scaling under ξ, Lξf = iqf , and q is non-zero.1 Next (H.27)

gives

∂̄(ν̄yΩ) = −2i

q
∂̄∂f = 2i∂∂̄f − 4fω ≡ −4fω. (H.32)

We can solve this by taking f to be holomorphic, which also solves (H.26). The ansatz

for ν̄yΩ, together with the scaling under ξ and holomorphicity of f are enough to satisfy

(H.25).

1If q = 0 and f is holomorphic, f is necessarily constant. But from (H.28), a constant f requires Ω̄ to
be ∂̄-exact, which is not true. The only solution to the differential conditions for constantf is f = 0, and
so we do not need to consider the case of q = 0
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We can invert (H.31) and write ν̄ as

ν̄ =
i

2q
∂fyΩ̄. (H.33)

Then (H.28) is automatically satisfied

∂̄ν̄ =
i

2q
∂̄(∂fyΩ̄) =

i

2q
(−4qfΩ̄) ≡ −2ifΩ̄, (H.34)

where we have used ∂̄(∂fyΩ̄) = −4qfΩ̄ for a holomorphic function f .2

If we take ω̂ = 1
4q(q−1)∂(∂fyΩ̄) + δ, (H.29) becomes

∂̄ω̂ = ∂̄
(

1
4q(q−1)∂(∂fyΩ̄) + δ

)
= 1

4q(q−1)

(
−∂∂̄(∂fyΩ̄)− 2ω ∧ Lξ(∂fyΩ̄)

)
+ ∂̄δ

= 1
q−1∂f ∧ Ω̄− i q−3

2q(q−1)ω ∧ (∂fyΩ̄) + ∂̄δ

= − 3i
2qω ∧ (∂fyΩ̄) + ∂̄δ

≡ −3ω ∧ ν̄,

(H.35)

implying ν̄ = i
2q∂fyΩ̄, in agreement with above, and ∂̄δ = 0. Finally, (H.24) implies

∂δ = 0.

Taken together, these determine the Ǎ+ solutions of the moment map equations. For

example, the two-form component of Ǎ+ is

Bi = −1
2 iūi

[
fΩ̄ + 1

2q(q−1)∂(∂fyΩ̄) + i
qσ ∧ (∂fyΩ̄)

]
− iūiδ, (H.36)

where f is holomorphic with respect to ∂ (and hence has charge q ≥ 0 under the Reeb

vector) and δ is ∂- and ∂̄-closed (and hence has charge zero). The bi-vector component is

determined from this using (H.10). Notice that f -dependent terms and δ are independent

of each other, so we really have two eigenmodes within this expression. In fact, this solution

to the moment map equations corresponds to the A(r−2)
+ modes with r ≥ 0 labelled by f

and δ in (5.64).

Consider now the deformations Â+ in (H.12). A similar analysis of the moment maps

gives

∂̄f̃ = 0, (H.37)

so f̃ is holomorphic (and hence has charge q ≥ 0 under the Reeb vector). This solution

corresponds to the A(r−2)
+ modes with r ≥ 2 labelled by f̃ in (5.64).

So far we have examined Ǎ+ and Â+, which correspond to the A(r−2)
+ modes in (5.64)

and are parametrised by the holomorphic functions f and f̃ , and a ∂- and ∂̄-closed (1,1)-

2In general one has ∂(∂̄fyΩ) = 1
2
(q2 + 4q −∆0)fΩ and ∂̄(∂fyΩ̄) = 1

2
(q2 − 4q −∆0)fΩ̄ for a function

satisfying ∆f = ∆0f and Lξf = iqf [273].
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form δ. Now we comment on the A(r)
− modes, defined by A(r)

− = κ−1[J+,A(r−2)
+ ]. Naively,

one might think we should solve the moment maps from scratch for an A(r)
− deformation.

For example, the deformation would be calculated using the generic form of Ǎ−, given by

(H.11), and would then lead to differential conditions on the components of Ǎ+ from which

Ǎ− is generated. Fortunately, given a solution A+ to the deformed moment maps (H.14),

one can show that A− = κ−1[J+,A+] is automatically a solution too. The components

of A− are determined by A+ and the differential conditions on the components of A−
reduce to the differential conditions on A+ that we have already given. For example,

we have seen that Ǎ+ is completely determined by a holomorphic function f and a ∂-

and ∂̄-closed (1,1)-form δ. As Ǎ− = κ−1[J+, Ǎ+] is automatically a solution, it too is

determined by a holomorphic function f ′ and a ∂- and ∂̄-closed (1,1)-form δ′. Similarly Â+

will be determined by holomorphic function f̃ ′. Here, we should note, however, because of

our slight over-counting, the r = 2 case with constant f ′ is actually the complex conjugate

of the r = 0 case of Ǎ+.

Lie derivative along K

At first order in a generic deformation A ∈ 78 of E6(6), the generalised Lie derivative

condition is given by (5.69). It is straightforward to check that the commutators are

non-zero for both J+ and J3, and so the condition reduces to LKA = 0. From (5.51), we

know that the generalised Lie derivative along K reduces to the conventional Lie derivative

along ξ, and so the deformation condition is simply

LξA = 0. (H.38)

We see that the deformation must have scaling dimension zero under the Reeb vector

field. Using the explicit form of Ǎ+ and Â+, we find f is charge +3 and f̃ is charge zero

(which together with ∂̄f̃ = 0 implies f̃ is constant). We also have δ is charge zero, which

is consistent with it being ∂- and ∂̄-closed. This agrees with (5.71). These are precisely

the conditions for the deformations to be marginal.

H.2.1 Generalised metric

We have deformed the geometry by two-forms and bi-vectors, but the bosonic fields of type

II supergravity do not include bi-vectors. As is typical in generalised complex geometry,

acting on the bosonic fields, the bi-vector deformation can be traded for deformations by

a gauge potential. We first construct the generalised metric and then give the dictionary

for translating a bi-vector deformation into a two-form deformation.

A generalised metric defines a USp(8) structure. K and Jα together define a USp(6)

structure and so also define a generalised metric, though reconstructing the metric from

them may be complicated.3 For this reason it proves simpler to construct the generalised

3For example, the conventional metric can be recovered from the three- and four-forms defining a G 2
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metric from scratch. For a generalised vector V the generalised metric, in the untwisted

basis, is

G(V, V ) = vmvm + hijλ
i
mλ

jm + 1
3!ρm1m2m3ρ

m1m2m3 + 1
5!hijσ

i
m1...m5

σjm1...m5 , (H.39)

where hij is the standard metric on SL(2)/SO(2) and we have raised/lowered indices using

the metric gmn.4

The generalised metric defines a USp(8) structure and so should be left invariant by a

USp(8) subgroup of E6(6) × R+. Using the adjoint action on V ∈ 27′, one can show that

USp(8) is generated by elements of the E6(6) × R+ adjoint satisfying

l = 0, aij = −aji,

rmn = −rnm, Cmnpq = −γmnpq,

B1
mn = β2

mn, B2
mn = −β1

mn.

(H.40)

One can read off the new bosonic background by constructing the deformed generalised

metric. The metric, axion-dilaton and four-form R-R potential receive corrections starting

at second order. At first order, only the two-form potentials, B2 and C2, are corrected. If

we consider a deformation by a two-form Bi and a bi-vector βi, at first order the resulting

two-form deformation is

B2 = B1 − gβ2g, C2 = B2 + gβ1g. (H.41)

We see that the bi-vector can be traded for a two-form contribution. This will become

more complicated at higher orders in the deformation due to terms from contractions of

the bi-vector with the two-form.

As previously mentioned, this procedure is analogous to what is done when trading

β-deformations in generalised complex geometry for metric andB-field deformations (see

for example equations (3.3) and (3.4) in [314]).

Flux induced by deformation

Using (H.41) we have that our two-form deformation Re Ǎ+ = Bi + βi will induce NS-NS

and R-R two-form potentials given by

C2 = 2B2, B2 = 2B1. (H.42)

The complexified potential is

C2 − iB2 = −2i(B1 + iB2). (H.43)

structure, but the relation between the two is not trivial.
4We have chosen C0 = φ = 0 for the backgrounds we consider, so hij is simply δij .
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Using the explicit form of Ǎ+ that solves the deformed moment maps (H.36), this is

C2 − iB2 = −i
[
fΩ̄ + 1

2q(q−1)∂(∂fyΩ̄) + i
qσ ∧ (∂fyΩ̄) + 2δ

]
, (H.44)

where Lξf = iqf . From (H.38), this deformation will correspond to a marginal deformation

if q = 3 and δ is d-closed. The complexified potential then simplifies to

C2 − iB2 = −i
[
fΩ̄ + 1

12∂(∂fyΩ̄) + i
3σ ∧ (∂fyΩ̄) + 2δ

]
. (H.45)

Taking an exterior derivative, the resulting complexified flux G3 = d(C2 − iB2) is

G3 = −i
(
∂f ∧ Ω̄ + 1

12 ∂̄∂(∂fyΩ̄) + i2
3ω ∧ (∂fyΩ̄)− i1

3σ ∧ (∂ + ∂̄)(∂fyΩ̄)
)

= −4
3 i∂f ∧ Ω̄ + 4fσ ∧ Ω̄− 1

3σ ∧ ∂(∂fyΩ̄),
(H.46)

where we have used dδ = 0, ω ∧ (∂fyΩ̄) = i∂f ∧ Ω̄ and ∂̄(∂fyΩ̄) = −12fΩ̄. We stress once

more that this flux is valid for marginal deformations of any Sasaki–Einstein structure

and reproduces the first-order fluxes of the β-deformation of Lunin and Maldacena [93].

H.2.2 Marginal deformations and the axion-dilaton

Let us now consider the effect of an Â+ deformation. Such a deformation is marginal if f̃

is charge zero under ξ, which, when combined with ∂̄f̃ = 0, implies f̃ is simply a constant

complex number. The physical effect of such a marginal deformation can be found from

its action on the SL(2;R) doublets that appear in the generalised metric. For example,

the undeformed generalised metric contains terms of the form

G(λ, λ) = δijλ
iyλj + . . . . (H.47)

To first order, the deformed generalised metric will then be

G(λ+ δλ, λ+ δλ) = δij(λ
i + δλi)y(λj + δλj) + . . .

= (δij + 2mij)λ
iyλj + . . . ,

(H.48)

where

mij = 1
2

(
Im f̃ −Re f̃

−Re f̃ − Im f̃

)
, (H.49)

which is simply the real part of (H.12). We now want to compare this to the form of the

generalised metric when the axion-dilaton is included. From [139], we see this is

G(λ, λ) = hijλ
iyλj + . . . , (H.50)
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where

hij = eφ

(
C2

0 + e−2φ −C0

−C0 1

)
. (H.51)

Expanding the fields to linear order, we find

hij = δij +

(
−φ −C0

−C0 φ

)
. (H.52)

By comparing this expression with the deformed metric mij , we see we can encode a

first-order change in the axion-dilaton by taking f̃ = C0 − iφ.
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Appendix I

γ-deformed solutions

Here we summarise the results of the solution-generating technique of Lunin and Maldacena

applied to AdS4 solutions in M-theory [93]. We follow the general prescription laid out

in [285]. The undeformed metric and four-form flux are assumed to have the form

ds2
11 = 1

4ds2(AdS4) + ds2(M), F = 3
8 volAdS . (I.1)

This is of the same form as the Sasaki-Einstein backgrounds we consider. Note that we

have normalised the metric on the internal space M to give Rµν(M) = 6gµν(M).

First, we split the metric on M into a three-torus and a four-dimensional space M4

ds2(M7) = ds2(T3) + ds2(M4). (I.2)

The metric on the torus is then expressed as

ds2(T3) = ∆1/3MabDϕaDϕb, (I.3)

where Dϕa = dϕa + Aa and detMab = 1. The particular form of the one-forms Aa

depends on the undeformed metric. The eleven-dimensional solution obtained from the

solution-generating technique is

ds2
11 = G−1/3

(
1
4ds2(AdS4) + ds2(M4) +Gds2(T3)

)
,

F = 3
8 volAdS−6γ∆1/2 vol4−γd(G∆Dϕ1 ∧Dϕ2 ∧Dϕ3),

(I.4)

where G = (1 + γ2∆)−1 and vol4 is the volume form of ds2(M4). From this, we see the

first-order contribution to the flux is

F = −6γ∆1/2 vol4−γd(∆Dϕ1 ∧Dϕ2 ∧Dϕ3). (I.5)

This is the flux we will match our results to. To find the explicit form of this for a

background, we need to specify ϕa, ∆, vol4 and Aa. We now give these in our conventions.
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I.1 S7

The solution for S7 is given in [93]. The angles parametrising the three-torus are

ϕ1 = 3ψ − φ1 − φ2 − φ3, ϕ2 = 2ψ − φ1 − φ2, ϕ3 = φ1 − ψ. (I.6)

∆, vol4 and the Aa are1

∆ = s4
θs

2
α

(
c2
θc

2
α + s2

αs
2
βc

2
β(c2

θ + s2
θc

2
α)
)
,

vol4 = −∆−1/2s5
θcθs2αs

2
αs2βdθ ∧ dα ∧ dβ ∧ dψ,

A1 =
−4(1 + 2c2β)c2

θc
2
α + s2

αs
2
2β(c2

θ + s2
θc

2
α)

4c2
θc

2
α + s2

αs
2
2β(c2

θ + s2
θc

2
α)

dψ,

A2 = 2
−4c2

θc
2
α + s2

αs
2
2β(c2

θ + s2
θc

2
α)

4c2
θc

2
α + s2

αs
2
2β(c2

θ + s2
θc

2
α)

dψ,

A3 =

(
1−

4s2
αs

2
2βs

2
θc

2
α

4c2
θc

2
α + s2

αs
2
2β(c2

θ + s2
θc

2
α)

)
dψ.

(I.7)

I.2 Q1,1,1

The solution for Q1,1,1 is given in [284,285]. The angles parametrising the three-torus are

ϕ1 = φ1, ϕ2 = φ2, ϕ3 = φ3. (I.8)

∆, vol4 and the Aa are

∆ =
2c2
θ3
s2
θ1
s2
θ2

+ (2− c2θ1 − c2θ2)s2
θ3

2048
,

vol4 = 8−3/2H−1/2sθ1sθ2sθ3dθ1 ∧ dθ2 ∧ dθ3 ∧ dψ,

A1 =
8cθ1s

2
θ2
s2
θ3

H
dψ,

A2 =

(
2− c2θ1 − c2θ2

2s2
θ1
cθ2

+
s2
θ2
c2
θ3

cθ2s
2
θ3

)−1

dψ,

A3 =
8cθ3s

2
θ1
s2
θ2

H
dψ.

(I.9)

The function H is

H = 5− 3c2θ3 + c2θ1(−3 + c2θ2 + c2θ3) + c2θ2(−3 + 2c2
θ1c2θ3). (I.10)

1Note that this corrects a typographical error in [93], where the term in the four-form flux coming from
∆1/2 vol4 was written with s2

2α instead of s2αs
2
α.
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I.3 M1,1,1

The solution for M1,1,1 is given in [284,285]. The angles parametrising the three-torus are

ϕ1 = φ̃, ϕ2 = φ, ϕ3 = ψ. (I.11)

∆, vol4 and the Aa are2

∆ = 3
262144h sin2 µ,

vol4 = −3
√

3
16 h

−1/2 cosµ sin θ sin θ̃ sin2 µ dµ ∧ dθ̃ ∧ dθ ∧ dτ,

A1 = −64h−1 cos θ̃ cos2 µ sin2 θ dτ,

A2 = 24h−1 cos θ sin2 θ̃ sin2 2µ dτ,

A3 = 8h−1 sin2 θ(3 + 5 cos 2µ+ 2 cos 2θ̃ sin2 µ)dτ.

(I.12)

The function h is

h = 8 sin2 θ cos 2µ(cos 2θ̃+7)−6(cos 2θ+3) sin2 θ̃ cos 4µ+cos 2θ(cos 2θ̃−33)−13 cos 2θ̃+45

2Note that this is not the same deformation as [284].
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