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We analyze the structure of quark and lepton mass matrices under the hypothesis that they
are determined from a minimum principle applied to a generic potential invariant under the
[U(3)]° @ @(3) flavor symmetry, acting on Standard Model fermions and right-handed neutri-
nos. Unlike the quark case, we show that hierarchical masses for charged leptons are naturally
accompanied by degenerate Majorana neutrinos with one mixing angle close to maximal, a
second potentially large, a third one necessarily small, and one maximal relative Majorana
phase. The scheme presented here could be tested in the near future via neutrino-less double
beta decay and cosmological measurements.

1 Introduction

The Standard Model of particle physics has withstood every experimental check and has now
been confirmed in all of its fundamental aspects. The triumph of the Standard Model is also the
success of the gauge principle as a predictive, powerful and beautiful way of describing particle
interactions. The recent discovery of the Higgs particle brings the evidence of a new force of
range 1/mp, and strength determined by fermion masses and mixings. As opposed to the three
gauge couplings of O(1), this force is described by at least 13 parameters ranging from O(1) to
O(107%) and encoded in the Yukawa couplings. An explanation of this structure, explanation
which is absent in the Standard Model, will be the answer to what is known as the flavor puzzle.

The necessary extension of the Standard Model to account for massive neutrinos only adds
to this puzzle. Neutrinos are 6 orders of magnitude lighter than the lightest charged fermion,
and the mixing in the lepton sector is large as opposed to the small angles of the Cabibbo-
Kobayashi-Maskawa matrix.

This paper, a summary of the work in Ref. 1, explores the possibility of the spontaneous
breaking of a flavor symmetry as a natural explanation of the observed flavor structure of
elementary particles.

2 The flavor group

The gauge interactions of the Standard Model (SM) admit a large, global, flavor symmetry.
Matter fields in the SM are described by quark and lepton doublets, g;, and ¢1, and by right-



handed singlets corresponding to up and down quarks and to electron-like leptons: Ur, Dg, ER.
With three quark and lepton generations, the flavor group is3:
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Masses for the observed neutrinos can be generated with the see-saw mechanism, by intro-
ducing at least two generations of additional Majorana neutrinos, N;. The latter are endowed
with a Majorana mass matrix with possibly large eigenvalues, and coupled to the lepton dou-
blets by Yukawa interactions. In analogy with the quark sector, here we assume three Majorana
generations. We also assume the maximal flavor symmetry acting on the Nj; in the limit of
vanishing Yukawa couplings but non-vanishing Majorana masses, i.e. O(3). The flavor group
for this case is4:

G=UEPe0@3). (2)

The large flavor group in Eq. (2), of course, does not correspond to observed symmetries. In
the SM, global symmetries are explicitly broken by the Yukawa couplings of matter fields to the
SU(2)y, scalar doublet. Explicitly the Yukawa interactions and neutrino mass terms read:

. _ o M
— Ly = quYpHDp +Gr YyHUr + &L YpHER + LY, HN + N°ZN +he, (3)

where H is the scalar doublet and H its charge conjugate. Note that the only subgroup of G
compatible with the above Lagrangian is baryon number, U(1) g, (hypercharge also acts in the
Higgs doublet, so its not strictly contained in G). For the quarks and charged leptons mass
matrices, we find:

MD=’UYD, Mu='UYU, MEZUYE, U:<OIHID> (4)

Integrating over the N fields and keeping the light fields only, one finds, to lowest order :
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which, upon spontaneous breaking of the gauge symmetry, gives the see-saw formula for the
light neutrino mass matrix:

v2 T
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The G transformations on Y that make the Lagrangian formally invariant are as follows:

Yu = UgYuUu , Yp = UsYpUp (M
Yg = UYeUe, Y,—UY,0T, (8)

with the U unitary and O real orthogonal, 3 x 3 matrices.

The transformation properties of these coupling constants can be understood if they are
somehow the remnants of dynamical objects with actual transformation properties under the
symmetry. This is the option we will discuss in this paper, namely that the Yukawa couplings
are the vacuum expectation values of Yukawa fields, to be determined by a minimum principle
applied to some potential, V(Y'), invariant under the full flavor group G. In this case, one may
use group theoretical methods to identify the natural extrema and characterize the texture of
the resulting Yukawa matrices.

The simplest realization of the idea of a dynamical character for the Yukawa couplings is to
assume that
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with A some high energy scale and ® a set of scalar fields with transformation properties such
as to make invariant the effective Lagrangians and the potential V(Y) under G. To avoid the
problem of unseen Goldstone bosons, G may be in fact a local gauge symmetry broken at the
scale A, with an appropriate Higgs mechanism, see e.g. Ref. 5.

The idea put forward here was considered as early as the sixties by N. Cabibbo, in the
attempt to determine theoretically the value of the Cabibbo angle, and group theoretical methods
were established in Refs.® and 7 to identify the natural extrema of the potential. We review
these ideas in the next section.

3 Natural extrema of an invariant potential

We summarize here the elements to identify the natural extrema of an invariant potential V(y),
that is those extrema that are less or not at all dependent from specific tuning of the coefficients
in the potential, compared to the generic extrema. We do not make any assumption about the
convergence of the expansion of the potential in powers of higher-dimensional invariants, as done
e.g. in Ref. 89,

The variables y are the field components, transforming as given representations of the invari-
ance group G. In order to be invariant, V(y) = V[I;(y)], where I; are the independent invariants
one can construct out of y. There are as many independent invariants, n, as physical (unaffected
by G transformations) parameters ¥;; 4,j = 1,..,n. The crucial point is that the y-space has no
boundary, while the manifold M, spanned by I;(y), does have boundaries.

Consider a variation around a given point of the manifold M, this can be written as:
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where J is the Jacobian of the change of “coordinates”. For every point in y-space, infinitesimal
variations in all n directions are allowed since there is no boundary. In the bulk of the manifold
M, the columns of the Jacobian span a vector basis of dimension n and variations in all directions
are also allowed. However, for the points of M where the rank of the Jacobian, r, is less than
n there exit n — r directions in M space perpendicular to all columns of the Jacobian. This
directions are determined by the linear combinations of rows in J that adds to 0. For these
points variations in the aforementioned directions are not allowed: we havereached a boundary
of dimension r.

Boundaries are natural solutions for the minima of a potential since we have that the extrema
of V(y) are to be found by the variational principle:
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For arbitrary variations dy; one has a system of n equations. This set of equations is reduced
to n —r for an r-dimensional boundary. Note also that the boundaries are determined from the
Jacobian and completely independent of the potential.

Finally, it can be shown®7 that boundaries have associated unbroken subgroups of G of in-
creasing size for decreasing boundary dimension. In connection with the potential minimization,
two theorems will be of use in the following: i) V has always extrema on boundaries having as
unbroken subgroup a mazimal subgroup (a subgroup that can be included only in the full group
G9); ii) extrema of V with respect to the points of a given boundary are extrema of V/(y)”.

4 Quarks in three families

The counting of parameters in the quark sector goes as follows: 9 complex parameters for
each of the Yukawa matrices, Yy and Yp, minus the dimension of the group acting on them,



dim(SU(3)3 x U(1)%) = 26; that is a total of 10 parameters. Note that baryon number leaves
the Yukawa couplings intact. These 10 parameters are no other than the 6 quark masses and 4
mixing parameters in Uck ps. The invariants can be classified in two types: unmixed invariants,

Ly =Te(YyY)), Iy =Tl(Yo¥d)], Ips = Tl(wY)? (12)
and the same for YDYB. The other type comprises the 4 “mixed” invariants:

Iup = Tr(Yu Y3 YpY}) I, p = Tr|(Yu Y1) 2vpY)) | 13)
Iype = Te(Yu Y (YpYh)?,  Iwpp = Tr(Yu Y YpY))?) .
Any other invariant can be expressed in terms of these via the Cayley-Hamilton formula 0.
Computing the determinant is straightforward and we refer to!* for details, but here we will
use an alternative argument to determine the boundaries.
Unmixed invariants produce extrema corresponding to degenerate or hierarchical patterns
as in the chiral case illustrated in Ref.”. Mixed invariants involve the CKM matrix U, e.g.:

Iyp = Te(YuYgYpYD) o« 3 UiiUfs(miy)i(mb); - (14)
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Extremizing this invariant with respect to the unitary matrix, by the so-called Birkhoff-Von
Neumann theorem 3, yields Ugk s as a permutation matrix, i.e. a matrix with a 1 and all other
null elements in each row, the 1 being in different columns. Thus, permutation matrices provide
us the singular points on the boundary of the domain, without having to compute the rank of
the determinant. The upshot is that, after a relabeling of the down quark coupled to each up

quark, we end up with Ucky = 1.
In the limit of vanishing masses for the first two generations, this solution corresponds to the
little group U(2)q®@U(2)u®U(2)p®U(1)? that is amaximal subgroup of U(3),@U(3)u®U(3)p.

5 Leptons in three families

For leptons, we need 15 invariants (dim(Yg,Y;) — dim(U(3)? x O(3)) = 36 — 21). We may
construct unmixed and mixed invariants, as in the quark case. We choose the unmixed ones as:

Unmixed, E:  Ig = Te(YzY}) , Ige =Te[(YeYD)?, Ips=Te[(YeYZ)], (15)

and three similar ones (7,1-3) using Y;,. Thefirst type of mixed invariants, completely analogous
to the quark case, are:

L.e =TV, Y YpY}) 12 5 = Tr(VWY)2YEYE]

Mixed, type 1:
Lype = TV, Y (YEYE?],  Iopp = TV VY)Y .

(16)

New invariants arise with respect to the quark case as the number of parameters has increased:

Ja =T(VINYTYY), e =TV,

Mred WPOZE s = THIYYAY o
Finally, we add two invariants:
Le=Tr|Y,YTY*YV]VpY}i| ,
Mixed, type 3 : LR vy v B E] (18)

Ing =T |V, YTV YEY; Vi Ve Y]

Let us introduce the bi-unitary parametrization for the neutrino Yukawa, Y, = UpyUg, with
y = diag(y1,y2,¥3) and Uy, g unitary. The impact of the mixed operators can then be simplified
and discussed in terms of the different types.



Type 1 invariants depend on U but not Ug, and the minimization of the former yields a
permutation matrix in analogy with Uogay but with the important difference that U, is not the
lepton mixing matrix. Type 2 invariants conversely only depend on Up; for example, invariant
Jz1 reads:

I = T(YRY,Y)) = 3 (URUR) ;5 (URU) vt v - (19)

ij

Direct comparison with Eq. (14) reveals that U RUE is now a permutation matrix when extrem-
ized. To extract the consequences of this result we shall look at the neutrino mass matrix. First,
we use the freedom in the neutrino labeling to set Uy = 1 in the basis where charged leptons are
ordered according to: Yg = diag (Ye, Yy, ¥-)- Using the expression in Eq.(6), assuming degener-
ate eigenvalues for Y, for reasons given below, and taking one of the possible permutations for
URUI"Q leads to:

yPo?
M
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From the second identity in Eq. (20) we find that the absolute values of neutrino masses are
degenerate and equal to y?v?/M whereas the mixing matrix is:

10 0
=10 1/v2 1/v2 |, a=diagQ 1), (21)
0 -1/v2 1/V2

where 2 is the diagonal matrix of Majorana phases. One may fear that the degeneracy of neu-
trino masses makes the mixing matrix unphysical. This is certainly true at this stage for the
first two mass eigenstates, but not for their mixing with the third; there is a relative maximal
Majorana phase between them that makes them physically distinct. The maximal angle appear-
ing in Eq. (21) is therefore physical and can be taken as the atmospheric angle, experimentally
determined to be close to maximal.

This striking difference with quarks arose in spite of treating quark and leptons in the same
symmetry footing and it is a promising starting point. From an algebraic point of view, one
can say that this method predicts at first order that the quark mixing matrix is a permutation
matrix whereas the lepton mixing matrix is the “square root” of a permutation matrix.

The choice of degeneracy for the diagonal entries in Y, and therefore neutrino masses is not
chosen here for simplicity but for necessity. For arbitrary entries in y, the first two neutrino
eigenstates are not degenerate; this would make their relative angle in Eq. (21) physical and
equal to 0. The angle in the 1-2 sector is the solar angle and it is very far from vanishing.

We are therefore forced to degenerate neutrinos if we want to explain the mixing pattern.
The reason why one can do this is that, at first order for degenerate eigenstates, the solar
angle is unphysical and a “flat” direction. Perturbations in the neutrino mass matrix can then
introduce both a split in neutrino masses and a large solar angle. Let us show this explicitly
with selected perturbations in the neutrino mass matrix, for the general scenario we refer to the
original work!:

v2y 1+0 € €
€ 10
with €, 0 < 1 and real. A simple calculation leads to
i COs 912 — sin 912 0

sinfip  cosfia 1
Upmns = V2 V2 V2 | > tan(2612) = 2V2¢/0 (23)
sin 612 cos 612 1

V2 V2
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and the induced mass splinting between the first two eigenstates is 2v'2y?v%¢/(sin(2012) M). A
large 6,2 follows from its expression as a ratio of perturbations which need not be small.

For general perturbations the PMNS matrix features a generically large 612 (that we cannot
compute in absence of firm predictions for the values of € and o, but that does not goes to
zero in the limit of vanishing perturbations), 623 close to 7 /4, and 613 generically small. The
spectrum is almost degenerate, with normal or inverted hierarchy according to the signs of the
perturbations, and mass splittings not correlated to the mixing matrix. Nonetheless, assuming
that the perturbations that cause the mass splitting are of the same order as those generating
013, one can estimate a lightest neutrino mass of 0.1 eV. This size is within reach of the next
generation of Ovv double beta decay experiments!!, and possibly of cosmological measurements
12 Note also that the size of the perturbations is not far from what could be deduced from the
charged lepton spectrum, treating m,/m, =~ 0.06 as estimate of the sub-leading terms.

6 Conclusions and outlook

We have assumed that the structure of quark and lepton mass matrices derives from a minimum
principle, with the maximal flavor symmetry [U (3)]5 ® O(3) and a minimal breaking due to the
vevs of fields transforming like the Yukawa couplings. For leptons we find a natural solution cor-
relating large mixing angles and degenerate neutrinos. This solution generalizes to three familes
and arbitrary invariant potential the results found in Ref.&°. Subject to small perturbations,
the solution can reproduce the observed pattern of neutrino masses and mixing angles. Our
considerations lead to a value of the common neutrino mass that is within reach of the next
generation of neutrinoless double beta decay experiments.
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