PROCEEDINGS

OF SCIENCE

Faddeev-Yakubovsky Technique for Weakly Bound
Systems

M. R. Hadizadeh*
Instituto de Fisica Teorica, Universidade Estadual Paulista, 01140-070, Sdo Paulo, SP, Brazil

E-mail: hadizadeW@ift .unesp.bd

M. T. Yamashita
Instituto de Fisica Teorica, Universidade Estadual Paulista, 01140-070, Sao Paulo, SP, Brazil

E-mail: yamashita@ift .unesp.bd

Lauro Tomio
Instituto de Fisica Teorica, Universidade Estadual Paulista, 01140-070, Sao Paulo, SP, Brazil
Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niterdi, RJ, Brazil

E-mail: EOmMic@Ift . unesp.bd

A. Delfino
Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niterdi, RJ, Brazil
E-mail: Be1Tino@i T _nfrr b

T. Frederico
Instituto Tecnologico de Aerondutica, DCTA, 12228-900, Sdo José dos Campos, SP, Brazil
E-mail: Eohias@dit s bAd

The Faddeev-Yakubovsky formalism for the study of three- and four-boson bound states have
been derived in a partial wave representation for separable potentials and by considering only the
s-wave channel contribution. In order to be able to study the weakly three- and four-boson bound
states the obtained formalism is simplified for a zero range interaction and the integral equations
are regularized by a subtraction technique.

XXXIV edition of the Brazilian Workshop on Nuclear Physics,
5-10 June 2011
Foz do Iguacu, Parana state, Brasil

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:hadizade@ift.unesp.br
mailto:yamashita@ift.unesp.br
mailto:tomio@ift.unesp.br
mailto:delfino@if.uff.br
mailto:tobias@ita.br

Faddeev-Yakubovsky Technique for Weakly Bound Systems M. R. Hadizadeh

1. Introduction

Nature shows the existence of weakly bound systems in different sectors, ranging from atomic
to nuclear physics. Few-body systems with large scattering length exhibit universal features, which
are independent of the details of the interaction, and thus are common to nuclear and atomic sys-
tems. Very different methods are used to study the properties of few-body systems, from Faddeev-
Yakubovsky method [[]-[8] to diagonalization methods that rely on an expansion of the wave func-
tions in a complete basis set, like e.g. hyperspherical harmonics and no core shell model. In this
paper we present the Faddeev-Yakubovsky formalism to study the three- and four-boson bound
states in momentum space. To show the efficiency and accuracy of the method, we have recently
investigated the three- and four-boson weakly bound states in the unitary limit (for zero two-body
binding) and we have obtained a pretty complete picture of universal tetramers.

2. Faddeev-Yakubovsky Equations for Four-Boson Bound State

In this section, we describe the Faddeev-Yakubovsky (FY) formalism for the bound state of
four identical bosons. As shown in Eq. (), in a 4B system (with particles called i, j, k and )
there are 18 different coordinate systems, each associated with a specific two-body partition. These
chains have basically two different structures, 3+1 structure (i.e., a chain in which the four-body
system is subdivided into a three-body subsystem and a single particle) and 2+2 (i.e., subdivision
of a four-body system into two two-body subsystems). Clearly, as we know from the Faddeev
formalism, each three-body subsystem can also be devided into three 2+1 chains.

( ( ij+k+l =K,
ijk+1—q jk+i+l =K, =PPpKl,

ki+j+1 =K, ;= PiPK,

ij+l+k =Kf =PuKl,
ijl+k—q jl+itk =K, =PaPiPpK,
. . — k . . 1
3+1_> ll+.]+k —Klizj_PklPlkP]kKij’k

ik+1+j =Ki, =PiPyPukj,

12

ikl +j— S litk+j =K, =PuPuPuPi;Pj K,
Ki+itj =K, =PePiPaPiPiK!

= Jk+1+i =Kj,=PiPpPuk, 2.0
JKl+i— § lj+k+i =K, = PjPaPuPuPi K,

K+j+i =K, =PPxPuPPiK,

j+k+1 =H;
l_]+kl*> l.]++ J.kl
kl+i+j =Hu;j=PaPjHiju
k+j+1 =Hy ;= PuPyH;
24254 ikt jl = l. +]+ ik, jl ikl jk 1 ki
Jltit+k =Hj = PuPiPuPjHijx
it jk— i'l+j'+k = Hy ji = PjPicPuPji Hij
Jk+i+l =Hjy=P;jPixHiju
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In the following we derive the FY equations. The bound state of four identical particles which
interact via pairwise forces V;;(ij = ij, ik, il, jk, jl and ki) is given by the Schrodinger equation
which reads in integral form [, B]:

¥) = Go ¥ Vij ) 2.2)

i<j

Here the free four-body propagator is given by Gy = (E — Hp) ™!, and Hy stands for the free Hamil-
tonian. Introducing Yakubovsky components |¥) = Y. |y;;), with |y;;) = GoV;;|¥) leads to the six
coupled integral equations:

Wij) = Gotij Y., |wi) (2.3)
kl£ij
The operator #;; describes the two-body #—matrix in the two-body subsystem ij. We can rewrite
Eq. (E3) as:

i) = Goti,-(rwik>+ rw>+|w,~k>+|wﬂ>+\wkz>) (2.4)

Among various possibilities to decompose |y;;) into three FY components we choose the following
one:

Kl ) = Gofij<|‘llik>+|q/jk>>

IKijr) = Gofij<\ll/iz>+|1lsz>>
\Hij ) = Gotij| W) 2.5)

The FY component |K; Jlk> (|Hij 1)) belongs to a 3+ 1 (24 2) partition. They fulfill the following
relation:

i) = 1K) + |Kif) + [ Hijaa) (2.6)
It is easily seen that every |y;;) component contains two 3+ 1 type chains and one 2+ 2 type chain,
therefore the total wave function |¥) contains twelve different 3 + 1 type chains and six 2+ 2 type
chains. So altogether one has eighteen FY components. If we consider identical particles (here
bosons, since we are omitting spin), the four-body wave function |¥) has to be totally symmetric.
As a consequence all twelve components of 3+ 1 type are identical in their functional form and
only the particles are permuted. The same is true for the six components of 2 42 type. Thus it is
sufficient to consider only two independent FY components corresponding to the 3+ 1 and 2+ 2
partitions,

K) = |K;j,)
|H) = |Hjjx) 2.7

After the straightforward derivation the 18 coupled FY components shrink to two coupled FY
equations:

’Kijl',k> = GOtijP |:<1 +Pkl) ’Ki]l',k> + |Hij,kl>:|

|Hijx) = Golijf’{(l +sz) |K,~J1',k> + |Hij,kl>} (2.8)
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where P;; is the permutation operator between the i —th and j —th particle, and

P = PjPjx + PyPjx
P = PP (2.9)

The total four-body wave function is then given as:
%) = (1+P+PuP+P) [(1 P ) K f ) + |H "lﬁ
- (1 +(1 +P)Pkl> (1 +P> KL+ (1 +P) (1 +P)|Hiju) 2.10)

The symmetry property of |K) under exchange of particles i and j, and |H) under separate ex-
changes of particles 7, j and k,/ guarantee that |¥) is totally symmetric.

3. Representation of Faddeev-Yakubovsky Equations in Momentum Space

In this section for simplification of notation, we use the labels 1,2,3 and 4 for particles. So,
we can rewrite Eq. (ER) as:

IK) = GotlgP[<1 +P34>\K>—HH)]
|H) = Goflzp[(l +P34)\K> + \H>] (3.1
In order to solve the coupled Egs. (B) in momentum space one should project them into

standard sets of Jacobi momenta, corresponding to both 3+ 1 (Jujupusz)) and 242 (|vivav3))
chains. The standard Jacobi momenta for 4B system are defined as:

o=k

_ 2

2=5 ks — (k1+k2 > (3.2)
=2 (ks— k1+k2+k3)>

S
=1 (ki +ka) — 5 (k3 +Kky) (3.3)
= (ks —kd)

Since we are going to study the weakly 4B bound state and we just consider the s-wave channel
contribution, we introduce the projection operators corresponding to each Jacobi momenta set in
partial wave representation as:

lu) = |uyupuz)
[v) = [vivavs) (3.4)
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where the projection operators follow the completeness relation:
/ DA A) (A =1 (3.5)

where A indicates each one of u and v vectors and DA = A% dA; A% dAzAg dAs. Clearly the pro-
jection operator |u) is adequate to expand FY component |K) and correspondingly the projection
operator |v) is adequate for |H). Let us now represent the coupled equations, Eq. (B), with respect
to the projection operators which have been introduced in Eq. (B4):

(ulK) = (u|GotP(1+ P3a)|K) + (u| Got P|H)
(v[H) = (v|GotP(1 + P34)|K) + (v|Got P|H) (3.6)

It is convenient to insert again the completeness relations between permutation operators, it
results:

wm:/#ww%mwwwm
+ /D3u// /D3M/// <M|G0tp|u//> <M//|P34|u///> <M///’K>

+/mw/www%mwmwwwm>

<mn:/mw/mwM%ﬂwwmwwm

+ /D3v///D3ul/D3uu <v|Gotf~’\v”><v”\u’><u’|P34|u"><u"|K>

+/WWM%¢MWWH 3.7)

For evaluating the coupled equations, Eq. (BZd), we need to evaluate the following matrix
elements:

(u|GotPlu") (3.8)

(v|GorP|v") (3.9)

(" |Psalu™), (' |Pag]u”) (3.10)

W), () 3.11)

For evaluating the first term, Eq. (B3), we should insert again a completeness relation between
the two-body r—matrix operator and the permutation operator P as:

wmmwwz%@wwwx/mwwmwwmw (3.12)

where the matrix elements of the two-body r—matrix (for a separable potential) and permutation
operator P are evaluated separately as:

5(u’2 — uz) 5(14’3 — u3)

(ult|u’) = 5 T 4m () x (uy) T(€)
3u:  2u?
e=E-~—2_23 3.13
4dm  3m ( )
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< Hl(uz, )> 5<u’1’—H1(u’2’,u’2)> 5<u’3’—u’3>
(| Pl / dx

"2 //2
u u3

1 1
I (uy,uy) = 5“'2—1'11’2’ = \/4u2 + uy? + uyuly*x
1
I (uy,uh) = Eu’2’+u’2 :\/4 uy? +ul? + uhulx (3.14)

For evaluation the matrix elements of permutation operator P we have used the relation between
Jacobi momenta in different two-body subsystems (312,4),(231,4) and (123,4). Inserting Egs.
(B13) and (ET14) into Eq. (B12) leads to:

(u|GorP|u"y = 47 Go (u1,uz,u3) % (u1) 7(€)
6 (u’]' —I1; (u u2)> 0 (ug — M3)
* /dxx (Hl(uzyulzl>> (.15)

"2 "2
i i3

Representation of the second term, Eq. (B9), follows the similar steps:
(|Gt Py = Go(v1,va,v3) / DV (vt (V| BV (3.16)

The matrix elements of the two-body # —matrix and the permutation operator P are evaluated as:

§(vp—v2) 8(vs—vs)

oy = 220 200 40 0 a(e)
2 )
2 2
e = E— zv; 2 (3.17)
o B0A= W) S04 =) 8(4—v1)
PNy = 2 2 2 (3.18)
Inserting Eqs. (B3I7) and (B1R) into Eq. (B18) leads to:
N O(vs—v) 6(vo—V)
(|Gt Py = 41 Go (v1,va,v3) 1 (v1) (V) T(€") (s . 1) 8( 2 2) (3.19)

v3 V5
For the evaluation of the third term, Eq. (BI0), we should use the relation between Jacobi
momenta in different chains (123,4) and (124,3), which leads to:

) < i Hz(u’z’,ug’,x’)> 5<u’3”—H3(u’2’,u’3’,x’)>
" n\ “1 “1 /
(u ’P34‘L£ > = dx

///2 ///2 "

U U3
1 8 1 64 16
M1, ) — \3uz+9ui =\ h e S O
I noonoN " l "o //2 1 "2 % ".on
3(u2,u3,x) = |uy, — 3u3 = +9u — 3u2u3x (3.20)
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And finally for evaluation the fourth terms, Eq. (BIdl), we should use the relation between
Jacobi momenta in two naturally different chains (123,4) and (12,34), which leads to:

s t) 1 (T ad) ) 8(ss ()
———— = [ dx

(") = 2 ) 2 2
Vi V3 vy
1 2 1 4 2
M) = St 2ut] =\ [+ e+ 2t
2 4 4
M3 (u,u3,2') = |u3 — w3 :\/ uy? o+ Gus? — Juiusx
(3.21)
. 7‘}1 ( (V’zl,vg’,x)) 5<u’3—H7(v’2’,v’3’,x)>
0y = / dx 7 -
u3
2
I (v5,5,x) = 3 Vi vy = 3 vi? + V5% + 213 vix
1 1
M (k) = Vo= dvt| = o Lo - i
(3.22)

Finally inserting Eqs. (B313), (319), (B220) and (B2X) in Eq. (B12) yields:

K(ul,uz,m) = 475G0(u17u2a”3) x(u1) T(€)

<H(u2,u’2)> K(H(u’z,uz),u’z,ug)

+ ;/duéulzz/dx/dx’x<n Uy, ty ) (H(u’z,uz),Hz(u’Z,ug,x’),H3(u’2,u3,x’)>
+ ;/dulzu'zz/dx/dx’x<n uz,uz ) <H(u’2,u2),H4(u'2,u3,x’),H5(u/2,u3,x')>]

H(Vl,VQ,V3) = 47[G0(V1)V27V3) X(Vl) 7(8*)

*
1
—
S
S
S~
<
AN
—
oy
=

*
—
QU
<
o~
<
bl
«Q
=
=
—
<
o~
SN—
=X
7 N
<
g
—
[e)}
—
<
g
<

(O8]
S—
—
~
S
<
g
<
(O8]
SN—
~_

+ /dvgvgzx v3 <V3,V2, v3> (3.23)
By considering the following definitions of Yakubovsky components:
K (ur,uz,u3) = Go(ur,uz,u3) x(ur) A (uz,u3)
H(vi,v2,v3) = Go(vi,v2,v3) x(v1) A (v2,3) (3.24)
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the final form of coupled Yakubovsky integral equations can be obtained as:

H (uz,u3) = 4mt(e)

(n(uz,ug)> x(H(u’z,uz)> Go (H(u’z,uz),ulz,u3> zf@,m)
- ;/du’zulzz/dx/dx’x(H(uz,uz)) ( uh, )

XGO(H(H&,MQ),HQ(M&,M:‘,, )H3(I/l2,u3, > H2 u27u37 H3(u2,u3, ))

1
+ 2/du’2u'22/dx/dx’x(H(uz,u2)> < b, Uy >

XGO <H(u/2,u2),l—[4(u/2,u3, ) HS u27u3> > H4 u27u37 HS(M27M37 ))]

*
| — |

—
IS W
<
N
<
DS

—
oy
xR

t%ﬂ(\/z,\@) = 47'L"L'( )

x [ / AV / dxy (v3) % (v3)

XGO <V37H6 (VZ)ng-x>7H7 (V27Vgux)><%/<n6 (v27vl37-x)7n7 (VZ,V%,X))

+ /dvgvgzx V) 2 (v3) Go <V3,v2,vg)%(v2,vg>] (3.25)

4. Zero-range interaction

The momentum space representation of a zero-range interaction V (r) = (27)* 1 §(r), charac-
terized by the two-body coupling constant A is as:

BIVID) = ALOGEI) (Bl =2(p) = [drePT S ~ 1. @1

The two-body #-matrix, (&) = | x) (&) (x|, can be obtained by analytical solution of the inho-
mogeneous Lippmann-Schwinger equation as:

e [ 1 B
= [l /d pe—pz} 4.2)

The coupling constant A is fixed by one physical input, for example, the pole position of the

two-body scattering amplitude at B;;

-1 :/d3l’321pz 4.3)

The above value of A, when substituted in Eq. (E2), provides the cancelation of linear divergence
of momentum integral and leads to renormalized two-body #-matrix as:
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1

VBV =5 (V) @4)

1

©(#) 272

5. Coupled Yakubovsky Integral Equations for Zero-range interaction

The coupled integral equations (B223) can be simplified for a zero range interaction () (p) = 1).
If we ignore the fourth particle, the coupled Yakubovsky integral equations can be simplified to
Faddeev integral equation. The subtraction technique can be used to be able to obtain the converged
results for binding energy of trimer from solution of Faddeev integral equation by using a zero
range interaction. To this aim one need a three-body parameter, (3, and the regularization of the
momentum integration is done through the substitution of the free three-body Green’s function by
a subtracted form:

1 1
 E—Hy —ui-—H
Now, by adding the fourth particle to the three-body system, one need also to regularize the

G (5.1)

new terms which appear in presence of fourth particle in coupled Yakubovsky integral equations.
To this aim one can introduce a new parameter, i.e. four-body scale 4, to regularize these new
terms and the free four-body Green’s function can be substituted by a subtracted form:

1 1
 E—Hy —u?—H
So, for regularization of the first term of coupled integral equation (B23), which describe the 3B

¥ (5.2)

subsystem (ijk), one can use a three-body scale and for other terms, which appear in presence of
fourth particle, a new four-body scale can be used. By these considerations, he subtracted form of
the Yakubovsky integral equations are given by:

A (uz,u3) = 47rr(8)/du’2u’22/dx
G(()3) <H(M/2,u2),u/2,u3) %(Hé,b@)

+%/dx’G(()4) <H(u’2,uz),Hz(u’Z,ug,x’),Hg (u’Z,u3,x')> %(Hz(ulz,ug,x’),ng (u’z,u3,x')>

X

+%/dx’G(()4) <H(u’2,uz),H4(u’2,u3,x’),H5(u’z,u3,x’)>%”<H4(u’2,u3,x’),H5(u’2,u3,x’)>]
H(va,v3) = 47H'(8*)/dv’3v'32

X

/de(()4) <V3,H6 (vz,vg,x),rh (vz,vg,x)>%(H6 (vz,vg,x),rh (vz,vg,x)>

+G(()4) <V3,V2, V/3> ,%0 (Vz, v’3>

5.3)
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The coupled integral equations (B3) have been successfully solved for four-boson system and
similar to three-boson case a scaling plot has been obtained which describe the universal tetramers
(B, @, 8].
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