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The Laser Interferometer Space Antenna (LISA) is a spaceborne gravitational wave observatory which will be sensitive

to low-frequency gravitational waves in the frequency range from about 100 microHertz up to about 1 Hz. The mission

is being jointly pursued by NASA and the European Space Agency (ESA), and at the time of this writing1 is slated for

a launch in 2014. Comprised of a constellation of three free-flying spacecraft, LISA will be sensitive to supermassive

black hole binaries, close interacting binaries in the galaxy, the capture of stellar mass objects by supermassive black

holes in galactic nuclei, and possibly to stochastic backgrounds of gravitational radiation of cosmological origin. This

review summarizes in brief the current description of the LISA observatory, how it will function as an interferometer,

the sensitivity it will have to sources of gravitational radiation, and a simple taxonomy of prospective astrophysical

sources. It also provides simple pocket formulae which are often useful for making computations about sources in the

LISA band.

1. INTRODUCTION

In observational astronomy, different facilities and instrumentation are needed to probe different parts of the

electromagnetic spectrum. Gravitational wave astronomy is similar in this respect. Ground based interferometric

observatories like LIGO [1], GEO600 [2] and VIRGO [3] provide broadband coverage of the gravitational wave

spectrum at frequencies ranging from a few Hz to a few kHz. Narrow-band resonant bar detectors [4, 5] probe

narrow parts of the high frequency spectrum at hundreds of Hz. At frequencies below a few Hz, natural sources

of noise associated with the seismic activity of the Earth precludes the possibility of a ground-based observatory

designed to probe the low-frequency gravitational wave spectrum; furthermore, the wavelengths of the gravitational

waves of interest also rapidly become too large to capture, even with a detector which could span the entire globe.

To probe the low-frequency part of the gravitational wave spectrum, at frequencies below 1 Hz down to tens of

microHertz, it is necessary to build detectors in space. At extremely low frequencies, below a microhertz, detection

is only possible through Doppler tracking of interplanetary spacecraft [6–8], accurate timing of pulsars [9, 10] and

polarization effects in the Cosmic Microwave Background [11].

The fact that spaceborne observatories would be needed to probe the low-frequency spectrum was known early

on, with early reviews on the subject simply referring to such detectors as “beams in space” (see, e.g., [12]). Early

studies were instigated at the Joint Institute for Laboratory Astrophysics (JILA) in the early 1980s, and in 1985

the first full description of a spaceborne gravitational-weave observatory was put forward in the form of LAGOS

(Laser Antenna for Gravitational-radiation Observation in Space) [13]. Other spaceborne designs followed, notably

ecliptic plane interferometers such as SAGITTARIUS (Spaceborne Astronomical Gravitational-wave Interferometer

To Test Aspects of Relativity and Investigate Unknown Sources) [14] and OMEGA (Orbiting Medium Explorer for

Gravitational-wave Astrophysics) [15]. LISA as a mission first appeared in 1993 as a mission proposal to ESA’s

Horizon 2000 program, for which LISA ultimately became a cornerstone project. By 1997, LISA had become a joint

project between NASA and ESA, with mission characterization and design efforts being carried out on both sides of

the Atlantic.

Gravitational wave astronomy, and LISA in particular, were recognized as national research priorities in the most

recent decadal surveys [16, 17]. Currently, LISA is one of NASA’s two “Einstein Observatories”, which are the

flagship missions underpinning the Beyond Einstein program [18]; the other mission is an a constellation of free

flying x-ray telescopes known as Constellation-X [19]. The division of responsibility for the LISA mission is expected
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to be split more or less evenly between NASA and the European Space Agency.

LISA is currently in what is known as the formulation phase (“Phase A”), where the science requirements are fixed

and the mission requirements, as a consequence, are set. The next phase (so-called implementation, “Phase B”) will

begin near the end of the decade, leading to a launch in approximately 2014. In the interim, a technology precursor

mission known as LISA Pathfinder is schedule to launch in the 2006−2007 timeframe. Like LISA, Pathfinder will be

a joint enterprise between NASA and ESA, and is designed to test the core disturbance reduction sensor technology

which will be at the heart of a single LISA spacecraft. The goal of the Pathfinder mission is to reach an acceleration

noise level which is within about 1 order of magnitude of the LISA mission requirements.

This paper summarizes some of the key aspects of current research which play a vital role in the design and

characterization of the LISA mission. An effort has been made to divide the discussion more or less evenly between

issues related to the technology and design of the LISA mission, and the science and astrophysics which will be

enabled by the observatory. The intent is to provide as broad a view as possible of the current research related to

the mission, at the expense of providing full details (interested readers should peruse the referenced literature for

more extensive discussions). As a review of LISA, this document is by no means complete nor exhaustive in its

overview of the literature. It is intended only to provide brief introductions to relevant science and technical issues

associated with the LISA mission and to provide contact points with the literature in these areas, thus allowing the

interested person to begin their own scholarly endeavours in this field. Where appropriate, more extensive reviews

on a particular topic have been noted.

The rest of this paper is organized as follows. Section 2 looks at the design and technology of the observatory,

including details about the spacecraft and constellation (§ 2.1), time delay interferometry (§ 2.2), and interferometry

applications (§ 2.3). Section 3 discusses how LISA will operate as an observatory, examining how to compute

representations of the observatory’s sensitivity (§ 3.1), some pocket formulae useful for making estimates related

to gravitational wave emission from compact binary systems (§ 4.2), and an examination of the different ways the

strength of sources are represented in the LISA literature (§ 3.3). Section 4 considers the science that can be done with

LISA; it begins with the key science drivers for the mission (§ 4.1). The rest of the section is dedicated to the basic

classes of sources LISA is expected to observer, including the galactic population of close binaries (§ 4.2, supermassive

black hole binaries (§ 4.3), and extreme mass ratio inspirals (§ 4.4). The section concludes with discussion of LISA

probes of fundamental physics (§ 4.5), and a brief mention of other possible, though likely rare, source detections in

the LISA band (§ 4.6). A short summary concludes this review (§5).

Unless otherwise noted, geometricized units are used throughout, where G = c = 1. In these units time, mass and

energy are measured in units of length. Conventional units will generally be restored when discussing observable

astrophysical quantities.

2. THE LISA MISSION

LISA is an evolving mission, and has not yet had its design frozen as part of the build-up to construction and

launch. It’s character has been relatively static for some time now, and has been extensively described in two large

technical documents known as the LISA Pre-Phase A Report (LPPA) [20] produced by the LISA Study Team, and

the Final Technical Report (FTR) [21] produced by a European alliance of industry and academic partners interested

in LISA. Another summary of the project is the System and Technology Study Report (STS) [22], written as part of

the plan to make LISA a collaborative enterprise between NASA and ESA.

The description of the mission discussed here will follow these “official” documents; when necessary to follow a

particular convention or description, those outlined in the LPPA are used. The base parameters describing the design

of the observatory are noted in Table I.
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Figure 1: The final orbital configuration of LISA. The guiding center of the constellation orbits on the ecliptic at a distance

of 1 AU from the Sun, trailing 20◦ behind the Earth. The constellation plane is inclined by 60◦ to the ecliptic, and as viewed

from the Sun, appears to rotate in a clockwise direction, reverse cartwheeling as the observatory orbits the Sun.

2.1. Spacecraft Constellation

The complete LISA observatory is comprised of three spacecraft, free flying and arranged in an approximately

equilateral triangle, each spacecraft exchanging laser signals through its telescopes with the two adjacent spacecraft.

The separation between any two spacecraft in the constellation is Lo = 5 × 109 m, yielding laser propagation times

of τ = 16.68 s down each arm.

As a single entity, the constellation of three spacecraft appears to move together around the Sun, centered on a

point known as the guiding center. The guiding center lies on the Earth orbit, trailing 20◦(∼ 5.2 × 107km) behind

the planet. As viewed from the Sun, the constellation appears to rotate clockwise around the guiding center, in a

so-called “reverse cartwheel” motion. The constellation orbit and configuration is shown in Figure 1.

While this seemingly complicated motion may appear difficult to describe, it is simply a consequence of the relative

motion of each of the individual spacecraft on standard elliptical, Keplerian orbits with semi-major axis approximately

the same as the Earth’s orbital radius, R⊕, eccentricities of e = Lo/(2
√

3R⊕) and inclinations of ι = e
√

3. The orbits

are phased in such a way as to keep the constellation’s shape relatively stable, and inclined to the ecliptic plane by

Table I: LISA Design Characteristics. The current baseline design parameters of the LISA observatory (these are the default

settings for the online Sensitivity Curve Generator [23]).

Parameter LISA Default Value

Armlength 5 × 109 m

Laser Power 1 W

Laser Wavelength 1064 nm

Telescope Diameter 0.3 m

Optical Efficiency 0.3

Acceleration Noise Budget
√

Sa = 3 × 10−15m/(s2
√

Hz)

Total Position Noise Budget
p

Sp = 2 × 10−11m/
√

Hz
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Figure 2: The basic configuration of a LISA spacecraft. Each of the three spacecraft in the constellation are replicas of each

other.

60◦. The shape is not perfectly stable, and the armlengths will slowly change in time. The maximum change in

armlengths is only a few percent, but this will have important consequences in how interferometry is performed in

the LISA system. Detailed descriptions of the spacecraft orbits, suitable for simulation purposes, have been worked

out and published in the literature [24–26].

The individual spacecraft which make up the LISA observatory are shaped like hockey pucks, just over 2 meters in

diameter, and about 50 centimeters high, as shown in Figure 2. The primary structure of the spacecraft is a cylinder

which supports the sun-shield and solar array, as well as the articulated “Y” shaped superstructure that holds two

optical systems responsible for sending and receiving laser signals with adjacent spacecraft. The articulation allows

for fine pointing control of the telescope, a necessity brought on by the fact that the armlengths (and hence the shape

of the constellation) are slowly changing in time.

Each optical bench sports a 30 cm Cassegraine telescope which transmits and receives the laser signals exchanged

between spacecraft. At the center of the optical bench is an accelerometer system which monitors a 1 kg proof

mass which acts as the end mirror in the interferometer arm. The proof mass is cubic in shape, and made of an

alloy of about 90% gold and 10% platinum, chosen to reduce the magnetic susceptibility. The optical bench itself is

manufactured as a single monolithic structure out of a large plate of ultra-low expansion material, and houses the

optical network necessary to shape and monitor the laser system inputs and outputs. Laser information is exchanged

with the companion optical bench on a single spacecraft through an optical fiber, allowing a single spacecraft to act in

a fashion consistent with a single corner station in a traditional table-top interferometer. A simplified representation

of the optical bench is shown in Figure 3, with the laser pathways shown (figure follows example in [27]).

The output laser power is only 1 W. Ideally, the laser output from the telescopes would be perfectly collimated,

with the output beams being parallel and non-diverging. The beams will spread somewhat, however, an effect

magnified by the fact they are propagating 5 million kilometers between spacecraft. A simple way to estimate this

size is to assume a Gaussian beam profile, with the waist of the beam at the aperture of the transmitting telescope.

In this case, the power Pr received at the spacecraft a distance L away, after transmitting power Pt in laser light of

wavelength λ through a telescope of diameter D is[20]:

Pr = 0.5
D4

λ2L2
Pt , (1)

yielding a received power of Pt = 143 picowatts for the LISA standards listed in Table I. Approximating the initial

1 W output is uniformly spread over a circular area, the size of the beam spot is over 25 km in diameter! In reality,

the power in the beam spot is not uniform; in an optimal flight configuration, the receiving spacecraft will sit as close

to the center of the laser spot as possible, where the received power will be highest.

It is clear from this simple calculation that LISA cannot operate as a normal interferometer, reflecting the received

light off of a local mirror and back to the spacecraft of origin! Instead, the signals are transponded; six independent

signals comprise the primary laser signals in the three arms that will be used to create the main interferometric
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Figure 3: A simplified schematic of a LISA laser bench, showing the laser pathways and their interaction with the test mass,

primary telescope (outgoing and ingoing beams) and photodiode detectors (figure follows the example of [27]).

data streams. The independent laser links may be thought of as Doppler delay lines, and the treatment of their

response to an incident gravitational wave is a straightforward adaptation of the analysis used to describe Doppler

tracking of spacecraft for gravitational wave detection [6–8]. To allow LISA to function as an interferometer in this

arrangement, a sophisticated scheme for phase locking six independent lasers on the three spacecraft is being devised.

Faint incoming laser signals are monitored, and refreshed full power beams are retransmitted back down the arm.

As a consequence, no direct generation of a primary interferometric data stream is physically generated on orbit.

The phases of the exchanged laser signals are monitored and stored, and later recombined (in software) to create the

primary interferometric signals using a technique called time delay interferometry (TDI, described in more detail in

§ 2.2).

2.2. Time Delay Interferometry

Unlike ground-based interferometric observatories, LISA will not be a static instrument. Each individual spacecraft

is on its own independent Keplerian orbit, and constantly in motion relative the other spacecraft in the constellation.

As a result, the armlengths are continuously changing in time; the arms “breathe” in an oscillatory way as a function

of time, as shown in Figure 4.

In a classic Michelson interferometer1, the two arms are equal in length. Noise associated with fluctuations in the

laser automatically cancels out in a Michelson interferometer because the fluctuations propagate down the two arms

and return back to the beam splitter at the same time, where the interference of the two signals cancels out the

fluctuations.

1In simple treatments of laser interferometer observatories, the fundamental interferometric observable is often approximated to be
equivalent to that of a classic Michelson interferometer.
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Figure 4: The three LISA armlengths will “breathe” over the course of a full LISA orbit (1 year). This simulation of the

time-variation of the armlengths was computed from the LISA spacecraft orbits described in [26].

In an instrument like LISA, the armlengths are continuously changing in time. Envisioning the observatory like

a classic Michelson interferometer, where one spacecraft plays the role of a corner station (vertex) where the laser

is divided and recombined, and the two adjacent spacecraft play the roles of stationary mirrors at the end stations

of the interferometer, one can easily see how the changing armlengths can be a problem. Suppose the primary laser

signal develops a random fluctuation in its frequency output. That fluctuation is propagated down each of the two

arms, is transponded (equivalent to reflection) off the distant spacecraft at the ends of the arms, and returns back to

the original vertex of the interferometer. If the arms are unequal in length and changing in time, the fluctuations will

arrive back at the vertex at different times and do not cancel out. This is a serious problem because the expected

noise associated with fluctuations in the LISA laser system is several orders of magnitude larger than any other

source of instrumental noise in the system. Fortunately, there is way to mitigate these issues, called time delay

interferometry (TDI).

Consider the constellation schematic shown in Figure 5, where each of the three spacecraft is identified by a numeral

{1, 2, 3}, and the arm opposite a given spacecraft bears the same numeric name {L1, L2, L3}. The guiding center is

the geometric point which is equidistant from each of the three spacecraft. The guiding center distance is given in

terms of the three armlengths by

ℓ =
L1L2L3

√

2L2
1L

2
2 + 2L2

2L
2
3 + 2L2

1L
2
3 − L4

1 − L4
2 − L4

3

. (2)

In traditional Michelson interferometry, the interferometric data is constructed as the phase difference between

the laser signals in two arms of the interferometer, each measured at the same time t. If the phase a spacecraft

measures from the signal arriving along arm Li is denoted si(t), then the traditional Michelson signal which would

be measured at spacecraft 3, ∆3(t), would be written as:

∆3(t) = s1(t) − s2(t) . (3)

In time delay interferometry, the six independent laser phase signals are taken in linear combinations, and at times

which are shifted with respect to the absolute time t which indexes the data stream. Consider the unequal-arm
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Figure 5: A simple naming scheme for construction of TDI observables. Each spacecraft is identified by an arabic numeral,

{1, 2, 3}, and the opposing armlength is identified by the same numeral, {L1, L2, L3}, as indicated. Because the armlengths are

changing in time and the shape is slowly varying, it is often useful to identify the geometric point o, which is equidistant from

each of the three spacecraft. The distance ℓ is usually called the guiding center distance. The inequality of the armlengths

and the distortion of the constellation shape has been greatly exaggerated for clarity.

Michelson TDI combination, which is conventionally given the name X(t) at a single vertex. If the one way light

travel time down arm i is denoted τi = Li/c, then the unequal arm Michelson TDI variable is written in a simple

guise as2

X(t) = s1(t) − s1(t − 2τ2) − s2(t) + s2(t − 2τ1) , (4)

which looks like the standard equal-arm Michelson signal with additional time-delayed bits subtracted off. As

an interferometric technique, TDI takes the measured phase information from each arm, and delays the linear

combinations in such a way as to make the optical path lengths in the two phase signals equal3 [29–31], thereby

creating a situation where particular types of noise cancel out when the beams are differenced.

TDI data streams come in related triples – for any given possible combination (like the example written in Eq.

4), there are two related variables which are obtained by exploiting a well known “permutation symmetry” whereby

the identifying indices are permuted 1 → 2 → 3 → 1. The two companion data streams to X(t) are called Y (t) and

Z(t). Utilizing the permutation symmetry, and starting from Eq. 4 they may be written as

Y (t) = s2(t) − s2(t − 2τ3) − s3(t) + s3(t − 2τ2) (5)

and

Z(t) = s3(t) − s3(t − 2τ1) − s1(t) + s1(t − 2τ3) (6)

Other important TDI triples which appear in the literature are {α, β, γ} (the so-called Sagnac combinations [28]),

and {A, E, T} (the so-called optimal combinations [32]).

2For a full expression of X(t) with geometric factors and time delays written out in full glory, see [28].
3In essence, the TDI combinations synthesize equal-arm interferometric signals, as shown geometrically in [29].
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TDI has evolved since its inception, and is now arranged into different generations, corresponding to the inclusion

of higher order motion effects in the time delay corrections [30, 31, 33, 34]. General results derived from first

generation TDI [27, 28] are expected to carry forward and still hold true in later generations as the corrections are

small and “easy” (in some sense) to account for; general results derived for first generation TDI variables should

have corresponding valid counterparts in higher generations. As modern tools for generating LISA data streams are

becoming available (e.g., Synthetic LISA [35] and The LISA Simulator [36]), they are automatically building these

higher order TDI signals into their architecture.

Figure 6 shows the possible interferometric topologies which LISA could employ [27]; each has a moniker which

accurately describes the behaviour of the instrument when operating in that mode. As with every TDI variable,

each of these modes has a slightly different sensitivity, and will yield different instantaneous sky sensitivity. Perhaps

more importantly, these modes illustrate the ways in which LISA can function should an instrumental failure occur

while the observatory is on orbit. Careful inspection of each of these modes will show that LISA can survive the loss

of any two of the six laser links between spacecraft; the loss of an entire spacecraft would be catastrophic (removing

four laser links), and effectively cripple the mission4.

An extensive review of the fundamentals of TDI may be found in [38].

Figure 6: Five basic laser topologies are possible using TDI and the six laser signals exchanged between the three spacecraft,

known as Michelson, relay, beacon, monitor and Sagnac (after [27]).

4Even with the loss of an entire spacecraft, it may still be possible to operate the two remaining spacecraft as a xylophone detector
[37].
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2.3. TDI Applications

TDI, aside from being necessary to make long-baseline laser interferometry in space possible, has many interesting

applications which make it an invaluable tool for gravitational wave astronomy.

One of the first things a careful student of TDI will notice, is that the sensitivity curves for different TDI variables

have different shapes across the LISA frequency band. Overall, the sensitivities are all very similar, but it raises the

intriguing possibility that if a compelling astrophysical argument could be made to reshape the sensitivity curve to

provide observational access to a particularly interesting source, the choice of appropriate TDI variables can provide

some flexibility.

A particular Sagnac combination, usually denoted ζ(t), has the interesting property that it is insensitive to gravita-

tional waves at low frequencies. At frequencies below the transfer frequency, f∗ ∼ c/(2πLo) ≃ 10 mHz, the response

to gravitational waves is suppressed by roughly a factor of 1000 [27, 28]. By contrast, instrumental noise is not

suppressed. It has been suggested [39] that this provides a method whereby the LISA instrumental noise can be

validated while the observatory is on-orbit. A deconvolution of the ζ(t) data channel should yield, at low frequencies,

the pure instrumental noise uncontaminated by any but the strongest astrophysical signals. In a similar vein, it has

been suggested [40] that a similar procedure can be used to determine how much of the observed low frequency signal

coming out in a data stream is instrumental noise, and how much is simply confused astrophysical noise (e.g., from

the galactic population of compact binaries, or a stochastic cosmic gravitational wave background).

Another important TDI application related to the ζ(t) signal is the zero signal solution (ZSS) [41, 42]. The ZSS

can be used to determine the sky location of gravitational wave sources without exploiting the modulation produced

by LISA’s yearly motion around the Sun. The technique takes linear combinations of a TDI triad which reduce

to a function characterized by two parameters, namely the sky location angles {θ, φ}. When a gravitational wave

signal is present in the data, it can be “zeroed out” by searching for the values of {θ, φ} which minimize the ZSS. In

essence, the technique uses the time of flight of a gravitational wave signal across the LISA constellation to construct

a triangulation of the source location. At high frequencies, a signal can be precisely zeroed out (to the level of the

instrumental noise). At low frequencies, gravitational wave signals cannot be zeroed out; they can only be suppressed

in a fashion similar to ζ(t). This low frequency behaviour can be understood using the time-of-flight view of how

the ZSS works; at low frequencies, the gravitational wavelength is larger than the entire LISA constellation, and so

it is impossible to determine the direction a gravitational wave is coming from because the observatory is contained

inside a single cycle of the wave which is slowly varying on timescales long compared to the time of flight down the

interferometer arms. Because it does not employ Doppler modulation generated by LISA’s motion around the Sun,

the ZSS is particularly useful for burst localization on the sky. A simple estimate of the pointing accuracy of the

ZSS is5:

∆Ω =
2c2

π2A cos(α)f2
o ρ2

(7)

where fo is the frequency of the gravitational wave, c is the speed of light, A is the area enclosed by LISA constellation,

ρ is the SNR of the observed signal, and α is the angle between the gravitational wave propagation vector and the

normal to the LISA plane.

3. LISA AS AN OBSERVATORY

Once the rockets have done their job, the spacecraft are in their respective orbits, and the first laser links have been

acquired, LISA will transition from being a mission to being a viable astrophysical observatory. In a very real sense,

5This form of the solid angle error ∆Ω is an adaptation of Eq. (8.5) in [43], a closely related technique for arrays of ground-based
interferometric observatories.
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Figure 7: The X(t) gravitational wave transfer function, R(u), for near equal armlengths, plotted versus the dimensionless

quantity u = 2πfτ , where τ is the time of flight down one arm of the interferometer. This transfer function has been averaged

over all sky positions and all polarization states. This treatment of the transfer function follows [45].

LISA’s ability to observe the Universe as part of an observational enterprise depends crucially on understanding the

strength of prospective sources and the instruments ability to resolve those sources. This section looks at how the

LISA sensitivity is constructed (§ 3.1), simple ways to estimate source strengths(§ 3.2), and how the combination of

the two can be combined to make predictions about the science capability of the observatory(§ 3.3).

3.1. LISA Sensitivity

Estimating the expected LISA sensitivity as a function of gravitational wave frequency has been an active industry

for some time [27, 28, 44–47]. The matter is also confused by several common approximations [48, 49], which are

often extended and used in regimes where they are not valid. Recent work has looked at various low frequency

approximations and provided some guidance for the ranges of validity [26, 50]. Much of the confusion surrounding

the use of general sensitivity curves has been mitigated by the LISA project’s advocation of a standard tool [23]

which has been tested and shown to be consistent with standard versions of the sensitivity which have propagated

through the literature and are in use by the project.

The basic theory of the LISA sensitivity can easily be understood in simple terms by schematically identifying how

it is constructed. The principle players in the description of a sensitivity curve are the power spectral density of the

instrumental noise, Sn(f), the noise transfer functions, Rn(f), and the gravitational wave transfer function R(f). In

principle, the instrumental noise is a composite of several different noise processes, {S1, S2, . . .}, each of which has

its own noise transfer function, {R1,R2, . . .}.
Transfer functions6 describe the response of an instrument, as a function of frequency, to signals which are incident

upon it; in essence, a mapping between input and output frequencies of the observatory. The form of the transfer

6Also sometimes referred to as response functions.
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Figure 8: X(t) noise transfer functions for near equal armlengths, plotted versus the dimensionless quantity u = 2πfτ . The

left pane shows the transfer function for position noise, R1(u), and the right pane shows the transfer function for acceleration

noise, R2(u). This treatment of the transfer functions follows [45].

function depends on the choice of interferometric variable being used, and must be derived for both gravitational

waves and different sources of noise. Figure 7 shows the gravitational wave transfer function, averaged over all sky

positions and all polarization states, plotted versus the dimensionless quantity u = 2πfτ , where τ is the time of flight

down one arm of the interferometer. Figure 8 shows the transfer functions for acceleration and position noises when

the X(t) TDI variable is used.

Noise for observatories like LISA is generally classified into two broad categories: acceleration noise and position

noise. Each category has many different constituents contributing to it at various levels. For example, acceleration

noise is comprised of sources such as thermal distortion of the spacecraft, electrical forces on the test masses, residual

gas impacts, and many others. Similarly, position noise is a composite of sources such as laser shot noise (the

single largest source), residual laser phase noise, and pointing instabilities. Extensive lists of the “noise budgets”

for position noise and acceleration noise may be found in Tables 4.1 and 4.2, respectively, of the LPPA [20]. These

budgets characterize the allowable contributions from each source of noise if the overall performance requirements for

the observatory are to be met. Figure 9 shows the expected rms composite noise spectrum for the LISA observatory

operating at the mission specifications7. The figure clearly shows the two regimes. At low frequencies, the spectrum

is dominated by steeply rising acceleration noise8, whereas at high frequencies the spectrum is dominated by the flat

profile of the position noise.

As illustrated here, this is a purely idealized representation of the noise, though numerical simulations designed to

model the injection of instrumental noise into the LISA signals show similar character[26]. The true noise spectrum

will almost certainly have fluctuations and structure, and have slope and character which deviate from the simple

power law predictions shown here. One important aspect of the LISA noise which is sometimes hinted at in the

literature, but which has yet to be specified, is the very low frequency performance of the observatory. Somewhere

between f ∼ 10−4 Hz and f ∼ 10−5 Hz, the acceleration performance is expected to become much worse, effectively

forming a low-frequency cutoff for the observatory. Exactly characterizing this cutoff, and engineering around it is

difficult owing to the long timescales involved with processes which shape the spectrum at low frequencies. Where

the cutoff falls can have important implications for LISA’s capabilities as an astrophysical observatory (see, e.g.,

[51, 52]).

The noise spectra and transfer functions are combined to estimate the sensitivity of the observatory as a function

7The treatment shown in the figure follows [45] which predicts the functional form of the noise. Numerical simulations of the expected
instrumental noise spectrum have also been produced in the literature, notably in [26].

8Sometimes this is called red noise because it is stronger at lower frequencies.
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Figure 9: Expected LISA rms noise spectrum, as a function of observed frequency. The sharp rise at low frequencies is set by

the acceleration performance of the instrument, whereas the floor is set by the position noise performance of the instrument.

This treatment of the noise follows [45].

of gravitational wave frequency f . It is conventional to plot the spectral amplitude hL
f (f) which is related to the

noise spectra and transfer functions as9

hL
f (f) =

√

Sn · Rn

R , (8)

and has units of 1/
√

Hz. The general representation of the sensitivity is more appropriately written as

hL
f (f) =

√

S1 · R1 + S2 · R2 + . . .

R . (9)

The standard LISA sensitivity curve is shown in Figure 10. Note that the curve extends down to f = 10−5 Hz, into

the regime where the low-frequency performance is not well understood or characterized.

Much comparison is often made between ground-based detectors like LIGO and spaceborne detectors like LISA;

indeed, much of the mathematical machinery used to describe gravitational wave detection for ground based obser-

vatories has carried over to the LISA literature. With this in mind, it is useful to note that in the context of LIGO

one often talks about “noise curves” because the gravitational wave transfer functions are roughly constant at the

frequencies covered by the detectors, doing nothing to the shape of the detector noise as a function of frequency,

only scaling it by a constant. By contrast, the LISA gravitational wave transfer function is a function of frequency,

significantly modifying the shape of the noise, particularly in the regime where the detector arms are long compared

to a gravitational wavelength. The practical use of the phrase “noise curve” in the literature is to represent the

threshold strength a source needs to have to be seen above all other effects related to the instrumental performance.

This is still the case with a sensitivity curve; the instrumental response function alters the required strength a signal

9The superscript L denotes the value of the spectral amplitude for the LISA detector, as opposed to the spectral amplitude for a
source, discussed in later sections.
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Figure 10: The standard LISA sensitivity curve, where the instrumental threshold corresponds to sources with SNR = 1. The

region above the threshold curve is generally referred to as the LISA discovery space. This sensitivity curve was generated by

the Online Sensitivity Curve Generator [23] at its default settings.

needs to have to be detectable. In the strictest sense, however, the term noise curve most appropriately refers to

a quantity like that plotted in Figure 9. In the LISA context, a sensitivity curve, shown in Figure 10, describes

the instrument’s capabilities as an astrophysical observatory, and folds in aspects of the instrumental noise with the

instrument response function.

As a general rule, the average end user interested only in the LISA sensitivity from the standpoint of evaluating

prospects for potential observations of an astrophysical source does not need to worry about the nuances of transfer

functions and the mechanics of constructing a sensitivity curve. It is important, however, to be aware that the

sensitivity is not plotted the same by everyone in the literature, and that some representations are more suited than

others for particular astrophysical applications. The two most common representations of the sensitivity are plots

of the dimensionless strain hL, and plots of the spectral amplitude (or root spectral density) hL
f . Making a choice of

sensitivity curve to use in a given computation is discussed at greater length in section 3.3.

Another common habit that appears repeatedly in the LISA literature is to plot sensitivity curves “for signal-to-

noise ratio of 5”10. The basic assumption in this approach is that the pictorial representation of the instrumental

sensitivity should account for the fact that gravitational wave data analysis is difficult and sources will likely not

be detectable if their strength is only equal to that of the instrumental threshold; to make up for that belief, the

sensitivity curves are shifted up by a factor of 5. It has become more common in the recent literature to simply plot

sensitivity curves for SNRs of 1, with the understanding that sources only marginally above the sensitivity are likely

unaccessible. In general, the threshold sensitivity curve can be written as

hL
f (f) = ρo

√

Sn · Rn

R , (10)

10This is the habit, for instance, in the LPPA [20].
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where ρo is the desired threshold SNR at the level of the curve. For all the figures in this article, ρo = 1. Readers of

the LISA literature are advised to beware of these issues, and carefully consider any plot they encounter.

3.2. Gravitational-wave sources

Binary systems are the subject of much attention in gravitational wave astronomy because in the bands accessible

to modern broadband interferometric detectors, they are expected to be among the most prevalent of sources. To that

end, it is useful to have in hand pocket formulae which are convenient for quickly estimating source characteristics.

For circularized binaries which are evolving slowly, the gravitational wave emission is characterized by

chirp mass Mc =
(m1m2)

3/5

(m1 + m2)1/5
(11)

scaling amplitude ho =
Mc

D
(πfMc)

2/3 ⇒ G

c2

Mc

D

(

G

c3
πfMc

)2/3

(12)

chirp ḟ =
96

5

f

Mc
(πfMc)

8/3 ⇒ 96

5

c

G

f

Mc

(

G

c3
πfMc

)8/3

(13)

where the equations on the right side of the ⇒ have had conventional units restored to facilitate simple applications

in astrophysical scenarios11. The phase φ(t) of the binary evolves in time as

φ(t) = 2π

(

f t +
1

2
ḟ t2

)

+ φo , (14)

where ḟ is the chirp given by Eq. 13, and φo is the initial orbital phase of the binary. This simple linear description of

a binary chirp can be used to estimate the time it takes a circularized binary to evolve between any two frequencies

f1 and f2 by integrating the first order differential equation in Eq. 13 to yield

∆t = κ
[

f
−8/3

1 − f
−8/3

2

]

(15)

where

κ =
5

256
M−5/3

c π−8/3 ⇒ 5

256

(

G

c3
Mc

)−5/3

π−8/3 . (16)

This type of analysis is common in gravitational wave physics, and is the foundation for the classic treatment of binary

evolution by Peters and Mathews [53, 54], which treat not only circularized binaries, but also eccentric binaries.

The time to coalescence, tc, is a favored parameter in gravitational wave astrophysics because it embodies a

binary system’s current evolutionary state, and because it embodies when a gravitational wave signal will end for

observations of the late stages of inspiral. For a binary which is observed at a frequency f1, a simple estimate of tc
can be obtained from Eq. 15 by setting f2 equal to the penultimate frequency the binary will have before merger.

In many instances, the binary components are treated simply as point masses, and the inspiral ends when their

separation goes to zero and f2 → ∞. This is the case in the classic treatments of Peters and Mathews [53, 54], who

express the lifetime, τgw, as an integral over the eccentricity

τgw = τo

∫ eo

0

de
e29/19

[

1 + (121/304)e2
]1181/2299

(1 − e2)3/2
, (17)

11If one wishes to use the equations written in geometricized units, on the left side of the ⇒, then a useful conversion factor to know
is: 1M⊙ = 1476.687m = 4.925698 × 10−6s.
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where the scaling constant τo is expressed in terms of the initial pericenter rpo
and initial eccentricity eo of the orbit:

τo =
15

304

r4
po

(1 + eo)
4

m1m2(m1 + m2)e
48/19
o

[

1 +
121

304
e2

o

]−3480/2299

. (18)

The Peters and Mathews inspiral lifetime for a circular orbit with initial radius ao is given by

τcirc =
5

256

a4
o

m1m2(m1 + m2)
. (19)

Note that this expression for τcirc can be derived from Eq. 15 by letting f2 → ∞ (equivalent to letting the orbital

period go to zero)12.

For binary systems which involve black holes, the inspiral stage is taken to end when the frequency evolves to

the frequency of the innermost stable circular orbit (ISCO)13. Conventional descriptions for the ISCO come out of

pure gravitational theory, and again are generally only valid for point particles; it is not clear if the ISCO is well

defined in the equal mass limit, or even if there is such a thing as an ISCO for extended bodies. To circumvent this

problem, a helpful approach is to make a conservative estimate of the frequency at which an inspiraling body makes

the transition from inspiral to plunge. One useful approximation, motivated by a variety of studies looking for the

ISCO, takes the coalescence frequency to be [51]

fc = 41mHz

(

105M⊙

m1 + m2

)

. (20)

Chirping binaries are of particular interest in gravitational wave astrophysics, as they enable a way to accurately

determine the distance to the gravitational wave source, independent of any other observations. This can be seen

by considering the chirp in Eq. 13 and the binary amplitude in Eq. 12. If the chirp ḟ at a given frequency f can be

measured, then Eq. 13 can be solved for the chirp mass:

Mc =

[

5

96
π−8/3f−11/3ḟ

]3/5

. (21)

With the chirp mass, and the measured amplitude ho at frequency f , then Eq. 12 can be solved for the distance to

the binary:

D =
Mc

ho
(πfMc)

2/3 =
5

96π2

1

ho

ḟ

f3
(22)

More detailed descriptions of gravitational wave generation for generic binary motion, particularly in cases where

Keplerian orbits are adequate for describing the trajectories of binary components are discussed at great length

in the literature [53, 54, 56]. For many binaries in the LISA band, these treatments should be adequate, valid at

quadrupolar order. For highly relativistic, strong field binaries, higher order Post-Newtonian waveforms (see e.g.,

[57]14) may be necessary to make adequate estimates of the gravitational wave emission.

When discussing the strength of gravitational waves, it is often useful to be able to construct conventional astro-

physical quantities from the dimensionless strain h, which for binaries scales with the amplitude in Eq. 12. Particularly

useful quantities in astrophysics are the luminosity, L, which characterizes the amount of energy per unit time the

gravitational waves are carrying away from the system, and the flux, F , which characterizes the power per unit area

12To accomplish this derivation, you will need to make judicious use of Kepler’s third law, and the fact that for circular orbits, the
gravitational wave frequency is related to the orbital frequency by f = 2forb.

13For binaries where the primary is a black hole of mass M• and the orbit has an eccentricity e, an equivalent condition is that
inspiral ends (the binary plunges) when the pericenter of the orbit is less than the radius of the unstable circular orbit located at[55]:
ruco = 2M•(3 + e)/(1 + e).

14Another treatment of the waveform calculations outlined in [57], useful for LISA applications, is derived in [58].
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is received at a given distance from a source. Writing generic expressions for these quantities is difficult due to the

variety of sources which are of potential interest in the LISA band15. If one restricts attention to binaries, then

simple expressions have been worked out for the average luminosity[53]

L =
32

5

(2πforbMc)
10/3

(1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4

)

, (23)

where forb = 1/Porb is the orbital frequency of the binary. When considering only a small part of the emitted

gravitational waves (e.g., the part of the wavefront subtended by a detector), it is often more useful to think in terms

of the gravitational wave flux F . For the averaged luminosity in Eq. 23, the flux is defined from the luminosity as

F =
L

4πD2
=

8

5πD2

(2πforbMc)
10/3

(1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4

)

, (24)

when the binary is a distance D away. For circular (e = 0) binaries16, comparison with Eq. 12 shows that the flux

scales as17 F ∝ (fho)
2, and the luminosity scales as L ∝ (fhoD)2.

3.3. How strong is a source?

Gravitational wave astronomy is rich in terms of the variety and number of different sources which will be accessible

to the current generation of observatories. At the same time, the field is in its infancy as an observational science,

and as observers we are still learning the ropes in our efforts to best describe and explain our science to our colleagues

and the rest of the astronomical community. These two facts have given rise to a plethora of ways to represent the

strength of gravitational wave signals and their relationship to the sensitivity of our detectors. Several common

representations are repeatedly encountered in the literature.

Far and away the most intuitive quantity to think about and plot is simply dimensionless strain h, as this is the

quantity which most closely ties to the theoretical foundations of general relativity which gave rise to gravitational

wave astronomy. As an observational quantity, h depends on the time evolution of the mass distribution in the

source. It was Einstein himself who first derived the now famous quadrupole formula [60] which expresses the strain

in terms of time derivatives of the reduced quadrupole moment tensor Iab(t) of the mass distribution:

hab =
2

r
Ïab(t − r) . (25)

Evaluating the quadrupole formula for a binary in a Keplerian orbit will reveal the scaling noted in Eq. 12.

When attempting to plot the relationship between the strength of a source and the instrumental sensitivity, it

is important to choose an appropriate representation, and to plot the same quantity for the source and sensitivity

curve.

A favored quantity to plot is the spectral amplitude, hf (f), which is the same quantity the sensitivity is described

in terms of in Eq. 8. Different types of sources require different methods of constructing a spectral amplitude suitable

for plotting on such a sensitivity curve.

Continuous sources, such as stationary, circular (monochromatic) galactic binaries narrow their bandwidth ∆f

when observed for long periods of time Tobs. If the binary has strain amplitude ho at frequency f , then it will look

15In general, if one knows either the time dependent quadrupole moment of the system, or the time dependent waveform amplitudes
(derived from the quadrupole moment), then one can compute the anisotropic flux and luminosity from any astrophysical system of
interest. Extensive discussion of computing radiated energy and angular momentum in astrophysical systems may be found in Chapter
36 of [59].

16For circular binaries, the gravitational wave frequency is related to the orbital frequency by f = 2forb.
17This scaling is dimensionally correct and is adequate for simple computations; a proper calculation will show that the flux scales as

F ∝ ḣ2.
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like a single spectral line in the Fourier spectrum with spectral amplitude

hf (f) =
ho√
∆f

= ho

√

Tobs . (26)

If one desires to plot the binary strain ho rather than the spectral amplitude, the appropriate sensitivity curve is a

strain curve, computed from Eq. 8 as a function of the observing time Tobs as

hL =
hL

f√
Tobs

. (27)

Note that in terms of strain, the LISA sensitivity improves with extended observation time Tobs. For chirping

binaries18, the detectable strain hD at a given frequency can be plotted against the detector strain curve given by

Eq. 27 by taking the scaling amplitude and multiplying by the total number of cycles Ncy of radiation the binary

emits at a given frequency f :

hD = ho ·
√

Ncy . (28)

If the frequency resolution of the detector is ∆f = 1/Tobs, then the time a binary spends between two frequencies f1

and f2 = f1 + ∆f (the “time in a frequency bin”) is given by Eq. 15 as

tbin =
8

3
κ

f
−11/3

1

Tobs
, (29)

where the assumption ∆f ≪ f1 has been employed. At any given frequency in the LISA band, Ncy depends on how

long a binary spends in the frequency bin around that frequency, and is given by

Ncy = f · tbin ≃ 8

3

κ

Tobs
f−8/3 . (30)

For bursting sources, which have short time profiles of width τb and maximum burst amplitude hb, the central

frequency of the burst is around f ∼ 1/τb and the strength of the burst can be plotted on the spectral amplitude

graph as

hf = hb
√

τb . (31)

Stochastic backgrounds are most often characterized in terms the strain spectral density of the background, Sh(f),

and is related to the energy density by

Ωgw(f) =
4π2

3H2
o

f3Sh(f) . (32)

The threshold sensitivity of the detector to stochastic profiles Ωgw(f) is plotted by evaluating Eq. 32 with Sh(f) =

(hL
f )2, where hL

f is the threshold spectral amplitude of the LISA detector defined in Eq. 8.

The strength of a stochastic backgrounds generally can’t be expressed in terms of a definitive scaling amplitude h

precisely because they are stochastic; they fluctuate and vary with time, so the power spectral density Sh(f) is the

desirable quantity to work with because it encodes the strength of the background in such a way as to describe how

much variation there is in the background at a given frequency. This is a fundamental quantity associated with the

background. However, it is often desirable to work with strain h because strain is the direct observable in the LISA

observatory — the data streams encode the strain measured in the arms of the interferometer. As a consequence

18An observatory will detect that a binary is chirping when the binary frequency is f > fs, where fs is the stationary frequency defined
in Eq. 46.
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when working with backgrounds19 it is often useful to compute a characteristic strain hc which is related to the

power spectral density by

hc =
√

f · Sh . (33)

This quantity is dimensionless, as is appropriate for a strain, and is independent of the LISA observation time. To

make a plot of hc for a stochastic background, one must compute the appropriate threshold sensitivity curve by

evaluating Eq. 33 with Sh(f) = (hL
f )2, where hL

f is the threshold spectral amplitude of the LISA detector defined in

Eq. 8.

The key lesson to take away from these myriad of possible representations for source strength is that if the strength

is to be indicated on a plot, the threshold sensitivity must match the method used to compute the strength of the

source. In most instances, the fundamental quantity is the power spectral density Sh(f) which presumably is known

for the source, and is given by the square of Eq. 8 for the detector20.

As an estimator of detectability, the signal-to-noise ratio (SNR) is greatly favored in gravitational wave astro-

physics, as it is simple to estimate in many cases, and many important quantities scale with the SNR, such as error

in parameter estimations and computational timescales for certain kinds of search algorithms.

For periodic sources, with spectral amplitude defined by Eq. 26, and given the shape of the LISA sensitivity curve,

hL
f (f), the signal to noise ratio, ρ, is then estimated as

ρ =
hf (f)

hL
f (f)

=
ho

√
Tobs

hL
f (f)

. (34)

This estimate of the SNR will not be precise in the regime where the structure of the waveform changes on timescales

short compared to the observation time, or where the shape of the instrumental noise is changing rapidly as a

function of frequency. For general computations, however, this simple estimator is a good “first cut” for considering

the strength of sources which can be computed rapidly from simple parameters describing the system of interest.

Similar estimators can be created for other kinds of sources. For a bursting source, with maximum amplitude hb

and a width in time of τb, the signal will be centered at a frequency of approximately f ≃ 1/τb. The burst will have

spectral amplitude given approximately by Eq. 31 and have SNR

ρ =
hb
√

τb

hL
f (f)

. (35)

For stochastic gravitational wave backgrounds with power spectral densities Sh(f), the SNR can be estimated by

ρ =

√

Sh(f)

hL
f (f)

. (36)

Simple estimators like Eqs. 34-36 provide a quick way of reducing the problem of SNR estimation to the backs of

envelopes and quick and dirty computer programs. In many scenarios, it is computationally implausible to consider

computing the SNR in any other way (e.g., computing the SNR for each of the 107 compact binaries in the galaxy).

A careful practitioner should treat these estimators with care, and use them to guide calculations or as the first

step in a hierarchical program which will ultimately consider a more robust estimation of the signal to noise ratio

motivated by the data analysis technique of choice.

An obvious problem with these simple estimators of the SNR is they really only convey information about how

strong a source is when it is at a single gravitational wave frequency f . As will be seen in Section 4, many sources in

the low frequency band will be dynamically evolving on timescales which are short compared to a typical observation

19Or other broadband sources, such as sources which sweep in frequency during a LISA observation.
20The spectral amplitude hL

f
(or “root spectral density”) of the detector is the default output for LISA sensitivity curves generated

with the Sensitivity Curve Generator [23].
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time. In a very real sense, making good SNR estimates depends on the evolution of the source during the observing

run. An improved, but relatively simple SNR estimate is to integrate over the spectral energy distribution of the

emitted gravitational waves, dE/df , weighted by the instrumental sensitivity. The SNR, averaged over all sky

positions and source orientations, is defined in this case by[51]

〈ρ2〉 =
2

5π2D2

∫ ∞

0

df
1

f2SN (f)

dE

df
, (37)

where D is the distance to the source21, and SN (f) = (hL
f )2, where hL

f is the sensitivity curve defined in Eq. 9 and

plotted in Figure 10. This SNR is different than the estimators shown in Eqs. 34-36 in that it is integrated over all

frequencies at which the source is observed, and is a cumulative SNR which characterizes the entire LISA observation

of the source.

Different types of sources will have different spectral energy distributions. For instance, an inspiralling binary

has[51, 59]

dE

df
=

1

3
π2/3µM2/3f−1/3 . (38)

The spectral energy distributions can be derived for other gravitational wave emission scenarios22, and used to

compute the expected SNR for almost any desired observation scenario. More robust SNR estimates can be made

when a specific data analysis procedure (e.g., optimal matched filtering) is chosen, and the reader is encouraged to

explore the literature on the subject for specific techniques of interest.

The SNR is of particular interest not only from the standpoint of determining whether a sources is detectable,

but is often a good estimator for determining errors in the estimation of astrophysical parameters. Several studies

of LISA’s parameter estimation capability have been carried out [48, 58, 61], and found that the errors in measured

parameters scale as inverse powers of the SNR. For example, the error is LISA’s ability to deduce the sky position

of a source scales like

∆Ω =
Ωo

ρ2
, (39)

where Ωo is a scaling constant for the error determined by the various parameter estimation studies. The result

embodies the intuitive notion that it is easier to determine the properties of a bright signal than a dim signal. This

kind of scaling has been put to use to understand LISA’s performance as an astronomical observatory in a variety of

scenarios, ranging from locating globular clusters [62] to linking supermassive black hole mergers with electromagnetic

observations [52]. Online tools have started to appear [63] which quickly estimate the LISA parameter errors for

single sources.

4. ASTROPHYSICAL SOURCES

While the design and construction of interferometric observatories is one of the grandest endeavours in experimental

science, and the proposed measurements of the minute stretching of spacetime is fantastic in the extreme, the true

driving force in this new era of gravitational wave science is the promised return in our ability to probe, characterize

and understand astrophysical systems.

In this section, the low-frequency gravitational wave spectrum is examined in detail, with particular attention to

broad classes of sources which will be important contributors to the science LISA will illuminate. A recent review of

gravitational wave sources can be found in [64].

21For sources at cosmological distances, the distance D is the luminosity distance D(z), and the constant coefficient in front of the
integral in Eq. 37 is multiplied by a redshift factor of (1 + z)2.

22For instance, dE/df for the ringdown phase, after black holes collide, is given by Eq. 3.18 of [51].
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4.1. Science with LISA

The science case for LISA is compelling, made strong by the fact that there are guaranteed sources in the low-

frequency gravitational wave band, and consequently, a definitive case for the science that the observatory should be

capable of returning. In the broadest strokes, the LISA science goals to understand the Universe from low-frequency

gravitational wave observations can be stated in four “pillars”:

⊲ to understand the origin and evolution of compact, massive objects with strong gravitational fields

⊲ to understand the evolution of populations of compact, massive objects on scales ranging from the size of the

galaxy, to the size of the known Universe

⊲ to understand the structure and evolution of the Universe, from times shortly after the Big Bang to the present

⊲ to probe the fundamental theory of gravity in regimes where the gravitational fields are strong and dynamic

One can think of each of these pillars by categorizing questions about the Universe. A simple and non-exhaustive

list of interesting questions might be:

⊲ Origin and evolution of compact objects: How do supermassive black holes form and grow? How do short

period binary white dwarf systems evolve in mass and period? What kinds and ratios of stellar mass objects

are captured and swallowed by supermassive black holes in galactic nuclei?

⊲ Evolution of populations of compact objects: How many supermassive black hole binaries are there in the

Universe? What role do stars and/or gas play in helping supermassive black hole binaries merge? How do star

clusters in the centers of galaxies evolve under influence of a supermassive black hole? Are the compact stellar

mass binaries in the galaxy distributed in the same way as the rest of the mass in the galaxy? What is the

density of binaries in the galactic halo?

⊲ Structure and evolution of the Universe: Is there a measurable spectrum of primordial gravitational waves

emanating from a time prior to recombination, and if so, what are its properties? How does the redshift

distribution of supermassive black hole masses correlate with the formation of large scale structure?

⊲ Probe the fundamental theory of gravity: Do gravitational waves propagate at the speed of light? How many

gravitational wave polarization states are there? Does the Kerr solution of general relativity really approximate

an astrophysical black hole? Are there other spin fields (e.g., scalar fields) in the correct fundamental theory

of gravity?

These and many other questions will be answered, and new questions posed, as a consequence of observing the

various objects which populate the low-frequency gravitational wave band. Our current understanding of the band

can be characterized in broad taxonomical classifications, illustrated by the swaths in Figure 11 which roughly

delineate the expected area signals in the band will cover. The primary players in the low frequency arena are black

holes of all sizes23, extreme mass ratio binaries where the primary mass is significantly larger than the secondary,

and galactic binaries.

The rest of this section is devoted to discussion of each of these broad taxonomical areas, and the science that

LISA will enable with respect to each of these sources.

23There are three distinct populations of black holes that will be important to LISA: inspiralling and merging supermassive black hole
binaries (the terms supermassive is used loosely, as expected masses range from ∼ 103M⊙ to ∼ 109M⊙), supermassive black holes which
are the primary in extreme mass ratio inspirals, and stellar mass black holes which are in binary systems (either as EMRIs, or with a
nearly equal mass companion).
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Figure 11: The LISA discovery space, delineated by the instrumental threshold corresponding to sources with SNR = 1. The

broad areas marked indicate in a rough way what types of sources are expected to populate each region of the discovery space,

as discussed at great length in § 4. Note that over much of the discovery space, the populations are overlapping, and data

analysis procedures will need to be capable of handling this.

4.2. Compact Galactic Binaries

The low-frequency gravitational wave spectrum is alive with the background murmur of a vast population of

compact short period binaries in the Milky Way galaxy. The galactic population of close binaries is largely comprised

of white dwarfs, but can also include neutron stars and stellar mass black holes. Any combination of these three

constituents is plausible. The overall population itself is usually considered in two categories: the resolvable binaries,

and the confusion foreground. While the dominate galactic binary signal is expected to come from our own Milky

Way galaxy, there is expected to be a weak confusion background of extragalactic binaries which may be detectable

by an instrument like LISA.

Attempts to estimate the galactic gravitational wave background24 have a long history, beginning with the pio-

neering work of Hils, Bender and Webbink (HBW) [65], who calculated the gravitational radiation incident at Earth

from different binary populations distributed throughout the galaxy.

Building on the work of HBW, Hils and Bender later reconsidered the galactic background, attempting to estimate

at what frequencies LISA would become confusion limited [66, 67] based on the theoretical abundances derived in

HBW. The confusion limit is the overall amplitude, as a function of frequency, where an instrument is not able to

resolve two signals in the data stream. The conventional wisdom is that if two binaries with frequencies f1 and f2

are not separated by more than the LISA frequency resolution, ∆f = 1/Tobs, where Tobs is the LISA observation

time, then they will not be individually resolvable from one another. The binaries are resolved when

f1 − f2 > ∆f . (40)

24In some of the literature, the signal from the galactic population of close binaries is referred to as the galactic foreground, because
the galactic sources lie between our detectors and other, more distant systems LISA will observe, such as SMBH binary mergers.
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Figure 12: The classic estimate of the confusion limited galactic binary background due to Hils and Bender [67] is plotted over

the standard LISA sensitivity. The solid points represent the standard estimates of the strength of the six verification binaries

listed at the top of Table II (note they are somewhat higher than the values given by the simple scaling amplitude, owing to

a more sophisticated treatment).

This is the LISA equivalent of the Rayleigh resolution criterion in electromagnetic astronomy, where two point sources

(e.g., stars) cannot be separated in an image because the resolving power of the telescope cannot “split” them. The

common nomenclature in the LISA literature is that “the binaries are in the same frequency bin.”

The Hils-Bender estimate is the most common background used in the LISA literature. The background is often

treated as another source of noise and merged with the instrumental sensitivity to make an effective sensitivity which

is used as the baseline for data analysis studies. The background is plotted over the standard sensitivity curve in

Figure 12.

More recent work on the galactic background has turned to population synthesis, which generates a progenitor

binary population, then evolves that population forward in time to the present day, accounting for evolutionary

processes that cause the mass and period distributions of the binaries to evolve. Many realizations have been

generated [68–71], but these calculations show a range of predictions for the overall number of binaries in the

population and as a consequence will yield different estimates of the ultimate confusion level for an instrument like

LISA. What the ultimate confusion limit is depends on the overall number of binaries in the galactic population, and

the identification and subtraction algorithms25, which remove individually resolvable systems from the data stream.

The abundance of compact white dwarf binaries in the galaxy, characterized most often as a value for the local space

density, is the largest single uncertainty in determining what the overall level of the galactic confusion background

will be. Early searches for short period white dwarf binaries did not recover any systems [72]. Surveys in the

mid-1990s began to detect a few systems [73, 74], and more recently the SPY (Supernova Ia Progenitor surveY )

project has undertaken a extensive program to spectroscopically survey 1500 white dwarfs, resulting in the discovery

of many binaries of potential interest (e.g., [75, 76]) for characterizing the low frequency background. Never-the-less,

25Like gCLEAN, discussed later in this section.
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uncertainties still exist in characterizing selection effects in surveys for close white dwarf systems, and this impacts

the ability to convert new observations into useful numbers on abundances which can be effectively used to predict

the character of the low frequency gravitational wave background. A range of predicted levels can be seen in the

various population synthesis models. Hils and Bender [66] opted to show two curves for their background estimate:

the 100% curve derived directly from the HBW abundances, and a more optimistic 10% curve, reduced from the full

curve. The 10% has almost uniformly become the default in the LISA literature, and is what is shown in Figure

1226. When surveying the LISA literature, care should be taken to note whether estimates and simulations of the

background which build upon the previous work of HBW or Hils and Bender include the 100% or 10% populations.

Readers who are interested in the galactic background, or are seeking to include the effects of the background in their

research should be aware of the overall uncertainty and consider the implications of this uncertainty when drawing

conclusions about their results.

An often useful quantity when working with the background is the density of sources in frequency space, dN/df .

A common value is

dN

df
= ηof

−11/3 , (41)

The value of the constant ηo is determined by the number of binaries, N∗, in the frequency band of interest:

N∗ =

∫ f2

f1

df
dN

df
. (42)

A good value for the scaling constant is ηo = 2 × 10−3 [77, 78], and using this scaling in Eq. 42 in the LISA band

from f1 = 10−4 Hz to f2 = 0.1 Hz, one finds N∗ = 3.5 × 107 close binaries, in good agreement with expectations. In

principle, a value for ηo should be worked out for every background realization, but this form is often adopted and

useful in many scenarios. As an example, one can make a rudimentary estimate of the frequency where the number

of binaries in a LISA frequency bin is N∗ = 1 and sources in the binary background become individually resolvable.

To do this, set f1 = fo and f2 = fo + ∆f in Eq. 42. This yields:

N∗ =

∫ fo+∆f

fo

df (dN/df)

= ηo ·
3

8
f−8/3

o

[

1 −
(

1 +
∆f

fo

)−8/3
]

≃ ηof
−11/3
o ∆f , (43)

where the last step has employed the approximation ∆f ≪ fo. Setting N∗ = 1, one can solve for fo:

fo =

[

ηo∆f

N∗

]3/11

= 1.6 mHz . (44)

Above this frequency, the occupation number of a single LISA frequency bin is generally less than 1 for Tobs ∼ 1

yr. The exact frequency at which the background transitions from being confusion limited to individually resolved

sources depends on the exact character of the background, the total observing time27 Tobs, and the data analysis

procedure being used to identify sources. The exact point at which the transition occurs is the subject of much

research [79], but a good rule of thumb to account for all these mitigating issues is to take the confusion frequency

to be fo ≃ 3 mHz.

Individually resolved sources will be found in the low-frequency band in two types. The first type are binaries which

exist at frequencies above the confusion frequency, f & fo. In this regime, the density of binaries (e.g., as given by

26The curve shown in Figure 12 is the 10% curve with the additional population of cataclysmic variables described in [67].
27Remember that the observing time sets the LISA frequency resolution, ∆f = 1/Tobs.
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Table II: LISA Verification Binaries. There are many compact galactic binaries, close to the Earth, which have been studied

electromagnetically and parameters are known well enough to predict that they will be guaranteed LISA sources, visible very

soon after the observatory begins operations. These six binaries are generally known as the verification binaries, and are the

most well understood. Physical data is from [80], and periods are from NSSDC catalog 5509 [81].

Name RA (J2000.0) DEC (J2000.0) Orbital Period (s) Distance (pc) m1(M⊙) m2(M⊙) ho

AM CVn 12h 34m 54.58s +37d 37m 43.4s 1028.73 101 0.5 0.044 1.24 × 10−22

HP Lib 15h 35m 53.165s −14d 13m 11.51s 1118.88 165 0.6 ∼0.03 5.57 × 10−23

GP Com 13h 05m 43.44s +18d 01m 02.2s 2791.58 165 0.5 ∼0.02 1.79 × 10−23

V803 Cen 13h 23m 44.54s −41d 44m 32.1s 1611.36 ∼100 0.6 ∼0.02 4.83 × 10−23

CR Boo 13h 48m 55.39s +07d 57m 30.6s 1471.31 157 0.6 ∼0.03 4.88 × 10−23

CP Eri 03h 10m 32.83s −09d 45m 06.2s 1723.68 ∼100 0.6 ∼0.02 4.62 × 10−23

Eq. 41) is less than one binary per frequency bin, and the binaries do not overlap with one another28. In this regime,

any galactic binary is individually resolvable as long as it is strong enough to be seen over the instrumental noise

of the observatory. The second type, binaries at gravitational wave frequencies less than the confusion frequency,

f . fo, are in a regime where Eq. 41 predicts that the occupation number of a LISA frequency resolution bin is

greater than one29. These binaries are individually resolvable only if they are strong enough to be seen above the

composite noise spectrum of the instrument and galactic confusion background.

The individually resolvable galactic binaries are important for many reasons. The ability to resolve an isolated

compact binary should allow the study of the structure of the component white dwarfs, as well as tidal interactions

between the two bodies in the compact binary. This can have important implications for our understanding of doubly

degenerate progenitors of Type Ia supernovae, as well as providing a galaxy wide probe of a highly evolved stellar

population. The easiest parameter to extract from each of the individual detections will be the gravitational wave

frequency, which is directly related to the orbital period. Therefore the detection of a resolved population will provide

a direct probe of the period distribution of the compact binaries in the galaxy. Additionally, a group of well studied

binaries which are known in advance of LISA’s launch will also provide an opportunity to test and validate data

analysis and subtraction procedures immediately after the observatory’s “first wave”30.

Estimates suggest that LISA should be capable of resolving ∼ 5000 to ∼ 10, 000 individual binaries, distributed

throughout the entire galaxy. Among these systems will be a set of known verification binaries. The verification

binaries are individually resolvable systems which have been well studied and characterized though electromagnetic

observations. Table II lists the location and known properties of several of the verification binaries which are currently

known.

The search for other LISA resolvable systems is an ongoing endeavour. Extensive archived observational data

exists (e.g. [82]), a fact which has been exploited to estimate LISA’s sensitivity to known cataclysmic variables [83].

New binaries which could potentially be very important to LISA are also being discovered in large photometric and

spectroscopic data sets, such as the Sloan Digital Sky Survey [84]. It is important to note that while many verification

binaries are currently known, a complete sample of bright binaries which span the entire LISA science band does not

yet exist; such a population would be useful before the observatory launches.

Mass transferring (“interacting”) white dwarf binaries are also an important source which will radiate strongly in

28The orbital motion of a detector around the Sun will cause a binary signal to spread in frequency by an amount (∆f/f) ≃ v/c ≃
9.94 × 10−5. The implicit assumption made when considering resolvable binaries is that a suitable demodulation of the received signals
from any given direction on the sky has been performed, and the frequency spectrum of the binary is simply that which would be seen
by an observer at the solar system barycenter.

29This is true even in the demodulated, barycentric spectrum.
30First wave is a term analogous to the electromagnetic tradition of first light, when a new telescope’s mirror is first exposed to starlight,

only in LISA’s case it will be first exposure to gravitational waves. Some gravitational wave astronomers employ the nomenclature “first
light” to refer to the first time laser light is passed down the arms of an interferometric observatory.
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Figure 13: The number density of close galactic binaries as a function of sky position, plotted in ecliptic coordinates, based

on the population synthesis models of [70].

the LISA band. LISA will be able to identify more interacting white dwarf binaries than any previous survey, and

will not be biased toward those close to the Earth – they will be visible throughout the entire galaxy. Characteristics

of mass transferring binaries should easily be seen in gravitational wave data. Early in inspiral phase, when the

binaries are still detached, it is likely tidal effects become important and provide a mechanism for the transfer of

angular momentum and energy which will modify the predicted inspiral (“chirp”) due to gravitational wave emission

alone; it is unclear whether this effect will be detectable or simply produce a bias which affects our understanding

of the {f, ḟ} distribution function for these binaries. When the binaries come close enough together, the lower-mass

companion will fill its Roche lobe and begin to transfer mass. Direct mass transfer in compact degenerate systems

such as this, on long time scales, transfers angular momentum to the orbit and causes the binary system to expand

over time. A gravitational wave observatory monitoring the evolution of the frequency would then see a negative

ḟ , or inverse chirp, as the system evolves to longer orbital periods (lower gravitational wave frequency). Because

common detection strategies amount to very sensitive monitoring of the received gravitational wave phase, which

is intimately tied to the orbital phase of the binary, observations by LISA should provide a sensitive probe to the

evolutionary process in these types of interacting binary systems.

One of the most important questions in LISA data analysis is how to identify the individually resolvable sources,

and whether or not it is possible to “subtract” those sources out of the data stream, leaving behind the signals from

other astrophysical systems. The problem is fraught with difficulties associated with how to disentangle sources

which are strongly overlapping in the LISA data. A few techniques [85, 86] have proposed some basic techniques and

shown some early successes. The problem is still, however, largely unresolved and in need of more attention.

In much of the LISA literature, the confusion background is characterized as a source of noise which must be

accounted for when considering observations of other sources of gravitational waves. It is a sad fact that most often

thought of as noise, a nuisance which interferes with seeing more interesting sources of gravitational waves (like

supermassive black hole binaries or extreme mass ratio inspirals). In reality, however, the galactic binary background

is an important astrophysical signal which will be easily visible to LISA and have profound implications for our

understanding of the galaxy.

Studies of how to mitigate the background often exploit its character, particularly the fact that it will be anisotrop-

ically distributed on the sky, following the plane of the galaxy. A typical distribution of the number density of galactic

binaries on the sky is shown in Figure 13[70]. This anisotropic distribution, coupled with LISA’s orbital motion will
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modulate the signal from the background, a fact which can be exploited to determine the underlying characteristics

of the binary population [71, 87].

As tracers of galactic structure, binary populations will provide observational access to many different components

of the galaxy, including the disk and bulge [88], the dark galactic halo [89–91], and even globular cluster systems [62].

Observations of the galactic binary foreground in gravitational waves provide a key way to measure the properties of

an assumed but unseen component of the galactic stellar population. The total population of highly evolved compact

binaries provides a unique record of galactic stellar evolution which should be easily accessible to an instrument like

LISA. Near the frequencies where LISA is most sensitive, it is also plausible that galactic binary signals from the

Milky Way’s nearest companions might also be detected, and that there will be a low level confusion background

of all the galactic binaries in the local Universe [92], which would form an ultimate noise floor in the low frequency

gravitational wave band.

4.3. Supermassive Black Hole Binaries

Perhaps the strongest sources of low frequency gravitational waves will be merging supermassive black hole (SMBH)

binaries. The rate at which SMBH binaries merge in the Universe is uncertain at best, but they will be detectable

by LISA to extremely large distances, probing an enormous volume of the visible Universe. The detection of any

SMBH mergers, even at a low rate, will produce interesting astrophysical results.

Most expectations are that supermassive black hole binaries should be circularized by the time their evolution is

dominated by the emission of gravitational radiation, and so the equations in § 3.2 can be exploited to good effect

when making back of the envelope computations about these systems. One can easily predict what black hole binaries

LISA will be sensitive to by simple application of Eq. 20. Setting the frequency to f = 10−4 Hz, near the lower edge

of the LISA science band, and solving for the mass yields:

Mt = 105M⊙

(

41mHz

fc

)

= 4 × 107M⊙ . (45)

This is approximately the total mass of the most massive binary that will coalesce in the LISA band. Such a binary

will spend almost no time in the band, but less massive binaries will radiate at LISA frequencies for an extended

period of time. Figure 14 illustrates this, showing the total time an equal mass SMBH binary spends in the LISA

band if it is evolving by emission of gravitational radiation alone. The figure was computed from Eq. 15 by integrating

from the lower edge of the LISA band31 (f1 = 10−5 Hz) up to the high edge of the LISA band (f2 ≃ 1 Hz) or to

the merger frequency (f2 = fc), whichever is lowest. Note that this figure makes no account of whether the SMBH

binary will be detectable by LISA, only whether the frequency of the emitted waves fall within the LISA band.

Figure 15 shows the time to coalescence for a black hole system as a function of frequency, demonstrating that a

wide range of black hole binaries will chirp significantly while in the LISA band. Whether or not a binary will be

characterized as chirping in the observational data depends on the length of the observation Tobs, which ultimately

sets the frequency resolution of the data, ∆f = 1/Tobs. A simple conservative criterion for detecting the chirp of a

binary system is that its frequency f2 at the end of the observation is f2 & f1 +∆f . The frequency at which a binary

crosses a frequency bin in exactly the observation time is called the stationary frequency, fs, and is computed from

Eq. 15 by setting ∆t = Tobs and f2 = f1 + ∆f , then solving for f1 = fs, yielding

fs ≃
[

8

3

κ

T 2
obs

]3/11

. (46)

31Note that the precise frequency which defines the lower edge of the LISA band is currently unspecified in the LISA literature. It is
widely expected that there will be a low frequency cutoff imposed by the instrumentation, but the cutoff frequency fx has yet to be fixed
for two reasons. First, it is unknown exactly what science will be lost as a function of the value of fx. Second, it is unknown precisely
what instrumental noises will be dominant at those frequencies, how large they will be, and whether it is possible to control them or not.
A conservative estimate often used is that the cutoff will be located at fx ≃ 3 × 10−5 Hz.
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Figure 14: An approximate estimate of the time a supermassive black hole binary with masses m1 = m2 = M• radiates in the

LISA frequency band, 10−5Hz . f . 1Hz. Whether such a binary is actually visible to LISA will depend on the specifics of

the source location, distance, and orientation with respect to the observatory. Note that if the computation is cutoff at the

proposed cutoff frequency, fx ≃ 3 × 10−5 Hz, the most massive binaries will not be accessible to LISA (i.e., they will spend

no time in band).

For all frequencies above this, f > fs, the binary chirps by ∆f in less than the observation time. Here, the

approximation has been made that ∆f ≪ f1, a reasonable assumption for year long observations in the LISA band.

In Table III, stationary frequency fs is shown for Tobs = 1 year and Tobs = 3 year as a function of the black hole

mass M• = m1 = m2.

Given that LISA will be sensitive to supermassive black hole binaries, there is considerable interest in understanding

the expected population of such systems in the Universe. These efforts serve two purposes: first, they allow LISA

designers to estimate what the observatory’s detection capabilities will be, and second they enable astronomers to

better understand how low frequency gravitational wave observations can be used to constrain our knowledge about

the assembly of supermassive black holes and the role they play in the formation of large scale structure.

Many of the expectations about the population of supermassive black holes in the Universe derives from observa-

Table III: The stationary frequencies, fs given by Eq. 46 as a function of black hole mass m1 = m2 = M•.

M•(M⊙) fs(Tobs = 1yr) fs(Tobs = 3yr)

103 1.88 × 10−3 Hz 1.03 × 10−3 Hz

104 6.60 × 10−5 Hz 3.63 × 10−5 Hz

105 2.32 × 10−5 Hz 1.27 × 10−5 Hz

106 8.14 × 10−6 Hz 4.47 × 10−6 Hz

107 2.86 × 10−6 Hz 1.57 × 10−6 Hz

108 1.00 × 10−6 Hz 5.51 × 10−7 Hz
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Figure 15: An estimate of the time to coalescence for a supermassive black hole binary with masses m1 = m2 = M•, as a

function of observed frequency.

tions of the high redshift quasar population [93–95] which suggest that a large population of black holes has existed

since early epochs. The shape of the quasar luminosity function suggests that large black holes (M• ∼ 105M⊙) had

to exist at redshifts of z ∼ 10 in order to explain the quasar activity seen at much lower redshifts. The local census

of massive black holes has been growing in recent years, driven by a growing body of observational evidence linking

the mass of supermassive black holes with observational properties of their host galaxies. Early studies revealed a

rough correlation between black hole mass and the bulge luminosity of the host galaxy [96, 97]. A much stronger

correlation was later discovered between the black hole mass and the stellar velocity dispersion in the galactic core,

the so-called “Mσ” relation[98–100]. The current best fit to the Mσ relation is[101, 102]

log

(

M•

M⊙

)

= α + β log

(

σ

σo

)

, (47)

where α = 8.13 ± 0.06, β = 4.02 ± 0.32, and σo = 200km/s. The observational data supporting the Mσ relation

currently spans from ∼ 106M⊙ to ∼ 109M⊙. Attempts to extend the observational link into the regime of intermediate

black hole holes (IMBH), with masses of ∼ 102M⊙ to ∼ 104M⊙, have focused on looking in the cores of globular

clusters [103–106]. The early evidence was limited and circumspect, but more recent observations are more sensitive,

and firmly on the road to exploring the conformity of the Mσ relation in this mass regime [107].

The Mσ correlation is strong enough that it has been exploited to good effect to predict the overall census of

massive black holes in the Universe [108]. The characteristics of this population will have important implications

for understanding the LISA data; more importantly, the low frequency gravitational wave data will be a direct

probe of the number and mass distribution functions of the supermassive black hole population, and will provide an

observational baseline against which studies like [108] may be compared and constrained.

Despite our growing knowledge about the population of single supermassive black holes, it is important to keep in

mind that LISA will not be sensitive to isolated supermassive black holes. The appellation to the growing evidence

of single supermassive black holes grows from the fact that the base population of singles underpins the rates of

extreme mass ratio inspirals (EMRIs, discussed in § 4.4) as well as the rate of supermassive binary mergers. The
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overall merger rates detectable by LISA are the subject of much attention [109–111], with estimates ranging from 10

to nearly 100 per LISA observation time.

One of the first questions which can be addressed by a LISA detection of a SMBH binary population is how

supermassive black holes grow and evolve. One the leading propositions is that black holes play a part in the

formation of large scale structure, and grow in a hierarchical way, with large black holes growing from the merger

of smaller black holes from early cosmological epochs [112–114]. The rate of mergers detected by LISA will yield

clues to how often black holes encounter each other, the mass determination will yield clues to the overall structure

of merger tree, yielding branching ratios for different processes involved in supermassive black hole assembly and

extending our understanding of the evolution of structure in the Universe [115].

Additionally, the determination of luminosity distance will fix how black hole formation proceeds in relation to the

formation of large scale structures in the Universe. In this modern era of high precision cosmology, our knowledge

of the parameters which characterize the cosmological model will allow the use of low frequency gravitational wave

observations to probe the mass and merger history of the supermassive black hole population as a function of redshift

[116].

While population probes are an important aspect of our understanding of how supermassive black holes grow

and evolve, gravitational wave observations will also directly probe the character of the black holes themselves, on

scales comparable to the size of the event horizons. How the information about the black hole (like spin and mass)

is encoded in the waveform is a topic of much focused research (for reviews, see [117, 118]). Recent progress in

attempts to simulate the late stages of binary black hole inspiral [119, 120] hold the promise of providing accurate

waveforms which can be used to detect and characterize SMBH waveforms in the LISA data stream. Once inspirals

can be reliably simulated, attention will turn to the merger phase and connecting behaviour of the system between

the final plunge and the late stages of the black hole ringdown.

Additionally, once the encoding of the astrophysical parameters in the gravitational waveforms is understood, data

analysis procedures must be able to extract that information from the received waves. The development of extraction

procedures is often entangled with studies of parameter estimation which seek to characterize how well LISA will

be able to determine the physical description of the supermassive black hole binary. An early comprehensive study

[48] considered LISA determination of sky location, luminosity distance and mass of SMBH systems by including a

simple model of LISA’s orbital motion around the Sun. Later studies [58] also considered the angular resolution of

detectors in precessing plane configurations like LISA’s, as well as ecliptic plane interferometers which remain flat in

the ecliptic plane as they orbit the Sun. More recent studies [61] have included spin effects to the binary black hole

waveforms and looked at the effect on LISA’s parameter estimation ability. Other similar studies have examined the

problem in the context of constraining alternative theories of gravity [121, 122].

These kinds of parameter estimation studies are important, not only for exploring LISA’s ability to extract fun-

damental information about the structure and theory of black holes, but also because they embody the quality of

information that will be available to astrophysicists for the phenomenological exploration of the astrophysical char-

acter of black hole systems. Of particular interest is the coevolution of the spins of the black holes and the final spin

after the merger remnant settles down to a quiescent state [123], which gravitational wave observations should be

able to shed some light on.

Much of the binary SMBH literature is dominated by estimates of merger rates and how to compute inspiral

waveforms, which are all important issues for LISA data analysis. However, it is important to remember that for

every observed merger of an SMBH binary, there is going to be a ringdown signal which will almost certainly be

visible to LISA. Simple estimates of the SNR for inspiral and ringdown events (e.g., following the techniques outlined

in [51], but using an updated LISA sensitivity curve [23]) can easily show that for very modest SMBH masses, the

ringdown waves very likely will have higher SNR than the inspiral waves themselves, as shown in Figure 16.

The post-merger waveforms will provide a detailed probe of the strong field dynamics which govern the evolution

of the highly distorted merger product as it settles down into a quiescent black hole state. While the late stages of

ringdown are adequately understood from perturbation theory as the superposition of the quasi-normal modes of the

black hole, the early ringdown behaviour immediately after the binary merger phase is less well understood, largely
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Figure 16: Comparative signal to noise ratios, as a function of black hole mass M , for the last year of inspiral of an equal

mass SMBH binary as well as the ringdown after the merger of the system. The method and ringdown description used to

generate this figure follows that of [51], updated to use a modern LISA sensitivity curve [23] with a low frequency cutoff of

f = 1× 10−4 Hz, and for a redshift of z = 1 in a modern cosmology (for z = 1 the luminosity distance is DL = 6.6 Gpc [124]).

Note that for black hole masses larger than M ∼ 106M⊙ the SNR measured from the ringdown can be larger than the SNR

from the last year of inspiral.

due to uncertainties about how much energy is input into the ringdown and what normal modes are excited in the

initial ringdown data. These issues are particularly important because the initial data characterizes the non-linear

dynamics which couple different normal modes in the excited black hole state. For a comprehensive review of black

hole ringdown, see [125].

4.4. Extreme Mass Ratio Inspirals

It is widely expected that supermassive black holes in galactic nuclei will, on occasion, capture and merge with

stellar mass objects [126]. These capture and inspiral events are called extreme mass ratio inspirals (EMRIs), and are

of vital interests to both gravitational theorists and astrophysicists. The phenomenology of EMRI waveforms is only

beginning to be probed, but the detected waves should carry information about the structure of the supermassive

black hole spacetime. The expectation is that EMRIs will be detectable out to redshifts z ∼ 1; the detection of even

a handful of these events will probe the dynamics and evolution of nuclear star clusters in the centers of galaxies.

EMRI studies are rooted in attempts to understand the interactions between supermassive black holes and the

dense stellar clusters which surround them. These studies are typically large numerical simulations, either large N-

body simulations [127–129] or Monte-Carlo methods [130–132] which are based on an early techniques proposed by

Hénon for study of globular cluster systems [133]. The aspect of these simulations which is of interest to gravitational

wave astronomy is the long time evolution of the stellar clusters and the times when cluster members come close to

the black hole or are absorbed by it.

The primary quantity underpinning studies of EMRIs relating to LISA is the rate of detectable inspirals. The
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uncertainties associated with the precise stellar distributions around supermassive black holes makes the predictions

of overall EMRI rates highly uncertain as well. Studies of the inspiral rate are often tied to descriptions of the loss

cone [134, 135] which is the region of orbital angular momentum and energy phase space where stars have a high

likelihood of becoming permanently bound to the black hole and ultimately lost from the cluster by orbital decay

through the emission of gravitational radiation.

Observational clues to the overall propensity of EMRIs in the Universe can be found from observations of our

own Milky Way galaxy. Long term monitoring of the region near the black at the center of the Milky Way32 in the

infrared has yielded long baselines in the time evolution of a cluster of stars that have pericenters which pass very

close to the black hole [136, 137]. The cluster has been observed long enough that curvature can be seen on many of

the stellar trajectories, and as a consequence, good orbital parameters can be determined. Additionally, the orbits

yield a good measurement of the black hole mass, which is currently taken to be M• = 3.7 × 106M⊙[137, 138]. For

stars which have made the closest observed approach to the black hole (the stars known as SO-2 and SO-16 have

each passed within ∼ 50 AU of the black hole), one can estimate the strength of the gravitational radiation during

the pericenter passage; while it is strong, it is at low enough frequency that it would be well below the detection

capabilities of an instrument like LISA. Never the less, the fact that there are known stars which come close to the

central black hole can be exploited, and the known orbital parameters used to calibrate models which seek to describe

entire populations, including not only infrared luminous stars that can be electromagnetically observed from Earth,

but also dim, compact stellar remnants like white dwarfs, neutron stars and stellar mass black holes. This plan has

been illustrated to good effect to predict the rate of EMRIs in the Milky Way galaxy [139].

The predicted EMRI rates for the Milky Way form the basis of the overall predictions from the integrated EMRI

rate in the LISA band over the entire volume accessible to the observatory [78]. Other factors which influence the

detectability of an EMRI are the total length of a LISA observation Tobs, and the overall performance factor of the

data analysis pipeline which removes other source signals which are competing with the EMRIs. Table IV shows the

predicted detectable EMRI rates from [78] for both optimistic and pessimistic scenarios.

A particularly interesting feature that is expected to be observable in EMRI orbits is zoom-whirl behaviour [140].

In conventional Keplerian orbital dynamics it is common to characterize particle motion in terms of a single orbital

frequency, associated with the orbital period. For general motion around black holes, it is possible to have three

characteristic frequencies associated with the periods for radial motion, azimuthal motion, and polar motion. In

general, these three frequencies do not have to be commensurate, and if the particle orbit passes close to the black

Table IV: Number of EMRI detections. The predicted number of detectable EMRIs by LISA for pessimistic mission scenarios

(3 year mission, poor data analysis) and optimistic mission scenarios (5 year mission, good data analysis). The first two

columns are the black hole mass M• and the compact body mass m2. Table from original data in [78].

M•(M⊙) m2(M⊙) Optimistic # Pessimistic #

3 × 105 0.6 8 0.7

3 × 105 10 700 89

3 × 105 100 1 1

1 × 106 0.6 94 9

1 × 106 10 1100 660

1 × 106 100 1 1

3 × 106 0.6 67 2

3 × 106 10 1700 134

3 × 106 100 2 1

32The central black hole in the Milky Way is coincident with the bright radio source known as Sagittarius A*.
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Figure 17: The left panel shows a Keplerian orbit of a stellar mass body around a supermassive black hole. The right panel

shows the gravitational waveform associated with this orbit. Note the localized burst of radiation, which is generated when

the small body passes through periapsis.

hole the differences can be extreme. For example, consider a purely equatorial orbit. On close passes by the black

hole, it is possible for the total advance in the azimuthal phase of the orbit, ∆φ, to be greater than 2π during any

given radial period (i.e., the time between apocenter passages). Similarly, for inclined orbits, the particle will oscillate

back and forth across the equatorial plane more than once for each radial period.

Figures 17 and 18 show two example orbits around a Schwarzschild (non-spinning) black hole, and the effect of the

zoom-whirl behaviour on the gravitational waveforms. In Figure 17, the particle does not whirl, and the pericenter

passage produces a single strong burst of radiation. In Figure 18 the Keplerian orbit has been replaced with the true

geodesic orbit around the black hole, and the orbit whirls near the pericenter passage, having a profound impact on

the structure of the waveform. In both cases, the orbits are chosen to have the same orbital parameters, to explicitly

illustrate the difference between using Keplerian orbits and true geodesic orbits.

These orbits, while apparently extremely non-intuitive, are not exotic in any way. They are simply manifesting

an extreme form of perihelion precession, a well understood phenomenon in general relativity. An easy way to

understand the extreme nature of the particle motion when it is near the black hole is to consider the motion of the

small body in the effective potential of the black hole, as shown in Figure 19. The energy of the particle fixes its

relationship to the potential, and its motion oscillates between the inner and outer turning points of its orbit, where

the total energy of the star coincides with the level of the effective potential. In the case shown in the figure, the

inner turning point (pericenter) is very close to the radius of the local maximum of the potential located at r = ruco,

which is defined in terms of the orbital eccentricity33 by[55]

ruco = 2M•

3 + e

1 + e
. (48)

When the star approaches its pericenter, which very nearly coincides with ruco, its instantaneous parameters are very

similar to that of a purely circular orbit which sits at the peak of the local maximum.

33The usual habit when describing orbits in terms of effective potentials is to work with the orbital constants of motion, {E, L}. There
is a direct mapping between these conventional constants and the geometric parameters, {rp, e}, which characterize the orbit, and are
often more convenient to work with. For details, see [55].
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Figure 18: The left panel shows an orbit of a stellar mass body around a supermassive black hole, with the same pericenter

orientation and orbital parameters as the orbit shown in Figure 17. In this figure, however, the orbit is taken to be the proper

geodesic orbit around a Schwarzschild black hole, rather than a Keplerian orbit. The right panel shows the gravitational

waveform associated with this orbit. For most of the orbit, there is little emitted radiation (the zoom phase), but when the

small body passes near the black hole, it begins to whirl, emitting a highly structured burst of gravitational waves.

Figure 19: The effective potential around a Schwarzschild black hole, plotted versus the radial distance to the black hole

(expressed in units of the black hole mass, M•). An EMRI moves on a bound orbit, moving between its turning points at the

apocenter and pericenter. For the case shown, which exhibits the zoom whirl behaviour shown in Figure 18, the pericenter is

very close to the inner most peak of the potential, located at r = ruco, the radius of the inner unstable circular orbit.

In a very similar way (but much harder to illustrate), the oscillatory motion across the equatorial line shown by a

whirling particle on an inclined orbit is simply an extreme form of relativistic precession. It is important to realize

that during the whirling phase, the compact body is on a quasi-orbit which only appears roughly circular. The

particle’s radial position is ever decreasing during the first part of the whirling phase; even as the azimuthal phase

(for instance) is accumulating rapidly, the radial distance is slowly decreasing as the particle approaches pericenter.

Because the whirling particles spend a significant number of quasi-orbits in the strongly curved region of the

spacetime, near the black hole, the emitted gravitational waves will encode information from deep in the gravitational
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potential of the black hole. As the stellar mass object traces out its complex trajectory, it samples the black hole

potential at a variety of radii and angular orientations with respect to the black hole. The structure of the spacetime

is fixed by the parameters which describe the black hole, such as the spin and mass. That information should, in

principle, be encoded in the emitted gravitational radiation, and can be extracted from extended observations of the

EMRI as it spirals into the supermassive black hole. The mapping of the black hole spacetime in this manner has

come to be called holiodesy, in analogy with satellite geodesy which discerns the structure of the Earth’s gravitational

field by monitoring the orbits of satellites [141, 142].

Early work on the extraction of black hole maps [143, 144] showed that the multipolar information describing the

central black hole’s mass moments Mℓ and mass-current moments Sℓ is encoded in the waves. While it is known

that the information is encoded in the emitted waves, no reliable demonstration has been completed to show how to

extract the information out of the detected waveforms. The extraction of black hole parameters is intimately tied to

the data analysis procedure used. Early studies to determine viable techniques to look for EMRIs have been based on

template matching [78, 145]. These studies have largely focused on how to make template techniques computationally

efficient enough to search over the enormous parameter space that zoom-whirl waveforms will occupy.

It is also possible that the EMRIs (particularly in light of the numbers shown in Table IV) will overlap to such a

degree as to be self-confused – the total number visible to an observatory like LISA at any given time could produce a

confusion limited background of astrophysical noise, similar to the predicted confusion background from the galactic

binaries (see § 4.2)[146].

For a recent comprehensive review of EMRIs, readers are directed to [147].

4.5. Fundamental physics

Despite the obvious astrophysical motivations to observe the Universe in gravitational waves, a significant con-

tribution of this emerging observational science will be in the realm of fundamental physics. For the first time, we

will be able to probe the behaviour of gravity in dynamic and strong field regimes. For the most part, experimental

probes of general relativity have been limited to weak field tests [148]. Tests of fundamental gravitational theory can

take two basic forms: direct comparison of received gravitational wave signals to the predictions of general relativity,

and bounding alternative theories of gravity by ascribing measurement errors to deviations from general relativity.

As a probe of strong field gravity, LISA will be a preeminent instrument, particularly in the face of many high

signal to noise ratio sources, such as supermassive binary black holes and extreme mass ratio inspirals. Any detection

of such sources can be a vehicle to answer a fundamental question about massive astrophysical systems: is the central

massive object well described by the Kerr black holes of general relativity? Almost certainly any massive, compact

object will exhibit some of the properties we associate with general relativity’s black holes. For example, they will

be axisymmetric and stationary (i.e., appear identical at time t and t + ∆t); if they were not, deviations from

axisymmetry would have been bled away by emission of gravitational radiation. For any slowly rotating system,

almost certainly the strength of the gravitational field itself will have made the body nearly spherical. This being

the case, attempts to verify the character of astrophysical objects will have to resort to looking at other features

which might discern them from traditional black holes. As an example, recent work has looked at the possibility

of observing the gravitational wave evolution of EMRIs to distinguish central objects which might be boson stars

instead of supermassive black holes of general relativity [149]. The trajectories around a boson star, which has no

event horizon, will have a significantly different character than trajectories around a supermassive black hole. The

differences can be understood by examining particle motion in the context of an effective potential of the boson star,

similar to the effective potential interpretation for EMRI orbits around black holes described in §4.4.

When considering tests of the fundamental theory of gravity, the properties of the gravitational waves themselves

can be exploited since they often differ between general relativity and alternative theories. In particular, the gravi-

tational wave polarization states and the speed of propagation are key observational quantities which can be probed

observationally.

In general relativity, gravitational waves can be decomposed (in the appropriate gauge, see [59] for extensive
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Figure 20: The polarization states in general relativity can be distinguished by using rings of test particles. Consider a circular

ring of test particles in the x − y plane as shown in (A). The passage of a + polarized gravitational wave propagating out of

the page (down the z−axis) will modulate the shape of the ring as shown in (B). Modulation of the ring shape due to passage

of a × polarized gravitational wave propagating down the z−axis is shown in (C). The multiple overlaying ellipses in (B) and

(C) show the shape of the ring at times separated by half periods of the gravitational wave; the shape oscillates back and forth

between the ellipses, through the undistorted circular shape of the original ring.

details) into two distinct polarization states, known + (“plus”) and × (“cross”) for the effect they have on the proper

distances between individual members of an array of free test masses. A conventional pedagogical explanation of the

differences between the two polarization states is shown in Figure 20, which illustrates the effect of a gravitational

wave propagating out of the page and the resulting effect on a ring of free test particles. A general gravitational wave

is simply a superposition of these two polarization states, and can be decomposed into two polarization amplitudes,

h+ and h×, which characterize the overall strength of each polarization in a received signal.

The basic principles of interferometric detector design are based on this heuristic picture; one can imagine the test

masses at the ends of the LISA arms as being particles on the perimeter of this ring. When a gravitational wave

passes by, the proper distance between the test masses changes as a consequence of this distortion. Because LISA’s

arms are not orthogonal, any single LISA data stream will contain an admixture of both received gravitational wave

polarization amplitudes, h+ and h×, information which can be used to directly compare against the predictions of

general relativity. Alternative theories of gravity can have a significantly different polarization structure, with as

many as six different polarization states [150], and many studies have suggested that alternative theories can be

tested by considering the response of interferometric observatories to polarization structure in gravitational wave

signals [151–153].
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Direct studies of using LISA observations to constrain alternative theories have considered the observation of

inspiralling binaries [122, 154, 155] by LISA, and the bounds which can be derived by considering the matched

filtering of signal data against template waveforms computed using general relativity.

The speed with which gravitational waves propagate can also be tested with gravitational wave observations and

used to constrain alternative theories in comparison with general relativity which predicts that gravitational waves

will propagate at the speed of light c. This question is often considered in terms of bounding the mass of the

graviton, or the Compton wavelength which is related to the mass by λc = h/m, where h is the Planck constant

and m is the graviton mass. Several different methods have been proposed to do this. If only gravitational wave

information is considered, then a non-zero graviton mass will cause dispersion between waves of different frequency.

This dispersion will influence the matching of templates for binary inspiral [156]. Another suggested method is to

employ a multi-messenger approach, and compare gravitational wave and electromagnetic signals simultaneously

received from the same source[157–159]. In this case, one compares the received gravitational wave phase with the

phase of the electromagnetic light curve. If the graviton had a putative mass, the gravitational wave phase would lag

behind the phase of the light curve when the waves reach Earth; the gravitational waves with frequency f propagated

at a speed slower than c given by

v ≃ 1 − 1

2

(

1

λcf

)2

. (49)

Most suggested experiments for constraining alternative theories are proposed as null experiments, where the

assumption is that gravitational wave observations will validate the predictions of general relativity to the level of

the LISA instrumental noise. The size of any deviations from general relativity can then be the size of the errors in

the gravitational wave measurement and no larger. This maximum size for the deviation from general relativity then

provides a natural constraint on the alternative theory.

4.6. Other possibilities

As with any new observational science, our expectations are that the Universe will be replete with unknown

phenomena which we did not predict in advance. It is entirely possible that exotic astrophysical processes may

produce significant amounts of gravitational radiation which will be detectable by observatories like LISA.

A final possible contributor in the low frequency gravitational wave band (not noted on Figure 11) is a Cosmological

Gravitational-wave Background (CGB). Such a background is completely analogous to the electromagnetic Cosmic

Microwave Background (CMB); it is generated as a consequence of early Universe physics, and encodes information

about primordial density fluctuations and processes from a time well before the formation of large scale structure. An

important characteristic of the CGB is that it originates at a higher redshift than the CMB, and if it were detectable

(in any part of the gravitational wave spectrum) it would be an important probe to look beyond the recombination

curtain. Given the current constraints on cosmological models from CMB experiments, it seems unlikely that a CGB

from standard slow-roll inflation will be detectable by LISA. There are, however, other more exotic cosmological

models which may still produce stochastic CGBs of detectable strength in the LISA band (for example, [160, 161],

levels illustrated in [46]).

Another exciting prospect in gravitational wave astronomy is that observatories like LISA will be able to participate

side by side with electromagnetic telescopes and astroparticle observatories as a major player in multi-messenger

astronomy. This is currently a largely unexplored aspect of LISA science, though several early studies have begun to

probe how coincident gravitational wave and electromagnetic observations can be used to enhance our understanding

of the source systems LISA will observe [52, 157, 162, 163].
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5. SUMMARY

LISA science is in a phase of rapid maturation on many frontiers, with strong advances currently being made in

terms of what kind of astrophysical information will be encoded and extractable from LISA data, as well as rapid

improvement in our understanding of data analysis techniques which will make the extraction of information from

the LISA data possible.

More generally, gravitational wave astrophysics is rapidly evolving into a diverse multi-disciplinary field of research,

bringing together traditional relativity theory, relativistic astrophysics, electromagnetic astronomy, engineering and

high performance computing technology. This provides remarkable opportunities for young researchers entering the

field, with important research questions still to be addressed in the areas of source characterization, source simulation,

data analysis, and observatory design. The upcoming decade will be the years where the first generation of true

gravitational wave astronomers will be trained – scientists who have never studied the Universe in the absence of

gravitational wave data. The young researchers reading this document today will be in that generation, and LISA

stands poised to be one of the primary instruments which will open this new window on the Universe.
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