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ABSTRACT 

IR this paper the high energy expansion introduced in our previous paper is 

i used to describe to the problem of beamstrahlung due to an extended pulse with 

an elliptical cross section of arbitrary eccentricity. We show that the transverse 
. 

geometry of the pulse enters in a remarkably simple scaling manner. This case 

_ is of interest because the radiative energy loss can be markedly reduced while 

simultaneously keeping a fixed luminosity if the beam pulses are very thin in 

one transverse direction, i.e., shaped like ribbons. Effects of other types of beam 

shaping are briefly discussed and the physics of the process is emphasized. 

Submitted to Physical Review D 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 



1. Introduction and Review 

An important parameter in the design of very high energy electron collid- 

ers is the fractional energy loss due to bremsstrahlung as one beam pulse passes 

through the other pulse.’ Himel and Siegrist 2 treated this process, termed beam- 

strahlung,by adapting a quantum treatment of synchrotron radiation by an elec- 

tron in a uniform magnetic fieldab6 This adaptation necessarily involved several 

assumptions, in particular the approximation of the effects of the pulse by a uni- 

form magnetic field in which the electron was orbiting as it radiated:’ In fact, 

the electron sees the rapidly approaching pulse in the collider frame of reference 

as transverse, mutually orthogonal electric and magnetic fields of equal strengths 

whose spatial dependence is determined by the distribution of charges in the 

pulse. 

A_ more general and physically transparent approach was developed in a pre 

-. vious paper and applied to extended pulses of circular cross-section.8 The reader 

is referred there for a physical interpretation and an introduction to our notation? 

An extended target in this cont.&t is defined as having a length much longer than 

the smaller of the transverse or longitudinal coherence lengths described in Ref. 

8. The first one, the transverse coherence length el (= f&h in Ref. 8 ) is defined 

as the length of path of the electron necessary to acquire a transverse momentum 

of N m from the electric field. Since the width of the photon radiation pattern 

is also - m , the radiation can be coherent only from this length of the curving 

electron path. The second length, the longitudinal coherence length e, (= &ad in 

Ref. 8 ), is defined as the length of the target that the electron coherently scatters 

from during the radiation process. According to the uncertainty principle, it is 

the reciprocal of the minimum longitudinal momentum transferred to the target. 
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In Ref. 8 , it was shown that there are two scaling variables that completely 

characterize the behavior of beamstrahlung all the way from the classical to the 

extreme quantum limit. In this latter limit we confirmed the results of Himel 

and Siegrist.2 Their limiting behavior has also been obtained recently by Jacob 

and Wu lo using a similar approach as found in ref. 8 . 

-. 

It is the purpose of this paper to extend the previous results to the study of 

l1 more general pulse geometries. As in the previous paper, only small disruption 

collisions will be treated analytically, although we will also comment on effects 

of large disruptions. Also, in this paper, we consider the process in which only 

one photon is radiated. In addition, we note a numerically small correction to 

our previous result for Dirac electrons which arises from our incorrect treatment 

of helicity flip processes, as pointed out by M. Bell and J. Be11.12 

It has been suggested that the beamstrahlung loss can be reduced by forming 

. . - ‘- pulses that are ribbon-shaped- i.e., ellipses of very large aspect ratio. Compared 

to pulses with an equal (but circular) cross section and containing the same 

number of electrons (positrons), the ribbon shape gives rise to weaker electro- 

magnetic field strengths. Thus for collider operation at equal luminosity, there 
- 

will be less energy loss to beamstrahlung if the pulses are ribbon shaped. Alter- 

natively one can operate the collider at higher luminosity with no increase in the 

magnitude of the energy loss due to beamstrahlung . 

This, of course, is well known and can be easily calculated for the classical 

domain. The object here is to study this effect in the quantum domain appro- 

priate for higher energy colliders that are being considered beyond the SLC. It 

will be shown that the transverse geometry of the pulse, namely its aspect ratio, 

enters in the formulae for the spectrum and the fractional energy loss in a very 
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simple manner. A simple scaling of the-results given in our previous study allows 

one to completely summarize its effects. 

We also present an analysis of the (numerically small) effect of smoothly 

shaping the front and back ends of the beam pulse. This permits a comparison 

with recent estimates of M. Jacob and T. T. Wu13 of the energy radiated before 

I’ 

and after the electron (positron) crosses a beam pulse and with an analysis of a 

gaussian shaped beam pulse by P. Chen.r4 Finally we comment on the effects of 

a smooth shaping of the sides of the beam pulse. 

One interesting way to think about beamstrahlung is to view it as giving 

rise to a momentum spectrum in the incident particles. In other words, the 

incident particle is ‘dressed’ by the external field of the other pulse and it thereby 

acquires a structure function. This momentum spread is analogous to that used 

to describe the constituents in a hadron beam. However, in the electron case 

i j under discussion, it is possible to adjust this distribution through pulse shaping. 

This additional feature may prove useful in some experimental contexts. 

Review: 

In our previous paper * we found that there were two dimensionless variables -- - 
that provided a convenient parametrization of the beamstrahlung process. The 

first scaling variable, y, is purely classical and is proportional to the square root 

of the luminosity per pulse, 

NC2 
Y---&&dz. 

The full luminosity is given by 

N2 
Luminosity = L: X j = A j , 

(14 

(14 
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where N is the number of electrons (positrons) per pulse, which are assumed to 

be identical; j is the number of pulses per second; L: is equal to the luminosity 

per pulse; and A is the cross sectional area of the pulses which can be written in 

terms of an equivalent cylinder radius B defined by A = rB2. 

The second scaling variable is inversely proportional to tt: 

c=L - e0 ( ) 4yy A/me ’ (1.3) 

- where .f?e is the length of the pulse and ymc 2 is the particle energy in the lab 

(CM) frame. Henceforth we will set tL = c = 1. C is a scaling variable in terms of 

which the fractional energy loss, 6, can be expressed for a wide range of physical 

parameters assuming only that the approximation of small disruption collisions 

I is valid. 

As described in Ref. 8 , we found for uniformly charged colliding pulses with 
. . cylindrical geometry that 

(1.4) 

where the form factor F(C) -+ 1 in the classical limit (tL -+ 0; C + co) and .-. - 

F(C) cc C4j3 for C + 0 in the extreme quantum limit. The physical interpre- 

tation of C is the ratio of the transverse to the longitudinal coherence length. 

Characteristic values of the relevant parameters are shown in Table I for the 

SLC design and two notional extensions to higher energies. The notation will be 

defined fully in the text. It is characteristic of linear colliders (as compared with 

colliding ring designs) that the variable y assumes large values since, for constant 

luminosity, L: must be large to compensate for small values of the pulse rate j. 

It follows that beamstrahlung is also much more important for linear colliders. 
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TABLE I-Circular Beam-G-1 

“SUPER” 

6.5 x lo5 

5 x lo-*cm B I 10B4cm 7 x 10e6cm 

I lo-lcm 3 x 10w5cm 6 x 10m2cm 

L I 10+4cm 300 cm 4 x 104cm 

400 

0 . 6 x 1030cm-2 

1.5 

50 cm 

4 x 10e6cm 
"fB 

Nalmb I 140 1.7 x lo3 

1031 cmm2 I 0 8 x . 102gcm-2 

c = meo/dyy ( 46 

el I L/2y 0.08 cm 

10d6cm 
>B 

dilute 

35 cm 

2 x 10m7cm 
< B 
dense 

1 cm 
< .f!l 

0.015 

.&,. 3 L/N 

65 cm 104cm 
>> el 

- lo6 

l, = 4q2/m . . 

- e.l 
1.3 6 class 

F(C) 0.91 2 x 10-7 0.30 
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Classical Calculation for Elliptic Pulses: 

We review.first the classical beamstrahlung calculation in order to illustrate 

the effect of shaping the pulse with an elliptical rather than a circular cross 

section. As in Ref. 8 we work in the rest frame of the pulse which has the very 

long length L = 437. For a given area A and number of charges per unit length, 

. N/L, the electrostatic field strengths are reduced by distorting the circle to an 

ellipse and thus so are the electron’s acceleration and the resultant energy loss 

- to radiation. 

Neglecting end effects, the interior potential at the point b,, b, due to a uni- 

formly charged cylindrical pulse of length L, and with an elliptical cross-section 

characterized by semi-major and semi-minor axes a, and aY can be written 
15 

2Na 
” = L(a, + ay) 

(1.5) 

for 0 < z < L , where 

b2 b2 
p++--$ 

z Y 
(1.6) 

The cross-sectional area is given by A = ra,ay and thus the equivalent radius 

of the circular cylinder is given by B2 = a,ay . 

The two components of the transverse electric field are given by 

E, = -2Vl 5 
f-b 

E, = -2Vl fk 
aY 

(l-7) 

from which we deduce two important results: 
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1. On any interior elliptical surface ; i.e., p = constant, the magnitude of the 

electric field is also constant, 

(E: + E;)euipse = 4V,2 p2 . P-8) 

2. Relative to a cylindrical pulse of the same linear charge density, N/L, and 

cross sectional area A, the field strength at the surface is reduced by the 

constant factor 

1 -= 
G 

2+x <l 
a, + ay - ’ (l-9) 

This can be seen by comparing (1.8) with the corresponding fields for a 

cylinder of cross sectional area A = rrrB2 : 

3 -- 2Na 7 
. . cyl = LB2 

whereas for the ellipse with area A 

(1.10) 

(1.11) 

In the region where the classical calculation is a valid approximation, the 

radiated energy is proportional to the square of the transverse acceleration, 

and thereby to the square of the corresponding field strengths. Denoting the 

fractional energy loss for a particle incident at an impact parameter (b,, by) as 
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6 classical(-j;fl) , we obtain for-small dikuptions 

6 classical(L) = ; m3ea(y;a I2 
0 x Y ( > 

$ + 2. * 
X Y 

Averaging over all impact parameters gives 

c3ellip.e = ( #ellip.. = a 

(1.12) 

(1.13) 

so that these two contributions are equal independent of eccentricity. Thus, 

introducing (1.9) , 

6 classical - 
( 

6 classical CT 1) I 

8 a3N27 1 
= 3 m3eoB2s = 

. . 
i - 2ya 1 =--- 

3 C G2 
. 

(1.14) 

We find therefore that the classical fractional energy loss scales as 1/G2: 

-- - 
6 ellipse 

’ ‘cell/alssical ’ classical = 3 (1.15) 
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Quantum Calculation: - 

As we saw in (1.11) , at the surface of the elliptical pulse, the magnitude 

of the field is constant but it is reduced by the factor l/G relative to a circular 

pulse. In the general quantum case it is then not too surprising in view of the 

above behavior of the fields, that we find that 6 is also reduced in this case and 

can be expressed by 

- belliPee = (j;;;z;?al F(CG) = 3m G CG 2a2 a F(CG) = 2 QY F&G) . (1 16) - - [ 1 3 G (CG) - 

The differential spectrum similarly scales as 

d6 
4ay [xR(u,x)] , 

dz= 3G 
(1.17) 

-where the variable u depends only on the combination CG and z : 

(1.18) 

The function R(u,x) will be given explicitly later. As found in Ref. 8 it peaks 
-- - 

near the value u - l/2 indicating that predominantly soft photons (1 - x + 0) 

are radiated in the classical region and hard ones (x --+ 0) in the quantum region. 

Note also that since G > 1, one moves closer to the classical domain for ribbon 

geometries. We turn now to a formal derivation of the new scaling law (1.16) 

which is the central result of this paper. 
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2. Formalism- The Phase 

We shall repeat the derivation given in ref. 8 by calculating the emission of a 

photon during the scattering of a spin-zero electron from an elliptical pulse of N 

positrons. As formulated in ref. 8 and as corrected by Bell and Be11,r2 a simple 

correction extends this result to Dirac electrons. The general form of the matrix 

element of interest is 

. . 

where A is the photon field, 7 is the electron current and 4i-j and r$!” are 

respectively the final (incoming) and initial (outgoing) scattering eigenstates of 

the electron in the static external field of the pulse. The calculation will be 

carried out in the rest frame of the pulse, and in this frame, the incident electron 

energy p is given by 

. . p = 2my2 . (2.2) 

and for generality, the incident momentum will be assumed to have a finite trans- 

verse component. 

~-. - The solution to the Klein-Gordon equation in this frame will be written in 

the form 

4(r) = exP(i@ (r)) , (24 

where the phase function Q satisfies the equation 

(E-V)” - m2 = @D(l)]’ - i[iy20(r)] . (2.4) 

As before, we must keep corrections of order (l/p2 ) relative to the leading term 

3. -r’ in the phase. 
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Following each of the steps in Section 3 of Ref. 8 we obtain for the total 

phase of the matrix element (2.1) 

where the zeroth order term is independent of z 

- 00 
#(Tl) = J dz’V(z’, %+I, , 

(2.5) 

P-6) 
-CO 

while the first order terms still retain some z-dependence: 

(.; 
xy(JI) = Xl + 2 . X P-7) 

The imaginary term xpt can be dropped, as was shown in Ref. 8 . The mo- 

mentum fraction for the final state electron was introduced as x = pf /pi . The 

same approximations utilized in Ref. 8 apply here. The only new element is to 

--- - evaluate xpt , x1 , and 71 for the potential (1.5) , corresponding to an elliptical 

charge distribution. 

It is a simple matter to calculate that 

b2 b2 
x001) = Vl( f + $2 , P-8) 

and 

b2 b2 &pi, byp; 
Xl(Z,L) = ;v:(~+--p3- v1(y+---)z2 . 

2 Y 
(2-g) 
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For the final state with incoming wave boundary conditions, one finds 

To(& L) 
b2 b; 

= V1(~+---)(L-2)) (2.10) 

and 

n(aL) = 2) (L - .q . (2.11) 

The elements of the total phase of the matrix element for the ribbon pulse 

follow directly. The leading order term is familiar, 

b2 b2 
#(TI) = V1L(~+--$ . 

Recalling that the momentum fraction for the final state is 

defining p G pi , the first order terms can be written 

z3 + i(L - 2)” 1 

where for convenience, we now introduce the quantities 

2Vl q(a,z) = 1 + - 
3pL a 1 

z3 + ; (L - %)” 1 
T,(z) = -zz2 +p, x -5’(L-2)2 . 

The total phase can be rewritten in a more useful form as 

tf? tot = -!L& + aI + a, 

pf s x pi, and 

(2.12) 

(2.13) _ 

(2.14) 

(2.15) 
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where - 

b2 
-ax = qzb, + V.42 +,,z) + VI + 1% (4 

2 

b2 
-%, = qyby + W--$ rl(ay,z) + v, 

For further manipulations, recall that 

- 

42 -2 
m2+p{ kl 

-e2 
--Qz = m2 -I-py - - 

2Pf + 2k 2pi 

(2.16) 

(2.17) 

(2.18) 

= m2(l-x) + k2 +P{ Pi --- 
2XP 2(1 - X)P 2xp 2p ) 

I --+ 
withpl=;f?)-c+ppfL. 

In ref. 8 , an analysis was given as to which particular corrections in l/p 

actually were small corrections to the leading order and which were necessary to 

retain because the length of the target promoted them to leading order. We will 

make use of the results of this analysis in the following discussion. 

-- - 
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3. Matrix-Element- Stationary Phase 

Neglecting certain normalization factors for the moment, the matrix element 

now achieves the form 

L A 

M=: 
J / 

dz d2b 2 - $(z,t,) exp[i@tot(z,Tl)] , (34 n- 
0 

where the factor 2(z, -i;‘l) is the gauge invariant (to the order of this calculation 

in l/p) average of the initial and final momentum 

3~9 21, = ; 
[ 

&(Zoc; z,L) + j?/ (Zoc; z, 2+*). . 1 
In component form, and to leading order in l/p, this is 

. . (1 + 4 P&,L) = 2 p+... 

P,(z, &) = pi, - ;k. + ;qz - V&(1 - 2;) 

-- - Py(z, %+J = p; - ;ky + ;qy - VrL:(l - 2;) 

(3.2) 

(3.3) 

Gauge invariance ensures that we only need to know 3 to the above accuracy 

to compute the cross section to leading order. 

The phase atot is at most quadratic in the transverse coordinates. The coeffi- 

cients of the quadratic terms are very large hence the method of stationary phase 

will be used to evaluate the d2b integral; to that end, introduce the stationary 

Salue of the coordinate 71 as (bz , bi ) . 
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The value of -ir’l at which the derivative of the phase vanishes is 

b” 
2Wrl(GJ) 2 = - 

Vl 
qz + - 

pax 

and 

b” 
wLrl(uy,z)~ = - 

Vl 
qy + - 

pa, 

(3.4 

(3.5) 

. . 

The factors of Q induce a z-dependence in both bz and bt . These relations 

state, for example, that if the x-component of the momentum transfer to the 

pulse is fixed at qz , and if the final electron momentum is to be pz , then the 

b,-coordinate of the electron orbit must have the value b!j!(z) where z is the 

point of emission of the photon. The term proportional to pl also induces a 

z-dependence which reflects the abrupt change in the trajectory as the pho- 

ton is emitted. These properties reflect the curved classical trajectory and is 

the quantum source of the disruption parameter. Note that since the transverse 

coordinates are limited, because they must remain in the (elliptical) charge dis- 

tribution to be counted in 6, the final transverse momenta (ql and pl ) cannot 

--- - take on arbitrary values (otherwise the stationary point does not exist). 

Expanding b, and b, around their stationary values, i.e. 6b, = b, - bt and 

&by = by - b”Y, 11 a ows the phase terms to be written as 

(3.6) 
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To leading orders in l/p ,-the phase at the stationary point is 

@tot(z) = %ot(&(&b;(z>) 

q%x !?xtx(z) = 
-qzz + 4V~L7(U,,Z) + 2pLrl (ax, 4 (3.7) 

Q;aY 

+ 4Wv(ay,z) + 
QYEYM 

2PJ%(~,7 4 * 

The Gb-integrals can now be performed and we achieve 

L 
eB M=-i- 

VlL rl(UyJ) 
2 - 3(z) exp[i@t,t(z)] . (3.8) 

We have assumed that both V~La, >> 1 and VlLu, >> 1 in carrying out these 

integrals, so that edge effects could be neglected. 

The square of the matrix element, summed over photon polarizations, is 

L 

-E 
M*M = (;l-;2 J (3.9) 

PO1 0 . 

where the polarization sum has been written as .-. - 

S(Boson) = c T+ - 3(q) x T’ - 3~2) , 
PO1 

(3.10) 

and the factor 

E(WZ2) = 4 ~(az,~l)~(~y,~l) v(az,z2)7?(ay,~2) (3.11) 

can be set equal to one to the accuracy that we are working in l/p. The photon 

polarization sum proceeds as in Ref. 8 . 
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- 

We can now anticipate a remarkable feature of the result of our calculation 

by noting that if we expand (3.7) and retain only the terms of order (l/p) as 

required, all dependence on the axes of the ellipse, a, and ay survives only in 

the leading term of order unity, and that term has no z-dependence. Since 

this part of the phase will cancel in the exponent of (3.9) , there will be no 

explicit dependence on the axes in the cross section. The entire effect of the 

pulse geometry will appear only in the overall normalization of the cross section 

and in the limits of the final phase space integrals. 

Properties of the Phase: 

The properties of the matrix element are largely determined by the z-dependence 

of the real part of the phase of the matrix element. First, recall from (2.18) that 

I” -?2 
.!lz = 

m2(1 - x) + ki 
2XP 2(1 - X)P 

+ P, P’I --- 
2xp 2p ’ 

(3.12) 

i - 

where p, = ?$ - 21 + p< and k = (1 - x)p. Consider the derivative of the I 

phase with respect to z: . 

dQt&) = -q a2ax dv (ax 3 2) 
+ Qx dlx (4 -. - 

dz Z- 4vrLr](u,, z>~ dz 2pLrl(az, 2) dz 

(3.13) 
q;a, drl (ay, 4 Qy - d&,(4 ’ ’ - 

4vrLr](u,, z)~ dz + 2pLv(ay,z) dz ’ 

where 
h(w) = % ’ -- 

dz PLU X 

(3.14) 
d?+,(z) = 

dz 
pzz+py(L-z) 1 , X 

and terms of order p -2 have been neglected. 
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Utilizing all of the above,mne finds- after some reduction that 

d&o&) = 1 

dz 2x(1 - x)p [+(l-z)t+ (” I-(l-x)[&;G] >‘I . 

(3.15) 

Note that as remarked earlier, all explicit dependence on the parameters of the 

ellipse, namely a, and ay , have cancelled to this order in l/p. Finally, the phase 

itself is achieved by integration. 

In the evaluation of the absolute square of the matrix element, the relevant 

total phase will be the difference of the above phase evaluated at different z- 

values. In ref. 8 it was pointed out that this phase difference has the remarkable 

property that it depends only on the difference of z-coordinates and a ‘natural’ 

photon transverse momentum variable that rotates as the particle traverses the 

pulse following the classical (curved) path: l6 

. . 
i - 

[@tot(a) - &o&2)] = SW + ; r3w3 , (3.16) 

where 

w = (21 - 4 
-- - L 

L 
s - 2x(1 - x)p [ 

m2(1 - x)~ + (2:)’ 1 (3.17) 

r3 = w - 4 -& - 
8xp ’ 

The (rotating) photon transverse momentum dependence is given by 

2’ I= Xdl-4 [X(1-$+(2+X&] , (3.18) 

where 2 = f(zr + 22) is the (average) point of photon emission. This clearly 
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shows that the angular distribution of the photon tracks the classical path of the 

particle through the pulse. 

Now to leading order, the momentum transfer is (see (3.4) -and (3.5) ) 

q: = (2VlL)2 (y+i!k$) , (3.19) 

for particles incident on the pulse with impact parameter (b”, , bz ). The maximum 

value of the momentum transfer is thus achieved by those particles that hit the 

edge of the charge distribution, qf (mux) E (~VIL)~ . 

In order to estimate the magnitude of r and s , note that they can be written 

to leading order in the form 

s = 2Y 
m2(1-x)2+(?J2 

G 2m2(1 - x)~ 1 (3.20) 

where we have introduced the two scaling variables that characterize the frac- 

tional energy loss and the factor G that describes the geometry: 

C&L- me0 

2PY 4YY 

(3.21) 

Thus we see from (3.16) and the above that the natural scale for the variable 

w is set by y/G. Since y/G is large for interesting machines, the oscillations of 

the phase ‘chops’ the beam pulse into smaller coherent segments as will become 

clear shortly. 
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4. Spectrum and Cross Section 

Final State Sum: 

The square of the matrix element summed over the polarization and inte- 

grated over the transverse momentum of the photon is defined as 

J M*MM= - J f;:; 5 M*M . (4.1) 

- Collecting the results of the earlier sections, our next task is to evaluate 

L 

J M*M = ((1 z;vp 73 J;l”; J dzldz2 
7 D[w2] exp i 

[C 
SW + i r3w3 )I , 

0 (4.2) 
where 

. . D(w2) = _ j . [ (X:,” - w2 i(l - x)2q:] . (4.3) 

Since the parameters r and s are large, both of order y/G by (3.20) , the integral 

can be manipulated as in Ref. 8 . The result is 

-- - 

J M*M=2r 
((1 Z)Vr,, 

2 /$I+;] ;Ai[;] , (4.4) 

where the standard definition of the Airy function l7 has been used. From the 

definition of r and s , D simplifies to 

D -5 [ 1 = m2(1 - x)~ + 2(kl)2 . (4.5) 

Now what follows is a succession of variable changes introduced in Ref. 8 to 
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make this integral tractable. First define 

s = rv, (4.6) 

and using (3.17) , the integration over d2ky can be replaced by an integral over 

v . Paying attention to the limits of integration, and introducing the value of v 

at (ky)2 = 0, 

vo z 
m2L(1 - 5) 

2xpr ’ 

one finds 

J M*M = 2a dv [2v - vo] Ai -. 

(4.7) 

(4.8) 
UO 

.', 
i 

Now the variables left to integrate are d2ql , and the photon energy ~(1 - x) . 

Since- the variable r3 is linear in q: , and since q: has a maximum value of . . - .- 
pwq2, r3 will also have an upper limit of 

v,2L3(1-x) = 
2XP 

(4.9) - 

At this point note that the integration over q: can be transformed into an integral 

over the (initial) impact parameter b by using (3.19) . This will be done later to 

give additional physical insight into beamstrahlung in the classical and quantum 

regimes. 

If we write r = r mazt, where 0 < t < 1, then 210 = u/t, where u has been 

introduced by - 
. (4.10) 
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These transformations of variables lead to 

q’: = (2VlL)2 t3 
(4.11) 

d2qI = 71f2V~L)~ 3t2dt , 

and the partial cross section for fixed photon energy fraction (1 - x) becomes 

/;4’/ 7r2 M*M = J/dt 3t3 Tdv [2v- ;] Ai , (4.12) 

0 u/t 

with 

J = F (x~B)~ rmaz - (4.13) 

The integrations can be interchanged, the dt integration performed, and the 

result is 
00 

JCq; J lr2 Me:= J dv J [ +- 
U4 3 1 A+4 - (4.14) 

U 
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Spin Effects: - 

In ref. 8 , it was claimed that the spinor factors appropriate for Dirac elec- 

trons would lead to an additional multiplicative factor of T(x) in the differential 

cross section, where T(x) = (1 + x2)/2x. This result was wrong as was shown 

by Bell and Be11.12 The error arose in an incorrect estimate of the helicity flip 

amplitude; instead of being small and of order (m/p) , these terms are of order 

(k/p) = 1 - x. For hard photons this correction could be important, especially 

in the quantum regime. However, this does not turn out to be the case. If these 

matrix elements are evaluated correctly using the formulas given in ref. 8 for the 

spin structure, one finds instead of (4.8) , 

M*M = 2a(g)2 r/m dv [2112”(x) -vo]Ai(v) . (4.15) 
uo 

The integral over transverse momentum then yields 

/&h~tyk~ =.Jldv [+yX)(b$) -th(b$)] Ai( 

U 

(4.16) 

Note for soft photons, where T(x + 1) + 1, this is the same as (4.14) . In the 

hard photon limit, T(x -+ 0) >> 1 so that the second term in the integrand of 

(4.16) , which is the helicity flip contribution, can be neglected. Thus in this limit 

too the correction can be neglected. Its small numerical effect will be computed 

in the next section. 
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5. Final-Results-and Scaling Laws 

The differential cross section for beamstrahlung is achieved by dividing by the 

normalization factors for the initial and final electron and photon wave functions, 

[p3z(1-z)]; th f t e rat ional power spectrum by then multiplying by an extra factor 

of (1 - z) and dividing by z B 2 , together with trivial numerical factors. 

The final result for the power spectrum can be written 

2 = [ 2 x D R(u,x) ] &laaeical 3 (54 

where D = C G is the new scaling variable and the spin-spectrum function 

R(u, x) , also in a scaling form, is defined as 

00 
R(u,x) = ; IA2 J [ 

dv :0(x)(1 - $) - ~(1 - $)I Ai (5.2) 
U 

with ^u3 E D2 (e)” and T(x) = (1 + x2)/2x. 

The form factor described earlier is easily computed from the above results. 

Recalling that 6claseical = go& , and using the definition 

- 
F(D) G 6 ’ 

classical 

with x = x(D) = [l + u~/~/D]-~, it follows that 

1 

F(D) = 2 
/ 

dxxDR(u,x). 

0 

Explicitly, the form factor for electrons is 

(5.3) 

(54 

Ccl 

/ 

du u1i2 
F(D) = 3 o [l I u;~I~ R(v) , (5.5) 

where R(u,x) is given by (5.2) , with x expressed as a function of u and D by 
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(4.10) . The normalization can be checked as shown in Ref. 8 , by taking the 

limit of large D and interchanging the order of integration. 

For completeness, we present here a useful numerical approximation to the 

form factor modified (from that given in ref. 8 ) to account correctly for the 

helicity flip contributions: 

*I3 + b2 D-2/3 (1 + 0.20D)-1~3]) -’ , (5.6) 

where bl = 0.83..,and b2 = 1.67 . . . . The values of bl and b2 have been computed 

analytically, and the latter adjusted slightly to improve the fit. Note that the 

value of b2 is different from the value 2.0 given in ref. 8 ; this is the effect of the 

helicity flip. Bell and BeIll show that this correction is a maximum relative to 

the-nonflip term in the transition region, and is approximately 8 % at D - 0.1. 

-As noted earlier, it vanishes for D + 0 and D + 00. The curves given in ref. 8 

are altered very little by this correction. 
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-6. Pulse Shaping 

Thus far we have studied beam pulses with uniform charge distributions and 

sharp edges in both transverse and longitudinal dimensions. The resulting electric 

potential and fields are given by (1.5) , (1.6) , and (1.7) . 

It is a direct and useful consequence of these assumptions that the phase @ tot 

in the matrix element (2.15) , (2.16) , and (2.17) is a quadratic form in the impact 

parameter Tl . This makes it a simple matter to apply the stationary phase 

method as used in Section 3. We shall now relax these assumptions in order to 

study more general pulse shapes. Our approach uses the concept of pulse ‘slicing’ 

that was introduced in ref. 8 . The property of slicing rests upon the fact that 

the scaling variable D depends on the charge per unit length while y is linear 

in the total charge (see below). We can thus calculate the energy loss by adding 

-up contributions from individual slices of the pulse. These contributions add 
. . -~ j . independently (and incoherently) to the probability of radiating during the beam 

traversal so long as the length of each slice is large compared to the shorter of the 

two coherence lengths J?l (= &,h ) and & (= Grad ) . Our discussion in Section 3 - 

showed that a finite initial transverse momentum had no effect on the predicted - 

beamstrahlung ; therefore so long as the disruption induced while passing through 

a thin slice is small, the following argument can be carried through. 

First consider a uniform pulse of area A = KCZ~U~ , geometric factor G , length 

L, and total charge N. Divide this pulse into I identical sub-pulses, with the 

same area and G factor, but with length 2 = L/I, and charge n = N/I. These 

quantities determine the value of 6i through the scaling variables y and D : 

D= 
m2L 
-G. 
2PY 

(6.1) 
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. . 

The full fractional energy loss is then - 

Z 

6,=x Si = IX6i. (6.4 
i 

Fix the aspect ratio so that G is constant, but allow the area, length and 

charge of the slices to change to the values Ai, Zi , and charge ni for the jth 

slice, The resultant fractional energy loss will be denoted by Ai, and the ratio 

- to (6.1), is 

A; nf 1 A 
ri=z=&YxliAix 

J’[CG($J fi )] 

F[CG] ’ P-3) 

This relation exposes the geometric behavior of beamstrahlung. Assuming that 

the changes are such that the incident beam fills each slice, the full fractional 

energy loss from the modified beam pulse is then given by 

i - 
A=2 Ai, (6.4) 

i 

or in a more useful form, 

(6.5) 

We will now demonstrate the effects of longitudinal pulse shaping by discussing 

some simple examples. 
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. . 

Longitudinal Shaping: - - 

Assume that the transverse dimensions and the sub-pulse lengths are fixed 

and uniform; then if the variation in the longitudinal direction is sufficiently slow 

(over the relevant coherence length), the sum over slices in R can be written as 

R= s dz 
x +) 3 

-L/2 

P-6) 

- where the variation of the charge density along the pulse gives rise to the z- 

dependence of r(z) . Similarly we introduce ni -+ n(z)dz, where n(z) is the 

charge per unit length, and Zi = dz with L = Idz . For such slow variations the 

transverse electric field can be expressed in terms of the local charge density as 

in (1.7) . Longitudinal fields contribute negligibly for large 7. 

In terms of these quantities we have 

i N= 
/ 

dzn(z) and ;L2N= 
/ 

dzz2n(z) - (Jdrzn(z))’ (6.7) 

and finally 

(6.8) 

where no = N/L. In the classical and quantum regimes, F(D) - 1 and - blD4j3 

respectively, so that we can write 

R classical = (;I2 / g bkH2 

RQM = ($)2j3 
J 

$ (n(z))“/” . 

(6.9) 

St‘0 compare with results from a uniform pulse with sharp edges we apply these 

formula to two simple longitudinal distributions. 
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. . 

1. Gaussian Pulse: The form of a Gaussian pulse that satisfies (6.7) is 

n(z) = ng exp(-z2/s2) , (6.10) 

where 

N = ngsfi and L2 = 6s2 . (6.11) 

The results for the ratio R in the two extremes are 

R 
3 r/2 

classical = ; 0 - 0.98... 

- l.lO... 

(6.12) 

2. Power-Law Pulse: This smooth pulse of total length 2 s is defined by 

i - 
44 = nP (1 - bwq> fi(s - I4 7 (6.13) 

and then by (6.7) 

al N = rips- and p = s2 40 + Q) 
1+!7 3-l-q ’ 

(6.14) 

The results for the ratio R in the two extreme regimes are simple to evaluate 

for any value of q .l* For the linear case, q = 1, these are 

R classical = ; (2)“’ - 0.94... 

RQM 
6 1 1’6 

= - - 1.07... 
5 

0 
5 

(6.15) 

This behavior is qualitatively the same as that found for the Gaussian pulse. 

We thus establish that longitudinal pulse shaping leads to relatively small 

30 



corrections to the fractional eneigy loss. Jacob and Wu l3 find a similar 

small effect from the transition region immediately before and after the 

pulse. 
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. . 

Impact Parameter Density: - - 

From our discussion of the classical beamstrahlung problem, we note that 

the fractional energy loss depends quadratically upon the impact parameter, as 

is given explicitly in (1.12) . This directly reflects the square of the strength 

of the transverse electric field. This dependence is well hidden in the quantum 

formalism; one may well ask how it arises and what does it become in the extreme 

quantum limit. 

- This question can be explored directly by modifying the argument given in 

section 5 and interchanging the order of performing the final state sum. First 

note that from (4.11) and the stationary phase point given by (3.4) , (3.5) and 

(3.19) we have 

(6.16) 
. . i = 

Now using (4.12) , (4.14) , and the definition of the form factor, one simply 

repeats the calculation but performs the t integral last. The result is 

F(D) = d2bl dF;$b2,) , 
J 

where D = C G and the impact parameter density is given by 

(6.17) 

dF(D, b:) = 
d2bl 

duu O” 
u3i2 3 J 

0 11 + 71 u,t 
dv [2 v t - u ] Ai , (6.18) 

with t given in terms of the impact parameter by (6.16) . 
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The classical and extreme quantum limits are now easily evaluated. In the 

former case we have 

dF(oo, d:) 2 
d2b1 = - ?rB2 

(6.19) 

whereas for the latter, an evaluation of the integrals in the limit of D < 1 yields 

with 

dF(Q b:> 
d2bl 

= g; [D* (s+z)]““, 

F. - g 31j6 r(i) 

= 0.87351... 

(6.20) 

(6.21) 

The above result is for scalar electrons; for the spin one-half case, FO = 0.83.. 

Note that in the extreme quantum limit, small values of the impact parameter 

contribute a relatively larger fraction of the total beamstrahlung than in the 

classical limit. 

- 
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. . 

Transverse Shaping: - - 

In the classical limit of beamstrahlung , it is straightforward to calculate the 

effect of shaping the pulse in its transverse dimensions. Consider first a pulse with 

a circular cross section and assume for illustrative purposes that the (normalized) 

charge density d(b) is a gaussian distribution with mean square radius B2 , 

d(b) = & exp[-b2/B2] , (6.22) 

- which produces the electric field 

x(b) = g (1 - exp[-b2/B2]) . (6.23) 

The fractional energy loss for an incident electron at impact parameter b is 

6 classical(b) = g (1 - exp[-b2/B2])2 , (6.24) 

where X contains irrelevant parameters. Averaging over the distribution of im- 

pact parameters for an incident pulse of shape (6.22) gives 

6 classical = g ln(4/3) . (6.25) - 

- 

For comparison a sharp-edged pulse of the same mean square radius is de- 

scribed by a charge density 

do(b) = & e(fiB - b) (6.26) 

which produces the electric field 

ii?(b) = & %+ . (6.27) 

The corresponding fractional, energy loss is, with the same parameter X as in 
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(6.24) , - 

Gfla88ical(b) = & b2 9 

which averaged over (6.26) gives 

(6.28) 

Comparing (6.25) with (6.29) we see that the gaussian smoothing of the 

charge distribution increases the radiative loss by - 15%. The effect of pulse 

shaping is presumably still smaller in the quantum limit since the small impact 

parameters contribute a larger fraction of the energy loss as we saw in the pre- 

ceding section. 

Eor a thin ribbon pulse, the effect of smoothing the charge density in the thin 

-dimension is even smaller. In this situation, we compare the energy loss for two 

flat ribbons with charge distributions having the same mean square thickness: 

b2 
d(b) = -$ (1+ +,‘” do(b) = iB b’(&iB - b,) . (6.30) - 

-- 

One finds that the radiative energy losses for finite impact parameter in the 

large, or x, direction. are equal to within 2% for these two cases. Finally we 

note in passing that the quantum calculation in Section 4 can also be carried out 

completely for a potential that contains both linear and quadratic terms in the 

impact parameter. 
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Large Disruption: - 

Large disruption collisions present a much more difficult calculational prob- 

lem than small disruption ones’because the interaction can no longer be described 

simply in terms of an electron scattering and radiating in a fixed static field. A 

large disruption analysis requires treating the mutually distorting interactions of 

both beams, which therefore becomes a complex many body problem. 

- 
The disruption, &b/b, is proportional to the length of a beam pulse as shown 

in Ref. 8 , eqn (2.26). W e can, therefore, approach the study of large disruptions 

by slicing the pulse so that the small disruption formalism can be applied to 

each individual slice. In all examples of physical interest the electron trajectory 

makes a very small angle with respect to the direction of the pulse length, i.e., 

$!j 2 leW/p - y/r2 << 1 and the methods of Section 3 can be applied. 

In particular, we see from the forms of (6.19) and (6.20) that the beam- 
i 

strahlung depends quadratically on the ratio of the electron’s impact parameter 

to the size of the bunch in the classical regime, but the power drops to 2/3 in 

the extreme quantum limit. This indicates that corrections due to large disrup- 

.- tions, which will alter the averages of these ratios, will be considerably smaller in 

the quantum than in the classical regime. In addition, if we consider ribbon-like 

elliptic pulses of large aspect ratio, it is only the thin direction of the pulse that 

is disrupted. This can be seen be integrating the equation of motion 

pa = e%f(b) (6.31) 

under the assumption of small disruption. We find as in Eqns (2.24-26) of Ref. 8 
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6bz I b,(L) L b,(O) = ?A 
bz - bz (0) WGa, 

6bY - bY (9 - 6, (0) Ye0 --. 
bY - bY (0) =SrGay* 

In the limit of very thin pulses with a, < a, , we can approximate G by 

GE a, + ay a2 
d- 

B -= - >> 1 
2dq - ay 2a, 

- and 

&z Ye0 ay -- 
b, = 7B a, 

6b, _ Ye0 --. 
by 7B 

(6.32) 

(6.33) 

(6.34) 

This equation shows that the fractional disruption in the direction of the large 

axis of the ellipse is much smaller than in the thin direction. In fact for parameters 

of interest it can be neglected entirely. 

- 
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. . 

- 7. Summary 

At fixed luminosity per pulse C , the scaling variable y is determined, since 

y = 2 &ii? = 495 d/L: x 10-30cm2 . Thus the fractional energy loss becomes 

6 = 20~~ a F(D) -- - 
3m G [ 1 D ’ (7-l) 

- 

whereD=CG = &G 
47Y * 

At fixed G, the maximum of 6 occurs at the peak 

of the bracketed ratio, which occurs at D - 0.20 with a value F(D)/D - 0.275. 

This maximum is quite wide. Thus in order to minimize the fractional energy 

loss, one is forced far into the classical regime of large D or the quantum regime 

of small D . 

The behavior of 6 in the various regimes can be characterized by: 

S(b >> 1) - 2.4 dL? x 10-30cm2 (classical limit) 

6(D - 0.2) - 0.66 4f.T x lWsocm2 (peak) 

l/3 

-- - 6 (D < 1) - 2.0 dL: x lo-socm2 (quantum limit) . 

The differential spectra also has a scaling form, 

d6 
+!Y! [ xR(u,x)] , 

dz= 3G (7.3) 

w-9 

where u depends only on the combination D = CG, and of course x through 

(4.10) . 
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TABLE II-Elliptical Shaping 

SLC 46 0.015 0.014 230 0.6 x 1O-3 0.6 x 1O-3 

SUPER 1o-5 lo6 0.15 5 x 1o-5 3 x lo* 0.05 

&?mm 1.5 1.3 0.39 7.5 0.05 0.03 

As an illustration of the effects of pulse shaping, consider the examples shown 

- in Table II which compares a circular pulse with an elliptical one with aspect ratio 

uZ/uy = 100. All the other pulse parameters, including L, are the same as given 

in Table I. The effect of adopting a transverse ribbon shape is quite dramatic 

and the reduction of beamstrahlung in all the regimes is sizeable. The fact that 

such effects can be completely described by our scaling laws in terms of the 

quantities D, G and y is an unexpected simplification. Furthermore, tapering 

. . of the front and back ends and of the sides of the beam pulse was shown to have a 

small effect on these calculations. We note in conclusion that possible near term 

colliders are characterized by design parameters that place them in the transition 

between the classical and the quantum regimes, with D - 1.5 - 7.5. Thus a 
- 

clear understanding of this region is important. 
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