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Abstract. A mini-review devoted to some implications of the Hagedorn temperature

for black hole physics. The existence of a limiting temperature is a generic feature of

string models. The Hagedorn temperature was introduced first in the context of hadronic

physics. Nowadays, the emphasis is shifted to fundamental strings which might be a

necessary ingredient to obtain a consistent theory of black holes. The point is that, in

field theory, the local temperature close to the horizon could be arbitrarily high, and this

observation is difficult to reconcile with the finiteness of the entropy of black holes. After

preliminary remarks, we review our recent attempt to evaluate the entropy of large black

holes in terms of fundamental strings. We also speculate on implications for dynamics of

large-Nc gauge theories arising within holographic models.

1 Introduction.

1.1 From hadrons to black holes

This talk was presented at a session devoted to the 50th anniversary of the introduction of the Hage-

dorn temperature [1]. Originally, the Hagedorn temperature TH was discussed in connection with

hadronic physics. Alternatively, one can say that it referred to a mass scale of the order of the pion

mass, TH ∼ mπ. We will discuss the physics of black holes, or, more precisely, the properties of

the black-hole horizon. In field theory, the local temperature close to the horizon can be arbitrarily

high, and this is known to be inconsistent with finiteness of the Bekenstein-Hawking entropy of black

holes, see, in particular, [2][3]. The inconsistency becomes manifest at the gravitational scale, or at

T ∼ MPlanck. This observation serves as a motivation [4] to introduce strings at this scale. It is within

this framework that we make our remarks on the explicit evaluation of the Bekenstein-Hawking en-

tropy, see [5] and references therein. Nowadays, the literature on the subject of strings and black holes

is huge. Because of the format of the talk we limit our list of references to only a few papers. General

background can be found in [6].

It should be remarked that the recent firewall paradox (supposedly burning up infalling observers)

has rekindled the interest in horizon physics (see [7] and subsequent work). We however are interested
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in the physics as described by static observers and are hence (a priori) safely away from speculating

on the experience of infalling observers.

The outline of the talk is as follows. In the Introduction we describe briefly how the notion of

a limiting temperature arises within a generic string picture. In Section 2 we remind the reader of

the basics of the black holes. In Section 3 we address the issue of evaluating black-hole entropy

within string theory. In Section 4 we discuss briefly possible phenomenological implications within

holographic models.

1.2 Hagedorn temperature

As a starting point, we can choose the assumption made by R. Hagedorn [1] that the density of

hadronic states ω(E) at large energy E grows exponentially:

ω(E) ∼ exp
(
βH E

)
,where βH ∼ m−1

π . (1)

Then the partition function

z =

∫ ∞

0

dEω(E)e−βE (2)

exists only as far as β > βH . In the microcanonical language, there is a “limiting temperature" TH :

1

T
=
∂S

∂E
(3)

and

T < TH , TH ≡ 1

βH

= const . (4)

The physics behind this remarkable phenomenon is actually quite simple: if we pump energy into the

system, new higher-mass states are produced rather than that the energy of already existing states is

increased. The increasing of energy of existing states would mean an increasing temperature. The

dominance of production of new massive states manifests the emergence of a limiting temperature.

1.3 Hagedorn temperature and strings

In view of the fact that the spectrum (1) leads to such a drastic conclusion as the existence of a limiting

temperature in nature, we should probably re-examine the reasons for introducing the exponential

spectrum itself.

The strongest support for the assumption (1) comes from the string model of hadrons. And, in

turn, the strongest point of the string model is that it reproduces linear Regge trajectories. Indeed, the

energy of a string of length L is given by:

Estring = σ · L, σ ≡ (2πα′)−1 , (5)

where σ is the string tension. For a rotating string

M2 =
1

α′
J, (6)

where J is the total angular momentum. In other words, the Regge trajectories are linear. Moreover,

the density of states is indeed exponential at high energy:

ω(E) ∼ exp(βH E)

E1+D/2
, (7)

where βH ∼ √
α′ and D is the number of (non-compact) spatial directions. Derivations of Eqs (5), (6),

(7) can be found in standard textbooks.
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1.4 Limiting temperature vs phase transition

At first sight, the argumentation above looks strong enough and we could expect the existence of

a limiting temperature. In fact, it was realized a long time ago that there is a viable alternative to

the introduction of the Hagedorn temperature. Namely, one can argue that there is a phase transi-

tion. While at low temperatures hadrons appear to be fundamental they are in fact composite and

are built up by quarks and gluons. Thus, at some critical temperature Tcr there is a phase transition

to deconfinement. This phase transition has been observed and studied thermodynamically in great

detail through lattice simulations for various non-Abelian gauge groups, including the realistic case

of quantum chromodynamics.

The precise relation between TH and Tcr remains somewhat obscure. Phenomenologically, it is

obvious that one should have TH > Tcr, where TH is defined within the string model. How close TH

is to Tcr, remains unclear because of the uncertainties of the string models of hadrons.

Thus, we can say that the existence of Tcr can be traced back to the fact that it is the field theory

which is fundamental, not the hadronic strings model.

As we will see next, the quantum field theory (QFT) becomes, in turn, problematic at the gravita-

tional scale. This is revealed by considering black holes.

2 Black holes. Preliminaries

Let us first remind the reader a few well-known equations concerning black holes. The Schwarzschild

geometry reads as

ds2 = −
(
1 − 2GN M

r

)
dt2 +

(
1 − 2GN M

r

)−1
dr2 + dx

2
⊥, (8)

where M is the mass of the central body, or black hole in our case and GN is the Newton constant.

Note that the G00 component of the metric vanishes at the horizon rH = 2GN M.

The thermodynamic entropy is proportional to the area of the black hole:

S BH =
Area

4GN

(9)

and there is Hawking radiation with temperature

βHawking = 8πGN M . (10)

Close to the horizon, it is useful to introduce the distance ρ to the horizon, ρ =
√

8GN M(r − 2GN M).

Then for ρ� 4GN M

ds2
Rindler = − ρ2

(4GN M)2
dt2 + dρ2 + dx

2
⊥.

Many results apply just in this limit of the so-called Rindler space. For Euclidean time τ,

ds2
Euclidean =

ρ2

(4GN M)2
dτ2 + dρ2 + dx

2
⊥,

which is flat space in polar coordinates. Moreover, the τ-coordinate is periodic,

τ ∼ τ + βRindler , (11)

with βRindler = 8πGN M ≡ βHawking.
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One can say that a black hole provides a “lab" to study temperatures arbitrarily high. Indeed, near

the horizon the blue-shift factor is given by

χ ≡ 4GN M

ρ
, (12)

where ρ is the distance to the horizon. Hence

βlocal = βRindlerχ
−1, βlocal → 0, if ρ → 0. (13)

Note that if we go beyond the Rindler approximation the overall Euclidean thermal manifold is cigar-

shaped.

2.1 Black holes and limiting temperature

In quantum field theory the entropy density s ∼ T 3 and by using (12) the total entropy stored near

the horizon is estimated as

S ∼
∫

dρT (ρ)3 =
Area

ε2
, (14)

where ε is a cut off at small distances.

Not to exceed the black hole entropy (9), we need a limiting temperature (brick wall of ’t Hooft

[2][3]). In other words, there is a need for a modification of QFT at short distances. Strings are

welcome back on the fundamental level!

In practice, to limit applicability of field theory near the horizon one introduces a so-called

stretched horizon. The stretched horizon is a surface placed close to the actual horizon, in front

of it, such that G00 � 1. For more details see [8], [9].

3 Stringy horizon

3.1 Long-string picture of L. Susskind

Consider the formation of a black hole by throwing in matter focused inside the (future) black hole.

For a distant observer, the matter falls in infinitely long. As a result, the infalling matter spreads

out in the transverse directions [4]. Indeed, consider the parton-model representation of the matter.

Then there is diffusion of the partons in the transverse directions. And since the process takes long, the

partons cover the whole area. Moreover, it is known that, say, two long strings merge into a single one,

because of entropic considerations. In this way one comes to the long-string picture of L. Susskind.

According to this picture near the horizon, at ρ ∼ ls where ls is the string scale, there exists a single

long string 1.

Moreover, one might hope that by counting the number of states of the long string, one could

reproduce the entropy (9) of the black hole:

S long string = S BH (?) (15)

Note, though, that the matching (15) is not without problems. Indeed, the density of states of a long

string is exponential in its length, or mass M, see (7). On the other hand, the Bekenstein-Hawking

entropy is proportional to the area of the black hole, or its mass squared, S BH ∼ M2. To maintain (15)

1It is worth emphasizing that physical pictures in general relativity are observer-dependent. The infalling matter is visualized

as a single long string by a distant observer.
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one is forced to speculate that this apparent mismatch is removed by accounting for the self-gravitation

of the long string [10].

Thus, the long-string picture has definite advantages, by resolving the ultraviolet divergence (12)

through the introduction of a finite ls and by relating the number of degrees of freedom of a black hole

to the number of degrees of freedom of a long string (which is much better understood). Also, the

proportionality of the entropy to the area comes out naturally because of the random walk of partons

in the transverse directions.

Many questions are left open, however. In particular:

• What keeps the long string at ρ ∼ ls?

• How to get quantitatively S = (Area)/4GN?

• Qualitative picture vs fundamental strings?

These questions were addressed in [5], see also references therein.

3.2 Main results

We considered a kind of mean field approximation, when a thin shell of matter of mass δM falls

into the black hole of mass M. The gravitational field of the mass M is taken into account while the

self-interaction within the shell is neglected. The thin shell is described in the framework of string

theory. We find that in Euclidean time the shell occupies a zero mode. This allows us to evaluate

the entropy carried to the black hole by the shell. Integrating over dM reproduces the Bekenstein-

Hawking entropy for black holes. Moreover, knowing the wave function of the zero mode allows

us to visualize the profile of the stringy horizon at distances of order ls from the horizon. One can

summarize the results by saying that, in the approximation of the mean field, the idea of relating

the entropy of (large) black holes to the stringy degrees of freedom is realized on a fully quantitative

level. An important reservation is that these results hold in the case of type II superstrings and heterotic

strings in Rindler space. Whereas for bosonic strings, there arises no consistent picture.

3.3 Main tool: thermal scalar

On the technical side, the results just mentioned are obtained by utilizing the construction of the so-

called thermal scalar in curved space, see [11] and references therein. The theory of the thermal scalar

has been developing since long, see in particular [12], [13]. Roughly speaking, the thermal scalar is a

Euclidean counterpart of the Hagedorn transition. Namely, the original mechanism for the Hagedorn

divergence of the partition function (2) is the production of high-mass states. A complementary view

on the Hagedorn transition in Euclidean time is that it is a kind of a Higgs phase transition when the

mass squared of a complex field changes its sign. This scalar field, or thermal scalar, lives in spatial

dimensions only (not temporal) and its mass is given by:

m2
thermal scalar =

(
β − βH

)
βH

2π(α′)2
. (16)

Eq. (16) holds in flat space and as far as m2
thermal scalar

is positive. What happens at β < βH is not clear

a priori, for further discussion see [13].

The equivalence between the standard formulation of the Hagedorn transition and that one in terms

of the thermal scalar can readily be demonstrated using the polymer, or random-walk formulation

of Euclidean field theory. It is also straightforward to see that the thermal scalar corresponds to a

string once wrapped around the compact Euclidean time [12]. The time dependence is fixed then by
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the periodicity and effectively the wave function of the thermal scalar depends only on the spatial

coordinates.

To consider strings in the background field of black holes, one needs to generalize the thermal

scalar to curved space, see [14], [11] and references therein.

3.4 Thermal scalar in curved space

The action for the thermal-scalar field ϕ is given by [11, 15]:

S =

∫
dD−1x

√
Ge−2Φ

×
(
Gi j∇iϕ∇ jϕ∗ +

1

4π2(α′)2
(β2G00 − β2

H)ϕϕ∗
)
, (17)

where G00,Gi j are the components of the metric and Φ is the dilaton field. A crucial point is that

for type II strings in Rindler space, ds2
Rindler

= a2ρ2dt2 + dρ2 + dx
2
⊥, the action (17) receives no α′

corrections [11, 15]. Moreover, this is also true for heterotic strings [16] (but not for bosonic strings).

The corresponding equation for the wave functions

(
− ∂2
ρ −

1

ρ
∂ρ +

1

4π2(α′)2
(β2a2ρ2 − β2

H)
)
ϕn(ρ) = λnϕ(ρ) (18)

has solutions:

ϕn(ρ) = exp
(
− aβρ2

4πα′
)
Ln

(aβρ2

2πα′
)
, λn = aβ(1 + 2n) − 2π (19)

in terms of Laguerre polynomials Ln, and n ∈ N. The zero mode (n=0) at β = βRindler = 2π/a

dominates the thermal partition function.

This analysis was done for the singly wound thermal scalar state. A curiosity at this point is that

states that are wound multiple times are simply absent from the spectrum. This will be important in

the final section.

3.5 Picture emerging

The build-up of a black hole by throwing a thin shell of mass δM to the black hole of mass Minitial can

be consistently described by string theory in a mean-field approximation. The shell ends up as a long

string in a layer of thickness δρ ∼ ls near the horizon.

Moreover, the entropy of black holes is calculable without any adjustable parameters. In more

detail, the density of states seen by a distant observer is

ω(δM) ∼ exp(βHawkingδM)

δM
, or βHawking = βHagedorn. (20)

Integrating over δM we get the Bekenstein-Hawking entropy:

δS BH = 8πGN MδM → S BH =
Area

4GN

. (21)
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Also, knowledge of the wave function (19) allows us to evaluate [5, 17] the profile of the energy-

momentum tensor associated with the long string of mass δM:

〈
T 0

0 (x)
〉
= −2N2

(2ρ2

α′
− 1

)
e−ρ

2/α′ ,

〈
T
ρ
ρ (x)

〉
= 2N2e−ρ

2/α′ , (22)

〈
T i

j(x)
〉
= 2N2δi

j

(
1 − ρ

2

α′
)
e−ρ

2/α′ ,

where i, j = 1, 2 are transverse directions and N is a normalization factor.

Note a positive value of the radial pressure,
〈
T
ρ
ρ (x)

〉
. It is this pressure that keeps the matter from

collapsing onto the center. Remarkably, Eqs (22) specify a distribution of matter near the horizon, at

ρ ∼ ls.

4 From strings to gauge theories, via holography

Amusingly enough, lessons from strings on the gravitational scale might produce a new insight into

the dynamics of gauge theories. The means is holography: strings live in curved extra dimensions,

while gauge theory lives on a flat boundary. Both theories are inter-related.

The most famous case of the string-gauge duality refers to N = 4 supersymmetric Yang-Mills

theory [18]. In case of non-supersymmetric Yang-Mills theories, Witten constructed a model [19]

which in the far infrared limit belongs to the same universality class as large-Nc gauge theories. The

model can be generalized to incorporate massless quarks [20]. From our perspective, it is crucial that

the geometry in extra dimensions inherent to this model is of the same cigar-shape as we encountered

while discussing large black holes above.

In more detail, the Euclidean version of the model [19] introduces two compact dimensions:

• Periodic Euclidean time τ ∼ τ + βτ(z) where the periodicity, βτ depends on an extra coordinate

z. As is common to holographic models, the z-coordinate is associated with resolution. The limit

z → 0 corresponds to Yang-Mills theories in the ultraviolet limit, while z → zhorizon corresponds to

the infrared limit on the field theoretic side

• There is another periodic coordinate σ ∼ σ + βσ(z). Wrapping around σ counts the topological

charge associated with the corresponding stringy state

From first principles, at T = 0 the (τ, z) space is a cylinder and (σ, z) is cigar-shaped, βσ(zhorizon) =

0. At the deconfining phase transition, T = Tcr the geometries in the (τ, z) and (σ, z) coordinates are

interchanged.

Now we are coming to a central point, namely how, if at all, the geometry in the extra dimensions

is related to gauge theory phenomenology. One of the routes is to consider properties of so-called

defects. One of the best studied examples of a defect on the field-theoretic side are instantons. On the

stringy side, defects can be identified topologically, in terms of wrapping around compact directions.

In the geometric language the string action is very simple,

(action) ∼ L · (tension) .

If there is a cylinder-type geometry then the wrapping number is well-defined and the probability to

find a defect is suppressed by the action.

However, in case of a cigar-shaped geometry,

βτ(zhorizon) = 0 or βσ(zhorizon) = 0
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the action for wrapped states vanishes at the horizon and the probability to find them in the vacuum

state is not suppressed by their action.

Instantons are distinguished by a non-vanishing topological charge. As is mentioned above, in

the geometric language, the topological charge is associated with wrapping around the σ-coordinate.

The simplest geometric object which can be wrapped around the σ direction is a D0-brane. The

corresponding defect is characterized by a topological charge determined by the wrapping number,

its position in the Euclidean space and by its action, which depends on the value of its z-coordinate.

Thus, the number of the parameters characterizing such D0 branes matches instantons of field theory,

for further details and references see [21].

Let us check the gravity-gauge correspondence on the example of the instantons [21]. Consider

first temperature T = 0 and start with the strings. Since βσ vanishes on the horizon, βσ(z = zhorizon) =

0, instantons are not suppressed by the action in the far infrared. This is, indeed, well known on the

field theoretic side of the correspondence. At T = Tcr the (σ, z) geometry is changed into a cylinder

and instantons become suppressed according to the stringy picture. Again, this conclusion is well

known in field theory and is supported by the existing phenomenology.

Now we are coming to the central point of this section, that is the manifestation of the zero mode

discussed in the preceding section. Classically, the action for the defects,

S defect = L · (tension)

vanishes for any wrapping number as far as βσ(z) = 0. However, quantum-mechanically keeping a D0

brane at the tip of the cigar results in kinetic energy, because of the uncertainty principle. As a result,

only the lowest level survives as the zero mode at the tip of the cigar (see discussion in the preceding

section). The lowest level, in turn, corresponds to a single wrapping. Phenomenologically, this implies

that only instantons with the topological charge Qtop = ±1 exist while |Qtop| ≥ 2 are suppressed in

the vacuum. Also, an effective infrared cut off might arise dynamically in the far infrared. These

predictions which follow from holography seem to be supported by the lattice data.
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